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Abstract

Procurement auctions have been successfully applied in a variety of settings. We

study optimal procurement mechanisms for a buyer with a fixed budget that wishes

to purchase units of a homogeneous good, up to a maximum demand amount, from

symmetric suppliers with privately known constant marginal costs. We show that the

nature of the optimal mechanism depends crucially on the normalized budget (the ra-

tio between the buyer’s budget and its demand) relative to the support of suppliers’

costs. In particular, there is an intermediate range of the normalized budget for which

there is a gap between formulations with interim incentive constraints and those with

ex post constraints. We characterize the optimal mechanism subject to interim incen-

tive compatibility and individually rationality and, for the case of two suppliers, we

characterize the optimal ex post mechanism and provide a dynamic implementation.
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1 Introduction

Procurement accounts for a substantial amount of economic activity, and procurement of-

ficials regularly face the problem of procuring multiple units of a good subject to a budget

constraint. Examples include smaller-scale applications, such as a new business furnishing

its offices or an art museum expanding its collection, and larger-scale applications, such as

governmental purchases of pharmaceuticals for distribution to health care providers or of

broadband coverage for underserved areas.1

Surprisingly, the optimal procurement mechanism for a budget-constrained buyer has re-

mained an open question in the economics literature. Authors such as Che and Gale (1996,

1998) have analyzed budget constraints on the bidders’ side, but not on the side of the mech-

anism designer. In this paper, we identify the optimal mechanism for a budget-constrained

buyer in an independent private values framework satisfying regularity conditions. As we

show, the optimal budget-constrained mechanism differs from its non-budget-constrained

counterpart in that its implementation requires payments to suppliers other than the lowest-

cost supplier for some type realizations. Further, and also in contrast to the case without

budget constraints, the optimal budget-constrained mechanism subject to interim incentive

compatibility and individual rationality constraints does not satisfy the ex post versions of

those constraints.

In a procurement setting, it is natural to think that each seller’s cost of providing the good

is its own private information. Thus, the buyer has an incentive to employ a mechanism that

elicits information from the sellers in a way that maximizes its expected surplus subject to

its budget constraint. The theory of optimal procurement is well understood when the buyer

is not financially constrained, but challenges remain when dealing with a budget-constrained

buyer. Indeed, in such cases, how the budget constraint limits the gains from trade depends

on how the mechanism elicits information from agents. Moreover, as noted by Bergemann

and Morris (2005), budget constraints yield a payoff environment that is “nonseparable” in

1Since 2007, the state of São Paulo, Brazil, has routinely purchased a vast array of goods and services
using procurements that are subject to budget constraints. The Brazilian Constitution states that all public
works, services, purchases and transfers of ownership must be contracted through a process of public ten-
der. The volume of federal government purchases rose from R$40.6 billion in 2007 to R$72.6 billion in 2012
(oecd.org). In September 2012, the U.S. Federal Communications Service (FCC) held the Mobility Fund
Phase I reverse auction to award one-time support to carriers that committed to provide 3G or better mobile
voice and broadband services in areas where such services were unavailable, without exceeding the budget of
$300 million. Bids were ranked from lowest to highest in terms of dollars per road-mile covered and bidders
were paid until the budget was exhausted. The use of reverse auctions for this purpose has been proposed
in the past, notably by Milgrom (1996) and Weller (1999). As discussed in Wallsten (2009), a number of
countries have used reverse auctions to allocate universal service support, to varying degrees of success. For
details of the FCC’s auction, see “Report and Order and Further Notice of Proposed Rulemaking In the
Matter of Connect America Fund, A National Broadband Plan for Our Future, et al.,” FCC 11-161, Re-
leased November 18, 2011, available at https://apps.fcc.gov/edocs public/attachmatch/FCC-11-161A1.pdf,
especially Section XVII.I–K.
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their language, and so the interim implementation no longer implies ex post implementation.

As we show, in a setup with budget constraints, pooling can arise not because of ironing,

which addresses nonlocal incentive compatibility constraints, but rather to provide further

screening by restricting trade for some types and thereby allowing more trade with better

types. Further, pooling due to budget constraints yields dual sourcing. Although many

companies regard dual sourcing as important and would not agree to long-term contracts

with a single supplier out of concern for hold-up or delivery risk (Anton and Yao, 1992), in our

model dual sourcing arises for different reasons. Because the budget constraint potentially

restricts trade, dual sourcing allows for more effective screening because a supplier with a

better type has an incentive to be the only producer in order to obtain a larger payment,

instead of splitting the available budget with another supplier.

In this paper, we develop a model that reflects the procurement environment described

above. We consider a setup in which a buyer with a fixed budget B wishes to purchase

units of a homogeneous product up to a maximum demand amount D. Suppliers’ marginal

costs are their private information and are modeled as independent draws from a common

distribution. We show that the nature of the optimal mechanism depends crucially on the

“normalized budget,” b ≡ B/D, relative to the support of costs [cL, cH ]. Broadly speaking

there are three cases:

(i) large normalized budget: b ≥ cH

(ii) intermediate normalized budget: b ∈ (cL, cH)

(iii) small normalized budget: b ≤ cL

The large normalized budget case is well understood in the mechanism design literature

(Myerson, 1981). We use this known case to introduce notation and illustrate the techniques

and ideas. In the small normalized budget case, we show that the buyer’s problem can

also be solved using standard mechanism design techniques after we leverage the analogous

roles played by payments and allocations. In both cases, the optimal mechanism does not

change depending on whether we consider interim or ex post incentive constraints—there is

no revenue gap between the interim and ex post case for a large or small normalized budget.

However, in the intermediate range for the normalized budget, there is a revenue gap

between formulations with interim incentive constraints and ex post incentives constraints.

We characterize the mechanism that maximizes the buyer’s expected surplus, subject to

interim incentive compatibility and individually rationality, assuming that each buyer has

a constant marginal cost and that the type distribution satisfies regularity conditions. We

also characterize the optimal mechanism subject to ex post incentive compatibility and

individually rationality for the case of two suppliers. We summarize our results in Table 1,

which refers to the second-price auction (SPA), in which the buyer purchases its full demand
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from the lowest bidder at a unit price equal to the second-lowest bid, and the second-unit-

price auction (SUPA), in which the lowest bidder is paid the full budget and supplies as

many units as can be purchased at a unit price equal to the second-lowest bid. Indeed,

the SPA has a long history in auction theory and is widely used in practice in its dynamic

implementation of a clock auction, and the SUPA corresponds to the “dual Dutch auction”

described by Crawford and Kuo (2003).2 Other mechanisms mentioned in the table are

defined in the body of the paper.

Table 1: The table displays a brief description of the optimal mechanisms, where SPA is second-price auction
and SUPA is second-unit-price auction, for each combination of normalized budget b and incentive constraints
under the regularity conditions discussed in the body of the paper. The support of the distribution of costs
is [cL, cH ], and the thresholds bL and bH are defined in (17) and (20).

normalized budget b = B/D
Incentive small intermediate large
constraints b ≤ cL cL < b < bL bL ≤ b ≤ bH bH < b < cH cH ≤ b

interim SUPA SUPA Clipped SPA SPA
reduced-form reduced-form reduced-form

ex post SUPA S = 2, partial dual sourcing auction SPA
S ≥ 3, open question

An underlying motivation for this paper is the desire for mechanisms that are practical

and possibly optimal for a large class of cost distributions. It is arguably the case that

mechanisms that are ex post incentive compatible lead to easier and more practical imple-

mentations (e.g., SPA, SUPA). Additional motivation for ex post mechanisms is provided

by the literature on robust mechanism design, e.g., Bergemann and Morris (2005). A key

finding of our paper is that in a symmetric environment with two suppliers, the optimal ex

post incentive compatible, ex post individual rationality mechanism has a simple form that

can be implemented through a descending clock auction. The mechanism is straightforward

to communicate and implement for an arbitrary number of suppliers, although optimality

is no longer guaranteed for more than two suppliers. Roughly speaking, bidding starts at

the level of the budget and continues downward until all remaining active bidders can be

accommodated within the budget. The mechanism we identify has the appealing features

that it is robust in the sense that bidders have dominant strategies (the strategic problem of

each participant is just a sequence of in-out decisions, where conjectures about the behavior

of others do not matter), and it is simple in the sense of having an equilibrium that involves

truthful bidding, payments only to winners, and no random awards. This auction, as well as

an auction that we define that combines the second-price auction and the second-unit-price

2Implementations that lead to dual sourcing have also been considered in Alcalde and Dahm (2016).
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auction into a single mechanism, belong to a more general family of dynamic implementations

that we call sequential auctions with promises.

Our mechanism-design approach to the problem of budget-constrained procurement re-

lies on previous methodological contributions including: Mussa and Rosen (1978), Myerson

(1981), Rochet (1985), Matthews and Moore (1987), McAfee and McMillan (1988), Arm-

strong (1996), Rochet and Choné (1998), and Manelli and Vincent (2006, 2007). A result of

this literature is that many mechanism design problems can be formulated as a linear pro-

gramming problem, which a more recent literature has relied upon. See, e.g., Bikhchandani

et al. (2001), Belloni et al. (2010), Vohra (2011), Du (2017), and Carroll and Segal (2017).

There is a related literature on auctions with budget-constrained bidders, e.g., Pitchik and

Schotter (1989), Shleifer and Vishny (1992), Maskin (1992), Che and Gale (1996, 1998),

Benôıt and Krishna (2001), and Pitchik (2009); however, this literature typically focuses on

a comparison of standard auction formats and the optimal order in which to sell objects

rather than taking a general mechanism-design approach. For example, Che and Gale (1996,

1998) show that with budget-constrained bidders, revenue equivalence between various auc-

tion formats no longer holds. Similarly, for the case of a budget-constrained procurement,

Dastidar (2008) compares results for first and second-price procurement auctions. Using a

mechanism design approach, Pai and Vohra (2014) show that the optimal mechanism for

selling to budget-constrained buyers requires pooling both at the top and in the middle even

with monotone hazard rates. Che and Gale (2000) show that the optimal mechanism for

selling a divisible good to a single budget-constrained buyer generally involves nontrivial

price discrimination, with different types trading different quantities.

Our approach to establishing the optimality of certain mechanisms relies on studying the

linear programming problem associated with the budget-constrained procurement problem.

In the intermediate normalized budget case, it is not a priori clear which constraints are rel-

evant in determining the optimal mechanism (in contrast to the small and large normalized

budget cases). A key step is to find a suitable way to combine the constraints to facilitate

the optimality proof (that is, suitable Lagrange multipliers to produce an optimality cer-

tificate). Related duality approaches have been used by Du (2017) in the context of the

sale of a common-value good and by Carroll and Segal (2017) for an auction with possible

resale opportunities among bidders. Other papers that rely on related approaches include

Bergemann and Morris (2005) and Carrasco et al. (2015).

The paper proceeds as follows. In Section 2, we describe our setup. In Section 3 we pro-

vide results for the cases of large and small normalized budgets. In Section 4, we extend the

analysis to include the intermediate normalized budget case, where both demand and budget

constraints are binding with positive probability. We characterize the optimal reduced-form

mechanism satisfying interim incentive compatibility and interim individual rationality. Sec-

tion 5 considers the intermediate normalized budget case with ex post incentive constraints.
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We provide a mechanism, and its dynamic implementation, that is optimal for the case of

two suppliers. Section 6 contains additional discussion, including the single supplier case and

numerical examples illustrating the performance of various mechanisms calibrated based on

auctions used in the Brazilian exchange system. Section 7 concludes.

2 Setup

A buyer faces a set S = {1, ..., S} of suppliers, where S ≥ 2. Each supplier s ∈ S can

produce any nonnegative amount qs of a homogeneous good at a constant and privately

known unit cost cs. From the buyer’s perspective, the cost profile c = (c1, ..., cS) is a

vector of independent and identically distributed random variables drawn from the twice

continuously differentiable cumulative distribution function F with density function f that

is strictly positive on the support [cL, cH], where 0 < cL < cH .
3

If supplier s produces qs units of the good and is paid a nonnegative amount ms, its

profit is given by

ms − csqs.

