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Abstract

We address the problem of risk sharing among agents using a two-parameter class of quantile-based risk
measures, the so-called Range-Value-at-Risk (RVaR), as their preferences. The family of RVaR includes the
Value-at-Risk (VaR) and the Expected Shortfall (ES), the two popular and competing regulatory risk mea-
sures, as special cases. We first establish an inequality for RVaR-based risk aggregation, showing that RVaR
satisfies a special form of subadditivity. Then, the Pareto-optimal risk sharing problem is solved through
explicit construction. To study risk sharing in a competitive market, an Arrow-Debreu equilibrium is estab-
lished for some simple, yet natural settings. Further, we investigate the problem of model uncertainty in risk
sharing, and show that, generally, a robust optimal allocation exists if and only if none of the underlying risk
measures is a VaR. Practical implications of our main results for risk management and policy makers are dis-

cussed, and several novel advantages of ES over VaR from the perspective of a regulator are thereby revealed.

Keywords: Value-at-Risk, Expected Shortfall, risk sharing, regulatory capital, robustness, Arrow-Debreu

equilibrium.

*RiskLab, Department of Mathematics, ETH Zurich, 8092 Zurich, Switzerland, and Swiss Finance Institute. Email:

embrechts@math.ethz. ch.
"Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada. Email: h2621iu@

uwaterloo.ca
*Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada. Email: wang@

uwaterloo.ca.


embrechts@math.ethz.ch
h262liu@uwaterloo.ca
h262liu@uwaterloo.ca
wang@uwaterloo.ca
wang@uwaterloo.ca

1 Introduction

1.1 Risk sharing problems and quantile-based risk measures

A risk sharing problem concerns the redistribution of a total risk among multiple participants. In
this paper, we address collaborative as well as competitive risk sharing problems in which participants are
equipped with monetary risk measures (Artzner et al. (1999)). These generic risk sharing problems can be
formulated in various contexts. For instance, it may represent regulatory capital reduction within affiliates of
a single firm, equilibrium among a group of firms with costs associated with regulatory capital, insurance-
reinsurance contracts and risk-transfer, or wealth redistribution among investors. Throughout this paper, we
generally refer to a participant in the risk sharing problem as an agent, which may represent an affiliate, a
firm, an insured, an insurer, or an investor in different contexts.

The most commonly used families of risk measures in practice are the Value-at-Risk (VaR) and the
Expected Shortfall (ES); both are implemented in modern financial and insurance regulation (see Section 2
for definitions). During the past few years, there has been an extensive debate on the comparative advantages
of VaR and ES; see the academic papers Embrechts et al. (2014) and Emmer et al. (2015) for comprehensive
discussions, and BCBS (2014) and TAIS (2014) for contributions from regulators in banking and insurance,
respectively.

The one-parameter families of risk measures, VaR and ES, are unified in a more general two-parameter
family of risk measures, called the Range-Value-at-Risk (RVaR). The family of RVaR was introduced in
Cont et al. (2010) in the context of robustness properties of risk measures (see Section 2). More importantly,
RVaR can be seen as a bridge connecting VaR and ES, the two most popular but methodologically very
different regulatory risk measures. This embedding of VaR and ES into RVaR helps us to understand many
properties and comparative advantages of the former risk measures, and hence motivates our concentration
on RVaR as the underlying risk measures in the problem of risk sharing discussed in this paper.

Since each of VaR, ES and RVaR can be represented as average quantiles of a random variable, we
refer to the problems considered in this paper as quantile-based risk sharing. We hope that the methodolog-
ical results obtained in this paper will be helpful to risk management and policy makers in designing risk

allocations and appropriate regulatory risk measures.
1.2 Contribution and structure of the paper

First, some basic definitions and preliminaries on the risk measures used in this paper are given in
Section 2.
Our theoretical contributions start with establishing a powerful inequality for the RVaR family in Sec-

tion 3. This inequality later serves as a building block for the main results on quantile-based risk sharing;



it implies that the risk measures RVaR, including VaR and ES as special cases, satisfy a special form of
subadditivity.

Section 4 contains results on (Pareto-)optimal allocations for agents whose preferences are charac-
terized by the RVaR family. We first solve the optimal risk sharing problem by characterizing the inf-
convolution of several RVaR measures with different parameters. An optimal allocation is given through an
explicit construction.

In Section 5, we study competitive risk sharing in which each agent optimizes their own preferences,
regardless of other participants. We show that, under suitable assumptions, the optimal allocation obtained
in Section 4 is an equilibrium allocation in the sense of Arrow-Debreu. Moreover, the equilibrium pricing
rule can be obtained explicitly; it has the form of a mixture of a constant and the reciprocal of the total risk.

We then proceed to discuss some relevant issues on optimal allocation in Section 6. In particular, we
show that in general, a robust optimal allocation exists if and only if none of the underlying risk measures
is a VaR, and a comonotonic optimal allocation exists only if there is at most one underlying risk measure
which is not an ES.

Finally, in Section 7 we summarize our main results, and discuss some practical implications of our
results for risk management and policy makers. As a consequence, we reveal several novel advantages of
ES-based risk management. The proofs of our main results are put in Section 8, and some related technical

details are included in the Appendices.
1.3 Related literature

In a seminal paper, Borch (1962) showed that within the context of concave utilities, Pareto-optimal
allocations between agents are comonotonic. Since the introduction of coherent and convex risk measures
by Artzner et al. (1999), Follmer and Schied (2002) and Frittelli and Rosazza Gianin (2002, 2005), the
problem of Pareto-optimal risk sharing has been extensively studied when the underlying risk measures
are chosen as convex or coherent. As a relevant mathematical tool, the inf-convolution of convex risk
measures was obtained in Barrieu and El Karoui (2005). For law-determined monetary utility functions,
or equivalently, convex risk measures, Jouini et al. (2008) showed the existence of an optimal risk sharing
for bounded random variables, which is always comonotonic. This result was generalized to non-monotone
risk measures by Acciaio (2007) and Filipovi¢ and Svindland (2008), to multivariate risks by Carlier et
al. (2012) and to cash-subadditive and quasi-convex risk measures by Mastrogiacomo and Rosazza Gianin
(2015). Pareto-optimal risk sharing for Choquet expected utilities is studied by Chateauneuf et al. (2000).
See Heath and Ku (2004), Tsanakas (2009) and Dana and Le Van (2010) for more on risk sharing with
monetary and convex risk measures. A recent reprint Weber (2017) generalizes the results in Sections 3-

4 to a class of distortion risk measures dominated by a VaR. On the design of insurance and reinsurance



contracts using risk measures, see Cai et al. (2008), Cui et al. (2013) and Bernard et al. (2015). A summary
on problems related to inf-convolution of monetary utility functions can be found in Delbaen (2012). For
some recent developments on efficient risk sharing and equilibria of the Arrow and Debreu (1954) type
with risk measures and rank-dependent utilities (RDU), see Cherny (2006), Carlier and Dana (2008, 2012),
Madan and Schoutens (2012), Xia and Zhou (2016) and Jin et al. (2016). In particular, Xia and Zhou (2016)
studied the existence of Arrow-Debreu equilibria for RDU agents and obtained solutions for the state-price
density. As far as we are aware of, there is little existing research on non-convex monetary risk measures in
risk sharing, and there are no explicit results on equilibrium allocations under such settings.

The extensive debate on desirable properties of regulatory risk measures, in particular VaR and ES,
is summarized in Embrechts et al. (2014) and Emmer et al. (2015); see also BCBS (2016) for a recent
discussion concerning market risk under Basel III and Sandstrom (2010, Chapter 14) for an overview in the
context of Solvency II. For a critical voice on risk measures and capital requirements in the case of Solvency
II, see Floreani (2013). Whereas there is a tendency to move from VaR to ES, for a while to come both risk
measures will coexist for regulatory purposes. Our paper adds some guidance potentially useful in reaching
more widely acceptable solutions. Many quantitative concepts may enter into this discussion; below we
highlight some issues relevant for our discussion. An overriding concept no doubt is model uncertainty in its
various guises. Robustness of risk measures is addressed in Cont et al. (2010), Kou et al. (2013), Kratschmer
etal. (2012, 2014) and Embrechts et al. (2015). The concept of elicitability is closely related to risk measure
forecasts. Osband (1985) and Weber (2006) contain key results that are used by Bellini and Bignozzi (2015)
and Delbaen et al. (2016) to characterize one-dimensional elicitable risk measures. For recent progress on
elicitability, forecasting and backtesting of risk measures, see Gneiting (2011), Ziegel (2016), Fissler and
Ziegel (2016), Acerbi and Székely (2014), Kou and Peng (2016) and Davis (2016). Some papers addressing
model uncertainty in risk aggregation are Embrechts et al. (2013), Bernard and Vanduftel (2015) and Wang
et al. (2015), amongst others. The problems of currency exchange and regulatory arbitrage are discussed in
Koch-Medina and Munari (2016) and Wang (2016), and model uncertainty in the context of stress-testing is
studied in for instance Cambou and Filipovi¢ (2015).

An important feature of our contribution is the introduction of a concept of robustness into the problem
of risk sharing. It is well-known that various concepts and applications of robustness exist in different fields.
In the realm of statistics, Huber and Ronchetti (2009) is an excellent place to start. For a recent generalization
of the classic notion of robustness in the context of tail functionals, see Kriatschmer et al. (2014) and Zihle
(2016). For discussions on robustness in economics, see for instance, Gilboa and Schmeidler (1989) and
Maccheroni et al. (2006) in the theory of preferences, and the classic book Hansen and Sargent (2008).

Within the theory of optimization, a standard reference is Ben-Tal et al. (2009). The concept of robustness



in this paper relates to the practical consideration of model misspecification, and hence it is different from
the problem of risk sharing under robust utility functionals as in for instance Knispel et al. (2016).

The risk sharing problem in this paper involves multiple firms in an economy, and as such systemic risk
becomes relevant. We refer to Acharya (2009), Chen et al. (2013), Rogers and Veraart (2013), Adrian and
Brunnermeier (2016), Feinstein et al. (2017) and the references therein for recent developments on systemic
risk. In particular, from the results in this paper, some degree of regulation against risk sharing is important
for the whole economy when VaR is used as a regulatory risk measure; see also Ibragimov et al. (2011) in a

different setting.

