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Abstract

An increasing number of households installing solar panels raises two challenges for regulators: net-
work financing and vertical equity. We propose an optimal tariff design for policymakers to incentivise
solar panel adoptions, while guaranteeing the sustainability and equitable distribution of network costs.
We estimate structural models of energy demand and solar panel adoption, using a unique matched
dataset on energy consumption, income, wealth, solar panel installations, and building characteristics
for 135,000 households in the Canton of Bern (Switzerland) in 2008-2013. Our counterfactuals rec-
ommend the optimal solar panel installation cost subsidies and optimal tariffs to achieve various solar
energy targets.
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1 Introduction

The reduction of greenhouse gases emissions is a global challenge that has become increasingly important
in recent years.1 To meet this goal, policymakers, companies, and individuals worldwide have contributed to
the development of renewable energy systems, with a global investment in these new technologies of $285.9
billion in 2015. In particular, governments have introduced several incentive programs to ease the transition
towards more green energy. Solar photovoltaic (PV) is one of the leading technologies among renewables,
experiencing a remarkable growth in the last years. Electricity generated by solar power worldwide went
from around 4 GWh in 2005 to over 200,000 GWh in 2015, and in 2014 for the first time PV systems
achieved meeting 1% of the world electricity demand.2 Two main forces have been stimulating this expo-
nential growth. First, until now 93.6% of the global PV market depends on governmental support schemes,
for the most part being feed-in tariffs. Second, PV modules’ production costs have dropped significantly,
from around 7 USD/W in the early 2000 to around 0.5 USD/W in 2015.3

While this trend is desirable from an environmental perspective, the rapid expansion of distributed gen-
eration comes at a cost for utilities worldwide (MIT, 2011, The Economist, 2017). There are two main
challenges that a growing number of PV adoptions poses to regulators. First, households with PV instal-
lations still require network energy, leaving the fixed grid maintenance costs unchanged. However, as they
produce and consume their own energy, these households contribute less to covering grid costs, as these
are mostly paid with consumption-based tariffs. This is likely to make the sustainability of network financ-
ing problematic. Second, households who can afford installing a solar panel are usually richer, which can
generate a regressive redistributive effect of green energy incentives. While the first point also applies to
companies installing solar panels, the second is mostly relevant for residential users.

In this paper we address these challenges proposing an optimal tariff design that a regulator can implement
to achieve various solar energy targets, while guaranteeing the sustainability and equitable distribution of
network costs. We use a unique matched dataset on energy consumption, income, wealth, solar panel instal-
lations, and building characteristics for around 135,000 households in the Canton of Bern (Switzerland) in
2008-2013 to estimate structural models of energy demand and PV installation. We identify energy demand
elasticities using a regression discontinuity design that exploits price variation at spatial discontinuities be-
tween electricity providers, and model PV adoption as a dynamic single agent optimal stopping problem.
Using a counterfactual exercise, we specify the regulator’s constrained optimization problem (Wolak, 2016)
that allows us to find the optimal combination of variable energy prices, fixed energy fees, and subsidies to
PV installation costs to achieve various solar energy targets, guaranteeing network financing and an equi-
table distribution of grid costs across the income distribution. Our approach can be easily generalised to any
household’s technology adoption decision that affects network costs and vertical equity of the system.

Under the current technology, almost all buildings that install solar panels are still connected to the electric-
1In December 2016 192 countries have signed the UNFCCC Paris Agreement to limit the world temperature increase, “making

finance flows consistent with a pathway towards low greenhouse gas emissions and climate-resilient development".
2In the Swiss Canton of Bern, for which we have access to detailed data, there was an average yearly growth rate in PV

installations of 60% in the period 2008-2013.
3Sources: International Energy Agency, “Trends 2015 in Photovoltaic Applications"; International Renewable Energy Agency.
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ity grid, but intermittently produce their own energy. This implies that energy distribution and transmission
lines are still indispensable for the supply of energy. In most countries a substantial part of transmission and
distribution network costs is recovered through volumetric kilowatt hour-based (i.e. consumption-based)
rates, to promote households’ energy conservation. However, increased penetration of PV installations im-
plies lower energy demand from the grid, and together with volumetric charges this leads to lower revenues
for electricity and network providers. To give an example from our data, consider a household with aver-
age yearly energy consumption of around 5,000 kWh, and assume that it installs a solar panel producing
on average 6,000 kWh annually, of which around 20% can be used for own consumption. Under this sce-
nario, with a volumetric grid charge of 0.1 CHF/kWh, the household’s yearly contribution to finance the
grid would drop by 24%, from 500 CHF to 380 CHF.4 As network costs are largely fixed, it is likely to
become increasingly difficult for utilities to recover these costs under volumetric charges and increased PV
adoptions. Furthermore, the solar PV technology creates large variations in the net energy demand, plac-
ing additional stress on distribution feeders not designed for simultaneously accommodating outflows and
inflows of energy, potentially increasing network operation costs (Joskow, 2012).

This increasing trend in solar PV adoptions may therefore even induce a “death spiral” of rising volumetric
rates, distorting consumer incentives and inducing them to switch to alternative energy sources in an inef-
ficient way (Borenstein, 2014).5 A large share of households’ energy bill comes from consumption-based
tariffs, generating stronger incentives for households with greater electricity consumption to install solar
panels. These are usually richer households, who are more likely to adopt a PV for two main reasons. First,
they have the resources to pay the fixed installation cost. Second, they are more likely to own the house
they live in and own a single family house, two conditions that largely facilitate the adoption decision. As a
consequence, the burden of financing the energy infrastructure is progressively shifted onto non PV owners,
who are usually lower income households. In our data for the Canton of Bern, the average income of house-
holds with a PV installation is 45% higher than the average income of households without a solar panel.
This highlights the second issue that a growing number of PV adoptions causes, the vertical equity of the
current tariff design.

Most EU members, the United States, and Switzerland initially introduced feed-in remuneration schemes to
foster small scale renewable energy generation. These programs rewarded energy production at a favourable
rate above wholesale energy cost, providing an incentive for PV owners to feed all of their energy production
into the grid. However, later on various countries switched from feed-in tariffs to installation costs subsidies
with own consumption, mostly for three reasons. First, as the number of PV adoption rose, feed-in schemes
became extremely expensive for regulators, leading, as happened in Switzerland, to a long waiting list for
households that applied for feed-in remuneration. Second, as the cost of PV systems declines over time,
subsidies to installation costs will become cheaper to finance for regulators. Last, incentivising households
to consume the energy they produce reduces uncontrolled variance in grid traffic, which is beneficial to grid

4One CHF is around one USD.
5On the other hand, a large increase in energy produced by renewable sources may lead to a reduction in energy prices, as

renewables produce at zero marginal costs. This would in turn reduce the incentive to adopt solar panels, leading to the so called
“cannibalization effect" of renewables (The Economist, 2017). In our paper we don’t model this possibility, as we assume that the
energy suppliers in the Canton of Bern are too small to affect the wholesale electricity price they face.
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stability. The downside of instruments that stimulate own consumption, differently from feed-in tariffs, is
their impact on grid financing and vertical equity, challenges we address in this paper.

We propose an optimal tariff design that a regulator can implement to achieve a solar energy production
target, while recovering network costs and preserving vertical equity. We allow the policymaker to rely on
three different instruments, all commonly used in various electricity markets worldwide: volumetric charges
and fixed fees in households’ energy bills, as well as subsidies to solar power installation costs. Volumetric
charges are used to generate revenues to finance energy and grid costs, and represent an incentive for both
energy conservation and solar panel adoption. Fixed fees instead generate no incentive for households’ en-
ergy conservation or solar power installation, but guarantee a steady revenue to recover fixed network costs
that doesn’t depend on households’ energy consumption or production. The last instrument is a subsidy to
solar panel installation costs. This is one of the two main incentives historically used by policymakers to
foster solar panels’ adoptions, the other being feed-in tariffs. The main difference between the two instru-
ments is that the first subsidises up front installation costs, whereas the second subsidises future revenues
from energy production. De Groote, Verboven (2016) are able to show that Belgian households undervalued
future solar panel revenues, concluding that in their setting, where a feed-in tariff was in place, an upfront
investment subsidy would have promoted PV adoptions at a lower budgetary cost. Based on their findings,
and on the recent switch by the Swiss government from a feed-in system to installation subsidies, we decided
to just focus on the latter for our counterfactuals. However, volumetric charges have similar characteristics
to feed-in tariffs, as they also provide an additional stream of revenue from energy production through grid
cost savings. Thus, an increase in volumetric charges can be considered equivalent to an increase in a feed-in
tariff.

We define a framework to model how households respond to fixed and variable energy charges, as well as
subsidy to PV adoption, in their optimal electricity consumption and solar panel installation decisions. We
let households be forward looking and solve a dynamic problem, in the spirit of Hendel, Nevo (2006). We
estimate the model in three stages. First, we assume that households solve a static utility maximization
problem to choose their optimal energy consumption, conditional on their solar panel adoption decision.
We estimate the parameters of their energy demand function using a geographical boundary regression dis-
continuity design, similarly to Black (1999) and Ito (2014), to address the endogeneity of energy prices and
fees. This approach allows us to identify price elasticities exploiting tariffs variation between neighboring
households, located on opposite sides of border points between different electricity suppliers. Second, we
estimate transition probabilities for the state variables, to determine how households form expectations over
the evolution of the their indirect utilities from consumption, as well as PV installation costs and revenues.
Third, we estimate households’ PV adoption decisions as an optimal stopping problem, following Rust
(1987), where households choose when to install a solar panel, trading off declining subsidies in the form
of decreasing feed-in tariffs, and installation costs that reduce over time due to lower panels’ production
costs.

We use the results from these models to conduct three counterfactual exercises. In the first experiment we
quantify the “death spiral”, simulating a benchmark scenario where all home owners of single or double
apartment buildings in our data install a solar panel, and calculate the increase in variable grid tariff required
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to guarantee network financing. In the worst scenario, we find that volumetric charges would need to rise by
up to 123% to recover the missing revenue, and this increase would be borne mostly by low income house-
holds. In the second experiment we solve the policymaker’s optimization problem, following Wolak (2016),
to find the optimal tariff design in terms of variable prices, fixed fees, and subsidies, in order to achieve 2%,
3%, 5% or 9% solar energy production targets,6 while recovering network costs and preserving vertical eq-
uity. To meet each of those targets, we find that it is optimal for the regulator to subsidise respectively 18%,
23%, 28%, and 34% of solar panels’ fixed installation costs, financing this subsidy with a 6%, 13%, 29%,
and 75% rise in variable grid charges, and increasing fixed grid fees by 118%, 119%, 117%, and 61%. We
show that these tariff schemes are optimal, as they guarantee under each scenario that households across the
income distribution experience the same percentage increase in electricity bills. In the third experiment, we
address the regressive nature of fixed fees, simulating a complete decoupling of grid revenues from energy
consumption. We show that a capacity fixed fee (also known as demand charges) would make grid financing
more progressive compared to a uniform fixed fee.

We have access to a unique panel dataset at the household-year level for the Canton of Bern over the 2008-
2013 period. We constructed this data matching information from four different sources. First, the three
main energy providers in the Canton provided us data on households’ energy consumption and expenditure,
electricity prices with detailed breakdown for each component of the bill charged to users, and households’
PV adoptions. Second, the Tax Office of the Canton of Bern gave us yearly information on each household’s
income, wealth, tax payments, and demographics, including location. To the best of our knowledge, this
is the first paper that is able to match households’ energy consumption with exact income and wealth data.
Third, the Swiss Federal Statistical Office gave us access to cross-sectional information on each households’
building characteristics, including number of rooms, house/apartment surface, heating and water systems,
and building construction period, all key determinants of households’ energy consumption. Last, the Swiss
start-up company Eturnity AG, which provides an advisory online platform for solar energy systems, sim-
ulated for us a novel dataset on potential energy production of solar panels on each building in our data,
including also estimated installation costs, and households’ consumption profiles. Eturnity has developed
a software that uses building location and characteristics to forecast the potential production of a rooftop
solar panel and its installation cost, using local weather and potential sun exposure, roof surface, and esti-
mates of solar panel installation costs from local households and suppliers. Moreover, based on an aggregate
household consumption measure and on the feed-in tariff in place, it can recover a detailed household con-
sumption profile to determine the total savings that a solar panel would guarantee over a 25-years horizon,
corresponding to the usual life cycle of these systems.

Our paper is related to various strands in the literature. First, it contributes to the debate on network fi-
nancing and vertical equity posed by the growth in solar power installations. Borenstein (2008) shows that
the costs of adopting the PV technology exceed its market benefits, contradicting the argument that solar
panels have reduced the costs of energy transmission and distribution, since power is generated at the end-
user’s location. Bushnell (2015) highlights how volumetric charges imply that the more efficient energy
consumption becomes, the less households contribute to the infrastructure costs of national energy utility

6These targets are expressed as percentage of energy consumed coming from solar panels.
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distributors. Consequently, increasing distribution rates may provide even larger incentives to reduce energy
consumption, shifting costs to third parties (MIT, 2011). Picciariello, Ramirez, Guillén, Marin, and Söder
(2014) show that cross subsidization from customers without self generation to those with self generation
is likely to arise in case volumetric tariffs and net metering is adopted.7 As suggested by Joskow (2012), a
potential solution to these issues is an alternative financing scheme that provides for the separation of the
cost recovery from energy consumption, known as “revenue decoupling". This could take the form of a
fixed charge faced by all customers, or of a demand charge based on individual consumers’ peak load on the
distribution system, as we investigate in one of our counterfactuals.

Connected to this literature, we rely on various contributions in public finance to motivate the vertical
equity concern of a policymaker in the design of energy tariffs. While Atkinson, Stiglitz (1976) argue that
redistribution should only be achieved via income tax, Stiglitz (1982), Naito (1999), and Cremer, Ghavari
(2002) support the use of a second instrument to achieve income redistribution, and a number of papers
promotes the redistributive role of public utility pricing.8 This literature on public utility pricing commonly
assumes that the regulator is constrained in the design of income taxation, one of the reasons being the
political cost of changing income taxes. This provides an argument for vertical equity that is particularly
relevant in Switzerland, where direct democracy implies that changes in income tax can only be achieved
via national referenda. Based on this principle, Switzerland and other European countries (UK and Italy
for example) have separate budgets for energy versus other types of government spending, avoiding cross-
subsidization between different areas.

