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Abstract

We propose a demand model where consumers simultaneously choose a few different goods

from a large menu of available goods, and choose how much to consume of each good. The

model nests multinomial discrete choice and continuous demand systems as special cases.

Goods can be substitutes or complements. Random coefficients are employed to capture

the wide variation in the composition of consumption baskets. Non-negativity constraints

produce corners that account for different consumers purchasing different numbers of types

of goods. We show semiparametric identification of the model. We apply our model to

the demand for fruit in the United Kingdom, analyzing a range of tax and policy change

scenarios.
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1 Introduction

We propose a demand model that has features of both discrete multinomial choice and
traditional continuous demand systems. In our model consumers simultaneously choose a
small number of different goods from a large menu of available goods, and choose how much
to consume of each good. We apply the model to the demand for fruit in the United Kingdom
(UK), and use the results to simulate the impacts of a variety of scenarios, including price
changes that could be induced by Brexit, or by a change in the Value Added Tax (VAT),
or by a proposed merger of two large supermarket chains. We find that fruit demand has
multiple attributes that neither standard discrete choice nor standard continuous demand
systems would adequately explain.

Our model nests both standard continuous demand systems (quadratic utility functions
with Gorman (1976, 1980) and Lancaster (1966) type consumption technologies) and stan-
dard discrete choice models (multinomial probit models with random coefficients) as special
cases. Unlike most discrete choice models, our model allows the chosen goods to be sub-
stitutes or complements, and to be consumed in continuous quantities. Unlike standard
continuous consumer demand systems, our model allows individual consumers to choose to
consume zero quantities of most types of goods, and includes substantial unobserved prefer-
ence heterogeneity. Our model also does not impose a two stage structure where consumers
must first choose which goods to buy and then how much of each good to buy, or vice versa.

As our motivating example, we consider consumer demand for fresh fruit in the UK,
obtained from scanner data. In a typical store, there are more than a couple of dozen
different types of fruit that consumers can choose among. Consumers typically choose from
one to five different types of fruit to purchase, and buy varying quantities of each type. Some
types of fruits are substitutes (such as apples vs bananas) while others are complements (like
cantaloupe and honeydew melons in fruit salad). Some fruits might be substitutes for some
households while being complements for others. The types and quantities of fruits purchased
varies greatly across households.

While many different types of fruit are offered for sale, typical households only buy a
small number of types. As a result, most consumers buy zero quantities of most categories of
fruit, and therefore the vector of observed demands at the individual consumer level is sparse.
Note that this is not a model that is sparse in the sense of having many zero coefficients,
like regressions estimated using the Tibshirani (1996) LASSO estimator. Rather, here it is
the data that is sparse, since for each shopping trip, each consumer buys zero quantities of
most of the goods that are available in the store.

The most popular method of dealing with such sparse demand systems, as exemplified
by the Berry, Levinsohn, and Pakes (1995) BLP model, is to discretize purchases and treat
each unit purchased as an independent multinomial choice decision. Unfortunately, the
standard assumptions that underlie this methodology are likely to be seriously violated in
many empirical applications, including our application to fruit demand. The assumptions
underlying estimation methods using traditional continuous demand systems (such as those
described in Deaton and Muellbauer 1980) are likewise violated when many goods are bought
in zero quantities.

Methods to overcome the violated assumptions in either the discrete or continuous de-
mand models are either nonexistent or intractable in applications like ours. For example,

1



in our empirical application consumers buy up to 5 different types of fruits from a set of
27 available types of fruits. So even ignoring the quantities purchased and only looking
at the types of fruit selected, there are 80,730 possible baskets to consider, which is far
too large for traditional discrete choice methods. Alternatively, considering the problem as
a traditional continuous demand model will also be intractable, because most consumers
will be at corner solutions (buying zero of most goods) most of the time. In contrast, our
model is tractable for such problems and captures consumer substitution patterns at both
the intensive (continuous choice) and extensive (discrete choice) margins.

Due to nonuniform size and the ability to purchase multiple items, fruit can be purchased
in close to continuous quantities. For this issue, extensions to multinomial choice models
exist that combine a discrete choice for a product with a continuous choice for the quantity
of that product, going back to Dubin and McFadden (1984).

A far more serious limitation of multinomial choice models for our application is that
they generally rule out complements. Complementarities are important in a wide range of
empirical applications. For example, some fruits are strong complements for others (e.g.,
different types of berries are frequently purchased together and consumed jointly, and var-
ious fruits are complementary inputs to dishes like fruit salad). It is possible to allow for
complements in a discrete choice framework by modelling combinations of fruit as additional
distinct goods, e.g., treating an apple, a banana, and the combination of both as three sepa-
rate possible choices. However, the number of possible combinations of just a few fruits out
of more than two dozen makes this approach impractical. As noted above, our data yields
80,730 distinct combinations to be considered. And this number would skyrocket higher if
we even crudely discretized the quantities purchased of each fruit. We could alternatively
allow for some complementaries in a reduced form way by assuming logit shocks that are
correlated across purchase decisions, but the number of such correlations would again be-
come rapidly intractable, particularly when considering both the types of fruit chosen and
the quantity of each.

The leading alternative to multinomial choice models of demand for many goods are
traditional continuous demand models such as those described in Deaton and Muellbauer
(1980). These models are designed to handle joint purchases of bundles of goods in continuous
quantities. However, such models assume each consumer buys positive quantities of most or
all goods. Methods exist for dealing with small numbers of zeros in such models (essentially,
system Tobit or implicit price models; see, e.g., Yen and Lin 2006 and references therein).
However, in our sparsity case each consumer buys zero amounts of a large majority of the
available goods.

When using traditional demand systems, large numbers of zeros are usually dealt with
by aggregating to form a few broad categories of goods. However, such aggregation leads
to biases of unknown size and direction unless strict aggregation conditions are met. The
separability or price co-movement restrictions required to justify Gorman or Hicksian ag-
gregation (see, e.g., Lewbel (1996) and references therein) often do not hold. Moreover, for
many applications in marketing, industrial organization, public finance, or in health, one is
interested in the determinants of demand for each type of fruit, not just for broad aggregates.
In Section 7.4 we give an example in which the introduction of a tariff on EU sourced fruits
affects each category of fruit differently depending on the fraction sourced in the EU, and
we compute the disparate separate impacts on each type of fruit.
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Aggregate demand elasticities for individual types of fruit are determined by the demand
responses of individual consumers at both the intensive and the extensive margins. They
also depend on the sum of responses across many disparate households. An analysis that
aggregates fruit purchases cannot capture the separate impacts of these two margins nor can
it capture the heterogeneity in individual responses. In response to an increase in the price of
apples, some people might buy fewer apples, some might switch from buying apples to pears,
and still others might drop apples entirely and start buying peaches and nectarines. Because
different households buy different baskets of fruit, individual elasticities vary significantly
across households. Our results discussed in Section 7.1 illustrate these types of effects at
the household level. The estimated elasticities reported in Section 7.3 show the net effect of
these responses on aggregate elasticities, obtained by summing the intensive and extensive
effects across many different disparate consumers. These results have important implications
for welfare calculations, construction of price indices, market structure, and tax policies.

The basic structure of our model incorporates a Gorman (1976, 1980) and Lancaster
(1966) type characteristics model into a continuous demand system with substantial unob-
served preference heterogeneity. The model then allows for many corner solutions in the
demand for characteristics to account for the sparsity of observed individual consumer de-
mands, while the heterogeneity allows different consumers to be at different corner solutions.

Our model has J different kinds of goods, and contains K latent indices that are linear
functions of consumption quantities (in our fruit application, J = 27 and K = 5). As a
result, K is the maximum number of types of goods that any consumer will purchase at
one time (except for knife edge situations of indifference). The number of different types
of goods a particular consumer actually purchases at any one time, which ranges from zero
to K, is determined by the number of nonnegativity constraints that bind (i.e., the number
of corners) in the consumer’s utility maximization problem. When maximizing utility, the
consumer simultaneously determines how many different types of goods to buy, which goods
to buy, and the quantity to purchase of each good.

In one limiting case where K = J , our model reduces to a standard continuous choice
quadratic utility model, where all available goods are purchased in continuous quantities.
At the other extreme, when K = 1 our model reduces to the Dubin and McFadden (1984)
model where consumers choose a single good by standard multinomial choice (e.g., probit),
and also choose to purchase a continuous quantity of that good. With a limiting version of
the matrix B, our model also nests standard multinomial logit or probit models as special
cases.

Our model therefore nests standard multinomial choice (with or without random coef-
ficients), standard continuous demand systems, and classic mixed continuous and discrete
demand models all as special cases.

Then next section is a literature review. Section 3 lays out our model, and Section
4 shows how our model nests standard continuous, discrete, and mixed models as special
cases. Section 5 gives our semiparametric identification results, and describes our estimator.
Sections 6 and 7 describe our fruit demand application and our empirical results. Section 8
concludes, and some Appendices provide additional technical material and estimation details.
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2 Literature

As summarized by, e.g., Blundell and Meghir (1987), the literature on continuous demand
considers three main causes that might generate observations with zero purchases of some
goods. One cause is lexicographic preferences. With lexicographic preferences, an individual
might prefer to consume any amount of other goods, no matter how small, to a given good.
More simply, this occurs when an individual never chooses to buy the good in question,
regardless of income or relative price. An example would be the zero cigarette consumption
of a nonsmoker. A second cause is infrequency of purchase. A good that is durable or
storable may be consumed regularly, but purchases may be infrequently observed. A third
cause is corner solutions. These occur when the price of a good is above its reservation levels
so that nonnegativity constraints are binding. In such a case, at the given level of prices
and total expenditures, a consumer chooses to purchase zero units of the good in question.
Starting from such a corner solution, if the price of the good falls or if incomes or other
goods’ prices rise so that the price falls below the reservation price, then the consumer will
switch to purchase a positive amount.

In our fruit demand example, infrequency of purchase can be largely ruled out over time
spans longer than a few days, because fresh fruit is not durable and cannot be stored for
very long.

Lexicographic preferences are typically modelled analogously to Heckman (1979) type
sample selection models, where a binary choice equation models the decision of whether to
consume the good or not, and then ordinary demand systems are estimated either includ-
ing or excluding the good in question. Systems of equations like these can be estimated
parametrically using Shonkwiler and Yen (1999), or, specifically for demand systems, Yen
and Lin (2006). A recent example of demand system estimation of this type (still with a
small number of goods) is the semiparametric estimator of Sam and Zheng (2010). Mod-
els like these that have equations for determining zero versus non-zero consumption that
are separate from equations determining desired quantities require utility functions that are
fundamentally different for non-consumers and consumers of a good. These types of models
are generally most appropriate for goods that a significant fraction of the population would
never consume, like tobacco or alcohol.

In our model we focus on corners, since it is likely that very few types of fruit are goods
that households would never purchase under any circumstance. In addition, our model allows
for substantial heterogeneity of preferences, and so accommodate the types of behaviour that
lexicographic preferences seek to capture by having the value of parameters that would result
in positive purchases of a good be set equal to extreme values for consumers who would never
purchase the good. Our model allows for the possibility that consumers may purchase all
goods but predicts that purchase of some baskets by some households are extremely rare.