2 Risk measures, the RVaR family, and basic terminology

Let (Q, .%,P) be an atomless probability space, and X be the set of real, integrable random variables
(i.e. random variables with finite means) defined on (Q, .%, P). We treat almost surely equal random variables
as identical in this paper and we assume that for any X € X, there exists a ¥ € X independent of X. A risk
measure is a functional p : X — [—o0, c0].

Below we list some properties for risk measures: for X, Y € X,
(a) Monotonicity: p(X) < p(Y)if X < Y;
(b) Cash-invariance: p(X + ¢) = p(X) + c for any c € R;
(c) Positive homogeneity: p(4X) = Ap(X) for any A > 0;
(d) Subadditivity: p(X + Y) < p(X) + p(Y);
(e) Law-determination: p(X) = p(Y) if X and Y have the same distribution.

We refer to Follmer and Schied (2016, Chapter 4) and Delbaen (2012) for interpretations of and discussions

on these, by now standard properties of risk measures.

Definition 1. A monetary risk measure is a risk measure satisfying (a) and (b), and a coherent risk measure

is a risk measure satisfying (a)-(d).

The Value-at-Risk (VaR) of X € X atlevel @ € R, := [0, o) is defined as the 100(1 — @)% (generalized)
quantile of X,
VaR,(X) = inf{x € [-00,0] : P(X < x) = 1 —a}. (D)

Note that in (1), for @ > 1, VaR,(X) = —oo for all X € X. Certainly, only the case @ € [0, 1) is relevant
in risk management; we do however allow « to take values greater than 1 in order to unify the main results

in this paper. The risk measures VaR,, @ > 0, are monotone, cash-invariant, positive homogeneous, and



law-determined, but in general not subadditive; see McNeil et al. (2015) for an in-depth discussion on the
various uses and misuses of VaR in Quantitative Risk Management.
The key family of risk measures we study in this paper is the family of the Range-Value-at-Risk (RVaR),

truncated average quantiles of a random variable. For X € X, the RVaR at level (a, ) € R? is defined as

B .
L [P Var,(X)dy if >0,

RVaR, g(X) = { A 2
VaR ,(X) if g = 0.

For X € X and a + 8 > 1, since VaRy,4_.(X) = —co for all £ € [0, @ + 5 — 1], we have RVaR,, g(X) = —oco.

The family of RVaR is introduced by Cont et al. (2010) as robust risk measures, in the sense that for
a>0and a+p < 1, RVaR, g is continuous with respect to convergence in distribution (weak convergence).
Similar to the case of VaR,, RVaR,, s is also only relevant in practice for e+ < 1. RVaR belongs to the large
family of distortion risk measures (see Appendices A; for more on distortion risk measures, see e.g. Kusuoka
(2001), Song and Yan (2009), Dhaene et al. (2012), Grigorova (2014), Wang et al. (2015) and the references
therein). Though some of our results hold for the broader class of distortion risk measures, both for reasons
of practical relevance as well as space constraints we restrict our attention to RVaR. This also allows for the
explicit derivation of risk sharing formulas.

For all X € X, VaR,(X) is non-increasing and right-continuous in « > 0, and hence we have
RVaR, o(X) = VaR,(X) = ﬁli)rg+ RVaR, g(X), a > 0.
Another special case of RVaR is the Expected Shortfall (ES, also known as CVaR and TVaR), defined as
ESg(X) = RVaRgz(X), B> 0.

Different from RVaR and VaR, an ES is subadditive. Therefore, ESg, 8 € [0, 1] are law-determined and
coherent risk measures on X. Note that by definition, for all X € X, RVaR, g(X) is non-increasing in both
« € Ry and B € R,, and RVaR, g (X) is non-increasing in € [0, S].

Throughout this paper, we divide the set of risk measures {RVaR, g : @, € R,} into three subcate-
gories. A risk measure VaR,, a > 0 is called a true VaR, a risk measure RVaR, g, @, > 0 is called a true

RVaR, and ESg, B > 0 is simply called an ES.

Remark 1. We adhere to the following convention: for X € X, positive values of X corresponds to losses.
Mainly for notational convenience we write VaR,(X) for the 100(1 — @)% quantile of the random variable
X; the same notation is applied to ESg. Whereas this convention (small ,8 > 0) can be widely found in
the academic literature (see for instance Follmer and Schied (2016) and Delbaen (2012)), we are well aware
that in practice the notation VaR,(X) typically refers to the 100a% quantile of X (thus « is close to 1).

With this notational convention, our main results like Theorems 1 and 2 below admit a much more elegant



formulation. Moreover, the generic results of this paper on risk sharing are independent of this notational
issue. As a consequence, the applicability for practice remains fully accessible to the (regulatory or industry)

end-user.

Before we proceed, we introduce some common terminology and notation. Throughout this paper, for

p € (0, 1) and any non-decreasing function F, let
FY(p)=inf{xeR: F(x) > p}.

Define Uy as a uniform random variable on [0, 1] such that F~!(Ux) = X almost surely where F is the
distribution function of the random variable X. If X is continuously distributed, Uy = F(X) almost surely.
For a general random variable X, the existence of Uy is guaranteed; see for instance Lemma A.32 of Follmer
and Schied (2016). We say that a random variable with distribution F is doubly continuous if both F and

F~! are continuous; see also Proposition 1 (7) of Embrechts and Hofert (2013). For any 81,...,8, € R,
write \/2_ ; = max{By. ... A} and AL, B; = min{By. ... A},

3 Quantile inequalities

The following theorem establishes the relationship between the individual RVaR and the aggregate
RVaR. To unify our results for all possible choices of ay,...,a, and 8y, ...,B,, from now on the indefinite
form co — oo is interpreted as —co. Note that RVaR, g(X) = oo may only happen in the very special case

where X € X is unbounded above and @ = 5 = 0.

Theorem 1. For any Xi,...,X, € Xand any ay,...,an,B1,...,Bs = 0, we have
n n
RVaRs» o\ g, (Z Xi] < " RVaRy,4,(X)). 3)
i=1 i=1
By setting @y = --- = a, =0and By = --- = B,, Theorem 1 reduces to the classic subadditivity of ES.

Embrechts and Wang (2015) contains several proofs of the latter result, with each proof set into a different

technical as well as pedagogical environment. By setting 81 = --- = 8, = 0, we obtain the following
inequality for VaR.
Corollary 1. For any X,,...,X, € Xand any a1, ...,a, = 0, we have
n n
VaRgr o, (Z Xi] < ) VaR,, (X)) 4)
i=1 i=1

Theorem 1 and Corollary 1 imply that RVaR and VaR enjoy special forms of subadditivity as in (3) and
(4). For n = 2, (3) reads as

RVaRmmZ,ﬁlvﬁz (Xl + Xz) < RV&RQIVBI (X]) + RVaRaz”Bz(Xz),



for all X1,Xs € X, a1,a2,81,62 € Ry. This subadditivity involves a combination of the summation of the
random variables Xi,...,X, € X, and the summation of the parameters (a1,81),..., (@, B:) € Ri with
respect to the two-dimensional additive operation (+, V). Note that V-operation is known as the tropical

addition in the max-plus algebra; see Richter-Gebert et al. (2005) and also Remark 4.

Remark 2. Recall that X is the set of integrable random variables in Theorem 1 and Corollary 1. For non-
integrable random variables, the definition of VaR in (1) is still valid, and it is straightforward to see that (4)
in Corollary 1 holds for all random variables X1, ..., X,. For the case of RVaR, the definition (2) may involve
ill-posed cases such as oo — co. For instance, the integral fol VaR, (X)dy = E[X] is only properly defined on

X. Therefore, to make all results consistent throughout this paper, we focus on integrable random variables.

4 Optimal allocations in quantile-based risk sharing

In this section we study (Pareto-)optimal allocations in a risk sharing problem where the objectives of
agents are described by the RVaR family, and the target is to minimize the aggregate risk value defined below.
This setting is the most suitable if one assumes that the agents collectively work with each other to reach
optimality. This may be interpreted as, for instance, the case where a single firm (e.g. a holding) redistributes
an aggregate risk among its subsidiaries, which are assessed under separate regulatory regimes (e.g. these
subsidiaries may belong to different countries). Competitive optimality, in which each agent optimizes their

own objective without cooperation, will be discussed in Section 5.
4.1 Inf-convolution and Pareto-optimal allocations

Given X € X, we define the set of allocations of X as

A,,(X)z{(Xl,...,Xn)eX”:ZX,:X}. 5)

i=1
In a risk sharing problem, there are n agents equipped with respective risk measures py, ..., p, and they will
share a risk X by splitting it into an allocation (X1, ..., X,) € A,(X). Throughout, we refer to p;,...,p,ina
risk sharing problem as the underlying risk measures, X as the total risk, and for an allocation (X1, ..., X,),
n
1

we refer to 3", pi(X;) as the aggregate risk value. The problem we consider here is an unconstrained

allocation problem, that is, X, ..., X}, in (5) can be chosen over all integrable random variables.

The inf-convolution of n risk measures py, ..., p, is a risk measure defined as

E'] pi(X) := inf {Z 0iXi) 1 (X1, ..., X,) € An(X)}, XeX.
= i=1

That is, the inf-convolution of n risk measures is the infimum over aggregate risk values for all possible

allocations.



Definition 2. For risk measures p1,...,0, and X € X,
(i) an n-tuple (Xi,...,X,) € A,(X) is called an optimal allocation of X if 3", pi(X;) = o, pi(X);

(i1) an n-tuple (X1,...,X,) € A,(X) is called a Pareto-optimal allocation of X if for any (Yy,...,Y,) €
A, (X) satisfying p;(Y;) < pi(X;) foralli = 1,...,n, we have p;(¥;) = pi(X;) foralli=1,...,n.

In this paper, whenever an optimal allocation is mentioned, it is with respect to some underlying risk
measures which should be clear from the context. The following statement, unifying optimal allocations and
Pareto-optimal ones, can be found in Barrieu and El Karoui (2005) and Jouini et al. (2008) in the case of

convex risk measures.

Proposition 1. For any monetary risk measures py, ..., pn, an allocation is Pareto-optimal if and only if it

is optimal.