Second, our work is part of a large literature estimating price elasticities of residential electricity demand.9

Reiss and White (2005) use cross-sectional survey data on energy consumption of 1,300 U.S. households,
evaluating the effect of different tariff structures on energy demand. Ito (2014) has access to a household-
level panel on energy consumption from two major Californian energy providers. He exploits price varia-
tions at spatial discontinuities between these operators to identify price elasticities, finding that despite the
non-linear price schedules offered, consumers only respond to average instead of marginal prices. A com-
mon feature of these papers, as others in the literature, is that they can only imperfectly match households’
energy consumption with income census data, using aggregate zip code information. Our data has two fun-
damental advantages compared to the existing literature. First, it covers almost the whole population of the
Canton of Bern, the second largest Canton in Switzerland, as opposed to previous papers only having access
to a representative sample of households. Second, we have a perfect match of households’ yearly energy
consumption to their yearly income and wealth, as well as to detailed building characteristics and poten-
tial PV costs and production. We are not aware of any other paper exploiting this detailed household-level
information on income and wealth.

7This problem has also been acknowledged in further studies, such as Pérez-Arriaga, Ruester, Schwenen, Battle, and Glachant
(2013), and Eid, Guillén, Marin, and Hakvoort (2014).

8See for instance Feldstein (1972a), Feldstein (1972b), Munk (1977), Saez (2002), Hellwig (2007). We explore this question
further in a follow-up paper.

9Papers using aggregate data, typically at the U.S. state level, are: Herriges and King (1994), Maddock, Castano and Vella
(1992), Kamershen and Porter (2004), Alberini, Gans, and Velez-Lopez (2011), Alberini and Filippini (2011) or Bernstein and
Griffin (2006). Papers focusing on European energy markets include Filippini, Blazquez, and Boogen (2012) (using Spanish data),
Mohler and Müller (2012), and Boogen, Datta, and Filippini (2014) (both focusing on Switzerland).
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Last, our work contributes to a recent literature on reduced form and structural models of households’ solar
panel adoption, the latter mostly based on Rust (1987). Using data on residential PV installations in Cali-
fornia, Borenstein (2015) finds that income distribution of PV adopters is skewed towards wealthier house-
holds, showing that the increasing-block pricing (IBP) scheme generates greater incentives for households
with higher energy consumption to adopt a PV system. Burr (2014) estimates a household level dynamic
PV installation model for California, showing that upfront capacity-based subsidies result in lower welfare
costs and more solar adoptions than production-based subsidies (feed-in tariffs). Reddix (2014) estimates a
similar model, allowing for product differentiation in PV systems, to show that in California in the absence
of government subsidies over 54% of all PV installations would have not occurred, with the largest share of
lost adoptions originating from larger capacity installations. Last, De Groote and Verboven (2016) estimate
a dynamic model of PV adoptions using market share data for small local markets in Belgium, recovering
households’ discount factor, and showing that an upfront investment subsidy is more effective than feed-in
tariffs at promoting PV adoptions.

None of these papers has detailed data on households’ energy consumption, expenditure, and income. This
allows us to specify a richer model, where households decide both their optimal electricity consumption
and PV adoption, subject to their budget constraint.10 In particular, when choosing whether to install or
not, households trade-off the indirect utility from optimal consumption with and without a solar panel, the
impact on their electricity bills, and revenue and cost from their solar panel. Moreover, from a regulator’s
perspective, we can simulate alternative tariff designs making sure that the network and subsidies’ costs are
recovered through the electricity bills while also achieving a set solar energy target. Last, our perfect income
match on household level allows us to correctly identify the redistributive effects of tariff schemes.

Our paper is structured as follows. Section 2 introduces the institutional features of the Swiss energy market
and describes the data. In Section 3 we present the model, and in Section 4 we describe the estimation
strategy and the identification. Section 5 shows the results, Section 6 presents the counterfactuals, and
Section 7 concludes.

2 Data and Swiss Electricity Market

Switzerland is a federal state, divided into 26 Cantons and roughly 3,000 municipalities of varying size
and population. The supply of energy is decentralized and is organized by each Canton. Within each
Canton one or more utilities have a local monopoly when it comes to households’ energy provision. Large
scale consumers with an annual energy consumption exceeding 100 MWh can choose their provider since
2009, but households are only able to do so from 2018. This means that even within the borders of a
Canton residential customers can be assigned different energy providers, depending on their location. Utility
providers can have the legal form of purely private companies, but in most cases they are still at least partially
public monopolies. In the Canton of Bern for example, 52% of the main utility (BKW Energie AG) is owned

10Related to our work, Dubin and McFadden (1984) propose a static model to jointly estimate households’ electricity consump-
tion and appliance holdings. We differ from their approach as we have a dynamic model of PV adoption, but estimate our two
models sequentially rather than jointly for tractability.

7



by the Canton of Bern. This implies that these utilities are not profit oriented and cannot set their prices
independently, but have to follow the requirements of the regulatory agency ELCom.

We constructed a unique dataset for the Swiss Canton of Bern that combines yearly household level energy
consumption, income, wealth, PV installations, and buildings’ characteristics. With an area of around 6,000
km2 and just over 1 million inhabitants the Canton of Bern is the second largest Swiss Canton in terms of
population. The three main energy providers in the Canton are BKW Energie AG (BKW), Energie Wasser
Bern (EWB), and Energie Thun (ET). The major provider is by far BKW, supplying more than 7,500 GWh of
energy to around 200,000 households in 400 municipalities in the Canton. EWB supplies energy to around
70,000 households and is mainly responsible for the city of Bern, whereas ET serves only 20,000 households
in the city of Thun. These three main energy providers made available to us their data on household energy
consumption, household PV installations, and infrastructure network costs and tariffs. The map in Figure 1
shows the geographical distribution of households and the coverage of the respective energy providers in the
Canton of Bern. The dark blue area represents the city of Thun, the blue area the city of Bern, and the larger
light blue area the rural part of the Canton, where households are supplied by BKW. This map highlights
the clear spatial discontinuities between providers that we will exploit to identify price elasticities.

Households in the Canton of Bern receive the electricity bill once a year. The costs are divided into a
fixed fee to recover network costs, and a variable price, which consists of four major components. First,
a variable energy price defined by the individual supplier, reflecting the costs of internal production and
of procurement of electricity on the market. Second, a variable price for grid usage, covering the energy
distribution network costs and again varying between providers. Third, a uniform surcharge levied by the
federal state used to promote renewable energy. Fourth, taxes levied by the communal, cantonal, and federal
authorities. As opposed to Californian utilities which usually resort to IBP schemes, Swiss utilities apply a
constant price per kWh irrespective of the amount of electricity consumed.

However, part of the households in our data face a double tariff scheme, with different prices between
night and day,11 and with higher daytime price steering consumption to off-peak hours. While ET only
offers a double tariff to its customers, BKW and EWB assign either double or uniform tariffs to each of
their clients.12 Both providers base this tariff assignment on building characteristics, such as electrical boil-
ers/heating and whether a double tariff meter is installed, and expected consumption patterns. Furthermore,
EWB and ET offer differentiated energy products, as customers receive electricity from renewable sources
by default but can opt out to a cheaper option that provides energy from conventional power sources. We
omit this dimension from the paper, as most customers (around 80%) stay with the baseline renewable prod-
uct. For the estimation and simulation we use the prices of this baseline product for all customers. Table 1
reports the detailed price components for each company.

11For BKW customers day time lasts from 7am to 9pm. For EWB and ET customers from 6am to 10pm.
12Customers with a double tariff meter have the option to switch to a uniform tariff, but for almost all households in our data this

would result in a higher electricity bill. Switching from a uniform to a double tariff scheme would instead require the household to
install a double tariff meter, costing approximately 200 CHF. Due to these reasons, we observe almost no switch in our data.
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Figure 1: MAP CANTON BERN (HOUSEHOLDS)

Note: The figure depicts the Canton of Bern and the coverage of the three main energy providers. The dark blue area represents the customers of
Energie Thun and hence the city Thun. The blue area consists of the customers of Energie Wasser Bern and is equivalent to the city of Bern. The
light blue area corresponds to the customers of BKW and therefore most of the Canton besides the two mentioned cities. Note that only households
matched to the income information are shown in the figure.

Table 1: ENERGY PRICES, NETWORK TARIFFS AND TAXES

BKW EWB ET
Mean Std Dev Mean Std Dev Mean Std Dev

Fixed Fee HT/LT (CHF/year) 153 27 121 22 111 19
Price HT (Rp./kWh) 24.4 .8 19.7 1 25.6 .6

Energy Price 11.8 .3 11.6 .4 12.4 .2
Grid Price 10.4 1 7.3 .8 10.9 1.7
Municipality Tax 1.8 .2 .4 .2 1.8 1.5
KEV Tariff .4 .1 .4 .2 .5 0

Price LT (Rp./kWh) 14 .8 10.3 .4 14.9 1.4
Energy Price 7.3 .2 7.4 .3 9.7 .2
Grid Price 4.5 .5 2 .4 2.9 .4
Municipality Tax 1.8 .2 .4 .2 1.8 1.5
KEV Tariff .4 .1 .4 .2 .5 0

Fixed Fee UT (CHF/year) 125 17 90 23
Price UT (Rp./kWh) 23.8 .6 18.2 1

Energy Price 11.4 .4 10.5 .4
Grid Price 10.2 1 6.8 .9
Municipality Tax 1.8 .2 .5 .2
KEV Tariff .4 .1 .4 .2

Note: The table shows average prices and standard deviation in the sample. HT stands for “High Tariff” (day), LT stands for “Low Tariff” (night),
and UT stands for “Uniform Tariff”. KEV Tariff is the surcharge used to promote renewable energy. Rp means Rappen, that is one-hundredth of a
Swiss franc (CHF). Some municipalities refrain from levying a municipal tax. All prices include the value-added tax.
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Table 2 presents descriptive statistics of households’ energy consumption and annual expenditures, with a
breakdown for the different components of the electricity bill. As displayed in the first row of Table 2, the
annual household energy consumption is on average 4,919 kWh. Rows 5-12 in Table 2 display summary
statistics for the different expenditure components of the electricity bill. Detailed household income and
wealth yearly data are provided by the Tax Office of the Canton of Bern, and cross-sectional information on
building characteristics is obtained from the Swiss Federal Statistical Office.13 Table 3 provides summary
statistics for different measures of income and household tax payments.

Table 2: ENERGY CONSUMPTION AND EXPENDITURE

N Obs Mean Std Dev 5th Perc Median 95th Perc

Energy Consumption (kWh) 657,750 4,919 5,189 854 3,293 14,902
Consumption HT 419,202 2,804 2,329 597 2,182 7,264
Consumption LT 419,202 3,571 4,325 308 2,436 11,670
Consumption UT 238,548 2,360 1,671 667 1,962 5,321

Energy Expenditure (CHF) 657,750 1,066 917 284 793 2,900
Energy Price Expenditure (CHF) 657,750 477 461 93 338 1,394

Price Expenditure HT 419,202 333 276 71 260 861
Price Expenditure LT 419,202 266 320 26 181 863
Price Expenditure UT 238,548 263 188 73 218 597

Grid Expenditure (CHF) 657,750 497 358 170 396 1,212
Tax Expenditure (CHF) 657,750 71 88 0 44 238
KEV Expenditure (CHF) 657,750 21 24 2 14 67

Note: The descriptive statistic is pooled over all companies and years. HT stands for “High Tariff” (day), LT stands for “Low Tariff” (night), and
UT stands for “Uniform Tariff”. KEV Expenditure is the surcharge used to promote renewable energy. The sample includes households with up to
three grid connections (with potentially double and uniform tariff expenses on their bill). Consumption and expenditure are further differentiated
by high tariff, low tariff, and uniform tariff components. High and low tariffs are part of the double tariff scheme.

Table 3: INCOME, WEALTH AND TAX PAYMENTS

N Obs Mean Std Dev 5th Perc Median 95th Perc

Total Income (CHF) 657,750 95,225 128,644 15,944 80,179 206,576
Taxable Income (CHF) 657,750 72,940 117,831 7,736 61,860 159,247
Total Wealth (CHF) 657,750 529,660 2,053,701 0 248,283 1,646,737
Cantonal Tax (CHF) 657,750 7,352 14,566 0 5,463 18,894
Municipal Tax (CHF) 657,750 3,792 6,965 0 2,868 9,639
Federal Tax (CHF) 657,750 1,752 9,510 0 482 6,300

Note: The table shows descriptive statistics for the sample pooled over all years. All variables are measured in Swiss francs (CHF). Taxable income
is defined as total income (in the form of labor income or income from self-employment) plus rental value of owner occupied housing less mortgage
interest payments and commuting and living expenses. Given the federal structure of Switzerland, households are subject to three different income
taxes levied by the three different levels of government (Cantonal, Municipal, and Federal).

13The process of matching energy consumption and income data led us to the final sample of around 135,000 households. We
describe in detail in Appendix A1 the data merging process.
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Table 4 reports the average energy consumption, energy expenditure, and the share of taxable income spent
on energy by income decile. The table also displays the proportion of owner occupied housing, the propor-
tion of married couples, the average age of the household head, the average household size, as well as the
share of households who own a PV installation. The last nine rows report building or apartment character-
istics relevant for energy consumption: whether electricity is used for heating or hot water, the number of
rooms, the apartment surface, and the number of apartments in the building. The unconditional means in
Table 4 suggest that the annual average electricity consumption as well as energy expenditures rise mono-
tonically with income. Households in the lowest income decile consume on average 3,196 kWh per year,
whereas those in the highest one have a yearly consumption of 7,888 kWh.