The buyer cannot spend more than an exogenously given budget B and has a constant

unit willingness to pay v > 0 for the good, up to D units.4 Its surplus is given by

vmin{D,
∑

s∈S

qs} −
∑

s∈S

ms.

We focus on the a setup in which the buyer’s value v is sufficiently large that the buyer’s

value does not define a binding reserve. This allows us to focus on the effects of budget

constraints on the optimal mechanism without the additional complexity of binding reserves.

In what follows, we make precise the required lower bound on v.

The buyer can commit to any feasible trading mechanism and aims at maximizing its

expected surplus. By the revelation principle, any equilibrium of any feasible trading mech-

anism can be implemented by a direct revelation mechanism, which in this case comprises

for s ∈ S, qs : [cL, cH ]
S → R and ms : [cL, cH ]

S → R that satisfy individual rationality and

incentive compatibility.

Because the suppliers are ex ante identical, the search for optimal mechanisms can be

restricted without loss of generality to symmetric (anonymous) mechanisms.5 Thus, we

3The assumption that cL is strictly positive allows us to consider the small normalized budget case in
which the buyer’s budget constraint always binds.

4The amount D for which the buyer has positive willingness to pay can be normalized to 1 with no loss
of generality. However, we retain the variable to facilitate relating our model to data in which the buyer’s
demand varies.

5The justification for this claim, due to Maskin and Riley (1984), is as follows: If an asymmetric mecha-
nism (q,m) is optimal, due to the ex ante symmetry of the suppliers, the mechanism (q′,m′) obtained from
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search for a symmetric mechanism,6 which is determined by just two functions,

q : [cL, cH ]
S → R and m : [cL, cH ]

S → R,

which are invariant to permutations of the last S − 1 arguments.

To be feasible, a mechanism (q,m) must satisfy the nonnegativity constraints,

∀(cs, c−s) ∈ [cL, cH ]
S, q(cs, c−s) ≥ 0 and m(cs, c−s) ≥ 0, (1)

the budget constraints,

∀(cs, c−s) ∈ [cL, cH ]
S,

∑

s∈S

m(cs, c−s) ≤ B, (2)

and the demand constraints,

∀(cs, c−s) ∈ [cL, cH ]
S,

∑

s∈S

q(cs, c−s) ≤ D. (3)

In addition, to be outcome equivalent to an equilibrium of a trading game, (q,m) must satisfy

incentive compatibility and individual rationality. We first consider the set of all Bayesian

equilibria of all trading games and thus impose incentive compatibility and individual ratio-

nality at the interim level:

∀cs, c
′
s ∈ [cL, cH ], M(cs)− csQ(cs) ≥ M(c′s)− csQ(c

′
s) (4)

and

∀cs ∈ [cL, cH ], M(cs)− csQ(cs) ≥ 0, (5)

where

Q(cs) ≡

∫

[cL,cH ]S−1

q(cs, c−s) dF−s(c−s) and M(cs) ≡

∫

[cL,cH ]S−1

m(cs, c−s) dF−s(c−s). (6)

Following Border (1991), we refer to the mechanism (Q,M) as the reduced-form mechanism

associated with (q,m). Given a reduced-form mechanism (Q,M) : [cL, cH ] → R
2 and a

(q,m) by reversing the roles of the buyers must also be optimal. But then, because the objective function is
linear, the symmetric mechanism (12q+ 1

2q
′, 12m+ 1

2m
′) is also optimal. The argument generalizes to more

than two suppliers.
6A mechanism (q,m) is symmetric if the suppliers’ identities 1, ..., S do not matter, i.e., for every per-

mutation π of S we have for all c ∈ [cL, cH ]S and s ∈ S,

qs(cπ(1), ..., cπ(S)) = qπ(s)(c) and ms(cπ(1), ..., cπ(S)) = mπ(s)(c).
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symmetric mechanism (q,m) : [cL, cH ]
S → R

2, we say that (q,m) implements (Q,M) if

(q,m) is feasible (i.e., satisfies (1)–(3)) and satisfies (6).

We also consider the effects of restricting attention to mechanisms with equilibria in

dominant strategies, and thus in places we impose both incentive compatibility and individual

rationality ex post:

∀cs, c
′
s ∈ [cL, cH ], ∀c−s ∈ [cL, cH ]

S−1, m(cs, c−s)−csq(cs, c−s) ≥ m(c′s, c−s)−csq(c
′
s, c−s) (7)

and

∀cs ∈ [cL, cH ], ∀c−s ∈ [cL, cH ]
S−1, m(cs, c−s)− csq(cs, c−s) ≥ 0. (8)

The buyer’s problem is to select a mechanism (q,m) that maximizes the buyer’s expected

surplus, ∫

[cL,cH ]S

∑

s∈S

(vq(cs, c−s)−ms(cs, c−s))
∏

s∈S

dF (cs), (9)

subject to (1), (2), (3), and either the interim incentive constraints (4) and (5), or the ex

post incentive constraints (7) and (8).

In what follows, we show that the optimal mechanism depends in a fundamental way

on the normalized budget b = B/D. Indeed, this quantity provides information regarding

whether the budget constraint or the demand constraint is more relevant. In particular,

there are three main regimes that lead to different optimal mechanisms: small normalized

budget (b ≤ cL), intermediate normalized budget (cL < b < cH), and large normalized

budget (b ≥ cH). In the next sections, we address each of these regimes in detail and their

interplay with the type of incentive constraints (interim or ex post).

3 Large and small normalized budgets

In this section, we consider the two (extreme) cases of a large normalized budget and a small

normalized budget. In both cases, the analysis is closely related to the literature. Indeed,

the large normalized budget case is well understood in the mechanism design literature. In

what follows, we discuss it briefly for completeness and to introduce notation for later use.

We then study the small normalized budget case and show how the buyer’s problem in that

case can also be solved using standard mechanism design techniques.

3.1 Large normalized budget

Consider the case of a large normalized budget, b ≥ cH . In this case, the buyer can purchase

its entire demand D with its budget B, even when all suppliers have cost cH . Thus, the

budget constraints, (2), can be ignored and the buyer’s problem reduces to a well-known
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application of optimal auction theory (see, e.g., Myerson, 1981). We define the virtual

marginal value

w(x) ≡ v − x− F (x)/f(x), (10)

which is v minus the virtual cost for a supplier with type x, x + F (x)/f(x). Standard

mechanism design arguments (see, e.g., Myerson, 1981, or Krishna, 2002, Chapter 5) imply

that the optimization problem amounts to:

max
q

∫

[cL,cH ]S

∑

s∈S

w(cs)q(cs, c−s)
∏

s∈S

dF (cs),

subject to the nonnegativity and demand constraints, (1) and (3), and individual rationality,

(5). It follows that if w is nonincreasing and nonnegative on [cL, cH ], then it is optimal for

the buyer to purchase the entire amount D from the lowest-cost supplier at a unit price

equal to the second-lowest cost. This mechanism is a second-price auction (SPA) with no

reserve,7 which can be formally defined as

qSPA(cs, c−s) ≡ D · 1[cs=c(1)] and mSPA(cs, c−s) ≡ c(2)D · 1[cs=c(1)], (11)

where c(2) denotes the second-lowest cost among c1, ..., cS. In the large normalized budget

case, the SPA satisfies the budget constraint because the buyer’s total payment is no more

than B, even when c(2) = cH .

For future reference, we next define the regularity assumption required to guarantee that

w is nonincreasing, which is the same as that of Myerson (1981).8 We refer to this standard

Myersonian regularity condition as “regularity-0” to distinguish it from two other variants,

which we introduce shortly.

Definition 1 Regularity-0 holds if for all x ∈ [cL, cH ] ,
d
dx

[x+ F (x)/f(x)] ≥ 0.

A sufficient condition for regularity-0 is that the reversed hazard rate f(x)/F (x) be

nonincreasing, which is satisfied for a range of distributions (Burkschat and Torrado, 2014).

Given the definition of w in (10), regularity-0 implies that w′(c) ≤ 0. Thus, under regularity-

0, we need only require that v be sufficiently large that w(cH) ≥ 0 to ensure that w is

nonnegative on [cL, cH ]. For completeness and easy reference, we record the optimality

result for the large normalized budget case as Theorem 1.

Theorem 1 (Optimal mechanism for a large normalized budget) In the case with b ≥ cH ,

if regularity-0 holds and v ≥ cH + 1/f(cH), then the mechanism (qSPA, mSPA) maximizes

the buyer’s expected surplus (9), subject to (1)–(5). Moreover, because the mechanism

7In this case, the entire amount D is treated as a single object.
8Myerson (1981) requires strict monotonicity, but because we do not insist on the uniqueness of our

mechanisms, weak monotonicity is sufficient for our results.
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(qSPA, mSPA) satisfies the ex post incentive constraints, it also maximizes the buyer’s ex-

pected surplus (9), subject to (1)–(3) and (7)–(8).

Theorem 1 also states the well-known result that in the SPA, truth telling is in dominant

strategies, and so the SPA also solves the buyer’s problem when incentive compatibility and

individual rationality are imposed ex post.

3.2 Small normalized budget

We now consider the case in which the normalized budget is small, b ≤ cL. In this setting,

the budget is so small that the buyer can never purchase its full demand D, even when all

suppliers have the lowest cost. Therefore, the demand constraints, (3), can be ignored, and

the buyer’s problem can again be solved using familiar mechanism design techniques, but

with a slight twist. Specifically, we can use the envelope theorem to eliminate q (instead of

m, as is normally done) from the problem. This allows us to rewrite the buyer’s objective as

max
m

∫

[cL,cH ]S

(
∑

s∈S

ψ(cs)m(cs, c−s)

)
∏

s∈S

dF (cs), (12)

where ψ is the virtual marginal value of payments,9

ψ(x) ≡
v

x2
(x− F (x)/f(x))− 1, (13)

subject to the nonnegativity constraints on the payments, (1), the budget constraint, (2), and

individual rationality, (5). Analogously to the large normalized budget case, if the function

ψ is nondecreasing and nonnegative, then it is optimal for the buyer to pay the entire budget

to the lowest-cost supplier and to purchase quantity B/c(2) from that supplier. We refer to

this mechanism as the second-unit-price auction (SUPA):

qSUPA(cs, c−s) ≡
B

c(2)
· 1[cs=c(1)] and mSUPA(cs, c−s) ≡ B · 1[cs=c(1)]. (14)

In the small normalized budget case, the SUPA satisfies the demand constraints because the

quantity purchased is less than D, even when c(2) = cL. Figure 1 contrasts the SUPA for

the small normalized budget case with the SPA for the large normalized budget case.

We formally define the required regularity assumption, which we refer to as regularity-1.

Similar to regularity-0 defined above, regularity-1 depends on the reverse hazard rate.

Definition 2 Regularity-1 holds if for all x ∈ [cL, cH ] ,
d
dx

[
x−F (x)/f(x)

x2

]

≤ 0.

9In this formulation we eliminate q so that the coefficients ψ carry the value of the additional allocation
induced by a payment m.
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(a) SPA for large normalized budget

cL cH
c1

cH

c2

qSPA(c1,c2)=D

mSPA(c1,c2)=Dc2

qSPA(c1,c2)=0

mSPA(c1,c2)=0

(b) SUPA for small normalized budget

cL cH
c1

cH

c2

qSUPA(c1,c2)=B/c2

mSUPA(c1,c2)=B

qSUPA(c1,c2)=0

mSUPA(c1,c2)=0

Figure 1: Illustration of the SPA and SUPA mechanisms when there are two suppliers with types c1 and c2.
Panel (a): SPA mechanism with a large normalized budget b ≥ cH . Panel (b): SUPA mechanism with a
small normalized budget b ≤ cL.