An extreme version of models based on corners are brand choice models, where the
constraint that consumers buy exactly one brand is imposed either a priori or by the structure
of the utility function. For example, Hendel (1999) proposes a model in which firms maximize
a profit function by choosing a single brand (of computer) along with deciding how many
units to buy (firms that are observed to buy multiple brands are divided into separate tasks,
and each task is treated as if it was an individual firm choosing one brand). Similarly Dube
(2004) proposes a model where the purchase for each “consumption occasion” is the decision
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to purchase a single brand, but in a continuous quantity. Other models that entail choosing
a single good among many and consuming that good in continuous quantities include Dubin
and McFadden (1984) and Haneman (1984), and more recently Crawford and Yorokoglu
(2012) and Thomassen, Smith, Schiraldi, and Seiler (2017). In the latter paper the chosen
good is a store, and the quantity is amount spent. This paper has some similarities to ours in
that they allow trips to more than one store (analogous to buying more than one good), and
they employ a quadratic utility function. Crucially, they do not exploit corners to generate
zeros as we do, and so they require two stage budgeting, and cannot tractably handle more
than two stores (i.e., two nonzero goods).

A drawback of all these discrete choice based models is that they rule out the possibility
of many different goods being complements. None would, e.g., allow for the possibility of
making a fruit salad. In contrast, our model is based directly on continuous joint demand
for multiple goods, and so allows for goods to be complements, and more generally places
no separability restrictions on the demands for different goods.

Corners in continuous demand models are generally modelled as censored regressions,
such as Tobit models. The early continuous demand system literature that considered corners
formally focused on cases where either a single good, or a very small number of goods,
may have zeros. Examples include Wales and Woodland (1983) and Lee and Pitt (1986).
Applications of continuous demand systems with many goods and censoring work as follows.
Let p and y be a price vector and total expenditures, respectively. Utility maximization
without nonnegativity constraints are first used to derive models of the form q∗j = fj(p, y)+ej
for each good J , where q∗j is a latent quantity and ej is an error term. Each observed quantity
qj is then assumed to be given by qj = max{0, q∗j}. Examples of such models include Golan,
Perloff, and Shen (2001) and Meyerhoefer, Ranney, and Sahn (2005).

These censored demand models have two flaws. First, either errors ej are arbitrarily
appended to demand functions yielding empirical specifications of the form fj(p, y) + ej, or
errors are incorporated as random utility parameters but ignored in estimation. That is,
demand equations of the form q∗j = f ∗j (p, y, e) + ej are approximated by f ∗j (P, Y ) + ej. The
most common example of this latter method is based on Deaton and Muellbauer’s (1980)
Almost Ideal Demand System (AID), where the vector e appears in the demand functions
f ∗j (P, Y, e) only inside a general price index, which is replaced by an approximate Stone price
index. This is the model proposed by Heien and Wessells (1990).

Most of these censored continuous demand models are not fully consistent with utility
maximization. This is because the nonnegativity constraints are not incorporated into the
consumer’s utility maximization. In these models, the consumer first chooses possibly nega-
tive quantities for some goods to maximize utility, and then actually purchases zero quantities
for these goods. These problems apply to almost all demand systems with many goods that
allow for censoring based either on e or those based on separate selection equations. An
exception is the brand choice models that forbid complementarities discussed earlier, which
solve this problem by imposing extreme forms of separability.

Continuous demand models do exist where random utility parameters e are not removed
by approximation (see, e.g., Lewbel and Pendakur 2009, 2017), but censored versions of
these models have mostly not been developed. An exception is Amano (2018), who essentially
applies Lee and Pitt’s (1986) theory to Lewbel and Pendakur (2009) EASI model, employing
a simulated method of moments estimator to overcome analytical difficulties. However, this
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approach is numerically intensive and becomes impractical when the number of goods is
large. Amano (2018) must therefore still maintain strong two stage budgeting assumptions,
and model at the level of aggregate categories of food, to avoid having too many categories
of food containing zeros.

In our model, zeros are handled using both corners and the Gorman (1976, 1980) and
Lancaster (1966) characteristics model of taste heterogeneity. Dubois, Griffith, and Nevo
(2014) also exploit a Gorman Lancaster characteristics model, but only to account for taste
heterogeneity for types of food, and not for dimension reduction. Theirs is a continuous
demand system, and so despite enormous sample sizes they must still substantially aggregate
across goods to avoid zeros (e.g, they treat spending on all fruits as a single aggregate good).

The model we propose overcomes all of the problems summarized above. Each consumer
takes all nonnegativity constraints directly into account when maximizing utility. The model
directly incorporates error terms as preference heterogeneity parameters and allows for ar-
bitrary patterns of substitutability or complementarity among the goods. The model allows
consumers to buy continuous quantities of some goods and zero quantities of the rest. The
model is broadly applicable to any situation where consumers choose multiple options from
a large discrete choice set.

3 The model

Let qj be the quantity of good j that is purchased by a consumer or a household, and let
q ∈ RJ

+ be the bundle of goods purchased by this consumer. Later we add a subscript
h to index households or consumers, but for now, omit that to ease notation. Suppose
that the utility a consumer gets from purchasing this bundle of goods is a function of K
unobserved latent attributes. Let bkj be the quantity of attribute k that a consumer derives
from buying a unit of good j and let B be the K × J matrix of elements bkj. Then the
K vector of attributes a consumer derives utility from is the vector Bq. Assume K ≤ J,
rank(B) = K and BTB ≥ 0. This is essentially the Gorman-Lancaster linear household
technologies model.

We assume consumers have a strictly quasiconcave utility function over theK dimensional
latent attributes Bq. The particular functional form we use for this utility function is
quadratic. The quadratic utility assumption is not necessary for our analysis but offers
numerical simplicity when applies to large scale datasets.

For now, we assume all consumers have the same matrix B. Later, we introduce ob-
servable (demographics) and unobservable (random coefficient) heterogeneity into B. This
heterogeneity will be important empirically to capture the fact that consumers facing the
same prices choose different baskets of goods.

In a standard continuous demand model, each consumer generally buys nonzero quantities
of all J goods. However, in the Gorman Lancaster model, utility is maximized by consumers
all buying exactly K different types of goods. One feature of our model is that we let K be
much smaller than J , which then accounts for most of the zeros in our data. A second feature
is that we introduce preference variation across consumers in the form of random terms that
are added to each element of the vector of latent attributes Bq (later, we also introduce
additional variation in the form of random coefficients). This preference variation across

6



consumers results in different consumers choosing different baskets of goods. Still, even with
this taste heterogeneity, the Gorman model would be inadequate for real data, because it
implies that each consumer, with probability one, buys the same number of different types
of goods, K.

However, an additional feature of our model is that we allow that maximized utility may
have many corners, i.e., points where indifference curves intersect with axes in attribute
space. This results in utility being maximized with anywhere from zero to K different
types of goods. The more corners, the smaller is the optimal number of different goods to
purchase).

Analogous to a Tobit model, in our model the marginal value of each latent index (i.e.,
the marginal utility from each element of Bq) plus unobserved heterogeneity determines
whether a given attribute is desired sufficiently (relative to its cost) to purchase in nonzero
amounts. The unobserved heterogeneity terms are location shifts in the marginal utility for
each attribute. The interaction of these preference heterogeneity terms with binding corners
then results not only in different consumers purchasing different baskets of goods, but it also
results in different consumers facing different corners, and different numbers of corners. The
result is that our model can encompass the variation seen in real data, where consumers vary
in the numbers of goods that they buy (from zero to K), and vary in the choice of which
goods to buy, and vary in the quantities they purchase of each nonzero good.

Some other models exist that deal with zeros in an analogous way, such as the censored
Almost Ideal Demand System discussed earlier, but these models have the drawbacks de-
scribed in the previous section (one of the most serious drawbacks being that the errors in
those models do not formally correspond to utility parameters).

Assume that each individual chooses q to maximize the utility function

u (q0)− 0.5 (e−Bq)T (e−Bq) such that y ≥ pT q + q0 and q ≥ 0

where u is a monotonically increasing function, y ∈ R+ is total grocery expenditures, q0 ∈ R
is a numeraire good, p ∈ RJ

+ is a price vector, and e ∈ RK , which is randomly distributed
in the population, is a vector of preference parameters corresponding to satiation levels or
bliss points for each attribute k.

This utility function is quadratic and concave in q which allows us to employ standard
quadratic programming techniques to handle zeros coming from corners in our model. These
methods are computationally fast and efficient even for very large quadratic programs. Im-
portantly for large scale estimation, it also allows us to efficiently analyse the inverse of
demand and compute the probabilities of observing the data at hand as functions of model
parameters. Our theory would largely go through with more general utility functions that
are concave in e−Bq, but would be computationally far more burdensome.

This utility function nests both standard continuous demand systems and standard dis-
crete choice models. Continuous quadratic direct utility functions correspond to the special
case of this model with K = J and with BT e ≥ p, ensuring a full dimensional interior
solution. At the other extreme, when K = 1 our model reduces to the Dubin and McFadden
(1984) model where consumers choose a single good by standard multinomial choice (e.g.,
probit), and also choose to purchase a continuous quantity of that good. With a limiting
version of the matrix B, we show that our model also nests standard multinomial logit or
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probit models as a special case. We discuss this equivalence in more detail in Section 4. We
also discuss incorporating additional observable and unobservable heterogeneity in a way
that includes random coefficients multinomial probit or logit as special cases.

For most of our derivations we let u (q0) = q0, making preferences quasilinear and thereby
eliminating income effects. This simplification is reasonable for our empirical application,
since fruit and vegetables are generally a small component of households’ overall budgets.

Assuming quasilinear utility, normalizing the marginal utility of income to be one 1, and
substituting the budget constraint into the objective, the consumer chooses q to maximize

y − pT q − 0.5 (e−Bq)T (e−Bq) such that q ≥ 0. (1)

3.1 First order conditions

The Lagrangian for each consumer’s maximization problem is

L (q, δ) = y − pT q − 0.5 (Bq − e)T (Bq − e) + δT q

where δ is a vector of Lagrange multipliers. The first order conditions are

0 = −p−BT (Bq − e) + δ (2)

0 = δT q, δ ≥ 0, q ≥ 0.

By assumption, the second order conditions are satisfied since −BTB ≤ 0.
Due to quasilinearity, the value of y does not affect the optimal choice of q. This model

implicitly assumes either that the numeraire can be consumed in negative quantities, or that
y ≥ pT q for any optimizing value of q. Note that this latter condition holds automatically
as long as y is large enough to purchase a bundle q that attains the satiation level Bq = e
(though consumers in that situation may still not choose to buy that bundle, if the utility
value of holding more of the numeraire is greater).

This model has the property that any consumer can maximize utility by buying nonzero
amounts of at most K goods. Given prices and B, the first order conditions define a partition
of E ⊂ RK with at most R =

(
J
K

)
elements and where each element of the partition is a

polytope. Let Er be an element of this partition. All consumers with e ∈ Er choose
a quantity qr with the same non-zero components. For each consumer, calculating their
optimal quantity bundle q entails solving a convex quadratic program. Finding an optimum
requires identifying the relevant element of the partition and then computing the optimal
quantity. Because the problem is a concave quadratic program, algorithms exist that obtain a
solution in polynomial time (interior point and related methods). For estimation, computing
the likelihood function requires finding the set Er corresponding to each demand observation
q and then computing the probability that e ∈ Er. Because Er is a polytope, we are able to
construct efficient algorithms to compute this probability.

1The utility function in (1) can be multiplied by any positive number without changing any predictions
or implications of the model.
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3.2 Piecewise linear demands

To prove identification, it is useful to characterize solutions that have the maximum number
K of nonzero elements. To do so, let q = (q1, q2) be a vector for which q1 > 0 and q2 = 0
such that dim (q1) = K. Without loss of generality, the elements of q1 can be taken to be
the first K elements of q. Let p1 and p2 be the corresponding price subvectors and B1 and
B2 the corresponding submatrices of B so that

B =
[
B1 B2

]
.

That is, B1 is the K × K matrix formed from the first K columns of B and B2 is the
K × J −K matrix formed from the remaining J −K columns.