In the sequel, we do not distinguish between optimal allocations and Pareto-optimal ones. In order to
find an optimal allocation, we simply need to minimize the aggregate risk value over all allocations. In some
situations, the n agents in a sharing problem have initial risks &i,...,&,, respectively, and the total risk is
X =&+ .-+ + &,. With a given total risk X, the initial risks &1, ..., &, do not affect Pareto-optimality and
we do not take them into account in this section. They do play a role in the formulation of a competitive

equilibrium; see Section 5.
4.2 Optimal allocations

In this section we find the optimal allocations and the corresponding aggregate risk value for the RVaR

family of risk measures. The main result is the following theorem.
Theorem 2. For ay,...,a,,B1,...,Bs =0, we have

n

E] RVaR,, 4,(X) = RVaRyr 4 vn 5(X), X €X. ©6)
Moreover, if p := 3" a; + \/_, Bi < 1, then, assuming 3, = \/'_, Bi, an optimal allocation (X1, ...,X,) of
X € X is given by

Xi= (X -m], i=1,...,n—1, (7)

1-%i_, ae<Ux<1-307) au?
Xn = (X - m) I{UXQI—ZZ;% ) + m, (8)
where m € (—o0, VaR ,(X)] is a constant and Uy is defined as in Section 2.

If X > 0, then by setting m = 0 in (7)-(8), the optimal allocation is

Xi = XI, i=1,....,n—-1, C))

1-3i_, ae<Ux<1-35) ax)?

Xn = Xlyy<i-syt o (10)



The interpretation of the above allocation is clear: for eachi = 1,...,n — 1, agent i takes a risk X; with

probability of loss P(X; > 0) = ;. This implies RVaR,, ,(X;) = 0. The last agent (agent n) takes the rest of

the risk, and RVaR,, g, (X,) = RVaRyn 4, 5,(X) which is positive if X > 0. For each agent i, the parameter

Bi can be seen as the sensitivity with respect to a loss exceeding the ;-probability level. In view of the

above discussion, we will refer to §3; as the tolerance parameter of agent i, and agent n as the remaining-risk

bearer, who has the largest tolerance parameter among all agents.

Remark 3. Some observations on the optimal allocation in Theorem 2:

(i) Assuming p < 1in Theorem 2, each X, ..., X}, is a function of Uy in the optimal allocation (7)-(8). If
X is continuously distributed, then X1, ..., X, are also functions of X, since Uy can be taken as F(X)
where F is the distribution of X. In this case, the optimal allocation in (7)-(8) can be written as

Xi=X-m) I{F*‘(I—Zizlak)<X<F*‘(1—Z};]1 ayp (=L...,n—1, and (11
X, =X -m) I{X<F*'(1—ZZ;%ak)} + m, (12)
where m € (-0, VaR ,(X)].

(1) If@; =B =0forsomei = 1,...,n, assuming n > 2, one can always choose X; = 0 in an optimal risk
sharing (X1, ..., X,) € A,(X). This is because for any @, 8 € R, and X, X, € X,

RVaR, 3(X; + X3) + VaRo(0) < RVaR, g(X; + VaRo(X3)) = RVaR, g(X;) + VaRy(X3).
That is, it is not beneficial to allocate any risk to agent i, since she is extremely averse to taking any
risk. This is already reflected in the construction in (7).

(i) If X%, i + Vi, B8i > 1, as RvaRZ;Llau\/?:l 5;(X) = —o0, no optimal allocation exists. There exists
an allocation (Xi,...,X,) € A,(X) such that 3}" | RVaR,, g(X;) < —m forany m € R. If 3\7 | a; +
VL, Bi = 1, from the proof of Theorem 2 parts (iii) and (iv), it follows that, depending on the choice
of (a;,Bi),i=1,...,n, an optimal allocation may or may not exist.

The following corollary for VaR now follows directly from Theorem 2.

Corollary 2. For ay,...,a, = 0, we have

E]l VaR,,(X) = VaRgr 4,(X), X € X.
= =

Moreover, if p := 37| a; < 1, an optimal allocation of X € X is given by (7)-(8) where m € (—oo, VaR ,(X)].

Similarly to Corollary 1, Corollary 2 also holds for non-integrable random variables; see Remark 2.

10



Remark 4. From Theorem 2 and Corollary 2, the subset G of risk measures on X,
G = {RVaR,p : (@.B) € R7},

forms a commutative monoid (semi-group) equipped with the addition O. Moreover, this monoid is iso-
morphic to the monoid R? equipped with the addition (+, V). The identity element in the monoid (G, 0)
is RVaRgg = ESg = VaRy, and the identity element in the monoid (R%,(+, V)) is simply (0,0). The
submonoid Gy = {VaR, : @ € R.} of (G, DO) is isomorphic to the monoid (R, +), and the submonoid

Ge = {ESg : B € R, } of (G, O) is isomorphic to the monoid (R4, V).

S Competitive equilibria

In Section 4, (Pareto-)optimal allocations are obtained for the quantile-based risk sharing problem;
these are more suitable for the study of cooperative games. If the agents represent a group of individual
firms, there might not be a central coordination for these self-interested firms to reach Pareto-optimality.
In this section, we investigate settings of non-cooperative equilibria. We shall see that the optimal alloca-
tion obtained in Section 4 is indeed part of an Arrow-Debrew equilibrium under a simple condition on the
distribution function of X.

We consider a classic Arrow-Debreu economic equilibrium model (Arrow and Debreu (1954)) for
agents whose objectives are characterized by the RVaR family. All discussions are based on the underlying

risk measures RVaR,,, 3,,...,RVaR,, g, @;,B; € [0, 1) satisfying

iai - Qﬁi <1, Bu= Qﬁi. (13)
i=1 i=1 i=1

Note that we are assuming without loss of generality that the n-th agent has the largest tolerance parameter
among all agents.

n
1

Fori = 1,...,n, assume that agent 7 has an initial risk & € X. Let X = 3’7, & be the total risk, and

assume X > 0. Let ¥ be the set of bounded non-negative random variables. A random variable ¢ € ¥
presents the pricing rule for the microeconomic market among the agents, so that the traded price of a risk
Y € X is given by E[¢/Y]. Since a positive value of ¥ means loss, the value E[¢Y] should be interpreted
as the amount of money one needs to pay to transfer the loss Y to another agent. Up to a sign change from
loss to profit, ¢ is the same as a pricing density in asset pricing theory (see for instance Follmer and Schied
(2016)), except that we do not require it to be strictly positive here (see the discussion after Theorem 3 about
the case = 0).

For each i = 1,...,n, agent i may trade the initial risk &; for a new position X; € X. We assume that

an agent is not allowed to take more than the total risk, or take less than zero, and she is allowed to make

11



side-payments to other agents (represented by a cash amount s;). More precisely, for a given pricing rule i,

and each i = 1, ..., n, the individual optimization problem is

to minimize ~ RVaR,, g,(X;) +5; over X; € X, s; €R (14)
subject to s;i + EBlyX;] 2 Elyé&], 0<X; <X

In the optimization (14), s; is the (negative) cash position of agent i, s; + E[yX;] > E[yé&;] is the budget
constraint, and 0 < X; < X reflects that one’s risk position is neither beyond the total risk nor less than zero.
In the classic context of a one-period-two-date exchange economy, the cash position s; in (14) is interpreted
as the time-0 consumption of agent i; see e.g. Xia and Zhou (2016).

Obviously, the budget constraint in (14) is binding, and hence the objective in (14) can be rewritten
as RVaR,, 5.(X;) + E[y(& — X;)]. Moreover, &; is irrelevant in optimizing this objective. Therefore, the

optimization problem (14) is equivalent to

to minimize  V;(X;) = RVaR,, (X)) — E[yX;] over X; € X | (15)
i=1,...,n.
subject to 0<X; <X,

To reach an equilibrium, the market clearing equation

iX,-*=X=Zn]§,- (16)
i=1 i=1

needs to be satisfied, where X solves (15),7 = 1,...,n. The corresponding side-payments are automatically
cleared as well if (16) holds.

The constraint 0 < X; < X is essential to the optimization (15). Note that the functional X; +—
RVaR,, g,(X;) — E[yX;] is positively homogeneous. If we allow X; to be taken over the full set X, then
the infimum value of (15) will always be either 0 or —co (one cannot expect a non-trivial equilibrium to
exist). In view of this, we consider non-negative random variables and write X, = {X € X : X > 0}. Below
we formally introduce an Arrow-Debreu equilibrium. For an introduction of Arrow-Debreu equilibria in

finance, see Follmer and Schied (2016, Section 3.6).

Definition 3 (Arrow-Debreu equilibrium). Let X € X,. A pair (4, (X],...,X})) € ¥ X A,(X) is an Arrow-
Debreu equilibrium for (15) if

X eargmin{Vi(X;): X; € X, 0<X; <X}, i=1,...,n 17

The pricing rule  in an Arrow-Debreu equilibrium is called an equilibrium pricing rule, and the allocation

(X7,...,X;)in an Arrow-Debreu equilibrium is called an equilibrium allocation.

Certainly, the equilibrium pricing rule ¢, assuming it exists, is arbitrary on the set {X = 0}. Explicit

solutions of Arrow-Debreu equilibria for non-convex objectives (or non-concave objectives in the framework
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of utility maximization), including the RVaR family, are very limited in the literature. We are not aware
of any explicit solutions. For some recent development on Arrow-Debreu equilibria for rank-dependent
utilities, see Xia and Zhou (2016) and Jin et al. (2016).

We first establish the Pareto efficiency of an Arrow-Debreu equilibrium by showing that an equilibrium

allocation is necessarily an optimal one.

Proposition 2. Ler X € X, and assume (13) holds. Suppose that (y,(X5,..., X)) € ¥ x Ay(X) is an
Arrow-Debreu equilibrium for (15). Then (X7, ..., X,) is necessarily an optimal allocation for RVaR,, g,,. . .,

RVaRan B+

Proposition 2 is a special version of the First Welfare Economics Theorem for the optimization (15),
stating that an equilibrium allocation achieves Pareto efficiency under suitable assumptions (see e.g. Arrow
(1951) and Arrow and Debreu (1954)).

Next we shall see that, with an extra condition on the value of P(X > 0), the optimal allocation in
Theorem 2 is indeed an equilibrium allocation, and the corresponding equilibrium pricing rule is explicit.

Recall that for X > 0 and assuming (13), an optimal allocation in Theorem 2 is given by

X = XI i=1,...,n—1, (18)

(1-30 | ax<Ux<1-3i7h ane}?