As with regularity-0, regularity-1 holds for a broad range of distributions. Regularity-1

implies that ψ′(x) ≤ 0, so under regularity-1, having v sufficiently large that ψ(cH) ≥ 0 is

sufficient to ensure that ψ is nonnegative on [cL, cH ]. We record the optimality of the SUPA

in the next theorem.

Theorem 2 (Optimal mechanism for a small normalized budget) In the case with b ≤ cL,

if regularity-1 holds and v ≥ cH + 1
f(cH )cH−1

, then the mechanism (qSUPA, mSUPA) maxi-

mizes the buyer’s expected surplus (9), subject to (1)–(5). Moreover, because the mechanism

(qSUPA, mSUPA) satisfies the ex post incentive constraints, it also maximizes the buyer’s ex-

pected surplus (9), subject to (1)–(3) and (7)–(8).

For the small normalized budget case, Theorem 2 shows that the SUPA solves the buyer’s

problem under interim incentive compatibility and individual rationality. Moreover, as for

the SPA in the large normalized budget case, for the SUPA in the small normalized budget

case, truth telling is in dominant strategies. Thus, in the small normalized budget case, the

SUPA also solves the buyer’s problem when incentive compatibility and individual rationality

are imposed ex post.

3.3 Implementation via the SUPA-SPA mechanism

In light of the optimality of the SUPA and the SPA for the small and large normalized

budget cases, it is natural to consider a direct mechanism that combines both of them, so

that we have a mechanism that is feasible for all values of the normalized budget and is

optimal for small and large normalized budgets. We call it the SUPA-SPA. In its dynamic

implementation, loosely speaking, one starts a descending clock auction based on the SUPA,

which delivers a descending marginal price. If two of more suppliers remain in the auction
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when the price reaches b = B/D, one starts a SPA with those bidders. The mechanism stops

when a single supplier remains. The allocation and payment functions are defined as

(qSUPA-SPA(cs, c−s), m
SUPA-SPA(cs, c−s)) ≡







(B/c(2), B), if cs = c(1) and b < c(2)

(D,Dc(2)), if cs = c(1) and c(2) ≤ b

0, otherwise.

(15)

Figure 2 illustrates the SUPA-SPA for the case of two suppliers. In the large normalized

budget case it reduces to the SPA (which is optimal by Theorem 1), and in the small

normalized budget case it reduces to the SUPA (which is optimal by Theorem 2).

This mechanism has a number of appealing features. First, its direct implementation is

simple and handles an arbitrary number of suppliers. Second, it does not require knowledge

of the support [cL, cH ]. Third, only the supplier with the lowest cost produces a positive

quantity.

(a) SUPA-SPA

c2

c1
cL

cH

cL cH

b

b

m1(c1, c2) = B

q1(c1, c2) = B/c2

m1(c1, c2) = c2D

q1(c1, c2) = D
m1(c1, c2) = 0

q1(c1, c2) = 0

(b) SUPA-SPA allocation for b ∈ (cL, cH)

Figure 2: SUPA-SPA with two suppliers. In the large normalized budget case, b ≥ cH , and so the mechanism
is the SPA. In the small normalized budget case, b ≤ cL, and so the mechanism is the SUPA. Panel (b)
shows the allocation for the intermediate normalized budget case, b ∈ (cL, cH).

Another interesting feature of the SUPA-SPA mechanism is that it is feasible for any

normalized budget, including the intermediate case. Because the SUPA-SPA mechanism is

optimal for both the small and large normalized budget ranges, it is natural to conjecture

that it would also be optimal for the intermediate normalized budget range. However, it is

not, as established by the following result.
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Proposition 1 (Nonoptimality of the SUPA-SPA for an intermediate normalized budget)

Assume that regularity-1 holds and v ≥ cH + 1
f(cH )cH−1

. For any b ∈ (cL, cH), the SUPA-SPA

does not maximize the buyer’s expected surplus subject to subject to (1)–(3) and (7)–(8).

Proof. See the Appendix.

The negative result in Proposition 1 holds quite generally, including for a uniform type

distribution. The source of the nonoptimality is that the mechanism does not elicit infor-

mation (i.e., does not screen agents) in a way that mitigates the trade restriction imposed

by the budget constraints. Intuitively, if both suppliers are known to have costs at most

b+ ε (which is elicited by the decreasing clock of the SUPA), it is likely that at least one of

the supplier’s types is less than b, so that the buyer can procure D units. It follows that to

wait for the clock to get to b is not optimal. As we will see, a more aggressive strategy is

optimal. Despite its nonoptimality, the SUPA-SPA mechanism is still of interest because of

its simplicity and properties that are attractive for implementation.

Because Proposition 1 establishes the nonoptimality of the SUPA-SPA among ex post

incentive compatible mechanisms, it immediately implies its nonoptimality among interim

incentive compatible mechanisms. As we will see, the intermediate normalized budget case

differs substantially from the large and small normalized budget cases in that the optimal

interim mechanism is not ex post implementable. Because the interim and ex post formula-

tions require different techniques, we address the interim formulation in Section 4 and the

ex post formulation in Section 5.

4 Intermediate normalized budget with interim incen-

tive constraints

In this section, we consider the intermediate normalized budget case, b ∈ (cL, cH), when

incentive compatibility and individual rationality are imposed at the interim level: that is,

the buyer maximizes (9) subject to nonnegativity, budget, and demand constraints, (1)–(3),

and subject to interim incentive compatibility and individual rationality, (4)–(5). In this

case, the available budget is neither so large relative to demand that the budget constraint

never binds nor so small relative to the demand that the budget constraint always binds.

For a given mechanism, we can have the budget and/or the demand constraints binding for

different type realizations.

The characterization of the optimal mechanism in the intermediate normalized budget

case poses additional challenges relative to the small and large normalized budget cases. For

the case of an intermediate normalized budget, the buyer’s problem cannot be solved with

the classic Myersonian approach, which relies on the convenient fact that, after using the

12



envelope theorem to eliminate all payment variables (or all quantity variables), the residual

problem can be solved pointwise. The special structure that arises when one can eliminate

either all of the payment variables or all of the quantity variables is critical for allowing

the problem to be solved pointwise. In the intermediate case, when budget constraints

bind for some types and demand constraints for others, the structure required for pointwise

optimization is not present and additional tools are needed.

Our analysis proceeds in two steps. First, we invoke a result by Border (1991) that has

been used to express demand constraints in terms of the reduced-form mechanism. However,

in our setting we apply Border’s representation to both the budget constraints and the de-

mand constraints to write them in terms of the reduced-form mechanism (Q,M). Second, we

provide a “dual” variable for each constraint in order to construct a certificate of optimality

for a given mechanism. This allows us to argue that the conjectured solution defined below

maximizes the buyer’s expected surplus, subject to a single “aggregate constraint” that is

satisfied by all feasible points, and thus that it also solves the buyer’s problem.

4.1 Reduced-form formulation

Similarly to Border (1991), we consider a formulation of the problem based on the reduced-

form mechanism (Q,M). We focus on the following relaxed optimization problem, where

Pk(x) ≡ 1 − (1 − F (x))k is the cumulative distribution function for the minimum of k

independent draws from the distribution F :

max
Q,M

S

∫ cH

cL

(vQ(t)−M(t)) dF (t)

s.t. ∀x, x′ ∈ [cL, cH ] : ∫ x

cL

Q(t)dF (t) ≤ 1
S
D PS(x) (Dx)

∫ x

cL

M(t)dF (t) ≤ 1
S
B PS(x) (Bx)

−M(x) + xQ(x) +M(x′)− xQ(x′) ≤ 0 (IICx,x′)

−M(cH) + cH Q(cH) ≤ 0 (IIRcH ).

(16)

As shown in (16), the objective is to maximize the buyer’s expected surplus, and the con-

straints are demand constraints Dx, budget constraints Bx, local incentive compatibility

constraints IICx,x′, and individual rationality for the worst type of agent IIRcH .

Border (1991, Proposition 3.2) shows that the demand constraints in (3) imply the de-

mand constraints in (16): The left side of Dx is the expected quantity purchased from a

13



supplier with cost less than x, and the right side of Dx is per-capita demand D/S times the

probability that the lowest-cost supplier has cost below x.10 Similarly, the budget constraints

in (2) imply the budget constraints in (16). As in Border (1991), individual rationality is

only imposed for the worst type and only the local incentive compatibility constraints are im-

posed. The monotonicity constraints (i.e., the nonlocal incentive compatibility constraints)

are ignored, and all nonnegativity constraints on Q are also ignored, although, of course, we

confirm that our solution satisfies all constraints.

4.2 Reduced-forms of the SPA and SUPA are optimal in the upper

and lower ends of the intermediate range

To introduce the techniques that we use to solve the buyer’s problem for the intermediate

normalized budget case and to connect with the results for the large and small normalized

budget cases, we begin by showing that the reduced forms of the SPA and SUPA mecha-

nisms continue to be optimal in regions at the upper and lower ends, respectively, of the

intermediate normalized budget range.

The SPA in its ex post implementation cannot be used in the intermediate normalized

budget case because, for some type realizations, the budget constraint would be violated.

Specifically, if the second-lowest cost is greater than b, then a mechanism that pays D times

the second-lowest cost violates the budget constraint. However, the reduced-form of the SPA

is still feasible in the intermediate normalized budget case if b is sufficiently large.11

The reduced-form of the SPA has allocation and payment rules defined as, for each

x ∈ [cL, cH ],

QSPA(x) = D(1− PS−1(x)) and MSPA(x) =

∫ cH

x

Dt dPS−1(t),

which satisfies Bx for all x ∈ [cL, cH ] when b ≥ bH , where:
12

bH ≡ S

∫ cH

cL

tF (t) dPS−1(t) ∈ (cL, cH). (17)

This means that when b ∈ [bH , cH), the SPA in its ex post implementation is not feasible, but

10More formally, Border (1991) shows that Q : [cL, cH ] → [0, D] is implementable (meaning there exists
q that implements it) if and only if ∀a ∈ [0, D] , S

∫

Ea

Q (z) dF (z) ≤ (1 − (
∫

EC
a

dF (z))S)D, where Ea =

{x | Q (x) ≥ a} and EC
a is the complement of Ea. In our case, because Q must be nonincreasing by incentive

compatibility, the sets Ea are intervals of the form [cL, a] , and thus the inquality above becomes ∀a ∈ [0, D] ,

S
∫ a

cL
Q (z)dF (z) ≤ D(1− (1− F (x))

S
) = DPS(x).

11Similar remarks apply to the SUPA mechanism but its reduced form is still feasible in the intermediate
budget case if b is sufficiently small.

12To see that bH ∈ (cL, cH), note that bH = E [X ] , where X ∼ G, where G is the distribution of the
second-lowest of S independent draws from F , with associated density SF (x)dPS−1(x) for x ∈ [cL, cH ].
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its reduced from is feasible.13 Thus, for b ≥ bH , analogous to the large normalized budget

case, we can focus on the relaxed problem of

max
Q

∫ cH

cL

w(t)Q(t)dF (t),

subject to the demand constraints that for all x ∈ [cL, cH ],

∫ x

cL

Q(t)dF (t) ≤
1

S
D PS(x). (18)

Under the assumptions of Theorem 1, w(cH) ≥ 0 and −w′(x) ≥ 0, which means that any Q

that satisfies (18) also satisfies

w(cH)

∫ cH

cL

Q(t)dF (t) ≤ w(cH)
1

S
D

and ∫ cH

cL

(−w′(x))

∫ x

cL

Q(t)dF (t)dx ≤

∫ cH

cL

(−w′(x))
1

S
DPS(x)dx.