Then q is optimal for all e satisfying

−p1 −BT
1 (B1q1 − e) = 0 (3)

−p2 −BT
2 (B1q1 − e) ≤ 0 (4)

q1 ≥ 0 (5)

Equation (3) defines the inverse demand curve −p1 = BT
1 (B1q1 − e). The inequalities (4)

and (5) define conditions under which choosing q1 > 0 and q2 = 0 is optimal. When B1 is
nonsingular the system can be simplified and solved to provide explicit conditions describing
the piecewise linear demand function

q1 =
(
BT

1 B1

)−1 (
BT

1 e− p1
)

(6)

p2 −BT
2

(
BT

1

)−1
p1 ≥ 0 (7)

q1 ≥ 0. (8)

In words, the nonnegative q1 is optimal if it satisfies the demand equation (6) and if the
projection of its price vector is cheaper than the price vector p2. When (4) is not binding,
small changes in p2 have no impact on demand for q1.

4 Special Cases

In this section we show that our model nests standard continuous choice, discrete-continuous
choice and discrete choice demand models as special cases. In particular, different types of
continuous and multinomial choice demand systems result from setting K = J , K = 1, or
by imposing limiting constraints on B.

4.1 Continuous consumer demand

Suppose K = J . Then the model simplifies to an ordinary continuous quasilinear quadratic
utility function, which (by the first order conditions derived earlier) yields the demand
equations

q =
(
BTB

)−1 (
BT e− p+ δ

)
, 0 = δT q, δ ≥ 0, q ≥ 0.
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where δ are Lagrange multipliers. When all elements of BT e − p are nonnegative then the
nonnegativity constraints do not bind and so with K = J , the system of linear continuous
demand equations given by (6) becomes

q =
(
BTB

)−1 (
BT e− p

)
.

For empirical application, one could then let B or e depend on product characteristics z,
consumer characteristics x, or unobserved heterogeneity η as detailed in Section 5.2 below.
For example, for each household h , one could assume ejh = (β0 + β1xh) zj + εjh to obtain a
linear demand system over continuously demanded goods that could be readily estimated.

4.2 Discrete-continuous choice

Before considering standard discrete choice, it is useful to examine how our model relates
to Dubin and McFadden (1984). They propose a model in which each consumer chooses a
single type of good according to a multinomial probit model and then purchases a continuous
quantity of the chosen good. Suppose that K = 1 in our model. Then B equals the row
vector of nonnegative elements b1j, e equals the scalar e1, and the consumer’s problem of
equation (1) reduces to

max
{
y − pT q − 0.5 (Bq − e1)2

}
(9)

Since K = 1, utility is maximized by purchasing at most one type of good. The con-
sumer’s utility from buying qj units of good j is

y − pjqj − 0.5 (b1jqj − e1)2 ,

which is maximized either at an interior point of the feasible range of values of qj given
by the first order condition −pj − (b1jqj − e1) b1j = 0 or at one of the endpoints of the
feasible range, i.e., either qj = 0 or qj = y/pj. Since fruit is a small component of total
expenditures, we assume that y is large enough to make the solution qj = y/pj (spending
all of one’s money on a single type of fruit) suboptimal. At the interior point, the optimal
quantity is qj = (e1 − pj/b1j) /b1j (which is only feasible if e1 > pj/b1j) which yields utility
y + 0.5 ((pj/b1j)− e1)2 − 0.5e21. Otherwise, at the corner solution, if q = 0 is optimal, then
utility is y − 0.5e21.

It follows that if e1 ≤ min`∈{1,...,J}{p`/b1`} for all goods j, then utility is maximized by
q = 0. Otherwise, utility is maximized by buying the quantity qj = (e1 − pj/b1j) /b1j of the
good j = arg min`∈{1,...,J}{p`/b1`}, and not buying any other good. Let j = 0 denote not
buying any of the goods (i.e., choosing j = 0 corresponds to choosing q = 0). Let p0 = 1
and ln b10 = − ln e1. It then follows that equation (9) implies making a discrete choice to
purchase good j = arg max`∈{0,1,...,J}{ln b1` − ln p`} and a continuous choice of qj as detailed
above.

As discussed in Section 5.2 below, in empirical applications the elements of B may de-
pend on consumer and product characteristics. For example, one could assume ln b1jh =
(β0 + β1xh) zj + εjh where zj and xh are vectors of observed product and consumer charac-
teristics. Letting ε0h = ln e1h, our model reduces to a multinomial choice model in which a
consumer chooses to purchase only the good j that satisfies

j = arg max
`∈{0,1,...,J}

{βhz` − ln p` + ε`h}.
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(which is multinomial probit if ε is normal) and the quantity qj given by qjh = (e1h − pj/b1jh) /b1jh.

4.3 Multinomial discrete choice

The previous section shows one way our model encompasses discrete-continuous choice. Ad-
ditionally, a limiting case of our model nests ordinary multinomial choice or pure discrete
choice.

Suppose we take B to be a diagonal, invertible J × J matrix. Consider the model where
q ≥ 0 is determined by maximizing the utility function(

y − pT q
)
β0 − 0.5qTBTBq + uT q (10)

for some positive scalar β0 (which equals the marginal utility of money) and vector of fixed or
random parameters u. When B is invertible, this model is equivalent to our model, because
for any choice of B and u, one can define e = B−1u, which then makes equation (10) equal
to equation (1) up to an affine transformation (multiplication by β0 and addition of eT e)
that has no effect on consumer choices. Essentially, our original utility model can be derived
from equation (10) by completing the square.

Now consider the limiting case of (10) in which B → 0 and Be→ u where uj = βzj + εj.
In the limit case, maximizing (10) is equivalent to maximizing∑J

j=1
(βzj − β0pj + εj) qj.

With the addition of the constraint that
∑

j qj ≤ 1, this is the standard multinomial choice
model. The parameters (β, β0), may depend on both observable demographics xh and ran-
dom coefficients ηh. In particular, if one assumes that εj are distributed as independent
Type I extreme value random variables, then this is the standard multinomial logit model
that is estimated in transport economics, labour, marketing, and industrial organization.

5 Identification and estimation

In Section 5.1 we maintain the assumption that all consumers have the same B and discuss
conditions sufficient to ensure that B is point identified. We also consider nonparametric
identification of the distribution of the vector e. We show that this distribution is point
identified for all e in the set

{
e : BT e ≥ 0

}
. For values not in this set, the distribution is not

identified because consumers with values of e outside this set, choose q = 0 with probability
one. To see this, consider a consumer with e satisfying BT e ≤ 0. For this consumer, it
follows immediately from the first order conditions (2) that q = 0 for all nonnegative prices.
Therefore, if prices are nonnegative, nothing can be identified regarding the distribution of
e for all e ∈ {e | BT e ≤ 0}, other than the probability of lying in this set.

In Sections 5.2 and 5.3 we discuss heterogeneity in B before discussing estimation in
Section 5.4.

11



5.1 Identification

ASSUMPTION A1: With probability one, consumers buy the minimum number of different
goods necessary to maximize utility given by equation (1). Assume that p is continuously
distributed on the positive orthant with a density that is strictly positive almost everywhere
on the positive orthant. Assume that the distribution of q given p is known.

The assumption that consumers buy the minimum number of goods is a tie breaker for
knife edge situations where utility can be maximized in more than one way. Given the
assumed continuity of prices, these knife edges occur with probability zero. The distribution
of q in a population facing prices p is in principle observable, so Assumption A1 essentially
says that, for proving identification, this distribution is assumed to be known for any value
of p.

ASSUMPTION A2: The K × J matrix B has rank K > 0. For every column Bj of
B, there exists a (K ×K − 1) matrix B−j consisting of K − 1 columns of B such that

B̃j =
[
Bj B−j

]
is nonsingular. Without loss of generality, B is assumed to be upper

triangular.

Assumption A2 ensures that for every good j, there exists a set of K goods including
good j such that some consumers choose to buy a bundle consisting of the those K goods.
Identification of the j′th column of B is assured using expressions like (7) and (6) with

nonsingularity of B̃j in Assumption A2 taking the place of nonsingularity of B1.
For any K × K matrix A such that ATA = I, our utility function is observationally

equivalent to a utility function that replaces B and e with AB and Ae. Specifically, B can
only be identified up to a set of scale and rotation normalizations. That is, the scale (or
magnitude) of each column of B is identified as is an upper triangular matrix defining, within
each column, the relative magnitudes of the elements of B. These normalizations can be
imposed by assuming B is upper triangular.

ASSUMPTION A3: Let fe denote the density function of e. The density fe is strictly
positive on the set E =

{
e | BT e ≥ 0

}
. e is distributed independently of p.

THEOREM 1: Given Assumptions A1, A2, and A3, the density fe (e) is nonparametri-
cally identified for all e ∈ E and the matrix B is identified.

Proof of Theorem 1: Let B be the set of unique combinations of K different goods chosen
from the J available goods, and let R =

(
J
K

)
be the total number of elements of B. Let

r ∈ {1, ...R} index each possible element of B. Let ir = {ir1, ..., irk}be an element of B and let
qr be a vector of quantities satisfying qr (i) = 0 if i /∈ ir. We call qr a K dimensional basket or
bundle corresponding to the list ir. So for a given basket qr, i

r indexes the nonzero elements
of qr. Let pr be the K vector of prices of the goods qr, and let p−r be the J −K vector of
prices of all the other goods. Let Br = B (:, ir) be the submatrix of B corresponding to these

nonzero elements. Let R̃ ⊂ B denote the smallest set of bundles such that Br is nonsingular
for all r ∈ R̃ and Bj is a column in Br for some r. The set R̃ has at least J/K elements and
no more than J −K + 1 elements. By Assumption A2, for every good j the column Bj lies
in some nonsingular Br.
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With these definitions, we first show that for every r ∈ R̃, there is a set A ⊆ P ×Y and a
set Qr =

{
qr ∈ RJ with qr (i) = 0 if i /∈ ir

}
such that Pr (Qr |A) > 0. To show this, consider

qr ∈ Qr. It is optimal to choose qr when inequalities (7) and (6) are satisfied for q = qr. That

is when p−r −BT
−r
(
BT
r

)−1
pr ≥ 0 and qr =

(
BT
r Br

)−1 (
BT
r e− pr

)
≥ 0. Assumptions A2 and

A3 ensure that this event has positive probability.
Given this result, we can now establish identification of B. For each good j, there is a

subset Br of K goods as described above that includes good j. For this set of goods let pr be
sufficiently low, and let p−r be sufficiently high, to yield a positive probability of observing
bundles qr in which qr (i) > 0 for all i ∈ Br. Then qr > 0 for all p′ =

(
p′r, p

′
−r
)

where p′r ≤ pr
and p′−r ≥ p−r (p′, y).

Let Br be the K ×K submatrix consisting of the columns of B corresponding to the set
Br of these K goods, and let pr and qr denote K vectors of prices and quantities of those
K goods. By the first order conditions, a consumer buying qr has BT

r Brqr = BT
r e − pr.

By assumption A2, BT
r Br is nonsingular. The demand functions for these K goods for the

consumers in this region are therefore qr =
(
BT
r Br

)−1 (
BT
r e− pr

)
. Since the distribution of

e does not depend on pr, the derivative with respect to prices pr of the conditional mean (or
any conditional quantile) of qr conditioning on p (which can be calculated at any point that

is not on the boundary of the region) is
(
BT
r Br

)−1
, which identifies BT

r Br.
By Assumption A2, each good j appears in some bundle r for which the above derivation

can be performed and BT
r Br can be identified, so all of the columns of B are recoverable up

to normalizations from the collection of estimates of BT
r Br. At most J −K such bundles r

would be required (so that each good j appears in at least one such bundle) and as few as
J/K such bundles might be needed.

We have now shown that for each r, we can identify

Ar = BT
r Br.