A more disaggregate version of this trend is presented in Figure 2, which shows the average energy con-
sumption for each percentile of the income distribution.14 Supporting evidence of our argument that richer
households are more likely to install a solar panel is given by home ownership and apartment characteris-
tics. Among households in the first income decile, only 15% are home owners, whereas among households
in the top income decile 78% are home owners. Moreover, the number of apartments in the building is
monotonically decreasing across the income distribution, showing that richer households are more likely
to live in a single house. Figure 3 presents the share of each component of the electricity bill across the
distribution of electricity consumption. For low levels of annual energy consumption, corresponding to low
income deciles, the fixed grid charge represents the largest share of the bill. For the median level of energy
consumption instead (3,293 kWh) the share of the fixed grid charge is below 20%, whereas the variable grid
charge is around 30%, and the variable energy price represents over 40% of the bill. The contributions of
taxes and of renewable energy financing are very limited.

Figure 2: ANNUAL ELECTRICITY CONSUMPTION BY INCOME

Note: Each dot corresponds to the average energy consumption for a percentile of the distribution of taxable income. The higher energy consumption
for the lowest percentiles could be a consequence of the definition of taxable income, as it is possible to reach an extraordinary low income through
tax deductions. A similar picture emerges if we use household wealth instead of taxable income.

14Appendix A1 includes similar figures displaying the distributions of taxable income and annual electricity consumptions.
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Figure 3: EXPENDITURE SHARE OF TARIFF ELEMENTS BY CONSUMPTION

Note: “GridFixExpend” corresponds to the yearly fee households are billed to be connected to the grid irrespective of energy consumption. “Grid-
VarExpen” is the volumetric charge to finance the energy grid. “EnergyPriceExpend” is the volumetric charge for energy. “KEVExpend” and
“TaxExpend” are taxes. The graph shows the average share of these different components for each level of energy consumption in the sample.

2.1 Solar Power in Switzerland

Between 2005 and 2013 total capacity of solar panels in Switzerland increased by 30 times, from 28 MW
to 756 MW (Swissolar, 2017).15 A key driver of this growth was the introduction in 2008 of the feed-in
tariff remuneration system known as “KEV”.16 The incentive scheme was designed to last for 25 years from
the PV adoption date, with tariffs varying depending on the type of PV installed (ground-mounted, rooftop
or building integrated), and its size, ranging between 10 kW and 10,000 kW. Since 2008 the compensation
has been progressively reduced, both because the pre-determined budget couldn’t match the large number
of incentive requests, and because of the sharp decline in PV installation costs.17 Figure 4 presents the
evolution of PV electricity generation in Switzerland between 1990 and 2014.

Of the 141 GWh of energy produced by PV installations subject to feed-in remuneration in Switzerland
in 2013, those in the area supplied by BKW produced 46 GWh, so around one third. In Table 5 we show
descriptive statistics for our data on PV installations. In total 1,181 households in our dataset own PV
systems by the end of the sample period. 1,036 of them are BKW customers, 34 EWB, and the rest Energie
Thun. As shown in Figure 5, the percentage of households with a PV increases almost monotonically across
the income distribution for BKW clients. The density almost quadruples between the second and 10th

15In 2014 total capacity of solar panels in the EU amounted to 88,700 MW and in the United States to 6,500 MW (Solar Power
Europe, 2016).

16An abbreviation for the German expression Kostendeckende Einspeisevergütung, which means feed-in remuneration at cost.
17The overall amount of feed-in remuneration paid by the government amounted to around CHF 23 million in 2011, CHF 45

million in 2012, and CHF 66 million in 2013. Of these amounts, CHF 8 million, CHF 14 million, and CHF 17 million were
allocated to households in the respective years. These tariffs were financed by an energy consumption surcharge. Between 2009
and 2013 the surcharge amounted to around 0.0045 CHF/kWh and it has been steadily increased since then. Nowadays it amounts
to 0.011 CHF/kWh. In 2013 almost 6,000 installations received feed-in tariffs, and their overall production amounted to 141 GWh
(Swiss Federal Office of Energy, 2015).
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income deciles, where the frequency of PVs installed for households earning more than CHF 124,000 is
26%.

Figure 4: PV ELECTRICITY GENERATION IN SWITZERLAND (IN GWH)

Note: The figure shows the evolution of total photovoltaic electricity production in Switzerland. In 1998 the production amounted to 8.4 GWh.
Source: Swiss Overall Energy Statistic 2014, Swiss Federal Office of Switzerland.

Table 5: PV ENERGY PRODUCTION AND REMUNERATION

Variables N Obs Mean Std Dev 5th Perc Median 95th Perc

PV Production Capacity (kW) 2,628 8.1 16.6 1.9 5.6 20.5
PV Energy Production (kWh) 3,020 7,176 14,677 1,470 5,000 16,750
PV Remuneration (CHF) 3,020 2,088 3,133 171 1,546 5,741

Note: The descriptive statistics are pooled over all companies and years. The dataset of the BKW does not contain data on actual production of PV
installations. The authors make use of an estimated production of the BKW for each installation. PV Remuneration is constructed as the estimated
production times the remuneration fees of the respective year. The KEV subsidized installations of the BKW were additionally matched with an
official KEV list of the Bundesamt für Energie (BFE). For all successful matches the data corresponds to actual production and income. In contrast,
the data of Energie Thun and Energie Wasser Bern did contain actual production and income. However, there is no data for installations subsidized
by the KEV as the PV owner directly sells her energy to the BFE. Matching to the KEV list was not possible (due to all installations having the
same post code).

Finally, we assembled a novel dataset with the support of Eturnity AG, a Swiss startup company providing an
advisory platform for solar energy systems, which developed a software to forecast the potential production
of rooftop solar panels, using data on roof surface and local weather as proxies for potential sun exposure.
The company used their software to simulate the PV production capacity (in kWp) and energy production
(in kWh) of a solar panel on the rooftop of every building in our sample. Eturnity also provided us with
estimates of PV installation costs across time and PV production capacity, based on survey evidence among
local households and suppliers. Moreover, using information on households’ electricity consumption and
the feed-in tariff in place, Eturnity recovered a detailed household consumption profile to determine the total
savings that a solar panel would guarantee over a 25-years horizon.18

18See Appendix A3 for a template of the price and production quotes that Eturnity provides to a household, and Appendix A4
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Figure 5: DISTRIBUTION OF PV INSTALLATIONS BY INCOME

Note: The graph shows the percentage of PV installation by taxable income deciles.

Eturnity simulated for us potential household consumption profiles based on households’ heating and hot
water systems, which can be both powered by electricity, heat pump, or oil/gas/wood/coal, and depending
on households’ decile of yearly energy consumption in kWh. These consumption profiles include monthly
consumption peaks, that we will use to simulate a capacity fixed fee (i.e. demand charge) in the counterfac-
tuals.19 Last, when Eturnity simulated the potential production of a rooftop solar panel for each building in
our data, it used information on an approximate potential size of the PV (as a share of the building surface),
as well as on the zip code of the building, which it can match to detailed local weather information. This
last piece of data will be useful when estimating households’ PV adoption decision.

Table 6 summarizes a selection of variables supplied by Eturnity. The average simulated PV production
capacity is 5.7 kWp, whereas the corresponding average PV energy production is 9,430 kWh, almost dou-
ble the annual energy consumption of an average household, as reported in Table 2. However, due to the
mismatch between time of production and consumption, only 15.7% of the energy produced could poten-
tially be consumed by a household, while the rest would be fed into the grid. This implies that, on average,
around 42.5% of the energy consumed by a household can be supplied by its own solar panel. Last, Figure 6
displays the feed-in tariff (KEV) remunerations and the estimated installation costs across time and size of
solar panel in kWp. The time series variation shows the trade-off that households faced between declining
feed-in tariffs and declining installation costs, which motivates our use of a dynamic framework to model
households’ PV adoption decision.

for a description of the formulae, methods and assumptions that were applied by Eturnity for the simulations provided to us. For
more information visit www.eturnity.ch.

19A monthly consumption peak is defined as the 15-minutes interval within that month with the highest recorded kilowatt use.

15



Table 6: SIMULATED CAPACITY AND ENERGY PRODUCTION

N Obs Mean Std Dev 5th Perc Median 95th Perc

PV Production Capacity (kWp) 202,420 5.7 8.5 1.4 3.1 25.4
PV Energy Production (kWh) 202,420 9,431 5,027 4,759 8,280 17,721
% for Own Consumption 202,420 15.7 11.2 4.9 11.9 41.7
% Autonomy 202,420 42.5 14.1 15 39.4 60.1

Note: The variables show simulated capacity and potential energy production over time for households homeowners of single or double apartment
buildings. This is the subset of households that in our PV adoption model will be allowed to choose whether to install a solar panel or not. Values
are simulated based on roof size, appliances and geographic location. kWp means kilo-watt peak, which is the capacity of a solar panel under
standard test conditions.

Figure 6: FEED-IN REMUNERATION AND AVERAGE INSTALLATION COST

Note: The left panel shows remuneration fees for on-roof solar panels in Switzerland, source Swiss Federal Office of Energy (SFOE). The right panel
depicts average installation costs in Switzerland collected by an annual survey published by the company PhotovoltaikZentrum für Solarmarketing
(http://www.photovoltaikzentrum.de/). kWp means kilo-watt peak, which is the capacity of a solar panel under standard test conditions.

3 The Model

We define a framework to model how households respond to fixed and variable energy charges, as well
as subsidy to PV adoption, in their optimal electricity consumption and solar panel installation decisions.
We let households be forward looking and solve a dynamic problem, in the spirit of Hendel, Nevo (2006).
Estimating the structural parameters of this model will allow us to simulate a counterfactual scenario, in
which the policymaker finds the optimal tariff design to achieve a renewable energy target, while preserving
vertical equity and network financing. We model the supply side as a regulator’s constrained optimiza-
tion problem, adapting Wolak’s (2016) approach for water utilities. We will now describe the household’s
problem, and introduce the regulator’s problem in Section 6.

In our model a household i = 1, ..., N decides every period t = 1, ...,∞ the amount of energy in kWh to
consume cit, its consumption of the outside good qit, and whether to install a solar panel PV it = {0, 1},
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such that:

PV it =

{
1, install the solar panel,
0, don’t install the solar panel.

(1)

We assume that installing a PV is an absorbing state, so if a household adopts one at time t, it cannot
substitute it or install another one in the future. This makes the framework a non-regenerative optimal
stopping problem. Omitting subscript i for simplicity, we represent a household’s problem as follows:

V (S1) = max
c(St),q(St),PV(St)

∞∑
t=1

ρt−1E
[
u
(
ct, qt,PVt, St; Λ

)
− C

(
PVt, St; θ

)
+ ε(PVt)

∣∣∣S1]
s.t. ct > 0, qt ≥ 0, Ptct + qt + ft ≤ It + τtYt

(2)

where u(.; Λ) is a household’s utility from consumption of energy ct and of the outside good qt, C(.; θ)

represents a household’s cost to install a solar panel, ρ > 0 is the discount factor, Λ, θ are the structural
parameters we want to estimate, and ε(PVt) are independently and identically distributed type 1 extreme
value shocks to the solar panel adoption choice, a state variable unobserved to the econometrician. We
assume that the state variables observed by the econometrician St evolve following an exogenous first-order
Markov process. Among these state variables, which we will specify in detail in the next section, are the
variable price Pt and the fixed fee ft for energy consumption, and a household’s income It. Note that the
variable price is the sum of the three components described in Section 2, that is energy price, grid price,
and taxes. Other state variables that we include are household and building characteristics Xt that are likely
to determine energy consumption, such as household size and wealth, home ownership, electric and water
heating, house surface and number of rooms. Moreover, we include as state variables determining solar
panel adoption the PV installation cost Ft, the solar panel production Yt in kW, and the feed in tariff τt, at
which the electricity produced by the solar system can be sold back to the grid. We should note at this point
that feed in revenues are actually net of tax, as this kind of income is also subject to income taxation. Hence
τtYt = (1− tp)(τtYt)g, where tp is the household’s marginal income tax rate, and (τtYt)

g are gross feed-in
revenues. Last, we normalise the price of the outside good to 1.

4 Estimation

We estimate our model by maximum likelihood with the nested fixed point algorithm developed by Rust
(1987), which nests the numerical solution of the dynamic model at each step of the search over the structural
parameters. We face two main challenges in this estimation strategy. First, the large dimensionality of the
state space is very likely to make the problem computationally intractable. Second, letting households
solve the dynamic model with respect to both consumption and solar panel adoption further complicates
the estimation. To overcome these issues, we simplify the estimation of the structural model in three steps,
following the example of Hendel, Nevo (2006).
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In the first stage, we assume that households solve a static utility maximization problem to choose their
optimal energy consumption, conditional on their solar panel adoption decision. We specify a quasilinear
utility function,20 with the budget constraint defined in equation (2), that gives us the following energy
demand function:

cit(PV it, Sit; Λ) =

{
P βut(Iit − fut + τitYit)

γeα+X
′
itω+νit if PV it = 1

P βut(Iit − fut)γeα+X
′
itω+νit if PV it = 0

(3)

where Put and fut are respectively the electricity variable price and fixed fee charged by energy utility u ∈
{BKW,EWB,ET} at time t, νit are shocks to energy demand, and Λ = {α, β, γ, ω} are the parameters
of the demand function that we want to recover. We estimate these parameters with the following regression
model, similar to Reiss, White (2005) and Wolak (2016), postponing to the next section the discussion on
the details of the model and of the identification strategy:

ln(cit) = α+ β ln(Put) + γ ln(Iit − fut + τitYit) +X ′itω + νit. (4)

We use the estimates of this model to compute the indirect utility from energy consumption vit(PV it, Sit; Λ̂)

that households would get with and without a solar panel, that is:

vit(PV it, Sit; Λ̂) =

 Iit − fut + τitYit − 1

β̂+1
Putĉ

1
it if PV it = 1

Iit − fut − 1

β̂+1
Putĉ

0
it if PV it = 0,

(5)

where ĉ1it and ĉ0it are predicted energy consumptions for households, respectively with and without a so-
lar panel, based on equation (3). To simplify the households’ dynamic decision to install a solar panel,
we assume that the indirect utilities from consumption with and without a PV, defined respectively as v1it
and v0it, are two of the state variables that households keep track of when choosing whether to adopt or
not.21 In particular, we divide the indirect utility from adopting into two components, which households
keep track of separately. First, households form expectations over the revenues they derive from installing
a PV v1Rit = τitYit, to capture the idea that households are aware of the decline in feed-in tariffs over
time. Second, households form expectations over the evolution of electricity costs v1Cit = − 1

β̂+1
Putĉ

1
it.