X' = XI (19)

{Ux<1-302)
The following theorem establishes an explicit Arrow-Debreu equilibrium for (15).

Theorem 3. Write « = 3 | a;, @ = \i_| @; and 8 = \/_, Bi = Bn. Assume a + 3 < 1, and X € X, satisfies
P(X > 0) < max{a + S, a}. Let (X],...,X}) be given by (18)-(19), and

X5’ ﬂ} (xg>0) Where x = VaR,(X). (20)

Then (Y, (X},..., X)) is an Arrow-Debreu equilibrium for (15).

Y= mm{

From Theorem 3, there are two cases for the equilibrium pricing rule ¢ on {X > 0}:
(i) if P(X > 0) < a, then ¥ = 0;
(i) if @ < P(X > 0) < @ + 3, then

1
BI Uy<l-a) Where x = VaR,(X). 2n

——<luys1-a) +

V= mm{Xﬂ /3} Xp

In the above case (i), each agent takes a “free-lunch” risk X} in (18) which does not contribute to their

measure of risk. Note that in this case, O7_ RVaR,, g,(X) < VaR,(X) = 0. This means that the total risk X
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somehow “vanishes” from the the agents’ point of view. This explains intuitively why the price becomes
zero: no agent is willing to pay anything for a hedge of his risk. A special case of (i) is when all agents use
true VaR.

The above case (ii) is somewhat remarkable. The equilibrium pricing rule ¢ in (21) consists of two

parts. If X > x = VaR,(X), the pricing rule is given by ¢ = Xiﬁ, a constant times the reciprocal of X. This
form of equilibrium pricing rule is found in the Arrow-Debreu equilibrium for log utility maximizers (see
e.g. Example 3.63 of Follmer and Schied (2016)). If 0 < X < x, ¢ is equal to the constant 1/5. If X = 0,
as mentioned before,  is arbitrary and its value does not affect the optimization problem. For simplicity
one can take ¥ = 1/8 to unify with the previous case, so that ¢ is a non-increasing function of X. The
distribution of the equilibrium pricing rule ¢ is a mixture of a scaled reciprocal of X given X > x and a
constant 1/8 given X < x. We are not aware of any existing literature containing this particular form of

equilibrium pricing rules.

Remark 5. The condition P(X > 0) < max{a + 5, a} is crucial for the above Arrow-Debreu equilibrium.
One can verify that if P(X > 0) > max{a + §, e}, then (¢, (X],..., X)) in (18)-(20) may no longer be an
Arrow-Debreu equilibrium. It is not clear yet whether an Arrow-Debreu equilibrium exists in this case. We

conjecture that the existence depends on other distributional properties of X.

So far we considered an Arrow-Debreu equilibrium in which each agent’s objective is to minimize
his or her risk measure RVaR,, g.. This can be interpreted as a setting of minimizing each firm’s regulatory
capital. Admittedly, it is simplistic to suggest that regulatory capital is the only concern of a firm in managing
its risk. Next we consider a slightly more comprehensive model where each firm minimizes its expected loss

plus the cost of capital. Fori = 1,...,n, let the individual optimization problem be given by

to minimize  E[X;] + ¢;RVaR,, g,(X;) + 5; over X; € X, s5; € R 22)
subject to si + BlyX;] = E[yé], 0<X; <X,

where ¢; > 0 is a constant which represents the cost of raising one unit of capital for this firm. Similarly to

(15), (22) is equivalent to the problem

to minimize ~ Vi(X;) = E[Xi] + c;RVaRy, 5,(X;) — E[yXi] over X; € X

i=1,...,n. (23)

subject to 0<X; <X,
It is not surprising that the cost-of-capital coefficients ci, ..., c, play a non-negligible role in an equi-
librium for (23). In the following, let d; = 8;/c; represent the tolerance-to-cost ratio of agenti,i =1,...,n.

Without loss of generality, we assume d,, = \/_, d;. That is, an agent with the largest tolerance-to-cost ratio

is rearranged to be the n-th agent.
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Theorem 4. Write « = 37 a;, n = Ni_(a; +B) andd = \/'_, d; = d,,. Assume a +\/:_,B; < 1, and
X € X, satisfies P(X > 0) < max{n, }. Let (X7, ...,X}) be given by (18)-(19), and

|
¥ = 1 + min {Xid 2} Iixas0) Where x = VaRy(X). (24)

Then (y, (X},..., X)) is an Arrow-Debreu equilibrium for (23).

Theorem 4 suggests that for the objectives in (23), there exists an Arrow-Debreu equilibrium in which
the allocation is again (18)-(19), albeit the remaining-risk bearer (see Remark 3) in this problem is the agent
with the largest tolerance-to-cost ratio, instead of the one with the largest tolerance parameter as in Theorem

3.

Remark 6. Noting n = A", (a; + Bi) < AL, @i + VL, Bi, the constraint P(X > 0) < max{n, e} is slightly
stronger than the one in Theorem 3, where P(X > 0) < max{A\_, ; + \/I_, Bi, a} is required. This technical
condition was caused by the introduction of the possibly different coefficients cy, ..., ¢,, and does not seem

to be dispensable.

6 Model misspecification, robustness and comonotonicity in risk sharing

As shown in Sections 4 and 5, the optimal allocations in (7)-(8) are prominent to various settings of
risk sharing and equilibria when using the RVaR family of risk measures. In this section we discuss a few
issues related to the above optimal allocations. If an allocation (X, ..., X,) is determined by X, it can be
written as (X1, ..., X,) = (fi(X),..., (X)) € A,(X) for some functions fi, ..., f,. We denote by F, the set
of sharing principles (fi, ..., f,) where each f; : R —» R, i = 1,...,n, has at most finitely many points of
discontinuity, fij(x) + --- + fu(x) = xforall x € R, and fi(X) € X for X € X, i =1,...,n. As discussed in
Remark 3, the cases in which 3" | a; + \/i_, 8 < 1 and a; + 8; > O for each i = 1,...,n are most relevant

for the existence of an optimal allocation, and we shall make this assumption in the following discussions.
6.1 Robust allocations

In this section we discuss risk sharing in the presence of model uncertainty by studying the resulting
aggregate risk value when the distribution of the total risk X € X is misspecified. We will see that this in
general implies serious problems for VaR but not for RVaR or ES. This relates to the issue of the robustness
of VaR and RVaR; for a relevant discussion on robustness properties for risk measures, see Cont et al. (2010),
Kou et al. (2013), Kritschmer et al. (2014) and Embrechts et al. (2015); see also Remark 8 below. In contrast
to the above literature, we are interested in the robustness of the optimal allocation instead of the robustness

of the risk measures themselves.
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Definition 4. For given risk measures py,...,0, on X, X € X and a pseudo-metric 7 defined on X, an
allocation (f1(X), ..., (X)) € A,(X) with (f1,..., fn) € E, is m-robust if the functional Z Z?:l pi(fi(2))

is continuous at Z = X with respect to 7.

A pseudo-metric is similar to a metric except that the distance between two distinct points can be zero.
For instance, a metric on the set of distributions, such as the Lévy metric, induces a pseudo-metric 7wy on
X. Commonly used pseudo-metrics 7 in risk management include the L? metric for ¢ > 1, the L™ metric
(assuming X is bounded), or the (induced) Lévy metric my, which metrizes weak convergence (convergence
in distribution). As we take the common domain X as the set of integrable random variables, we shall analyze
the cases 7 = L!, L* and my in the following.

In Definition 4, X represents an agreed-upon underlying risk. The n agents design a sharing principle
(f1,...,fn) based on the knowledge of a model X. The true risk Z is unknown to the agents, and can be
slightly different from the model X. If an optimal allocation is robust in the sense of Definition 4, then
under a small model misspecification, the true aggregate risk value ;" | p;(fi(Z)) would not be too far away
from the optimized value for X. On the other hand, for a non-robust optimal allocation, a small model

misspecification would destroy the optimality of the allocation.

Proposition 3. Let X € X be a continuously distributed random variable. Suppose that Z; — X weakly as
Jj — oo, then for a;,B; € [0,1), a; +Bi < 1,i=1,...,n, and (f1,..., fn) € E,, we have

n n
liminf » RVaR, g,(fi(Z)) > Z RVaR,, 4,(fi(X)).

i i=1

j— 00
J i=1

Proposition 3 suggests that if the actual risk Z is misspecified as X, then the aggregate risk value for an
allocation of Z is asymptotically larger than that for an allocation of X. Proposition 3 remains valid if weak
convergence is strengthened to L'-convergence or L*-convergence.

The next proposition discusses the connection between the robustness property of the inf-convolution

risk measure and that of the optimal allocation.

Proposition 4. For given risk measures py, . ..,pn on X, X € X and a pseudo-metric n defined on X, if there

exists a w-robust optimal allocation of X, then O'_, p; is w-upper-semicontinuous at X.

In Section 6.2 below we shall see that 7-continuity (which is stronger than m-upper-semicontinuity) of
07, p; is not sufficient for the existence of a r-robust optimal allocation. More discussions on the relationship

in Proposition 4 for the RVaR family and convex risk measures are presented in Remark 8.

Remark 7. Recently, Kriatschmer et al. (2012, 2014) and Zahle (2016) developed robustness properties

for statistical functionals (including law-invariant risk measures) on Orlicz hearts with respect to -weak
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topologies. These concepts are well suited for studying convex risk measures; see Cheridito and Li (2009)
for more on risk measures on Orlicz hearts. For RVaR, g with a > 0, the tail distribution of a risk beyond its
(1—-a)-quantile level does not play a role, and hence the notions of Orlicz hearts and -weak convergence are
hardly relevant. In the case of ESg = RVaRy, the corresponding Orlicz heart is L' and the corresponding

gauge function i is linear; see Kritschmer et al. (2014).

6.2 Robust allocations for quantile-based risk measures

In the following we characterize robust optimal allocations in the RVaR family. For technical reasons,
we assume that the total risk X under study is doubly continuous; this includes practically all models used in
risk management and robust statistics. Note that this does not imply that the random variables in an optimal

allocation are continuously distributed.

Theorem S. For risk measures RVaR,, g,,...,RVaR,, 3, @;,5; € [0,1), a; +B; > 0,i=1,...,n, Z?:] a; +

V', Bi < 1 and a doubly continuous random variable X € X, the following hold.
(i) There exists an L'-robust optimal allocation of X if and only if B1, .. .,B, > 0.
(ii) If X is bounded, then there exists an L™ -robust optimal allocation of X if and only if By, ...,B, > O.