Summing these inequalities, we get the following aggregate constraint:

w(cH)

∫ cH

cL

Q(t)dF (t) +

∫ cH

cL

(−w′(x))

∫ x

cL

Q(t)dF (t)dx ≤
w(cH)D

S
+

∫ cH

cL

−w′(x)DPS(x)

S
dx,

which we can rearrange using integration by parts to get

∫ cH

cL

w(x)Q(x)dF (x) ≤

∫ cH

cL

w(x)
D

S
dPS(x). (19)

Because the left side of (19) is the buyer’s objective, the right side of (19) provides an

upper bound for the buyer’s objective for all Q in a superset of the feasible set. Because

QSPA(x) = D(1−PS−1(x)) is feasible in the original problem and satisfies (19) with equality,

it must be optimal.

This illustrates the method of proof that we use in the remainder of this section. The

coefficients w(cH) and {−w′(x)}x∈[cL,cH ] are Lagrange multipliers that yield a dual certificate

of optimality.

Although we omit the details, an analogous approach can be used in the intermediate

normalized budget case when b is sufficiently small. The SUPA in its ex post implementation

is no longer feasible, but the reduced-form of the SUPA is feasible. Under the assumptions of

Theorem 2, the reduced-form of the SUPA, which has allocation and payment rules defined

13Proposition 2(c) below shows that the reduced form of the SPA is feasible when b ≥ bH .
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as, for each x ∈ [cL, cH ],

QSUPA(x) =

∫ cH

x

B

t
dPS−1(t) and MSUPA(x) = B(1− PS−1(x)),

is optimal when b ≤ bL, where:
14

bL ≡

(∫ cH

cL

1

t
dPS−1(t)

)−1

∈ (cL, bH). (21)

The following theorem summarizes the discussion above.

Theorem 3 (Optimal mechanism for low and high normalized budget within the interme-

diate range with interim incentive constraints) If regularity-0 holds, v ≥ cH + 1/f(cH), and

b ≥ bH , then the reduced-form mechanism (QSPA,MSPA) maximizes the buyer’s expected sur-

plus (9), subject to (1)–(5). Moreover, if regularity-1 holds, v ≥ cH + 1/(cHf(cH)− 1), and

b ≤ bL, then the reduced-form mechanism (QSUPA,MSUPA) maximizes the buyer’s expected

surplus (9), subject to (1)–(5).

We postpone discussing the implementation of the reduced-form SPA for b ∈ [bH , cH)

and of the reduced-form SUPA for b ∈ (cL, bL] because the reduced-form mechanism that we

define below for b ∈ (bL, bH) also applies to the low and high ends of the intermediate range

and so encompasses the reduced-forms of the SPA and SUPA.

We now apply this approach to the general case, including budget levels b ∈ (bL, bH),

in which case neither the reduced-form of the SPA nor the reduced-form of the SUPA is

optimal.

4.3 Clipped reduced-form mechanism is optimal for the center of

the intermediate range

Next we turn to the middle range (bL, bH) of the intermediate normalized budget range. To

study this case, we first introduce a family of reduced-form mechanisms (parameterized by

b ∈ (bL, bH)) for which we establish optimality. These mechanisms interpolate the reduced

forms of the SPA and SUPA in an incentive compatible way by suitably clipping the reduced-

form functions of the SPA and SUPA mechanisms.

14To see that bL ∈ (cL, cH), note that bL = E [1/X ]−1 , where X ∼ PS−1. To see that bL < bH , recall
G as defined in footnote 12 and note that G(t) < PS−1(t) for t ∈ (cL, cH), so G first-order stochastically
dominates PS−1. It then follows using Jensen’s inequality that

bL = EX∼PS−1
[1/X ]−1 ≤ EX∼PS−1

[X ] ≤ EX∼G [X ] = bH . (20)
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Define the clipped reduced-form (CRF) mechanism as:15

QCRF (x; cb) ≡







D(1− PS−1(x)), if x ∈ [cL, cb)

∫ cH

x

B
t
dPS−1(t), if x ∈ [cb, cH ]

(22)

and

MCRF (x; cb) ≡







Dx(1− PS−1(x)) +

∫ cb

x

D(1− PS−1(t))dt

+cb

∫ cH

cb

B/t2(1− PS−1(t))dt, if x ∈ [cL, cb)

B(1− PS−1(x)), if x ∈ [cb, cH ],

(23)

where cb is defined as the unique value in (cL, cH) such that

∫ cH

cL

MCRF (t; cb)dF (t) = B/S. (24)

Proposition 2 below establishes that given b ∈ (bL, bH), cb is well (and uniquely) defined. In

what follows, we drop the argument cb in Q
CRF and MCRF .

We illustrate the relation between cb and b in Figure 3(a). In Figure 3(b), we illustrate

QCRF assuming two suppliers with uniformly distributed types and a normalized budget b =

(cL + cH)/2, which for the chosen parameters satisfies b ∈ (bL, bH). For comparison, Figure

3(b) also shows the reduced-form allocation rule for the SPA. Proposition 2 establishes basic

features of the CRF mechanism, including its feasibility for the buyer’s (interim) problem.

Proposition 2 (Features of the CRF mechanism) In the case with b ∈ (bL, bH):

(a) cb ∈ (cL, cH) is uniquely defined;

(b) limx↑cb Q
CRF (x) > limx↓cb Q

CRF (x) and limx↑cb M
CRF (x) > limx↓cb M

CRF (x);

(c) (QCRF ,MCRF ) satisfies the constraints in (16), including satisfying IIRcH with equality,

15To see how MCRF connects with QCRF , note that for x ∈ [cL, cb), we can write MCRF (x) as

MCRF (cb) +

∫ cb

x

tDPS−1(t)dt+ cb

(

lim
y↑cb

QCRF (y)−QCRF (cb)

)

,

which can be rewritten as

B(1 − PS−1(cb)) +

∫ cb

x

tD dPS−1(t) + cb(1− PS−1(cb))D − cb

∫ cH

cb

B
t
dPS−1(t).

Integrating by parts and rearranging gives the expression in the body of the paper.
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IICx,x′ with equality for all x, x′ ∈ [cL, cH ], Dx with equality for all x ∈ [cL, cb], and Bx with

equality for all x ∈ [cb, cH ].

Proof. See the Appendix.

(a) cb as a function of b

cL bL b
* bH cH

b

cL

cb
*

cH

D

cb

(b) CRF allocations

cL cb
* cH

c1

D

cτ

QSPA(c1)QCRF(c1)

Figure 3: Panel (a): Type cb as a function of b. Also shown is c∗b corresponding to b∗ ≡ (cL + cH)/2. Panel
(b): Allocation for supplier 1 for the CRF mechanism when b = b∗ and, as a point of comparison, for the
reduced-form of the SPA. Both panels assume two suppliers drawing costs from the uniform distribution on
[cL, cH ].

A number of observations are in order regarding the CRF mechanism. Proposition 2(a)

establishes that cb is well defined. Proposition 2(b) establishes that QCRF and MCRF jump

down at cb when b ∈ (bL, bH). Figure 3(b) illustrates this feature of QCRF . As shown there,

the allocation rule in the CRF mechanism is discontinuous at cb when b ∈ (bL, bH). (The

payment rule in the CRF mechanism is correspondingly discontinuous at cb.) This reflects

the transition from having an expected quantity that is constrained by the buyer’s demand to

one that is constrained by a combination of incentive compatibility and the buyer’s budget.

The change in the marginal value of
∫ x

cL
QCRF (t)dF (t) across this transition translates into

a discontinuity in QCRF . This is precisely the point at which we “clip” the reduced-form

mechanism. Finally, Proposition 2(c) shows that the CRF mechanism is feasible in that it

satisfies the interim incentive constraints, budget constraints, and demand constraints for

b ∈ (bL, bH).

In the remainder of this section, we discuss and state the optimality of the CRF mech-

anism. The proof is based on an approach similar to that used in Section 4.2. Specifically,

we show that the CRF mechanism satisfies with equality an aggregate constraint that holds

for a superset of the feasible set, thereby establishing the optimality of the mechanism. The

key step in establishing the optimality of the CRF mechanism is to construct dual variables

associated with the constraints in the relaxed problem in (16).
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In order to state our regularity condition we define the following constant:

Φb ≡
F (cb)

F (cb) + cbf(cb)
∈ [0, 1). (25)

The factor Φb appears in the construction of the multipliers, which are defined in the proof

of Theorem 4 in equations (31)–(33). The following regularity condition ensures that these

multipliers are nonnegative.16

Definition 3 Regularity-2 holds if regularity-0 and regularity-1 hold and for all x ∈ [cL, cH ] ,
d

dx
[(F (cb)Φb + f(x)x− F (x)) /(x2f(x))] ≤ 0.

It is straightforward to show that regularity-2 is satisfied for a range of distributions and

parameter values, including power distributions F (x) = (xa − caL)/(c
a
H − caL) for all a ≥ 1,

and Beta distributions with parameters α, β ≥ 1. Because regularity-2 encompasses both

regularity-0 and regularity-1, it implies that w′(x) ≤ 0 and ψ′(x) ≤ 0.

Analogously to our analysis of the large and small normalized budget cases, we assume

that v is sufficiently large that reserves based on v can be ignored. Also as before, such

reserves could be incorporated, but at the cost of obscuring the effects of budget constraints,

which are our primary interest. For the intermediate normalized budget case, we need v to

be sufficiently large that the conditions of both Theorem 1 and 2 are satisfied. To reduce

the repetition of notation in what follows, we define the following lower bound for v:

v ≡ cH +max

{
1

cHf(cH)− 1
, 1/f(cH)

}

. (26)

As noted above, when v ≥ v, it follows that w(cH) ≥ 0 and ψ(cH) ≥ 0.

As in the argument described in Section 4.2, we use the dual variables to construct a

certificate of optimality for the proposed mechanism. The following result formally states

the optimality of the CRF mechanism. Because the CRF mechanism reduces to the reduced

form of the SUPA for b ≤ bL and to the reduced form of the SPA for b ≥ bH , the CRF is

optimal for all values of the normalized budget.

Theorem 4 (Optimal mechanism for the intermediate normalized budget with interim in-

centive constraints) If regularity-2 holds, v ≥ v, and b > 0, then the reduced-form mechanism

(QCRF ,MCRF ) maximizes the buyer’s expected surplus (9), subject to (1)–(5).

Proof. See the Appendix.

16More specifically, the multipliers associated with the demand constraints are positive on [cL, cb) and
zero on (cb, cH ], and the multipliers associated with the budget constraints are zero in [cL, cb) and positive
in (cb, cH ].
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Theorem 4 establishes the optimality of the mechanism (QCRF ,MCRF ) for the relaxed

program. It follows from Border (1991) that an implementation of this mechanism exists

that satisfies the interim incentive constraints of the original problem. However, unlike the

results of Theorem 1 and 2, as we show in what follows, there is no implementation of

the CRF that satisfies the ex post versions of the incentive constraints for the intermediate

normalized budget case.

The SPA and SUPA cannot be used in the intermediate normalized budget case because

they violate the budget constraints and demand constraints, respectively, for some type

realizations. For b ∈ (cL, bL], the CRF (which is equivalent in this case to the reduced form

of the SUPA) can be implemented by a mechanism that trades only with the lowest-cost

supplier, paying B for quantity Ey∼PS−1
[B/y | c(1) < y]. However, this mechanism is not ex

post incentive compatible. For the remaining portion of the intermediate normalized budget

range b ∈ (bL, cH), any implementation of the CRF mechanism is distinctly different from

the SPA and SUPA in that it must pay a supplier other than the lowest-cost supplier for a

positive measure set of type realizations.17

Proposition 3 (Optimality of paying non-lowest-cost suppliers) If b ∈ (bL, cH), any imple-

mentation of the CRF mechanism makes a positive payment to at least one supplier other

than the lowest-cost supplier for a positive measure set of type realizations.

Proof. See the Appendix.

We relegate additional discussion of the implementation of the CRF mechanism to the

online appendix. As shown in the next section, Theorem 4 is sufficient to establish the gap

between interim and ex post implementability in the intermediate budget case.