This substantially reduces the state space, as it implies that instead of forming expectations over the evo-
lution of Put, Iit, fut, τit, Yit, Xit, households just consider vt, such that F (vt|St−1) can be summarized by
F (vt|vt−1). This assumption, also used in terms of inclusive values by Gowrisankaran and Rysman (2012),
Melnikov (2011), and Schiraldi (2011), rests on the idea that consumers are boundedly rational and only use
a subset of the information available to them to form expectations. We assume that the PV installation cost
function is linear in the fixed installation cost Fit, such that C

(
PV it, Sit; θ

)
= θFit. These costs are also

declining over time. Since fixed installation costs are fully tax deductible from the income tax, we assume
throughout the paper Fit = (1−tpi )F

g
it, where tpi is the household’s marginal income tax, and F git is the gross

20In Appendix A56 we show the functional form of the utility function, deriving energy demand and indirect utilities.
21In the estimation we actually eliminate the term Iit−fut from each indirect utility, as this is invariant to the adoption decision.
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fixed installation cost. Hence, Fit already captures the effect of the income tax deduction. This tax credit
further exacerbates the redistributive issues involved in the adoption of solar panels, as richer households
have larger incomes, hence higher marginal taxes and possibly larger homes, such that the amount of tax
deduction they can benefit from is larger than for low income households.

In the second stage we estimate the transition probabilities of all the state variables in the simplified model
S̃t = {v1Rt , v1Ct , v0t , Ft}with an autoregressive process of order one for each, using the estimated parameters
of these processes δ̂ = {δ̂v1R, δ̂v1C , δ̂v0, δ̂F } as inputs for the dynamic model in the next step. Following
Rust (1987), we assume conditional independence, such that the Markov transition probability of the state
variables can be expressed as:

p(S̃′, ε′|S̃, ε; δ, λ) = p1(S̃
′|S̃; δ)p2(ε

′|S̃′;λ) (6)

In a standard regenerative optimal stopping problem the present discounted value (PDV) of future utilities is
determined using estimates of the transition probabilities of the state variables and value function iteration.
We differ from this setting because installing a solar panel is an absorbing state, which implies that the PDV
of future utilities from not adopting a PV is still obtained by value function iteration, but the PDV from
adopting is not, and we need to compute it. Therefore, using the estimates of the transition probabilities, we
construct the PDV of household i from adopting at time t as follows:

PDVit =

Feed-in period︷ ︸︸ ︷
25∑
s=1

ρs(1− ζ)sτitYit +

Post feed-in period︷ ︸︸ ︷
∞∑
s=26

ρs(1− ζ)sδ̂sv1CPutYit +

∞∑
s=1

ρsδ̂sv1C
[
− 1

β̂ + 1
Putĉ

1
it

]
, (7)

where δ̂v1C is the parameter of the AR(1) for v1Cit , ρ is the discount factor, and ζ is the panel’s degrade
factor.22 The part of the v1it indirect utility that captures the revenue from selling energy to the grid (v1Rit =

τitYit) is divided in two periods. During the first 25 years the household enjoys the KEV feed-in tariff, and
after that the household sells the electricity it produces to the grid at the same price at which it buys it.23

Households form expectations about the evolution of PDVit following δ̂v1R for the revenue during the feed-
in period (first term on the right hand side of equation (7)), and following δ̂v1C for the other terms.

In the third stage we define the Bellman equation of the simplified problem as:

V (S̃t) = max
PVt

{
vt(PVt) + ε(PVt) + PVt

(
PDVt − θFt

)
+ (1− PVt)ρE

[
V (S̃t+1|S̃t)

]}
, (8)

22We set the degrade factor to 3% for the first year and 0.7% for the following years. We take these values from the guide-
lines of a popular European panel manufacturer at: http://www.kiotosolar.com/de/assets/media/downloads/
produktdatenblaetter/strom/power60/KIOTO_SOLAR_DB_POWER60_DE_250416.pdf.

23For the calibrated values of the degrade factor ζ and of the discount factor ρ, the second period ends up carrying very little
weight in the present discounted value formula.
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where θ represents the disutility from the installation cost F . Under conditional independence we can write
the following alternative specific expected value functions, describing a non-regenerative optimal stopping
problem:

EV(S̃,PV) =

{
v(1) + PDV − θF + ε(1) if PV = 1

v(0) + ε(0) + ρ
∫
S̃′ EV(S̃′)p1(S̃

′|S̃; δ̂) if PV = 0.
(9)

Given the extreme value distribution of ε, the probability of installing a solar panel will be:

Pr(PV = 1|S̃; θ) =
exp

[
v(1) + PDV − θF

]
exp

[
v(1) + PDV − θF

]
+ exp[v(0) + ρEV(S̃′, 0)]

. (10)

We recover the parameters of the utility function θ that maximise the following log-likelihood function:

L(θ) =
∑
i

∑
t

log
[

Pr(PV it|S̃it; θ)
]
. (11)

4.1 Identification

In the first stage we estimate the energy demand model described in equation (4). One of the challenges
we face to correctly identify price and income elasticities, our key parameters, is understanding the price
that households actually respond to. Ito’s (2014) work addresses precisely this question, using a sample of
U.S. household-level monthly energy consumption data. He finds that despite a regime of non-linear tariffs,
households actually respond to average prices instead of marginal ones, which questions the efficacy of
Increasing Block Pricing schemes at encouraging energy efficiency. He also finds that households respond
to lagged rather than contemporaneous prices, as they receive electricity bills at the end of monthly billing
periods. We follow Ito’s (2014) approach to understand what is the price that households actually respond
to.

Households in the Canton of Bern face simpler tariff schemes compared to U.S. ones, which makes the
choice of marginal vs average price less of a concern in our context. In fact, two providers (BKW and EWB)
offer uniform tariffs under which marginal and average prices are the same. However, all providers also offer
a double tariff, with different marginal prices between day and night time. For customers under a double
tariff scheme we construct marginal prices as a weighted average based on their day and night consumption
shares, as described in detail in Appendix A6. Differently from U.S. households, Swiss households receive
their final energy bill once a year,24 which includes their total energy consumption and all variable and
fixed tariff components (energy, grid, taxes). We focus on the sum of all variable tariff components as

24BKW and ET customers all receive their bill at the end of each year. EWB customers receive their bill yearly but at a customer
specific time, based on when their meter is read by EWB.
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the relevant marginal price, and based on billing time and previous literature we use lagged prices in the
estimation.25

Since our data consists of 3 utilities and 6 years, with utilities adjusting prices only once a year, we also
rely on price differences within companies across tariff schemes for identification. Overall, we exploit four
sources of price variation for identification: time-series, between utilities, between double and uniform
tariff customers of the same provider, and price variation from differences in shares of day and night energy
consumption within double tariff customers. For each source of price variation we face a potential bias in
price elasticities.

First, we are likely to face a positive correlation over time between prices and demand shocks, which might
bias upwards our price elasticities. For instance, severe weather conditions could increase households’
energy consumption and lead utilities to import more energy or increase production through their marginal
(more expensive) power plants, driving up prices. We address this concern with year fixed effects.

Second, there might be systematic differences across households served by different providers, which si-
multaneously affect energy demand and prices. In fact, EWB and ET households are all located in cities,
whereas BKW households are mostly in rural areas. Providers serving systematically larger households, or
areas with systematically colder weather, will experience higher energy consumption and therefore higher
prices, causing an upward bias in price elasticities. The limited times series variation prevents us from in-
cluding utility-year fixed effects to address this.26 We instead use our rich set of household and building
characteristics to control for any differences across households. Moreover, we further address this concern
estimating both a geographical boundary regression discontinuity design (RDD), similarly to Black (1999)
and Ito (2014), and a matching boundary discontinuity design (MBDD), in the spirit of Fack and Grenet
(2010). These methods allow us to control for observable household and building characteristics Xit, as
well as for unobservable location and year specific characteristics, exploiting the exogenous variation in
energy prices for similar households close to the border that divides each energy supplier’s area of control.27

Potential sorting at the border, which may be problematic with a RDD (Lee and Lemieux, 2010), is unlikely
to affect our design, as households are not allowed to choose their energy provider and energy prices are a
negligible factor in location choice.

Third, we might face two sources of bias by comparing uniform and double tariff customers. On the one
hand, BKW and EWB assign their customers to uniform or double tariffs based on households’ energy con-
sumption and appliances (i.e. if they have an electric heat pump), which means that double tariff households
tend to have a higher energy consumption and lower prices.28 On the other hand, all ET customers are billed

25Following Ito (2014), we test whether households respond to current or lagged prices including both in our regression model,
and find that conditional on lagged prices current prices are very weakly statistically significant with very small economic mag-
nitude, about 5% the size of the elasticities of lagged prices. Hence, we infer from this that households mostly respond to lagged
prices and fees.

26It also prevents us from using household fixed effects, which absorb all the cross-sectional variation and make it hard for us to
identify price coefficients out of only 6 time-series data points.

27The maps in Appendix A2 represent respectively the city of Bern and the city of Thun and their surroundings, and highlight
the border areas of the two cities which are illustrative for our geographical RDD design.

28Double tariff prices are always lower than corresponding uniform tariff prices.

21



under the double tariff scheme, implying that ET households have on average a lower energy consumption
than double tariffs customers of one of the other companies. Not controlling for these differences would
induce a downward bias in price elasticities, therefore we include in our model a dummy variable for double
tariff customers of BKW and EWB, and a separate dummy variable for all ET customers. We do not expect
selection bias to be an issue in comparing double and uniform tariff households, as double tariff households
face lower prices so have no incentive to switch to a uniform tariff, and uniform tariff households need to
invest in a costly new meter to be able to access the double tariff. The data contains only a handful of
households that change tariff schemes (after relocating) and we drop them from the sample when estimating
elasticities.

Last, we face a potential downward bias when comparing double tariff households with different day vs night
time consumption shares, as a customer hit by a positive shock to energy demand may shift consumption
from day to night, reducing her marginal price. Additionally, households with higher energy consumption
might have more flexibility to shift consumption to night time. To address this potential endogeneity we
predict household consumption shares based on household characteristics, rather than using actual shares
(see Appendix A6 for details and results). Moreover, the use of lagged prices helps to reduce the potential
endogeneity of consumption shares.

We observe the annual energy consumption of household i in year t falling within the service area of utility
u ∈ {BKW,EWB,ET}. Each household is uniquely assigned to the service area of one of the three
energy providers. We determine each household’s exact location using the latitude and longitude of its ad-
dress. Additionally, we define several border points b at the boundary of two service areas. Each household
is assigned to the nearest border point if it is located up to 1 km from it on either side of the border.29 Based
on this design the new specification becomes:

ln(cit) = α+ β ln(Put−1) + γ ln(Iit − fut−1 + τitYit) +X ′itω + ξb + µt + νit, (12)

where ξb are boundary fixed effects, absorbing all the time-invariant unobservable determinants of energy
consumption specific to the border point area, which are likely to equally affect households’ consumption
at the border, but not equally affect prices. When we extend the geographic regression discontinuity design
by matching households on opposites sides of the borders (MBDD), we assume that households that are
sufficiently close share the same time-varying vicinity effect in energy consumption. We follow a two step
estimation, where in the first step we regress energy consumption for household i assigned to border point b
and utility u at time t on all covariates but energy price:

ln(cibut) = α+ γ ln(Iit − fut−1 + τitYit) +X ′itω + νibut. (13)

We then predict the residuals and use them in the second stage, taking as dependent variable the difference
in residuals between household i and its matched counterpart i′, which is in the same border point b but
served by utility u′. This gives us the following regression model:

29We experimented with alternative distances (250 meters, 500 meters, 1.5 km) finding similar results.
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ν̂ibut − ν̂i′bu′t = β(lnPuit−1 − lnPu′it−1) + (εibut − εi′bu′t), (14)

where i corresponds to households of the BKW and i′ corresponds to the matched counterfactual observation
of EWB/ET. We create the counterfactual for each BKW observation as the distance-weighted average
of the 50 nearest EWB/ET observations with the same tariff scheme.30 We regress the difference of the
unexplained variation in energy consumption (ν̂ibut − ν̂i′bu′t) on the price difference using OLS. Each pair
receives a weight

∑J
j=1

1
dij

, where dij is the distance between household i and household i′, such that greater
weight applies to households that are closer neighbours.31 Assuming that all other unobservable factors
vary continuously at the boundary, the coefficient β can be interpreted as the unbiased price elasticity of
energy demand. If other determinants were also to vary discontinuously at the border, we would not be able
to isolate the energy price effects. For this reason we eliminate boundaries that coincide with significant
geographical barriers, such as rivers. Differently from equation (12), in specification (13) we eliminate
common area specific trends by spatial differencing, and account for the distance between households on
opposite sides of the border.

Table 7 presents a comparison of means of households’ characteristics across the border for the two bor-
dering areas in our data, that are the city of Bern and the city of Thun. We can show that households at
1km from the border between the service are of BKW and EWB are very similar across all dimensions, and
the same is true for households at 1km from the border between the service area of BKW and ET. These
characteristics don’t differ significantly from the same observables in the full sample.

In the second stage of the estimation we recover the parameters δ of the transition probabilities of the state
variables. Each of these parameters rely on different sources of identifying variation. The AR(1) parameter
for the revenue side of the indirect utility from installing (δv1R) is identified by both time series and cross-
sectional changes in feed-in tariffs τit, as well as by cross-sectional heterogeneity in PV potential production
Yit. The AR(1) parameters for the cost side of the indirect utility from installing (δv1C) and for the indirect
utility from not installing (δv0) are identified by time series and across utility variation in variable prices and
fees, as well as cross-sectional heterogeneity in household characteristics. Last, identification of the AR(1)
parameter for fixed installation costs (δF ) relies on both time series and cross-sectional variation in fixed
installation costs, as PV systems of different sizes faced different costs.