In addition, these matrices share common elements. So, we can pick one bundle r and define

Ar = DrCrC
T
r Dr

where Dr is a positive diagonal matrix and Cr is the Cholesky decomposition of a correlation
matrix. We can then define

Br = CT
r Dr.

This provides the rotation and scale normalizations up to which B is identified. Given
Br = CT

r Dr, the remaining columns of B are identified by sequentially dropping the last
column of Br and replacing it with each remaining column of B. The elements of column j
for j /∈ Br satisfy

∑
i [Bj (i)]2 = d2j for some dj > 0.

Having now shown identification of B, consider the distribution of e. Given Br for all
possible bundles r, we can observe BT

r e = BT
r Brqr + pr for all observable qr, pr pairs. Since

qr and pr are nonnegative, we can uncover observations of BT
r e and hence of e for all e ∈ E,

thereby identifying fe (e) for all e ∈ E. QED.

Theorem 1 shows that fe (e) is identified for e ∈ E. As discussed earlier, for e /∈ E, it is
not possible to learn anything about fe (e) other than the total probability of not lying in
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the set E. The people with values of e /∈ E are never willing to pay a positive price to buy
fruit.

For policy questions such as competition policy questions or tax policy questions, these
people are irrelevant. They are outside the market. For policy questions involving exter-
nalities such as public health, they may be relevant and policy makers may be interested in
learning about the distribution of e for those consumer types. In that case, policy makers
have several options. They could estimate bounds on policy responses, they could introduce
experiments with subsidies to generate negative prices, or they could identify the distribu-
tion by imposing shape or parameter restrictions on fe. Since fe (e) is identified over a large
(positive measure) subset of the support of e, in general it could be fully identified either by
semiparametric shape restrictions such as radial symmetry, or by finitely parameterizing the
density. It then follows by Theorem 1 that the model is completely identified.

5.2 Heterogeneity in B

We now introduce heterogeneity in B and discuss how B shapes product choices and the de-
gree of substitutability and complementarity between goods. The main reason we introduce
heterogeneity in B is empirical. Prices alone do not explain the consumption patterns in the
data. Consumers facing the same prices choose different fruit baskets.

Let Bh be the matrix of preference parameters for household h, let Bh
j be column j in

Bh and let bhkj be row k column j in Bh. As discussed in Section 4.2, when K = 1, the ratio
of pj to |bh1j| determines product choice for household h. Household h purchases the good
with the smallest value of

pj

|bh1j| . In this case, all goods are perfect substitutes and goods

with low prices and large values of |bh1j| are purchased.

When K > 1, the magnitude of each column vector ‖Bh
j ‖ =

√∑K
k=1 (bhkj)

2, plays a simi-

lar role. When ‖Bh
j ‖ is large relative to pj, the product j is likely to be purchased. However,

now households may buy more than one good and goods may be complements. Now, the
relative magnitudes of the elements within a column of Bh, determine how important each
good is in producing each latent attribute. They also govern the degree to which goods are
complements or substitutes.

As discussed above, Bh is identified only up to scale and rotation normalizations. To
impose these normalizations while incorporating heterogeneity in a flexible way, we parame-
terize Bh as follows. First, we normalise Bh to be upper triangular so that bhkj = 0 if k > j.
Then we convert the nonzero elements of each column of Bh into hyperspherical coordinates.
That is, for each j, we define

(
dhj, C

h
j

)
= H

(
Bh
j

)
where dhj = ‖Bh

j ‖, ‖Ch
j ‖ = 1, and H is

the hyperspherical coordinate transformation detailed in Appendix A. In the hyperspherical
coordinate representation dhj ∈ R+, chkj ∈ [0, π] for all k ≤ min(K, j)− 2, and chkj ∈ [0, 2π]
for k = min(K, j) − 1. Here, chkj is the element in row k of vector Ch

j . Finally, we assume
that

ln dhj = zTj βh (11)

chkj = πΦ−1
(
zTkjγh

)
∀k ≤ min(K, j)− 2 (12)

chkj = 2πΦ−1
(
zTkjγh

)
∀k = min(K, j)− 1 (13)
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where Φ is the normal CDF, (zj, zkj) are vectors of product characteristics, and (βh, γh) are
vectors of consumer specific parameters. The log transformation ensures that dhj is positive
and the inverse normal transformations ensure that chkj are constrained to lie in the relevant
intervals.

We assume

βhj = βj0 + βTj1xh + βTj2ηh (14)

γhkj = γkj0 + γkj1xh + γkj2ηh (15)

where xh is a vector of observable demographic variables and ηh is a Nη dimensional vector of
low dimensional unobservable latent factors. The J ×Nη matrix β2 =

[
β12, ..., βj2, ..., βJ2

]
is

an upper triangular matrix of factor loadings mapping the low dimensional η into the random
coefficients βh. Let NC = (K − 1)

(
J − K

2

)
be the number of elements of {Cj}Jj=2 Then, the

NC × Nη matrix γ2 =
[
γ122, ..., γKJ−1,2

]
is an upper triangular matrix of factor loadings

mapping the low dimensional η into the random coefficients ch. Note that the matrices of
factor loadings are normalized to be upper triangular.

In terms of product substitutability, this specification nests the fully unrestricted case in
which (zj, zkj) are vectors of dummy variables defined by product names and more restricted
case where (zj, zkj) are vectors of observable product characteristics. The former case is
unrestricted in the sense that no patterns of substitutability are imposed on Bh. The latter,
depending on the set of observable characteristics available, imposes that products with
similar values of (zj, zkj) are similar.

In terms of heterogeneity across households, the flexibility of the model depends on the
set of observable variables available and on the dimension and distribution of η. In our
empirical application we assume that the dimension of ηh is either 2 or 3 and that it is
normally distributed.

The model is highly flexible in that the support of the random coefficients spans the space
of upper triangular matrices B. In addition, we allow random coefficients to affect both the
importance of each product ‖Bj‖ and the patterns of substitution and complementarity.
This flexibility is important to capture the wide variety of baskets chosen by households.
Finally, we maintain this flexibility while keeping the dimension of random coefficients low
by using the factor structure in equations (11) and (12).

5.3 Identification of additional heterogeneity

The proof of Theorem 1 works by establishing nonparametric identification of the distribu-
tion of BT e in the positive orthant. When B is constant, Theorem 1 shows this implies
identification of B and nonparametric identification of the distribution of e for all e where
BT e > 0. These results remain true if both B and fe are conditioned on xh.

In our empirical application, we also introduce random coefficients into B as detailed in
the previous section. To maintain identification, we assume that the distributions of both the
random coefficients and e are finitely parameterized, with distributions that are independent
of p.

The proof of Theorem 1 shows that for various subsets r of K goods, people who pur-
chase positive amounts of those K goods (because the price vector pr of those goods is
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sufficiently low and the price vector of all other goods is sufficiently high) do so with de-

mand functions given by qr =
(
BT
r Br

)−1 (
BT
r e− pr

)
. Conditioning on this price regime,

the conditional distribution of qr given prices nonparametrically identifies the distribution

of
(
BT
r Br

)−1 (
BT
r e− pr

)
given pr.

The parameterized distributions of B and e are then identified as long as their parame-

ters can be recovered from moments of
(
BT
r Br

)−1
and of

(
BT
r Br

)−1
BT
r e. In our empirical

application, we assume e is a multivariate K vector normal and, as detailed in the previous
section, we introduce random coefficients into B using a factor structure. Specifically, we
assume ηh is a Nη dimensional vector of independent normally distributed latent factors. We
then estimate the factor loadings βj2 and γkj2. The identification of the parameters of nor-
mal distributions from low order moments then ensures identification of this parameterized
model.

5.4 Estimation

We assume the data consists of n independent observations of (ph, qh, xh) for each household
h. Income yh plays no role due to the quasilinear utility assumption. We assume that
e ∼ N (µ,Σ), that η ∼ N (0, I), and that dim (η) = 2. The parameters of the model

are θ = (µ,Σ, β, γ) where β =
{
βj0, βj1, βj2

}J
j=1

is the vector of all parameters in (11)

and γ =
{
γkj0, γkj1, γkj2

}
is the vector of all parameters in (12). The parameters (µ,Σ)

determine the distribution of e. They primarily determine the number of items chosen and
the quantities purchased. The parameters (β, γ) determine the distribution of B. They
govern which products are chosen and in which combinations. They also determine the
response to prices. We estimate the model parameters by maximum likelihood.

We compute the likelihood function in each of three cases. Case 1 is the case where a
consumer purchases exactly K goods. In this case, conditional on the random coefficients,
the mapping from data to e is one-to-one. The likelihood function is simply that of a linear
model with random coefficients and computation merely requires integration with respect to
the distribution of random coefficients. Because we assume a factor structure on the random
coefficients, the dimension of integration is kept low.

Case 2 is the case where a consumer chooses fewer than K items but more than zero.
In this case, conditional on random coefficients, many values of e are consistent with the
observed choice and so the likelihood function is the integral over the polytope in RK defined
by the first order conditions. To compute the integral efficiently, we make a series of change
of variables as detailed in Appendix B to convert the integral to an integral over a hypercube
and then use the tensor product of Gauss-Legendre integration rules to compute the integral
on the hypercube. Because, the region of integration is a polytope in the original coordinates,
the change of variables is simple and fast to compute. A benefit of the change of variables is
that the boundary of the transformed region of integration does not depend on the parameters
so the numerical approximation preserves the fact that the likelihood function is a smooth
function of the parameters.

Case 3 is the case where a consumer chooses to purchase nothing. This case is similar to
case 2 but with a slightly different set of binding inequalities defining the region of integration.

Full details of the likelihood function are given in Appendix B.
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6 Empirical application

We use data from the Kantar World Panel for the UK for calendar year 2008 on all purchases
of food brought into the home by 26,514 households. Using handheld scanners, households
record purchases of all items bought and record prices from till receipts. We treat each
shopping trip as an observation. The data contain a large set of product attributes (at the
barcode level) as well as household characteristics. We use data on all purchases of fruit
excluding a few infrequently purchased categories. After eliminating these small categories,
we observe purchases of 27 different types of fruit including, for example, apricots, bananas,
apples, and cherries.

6.1 Summary statistics

Table 1 shows the purchase frequency of each category of fruit. The top three most fre-
quently purchased categories are bananas (23.79 % of purchases), apples (16.85%) and grapes
(9.99%). The top 15 categories account for 95% of purchases.

Table 2 shows the purchase frequency of different sized baskets. The table shows that
48.18% of baskets contained exactly 1 item (that is, any quantity of one type of fruit),
25.63% contained two items and 13.86% contained 3 items. Households purchased baskets
containing 5 or fewer items 97.67% of the time. A simple discrete choice model that assumes
consumers buy at most one type of fruit, would be wrong 51.82% of the time.

Tables 3-5 show the most frequently purchased two-item combinations. While each of
the top 5 or 10 two-item combinations has an appreciable market share, in aggregate the top
5 account for only 54.34% of two-item combinations and the top 10 account for only 67.20%.
To account for 95% of two-item combinations one must include 105 distinct combinations,
which are all the combinations listed in Tables 3-5. Most of these combinations have small
market shares individually, but together they account for a large share of all two-item baskets.
Our model can account for this wide variation in choices of types of fruit, numbers of types
chosen, and the quantities of each.

Another way to see the variety of choices and the potential role of complementarities is to
look at the frequency of basket size conditional on fruit choice. Tables 6-7 show, conditional
on purchase of a fruit type, how frequently each basket size was purchased. Except for
bananas, cherries, and lemons, all categories are more likely to be purchased in combinations
than as stand-alone categories. The relative frequencies of basket size vary across fruit
categories and the larger baskets are usually less frequent. These patterns very strongly
violate the usual independence assumptions of typical discrete choice demand models.