(iii) There exists a my-robust optimal allocation of X if and only if B1,...,8, > 0 and a; > 0 for some

i=1,...,n

From Theorem 5, if all of the underlying risk measures are true RVaR or ES, then an L!-robust optimal
allocation can be obtained. More interestingly, as soon as one of the underlying risk measures is a true VaR,
not only the allocation in (11)-(12) is non-robust, but any optimal allocation is non-robust with respect to
any commonly used metric.

A true RVaR is known to have a strong form of robustness (7y-continuity), and hence it is not surprising
that the strongest robustness in the optimal allocation is found for true RVaR. On the contrary, if one of
Bi, .., Bn 1s zero, even if O | RVaR,, g, is my-continuous, and each of RVaRy, g, is my-continuous at X (a
VaR is my-continuous at any doubly continuous random variable), an L*-optimal allocation does not exist,
not to say L'- or my-robust ones. Thus, individual robustness of the underlying risk measures does not imply

the existence of robust optimal allocations.

Remark 8. In the literature of risk measures, there is a well-known conflict between convexity and robust-
ness. This is due to the fact that no convex risk measure is 7y -upper-semicontinuous on the set of bounded

random variables (see Biuerle and Miiller (2006) and Cont et al. (2010)). If the underlying risk measures

n

P1s - - -, pn are convex risk measures, then O07_,

pi is also a convex risk measure (Barrieu and El Karoui (2005)).
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In this case, there does not exist a mry-robust optimal allocation by Proposition 4. On the other hand, from
Theorem 5 (iii), for a my-robust optimal allocation to exist, some of the underlying risk measures can be
convex (ES), as long as at least one of them is a true RVaR, which is not convex. To summarize, the conflict
between convexity and robustness still exists, and this only applies to weak convergence, not to L* and L'
metrics; to allow for a robust optimal allocation, some (but not all) of the underlying risk measures may be

convex.

6.3 Comonotonicity in optimal allocations

Another important concept in the literature of risk sharing is comonotonicity, which relates to a type
of moral hazard among collaborative agents sharing a risk. As we have seen from (7)-(8) in Theorem
2, the optimal allocation we construct may not be comonotonic. If the allocations are constrained to be
comonotonic, general results on risk sharing for a general class of risk measures including RVaR are already
known in the literature; see Jouini et al. (2008) and Cui et al. (2013). In this section we discuss whether an

optimal allocation in a quantile-based risk sharing problem can be chosen as comonotonic.

Definition 5. Random variables X, ..., X,, are comonotonic if there exists a random variable Z and non-

decreasing functions fi, ..., f; : R = R such that X; = f;(Z) almost surely fori =1,...,n.

See Dhaene et al. (2002) for an overview on comonotonicity. In the following theorem, we show that, in
a quantile-based risk sharing problem, a comonotonic optimal allocation exists if and only if all underlying

risk measures are ES except for the one with the largest tolerance parameter.

Theorem 6. For risk measures RVaR,, g,,...,RVaR,, 5, @;,8; € [0,1), a; +B; < 1,i = 1,...,n, and any
continuously distributed random variable X € X, there exists a comonotonic optimal allocation of X if and

only if there exists i = 1,...,n, such that forall j=1,...,n, j#i, a; =0andp; > B;.

Remark 9. Comonotonicity is closely related to convex-order consistency and convexity (see Riischendorf
(2013) and Follmer and Schied (2016)). Within the RVaR family, the latter two properties are only satisfied
by ES. In view of this, it is not surprising that the existence of comonotonic optimal allocations relies on the

presence of ES as the underlying risk measures.

7 Summary and discussions

7.1 Summary of main results

For underlying risk measures RVaR,, g,,...,RVaR,, 3., @;,8; > 0,7 = 1,...,n, we solve the optimal
risk sharing problem of a total risk X € X and construct corresponding Arrow-Debreu equilibria. The

mathematical results are summarized below.
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We first establish an inequality in Theorem 1,
n

n
RV&Rz;’:l ai, Vi, Bi (Z Xi] S RV&R(Zi"Bi(Xi)’

i=1 i=1
which applies to all Xi,...,X, € Xandall ay,...,a@,,B1,.-.,8: € R;.

Assuming ", a; + \/'_, Bi < 1, a Pareto-optimal allocation (X, ..., X,) € A,(X) can be constructed
explicitly as in Theorem 2, with the aggregate risk value

n

Z RVaR,, 5,(X;) = RVaRg o\ 5.(X).
i=1

This optimal allocation turns out to be an Arrow-Debreu equilibrium allocation in the settings of Theorems
3 and 4, and the equilibrium pricing rule is obtained explicitly.

Some properties of the above optimal allocation are further characterized. In particular, in Theorems 5
and 6 we show that, to allow for an L'-robust optimal allocation of X, the underlying risk measures should
all be ES or true RVaR, and to allow for a comonotonic optimal allocation of X, all but one of the underlying

risk measures should be ES.
7.2 Implications for the choice of a suitable regulatory risk measure

As mentioned in the introduction, there has recently been an extensive debate on the desirability of reg-
ulatory risk measures, and in particular, VaR or ES, in banking and insurance. It is a fact that currently VaR
and ES coexist as regulatory risk measures throughout the broader financial industry. For example, within
banking, where VaR used to rule as “the benchmark” (see Jorion (2006)), ES as an alternative is strongly
gaining ground. This is for instance the case for internal models within the new regulatory guidelines for
the trading book; see BCBS (2014). The “coexistence” becomes clear from the fact that Credit Risk is still
falling under the VaR-regime. For Operational Risk we are at the moment in a transitionary phase where
VaR-based internal models within the Advanced Measurement Approach (AMA) may be scaled down fully;
see BCBS (2016). This less quantitative modeling approach towards Operational Risk is already standard in
insurance regulation like the Swiss Solvency Test (SST) and Solvency II. Within the latter regulatory land-
scapes, we also witness a coexistence of VaR (Solvency II) and ES (SST) making the results of our paper
more relevant.

Below we discuss some implications of our results to the above regulatory debates on risk measures.
In particular, we discover some new advantages of ES, supporting the transition initiated by the Basel Com-
mittee on Banking Supervision. We like to stress however that, through various explicit formulas, our results
are relevant for the ongoing discussion on the use of risk measures within Quantitative Risk Management

more generally.
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7.2.1 Capturing tail risk

“Tail risk”™ is currently of crucial concern for banking regulation. Below we quote the Basel Committee

on Banking Supervision, Page 1 of BCBS (2016), Executive Summary:

“... A shift from Value-at-Risk (VaR) to an Expected Shortfall (ES) measure of risk under stress. Use of ES
will help to ensure a more prudent capture of “tail risk” and capital adequacy during periods of significant

financial market stress.”

From our results in Section 4, for any risk X > 0 with P(X > 0) < na, one has 07 VaR,(X) = VaR,(X) = 0.
Therefore, in the optimization of risk under true VaR (or true RVaR), there is a part of the loss undertaken
by the firms, but its riskiness is completely ignored; this is also clear from the optimal allocation presented
in Theorem 2. Note that although « is typically very small in practice, na may be large for an economy of
many participants, making P(X > 0) < na highly relevant.

Although the fact that VaR cannot capture tail risk is often argued from various perspectives, our results
explain this fact mathematically for the first time within the framework of risk sharing and optimization.
Within the RVaR family, to completely avoid such a phenomenon, one requires @; = 0,i = 1,...,n, which

offers further support to ES as a regulatory risk measure.
7.2.2 Model misspecification

Due to model uncertainty, a non-robust allocation may lead to a significantly higher aggregate risk value
for the agents, that is, far away from the optimal one. Any model for the total risk X suffers from model
uncertainty, be it at the level of statistical (parameter) uncertainty or at the level of the analytic structure of
the model (e.g. which economic factors to include). The 2007 - 2009 financial crisis (unfortunately) gave
ample proof of this, especially in the context of the rating of mortgage based derivatives; see, for instance,
Donnelly and Embrechts (2010).

From our results in Section 6, as soon as one of underlying risk measures is a true VaR, an optimal
allocation cannot be robust. Therefore, a true RVaR or an ES is a better choice than a VaR in the presence
of model uncertainty. Our conclusion is consistent with the observations in Cont et al. (2010) that RVaR has
advantages in robustness properties over VaR and ES, albeit our results come from a different mathematical

setting. Remarkably, ES is more robust than VaR in our settings of risk sharing.
7.2.3 Understanding the least possible total capital

Let p be a regulatory risk measure in use for a given jurisdiction. Note that, via sharing, be it cooperative
(e.g. fragmentation of a single firm; see Section 4) or competitive (see Section 5), the total risk in the

economy remains the same while the total regulatory capital is reduced.
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The mathematical results obtained in the paper give a guideline for calculating the least possible ag-
gregate capital 3", p(X;) within an economy, when the regulatory risk measure is chosen within the RVaR
family. In practice, a regulator may not know how risks are (will be) distributed among firms before she
designs a regulatory risk measure; there are many possibilities. Our results can be seen as a worst-case
scenario (least amount) of total regulatory capital within that economy. Another implication of our results
is that, within a VaR-based regulatory system, constraints on the within-firm fragmentation have to be im-
posed; otherwise the total regulatory capital may be artificially reduced. Of course these statements are fairly
stylised, but we do hope that they contain sufficiently interesting information for practitioners and regulators.

8 Proofs of main results

In this section we present the proofs of the most important results, Theorems 1, 2, and 3. The proofs
of Theorems 4, 5, and 6 and Propositions 1, 2, 3, and 4 are put in Appendices B-H. Further background and

some useful results on optimal comonotonic allocations are given in Appendices A.

Proof of Theorem 1. We only show the case of n = 2; for n > 2, an induction argument is sufficent. For any

X1, X» € X, we consider the following three cases respectively.

(1) a'1+a2+ﬂ1 Vﬁ2<1.