In the last stage, the dynamic PV adoption decision, the parameter of interest is the disutility of fixed
installation cost θ. The identification of this parameter relies on cross-sectional variation in fixed installation
costs, conditional on the indirect utilities and the present discounted value of installation computed in the
previous stages.

30The observations need also to have the same assigned border point.
31In this specification we compute standard errors clustered at the boundary-year level.
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Table 7: HOUSEHOLD CHARACTERISTICS AT CITY BORDERS

Variables Full Sample < 1km Border Bern < 1km Border Thun
BKW EWB BKW ET

Energy Consumption (kWh) 4,919 3,960 3,208 5,341 4,538
(5,189) ( 4,610) (3,261) ( 4,947) (4,783)

Income CHF 72,940 83,028 72,652 71,639 73,959
(117,831) (113,865) (91,682) ( 65,050) (61,308)

Wealth (CHF) 335,409 430,961 354,237 325,934 344,452
(1865925) (2887249) (1925876) ( 978,893) (925,799)

Home Ownership (%) 46 34 26 60 61
(50) (48) (44) (49) (49)

Married (%) 52 47 38 57 57
(50) (50) (48) (49) (50)

Householdsize
1 (%) 41 45 53 37 40

(49) (50) (50) (48) (49)
2 (%) 36 34 30 39 39

(48) (47) (46) (49) (49)
3 (%) 8 8 7 10 8

(28) (28) (26) (29) (27)
4 (%) 10 10 7 11 10

(31) (30) (26) (31) (30)
> 5 (%) 4 3 2 4 4

(19) (17) (14) (20) (19)
PV Installation (%) .5 .2 .1 .9 1.9

(7.6) (4.8) (3.3) (9.5) (18.2)
Heating System

Electric (%) 6 4 2 6 4
(24) (19) (15) (24) (19)

Heat Pump (%) 7 4 1 11 4
(25) (21) (10) (32) (20)

Oil/Gas/Coal (%) 87 92 97 83 92
(33) (28) (18) (38) (27)

Heating System
Electric (%) 43 35 38 45 25

(50) (48) (48) (50) (43)
Heat Pump (%) 3 3 2 4 3

(17) (18) (12) (19) (17)
Oil/Gas/Coal (%) 53 62 61 51 72

(50) (49) (49) (50) (45)
Number of Rooms 3.8 3.6 3.3 4 3.9

(1.2) (1.2) (1.1) (1.1) (1.1)
Appartment Surface (sqmt) 100.6 95.2 87.2 107.5 103

(42.3) (41.8) (34.8) (41.5) (42)

Appartm. in Building 2 3 3 2 2

(.9) ( .8) (.7) (.9) (.9)

N Obs 657,750 57,932 44,995 12,938 11,087

Note: The table shows means with standard deviations in parentheses. Column (1) shows household characteristics for the full sample. Columns
(2) and (3) only include households from BKW and EWB sharing a common border in the city of Bern. Column (4) and (5) show descriptives for
households of BKW and Energie Thun located at the common border in the city of Thun. We define border households as those being at most 1km
away from the border.
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5 Results

5.1 Energy Demand Model

We report the results of the baseline OLS regression in column (1) of Table 8. In column (2) we add
double tariff dummies to control for unobserved heterogeneity between uniform and double tariff customers.
Column (3) includes fixed effects for deciles of day vs night consumption shares of double tariff customers,
as a robustness check against differences in consumption patterns. Column (4) reports the regression with
double tariff dummies for the subsample within 1km of the city borders of Bern and Thun. Column (5) adds
border fixed effects to the border sample regression. Last, column (6) and (7) present the first and second step
of the MBDD regression respectively. In all specifications we control for apartment/building characteristics,
such as the number of rooms and the apartment’s surface, including also fixed effects for the number of
apartments in the building and the building’s construction period. We further add fixed effects for whether
a household’s dwelling uses electricity, a heat pump, or other sources (oil/gas/wood) for its heating system
or for hot water heating. Additionally, we control for income and wealth of the household, the age of the
household head, its size, and home ownership. Last, we add dummy variables for households with negative
income and negative wealth, as we observe atypical consumption pattern from these groups.32

Table 8 shows that the price elasticity of demand is negative and significant, ranging between -0.06 and -0.18
across all specifications other than the baseline in column (1). In fact, just adding double tariff dummies to
the baseline regression reduces the coefficient from -0.91 to -0.10, which is in line with the downwards bias
we expected. The elasticity based on the RDD specifications in columns (4) and (5) slightly decreases com-
pared to column (2), confirming the expected upward bias from cross company comparison. The elasticity
of the MBDD in column (7) slightly increases to -0.08 compared to the RDD specification. In the MBDD
approach our sample shrinks considerably, as the number of observations decreases to 21,690, correspond-
ing to around 7% of the total sample. For this reason we consider the MBDD strategy as a robustness check
and use the RDD results in column (5) as our preferred specification for the counterfactuals. As expected,
we find that high income households consume more energy. The small magnitude of the income elasticity
is not surprising, as we control for various household and building characteristics correlated with income.
We also find that larger households, home owners, and households using electricity for heating or hot wa-
ter, consume more energy. More recent buildings consume less, as these are likely to have more efficient
isolation. In Figure 7 we plot the price elasticity across the income distribution, estimated using our RDD
specification, showing that households in lower income deciles are more price elastic.

Our preferred estimates in column (5) display lower price elasticities in absolute terms compared to other
papers in the literature. For example, Reiss, White (2005) estimate the distribution of electricity price
elasticities for a sample of households in California, finding it to be centred at -0.39. There are two main
differences between our setting and theirs, as well as with others’ work. First, they derive this result for a
sample of 1,307 households over two years, whereas our dataset covers around 135,000 households over

32The sample includes 8,600 households with non-positive income in at least one period, and 18,400 households with non-
positive wealth.
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6 years, which is a far larger sample than most of the papers estimating energy demand in the literature.
Second, households in Switzerland face a simpler pricing structure, mostly determined by a uniform or
double tariff and a fixed fee, whereas U.S. households are offered a more complicated Increasing Block
Pricing schedule. Our results might also imply that the complexity of the tariff structure can affect the
responsiveness of households to tariff increases.

Table 8: ENERGY PRICE ELASTICITIES

Variables (1) (2) (3) (4) (5) (6) (7)
Price -0.91 -0.10 -0.06 -0.18 -0.16 -0.08

(0.01) (0.02) (0.01) (0.03) (0.03) (0.01)
Double Tariff BKW/EWB 0.43 0.41 0.41

(0.00) (0.01) (0.01)
Double Tariff ET 0.14 0.25 0.24

(0.01) (0.01) (0.02)
Income 0.00 0.01 0.01 0.01 0.01 0.01

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
Wealth -0.01 -0.01 -0.01 -0.01 -0.01 -0.01

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
Home Owner 0.17 0.14 0.14 0.10 0.10 0.13

(0.00) (0.00) (0.00) (0.01) (0.01) (0.01)
Number of Rooms 0.14 0.09 0.09 0.12 0.11 0.11

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
Number of Rooms Sq -0.01 -0.00 -0.00 -0.01 -0.01 -0.01

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
Apartment Surface 0.11 0.11 0.12 0.14 0.15 0.16

(0.01) (0.01) (0.01) (0.02) (0.02) (0.02)
Constant 6.97 8.19 7.94 8.01 8.06 8.67

(0.04) (0.05) (0.05) (0.09) (0.09) (0.08)
Share FE No No Yes No No No No
Household Size FE Yes Yes Yes Yes Yes Yes No
Household Age FE Yes Yes Yes Yes Yes Yes No
Heating System FE Yes Yes Yes Yes Yes Yes No
Water System FE Yes Yes Yes Yes Yes Yes No
Apartment No. FE Yes Yes Yes Yes Yes Yes No
Construction Period FE Yes Yes Yes Yes Yes Yes No
Non-Positive Income/Wealth FE Yes Yes Yes Yes Yes Yes No
Year FE Yes Yes Yes Yes Yes No No
Border FE No No No No Yes No No
N Obs 460,081 460,081 460,081 92,090 92,090 92,090 21,690
R2 0.551 0.581 0.587 0.583 0.586 0.527 0.070

Note: Standard errors in parentheses. Standard errors are clustered at the household level in specifications (1)-(5) to account for
serial correlation. Log of total yearly energy consumption is used as dependent variable. Price, Income and Wealth variables are in
logs. Aparment Surface is in hundreds of squared meters. Column (5) shows the results for the RDD model. Columns (6) and (7)
show respectively the first and second stage of the MBDD.
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Figure 7: PRICE ELASTICITIES BY INCOME DECILES

Note: The graph shows the estimates of price elasticities with standard errors for each income decile with the specification in column (5) of Table 8.

5.2 PV Adoption Model

To estimate the PV adoption model we restrict the sample to the main energy provider (BKW), which serves
94% of the solar panels installed,33 and to single family houses or buildings with at most two apartments, for
which it is more likely that a single household is making the installation decision. We calibrate the discount
factor to ρ = 0.8788, which is the value estimated by De Groote, Verboven (2016) for PV adoption decision
of Belgian households. Unfortunately we don’t have the same rich time series variation in feed-in tariff
that they have to identify the discount factor in our setting, but we believe that time preferences of Swiss
households for PV installation are likely to be similar to Belgian ones.

Following Rust (1987), we discretize the state space to make the computation tractable. The four state
variables, indirect utilities without (v0) and with (v1R, v1C) solar panel, and installation costs (F ) are all
discretized to around 60 intervals of length, respectively of 40, 300, 2500 and 2,500 CHF.34 We then estimate
the parameters of the AR(1) processes for the state variables (δv0, δv1R, δv1C , δF ). Next, the estimation
procedure consists of an inner loop, where the value function for a given parameter θ is found using the
nested fixed point algorithm, and an outer loop, where we search over parameter values using maximum
likelihood. We use bootstrap to derive the standard errors.

Estimation results of the parameters of the AR(1) processes and of the coefficient for fixed installation costs
θ are reported in Table 9. A positive θ implies that households are less likely to install the higher are fixed
installation costs. We find that δv0 and δv1C are very close to 1, so there is not much variation over time
in the indirect utility from not adopting and in the cost component of the indirect utility from adopting.
The coefficients of the AR(1) processes for the other state variables identify the trade off that households
face from adopting a PV versus waiting. A value of δF of 0.76 shows that installation costs are declining

33PV systems are more likely to be adopted in non-urban areas, which are the ones served by BKW.
34We actually discretized the present discounted value variable PDV , which is the sum of current and future indirect utilities

from adopting v1R + v1C .
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over time, whereas a value of δv1R of 0.82 implies that the revenue component of the indirect utility from
adopting is reducing over time, driven by the decrease in feed-in tariffs.

Table 9: PV ADOPTION RESULTS

Parameters
δv0 .99

(0.00)
δv1R .82

(0.00)
δv1C .99

(0.00)
δF .76

(0.00)
θ 1.03

(0.00)

N Obs 52,705

Note: Standard errors in parentheses.

6 Counterfactuals

We propose an optimal tariff design that a regulator can implement to achieve a solar energy production
target, while recovering network costs and preserving vertical equity. We allow the policymaker to rely on
three different instruments, all commonly used in various electricity markets worldwide: volumetric charges
and fixed fees in households’ energy bills, as well as subsidies to solar power installation costs. Volumetric
charges are similar to an energy tax, as they generate revenues to finance energy and grid costs, but also dis-
courage households’ excessive energy consumption. These variable tariffs represent an incentive to adopt a
solar panel, as households with a PV can save on their energy bill by consuming the electricity they produce.
However, the combination of volumetric charges and a growing number of solar power installations can have
a regressive effect on households’ energy bills, for the following reason. High income households generally
consume more, paying a higher share of the fixed network cost, in line with the principle of progressive
taxation. Richer households are however also more likely to install a solar panel, as they commonly are
home owners of single houses and have the resources to pay the installation costs. This implies that rich
households with a PV could end up contributing less to the fixed network costs, while still using the grid
to consume and sell energy, in turn making poorer households bear an increasing share of fixed network
costs.

The second instrument, a fixed fee, is equivalent to a lump-sum tax to finance grid costs. Being fixed, these
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fees generate no incentive for households’ energy conservation or solar power installation,35 but guarantee
a steady revenue to recover fixed network costs that doesn’t depend on households’ energy consumption
or production. The reason why fixed network costs are not decoupled from energy consumption, i.e. fully
financed with a fixed fee, is the lack of incentives for energy conservation and the regressive effect this
would have on households’ electricity bills.

The last instrument is a subsidy to solar panel installation costs, set as a share of total PV adoption costs.36

This is one of the two main incentives historically used by policymakers to foster solar panels’ adoptions,
the other being feed-in tariffs. The main difference between the two instruments is that the first subsidises up
front installation costs, whereas the second subsidises future revenues from energy production. De Groote,
Verboven (2016) are able to show that Belgian households undervalued future solar panel revenues, con-
cluding that in their setting, where a feed-in tariff was in place, an upfront investment subsidy would have
promoted PV adoptions at a lower budgetary cost. Based on their findings, and on the recent move by the
Swiss government from a feed-in system to installation subsidies, we decided to just focus on the latter. In
line with the case of Switzerland and of other countries, we assume that the revenue to finance the subsidy
is recovered from households’ electricity bills.

We conduct two main counterfactual exercises using data from the last year in our sample (2013) for the
main provider (BKW). In the first experiment we quantify the “death spiral”, simulating a benchmark sce-
nario where all home owners of single and double apartment buildings in our data install a solar panel, and
calculate the increase in variable grid tariff required to guarantee network financing, based on our energy
demand model. This exercise aims at quantifying the extent of the decline in revenues to finance the grid
from a large increase in PV installations, as well as the regressive effect that the increase in volumetric
charges could have. In the second policy experiment we allow the policymaker to find the optimal tariff
design, in terms of variable prices, fixed fees, and subsidies, in order to achieve various solar energy produc-
tion targets, while recovering network costs and preserving vertical equity. For each scenario we calculate
the change in households’ welfare and contribution to grid costs between the current and the counterfactual
tariff scheme.37

In Appendix A7 we present an additional counterfactuals with exogenous PV adoption. In that exercise we
address the regressive nature of fixed fees simulating a complete decoupling of grid revenues from energy
consumption, allowing the regulator to rely on a combination of uniform and capacity fixed fees to recover
grid costs. In fact, what is typically more costly for the network is not the average energy consumption of a
household over time, but the variance of it, as large spikes can generate costly imbalances for a network that
always needs to balance demand and supply. A way to address this without regressive effects is to substitute
or complement uniform fixed fees with capacity fixed fees, which still allow to decouple grid financing from
energy consumption, but are set based on the maximum amount of energy a household is able to consume

35According to our estimates changes in fixed fees do not significantly alter energy consumption and have no impact on PV
adoption.