5 Intermediate normalized budget with ex post incen-

tive constraints

In this section, we analyze the intermediate normalized budget case, b ∈ (cL, cH), subject

to ex post incentive compatibility and individual rationality. As shown in Section 3, for the

large normalized budget case with b ≥ cH and the small normalized budget case with b ≤ cL,

the SPA and SUPA satisfy both interim and ex post versions of the constraints and are

optimal mechanisms, respectively. As anticipated in Table 1, here we introduce the partial

17For b ∈ (bL, bH) the proof follows from Proposition 2(b), which shows that MCRF (x) is strictly greater
than B(1 − PS−1(cb)) for x slightly less than cb, with the resulting implication that a payment rule that
never pays suppliers other than the lowest-cost supplier cannot both replicate MCRF (x) for x slightly less
than cb and respect the budget constraint. The proof for b ∈ [bH , cH) shows that such a mechanism must
violate the budget constraint for types close to cH .
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dual sourcing auction (PDSA), a class of ex post incentive compatible mechanisms that is

optimal when the buyer faces two suppliers, but might be suboptimal if there are three or

more suppliers. Nonetheless, it strictly improves upon the SUPA-SPA mechanism described

earlier. (The proof of the nonoptimality of the SUPA-SPA in Theorem 1 is completed via

the family of PDSA.)

Define a mechanism family called a partial dual sourcing auction (PDSA), parametrized

by H ∈ [b, cH ] and defined in terms of Hc ≡ max{b,min{H, c(3)}} ∈ [b, cH ] and hc ≡

bHc/(2Hc − b) ∈ [cL, b], as follows:

(qPDSA(cs, c−s), m
PDSA(cs, c−s)) ≡







(B/c(2), B), if cs = c(1) and H < c(2)

(B/(2Hc), B/2), if hc ≤ c(1) ≤ cs ≤ c(2) < Hc

(D,B), if cs = c(1) < hc and hc ≤ c(2) ≤ Hc

(D, c(2)D), if cs = c(1) and c(2) ≤ hc

(0, 0), otherwise.

This family includes interesting mechanisms. For example, if we set H = b, then hc = b for

every realization of costs, and we recover the SUPA-SPA mechanism. Under our regularity

conditions, we can optimize over H ∈ [b, cH ] for the case of two suppliers by setting H =

min{cH , Ĥ}, where Ĥ is implicitly defined by

ψ(bĤ/(2Ĥ − b))− ψ(Ĥ) =
(v − bĤ/(2Ĥ − b))F (bĤ/(2Ĥ − b))

Ĥ2f(Ĥ)
.

Moreover, in the case of two suppliers, we set c(3) = ∞ so that Hc = max{b,H} = H is

independent of the type realizations.

Figure 4 illustrates the mechanism and also makes clear why we refer to it as a partial

dual sourcing auction. As shown in Figure 4, for some regions of the type space, namely for

(c1, c2) ∈ [h,H ]2, the buyer dual sources, splitting the budget between the two suppliers. In

other regions, the buyer single sources, purchasing only from the lowest-cost supplier.

We establish the feasibility of the PDSA in the following proposition:

Proposition 4 (Feasibility of the PDSA with ex post incentive constraints) For any b > 0,

the PDSA is feasible for the buyer’s problem and satisfies ex post incentive compatibility and

ex post individual rationality, (7) and (8).

Proof. See the Appendix.
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(a) PDSA

c2

c1
cL

cH

cL cH

h

H

h H

q(c1, c2) =
B

c2

m(c1, c2) = B

q(c1, c2) = D

m(c1, c2) = B

q(c1, c2) =
B

2H

m(c1, c2) =
B

2

q(c1, c2) = D
m(c1, c2)=c2D

q(c1, c2) = 0

m(c1, c2) = 0

(b) PDSA allocation for b ∈ (bL, bH)

Figure 4: PDSA for the case of two suppliers. Panel (b) assumes costs drawn from the uniform distribution
on [cL, cH ].

Applying the same proof strategy as before, we construct the required multipliers. How-

ever, in the ex post formulation, the multipliers are functions with domain [cL, cH ]
S. This

is in contrast to the reduced-form formulations, which allowed us to work with multipliers

that were functions with domain [cL, cH ].

In the following theorem, we establish revenue performance guarantees for the PDSA

for general numbers of suppliers and optimality for the case of two suppliers under ex post

incentive constraints.

Theorem 5 (PDSA performance guarantees for the intermediate normalized budget with

ex post incentive constraints) Assume that regularity-1 holds and that v ≥ cH + 1
f(cH )cH−1

.

In the case with b ∈ (cL, cH), there is a choice of H such that the PDSA with parameter H

achieves strictly greater expected buyer surplus than the SUPA-SPA. Moreover, in the case

of two suppliers, if regularity-2 holds and v ≥ v, then the mechanism (qPDSA, mPDSA) with

H = min{cH , Ĥ} maximizes the buyer’s expected surplus (9), subject to (1)–(3) and (7)–(8).

Proof. See the Appendix.

Theorem 5, when contrasted with Theorem 4, shows that the optimal ex post and interim

mechanisms differ for the intermediate normalized budget case. Further, it is straightforward

to show numerically that the buyer’s expected payoff under the CRF mechanism is greater

than its expected payoff under the PDSA with H = min{cH , Ĥ} for a range of distributions

and parameters, giving us the following result.

Corollary 1 If regularity-2 holds, v ≥ v, and b ∈ (cL, cH), in the case of two suppliers,

the buyer’s maximized expected surplus subject to the interim incentive constraints is weakly
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greater (and strictly greater for a range of distributions and parameters) than the buyer’s

maximized expected surplus subject to the ex post incentive constraints.

5.1 Dynamic implementation of the ex post mechanisms

It is well known that the SPA has a dynamic implementation in the form of a descending

clock auction. The clock price decreases from a level sufficiently high to ensure that all

bidders are active, and the bidders choose at what price to exit, where exit is irreversible.

The clock stops when only one active bidder remains. That bidder wins and supplies the

buyer’s entire demand D and receives a per-unit payment equal to the final clock price,

which in equilibrium is the second-lowest unit cost.

It is straightforward to show that the SUPA, which is optimal for the case of a sufficiently

small normalized budget, has a similar dynamic implementation. A descending clock can

also be used, but the final remaining active bidder is paid the entire budget B and supplies a

quantity equal to B divided by the final clock price. In equilibrium, the lowest-cost supplier

sells all that the buyer can afford with a budget B at a unit price equal to the second-lowest

cost.

It is perhaps less obvious that the PDSA mechanism has a straightforward dynamic

implementation. We focus on the case of two suppliers. In that case, once again a descending

clock price can be used.

To define the dynamic implementation of the PDSA, we first define a more general class of

dynamic mechanisms that includes the SPA and SUPA. We focus on the case of two bidders.

Define a sequential auction with promises (SAP) with parameters p0 and p1 as follows: The

clock price declines until there is an exit. If the first bidder to exit exits at a price greater

than or equal to p0, then the remaining bidder supplies quantity B divided by the final clock

price and is paid B. If a bidder exits at a clock price less than p0 but greater than p1, then

the clock continues until either the other bidder exits or the clock price reaches p1. If the

other bidder exits prior to the clock price reaching p1, then each bidder supplies quantity

B/(2p0) and is paid B/2, but if the clock price reaches p1, then the remaining active bidder

supplies quantity D and is paid B. Finally, if no bidder exits until the clock price is less than

or equal to p1, then the final active bidder supplies quantity D and is paid D multiplied by

the final clock price.

The SAP with parameters p0 = p1 = b implements the SUPA-SPA. The SAP with

parameters p0 = H and p1 = h implements the PDSA, giving us the following result.

Proposition 5 (Dynamic implementation of the PDSA) In the intermediate normalized

budget case with b ∈ (cL, cH), the PDSA has a dynamic implementation that preserves ex

post incentive compatibility and ex post individually rationality.
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6 Discussion

6.1 Numerical illustration

In this section, we illustrate the mechanisms developed here based on simulations with

parameters calibrated based on data from the Brazilian Exchange System. We consider data

from auctions realized in 2015 to procure water for injection (“Água para injećão”). We

collected bids from two suppliers that participated in procurement auctions (Cirúrgica São

José Ltda. and Farmace Industria Quimico-Farmaceutica Cearense Lt.). During that year,

these two bidders were regularly the only two suppliers of this specific good. Quantities

purchased in an individual procurement ranged from 1000 to 8000 units, with an average

price of 1.77 BRL per unit.

In the simulations below, we use cL = 1.5 BRL and cH = 2.3 BRL. Based on a kernel

parameter, we estimate a probability density function f around which we build our simu-

lations. For simplicity, we set the buyer’s value of one unit to v = 10 BRL which can be

viewed as the price to obtain such water for injection on short notice. Figure 5 displays the

empirically calibrated density function.

1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3

0.55

0.6

0.65

0.7

0.75

0.8

c (BRL)

f
(c
)

Figure 5: Probability density function calibrated based on the data from procurement auctions for water for
injection in the 2015 Brazilian Exchange System.

Next, we provide results to compare various mechanisms as we vary the budget across

different regimes. We set the demand at D = 5000 units and consider the budget values of

B = DcL (small), B = D(cL+bL)/2 (intermediate, b ≤ bL), B = D(bL+bH)/2 (intermediate,

bL ≤ b ≤ bH), B = D(bH + cH)/2 (intermediate, b ≥ bH), and B = DcH (large).18 The

Brazilian government’s policy (BGP) can be interpreted as an SPA with a reservation price

that handles the budget constraint by restricting trade to types for which it can afford the full

demand.19 We compare this mechanism with the mechanisms proposed here: SUPA-SPA,

CRF, and PDSA.

18We note that the values of bL and bH vary with the number of suppliers S.
19In practice, the reservation price arises from a renegotiation phase involving the Brazilian government

and the winner of a descending auction phase of the procurement.
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Our results are depicted in Table 2 (to be completed).

Incentive Normalized budget b
S constraints b ≤ cL cL < b < bL bL ≤ b ≤ bH bH < b < cH cH ≤ b

BGP 2 ex post
SUPA-SPA 2 ex post
PDSA 2 ex post
CRF 2 interim
BGP 3 ex post
SUPA-SPA 3 ex post
PDSA 3 ex post
CRF 3 interim
BGP 5 ex post
SUPA-SPA 5 ex post
PDSA 5 ex post
CRF 5 interim

Table 2: Comparison of mechanisms: BGP (Brazilian government procurement), SUPA-SPA, PDSA, and
CRF.

6.2 Single supplier case

Up to now, we have considered the case of S ≥ 2 suppliers. In that case. suppliers place

competitive pressure on each other, which is critical for all the mechanisms considered so

far. Next we consider the case of a single supplier.

Formally, with one supplier, the buyer’s problem is

max
q,m

∫ cH

cL

(v q (x)−m (x)) dF (x)

s.t. 0 ≤ q (x) ≤ 1 (Dx) ∀x ∈ [cL, cH ] ;

m (x) ≤ B (Bx) ∀x ∈ [cL, cH ] ;

m (x)− xq (x) ≥ 0 (IRx) ∀x ∈ [cL, cH ] ;

m (x)− x q (x) ≥ m (x′)− x q (x′) (ICx,x′) ∀x, x′ ∈ [cL, cH ] .

(27)

The next theorem provides the optimal mechanism for the single supplier case. As

expected, it depends on the normalized budget value b relative to cH .

Theorem 6 (Optimal mechanism for the single supplier case) Assume S = 1. If b > cH
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and for all x ∈ [cL, cH ], w(x) ≥ 0, then the optimal mechanism is, for x ∈ [cL, cH ],

q1H (x) ≡ D and m1
H (x) ≡ cHD. (28)

If b < cH and ψ(x) ≥ 0, then the optimal mechanism is, for all x ∈ [cL, cH ],

q1L (x) ≡
B

cH
and m1

L (x) ≡ B. (29)

Theorem 6 establishes that for a large normalized budget, we recover the classical solution

when a budget constraint is not present. When the normalized budget satisfies b < cH , it is

optimal to restrict the quantity rather than restrict trade with high-cost types. The optimal

mechanism does not attempt to further screen types by offering a menu with two of more

quantity levels.