6.2 Prices

For every shopping trip, we observe the expenditure and price of all items purchased. How-
ever, for items not purchased the price is not observed. To overcome this problem, we follow
standard practice and impute prices using a hedonic regression. For each fruit category we
estimate a hedonic price model

ln pit = βxit + h (t) + εit
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where ln pit is the price of item i in period t, xit is a vector of characteristics of item i in
period t and h (t) is a 6th order polynomial function of time. Time is measured as the day
within the year. Characteristics included in the regressions are country of origin, branded,
organic, tiering (economy, premium or standard), fascia (one of ten firms in the UK or other),
packaging, online shop, and small store.

Figure 1 shows price data and imputed prices for 3 representative examples of the 27
fruit categories: apricots, bananas and cherries. Price is observed for each shopping trip
where a particular fruit is purchased. Each figure shows a scatter plot of observed log prices
and imputed log prices. For apricots and cherries, prices rise in the spring and the autumn.
These are periods when fresh apricots and cherries are more costly and more scarce. In
contrast, the price of bananas is relatively flat. The pictures also make clear that at a single
point in time there is a great deal of variability in price. This variation is primarily due to
variation across fascia and variation due to promotions.

6.3 Price issues

Issues regarding prices include imputations, seasonal unavailability, and potential endogene-
ity. For some stores and time periods, no purchases of a particular fruit are observed. As
noted above, we follow standard procedure in the literature by imputing prices for these
periods using a hedonic pricing model.

For some time periods, the number of observed purchases and hence observed prices are
either zero or extremely low. Fruits (such as ugli fruit) that have very low demand in all
time periods are dropped from the sample, since demand for these is too low and specialized
to be estimated with reasonable precision. Other fruits have very low or zero sales just in
some time periods but not others, due to availability (typically being out of season). For
example, as can be seen in Figure 1, cherries are available in the summer and winter but
not in the spring and the autumn. To handle this situation, we trim observations when sales
within a one week window are below a low threshold. That is, if total sales of a fruit within
a week in our sample are below the threshold, we treat the fruit as unavailable that week
and drop from our sample the few households that did manage to purchase that week. For
these cases, we treat the fruit’s price as being arbitrarily high on those days, to represent
lack of availability.

Essentially, this procedure treats low availability as a supply shock. We interpret this
procedure as a form of asymptotic trimming. By lowering the threshold as the sample
size grows, asymptotically we only treat true zeros as unavailable supply, noting that any
infrequency of purchase or high demand price elasticity will eventually lead to some purchases
in every period where the product is really generally available.

The estimation of our model assumes prices are exogenous. Since we estimate the model
using data on daily purchases, likely sources of endogeneity for fruit demand on any particular
day could include promotional activity, weather (if both prices and demand respond to
weather), and unobserved quality variation. Most of the variation in quality of fruit is either
across stores or seasonal. We capture seasonal variation using monthly dummies in the
model. We treat store choice is exogenous (noting that store choice depends heavily on
factors other than fruit demand, such as distance to the store, and on the other products
consumers consider buying on each trip to the market). We are therefore assuming that,
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that conditional on store, prices are not correlated with demand shocks. Conditional on
seasonal dummies, we expect current weather to shift demand but not price as we expect
stores to rarely if ever change prices in response to changes in high frequency (such as daily)
weather shocks. We include promotional status in our hedonic price models and assume that
conditional on price, unobserved demand shocks are independent of promotional activity. In
summary, given the nature of our data and the controls we include in the model, we expect
that biases from assuming prices are exogenous are likely to be small.

6.4 Potential estimation issues

Our identification proof assumes that prices are continuously distributed over a relatively
large support, which ensures that, with positive probability, most possible combinations of
K = 5 or fewer fruits would be purchased by some subset of consumers. However, in finite
data sets, we may not observe many combinations of less popular fruits being purchased, or
the number of consumers observed buying rare combinations of fruits may be very small.
An analogous problem arises in BLP type models, where some goods may have very small
or zero market shares. In practice, our estimator converges and appears to be numerically
well behaved, as we discuss in the next section. This may be aided in part by our use of a
parametric model for the distribution of random utility parameters, which should allow for
identification even with potentially limited price variation.

7 Empirical results

The total number of parameters in the model is determined by the number of types of
fruit J , the number of indices K (which equals the maximum number of different types of
fruit a single consumer may buy), and Nη, the dimension of unobserved latent factors. For
J = 27, K = 5, and Nη = 2, there are 321 parameters. We estimate these parameters
by maximum likelihood, using our sample of 26,514 observations. At the optimum we find
that the Hessian of the likelihood function is negative definite (largest eigenvalue is -0.15)
and that all parameters are estimated with a high degree of precision. All are statistically
distinct from zero. We restarted the estimation procedure from multiple starting points, and
tested by perturbing the model in multiple directions in the parameter space. We found no
evidence of multiple local optimizers or of failure to converge to a global optimum.

Individual parameter values are difficult to interpret. So, to illustrate our results, we
discuss model predictions for individual households with different random coefficient values,
we summarize aggregate demand curves and elasticities implied by the estimates, and we
provide several different counterfactual simulation exercises..

7.1 Household level demand predictions

To illustrate what the model predicts for individual consumers, we plot predicted demand
for 9 household types. Each type is defined by a realization of the vector η such that for
each type each element of η takes one of three values. For each element, the three values
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are selected from the 25th, 50th or 75th percentile of the respective marginal distributions.
Each type also is set to have values of e equal to the mean.

For each household type, Figure 2 shows the frequency of purchased basket sizes when
prices vary from 50% to 200% of baseline prices (basket size here refers to the number of
different types of fruit, not the quantities of each). These household types rarely purchase
baskets with 5 items. The modal choice is 2 items for households 1, 3 and 6, 3 items for
households 2,4,7, and 9 and 4 items for households 5 and 8. For all households, the number
of items purchased varies from 2 to 4 or 5 except for household 6 who almost always buys 2
items.

For each household type, we also examined how the basket composition varies with price.
For these 9 household types, all baskets contain bananas. Apples are purchased by all
households except household 2 and pears are purchased by all except 1 and 4. Demand for
the other fruits varies across households. Some households bought easy peelers (households
1, 2, 4, and 8) and some bought nectarines (households 1, 3, 5, and 6). Only households 2
and 4 bought grapes and only household 1 bought peaches.

Finally, Figures 3 and 4 plots these households’ demand curves for various fruits, as
functions of the price of bananas and of the price of apples, respectively. Turning first to
Figure 3, the demand curve for bananas is downward sloping in the price of bananas for all
households, but with varying slopes, and these demand curves are kinked for all households
other than household 9. The effects of banana prices on other fruits varies widely; some cross
price effects are negative, some are positive, some are flat, and some switch signs depending
on which combination of products are purchased. Figure 4 shows a similar wide range of
effects on fruit demand by household type as a function of apple prices.

7.2 Aggregate demand predictions

Figures 5 - 7 show estimated aggregate demand curves for each fruit. They also show what
fraction of demand comes from purchases of baskets with 1 to 5 items. While the demand
curves for individual consumers are piecewise linear, the variation across households in slopes
and kink points produces aggregate demand curves that are smooth and show varying degrees
of curvature. The demand for bananas shown in Figure 5 panel (c), has a relatively gentle
slope, the demand for avocados in panel (b) is steeper and has more curvature, and the
demand for apricots in panel (a) is very steep for low prices before flattening substantially
for prices above about £3.4 per kg. These graphs also show how frequently each fruit appears
in baskets of various sizes. For example, most purchases of bananas are in baskets with three
or fewer types of fruits, while dates, which are rarely consumed, are usually purchased in a
basket with four different types of fruit.

7.3 Elasticities

Tables 8 - 11 show estimates of average own and cross price elasticities. All but 4 of the own
price elasticities are between -1.14 (easy peelers) and -7.54 (lychees). Three of the products
have own price elasticities less than one in magnitude: bananas (-0.709), berries (-0.870), and
apples (-0.598). These are three of the top 5 products by market share. This suggests that
these products might at least sometimes be sold as loss leaders, on sale for a relatively low
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price, despite inelastic demand. One of fruit own price elasticities is very large in magnitude;
apricots (-14.7).This is not altogether unexpected. Apricots are purchased in only 0.21 % of
transactions. While they are not the smallest market share products, it is a feature of sparse
demand heterogeneous consumers that demand for products with small market shares can
have very high elasticities, because it only requires a small number of consumers to start
buying the product to produce a very large percentage increase in demand. The aggregate
demand curves for apricots seen in Figure 6 panel (a) shows that the demand curve for
apricots is very steep when prices are low and have flatter demand curves as prices rise.

Typical discrete choice models assume all goods are substitutes and so do not permit
zero or positive cross price effects. Likewise, typical continuous demand models do not have
exactly zero cross price effects. In contrast, in our model estimated cross price effects between
two types of fruit will be exactly zero (consistent with economic theory) when the two types
of fruit are never purchased in the same basket. Tables 8 - 11 show that about a third of all
pairs of fruits have zero cross price effects.

Among the nonzero cross-price elasticities there is a mix of negative and positive effects.
The negative cross-price elasticities indicate that on average in our sample, the goods are
complements. For example, looking at row 3 in Table 8, when the price of bananas rises,
demand for apricots cherries and dates rise suggesting that, on average they are substitutes.
In contrast, demand for apples go do slighlty suggesting that they are complements. The
table also show that demand for bananas is relatively insensitive to the price of other fruits,
while other fruits are more sensitive to the price of bananas. Note also that all of these
elasticities are averages across consumers. Because we have random coefficients, it is possible
for some pairs of fruits to be substitutes for some households and complements for others.

7.4 Counterfactual scenarios

Many current large scale shifts in the economy could affect the markets for fruit in the
UK. For example, Brexit may increase tariffs on fruit imports from Europe. Brexit could
also increase the costs of UK fruit by limiting the supply of farm workers and driving up
wages. Another potential change is that two of the largest supermarket chains, Asda and
Sainsbury’s, who account for 16.8% and 15.5% of UK fruit sales respectively, have proposed
a merger. Such a merger could increase their market power, possibly driving up fruit prices.

At the same time, various tax policy changes could be under consideration by the British
government. Currently, due to concerns about tax incidence on poor households, purchased
food to be eaten at home is not subject to the VAT (value added tax). Extending the
VAT to food could significantly increase tax revenue at the cost of adversely affecting poor
households. Alternatively, the government might consider subsidising fruit consumption to
promote public health (in the past the British government promoted fruit consumption in
other ways, such as the “five a day” advertising campaign).

To analyse effects of these potential changes, we simulated the impacts of five different
policy scenarios:

1. A 10% increase in the prices of EU sourced fruit due to Brexit.

2. A 10% increase in the prices of UK sourced fruit due to Brexit.
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3. A 5% increase in the price of fruit at Asda and Sainsbury’s.

4. A 10% subsidy of fruit prices to promote public health.

5. A 20% VAT tax on fruit to raise revenue.

To simulate the first three scenarios, we used our sample to compute the fraction of each
fruit category sourced from the EU, from the UK and from the rest of the world. We also
computed the fraction of each category sold by Asda and Sainsbury’s. We then used these
shares to compute the price changes implied by each of these events.

For scenario one, the percentage price increase for fruit j is assumed to be τ 1j = 0.1sEU,j
where sEU.j is the share of fruit sourced from the EU. For scenario two, the percentage
price increase for category j is assumed to be τ 2j = 0.1sUK,j where sUK,j is the share of
fruit sourced from the UK. For scenario 3, the percentage price increase is assumed to be
τ 3j = 0.05 (sASDA,j + sSAIN,j) where sASDA,j and sSAIN,j are the shares of fruit sold by Asda
and Sainsbury’s respectively. For scenario four, we assume all fruit prices decrease by 10%.
For scenario 5, we assume all prices increase by 20%.