36Since 2015 Switzerland provides a subsidy of 30% of installation cost for small solar panels. The tax credit for installation
costs that households receive is implicitly also a subsidy. We don’t however allow the regulator to adjust that too, focusing only on
the explicit one.

37We define aggregate welfare as the sum all households’ indirect utilities.
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from the grid during a fixed time span (usually 15 minutes).38

For all counterfactuals, we separate the marginal price P into its energy component PE , its tax component
PT , and its grid component PG, and only allow the latter to vary. Moreover, we allow households with a PV
to consume a share OCi (Own Consumption) of the energy they produce Yi with their solar panel,39 which
implies that the household’s consumption from the grid that we’ll use in our simulations can be expressed
as:

ĉi(PV i, PG, f) =

 P β̂i(Ii − f + τiYi)
γ̂eα̂+X

′
iω̂+ξ̂b −OCiYi if PV it = 1

P β̂i(Ii − f)γ̂eα̂+X
′
iω̂+ξ̂b if PV it = 0,

(15)

where we keep everything fixed, apart from PV adoption status, variable grid prices PG, and fixed fees f . We
use this to define each household’s contribution to grid costs as the following grid expenditure GEi:

GEi(PG, f) = f + ĉi(PV i, PG, f)PG. (16)

Energy providers in our setting are cost-plus regulated, implying they recover total grid cost without making
any additional profits. Hence, using our data on households’ grid expenditure under the current tariff scheme,
we can recover the baseline total grid cost GC0 that the regulator recovered from BKW in 2013, which we
assume will need to be recovered under every scenario, as:

GC0 =

N∑
i=1

GEi0(PG0, f0) = Nf0 +

N∑
i=1

ciPG0 (17)

where N is the total number of households, ci is households’ consumption from our data, and f0 and PG0

are fees and prices in the current tariff scheme.

6.1 Simulating the Death Spiral

We first consider the effects on volumetric charges of a benchmark increase in penetration of distributed
energy, simulating a scenario where all home owners of single or two apartment buildings in our data have
a solar panel. We focus on these households as it is likely to be easier for them to adopt a PV compared
to households renting or living in apartments. To isolate the effect that this increase would have on the
variable grid price PG, we assume that the regulator only relies on this instrument to recover the missing
grid revenue, holding fixed fees constant for now. We calculate the counterfactual optimal variable grid
price under this scenario solving the following regulator’s cost minimization problem:40

38The energy providers in the Canton of Bern already apply a capacity fixed fee to business users, but not to household users.
39Eturnity provided us with simulated data on own consumption, according to which on average a household can use for own

consumption 15.7% of the energy it produces.
40We use a numerical minimization as ci(PG) is a nonlinear function of PG.
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min
PG

∣∣∣GC0 −
N∑
i=1

GEi(PG, f)
∣∣∣ (18)

In Table 10 we present changes in energy grid expenditure and welfare under two different scenarios, where
the changes are only related to grid financing and thus exclude gains from solar panel revenue. In the
first scenario we assume that households consume the share of energy they produce as predicted by Eturnity
(15.7% on average), as reported in Table 6. In the second case we consider the limit case in which households
consume 100% of the energy produced,41 trying to mimic a scenario where all households also installed a
battery. The first two rows show the change in the variable grid price in percentage terms. Allowing for
current potential own consumption, as reported in column (1), variable grid tariffs rise by around 13%.
With 100% own consumption instead, as reported in column (2), they increase by 123%. In the middle and
bottom parts of Table 10 we report the percentage change compared to the status quo in household-specific
grid expenditure ∆GEi and consumer surplus ∆CSi, respectively for households that have or don’t have
a PV, and across the income distribution. We find that under both scenarios households with (without) a
PV experience a decline (increase) in grid expenditure and an increase (decline) in consumer surplus. Last,
Table 10 shows the regressive effect of this increase in prices, as low income households experience the
highest increase in grid expenditure and the largest reduction in consumer surplus. This regressive effect is
caused by the lower likelihood of poor households to adopt a solar panel.

41We do not allow own consumption to exceed total annual consumption of the household.
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Table 10: GRID EXPENDITURE AND CONSUMER SURPLUS % CHANGE

Eturnity OC 100% OC
Instruments

% Price (PG) Change 13 123

∆GEi ∆CSi ∆GEi ∆CSi

% Change by PV Installation
% PV Installed -8.2 7.2 -78.1 68.1
No PV Installed 7.9 -8.6 73.2 -81.6

% Change GEi by Income Decile
1st decile 3.9 -4.8 37.7 -46.4
2nd decile 2.5 -3.3 29.1 -37.5
3rd decile 2.6 -3.4 27.1 -35.6
4th decile 2.9 -3.7 28.6 -37.3
5th decile 2.8 -3.6 26.4 -35.2
6th decile 2.5 -3.3 22.1 -31.1
7th decile 2 -2.8 16.3 -25.4
8th decile 1.6 -2.4 10.5 -19.8
9th decile .7 -1.6 1 -10.5
10th decile -1.9 1 -23.8 14

Note: The table illustrates the change in variable grid tariffs when all home owners of single and two apartment buildings have a
solar panel and consume their own energy. Fixed tariffs are kept constant at the current level.

6.2 Optimal Tariff Design

In the second counterfactual we find the optimal tariff design that a regulator can implement to achieve
a solar energy production target, while recovering network costs and preserving vertical equity. We let
the regulator solve a constrained optimisation approach, in the spirit of Wolak (2016), to find the optimal
combination of variable prices PG, fixed fees fi,42 and subsidies s as a percentage of the installation cost.
In this counterfactual we use the estimated parameters of both energy demand and PV adoption models, but
modify some state variables in the latter.

We estimated the PV adoption model under a feed-in tariff system in which households were feeding all
the energy produced back to the grid, and still buying from the utility all the energy they consumed. This
means that households with a PV were still fully contributing to grid financing. However, during the last
few years in various countries there has been a switch in PV adoption incentives, going from feed-in tariffs
to installation cost subsidies. In Switzerland, since 2015 newly installed solar panels with a capacity below
10 kW, therefore comparable to most of the PVs in our data, do not receive feed-in remuneration anymore,
but are instead entitled to a subsidy covering 30% of the investment costs. Moreover, energy providers must

42We allow the fixed fee to be household i specific using a capacity fixed fee, see Appendix A7 for a detailed description of this.
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allow households to directly consume the energy they produce, and must remunerate excess solar energy
production at least at the market price for energy. In our counterfactual scenario we therefore assume no
feed-in remuneration, allowing households to consume their PV produced energy directly and to feed only
excess energy back into the grid (at the market price of energy). Under this scenario higher variable grid
tariffs incentivise PV adoption because households save on variable grid costs when consuming their own
energy.

The regulator minimises an objective function taking households’ current grid expenditure GEi0 as the
desired benchmark from an income distribution perspective, accounting for a grid financing and a solar
energy target constraint. This translates into the following regulator’s optimization problem:

min
PG,fi,s

∑
i

[
GEi(PG,fi)−GEi0

]2
Ii

=
∑

i

[
ĉi(PVi,PG,fi)PG+fi−GEi0

]2
Ii

s.t. GC0 +
∑

i sFi Pr(PV i = 1|PG, fi, s) =
∑

i

[
fi + ĉi(PV i, PG, fi)PG

]
(network financing)

s.t.
∑
i Yi Pr(PVi=1|PG,fi,s)∑

i ĉi(PVi,PG,fi)
≥ SET (solar energy target)

(19)

where Pr(PV i = 1|PG, fi, s) is a function of the variable grid tariff and the parameters estimated in the
model of Section 5.2. In fact, tariffs set by the regulator impact the probability to adopt by changing the state
variables of the households. While subsidies decrease installation cost by sFi, volumetric charges increase
the revenue from owning a PV through PDVi. SET is the Solar Energy Target, expressed as a lower bound
of the ratio of energy produced from solar panels over total energy consumed by households. See Appendix
A8 for a detailed description of how we solve the regulator’s optimization problem.

Figure 8 illustrates the share of solar energy as we vary volumetric charges and subsidies. Based on our
simulation the fixed fee does not directly impact the probability to install a solar panel, therefore we treat
it solely as a financing tool. As the figure shows, the probability of adopting a solar panel is increasing in
both the subsidy and the volumetric charge. Moreover, the instruments seem to complement each other. The
multiplicative effect of both instruments also holds for the cost of the instrument. Stimulating PV adoption
through higher volumetric charges also increases the cost of a subsidy, and vice versa. Due to declining
solar panel production costs, a further advantage of these subsidies is that they are likely to become less
expensive for the government over time.
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Figure 8: SHARE OF SOLAR ENERGY INDUCED BY VARIABLE PRICE AND SUBSIDY

Note: The figure shows how the share of energy consumed from solar panels changes as we vary variable price and subsidy to installation cost.

In the counterfactual, we let investment costs decline according to the AR(1) process and use the year 2013
as a benchmark for prices and household characteristics. Without an adjustment in tariffs compared to 2013
we predict a share of solar energy of 0.5%. In Table 11 we present the optimal tariff design for four solar
energy targets. The highest target corresponds to the short term energy target set by the Swiss regulator.43

In the top part of the table we show the percentage increase in variable grid price and fixed fee,44 as well
as the share of installation cost that the subsidy should cover, in order to achieve each of the targets. In the
middle part of the table we show the percentage increase in households’ grid expenditure needed to achieve
each target, with a breakdown by income decile. The bottom part of the table reports average costs per kWh
of solar electricity. The costs are calculated as total subsidy costs divided by the total amount of electricity
produced. As the results show, the regulator should rely on subsidies to stimulate PV adoption, increasing
both volumetric charges and fixed fees to cover subsidy costs. Furthermore, the cost of the transition to more

43According to the newly introduced Swiss energy law, until 2020 total annual electricity consumption is to be reduced by 3%
compared to 2000, i.e. to 50,801 GWh based on 52,373 GWh in 2000 (Swiss Electricity Statistic, 2016). Simultaneously, the
policymaker specifies an annual renewable electricity production target of 4,400 GWh until 2020, excluding hydro energy. A
benchmark scenario of solar panels fully accounting for this increase, and households contributing according to their consumption
share, results in a solar energy target of approximately 9%.

44We allow the fixed fee to be a function of household consumption capacity. However, for the chosen solar energy targets the
regulator should always rely on a uniform fixed fee.
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solar energy is equally spread across the income distribution. As the last row of the table shows, stimulating
solar energy is rather costly and increases with a higher solar energy target. Each kWh of renewable energy
costs the regulator between 0.36 and 0.68 CHF in subsidies. This is a multiple of the market price for
electricity of 0.10 CHF.

Table 11: % CHANGE IN VARIABLE PRICE, FIXED FEE, SUBSIDY, GRID EXPENDITURE

Solar Energy Target
2% 3% 5% 9%

Instruments
% Price (PG) Change 5.5 12.5 29.4 75.2
% Fixed Fee (fi) Change 117.5 119.4 117.1 61
Subsidy (s) as % of Installation Cost 18 22.7 28.3 33.7

% Change GEi by Income Decile
1st decile 6.2 10.9 21 40
2nd decile 6.2 10.8 20.9 39.4
3rd decile 6.1 10.8 21.1 40.4
4th decile 6.1 10.8 21.2 40.9
5th decile 6 10.8 21.3 42.1
6th decile 5.9 10.8 21.4 42.9
7th decile 5.8 10.7 21.4 43.3
8th decile 5.7 10.6 21.5 44.2
9th decile 5.5 10.3 21.3 44.7
10th decile 5.1 10 21.3 45.8

CHF per kWh Solar Energy .36 .46 .57 .68

Note: The table illustrates the change in variable price, fixed fee, subsidy required to achieve 2%, 3%, 5%, 9% solar energy targets,
preserving grid financing and vertical equity. It also shows the percentage change in households’ grid expenditure across the income
distribution for the four targets. The last row shows the average subsidy cost per kWh to stimulate production of renewable energy.

Figure 9 provides two graphical illustrations of optimal tariffs. In the left panel we compare tariff combina-
tions that satisfy the same energy target, whereas the right panel shows average expenditure changes for each
instrument combination. The lines in the left hand plot of Figure 9 are combinations of volumetric charges
and subsidies that meet the corresponding solar energy targets (2%, 3%, 5% and 9%). All points above
a line also satisfy the same target, however, with at least one of the two instruments being strictly higher.
Besides optimal tariffs, denoted by asterisks, corresponding to the values in Table 11, we also present tariff
combinations with a zero fixed fee, marked by circles. Combinations with a zero fixed fee represent a bench-
mark because they are the least costly in terms of aggregate households expenditure. In fact, the regulator
should increase volumetric charges to fully cover grid costs and subsidies if the only scope is to minimize
aggregate household expenditure. From the plot we can see that optimal tariffs are below the benchmark
tariff combinations but tend to converge for higher targets. The right-hand panel of Figure 9 illustrates the
average change in household grid expenditure for combinations of volumetric charges and subsidies. The
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discontinuity in the plot surface, starting just above 0.1 volumetric grid charge when the subsidy is zero,
relates to a zero fixed fee. At the discontinuity, increasing volumetric charges leads to excess revenue over
grid and subsidy costs, while decreasing volumetric charges requires positive fixed fees to satisfy the net-
work financing constraint. The plot also displays optimal tariffs for rising solar energy targets, equivalent to
the left plot. The results show that the regulator optimally increases both volumetric charges and subsidies
simultaneously to reach the energy target.