6.3 Dual multipliers and implementation via regularization

In this section, we discuss an approach via regularization to obtain dual multipliers as well

as implementations of the reduced-form mechanisms.

(to be completed)

7 Conclusion

We study the optimal procurement mechanisms for a buyer that has a fixed budget and

wishes to purchase units of a homogenous product up to a maximum demand amount from

suppliers whose constant marginal costs are their private information.

As we discuss, the case of a large normalized budget, where the budget constraint never

binds, is well understood. A well-known application of mechanism design theory shows that

a second-price auction is optimal—the buyer satisfies its demand from the supplier with the

lowest cost at a unit price equal to the second-lowest cost. As we show, the case of a small

normalized budget, where the budget constraint always binds, can be solved with analogous

techniques. The buyer purchases as much as it can afford from the supplier with the lowest

cost at a unit price equal to the second-lowest cost. We refer to this mechanism as a second-

unit-price auction. In contrast to the large and small normalized budget cases, the case

of an intermediate normalized budget presents new challenges. Because both demand and

budget constraints bind in a positive measure region of the type space, standard Myersonian

techniques that allow the mechanism design problem to be solved pointwise do not apply.

Using techniques based on duality theory, we identify the optimal reduced-form mecha-

nism and an associated implementation. As we show, and in contrast to the large and small
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normalized budget cases, in the intermediate normalized budget case, the optimal reduced-

form mechanism does not satisfy ex post incentive compatibility and individual rationality.

However, we are able to identify the optimal ex post mechanism for the case of two suppliers

and show that it has a straightforward dynamic implementation.
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A Appendix: Proofs

A.1 Proofs for Section 3.3

Proof of Proposition 1. Let c(3) denote the third-lowest cost, define b̂ ≡ (cH + b)/2, and

consider the following class of mechanisms parametrized by H ∈ [b, b̂): if c(3) < b̂, then q and

m are as in the SUPA-SPA mechanism defined in (15); if c(3) > b̂, then the two lowest-cost

suppliers are treated as in the PDSA with parameter H . Note that because c(3) > b̂ > H ,

this mechanism has a dual sourcing piece that is independent of c(3).

For c(3) < b̂, the mechanism agrees with the SUPA-SPA. Therefore, it suffices to consider

the type profiles in the set {c ∈ [cL, cH ]
S | c(3) > b̂}. For any x ≤ y ≤ cH , define

Ψ(x, y) ≡ ψ(x)f(x)f(y)

∫

[max{y,b̂},cH ]S−2

S∏

s=3

dFs(cs),

where the integral represents the probability that c(3) is above max{y, b̂}. The buyer’s

expected surplus generated by this mechanism with parameter H , conditional on b̂ < c(3),

denoted V (H), can be written as

V (H) = B

∫ cH

H

∫ y

cL

Ψ(x, y) dx dy +B

∫ H

h

∫ h

cL

Ψ(x, y) dx dy

+
B

2

∫ H

h

∫ H

h

Ψ(x, y) dx dy +D

∫ h

cL

y

∫ y

cL

Ψ(x, y) dx dy.

The first derivative is

V ′(H) = −
B

2

∫ H

h

Ψ(h, y)dy ·

∣
∣
∣
∣

dh

dH

∣
∣
∣
∣
+

∫ H

h

Ψ(H, y)dy

−
B

2

∫ H

h

Ψ(x, h)dx+
B

2

∫ H

h

Ψ(x, h)dx ·

∣
∣
∣
∣

dh

dH

∣
∣
∣
∣

+(B − hD)

∫ h

cL

Ψ(x, h)dx ·

∣
∣
∣
∣

dh

dH

∣
∣
∣
∣
.

At h = H = b, we have V ′(b) = 0 because the first four integrals are equal to zero and the

last term is also zero (B−bD = 0). The second derivative (ignoring all integral terms, which
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vanish at h = H = b) is

V ′′(H) = −
B

2
Ψ(h,H)−

B

2
Ψ(h, h)

∣
∣
∣
∣

dh

dH

∣
∣
∣
∣
+
B

2
Ψ(H,H) +

B

2
Ψ(H, h)

−
B

2
Ψ(H,H)−

B

2
Ψ(h,H) +

B

2
Ψ(H, h) +

B

2
Ψ(h, h)

+

∣
∣
∣
∣

dh

dH

∣
∣
∣
∣
D

∫ h

cL

Ψ(x, h)dx.

Because h = bH/(2H − b), H = b implies h = b, and we have
dh

dH
= −b2/(2H − b)2 so that,

at H = b, we have

∣
∣
∣
∣

dh

dH

∣
∣
∣
∣
= 1. Thus,

V ′′(b) = D

∫ b

cL

Ψ(x, b)dx > 0.

Because b ∈ (cL, cH) and ψ(x) > 0, it follows that the buyer’s expected surplus increases as

H increases above b, establishing that the hybrid mechanism (q̂, m̂) cannot be optimal for

the buyer’s problem. �

A.2 Proofs for Section 4.3

Proof of Proposition 2. We begin the proof by stating and proving a lemma that provides

properties of

∫ cH

cL

MCRF (t; c)dF (t).

Lemma A.1 Letting µ(c) ≡

∫ cH

cL

MCRF (t; c)dF (t), it follows that

(a) µ′(c) = X(c) d
dc
[cF (c)], where X(c) ≡ D(1− PS−1(c))−

∫ cH
c

B
t
dPS−1(t);

(b) µ′′(c) = (−D +B/c)P ′
S−1(c) +X(c) d2

dc2
[cF (c)];

(c) µ′(c) = 0 implies µ′′(c) > 0, so that µ is quasiconvex;

(d) if b ≤ bL, then µ(c) = B/S only if c = cL;

(e) if b ≥ bH , then µ(cH) ≤ B/S.

Proof of Lemma A.1. To show part (a), we write out the expression for µ(c). By definition

(23),MCRF is piecewise differentiable. Using integration by parts on each differentiable piece
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(to account for possible discontinuities),

∫ cH

cL

MCRF (x) dF (x) =

∫ c

cL

MCRF (x) dF (x) +

∫ cH

c

MCRF (x) dF (x)

= lim
x↑c

MCRF (x)F (c)−

∫ c

cL

MCRF ′ (x)F (x) dx− lim
x↓c

MCRF (x)F (c)−

∫ cH

c

MCRF ′ (x)F (x) dx

=

(

Dc(1− PS−1(c))− c

∫ cH

c

B

y
dPS−1(y)

)

F (c)−

∫ cH

cL

MCRF ′ (x)F (x) dx

= cF (c)

(

D(1− PS−1(c))−

∫ cH

c

B

y
dPS−1(y)

)

+

∫ c

cL

DxF (x)dPS−1(x) +

∫ cH

c

BF (x)dPS−1(x).

Using the definition of X(c) and explicitly indicating the dependence of MCRF on c, we can

write this as
∫ cH

cL

MCRF (x; c) dF (x) = cF (c)X(c) +

∫ c

cL

DxF (x) dPS−1(x)

+

∫ cH

c

BF (x) dPS−1(x).

Taking the derivative with respect to c, we have

d
dc

∫ cH

cL

MCRF (t; c)dF (t)

= X(c) d
dc
[cF (c)] + cF (c)

(
−DP ′

S−1(c) +
B
c
P ′
S−1(c)

)
+DcP ′

S−1(c)F (c)−BP ′
S−1(c)F (c)

= X(c) d
dc
[cF (c)] .

Part (b) follows simply from differentiating X(c) d
dc
[cF (c)].

To show part (c), note that by part (a), µ′(c) = 0 only if X(c) = 0. Therefore, for any

c such that µ′(c) = 0, it follows from part (b) that µ′′(c) = (−D + B/c)P ′
S−1(c). Moreover,

because c ∈ (cL, cH) and X(c) = 0, we have

D(1− PS−1(c)) =

∫ cH

c

B

t
dPS−1(t) <

B

c
(1− PS−1(c)),

and so D < B/c, which implies that µ′′(c) = (−D +B/c)P ′
S−1(c) > 0.

To show part (d), suppose that b ≤ bL. By part (a), µ′(c) = X(c) d
dc
[cF (c)]. Because

d
dc
[cF (c)] = F (c) + cf(c) > 0, under c > 0 and f(c) > 0 for any c ∈ [cL, cH ], it follows that

the sign of µ′(c) is equal to the sign of X(c). Using that b ≤ bL, we show that µ′(c) < 0 for
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every c ∈ (cL, cH) and µ
′(c) = 0 for c = cL. Because µ(c) is continuous and µ(cL) = B/S,

this implies that cb = cL. Because the sign of µ′(c) is equal to the sign of X(c) and b ≤ bL,

X(cL) = D −

∫ cH

cL

B

y
dPS−1(y) = D − B/bL ≥ D −B/b = 0.

Then, using that b ≤ bL, we can write

X(c) = D(1− PS−1(c))−
∫ cH
c

B
t
dPS−1(t)

≥ B
bL
(1− PS−1(c))− B

∫ cH
c

1
t
dPS−1(t)

= B(1− PS−1(c))
(∫ cH

cL

1
t
dPS−1(t)−

∫ cH
c

1
t(1−PS−1(c))

dPS−1(t)
)

= B(1− PS−1(c))(Et∼PS−1
[1/t]− Et∼PS−1

[1/t | t ≥ c])

> 0,

where the final inequality uses Et∼PS−1
[1/t] > Et∼PS−1

[1/t | t ≥ c]. (A weak inequality follows

trivially because 1/t is larger in the domain that is being excluded. A strict inequality follows

from the density dG(t) being strictly positive in the support [cL, cH ]. Therefore, µ′(c) > 0

for any c ∈ (cL, cH), which implies that µ(c) > B/S for any c ∈ (cL, cH ]. Therefore, cb = cL.)

To show part (e), suppose that b ≥ bH and note that

µ(cH) = D

∫ cH

cL

tF (t)dPS−1(t) = D
bH
S

≤ D
b

S
=
B

S
,

which completes the proof. �

Continuation of the Proof of Proposition 2. In what follows, as in Lemma A.1, we

use the definitions

µ(c) ≡

∫ cH

cL

MCRF (t; cH)dF (t)

and

X(c) ≡ D(1− PS−1(c))−

∫ cH

c

B

t
dPS−1(t).

Proof of Proposition 2(a). For b ∈ (bL, bH),

µ(cH) = D

∫ cH

cL

tF (t)dPS−1(t) = D
bH
S
> D

b

S
=
B

S
.

By construction, µ(cL) = B/S. Further, by Lemma A.1(a), µ′(c) = X(c) d
dc
[cF (c)]. Because
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d
dc
[cF (c)] = F (c) + cf(c) > 0 and because c > 0 and f(c) > 0 for any c ∈ [cL, cH ], it

follows that the sign of µ′(c) is equal to the sign of X(c). Thus, X(cL) = D − B/bL < 0,

so that µ′(cL) < 0. It then follows from µ(cL) = B/S and the continuity of µ′(c), that

µ(c) < B/S for all c ∈ (cL, c
′) for some c′ > cL. By the Intermediate Value Theorem, there

exists cb ∈ (cL, cH) such that µ(cb) = B/S. Further, by Lemma A.1(c), µ is quasiconvex,

and so cb is uniquely defined and µ′(cb) > 0.

Proof of Proposition 2(b). By Proposition 2(a), b ∈ (bL, bH) implies cb ∈ (cL, cH). For

x ∈ (cb, cH ], Q
CRF (x) =

∫ cH
x

B/t dPS−1(t), so it follows that

X(cb) = lim
x↑cb

QCRF (x)− lim
x↓cb

QCRF (x).