LetA; = {UX1 >1- al} and Ap = {UX2 >1- 0/2} . Then P(A; UA>) < P(A)) +P(Ay) = a1 + ap. Take
Y1 = IA‘I'XI - mIAl, Y2 = IA;XZ - mIAZ, (25)

where m is a real number satisfying m > —min{VaR,, 3, (X1), VaR,,(X2)}. It is straightforward to

verify RVaR,, g, (X1) = ESg, (Y1) and RVaR,, g,(X3) = ESg,(¥>). It follows that
RVaR,, 3,(X1) + RVaR,, 4,(X2) = ESg, (Y1) + ESg, (Y2) > ESg,v,(Y1 + Y2), (26)

where the last inequality holds since ESg(X) is subadditive and non-increasing in the parameter g > 0.

Moreover, for y € [0, 1], we will show
VaR, (Y1 + Y2) > VaR, ;4 +00) (X1 + X2). 27

Inequality (27) holds by the definition of VaR if y + @1 + a» > 1. If y + @1 + a» < 1, we have

(Y] + YZ)IAfl'mA; = (X] + XZ)IAj'mAg and hence for any x € R,
PY1+Yo2x)2PX1 + X5 > X,Ai,A;) >PX1+ X 2 x)—P(A; UA)).
Therefore,

VaR, (Y1 + Y2) > VaRy,px,u4,) (X1 + X2) > VaRy () +a,) (X1 + X2). (28)
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Hence (27) holds. If 81 vV 8> > 0, by (26) and (27), we have
RVaRalﬁl(Xl) + RV&Razﬁz(Xz) > ES,B1V,32(Y1 + 1)

1 B1VB2
= S f VaR, (Y] + Y»)da
0

1 B1VB2
V5 f VaR g4 (a;+an) (X1 + X2)dar
0

= RVaRq +a,v (X1 + X2), (29)

=

If 81 V B> = 0, then by using (29), we have
RVaRy, 0(X1) + RVaRo, 0(X2) = lim (RVaRq, +(X1) + RVaRq, 0(X2)
> sli)r(r)h RVaR,, +0,.6(X1 + X2)
= RVaRy, +4,,0(X1 + X2).
In either case,
RVaR,, g,(X1) + RVaR,, g,(X2) > RVaR,, 14, 8,v, (X1 + X2). 30)
(i) aj+ap<landa;+ax+B1 VB = 1.
In this case, (30) follows from the proof in (i) by using the left-continuity of RVaR, g(X) in g for
0<B<l-a.
(i) aj+ay=lora;+ay+B1 VS > 1.

In this case, (30) holds trivially since RVaR,, 14, 8,vp, (X1 + X3) = —oo0.
In summary, (3) holds for n = 2; the case of n > 3 is obtained by induction. O

Proof of Theorem 2. Write p; = RVaR,, 5., i = 1,...,n. Since the order of (a;, B;),i=1,...,n, is irrelevant
in (6), we may assume without loss of generality 3, = \/i_, B;. To show (6), it suffices to show

B pi(X) < RVaRy;  0,,00; 31)
indeed, Theorem 1| guarantees the reversed inequality. In all of the following cases, take (Xi,...,X,) in
(7)-(8) with some m € R. Itiseasytosee X; +---+ X, = X,and fori = 1,...,n— 1, we have p;(X;) <0
since P(X; > 0) < ;. We discuss the following four possible cases.

1 p<l
Take m < VaR,(X). Itis easy to verify p,(X,) = RV&RZLI a3, (X), thus,

n
n
B piX) < Zpi(Xi) < RVaRyr 4,5,(X).
- i=1

Therefore (31) holds, and (X1, ..., X,) is an optimal allocation.

22



(i) p> 1.
Take m < 0. If @, + 8, > 1 then (31) holds trivially since )]\ | pi(X;) = —oo. If @, + B, < 1, using the
subadditivity of ES, we have

on(Xy) = RVaRy, g, (XI{stl—z’,;;} a T ’"I{UX>1—2',;;} ozk})
Esan+ﬁn (XI UX<1 Zn l + mI UX>1 Zn la’k )
< ESo,+s, (XI{Ux<1—22;% ak}) + ESa,+5, (mI{Ux>1—Zz;% ak})

p-1 ; -1
ESasty (XI{stl—zz;} ak}) tmesg i X<,

m if 2 la/k 1,

— —00 as m — —oo,
This shows O, p;(X;) = —co and hence (31) holds.

i) p=1,8,=0
Since P(X,, > m) < a,, one has VaR,, (X,) < m — —oco as m — —oo. This shows El” ', pi(X;) = —oo and
hence (31) holds.
av) p=1,6,>0.
If @, + B, = 1 then p,(X,) = p,(X) = RVaR,, g,(X), and therefore (31) holds.
If @, + B, < 1, take m = VaR,(X) for some g € (@, + B,,1) N (1 = B,,1). We have

Pn (Xn) = RvaRan Bn (XI{ Ux<a,+Bn} + VaRfI (X)I{ Ux>a,+f, })

- ﬁl ( f f VaR, (X)dy + (1 - q)VaRq(X>)

1 1
- —f VaR, (X)dy asqg — 1.
B Ji-8,
This shows O, p;(X;) < 11_ 5, VaR, (X)dy = RVaR|_g, g,(X) and thus (31) holds.
Combining the cases (i)-(iv), the proof is complete. O

Proof of Theorem 3. Recall that RVaR,, g,(X;) = RVaR,g(X) and RVaR,, g(X;) = Ofori = 1,...,n— L.

We consider two cases separately.

(i) Suppose P(X > 0) < . This implies RVaR,, 3,(X;,) = RVaR,g(X) = 0, x = 0 and ¢ = 0. On the other
hand, for any 0 < X; < X, we have RVaR, g,(X;) — E[¢X;] = RVaR,, 5.(X;) > 0. Thus X7 satisfies (17),

and hence (y, (X7, ... ,X;)) is an Arrow-Debreu equilibrium.
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(i1)) Suppose @ < P(X > 0) < @ + B. This implies x,8 > 0. Fori = 1,...,n, take any X; € X such that
0 < X; < X. Note that by definition, ¢ X < x/3. We have

X xXa;
ElyLiuy>1-apXil < ElYLiyy>1-0)X] < E BI{UXI)l—a,-}} = FI (32)
On the other hand, using ¥ < 1/ and P(X; > 0) < P(X > 0) < a; + 83,
1
Elyliuy <1-apXil < EE[I{UXI.<1—(Z,'}X1']
1 1!
= - f VaR, (X;)dy
ﬁ a;
1 (o8
= ,E f VaRy(Xl-)dy = RVaRaiﬁ(X,-) < RVaR(,iﬁi(X,-). 33)
i

Combining (32) and (33), we have
E[yX;] < % + RVaRy, 5,(Xy).

Equivalently,

RVaR,5,(X:) - E[YX;] > —%

Next we verify that RVaR, g,(X}) — E[X"] is equal to —xa;/B. Write
i-1

i
Ai:{l—Zak<UX<1—Zak}C{UX>1—CY}-
k=1

k=1
Note that ¢ = 5Livys1-a) + plivx<i-a)- We have X; = XIy, fori = 1,...,n— 1, and X; = X, +

XI{UX<1—<1}~ Fori = 1, NN (e 1,
£ ¥ * 'x
RvaRw,-,ﬁ,-(Xl‘ ) - E['ﬁxl ] = —E[lﬂxi ] =-E [X_ﬁI{Ux>l—(y}XIA,-:|
--B[30|- -2
B B
For the last agent, we have
. X 1
ElyX,1=E )(_ﬁI{szl—a/}XIAn +E BI{Ux<1—a/}X
xa, 1 fl
= + — VaR, (X)dy
B BJa 7
xa, 1 (B Xay,
= + = VaR,(X)dy = + RVaR, s(X).
B BJ. B "
Rearranging the above equation, and using RVaR,, g,(X;;) = RVaR, g(X), we obtain
* % % XUy
RVaR,, 5,(X;,) — E[yX,] = RVaR, g(X) — E[yX,] = - 5

In summary, fori = 1,...,n,
xa; y y
RVaR,, 5,(X;) — E[yX;] > —Fl = RVaR,, g, (X) — E[yX].

Therefore, (i, (X7, ..., X)) is an Arrow-Debreu equilibrium. O
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Appendices

A Comonotonic risk sharing for distortion risk measures

For a,B € [0,1) and a + B < 1, RVaR, g belongs to the class of distortion risk measures, that is, risk

measures py, of the Stieltjes integral form
1
pr(X) = f VaR,(X)dh(a), X € X, (34)
0

for some non-decreasing and left-continuous function 4 : [0, 1] — [0, 1] satisfying A(0) = 0 and A(1) = 1,
such that the above integral is properly defined. Here £ is called a distortion function. For a,8 € [0, 1) and

« + f < 1, the distortion function of RVaR,, g(X) is given by
min{I{l>a}t—7a’ 1} lfﬁ >0,

Lit>ay itp=0,

The set of comonotonic allocations is defined as

WP(p) = { re0,1]. (35)

AFX) ={Xy,.... X)) eAX): X;TX, i=1,...,n},

where X; T X means that X; and X are comonotonic.

The constrained inf-convolution of risk measures py, ..., p, is defined as

Eal 0i(X) := inf {Z 0i(X0) 1 (X1, ..., X)) € A;(X)} :

i=1

30



Definition 6. Let p, ..., p, be risk measures and X € X. An n-tuple (X1, X2,...,X,) € A} (X) is called an

optimal constrained allocation of X if 3, pi(X;) = 87, pi(X).

It is obvious that O7_, p;(X) < 87, pi(X). Hence, if an optimal allocation of X is comonotonic, then it is
also an optimal constrained allocation, and D:?ZI pi(X) = 8;_, pi(X). In Jouini et al. (2008) it is shown that for
law-determined convex risk measures on L*°, optimal constrained allocations are also optimal allocations.
This statement remains true if the underlying risk measures preserve convex order; this is based on the
comonotone improvement in Landsberger and Meilijson (1994) and Ludkovski and Riischendorf (2008).

A solution to the optimal constrained allocation can be found in Jouini et al. (2008) for convex risk
measures and in Cui et al. (2013) for general distortion risk measures in the context of the design of optimal
reinsurance contracts. We give a self-contained proof here which we believe is simpler than the existing ones

in the literature.