The price changes resulting from each of these scenarios are detailed in Table 13. The
first two scenarios affect prices in complex ways because the fraction of fruits sourced from
each country varies significantly across fruit types. For example, the EU tariff scenario
has large impacts on the prices of apricots, kiwis, lemons, nectarines, peaches and pears,
because relatively large fractions of those fruits are sourced from the EU. In contrast, the
UK cost shock has moderate impacts on prices because only berries, cherries, apples, pears
and rhubarb have significant UK supplies. The merger has a more balanced impact on prices
because there isn’t much variation in fruit market shares across grocery firms.

While the exact price impacts of Brexit and of the proposed merger are unknown (see
for example Levell et al. 2017), the hypothesised price changes we consider here provide an
illustration of what the first order impacts from Brexit or the proposed merger could be.

For each scenario, given the change in prices, we use our model to compute the impact
on a) demand, b) welfare, c) revenues of grocery firms, and d) tax revenue. Results are given
in Tables 12 and 14.

The second column in Table 12 shows that the EU tariff has a small percentage impact
on most fruit categories but a big negative impact on apricots, kiwis, nectarines, peaches and
pomegranates. For all of these categories except pomegranates, the tariff leads to a more
than 5% price increase. The results show that the impacts are quite large, larger than one
would predict based on the own price elasticities alone. This suggests that the cross price
effects are quite important. Also, the table shows that the tariff increases demand for several
fruits that are primarily sourced from outside the EU. These fruits (lychees, mangos, passion
fruits, and paw-paws) have low levels of demand to begin with. Their prices are unaffected
by the tariff and yet their demand increases substantially.

Scenarios 2 and 3 have much more moderate impacts on prices and also on the resulting
demand for fruit. In scenario 2, demand for cherries, dates and rhubarb fall 7.37%, 5.05%,
and 56.6% respectively. All other responses are less than 5%. In scenario 3, only apricots
(-9.06%) and rhubarb (-7.59%) experience changes in demand larger than 5%.

The final two scenarios, a 10% subsidy of fruit prices and a 20% VAT on fruit, have large
impacts on demand. The former increases demand by less than 10% for 8 categories, 10-20%
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for 12 categories and more than 20% for 5 categories. The latter scenario reduces demand by
less than 10% for 3 categories, 10-20% for 6 categories and more than 20% for 18 categories.

Table 14 reports impacts on total consumer expenditure and on welfare. The top panel
shows the impact on household fruit expenditure per shopping trip. The first 3 scenarios lead
to increases in expenditure ranging from 0.415% to 2.02%. In all cases, other than the UK
cost shock scenario, the effect is increasing in the percentile of expenditure. The percentage
impacts are two to three times larger for high spending households than for low spending
households.

The second panel shows the impact on consumer surplus measured in GBP per household
per shopping trip. The EU tariff costs 10th percentile households about 12.5 pence per
shopping trip and costs the 90th percentile households about 40 pence per shopping trip.
The UK cost shock has very small impacts, less than 5 pence per shopping. The merger
has an intermediate impact. Scenarios 4 and 5 lead to larger price changes and hence larger
impacts on consumer surplus.

The final panel summarizes the aggregate impacts of each scenario. In all cases, other
than the merger, the consumer surplus effects and tax revenue effects offset each other
almost exactly. However, the price increases lead to reductions in firm revenue. The EU
tariff reduces firm revenue by 12.6 pence per household per shopping trip, representing about
a 2% decrease in revenues. The merger increases firm revenues by about 5 pence per trip
and reduces consumer surplus by 11.1 pence per trip.

8 Conclusions

Discrete choice models of demand focus on the fact that consumers must make individual
selections from a wide variety of items in the market. However, many goods are not purchased
and consumed in isolation, but jointly with other goods. Also, many goods are purchased
and consumed in close to continuous quantities rather than in single units. Unlike most
discrete choice models, our model allows consumers to choose more than one good at a
time, allows the chosen goods to be substitutes or complements, and lets goods be consumed
in continuous quantities. Unlike standard continuous consumer demand systems, our model
allows individual consumers to choose to consume zero quantities of most types of goods, and
includes substantial unobserved preference heterogeneity in the form of random coefficients.
Our model nests both standard continuous demand systems like the quadratic direct utility
function and standard discrete choice models like random coefficients logit or probit as special
cases.

In our empirical application to fruit demand in the UK, we uncover a wide range of
demand patterns, including complementarities, kinks, and corners, that could not have been
revealed with traditional discrete or continuous demand models. These results have impor-
tant implications for welfare calculations, construction of price indices, market structure, and
tax policies. We illustrate some of these implications by estimating the impacts of potential
policies such as tariffs or price changes due to Brexit, a change in the VAT, or a merger
between two large grocery chains.
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A Hyperspherical representation of B

Since B is upper triangular, bkj = 0 if k > j. The number of nonzero elements in column Bj

is k = min {K, j}. Let Cj =
[
c1j, ..., ck−1

]T
. The hyperspherical coordinate representation

of the nonzero elements of Bj is given by (dj, Cj) = H (Bj) where H−1 is defined by

B (1, j) = dj cos (c1j) (16)

B (2, j) = dj sin (c1j) cos (c2j)

B (3, j) = dj sin (c1j) sin (c2j) cos (c3j)
...

B
(
k − 1, j

)
= dj sin c1j · · · sin

(
ck−2

)
cos
(
ck−1

)
B
(
k, j
)

= dj sin (c1j) · · · sin
(
ck−2

)
sin
(
ck−1

)
with dj > 0, ckj ∈ [0, π] for k < k − 2 and ck−1 ∈ [0, 2π) .

B Estimation details

The likelihood function for the model is defined for 3 cases. Case 1 applies to observations in
which a household purchased K goods. Case 2 applies to observations in which a household
bought more than zero and fewer than K goods. Case 3 applies to observations in which a
household bought zero goods.

B.1 Case 1: choice of K goods

We drop household subscripts h to ease notation.
Suppose the goods are sorted so that q = (q1, 0) . Let p = (p1, p2) be the corresponding

vector of prices. That is, the first K elements are non-negative and the remaining J − K
elements are 0. Inverting the demand function given in Section 3.2 equation (6), inverse
demand is

e =
(
BT

1

)−1 (
p1 +BT

1 B1q1
)

=
(
BT

1

)−1
p1 +B1q1

p2 ≥ BT
2

(
BT

1

)−1
p1.

Since B is a function of η, η ∼ N(0, I) and e ∼ N (µ,Σ), the case 1 log-likelihood is

ln f1 (q, p, θ) =

∫
η

{
lnφ

[(
BT

1

)−1
p1 +B1q1, µ,Σ

]
+ ln (det (B1))

}
φ(η, 0, I)dη

where f1 is the case 1 density of q conditional on p and φ is the normal density function.

Note that parameter values must satisfy the constraints that p2 ≥ BT
2

(
BT

1

)−1
p1.
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B.2 Case 2: Choice of fewer than K goods

We first derive the likelihood function for fixed B.
Suppose a household chooses q = (q1, 0) with q1 > 0 and dim (q1) = d1 < K. In this case,

for each q1, there are multiple vectors e that satisfy the first order conditions

−p1 −BT
1 (B1q1 − e) = 0 (17)

−p2 −BT
2 (B1q1 − e) ≤ 0 (18)

q1 > 0. (19)

In fact, the set of e values satisfying the first order conditions is a linear space of dimension
K − d1. In these expressions, B1 is a K × d1 matrix with d1 < K and B2 is a (K × J − d1)
matrix.

Let
B1 = USV T

be the singular value decomposition of B1 where U is orthogonal (K ×K) , S =

[
S1

0

]T
where S1 is diagonal (d1 × d1) and V is orthogonal (d1 × d1) . Define ẽ = UT e and partition
ẽ = (ẽ1, ẽ2) where ẽ1 is (d1 × 1) and ẽ2 is (d2 × 1) . Then rewrite (17) as

V
[
S1 0

] [ ẽ1
ẽ2

]
= p1 +BT

1 B1q1

or
V S1ẽ1 = p1 +BT

1 B1q1. (20)

For each q1 there are multiple vectors ẽ that solve (20) . In fact, there is a linear space of
dimension d2. In other words, for each (q1, ẽ2) ∈ Rd1 × Rd2 , there is a unique ẽ1 defined by

ẽ1 = G0p1 +G1q1 (21)

where

G0 = S−11 V T (22)

G1 = S−11 V T
(
BT

1 B1

)
.

Since B1 has rank d1 by assumption, S1 is a (d1 × d1) invertible diagonal matrix and by
construction V −1 = V T .

Since
ẽ = UT e

ẽ ∼ N
(
µ̃, Σ̃

)
where µ̃ = UTµ and Σ̃ = UTΣU. Consider the partially observed random

vector (q1, ẽ2) . q1 is observed but ẽ2 is not. The expressions above imply that the density of
(q1, ẽ2) is

fq1ẽ2 (q1, ẽ2) = fẽ (G0p1 +G1q1, ẽ2) · det (G1)

where (G0, G1) are defined in (22) .

25



We observe q1 if inequality (18) is satisfied. Since B1 = USV T and e = Uẽ, this is
equivalent to

−p2 −BT
2 U
(
SV T q1 − ẽ

)
≤ 0. (23)

Partitioning B̃2 = UTB2 (K × J − d1) as

B̃2 =

[
B̃21

B̃22

]

where B̃21 is size (d1 × J − d1) and B̃22 is size (d2 × J − d1) , inequality (23) is

−p2 −
[
B̃T

21 B̃T
22

]([ S1V
T q1

0

]
−
[
ẽ1
ẽ2

])
≤ 0

or
−p2 − B̃T

21

(
S1V

T q1 − ẽ1
)

+ B̃T
22ẽ2 ≤ 0

Substituting from equation (21) this is equivalent to

B̃T
22ẽ2 ≤ p2 − B̃T

21G0p1 + B̃T
21

(
S1V

T −G1

)
q1. (24)

Rewrite (24) as
M1ẽ2 ≤M2

where
M1 = B̃T

22

is a (J − d1 × d2) matrix and

M2 = p2 − B̃T
21G0p1 + B̃T

21

(
S1V

T −G1

)
q1

is (J − d1 × 1) .
Then the Case 2 likelihood, conditional on B(η) and p is

f2 [q, p, B(η), θ] =

∫
fq1ẽ2 (q1, ẽ2) 1 (M1ẽ2 ≤M2) dẽ2. (25)

Note that f2 [q, p, B(η), θ] = 0 if Pr (M1ẽ2 ≤M2) = 0.

Let d2 = K−d1, let Σ̃22 = C̃T
2 C2 be the variance of ẽ2. That is C̃T

2 is the upper triangular

cholesky decomposition of Σ̃22. Define ẽ2 = C̃T
2 z2+µ̃2 and note that after a change of variables

the density of ẽ can be written

fẽ (ẽ1, z2) = fẽ1 (ẽ1, ν1 (z2) ,Ω1)
e−0.5z

T
2 z2

(2π)
d2
2

where ẽ1 ∼ N (ν1,Ω1) and z2 ∼ N (0, I) where

v1 = µ̃1 + Σ̃12C̃
−1
2 z2

Ω1 = Σ̃11 − Σ̃12Σ̃
−1
22 Σ̃21.