As established in part (a), the sign ofX(c) is the sign of µ′(c) and µ′(cb) > 0. Thus, X(cb) > 0,

which implies that

lim
x↑cb

QCRF (x) = D(1− PS−1(cb)) > QCRF (cb) = lim
x↓cb

QCRF (x). (30)

Inequality (30) implies a corresponding result for MCRF :

lim
x↑cb

MCRF (x) = B(1− PS−1(cb)) +Dcb(1− PS−1(cb))− cb lim
x↓cb

QCRF (x)

> B(1− PS−1(cb)) +Dcb(1− PS−1(cb))− cbD(1− PS−1(cb))

= B(1− PS−1(cb))

= lim
x↓cb

MCRF (x),

where the first equality uses the definitions of MCRF and QCRF , the inequality uses (30),

the second equality simplifies, and the third equality uses the definition of MCRF .

Proof of Proposition 2(c). We begin with the demand constraints Dx. We show that for

x ∈ (cb, cH ] ∫ x

cL

QCRF (t)dF (t) ≤
1

S
DPS(x).

Because the definition of QCRF implies that this is satisfied at x ∈ [cL, cb], and because by
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Proposition 2(b), QCRF jumps down relative to D(1− PS−1(x)) at x = cb,

D(1−PS−1(cb)) = lim
x↑cb

QCRF (x) > lim
x↓cb

QCRF (x) =
B

cb
(1−PS−1(cb))−

∫ cH

cb

B

t2
(1−PS−1(t))dt,

it is sufficient to show that QCRF (x) does not cross D(1− PS−1(x)) for x ∈ (cb, cH).

We proceed by way of contradiction. Suppose the existence of an x̂ ∈ (cb, cH) such that

QCRF (x̂) = D(1− PS−1(x̂)). By the definition of x̂ ∈ (cb, cH),

B

x̂
(1− PS−1(x̂))−

∫ cH

x̂

B

t2
(1− PS−1(t))dt = D(1− PS−1(x̂)) > 0,

which, because x̂ < cH , implies that

(B/x̂−D) (1− PS−1(x̂)) =

∫ cH

x̂

B

t2
(1− PS−1(t))dt > 0.

Therefore, we have B/x̂ > D which implies x̂ < b. It follows then that

QCRF ′(x̂) = −(B/x̂) P ′
S−1(x̂) < −(B/b) P ′

S−1(x̂) = −D P ′
S−1(x̂) =

d

dx
[D(1− PS−1(x))],

where the first equality uses the definition of QCRF , the inequality uses x̂ < b, and second

equality uses b = B/D, and the final equality rearranges. This implies that QCRF (x) crosses

D(1 − PS−1(x)) from above at x = x̂, which is a contradiction because limx↓cb Q
CRF (x) ≤

D(1 − PS−1(cb)). Thus, we conclude that no such x̂ exists, and so QCRF (x) does not cross

D(1 − PS−1(x)) for x ∈ (cb, cH), completing the proof that the demand constraints are

satisfied for x ∈ (cb, cH].

It remains to show that the budget constraints are satisfied. The definitions of cb and

MCRF guarantee that the budget constraints Bx are satisfied with equality for x ∈ [cb, cH ].

The budget constraint is trivially satisfied with equality at x = cL. It remains to show that

for x ∈ (cL, cb), ∫ x

cL

MCRF (t; cb)dF (t) ≤
1

S
B · PS(x).

Because this is satisfied at x = cL and at x = cb, and because MCRF (x) jumps down relative

toB(1−PS−1(x)) at x = cb by Proposition 2(b) (i.e., limx↑cb M
CRF (x) > B(1−PS−1(cb))), it is

sufficient to show thatMCRF (x) crosses B(1−PS−1(x)) only once for x ∈ (cL, cb). For this, it

is sufficient to show that whenever they cross at x ∈ (cL, cb),M
CRF (x) crosses B(1−PS−1(x))

from below. Suppose there exists x̂ ∈ (cL, cb) such that MCRF (x̂) = B(1− PS−1(x̂)). Then,

by the definition of MCRF ,

Dx̂(1− PS−1(x̂)) +

∫ cb

x̂

D(1− PS−1(t))dt+ cb

∫ cH

cb

B

t2
(1− PS−1(t))dt = B(1− PS−1(x̂)),
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which implies that

(B −Dx̂) (1− PS−1(x̂)) =

∫ cb

x̂

D(1− PS−1(t))dt+ cb

∫ cH

cb

B

t2
(1− PS−1(t))dt,

which, using x̂ < cb, implies that B −Dx̂ > 0, i.e., x̂ < b. Then note that

MCRF ′(x̂) = −Dx̂P ′
S−1(x̂) > −DbP ′

S−1(x̂) = −BP ′
S−1(x̂) =

d

dx
[B(1− PS−1(x))],

where the first equality uses the definition of MCRF , the inequality uses x̂ < b, the second

equality uses b = B/D, and the third equality rearranges. Thus, whenever MCRF (x) crosses

B(1− PS−1(x)), it crosses from below, completing proof. �

Proof of Theorem 4. We define three functions that will serve as our dual variables. First,

we have λ as the dual variable for the incentive compatibility and individual rationality

constraints:

λ(x) ≡







v

cb
F (x) (1− Φb) , if cL ≤ x < cb

v

x
F (x)

(

1− F (cb)
F (x)

Φb

)

, if cb ≤ x ≤ cH .

(31)

Second, we have δ for the demand constraints:

δ(x) ≡







−
v

cb
(1− Φb)w

′(x), if cL ≤ x < cb

0, if cb ≤ x ≤ cH .

(32)

Third, we have β for the budget constraints:

β(x) ≡







0, if cL ≤ x < cb

−v F (cb)Φb
d

dx

(
1

x2f(x)

)

− ψ′(x), if cb ≤ x < cH

v F (cb)Φb

c2H f (cH)
+ ψ (cH) , if x = cH .

(33)

Next we state a technical result that under regularity-2 and for v sufficiently large, the

functions w and ψ as well as the functions defined in (32)–(33) are nonnegative.

Lemma A.2 If regularity-2 holds and v ≥ v, then for all x ∈ [cL, cH ] , w(x) ≥ 0, ψ(x) ≥ 0,

δ(x) ≥ 0, λ(x) ≥ 0, and β(x) ≥ 0.

Proof of Lemma A.2. The results that w and ψ are nonnegative follow from the regularity

assumption (specifically regularity-0 and regularity-1) and the lower bound on v. The result
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that δ is nonnegative holds because Svφb > 0 and w′(x) ≤ 0 (by regularity-0). Now consider

λ. Because φb > 0, we have λ(x) ≥ 0 for all x ∈ [cL, cb]. Also, λ is continuous at cb, i.e.

lim
x↑cb

λ(x)− lim
x↓cb

λ(x) = S
v

cb
(1− Φb) F (cb)− Sv

F (cb) (1− Φb)

cb
= 0.

Thus, lim
x↓cb

λ(x) > 0, which implies that for all c > cb, F (x)(1− Φb) > 0, and so λ(x) > 0 for

all x ∈ (cb, cH ]. The result that β(x) ≥ 0 follows from regularity-2 for x ∈ [cb, cH) and from

regularity-1 and the lower bound on v for x = cH . �

Continuation of the Proof of Theorem 4: Using the dual variables to construct an

aggregate constraint. We now make use of the dual variables λ, δ, and β just defined by

multiplying the constraints in (16) by these functions, using λ for the incentive compatibility

and individual rationality constraints, δ for the demand constraints, and β for the budget

constraints. We then sum these to form a single aggregate constraint. The details are as

follows:

The incentive compatibility constraint IICx,x′, when applied to adjacent types, implies

that for all x ∈ [cL, cH ], dM(x) − x dQ(x) ≤ 0. Thus, multiplying by λ(x) and integrating

over x ∈ [cL, cH ], we have:20

∫ cH

cL

λ(x) (dM(x)− x dQ(x)) ≤ 0. (34)

Using the result from Lemma A.2 that λ(cH) ≥ 0, the individual rationality constraint IIRcH

implies

λ (cH) (−M (cH) + cH Q (cH)) ≤ 0. (35)

Taking the demand constraint Dx and multiplying by δ(x), which is nonnegative by Lemma

A.2, and integrating over x ∈ [cL, cb), we have

∫ cb

cL

δ(x)

(∫ x

cL

q(t)dF (t)

)

dx ≤
1

S
D

∫ cb

cL

δ(x)P (x)dx. (36)

Similarly, taking the budget constraint Bx and multiplying by β(x), which is nonnegative by

Lemma A.2, and integrating over x ∈ [cb, cH), we have

∫ cH

cb

β(x)

∫ x

cL

M (t) dF (t) dx ≤
1

S
B

∫ cH

cb

β(x)P (x)dx. (37)

20We note that the set of dual variables associated with nonincreasing functions consists of {µ :
∫ t

cL
µ(t)dt ≥ 0, ∀t ∈ [cL, cH ]}. The nonnegative multiplier λ trivially belongs to this set.
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Focusing on the worst type of supplier, the budget constraint BcH implies that

β (cH)

∫ cH

cL

M (t) dF (t) ≤
1

S
Bβ (cH)P (cH). (38)

Summing all inequalities in (34)–(38) yields the following “aggregate constraint”:

∫ cb

cL

δ(x)

(∫ x

cL

q (t) dF (t)

)

dx+

∫ cH

cb

β(x)

∫ x

cL

M (t) dF (t) dx+ β (cH)

∫ cH

cL

M (t) dF (t)

−

∫ cH

cL

λ(x)x dQ(x) +

∫ cH

cL

λ(x)dM(x) + λ (cH) [−M (cH) + cH Q (cH)]

≤ 1
S
D

∫ cb

cL

δ(x)P (x)dx+ 1
S
B

∫ cH

cb

β(x)P (x)dx+ 1
S
Bβ(cH)P (cH).

(39)

Relating the aggregate constraint to the buyer’s objective. We now relate the

aggregate constraint (39) to the buyer’s objective in (16), showing that the left side of (39)

is equal to the buyer’s objective. As shown in Lemma A.3, one can rearrange the left side

of (39) to collect the terms that involve each of the variables Q(x) for x ∈ [cL, cb), Q(x)

for x ∈ [cb, cH], M(x) for x ∈ [cL, cb), and M(x) for x ∈ [cb, cH ]. Then one can show that the

coefficients on these variables have a simple form and that the left side of (39) is equal to

the buyer’s objective.

We begin by rearranging the left side of the aggregate constraint as shown in the following

lemma:

Lemma A.3 The left side of (39) can be rewritten as

∫ cH

cL

(vQ(x)−M(x)) dF (x) .

Proof of Lemma A.3. We begin by gathering terms that involve q(x) for x ≤ cb:

∫ cb

cL

δ(x)

(∫ x

cL

q (t) dF (t)

)

dx−

∫ cb

cL

λ(x)x dq(x)

=

∫ cb

cL

[

f(x)

∫ cb

x

δ (z) dz

]

q(x)dx−

will cancel
︷ ︸︸ ︷

λ (cb) cb q (cb) +

∫ cb

cL

d

dx
[xλ(x)] q(x)dx

=

∫ cb

cL

[

f(x)

∫ cb

x

δ (z) dz +
d

dx
[xλ(x)]

]

q(x)dx−

will cancel
︷ ︸︸ ︷

λ (cb) cb q (cb),

where the first equality uses λ(cL) = 0.
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Turning to terms involving Q(x) for x ≥ cb, we have

−

∫ cH

cb

λ(x)x dQ(x) + λ (cH) cH Q (cH) =

will cancel
︷ ︸︸ ︷

λ (cb) cbQ (cb) +

∫ cH

cb

d

dx
[xλ(x)] Q(x)dx.