Proposition 5. For n distortion functions hy, . .., h, such that py, is finite on X fori = 1,...,n, we have
\ 1
Bou 00 = [ VaR,00dH(@). X € X (36)
i= 0

where h(t) = min{h((?), ..., h,(t)}. Moreover, an optimal constrained allocation (X1,...,X,) of X € X is

given by X; = fi(X), i = 1,...,n, where

fi() = f Cgindr, xeR,
0

and

() = 0 if hi(1 = F(2)) > h(1 = F(1)),
Ul k@) otherwise,

fort eRand k(t) =#{j = 1,...,n: hj(1 — F(t) = h(1 — F()).
Proof. We first show
1
&1 on(X) > f VaR o(X)dh(a). (37)
= 0

For two left-continuous distortion functions f and g, we have p(X) < py(X) if f < g (see Lemma A.1 of
Wang et al. (2015)). Therefore, for any (X1, X2, ..., X,) € A} (X), by the comonotonic additivity of VaR, we

have

1 1 n
f VaR,,(X)dh(@) = f (VaR, (X)) + - - - + VaR,(X,)) dh(a) < Z o (X)).
0 0 i=1
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Thus, (37) holds. Conversely, let F be the distribution of X. Since fi(?),..., f,(¢) are Lipschitz continuous

and non-decreasing, we have

n n 1
D entico =Y [ VaRGe0M 0
i=1 i=1

n 1
-y fo F(VaR,(X))dhi(1)
=1

n 1 VaR,(X)
=, f f gi(s)dsdhi(1)
i=1 Y0 JO
n 0o

0
= Z (j(; hi(1 = F(s5))gi(s)ds — f (1= hi(1 - F(S)))gi(s)ds)

i=1 o

= fom h(1 — F(s))ds - fo (I = (1 = F(s)))ds = p(X),
where the fourth equality follows from Fubini’s Theorem and the last equality
pr(X) = fom h(1 — F(x))dx — fo (1 = h(1 - F(x)))dx (38)
is given in, for instance, Theorem 6 of Dhaene et al. (2012). Thus,
,é on(X) < fo 1 VaR ,(X)dh(a).
The desired result follows. m]

Since RVaRs belong to the family of distortion risk measures, their optimal constrained allocations can

be constructed analogously, as summarized in the following corollary.
Corollary 3. For ay,...,an,B1,...,8, €10, suchthat a; +5; < 1,i=1,...,n, we have
1
,éial RVaR,, 5.(X) = f VaR,(X)dh(a), X € X, (39)
i= 0

where h(t) = min{h'@£I(7), ..., K PI(@)), t € [0, 1].

B Proof of Proposition 1

Proof. 1t is trivial to check that an optimal allocation is always Pareto-optimal. To show the other direction,
suppose that (Xi,...,X,) € A,(X) is not optimal. Then there exists an allocation (Y1,...,Y,) € A,(X) such
that 37, pi(Y)) < 21, pi(Xy). Take ¢; = pi(X;) — pi(Yy),i=1,...,nand c = })7_, ¢; > 0. Then we have

Yi+c1—=c/n,....Y,+c,—c/n) € Ay(X),

and
pilYi + ¢c;i —c/n) < pi(Y; + ¢;) = pi(X;).

Therefore, (X1, ..., X,) is not Pareto-optimal. O
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C Proof of Proposition 2

Proof. By the construction in (11)-(12), there exists (Y1,...,Y,) € Ay(X),0< Y; < X,i=1,...,n, such that

n
Z RVaR,, 5,(Y;) = RVaR, g(X)
i=1

where @ = 7, @; and § = \/'_ | B;. Since (¢, (X7, ..., X)) is an Arrow-Debreu equilibrium, we have for
i=1,...,n,

RVaR,, 5.(X7) — E[yX;] < RVaR, g,(Y;) — E[yY;].

It follows from 377, X* = X = 37 | ¥; that

n

> RVaRq,5,(X;) — E[YX] = ) (RVaRy,5,(X;) - E[YX;])
i=1 i=1
< (RVaR,, g,(Y;) — E[¢Y;]) = RVaR, g(X) — E[¢/X].

i=1

Therefore 37| RVaR,, g,(X}) < RVaR, g(X). By Theorem 2, (X7, ..., X}) is an optimal allocation. |

D Proof of Theorem 4

Proof. Similarly to the proof of Theorem 3, we consider two cases separately.

(i) Suppose P(X > 0) < @. This implies RVaR, 5,(X;) = 0 fori =1,...,n,and ¢ = 1. On the other hand,
for any 0 < X; < X, we have E[X;] + ¢;RVaRy, 5.(X;) — E[¥X;] = ¢;RVaRy, g,(X;) > 0. Thus X satisfies
(17), and hence (¢, (X}, ..., X)) is an Arrow-Debreu equilibrium.

(i1) Suppose @ < P(X > 0) < n. This implies one of 81,...,8, is positive, and therefore d > 0. For
i=1,...,n,take any X; € X such that 0 < X; < X. Note that by definition, (¥ — 1)X < x/d. We have

X X
B = Dl 10 Xi] < B = Dlvy1-00X1 < B| T o100 = - (40)
On the other hand, using (¢ — 1) < 1/d and P(X; > 0) < P(X > 0) < ; + 3;,
1 Ci !
ELW = Dly <1-ap Xil < ZE vy <1-0)Xil < B VaR, (X;)dy
i Ja;
c; i+Bi
= — f” VaR, (X;)dy
ﬁi ;
= ¢;RVaR, 4,(X)). 41)

Combining (40) and (41), we have
X
El(y - DXi] < - ciRVaRg g, (X;).
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Equivalently,
X;
BIX;] + ciRVaRqy5(X) — BIYX;] > ——.
Next we verify that V;(X7) is equal to —xa;/d. Write A; = {1 = _; ax < Ux < 1 = 3,2y an} € {Ux >
1 —a}. Wehave X7 = XIy, fori=1,...,n—1,and X;, = XIs, + Xljyy<i-q}- Fori=1,...,n—1,

BIXG] + GRVaR (X)) — EUX]] = BI(1 = 9)X]1 = —B| 2o lig1-0 X1 |

Xd
X xa;
= —E|ZL,|= -2
[d Al] d
For the last agent, we have
" by 1
BIW - DX;1 = B| 2 lwt-aXla, | + B | Slugar-aX
_ x|l f VaR.,(X)d
~ g Ta), VY
a+f
=X G f VaR, (X)dy
d  Bnde
xXay,

= 7 + cnRVaRo,ﬁ(X).

Therefore,
E[X:] + c,RVaR,, 4 (X?) — E[YX!] = c,RVaR,4(X) — B[( — DX}] = —XZ" .
In summary, fori =1,...,n,
ViX) > - = Vix)). (42)
By definition, (¢, (X7, ..., X)) is an Arrow-Debreu equilibrium for (23). O

E Proof of Proposition 3

Proof. For fixedi = 1,...,n, we will show that for any @, € [0, 1), @ + 8 < 1, the inequality
lim inf RVaR,, g(fi(Z;)) > RVaR, g(fi(X)). (43)
Jj—ooo

holds. Then the proposition follows from taking (@, 8) = («;,5;) in (43) and summing up overi = 1,...,n.
Since X is continuously distributed, by the Continuous Mapping Theorem, we have fi(Z;) — fi(X)
weakly. Then, VaR,(fi(Z;)) — VaR,(f;i(X)) for almost every y € (0, 1). By noting that VaR,,g(X) > —oo,

we have that VaR,,4(Z;) is bounded below for j € N, and hence Fatou’s Lemma gives us

a+f3
liminf RVaR, 5(fi(Z))) > 3 f lim inf VaR, (f;(Z;))dy = RVaR, 4(f;(X)), B> 0. (44)
J—o0 a J—
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For any y > 0, since VaR,(X) is non-increasing in y € [0, 1), using (44), we have
liminf VaR,(fi(Z;)) > liminf RVaR, ,(fi(Z;)) > RVaR, , (fi(X)).
]—)OO J—)OO

By letting v | 0, we obtain
liminf VaR,(fi(Z;)) > VaR,(f;(X)). (45)
J—ooo

Therefore, (43) follows from (44)-(45). O

F Proof of Proposition 4

Proof. Let (f1(X),..., fu(X)) € Ay(X) be a r-robust optimal allocation of X. Forany Z; — Xinmwasn — oo,

we have
n

n
OL,0iZ) < ) piAHEZ)) = Y pilFiX)) = O, pi(X).
i=1 i=1
Therefore, .7, p; is m-upper-semicontinuous at X. m|

G Proof of Theorem 5

Proof. Since the risk sharing problem is invariant under a constant shift in X, without loss of generality we

may assume VaR,(X) = 0, where p = % | ; + \/\_; Bi < 1. Similar to the proof of Theorem 2, we may

also assume 3, = \/i_, Bi. Let F be the distribution of X.

Part 1. We first show that, in all cases (i)-(iii), the optimal allocation in (11)-(12) is robust. The optimal
allocation in (11)-(12) can be written as (f1(X), ..., (X)), where

ﬁ(x) = XI{F71(1_22=1 ak)<x<F7|(l_Z;'(—=ll @)’ i = 1, cee, 1 — 1, X € R, and (46)
Ja(x) = XI{xsF-'(l—Z’;;} amp YER 47

To show the cases (i) and (ii), suppose that 1, ...,5, > 0. Let Z; € X, j € N, be a sequence of random
variables such that Z; — X in L', j — co. Note that this implies that {Z ; + j € N}is uniformly integrable.
By the Continuous Mapping Theorem, we have fi(Z;) — f;(X) in probability. For eachi = 1,...,n, since
fi(x) < xljx>0y and {Z; : j € N} is uniformly integrable, {f;(Z;) : j € N} is also uniformly integrable. Hence,
we have fi(Z;) — fi(X)in L'. Note that RVaR, s, a,B > 0, is continuous with respect to weak convergence
(see Cont et al. (2010)) and ESg, 8 > 0 is continuous with respect to Ll—convergence (see Emmer et al.

(2015)). Therefore, as j — oo, fori=1,...,n,
RVaR,, g,(fi(Z;)) = RVaR, g,(fi(X)). 48)

Thus, (fi(X),..., f,(X)) is an L'-robust optimal allocation of X. Note that if X is bounded, then L*-
robustness is weaker than L' robustness, and hence ( fX), ..., fu(X)) is an L*-robust optimal allocation

of X.