26



Therefore, (25) can be written

f2 [q, p, B(η), θ] =

∫
fq1z2 (q1, z2) 1

(
M̃1z2 ≤ M̃2

)
dz2 (26)

where

fq1z2 (q1, z2) = fe1|z2 (G0 +G1q1, ν1 (z2) ,Ω1)
e−0.5z

T
2 z2

(2π)
d2
2

= f̃q1z2 (q1, z2)
e−0.5z

T
2 z2

(2π)
d2
2

M̃1 = M1C̃
T
2

M̃2 = M2 −M1µ̃2

The matrix M̃1 has the QR decomposition

M̃1 = RQ

where R is (J − d1 × d2) lower triangular and Q is (d2 × d2) orthogonal. Then using the
change of variable z2 = Q−1x, the integral can be written as

f2 [q, p, B(η), θ] =

∫
RQz2≤D

f̃q1z2 (q1, z2)
e−0.5z

T
2 z2

(2π)
d2
2

dz2 (27)

=

∫
Rx≤D

f̃q1z2
(
q1, Q

−1x
) e−0.5xT x

(2π)
d2
2

dx (28)

since Q is an orthogonal matrix. (That is Q−1Q = I and det (Q) = 1) The matrix R is lower
triangular. Therefore, row i has at most i nonzero elements.

Start from xd2 . Let J+
d2

be the set of rows of R that have positive elements in column d2
and J−d2 the set with negative elements. Then for all j ∈ J+

d2
,

−∞ ≤ xd2 ≤

Dj −
∑
i<d2

R (j, i)xi

R (j, d2)

and for all j ∈ J−d2 ,
Dj −

∑
i<d2

R (j, i)xi

R (j, d2)
≤ xd2 ≤ ∞.

So, the bounds on xd2 are xd2 ∈
[
xLd2 , x

H
d2

]
where

xLd2 = max

−∞,max
j∈J−

d2


Dj −

∑
i<d2

R (j, i)xi

R (j, d2)
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and

xHd2 = min

∞, min
j∈J+

d2


Dj −

∑
i<d2

R (j, i)xi

R (j, d2)


 .

We repeat the calculation for j = d2 − 1 through 1. Then the integral is

f2 [q, p, B(η), θ] =

xH1∫
xL1

· · ·

xHd2∫
xLd2

f̃q1z2
(
q1, Q

−1x
) e−0.5xT x

(2π)
d2
2

dx. (29)

Next for all j ≤ d2 define uj = Φ (xj) . Then making the change of variables, the integral
is equivalent to

f2 [q, p, B(η), θ] =

uH1∫
uL1

· · ·

uHd2∫
uLd2

f̃q1z2
(
q1, Q

−1x (u)
)
du (30)

where

uLj = Φ
(
xLj
)

uHj = Φ
(
xHj
)
.

Finally, for all j ≤ d2 making the change of variable uj =
(uHj −uLj )(1+vj)

2
, this is equivalent to

f2 [q, p, B(η), θ] =

1∫
−1

· · ·
1∫

−1

d2∏
j=1

(
uHj − uLj

2

)
f̃q1z2

(
q1, Q

−1x (v)
)
dv. (31)

This equals 0 if uHj ≤ uLj for any j.
The conditional density function f2 depends on the parameters θ and on the random

coefficient η. Integrating out the random coefficients, the Case 2 likelihood function is

ln f2 (q, p, θ) =

∫
η

f2 [q, p, B(η), θ]φ(η)dη.

B.3 Case 3: Choice of 0 goods

Suppose a household chooses q = 0. In this case, the first-order conditions are

−p+BT e ≤ 0. (32)

In this inequality, B is a K × J matrix. Rewrite the inequality as

BT e ≤ p. (33)
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Let e = Cz + µ. Then this is equivalent to

BT (Cz + µ) ≤ p

B̃T z ≤ p−BTµ.

where B̃ = CTB. Let
B̃ = QR

be the QR decomposition of B̃ where R is (K × J) lower triangular. Since Q is orthogonal
QTQ = I and det (Q) = 1.

Then defining z = Qx, the likelihood conditional on B(η) and p can be written

f3 [q, p, B(η), θ] =

∫
RT x≤p−BTµ

e−0.5x
T x

(2π)
K
2

dx. (34)

Start from xK . Let J+
K be the set of rows of C that have positive elements in column K and

J−K the set with negative elements. Let D = p−BTµ. Then for all j ∈ J+
K ,

−∞ ≤ xK ≤
Dj −

∑
i<K

R (j, i)xi

R (j,K)

and for all j ∈ J−K ,
Dj −

∑
i<K

R (j, i)xi

R (j,K)
≤ xK ≤ ∞.

So, the bounds on xK are xK ∈
[
xLK , x

H
K

]
where

xLK = max

−∞,max
j∈J−

d2


Dj −

∑
i<K

R (j, i)xi

R (j,K)




and

xHK = min

∞, min
j∈J+

K


Dj −

∑
i<K

R (j, i)xi

R (j,K)


 .

We repeat the calculation for j = K − 1 through 1. Then the integral is

f3 [q, p, B(η), θ] =

xH1∫
xL1

· · ·
xHK∫
xLK

e−0.5x
T x

(2π)
d2
2

dx. (35)
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Next for all j ≤ K define uj = Φ (xj) . Then making the change of variables, the integral
is equivalent to

f3 [q, p, B(η), θ] =

uH1∫
uL1

· · ·
uHK∫
uLK

du (36)

where

uLj = Φ
(
xLj
)

uHj = Φ
(
xHj
)
.

Finally, for all j ≤ K making the change of variable uj =
(uHj −uLj )(1+vj)

2
, this is equivalent to

f3 [q, p, B(η), θ] =

1∫
−1

· · ·
1∫

−1

K∏
j=1

(
uHj − uLj

2

)
dv. (37)

Integrating out the random coefficients, the Case 3 likelihood is

ln f3 (q, p, θ) =

∫
η

f3 [q, p, B(η), θ]φ(η)dη.
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Table 1: Most frequently purchased fruit categories

Freq. Pct. Cum. Pct.
Banana 371,892 23.79 23.79
Apples 263,369 16.85 40.63
Grapes 156,189 9.99 50.63
Berries+Currants 152,731 9.77 60.40
Easy Peelers 135,073 8.64 69.04
Pears 91,062 5.82 74.86
Orange 62,599 4.00 78.86
Plums 50,879 3.25 82.12
Melons 41,845 2.68 84.80
Nectarines 37,954 2.43 87.22
Lemon 35,593 2.28 89.50
Kiwi Fruit 32,527 2.08 91.58
Pineapples 25,482 1.63 93.21
Avocado 20,810 1.33 94.54
Peaches 16,874 1.08 95.62
Grapefruit 15,248 0.98 96.60
Mango 15,096 0.97 97.56
Cherries 13,792 0.88 98.44
Lime 6,777 0.43 98.88
Dates 3,869 0.25 99.13
Apricot 3,349 0.21 99.34
Pomegranates 2,474 0.16 99.50
Sharon Fruit 2,059 0.13 99.63
Rhubarb 1,867 0.12 99.75
Passion Fruit 1,592 0.10 99.85
Paw-Paws 1,222 0.08 99.93
Lychees 1,114 0.07 100.00

Note: Using sample of all shopping trips in
2008, each row in the table records the fre-
quency of purchase for a single category of
fruit.
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Table 2: Number of categories purchased

Freq. Pct. Cum. Pct.
1 377,096 48.18 48.18
2 200,632 25.63 73.81
3 108,527 13.86 87.67
4 53,301 6.81 94.48
5 24,929 3.18 97.67
6 10,889 1.39 99.06
7 4,590 0.59 99.64
8 1,756 0.22 99.87
9 643 0.08 99.95
10 234 0.03 99.98
11 96 0.01 99.99
12 45 0.01 100.00
13 11 0.00 100.00
14 10 0.00 100.00
15 2 0.00 100.00
Total 782,761 100.00

Note: Using the sample of all shopping trips
in 2008, the table records the frequency with
which consumers purchased fruit baskets con-
taining between 1 and 15 categories of fruit.
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Table 3: Most frequently purchased 2-item combinations (A)

Freq. Pct. Cum. Pct.
Banana, Apples 101533 25.03 25.03
Banana, Berries+Currants 52141 12.85 37.88
Banana, Easy Peelers 24442 6.03 43.91
Banana, Grapes 23977 5.91 49.82
Apples, Easy Peelers 18363 4.53 54.34
Berries+Currants, Apples 15931 3.93 58.27
Apples, Grapes 12052 2.97 61.24
Berries+Currants, Grapes 8592 2.12 63.36
Avocado, Banana 7915 1.95 65.31
Banana, Pears 7681 1.89 67.20
Apples, Pears 6299 1.55 68.76
Banana, Orange 5746 1.42 70.17
Berries+Currants, Easy Peelers 5506 1.36 71.53
Apples, Orange 5070 1.25 72.78
Easy Peelers, Grapes 4856 1.20 73.98
Banana, Melons 3551 0.88 74.85
Banana, Nectarines 3244 0.80 75.65
Banana, Lemon 3187 0.79 76.44
Banana, Kiwi Fruit 3144 0.78 77.21
Berries+Currants, Cherries 3018 0.74 77.96
Banana, Plums 2916 0.72 78.68
Avocado, Berries+Currants 2514 0.62 79.30
Banana, Cherries 2511 0.62 79.92
Berries+Currants, Melons 2151 0.53 80.45
Berries+Currants, Nectarines 2133 0.53 80.97
Apples, Kiwi Fruit 2043 0.50 81.48
Apples, Lemon 2009 0.50 81.97
Apples, Melons 1898 0.47 82.44
Banana, Grapefruit 1829 0.45 82.89
Apples, Nectarines 1803 0.44 83.33
Apples, Plums 1790 0.44 83.77
Avocado, Apples 1751 0.43 84.21
Grapes, Pears 1745 0.43 84.64
Easy Peelers, Pears 1734 0.43 85.06
Grapes, Orange 1508 0.37 85.44

Note: The table records the frequency with which var-
ious 2-item combinations were purchased.
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Table 4: Most frequently purchased 2-item combinations (B)

Freq. Pct. Cum. Pct.
Berries+Currants, Kiwi Fruit 1485 0.37 85.80
Berries+Currants, Orange 1426 0.35 86.15
Banana, Pineapples 1392 0.34 86.50
Berries+Currants, Plums 1391 0.34 86.84
Berries+Currants, Lemon 1285 0.32 87.16
Berries+Currants, Pears 1275 0.31 87.47
Apricot, Banana 1263 0.31 87.78
Grapes, Kiwi Fruit 1262 0.31 88.09
Grapes, Melons 1237 0.30 88.40
Grapes, Plums 1201 0.30 88.69
Banana, Peaches 1126 0.28 88.97
Banana, Mango 1109 0.27 89.24
Easy Peelers, Plums 1087 0.27 89.51
Banana, Dates 1060 0.26 89.77
Easy Peelers, Orange 1060 0.26 90.04
Apples, Grapefruit 986 0.24 90.28
Grapes, Nectarines 980 0.24 90.52
Easy Peelers, Melons 963 0.24 90.76
Easy Peelers, Lemon 949 0.23 90.99
Berries+Currants, Pineapples 899 0.22 91.21
Grapes, Lemon 871 0.21 91.43
Berries+Currants, Peaches 870 0.21 91.64
Easy Peelers, Kiwi Fruit 861 0.21 91.85
Berries+Currants, Mango 842 0.21 92.06
Apples, Pineapples 818 0.20 92.26
Apples, Plums 1790 0.44 83.77
Avocado, Apples 1751 0.43 84.21
Grapes, Pears 1745 0.43 84.64
Easy Peelers, Pears 1734 0.43 85.06
Grapes, Orange 1508 0.37 85.44
Berries+Currants, Kiwi Fruit 1485 0.37 85.80
Berries+Currants, Orange 1426 0.35 86.15
Banana, Pineapples 1392 0.34 86.50
Berries+Currants, Plums 1391 0.34 86.84
Berries+Currants, Lemon 1285 0.32 87.16