For m(x) for x ≤ cb, we have

∫ cH

cb

β(x)

∫ cb

cL

m (t) dF (t) dx+ β (cH)

∫ cb

cL

m (t) dF (t) +

∫ cb

cL

λ (x) dm(x)

=

∫ cb

cL

[

f(x)

(∫ cH

cb

β (t) dt+ β (cH)

)

− λ′(x)

]

m(x)dx+

will cancel
︷ ︸︸ ︷

λ (cb)m (cb),

which again uses λ(cL) = 0. Finally, for M(x) with x ≥ cb, we have

∫ cH

cb

β(x)

∫ x

cb

M (t) dF (t) dx+ β (cH)

∫ cH

cb

M (t) dF (t)

+

∫ cH

cb

λ(x)dM(x) + λ (cH) [−M (cH) + cH Q (cH)]

=

∫ cH

cb

f(x)

(∫ cH

x

β (t) dt+ β (cH)

)

M(x)dx −

will cancel
︷ ︸︸ ︷

λ (cb)M (cb)−

∫ cH

cb

λ′(x)M(x)dx.

Summing these expressions, we obtain

∫ cb

cL

(

f(x)

∫ cb

x

δ (z) dz + d
dx

[xλ(x)]

)

Q(x)dx+

∫ cH

cb

d
dx

[xλ(x)] Q(x)dx

+

∫ cb

cL

(

f(x)

(∫ cH

cb

β (t) dt+ β (cH)

)

− λ′(x)

)

M(x)dx

+

∫ cH

cb

(

f(x)

(∫ cH

x

β (t) dt+ β (cH)

)

− λ′(x)

)

M(x)dx.

(40)

Now we further simplify the expression of Lemma A.3. Starting with the first term in
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(40), the integrand in that term is, for x ∈ [cL, cb),

f(x)

∫ cb

x

δ (z) dz +
d

dx
[xλ(x)] = f(x)

∫ cb

x

(

−v
(1− Φb)

cb
w′(z)

)

dz + v
(1− Φb)

cb

d

dx
[xF (x)]

= −f(x)v
(1− Φb)

cb
(w(cb)− w(x)) + v

(1− Φb)

cb

d

dx
[xF (x)]

= vf(x)
(1− Φb)

cb

(

cb +
F(cb)

f(cb)

)

= vf(x),

where the first equality uses the definitions of δ and λ, the second equality integrates, the

third equality uses the definition of w and simplifies, and the fourth equality uses the defini-

tion of (1−Φb)
cb

. Similarly, referring to the integrand in the second term in (40), one can show

using the definition of λ that for x ∈ [cb, cH ],

d

dx
[xλ(x)] =

d

dx
[v (F (x)− F (cb)Φb)] = vf(x).

Turning to the remaining terms in (40), we show that the integrands in the third and fourth

term are equal to −f(x). Considering the third term of (40), the integrand is, for x ∈ [cL, cb),

f(x)

(∫ cH

cb

β (t) dt+ β (cH)

)

− λ′(x)

= −f(x)

∫ cH

cb

(

v F (cb)Φb
d

dt

(
1

t2f(t)

)

+ ψ′(t)

)

dt+ f(x)β (cH)− λ′(x)

= −f(x)

(
v F (cb)Φb

c2Hf(cH)
−
v F (cb)Φb

c2bf(cb)
+ ψ(cH)− ψ(cb)

)

+ f(x)

(
v F (cb)Φb

c2H f (cH)
+ ψ (cH)

)

−v
(1− Φb)

cb
f(x)

= f(x)

(
v F (cb)Φb

c2bf(cb)
+ ψ(cb)− v

(1− Φb)

cb

)

= −f(x),

where the first equality uses the definition of β, the second equality integrates and uses the

definitions of β(cH) and λ, the third equality simplifies, and the fourth equality uses the

definitions of Φb and ψ. Similarly, the integrand in the fourth term in (40) is, for x ∈ [cb, cH ],

f(x)

(∫ cH

x

β (t) dt+ β (cH)

)

− λ′(x) = −f(x),
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where, relative to the previous case, the different definition of λ(x) for x ∈ [cb, cH] versus

x ∈ [cL, cb) combines with the different lower bound of integration (x versus cb) to give the

same result.

Substituting these expressions in for the integrands in (40), we can rewrite (40) as

∫ cb

cL

vQ(x)dF (x) +

∫ cH

cb

vQ(x)dF (x)−

∫ cb

cL

M(x)dF (x)−

∫ cH

cb

M(x)dF (x)

=

∫ cH

cL

(vQ(x)−M(x)) dF (x) ,

which completes the proof. �

Continuation of the Proof of Theorem 4.Using Lemma A.3, the buyer’s objective the

aggregate constraint (39) can be written as

S

∫ cH

cL

(vQ(x)−M(x)) dF (x)

≤ D

∫ cb

cL

δ(x)P (x)dx+B

∫ cH

cb

β(x)P (x)dx+Bβ(cH)P (cH).

(41)

Because the left side of (41) is the buyer’s objective, if a candidate solution satisfies all of

the constraints in the original problem and satisfies (41) with equality, then the candidate

solution is optimal. We establish feasibility of the CRF mechanism in Proposition 2(c). To

show that the CRF mechanism satisfies (41) with equality, recall from Proposition 2(c) that

the CRF mechanism satisfies all constraints with equality except Dx for x ∈ [cb, cH ] and Bx

for x ∈ [cL, cb). But the multiplier on the demand constraints, δ(x), is zero for x ∈ [cb, cH ],

and the multiplier on the budget constraints, β(x), is zero for x ∈ [cL, cb). Thus, the CRF

mechanism satisfies (41) with equality. �

Proof of Proposition 3. Assume b ∈ (bL, bH), in which case cb ∈ (cL, cH). Let m be the

payment rule in a feasible mechanism that implements the CRF mechanism and that for

any type profile specifies a zero payment for any supplier that does not have the lowest cost.

By Proposition 2(2), limx↑cb M
CRF (x) > B(1− PS−1(cb)). Thus, by the continuity of MCRF

below cb and of F, there exists ε > 0 sufficiently small such that

MCRF (cb − ε) > B(1− PS−1(cb − ε)). (42)
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Then we have the following contradiction:

∫

[cL,cH ]S−1

m(cb − ε, c−s)dF−s(c−s) = MCRF (cb − ε)

> B(1− PS−1(cb − ε))

=

∫

[cb−ε,cH ]S−1

BdF−s(c−s)

≥

∫

[cb−ε,cH ]S−1

m(cb − ε, c−s)dF−s(c−s)

=

∫

[cL,cH ]S−1

m(cb − ε, c−s)dF−s(c−s),

where the first equality uses the assumption that m implements MCRF , the strict inequality

uses (42), the second equality uses the Fundamental Theorem of Calculus, the weak inequal-

ity uses the assumption that m is feasible and so for all c−s, m(cb−ε, c−s) ≤ B, and the final

equality uses the assumption that payments are zero for a supplier without the lowest cost,

so that for all c−s with at least one component less than cb − ε, m(cb − ε, c−s) = 0. Given

this contradiction, it follows that any feasible mechanism that implements MCRF specifies a

positive payment for more that one supplier for at least some type realizations.

Now assume b ∈ [bH , cH), in which case cb = cH and there exists ε > 0 such that

cH − ε > b, which implies that

(cH − ε)D > B. (43)
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Then we have the following contradiction:

B(1− PS−1(cH − ε)) ≥

∫

[cH−ε,cH ]S−1

m(cH − ε, c−s)dF−s(c−s)

=

∫

[cL,cH ]S−1

m(cH − ε, c−s)dF−s(c−s)

= MCRF (cH − ε)

=

∫ cH

cH−ε

yDdPS−1(y)

> (cH − ε)D(1− PS−1(cH − ε))

> B(1− PS−1(cH − ε)),

where the first inequality uses the feasibility of m, the first equality uses the assumption

that a supplier without the lowest cost receives zero payment, the second equality uses the

assumption that m implements MCRF , the third equality uses the definition of MCRF when

cb = cH , the second inequality replaces y with the lower bound of integration in one place

and integrates, and the last inequality uses (43). So once again, any feasible mechanism that

implements MCRF specifies a positive payment for more that one supplier for at least some

type realizations. �

A.3 Proofs for Section 5

Proof of Proposition 4. It suffices to show that the PDSA satisfies ex post incentive

compatibility (7), which is equivalent to qPDSA(·, y) nonincreasing for each y ∈ [cL, cH ], and

∀(x, y) ∈ [cL, cH ]
2,

∫ cH

x

qPDSA(t, y)dt = mPDSA(x, y)− x · qPDSA(x, y).

In what follows, to conserve on notation, we drop the superscript “PDSA” on the mechanism.

We have: for each y ∈ (H, cH ],

x ∈ [y, cH ],

∫ cH

x

q(t, y)dt = 0 = m(x, y)− x · q(x, y)

x ∈ [cL, y],

∫ cH

x

q(t, y)dt =

∫ y

x

B

y
dt = B − x

B

y
= m(x, y)− x · q(x, y),
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and for each y ∈ [h,H ],

x ∈ [y, cH],

∫ cH

x

q(t, y)dt = 0 = m(x, y)− x · q(x, y)

x ∈ [h,H ],

∫ cH

x

q(t, y)dt =

∫ H

x

B

2H
dt =

B

2
− x

B

2H
= m(x, y)− x · q(x, y)

x ∈ [cL, h],

∫ cH

x

q(t, y)dt =

∫ h

x

Ddt+

∫ H

h

B

2H
dt = B − xD = m(x, y)− x · q(x, y),

where the last equality is obtained using the relation between H and h, and for each y ∈

[cL, h],

x ∈ [y, cH],

∫ cH

x

q(t, y)dt = 0 = m(x, y)− x · q(x, y)

x ∈ [cL, y],

∫ cH

x

q(t, y)dt =

∫ y

x

Ddt = yD − xD = m(x, y)− x · q(x, y).

Proof of Theorem 5. See the online appendix.

A.4 Proofs for Section 6.2

Proof of Theorem 6. Consider first the case with cHD ≤ B. Using the envelope theorem

to eliminate all m variables, we can rewrite the buyer’s problem as







Max
q

∫ cH
cL

w (x) q (x) dF (x)

s.t. 0 ≤ q (x) ≤ 1 (Dx) ∀x ∈ [cL, cH ]

xq (x) +
∫ cH
x

q (t) dt ≤ B (Bx) ∀x ∈ [cL, cH ] .

(44)

Multiplying each demand constraint by w (x) f (x) and integrating yields

∫ cH

cL

w (x) q (x) dF (x) ≤ D

∫ cH

cL

w (x) dF (x) .

The function q1H defined in (28) maximizes the objective in (44), subject to the last inequality.

Substituting q1H into the left side of the budget constraints of (44) yields m1
H . Thus q

1
H also

satisfies the budget constraints of (44). We can then conclude that q1H solves the linear

program in (44). Because (q1H , m
1
H) is feasible in the original buyer problem (27), it also

solves it.

The proof for the case with B ≤ cHD is similar. Using the envelope theorem to eliminate
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all m variables, we can rewrite the buyer’s problem as







Max
m

∫ cH
cL

ψ (x)m (x) dF (x)

s.t.: m (x) ≤ B (Bx) ∀x ∈ [cL, cH ]

m(x)
x

+
∫ cH
x

1
t2
m (t) dt ≤ D (Dx) ∀x ∈ [cL, cH ] .

(45)

Multiplying each demand constraint by ψ (x) f (x) and integrating yields

∫ cH

cL

ψ (x)m (x) dF (x) ≤ B

∫ cH

cL

ψ (x) dF (x) .

The function m1
L defined in (29) maximizes the objective in (45), subject to the last inequal-

ity. Substituting m1
L into the left side of the demand constraints of (45) yields q1L. Thus

m1
L also satisfies the demand constraints of (45). We can then conclude that m1

L solves the

linear program in (45). Because (m1
L, q

1
L) is feasible in the original buyer problem (27), it

also solves it. �
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