Figure 9: FRONTIER OF OPTIMAL TARIFFS

Note: Optimal tariffs represent tariff combinations that minimize the objective function of the regulator. f=0 tariff combinations
mean that volumetric grid charges just cover total grid costs and PV subsidies. SET stands for solar energy target, which is
the percentage of household consumption produced by household PVs. The lines in the left hand plot correspond to all tariff
combinations with the specified SET. The dots and asteriks show tariff combinations for different SETs ranging from 1% to 9%,
with an interval of 0.5%.

This counterfactual provides some general conclusions on the efficiency and equity properties of volumetric
charges and subsidies. From an efficiency perspective, installation cost subsidies are costly, as they require
additional financing, whereas volumetric charges both incentivize PV adoptions and contribute to grid costs.
Thus, a regulator that wants to achieve a solar energy target, while recovering network costs and minimizing
aggregate expenditure, should finance subsidies and grid costs only with volumetric charges, setting fixed
fees to zero. However, if the regulator prioritizes welfare maximization and minimization of equity distor-
tions instead of minimization of aggregate expenditure, then it should follow a different approach. In fact,
from a welfare perspective, higher volumetric charges generate a welfare loss by reducing energy consump-
tion. Moreover, they have also a regressive effect by shifting grid costs to households without PVs, which
tend to be poorer. For these reasons, we find that a regulator concerned with vertical equity should incen-
tivize PV adoptions offering subsidies financed with a combination of volumetric charges and fixed fees. In
fact, the latter make sure that subsidies and grid costs are financed by both households that adopt and don’t
adopt solar panels.
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7 Conclusion

In this paper we propose an optimal tariff design for residential electricity markets facing an increasing
penetration of PV installations and mostly fixed network costs. We derive this optimal design specifying
a regulator’s optimization problem that aims at guaranteeing vertical equity, under the constraints of both
network financing and achieving a minimum solar energy target, in order to encourage a sustainable and
equitable diffusion of distributed renewable energy generation. We consider alternative tariff schemes, be-
cause the increasing penetration of PV installations combined with a system of net metering and kWh based
rates may not guarantee the financing of the energy infrastructure network in the long run.

To calculate these optimal tariffs we estimate models of energy demand and PV installation using a detailed
dataset with 135,000 Swiss households in the Canton of Bern for the years 2008-2013. We adopt a regression
discontinuity design to identify price elasticities, and estimate a structural dynamic model of PV adoption.
We use the estimates of these models in a regulator’s constrained optimization approach, in order to find
the optimal tariff design to achieve a solar energy target, while preserving network financing and vertical
equity. We conduct two main counterfactual simulations. First, we show that a benchmark increase in
PV adoptions would generate a substantial missing revenue to finance fixed network costs, which would
require an increase in volumetric charges with regressive consequences. Second, we calculate the optimal
combination of variable prices, fixed fees, and subsidies to installation costs that would allow a policymaker
to achieve a 2%, 3% , 5% or 9% solar energy target, guaranteeing network financing and an equitable
distribution of grid costs across the income distribution. As for the optimal policy, we show that the regulator
should rely on both variable prices and subsidies to stimulate PV adoption, while financing part of the
subsidy cost through a rise in fixed fees. Furthermore, the model estimates that stimulating PV adoption
is costly for the economy, ranging from 0.4 to 0.7 CHF per kWh of solar energy. However, with declining
solar panel costs, the costs incurred by the regulator from subsidising photovoltaic installations are bound
to decrease.

Despite our results being constrained by the extent of the institutional setting and available data, they open
the floor for various other relevant questions that we hope will be addressed in the near future. First, our
framework could be extended to consider longer term solar energy targets, incorporating the decline in
installation costs for solar systems. Second, to better characterize the direction towards which various resi-
dential electricity markets worldwide are evolving, our model could be adapted to the case of a competitive
market for retail and distribution of electricity. Third, more detailed data on grid costs could allow us to
incorporate into our model the potential rise in network expenditure due to increasing PV adoptions, caused
by the larger uncontrolled variance in inflow-outflow of energy produced by solar panels. Last, through
the lens of our model, a regulator interested in maximising production of solar energy could consider het-
erogeneous subsidies for PV installation depending on buildings’ sun exposure, favoring installations by
households with the highest potential “solar power productivity”. We regard each of these topics as worth
of future research.
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Appendix For Online Publication

Appendix A1: Data Cleaning Process

We obtained a list of grid connections (i.e. energy meters) with their respective energy usage, energy in-
fusion, customer information and some other household specific variables from all three energy providers.
These data sets contain both households and businesses. With the support of the Tax Office of the Canton
of Bern we were able to match the energy customer information with the tax data and the building char-
acteristics data. This ultimately allowed us to create the final data set, which combines energy, income,
wealth data and building information for each household. The data provided by the tax administration also
includes additional household level information, such as household size, number of children, marital status,
and whether the house is occupied by the owner.

The original list provided by BKW contains data on about 340,000 meters from 2008 to 2013. Of these
meters we manage to match around 158,000 with tax information. The mismatches are mainly due to data
imprecision and the BKW sample including businesses in addition to households. We then use the imperfect
sector identifier of BKW45 and drop meters of customers denominated as firms. Further, we drop meters
with non-households tariffs and meters with energy consumption readings below 100 kWh.46 We end up
with a sample of 142,000 meters which we collapse to 125,000 households. As we only have the current
address for BKW customers but historical personal information in the tax data, the matches steadily decline
in the earlier years, as some households relocated during this time period.

For the city of Bern we use a list of about 97,000 grid connections from 2008 to 2014. Matching the data
with tax information we end up with a sample of 58,000 meters. Of these we drop meters that do not match
the customer address, meters using non-household tariffs and meters with close to zero readings. While
from the BKW and ET we received annual consumption and infusion for each meter, the EWB was only
able to provide individual readings.47 We exclude readings significantly longer or shorter than a year as
most households are checked on a regular 365 days basis. Ultimately we end up with 44,200 readings which
we collapse to 44,100 households. The sample contains several customers for a meters with a change in
households because the EWB provided us with historical personal information on their customers.

As for the city of Thun, we start with a list of about 29,000 grid connections per year between 2009 and
2014.48 After the matching procedure we end up with 20,000 meters which we further reduce to 19,000
with adjustments equivalent to the other companies. Ultimately, we end up with data on 20,400 house-
holds.

The combined sample for the three companies includes energy and tax data on 185,000 households. We
45Imperfect as some small businesses are wrongly labeled as households.
46For comparison, a single person household usually with only one grid connection has a minimum energy usage of over 2,550

kWh per year.
47The EWB reads different households meters at different times during the year and bills accordingly. BKW and EWB read all

meters at the end of the year.
48Unfortunately the data prior to 2009 is not available due to a system change.
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match the sample with information on buildings characteristics provided by the Swiss Federal Statistical
Office. Doing so reduces the sample to 173,000 households due to data imprecision.

The final estimation and simulation sample includes several additional adjustments. First, we exclude all
observations of households that relocate in the same year.49 This adjustment should guarantee that we
measure consumption for the full duration of 365 days. Second, we drop observations for households that
change tariff schemes. Tariff changes are rare and are usually accompanied by simultaneous changes in
appliances. Third, we drop households with multiple meters. Fourth, we drop observations with an annual
energy consumption below 500 kWh and over 50’000 kWh to make sure we do not include private firms or
farms. These adjustments ultimately reduce our sample to 135,000 households.

Figure 10: DISTRIBUTION OF TAXABLE INCOME

Note: The figure shows the distribution of taxable income in the sample. All observations with a taxable income below zero have been excluded
from the sample. The maximum level of taxable income in this graph has only been chosen for illustrative purposes.

Figure 11: DISTRIBUTION OF ANNUAL ELECTRICITY CONSUMPTION

Note: The figure shows the distribution of annual electricity consumption in the sample. All observations with an annual consumption of less than
500 kWh have been omitted from the sample. Furthermore, the maximum annual consumption is set to 50,000 kWh in the sample. These limits
have been chosen arbitrarily to ensure that only households (not firms) are included in the sample. In the graph the upper limit is set to 20,000 kWh
for illustrative purposes.

49Households are identified as relocating if they change address in the tax data or if they enter or leave the sample.
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Appendix A2: Maps - Bern, Thun and Surroundings

Figure 12: MAP CITY BERN (HOUSEHOLDS)

Note: The figure shows a map of the city of Bern and its surroundings. The dark blue area consists of all households in the sample supplied by
EWB, while the light blue area shows the BKW customers.

Figure 13: MAP CITY THUN (HOUSEHOLDS)

Note: The figure shows a map of the city of Thun and its surroundings. The dark blue area consists of all households in the sample supplied by
Energy Thun, while the light blue area shows the BKW customers. The white area adjacent to the coverage of Energy Thun without any households
shows the lake of Thun.
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Appendix A3: Example of Eturnity Offer

Erleben Sie Ihre Anlage interaktiv
offerte.eturnity.ch
Code: 456785

Egon Tanner
Feldweg 45
6440 GELTERKIRCHEN
Tel: 079 685 5555
egon.tanner@bluewin.ch

INDEPENDENCE AND 
OWN CONSUMPION

DEGREE OF 
INDEPENDENCE

OWN-
CONSUMPTION

>> Seite 2

IINVESTMENT COST 

One-time investment of

Your Heating System

>> Seite 5

21’960 CHF
incl. Solar panel
incl. battery 
incl. installation
incl. VAT
incl. subsidies

Heating: 
Warm Water: 
Consumption:

Alignment:
Solar Panel:
Battery:

PAYBACK PERIOD 

with battery

12,4 years
37%72%

FREDI GMBH
Reichsgasse 3
7000 Chur
Tel: 0800 00 00 00
info@fredigmbh.ch

annual revenue: 1’383 CHF 

without battery

14,7 years

Heating Pump 
Heating Pump 
9’600 kWh

180°
8,12 kWp
7 kWh

Annual Revenue: 7’955 kWh

>> Seite 3 >> Seite 3
annual revenue: 903 CHF

PERSONAL
OFFER

FREDI GMBH

(a) PV installation investment preview

INDEPENDENCE & 
OWN CONSUMPTION

2
S E I T E

WHERE DOES MY ENERGY COME FROM?

WHERE DOES MY ENERGY GO?

Why do I need energy from the grid?

Even if your solar pannel produces more 
energy in a year than your total annual 
consumption, and despite you battery, 
you might need to rely on energy from 

the grid during winter nights.

Why do I feed energy into the grid?

You  feed your energy, apart from what 
you use directly, into your battery. As soon 
as the battery is full excess energy will be 
automatically fed into the grid.

28% 44
%

Battery 28% Energy grid

Your total energy consumption
3716 kWh

16% 21
%

63% Battery
1273 kWh

Energy grid
5011 kWh

Direktverbrauch
1670 kWh

37%
Your Own Consumpton

How much of your solar energy can you use yourself?

Annual solar energy production

7955 kWh

1023 kWh 1023 kWh

Annual direct  PV consumption 
1670 kWh

72%
Your degree of independence

How much of your energy demand do you supply 
yourselfr?

(b) Description of where the PV energy comes from and
where it goes

PROFITA-
BILITY

INVESTMEN COSTS REVENUE

«SOLARENERGIE LOHNT 
 SICH FÜR SIE»

Solar panel 

Battery system 

VAT 8%

Total exkl. VAT

Total inkl.VAT 

Subsidy

Your Investment 

Expected tax deduction* 

Final costs

23’578 CHF

4’600 CHF

2’254 CHF

28’178 CHF
30’432 CHF

-8’472 CHF

21’960 CHF

-3’294 CHF

19’357 CHF

PRODUCTION COSTS
1 kWh solar energy from your roof costs:

15,7 Rappen
Without battery cost, during the life-time of the solar panel incl. 
capital costs, incl. Iinvestment and maitenance.

Total savings from own consumption and revenue from selling ennergy, 
minus maintenance costs during the life time of solar panel/battery. No 
capital costs.

Internal interest rate describes the average, yearly return of capital across 
the life-time of the PV, assuming the capital revenue is reinvested at the 
internal rate of interest.

INTEREST YIELD
Return of your capital/internal interest rate:

With battery

34’579 CHF
Without battery

22’579 CHF

FUNDAMENTALS
Energy provider: CKW 
Energy product: hydropower 
PV-life span: 25 years 
Inflation energy prices 2,1%
Maintenance PV: 1% Invest. 
p.a.

Capital cost: 1,0%
Maintenance battery 1.5% Invest.

3
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* Assumption marginal tax rate 15% 

2,44%
Only solar with battery

1,03%

(c) Breakdown of PV installation costs and energy savings

CARBON 
FOOTPRINT

«EIN WICHTIGER BEITRAG
FÜR DIE UMWELT»

Your yearly CO2-savings of 1’000 kg are equivalent to

driving your car 8’132 km around 
the globe

reducing your carbon footprint by 15%

saving as much CO2 as 80 trees 
consume during a year

Berechnungsgrundlagen: Der dargestellte Vergleich basiert auf einem Schweizer «Egal-Strommix».
Quellen: ESU-Services / BAFU: Treibhausgas-Emissionen der Schweizer Strommixe, 2012

4
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(d) Quantification of CO2 saving
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Appendix A4: Eturnity PV Simulation Method

 3 / 4 

1 Introduction 
This document describes the formulae, methods and assumptions that were applied to the PV-system 
simulations that were ran in order to provide a solid basis for the interpretation of the results (PV Adoption 
Research PLZ.xlsx, PV Adoption Research Simulation.xlsx). 

1.1 Consumption Profiles & Scaling 
The simulations were run with a number of different load profiles that differ from each other by the heating 
and hot water system. The following table gives an overview for the yearly consumption of the load profiles 
that were used for the simulation: 
 
Heating System Hot Water System Yearly Consumption (kWh) 
electric electric 18930.0 
electric heat pump 17649.3 
heat pump electric 11807.6 
heat pump heat pump 11188.8 
oil/gas/wood/coal electric 5136.0 
oil/gas/wood/coal heat pump 4041.0 
oil/gas/wood/coal oil/gas/wood/coal 3493.5 
 
During the simulation, these profiles were scaled linearly to fit the yearly consumption of the consumption 
deciles that were provided as input data. This method will give unrealistic values for the 
consumption_peak_power_kw results for consumption deciles that differ from the physically reasonable 
values. 