35



To show the case (iii), suppose that 8y,...,6, > 0 and @; > 0 without loss of generality (in fact, if
a1 = 0, then f1(X) = 0 and we can proceed to consider the next agent). Let Z; € X, j € N, be a sequence
of random variables such that Z; — X in my, j — oco. By the Continuous Mapping Theorem, we have

(Z;) = fi(X) weakly. Since RVaR, s, @, > 0, is continuous with respect to weak convergence, we have
J B
RVaR,, g,(f1(Z;)) — RVaR,, g, (f1(X)). (49)

Note that all fi(X), i = 2,...,n are bounded above by VaR,,(X). By a simple argument of the Dominated

Convergence Theorem, we have, fori = 2, ..., n, regardless of whether a; = 0,
RVaR,, g,(fi(Z;)) = RVaR, g,(fi(X)). (50)

Thus, (fi(X), ..., fr(X)) is an my-robust optimal allocation of X.

Part 2. Next we show the other direction of the statements in (i)-(iii).

(1) (i) and (ii), n = 2 : Suppose that 8 = 0 and @ > O for some k = 1, ...,n. We first look at the case n = 2,
and we may assume that the first agent uses a true VaR. That is, @; > 0 and §; = 0. Recall that we have

assumed VaR,, 1q,4,(X) = 0.

Suppose that (X1, X») is an optimal allocation of X where X; = f1(X) and X, = f>(X) for some (f1, f>) €
F,. Since (X1 + ¢, X» — ¢) is also optimal for any ¢ € R and the robustness property of (X; + ¢, X2 —¢) is
the same as (Xi, X»), we may assume without loss of generality VaR,, (X1) = 0. As (X1, X») is optimal,

we have, from Theorem 2,
VaR,, (X1) + RVaR,, g,(X2) = RVaR,, 40, 5, (X). (G2))]

Writing (51) in an integral form, we have

B2 B2
B2VaRy, (X1) + f VaRy,4(X2)dB = VaRy, 1a,+5(X)dB. (52)
0 0
Note that from Corollary 1, we have, for any g8 > 0,
VaRy, (X1) + VaRa,+4(X2) > VaRo, cay5(X). (53)

Therefore, the inequalities in (53) are equalities for almost every 5 > 0. By noting that both sides of (53)

are right-continuous, the inequalities in (53) are indeed equalities for all 8 > 0. In particular, we have
VaRa/l (Xl) + VaR(1/2+,32 (XZ) = VaRal+a2+ﬁ2 (X) (54)

Thus,
VaR,, (X1) = VaRa,+5,(X2) = VaRg, 1ay45,(X) = 0, (55)
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which implies P(X; > 0) < a3 + .

LetA; = {Ux, > 1 —ay}, A2 = {Ux, > 1 —az} and A = {Ux, > 1 — a2 — B2}. Note that by (55),

{X1 >0} C A; and {X; > 0} C A. However, since P(X > 0) = a1 + a2 + B2, and
{(X>0}C{X; >0U{X, >0)),
we have

a; +ay + B2 <PX; >0} U {X; > 0}) <P(X; >0)+P(Xp > 0)

<PA)+PA) =a; + a2 + S (56)

Therefore, all the inequalities in (56) are equalities, and in particular, P{X; > 0} U {X, > 0}) = P(X; >
0) + P(X, > 0) implies
P(X; > 0,X> > 0) = 0. (57)

From (29) in the proof of Theorem 1, we can see that (51) implies that the inequalities in (28) are
equalities for almost every y € [0,53,], where Y, Y> are defined in (25) and m is some constant. In

particular, by taking y | 0 in
VaR,(Y) + Y2) = VaR,,4,14,(X) for almost every y € [0, 5],
and since both sides are right-continuous in y, we have
VaRy (Y] + Y2) = VaR,, 40, (X).

That is, X < VaR,,+4,(X) almost surely on A‘l' N A3, and equivalently,

{X > VaRy,+0,(X)} C (A1 UA)) aus.
It follows that

a1 + a2 =P(X > VaRy,+0,(X)) S P(A] UA) < P(A)) + P(A2) = a1 + a2,

and therefore all the inequalities above are equalities. In particular, we have P(X > VaR,, 14,(X)) =
P(A{ U Ay) and hence
(X > VaRg, 0, (X)) = (4] UA)) as.

From P(X; > 0,X, > 0) = 01in (57), X, < 0 almost surely on A;. Finally, since X; = X — X, we have

X1 > VaR, +4,(X) almost surely on Ay, and this further implies
{X1 > VaRy,10,(X)} = A1 as. (58)
We consider the cases 8, > 0 and 8, = 0 separately:
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(a) If B2 > 0, then since VaR, (X) is strictly decreasing in y € [0, 1] (implied by the continuity of F; see
Proposition 1 of Embrechts and Hofert (2013)), we have VaR,, 1q,(X) > VaRy, a,48,(X) = 0.

(b) If B = 0, since fi and f, have at most finitely many discontinuity points, there is a constant ¢ €
(0, VaRo(X)) such that f; and f, are continuous on the interval (0, ¢). Since VaR,(X) = F 11 -v)
is continuous and strictly decreasing in y, we have that for any subinterval (a, b) C (0, c), one has
P(X € (a,b)) > 0. From (57), we have P(fi(X) > 0, f2(X) > 0) = 0, and hence for almost every
x € (0, VaRy(X)), fi(x) > O implies f>(x) < 0. Moreover, since fi(x)+ f2(x) = x, x € (0, ¢), we know
that f;(x) and f>(x) cannot be in the interval (0, x). By the continuity of f; and f,, we know that
either f1(x) < 0 for all x € (0,c¢) or fo(x) < 0 for all x € (0,c). Without loss of generality, assume
f1(x) <O for all x € (0, c). Then, together with P(f1(X) > 0, /2(X) > 0) = 0, we have {X| > c} = A;

almost surely.
In both (a) and (b), there is a constant ¢g > 0 such that {X; > ¢o} = A; almost surely. Define
B={xeR: fl(x) > cp},

and thus {X € B} = {X;| > ¢¢o}. From (58), P(X € B) = P(X] > ¢p) = P(A;) = ay. Fore > 0, let Y. be a

Uniform[—¢, €] random variable independent of X and
Ze = X + Yelixgn).-

We can easily see that Z; — X in L' (in L™ if X is bounded) as ¢ | 0, and P(Z, € B) > a; which means
VaR,, (f1(Zs)) = co. On the other hand, from (43), we have

lingql%)nf RVaR,, 3, (f2(Z;)) > RVaR, g, (f2(X)),
and hence
tim inf (VaRa, (fi(Ze)) + RVaRas g, (5(Ze) = (VaRe, (f1(X)) + RVaRas 5, (5(X))
> co> 0.
Thus, (f1(X), f2(X)) is not L'-robust (and not L®-robust if X is bounded).

(2) () and (ii), n > 2 : We may assume «a; > 0, 81 = 0, that is, the first agent uses a true VaR. Suppose
that (fi(X),..., f(X,)) is an optimal allocation of X where (fi, f2,...,f,) € F,. Write & = Y7, ;,
B =\Vi,Biand g(x) = fo(x) +--- + fu(x), x € R; it is easy to see that (fi,g) € F,. From Theorems 1
and 2,
n
RVaRy: 4,2, 5,(X) = > RVaRa,g,(fi(X)) > VaRa, (f1(X)) + RVaRq 5(g(X))
i=1

2 RVaRz;i:l a’i’\/;}:lﬁi(X)'
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Hence, the above inequalities are all equalities, and in particular,
VaRy, (f1(X)) + RVaR, g(9(X)) = RVaRy.4q, p(f1(X) + g(X)).

Thus, (f1(X), g(X)) is an optimal allocation of X for the underlying risk measures VaR,, and RVaR, g.

From part (i1), we know that there exists Z, such that Z, — X in L'ase | 0and
lim inf (VaRo, (/i(Ze) + RVaRw5(9(Z:))) = (VaRa, (f1(X)) + RVaR 5(9(X)) > 0.
Using Theorem 1 again, we have, for £ > 0,
n
VaR,, (f1(Ze)) + Z RVaRy, 5,(fi(Zs)) 2 VaRy, (f1(Ze)) + RVaR, g(9(Ze)).
i=2
Therefore,
n
lir‘gll (i)nf VaR,, (fi1(Zy)) + Z RVaR,, 3.(fi(Z:)) | - RVaRZ:;:1 @V, 5 (X) > 0.
i=2

Thus, (f1(X), ..., fu(X)) is not robust (and not L*-robust if X is bounded).

(3) (iii): Suppose that there exists a my-robust optimal allocation. Since my-robustness is stronger than
L'-robustness, we know that B, Bn > 0. Ifa; =--- =, =0, then D;’ZIRVaRa,.ﬁ,. = ESg,(X). As
ESpg, is not upper-semicontinuous at any X with respect to weak convergence (see Cont et al. (2010)),
by Proposition 4 there cannot exist any my-robust optimal allocation. Hence, in order to allow for a
mw-robust optimal allocation, all of 8y, . .., 3, have to be positive, and at least one of a1,..., @, has to

be positive. O

H Proof of Theorem 6

Proof. For the “if” part, take X; = X and X; = O for j # i. We can see that

O=

n
Z RVaR,, 4,(X;) = RVaRy,5,(X) =
j=1

| RVaRy, 5,(X)

i

and thus the “if” part holds.

In the following we show the “only-if” part. Suppose that there exists a comonotonic optimal allocation.
This implies
Ell RVaR,, 5,(X) = ,%1 RVaR,,, 4. (X).
= 1=

By Theorem 2 and Corollary 3, we have

n
iEI RvaRa"’ﬁ" X) = RvaRZ;lzl @, Vi, Bi X,
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and

1
8 RVaR,,5,(X) = f VaR,(X)dh(a),
i= 0
where £ is given in Corollary 3.
Lete = Y, o, B =max{B; : i = 1,...,n}, and g(t) = h'™P(1), 1 € [0, 1]. It is easy to see h(t) > g().
By (38), we have

1 1 +00
0= fo VaR, (X)dh(y) - fo ViR, (X)dg(y) = f (h(1 - F(x)) - g(1 - F(0)) do,

where F is the distribution of X. Since h(t) > ¢g(f), we have h(1 — F(x)) = g(1 — F(x)) for almost every
x € R, and as X is continuously distributed, this leads to A(f) = ¢g(¢) for almost every t € [0, 1]. Thus,
heP(£) = min{h @ PV, ..., WP (1)) Simple algebra shows that there exists i € {1,...,n} such that for

all j#i,aj=0andg; > ;. O
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