1.2 Heating System and Hot Water System 

While running the simulations, it was noticed that the data input contained samples with the following rather 
rare combinations of heating and hot water system: 
 

- Heating = Electric & HotWater = Oil/Gas/Wood/Coal 
- Heating = Heat Pump & HotWater = Oil/Gas/Wood/Coal 

 
Because these combinations are so rare, Eturnity does not have a validated load profile for such a 
combination. After having noticed that such combinations exist in the input data, we have tried to find out 
where they are coming from. We ended up with the best guess that probably “solar thermal systems” were 
classified under “Oil/Gas/Wood/Coal”. With this assumption, we have then used load profiles that we 
consider reasonably accurate for the purpose of the research project to complete the simulations: 
 
Original Combination  
(Heating system:Hot water system) 

Used Combination for the Simulation 
(Heating system:hot water system) 

electric:oil/gas/wood/coal electric:heat pump 
heat pump:oil/gas/wood/coal heat pump:heat pump 

1.3 Geo-Location 

To determine the geo-location of each zip code we used an Open-Street-Map-Service. The search was 
based on the zip code and the city. The following addresses could not be found in Open-Street-Map and 
their latitude/longitude was identified manually: 

- 3434 Obergoldbach 
- 3435 Ramsei 
- 3439 Ranflüh 
- 3513 Bigenthal 
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1.4 Number of Solar Panels From Building Surface 

The PV-simulation requires the number of panels, which had to be determined by the building surface that 
was given as input data.  
 
Definitions: 
building_surface A is defined by the floor plan of the building (see figure 1) 
obstacle_factor of  obstacle factor because of chimneys, etc. The obstacle factor was set to 0.9. This 

factor was determined by evaluating a larger number of roofs. 
gable_roof_factor grf  for simplicity, it was assumed that all roofs are gable roofs and that only one side 

of the gable roof can be covered with solar panels. This factor was set to 0.5. 
roof_slope rs 30° (as per specification), roof slope of south-facing side of the gable-roof 
panel_width pw 1m (as per specification) 
panel_length pl 1.65m (as per specification) 
number_of_panels p number of panels used for the simulation 
 
The following formula was used to approximate the number of panels: 
 

𝑝 =  
𝑜𝑓 ∙ 𝐴 ∙ 𝑔𝑟𝑓

𝑝𝑤 ∙ 𝑝𝑙 ∙ cos(30°)
 

 
 

 
Figure 1: Example building surface 

1.5 Determination of specific base yield for simulation 

In order to keep the number of simulations as low as possible (around 900 instead of 350’000), all the 
simulations were ran for exactly one location. In order to determine which location was most representative 
for all of the locations specified we’ve used the median value of the collection of specific yields (kWh/kWp) 
for all the locations specified by the input data. 
 
Median value: 1002 kWh/kWp 
Location chosen for simulation: 3047 Bremgarten bei Bern 
 

Appendix A5: Utility and Indirect Utility

We assume that household i in period t maximises its utility from consuming electricity cit and the outside
good qit, subject to a budget constraint. We specify the following household’s constrained optimization
problem, omitting the subscripts for convenience:

max
c,q

u(c, q, I,X)

s.t. q + Pc ≤ I
(20)

where I and X are respectively household’s income and other characteristics (wealth, size, etc..), P is the
energy price. We normalize the price of the outside good to 1. We define the following functional form for
households’ utility:

u(c, q, I,X) = q +
β

β + 1
c
β+1
β I

γ
−β e

X′ω
−β . (21)
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The first order conditions lead us to the following energy demand function (c∗) and optimal consumption of
the outside good (q∗):

c∗ = P βIγeX
′ω

q∗ = I − P β+1IγeX
′ω.

(22)

Accordingly, the indirect utility function can be expressed as:

v(P, I,X) = I − 1

β + 1
P β+1IγeX

′ω = I − 1

β + 1
Pc∗. (23)

In the structural model we distinguish between the two indirect utilities that a household derives depending
on whether it has a solar panel on not. What differentiates the two indirect utilities is the income that a
household has under each case. With no solar panel a household has an income of I − f , with f being the
fixed fee, whereas with a solar panel a household has an income of I − f + τY , with τ being the feed-in
tariff, and Y being the solar panel production. Hence, the indirect utility we use for the structural model will
be the following:

v(P, I,X, f, τ, Y ) =

 I − f + τY − 1
β+1P

β+1
(
I − f + τY

)γ
eX
′ω if PV it = 1

I − f − 1
β+1P

β+1
(
I − f

)γ
eX
′ω if PV it = 0.

(24)

Appendix A6: High/Low Tariff Share Prediction

We assume the marginal price of a double tariff household to be a weighted average of day and night con-
sumption shares. Consequently, low daytime consumption shares correspond to low prices. This weighting
allows for additional price variation in the elasticity estimation but also introduces a potential endogeneity
bias, because the consumption pattern of a household might be closely related to its aggregate consumption.
For instance, households with a high total energy consumption might have more flexibility to shift part of
their consumption to night time. Similarly, the share of night time consumption is correlated with energy
intensive appliances, such as electric boilers. To address this potential bias we use predicted consumption
shares instead of actual consumption shares to construct prices for double tariff households. Specifically,
we predict the consumption share of each double tariff household as a function of household and apartment
characteristics, estimating the following OLS50 regression:

htshareit = η0 +Xs
itη1 + εsit. (25)

50We assume a simple linear form of the share function. OLS performs well as the predicted values closely resembles the actual
distribution of shares
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where htshareit is the actual high (i.e. daytime) tariff share of household i, and Xs
it are household and

apartment characteristics including income. We estimate the model separately for each provider for two
reasons. First, BKW defines daytime consumption over shorter intervals than EWB and ET.51. Second, by
allowing coefficients to vary across companies we add heterogeneity to prices, which is based on observable
characteristics. Table 12 presents the results for the share prediction.

Table 12: ENERGY PRICE ELASTICITIES

Variables (BKW) (EWB) (ET)
Income 0.00 0.00 -0.00

(0.00) (0.00) (0.00)
Wealth -0.00 -0.00 -0.00

(0.00) (0.00) (0.00)
Home Owner -0.00 0.04 -0.01

(0.00) (0.00) (0.00)
Number of Rooms 0.01 0.01 0.01

(0.00) (0.01) (0.01)
Number of Rooms Sq -0.00 -0.00 0.00

(0.00) (0.00) (0.00)
Apartment Surface 0.01 0.01 -0.02

(0.00) (0.01) (0.01)
Constant 0.20 0.28 0.32

(0.01) (0.03) (0.02)
Household Size FE Yes Yes Yes
Household Age FE Yes Yes Yes
Heating System FE Yes Yes Yes
Water System FE Yes Yes Yes
Apartment No. FE Yes Yes Yes
Construction Period FE Yes Yes Yes
Non-Positive Income/Wealth FE Yes Yes Yes
Year FE Yes Yes Yes
N Obs 263,688 49,604 54,295
R2 0.178 0.245 0.375

Note: Standard errors in parentheses. Standard errors are clustered at the household level to account for serial correlation. Income
and Wealth variables are in logs. Column (1) shows the results for BKW, Column (2) for EWB, and Column (3) for ET.

Appendix A7: Capacity Fixed Fee

We provide results for an additional counterfactual where the regulator decouples grid financing from en-
ergy consumption, only relying on fixed fees to cover grid costs. To reduce the regressive impact of the
decoupling, we simulate fixed fees that are a function of a household’s grid capacity. We solve the regu-
lator’s optimization problem for an exogenous increase in solar panels and without the solar energy target,
that is choosing the optimal mix of volumetric charge and fee. When decoupling grid financing from energy

51Daytime consumption of BKW is from 7am to 9pm. Daytime consumption of EWB and ET is from 6am to 10pm.
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consumption, we allow the fixed fee to be household specific, introducing a capacity fixed fee defined as
follows:

fi = σ0 + σ1kWi (26)

where kWi is the capacity of household i measured in kilowatt (kW), σ0 is a uniform contribution and σ1
a contribution per kilowatt. Capacity is defined as the maximum amount of energy a household is able to
consume through the grid during a fixed time span (usually 15 minutes). Loosely speaking, capacity relates
to the “size” or “strength” of the grid connection.52 In order to isolate the distributional effects of fi, in this
counterfactual we don’t simulate any adoption of solar panels, eliminate volumetric charges PG, and assume
that the regulator only decides on the share of total grid costs recovered with the capacity fee (sharecf ).
Thus, total grid costs GC0 are spread among households as follows:

fi =
(1− sharecf )GC0

N︸ ︷︷ ︸
uniform fee

+
sharecf ∗ kWi ∗GC0∑

i kWi︸ ︷︷ ︸
capacity fee

(27)

Table 13 reports shares of total grid costs for each income decile under the current scenario (variable price
and fixed fee), as well as under two counterfactual scenarios: a capacity fixed fee and a combination of uni-
form and capacity fixed fee. We also report the percentage change in grid expenditure ∆GEi and consumer
surplus ∆CSi across the income distribution. According to the current tariff scheme lower income deciles
bear a smaller share of total grid costs. This implies that switching to a uniform fixed fee (sharecf = 0)
would have adverse effects on poorer households. In the columns labelled “Capacity Fee” we show that
a capacity fixed fee (sharecf = 1) also leads to higher expenditures for households up to the 5th income
decile. However, the additional burden for low income households under a capacity fixed fee is lower than
with a uniform fixed fee. Last, we consider a combination of uniform and capacity fees (0 < sharecf < 1),
as reported in the columns "Uniform & Capacity Fee". Here we calculate the optimal share of uniform vs
capacity minimising the objective function of the regulator equivalent to Equation 19. We find that it is
optimal for the regulator to finance sharecf = 25% of the grid cost with a capacity fee and the rest with a
uniform fee, which leads to an increase in expenditure for households up to the 8th income decile, and a re-
duction for richer ones. Overall, lower income deciles bear a larger share of total grid cost when decoupling
grid financing from energy consumption. However, depending on the PV adoption trend they still might be
better off compared to an increase in volumetric charges.

52One efficiency argument to rely on capacity fixed fees is that buildings with greater capacity usually require higher local grid
investments. From a redistribution perspective, they host households with a larger number of appliances (and a higher energy
consumption).
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Table 13: GRID EXPENDITURE AND CONSUMER SURPLUS % CHANGE (BASE YEAR 2013)

Current Capacity Fee Uniform & Capacity Fee
Income Deciles Share Share ∆GEi Share ∆GEi

1st decile 8.4 9.1 6 9.8 29.4
2nd decile 8.2 9.3 9.5 9.9 31.3
3rd decile 8.7 9.3 4.1 9.9 25.7
4th decile 9 9.6 2.5 9.9 22.6
5th decile 9.6 9.7 -.4 9.9 16.8
6th decile 10 10 -2.1 10 12.1
7th decile 10.4 10.2 -4 10 8
8th decile 11.1 10.5 -6.2 10.1 2.1
9th decile 11.7 10.5 -10.1 10.1 -3.1
10th decile 13 11.9 -8.4 10.4 -11.7

Note: All values in the table are in percent. The table illustrates the redistributive effect of switching to grid financing through
fixed fees. The "Capacity Fee" columns show the effect of a capacity based fixed fee, while the "Uniform & Capacity Fee" columns
include two different kinds of fixed fees, a uniform and capacity based fixed fee. Under the scenario with two fixed fees it is optimal
to cover roughly 75% of total grid costs through a uniform fixed fee.

Appendix A8: Regulator’s Optimization

The functional form of the PV adoption probability poses a challenge for the regulator’s optimization. For
each change in tariffs we need to recalculate the household’s position in the state space, which substantially
increases computational time. To circumvent this challenge, we solve the regulator’s optimization problem
sequentially. Based on preliminary simulations, we assume that the fixed fee does not impact the solar
energy target constraint. This assumption allows us to simplify the problem and solve it in three steps. First,
we let the regulator define a bounded set of combinations of variable tariffs and subsidies (PG, s) to achieve
the solar energy target. Second, for each of these combinations the regulator finds the unique fixed fee f
necessary to satisfy the network financing constraint. Third, for each combination of variable tariff, subsidy
and fixed fee (PG, s, f ) we calculate the regulator’s objective function. We define as optimal instruments
the combination of PG, s, f that minimizes equity distortions relative to the status quo. Here are the details
of each step:

1. Solar Energy Target: Knowing that the current variable tariff is around 0.1 CHF/kWh, we consider as
feasible range of variable tariffs the one between 0 and 1 CHF/kWh, discretized by 0.001 intervals.
For each value of the variable tariff we calculate the lowest subsidy needed to reach the solar energy
target, where the subsidy ranges between 0% and 100% of installation costs, with 0.001% intervals.
Specifically, we increase the subsidy until the share of solar energy reaches the desired threshold.
This gives us 1001 combinations of variable tariff and subsidy (PG, s). For high variable tariffs the
generated revenue might exceed total grid costs. In that case we use the excess revenue to further
increase the subsidy percentage, as is implied by the inequality of the solar energy target and the
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equality of the network financing constraint. In this first step we hold the fixed fee constant, although
it is a choice variable of the regulator and enters the solar energy target through the PV adoption
probability and energy consumption.

2. Network Financing: In this step we impose the network financing constraint. For each PG, s com-
bination we calculate the total sum of fixed fees required by the energy provider to break even. The
allocation of total fixed fees to individual households depends on the design of the fixed fee. We allow
the regulator to choose the share of the fixed fee that is capacity-based vs uniform-based, as shown in
equation (27). We discretize this share using 20% intervals, ranging from 0% to 100%. Hence, for
each combination of variable tariff and subsidy there are 5 different combinations of capacity and uni-
form fixed fees. Ultimately, this step results in 5005 different feasible combinations of instruments,
each including a variable tariff, a subsidy percentage, and a sum of capacity and uniform fixed fees.

3. Equity Distortion: Last, we calculate the regulator’s objective function for all combinations of instru-
ments defined in the second step, resulting in 5005 values for the objective function. We select the
instruments with the lowest value of the objective function as the regulator’s optimal tariffs, as those
are the ones that minimize equity distortions relative to the status quo.
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