Note: The table records the frequency with which var-
ious 2-item combinations were purchased.
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Table 5: Most frequently purchased 2-item combinations (C)

Freq. Pct. Cum. Pct.
Berries+Currants, Pears 1275 0.31 87.47
Apricot, Banana 1263 0.31 87.78
Grapes, Kiwi Fruit 1262 0.31 88.09
Grapes, Melons 1237 0.30 88.40
Grapes, Plums 1201 0.30 88.69
Banana, Peaches 1126 0.28 88.97
Banana, Mango 1109 0.27 89.24
Easy Peelers, Plums 1087 0.27 89.51
Banana, Dates 1060 0.26 89.77
Easy Peelers, Orange 1060 0.26 90.04
Apples, Grapefruit 986 0.24 90.28
Grapes, Nectarines 980 0.24 90.52
Easy Peelers, Melons 963 0.24 90.76
Easy Peelers, Lemon 949 0.23 90.99
Berries+Currants, Pineapples 899 0.22 91.21
Grapes, Lemon 871 0.21 91.43
Berries+Currants, Peaches 870 0.21 91.64
Easy Peelers, Kiwi Fruit 861 0.21 91.85
Berries+Currants, Mango 842 0.21 92.06
Apples, Pineapples 818 0.20 92.26
Orange, Pears 818 0.20 92.47
Nectarines, Plums 791 0.19 92.66
Cherries, Apples 774 0.19 92.85
Lemon, Orange 741 0.18 93.03
Avocado, Easy Peelers 699 0.17 93.21
Easy Peelers, Nectarines 691 0.17 93.38
Apricot, Berries+Currants 673 0.17 93.54
Apples, Mango 664 0.16 93.71
Pears, Plums 618 0.15 93.86
Apples, Peaches 611 0.15 94.01
Avocado, Grapes 575 0.14 94.15
Grapes, Pineapples 572 0.14 94.29
Cherries, Grapes 556 0.14 94.43
Lemon, Lime 542 0.13 94.56
Grapes, Grapefruit 513 0.13 94.69

Note: The table records the frequency with which var-
ious 2-item combinations were purchased.
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Table 6: Number of categories purchased conditional on fruit type (A)

Size of fruit basket
1 2 3 4 5 6 Total

Apricot 425 618 656 560 409 681 3349
12.69 18.45 19.59 16.72 12.21 20.33 100.00

Avocado 5099 4592 3903 2879 1938 2399 20810
24.50 22.07 18.76 13.83 9.31 11.53 100.00

Banana 121133 103981 71415 39854 20041 15468 371892
32.57 27.96 19.20 10.72 5.39 4.16 100.00

Berries+Currants 46458 37782 28220 18430 11102 10739 152731
30.42 24.74 18.48 12.07 7.27 7.03 100.00

Cherries 2611 3296 2778 2040 1336 1731 13792
18.93 23.90 20.14 14.79 9.69 12.55 100.00

Dates 1104 867 703 494 285 416 3869
28.53 22.41 18.17 12.77 7.37 10.75 100.00

Apples 59971 76517 59414 34882 18040 14545 263369
22.77 29.05 22.56 13.24 6.85 5.52 100.00

Easy Peelers 30193 35914 30488 18977 10402 9099 135073
22.35 26.59 22.57 14.05 7.70 6.74 100.00

Grapes 36085 39580 33187 22622 13088 11627 156189
23.10 25.34 21.25 14.48 8.38 7.44 100.00

Grapefruit 2387 2985 2930 2567 1857 2522 15248
15.65 19.58 19.22 16.83 12.18 16.54 100.00

Kiwi Fruit 4297 6561 6821 5705 4081 5062 32527
13.21 20.17 20.97 17.54 12.55 15.56 100.00

Lemon 8175 7736 6671 5183 3601 4227 35593
22.97 21.73 18.74 14.56 10.12 11.88 100.00

Lime 975 1372 1302 1082 835 1211 6777
14.39 20.24 19.21 15.97 12.32 17.87 100.00

Lychees 182 210 226 170 126 200 1114
16.34 18.85 20.29 15.26 11.31 17.95 100.00

Note: The table records the frequency of each fruit basket size conditional
on purchasing the listed fruit category. Column 1 lists the fruit categories.
The middle columns record the frequencies. The final column records the
total number of observations of each type.
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Table 7: Number of categories purchased conditional on fruit type (B)

Size of fruit basket
1 2 3 4 5 6 Total

Mango 2074 2865 3059 2533 1830 2735 15096
13.74 18.98 20.26 16.78 12.12 18.12 100.00

Melons 7669 9212 8553 6539 4494 5378 41845
18.33 22.01 20.44 15.63 10.74 12.85 100.00

Nectarines 6141 8720 8061 6114 4187 4731 37954
16.18 22.98 21.24 16.11 11.03 12.47 100.00

Orange 12404 15247 13809 9562 5739 5838 62599
19.82 24.36 22.06 15.28 9.17 9.33 100.00

Passion Fruit 218 317 283 246 200 328 1592
13.69 19.91 17.78 15.45 12.56 20.60 100.00

Paw-Paws 138 219 234 216 154 261 1222
11.29 17.92 19.15 17.68 12.60 21.36 100.00

Peaches 2811 3855 3528 2667 1766 2247 16874
16.66 22.85 20.91 15.81 10.47 13.32 100.00

Pears 11486 20541 22356 16794 10240 9645 91062
12.61 22.56 24.55 18.44 11.25 10.59 100.00

Pineapples 4857 5352 4905 3959 2734 3675 25482
19.06 21.00 19.25 15.54 10.73 14.42 100.00

Plums 8947 11592 10874 8150 5423 5893 50879
17.58 22.78 21.37 16.02 10.66 11.58 100.00

Pomegranates 559 565 454 346 262 288 2474
22.59 22.84 18.35 13.99 10.59 11.64 100.00

Rhubarb 356 393 380 293 209 236 1867
19.07 21.05 20.35 15.69 11.19 12.64 100.00

Sharon Fruit 341 375 371 340 266 366 2059
16.56 18.21 18.02 16.51 12.92 17.78 100.00

Total 377096 401264 325581 213204 124645 121548 1563338
24.12 25.67 20.83 13.64 7.97 7.77 100.00

Note: The table records the frequency of each fruit basket size conditional
on purchasing the listed fruit category. Column 1 lists the fruit categories.
The middle columns record the frequencies. The final column records the
total number of observations of each type.
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Table 8: Elasticities (1)

Price Apricots Avocados Bananas Berries Cherries Dates Apples
pApricots -14.7 0 0.00781 -0.000131 0 0 -0.00123
pAvocados -7.35e-12 -1.93 -0.00451 -0.0232 0.226 0.00919 -0.0107
pBananas 2.45 -0.0626 -0.709 0.0832 0.155 0.331 -0.103
pBerries -0.059 -0.464 0.12 -0.87 -0.261 -0.972 0.135
pCherries 0 0.204 0.0101 -0.0117 -2.63 0.0252 -0.0174
pDates 0 0.00221 0.00573 -0.0117 0.00672 -3.37 0
pApples -0.878 -0.338 -0.236 0.214 -0.613 0 -0.598
pEasyPeelers 3.36 0.677 0.212 0.00107 -0.354 0.175 0.0895
pGrapes -0.0136 -0.359 0.0439 0.488 -0.0112 0.00153 -0.031
pGrapefruits 0 -0.000842 0.000163 -0.0014 0.000223 0.236 -0.000314
pKiwis -0.306 0.134 0.0221 -0.0123 0 0 0.00365
pLemons -0.0446 -0.0398 0.0131 0.0572 0.44 0.411 -0.0197
pLimes 0 0.00484 0.0078 -0.000514 0.0275 0.178 -8.7e-05
pLychees 0 0 -0.000343 0.000538 0 0.0499 0
pMangos 0 0.111 -0.0121 -0.013 0.222 0 0.00117
pMelons -0.041 0.0126 -0.056 -0.0931 0.00674 0.223 -0.0312
pNectarines 6.82 0.0501 -0.0452 -0.00887 0.275 0 0.0232
pOranges -0.0139 0.253 -0.0122 -0.0495 0.273 1.49 -0.0233
pPassionfruits 0 0.0237 0.00295 0 0.0193 0 -0.000288
pPaw−paws 0 0.00193 0.000361 -1.15e-05 0.0263 0 -0.000176
pPeaches 0 0.00303 -0.00464 0.0299 0.303 -0.000169 0.0458
pPears 0 0.394 0.197 -0.0322 0.525 0.00124 0.0297
pPineapples 0 -0.0135 0.0192 0.0194 -0.0327 0 2.47e-06
pPlums 0.551 0.0122 -0.00602 -0.0885 0.0354 -0.0113 0.125
pPomegranates -0.532 0.00265 0.00256 0.000682 0 0 0.000675
pRhubarb 0 0.0109 -0.0011 0.000239 0 0 -4.63e-05
pSharonfruits 0 -0.00701 0.0053 0.0123 0.00277 0.492 -0.00207
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Table 9: Elasticities (2)

Price Easy Peelers Grapes Grapefruits Kiwis Lemons Limes Lychees
pApricots 0.00548 -2.78e-05 0 -0.00297 -0.00066 0 0
pAvocados 0.0249 -0.0166 -0.00315 0.0293 -0.0133 0.0197 0
pBananas 0.108 0.028 0.00846 0.0674 0.0607 0.44 -0.384
pBerries 0.000786 0.452 -0.105 -0.0539 0.383 -0.0418 0.866
pCherries -0.0117 -0.000465 0.000754 0 0.132 0.101 0
pDates 0.00155 1.7e-05 0.213 0 0.0331 0.174 0.967
pApples 0.104 -0.0454 -0.0372 0.0254 -0.208 -0.0112 0
pEasyPeelers -1.14 -0.176 0.178 0.372 -0.102 -0.121 -0.0614
pGrapes -0.14 -1.28 0.175 -0.0458 0.535 -0.00518 0
pGrapefruits 0.00175 0.00215 -3.48 0 0.0323 0.0194 0.243
pKiwis 0.0624 -0.00964 0 -2.39 -0.0579 0 0
pLemons -0.0112 0.074 0.362 -0.038 -2.48 0.518 2.43
pLimes -0.00109 -5.88e-05 0.0179 0 0.0426 -5.32 0.239
pLychees -2.81e-05 0 0.0113 0 0.0101 0.0121 -7.54
pMangos -0.00935 0.0166 0 0 0.0373 0.0579 0
pMelons -0.0741 0.118 1.26 0.000817 0.129 1.06 0
pNectarines 0.00835 -0.0304 0 0.000693 0.0514 0 0
pOranges -0.0834 -0.0434 0 0.00133 0.0053 0.529 0
pPassionfruits -0.00154 0.00244 0 0.00158 0 0 0
pPaw−paws 7.16e-05 -2.44e-05 0 -0.000206 0.000829 0 0
pPeaches 0.0346 0.116 -0.00455 -0.0334 0.123 0 0
pPears 0.369 -0.168 0 0.0602 -0.0267 0.0658 0
pPineapples 0.000512 0.0392 0 0.0266 0.00675 0 0
pPlums 0.112 0.00717 -0.00239 0.83 -0.135 0 0
pPomegranates 0.00105 4.11e-05 0 0.00203 0.0081 0 0
pRhubarb -0.000242 0.00033 0.0107 0 0.00705 0 0
pSharonfruits -0.0258 0.0153 0.256 0 0.205 0.656 0
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Table 10: Elasticities (3)

Price Mangos Melons Nectarines Oranges Passion fruits Paw-paws Peaches
pApricots 0 -0.000205 0.155 -7.8e-05 0 0 0
pAvocados 0.149 0.00142 0.0258 0.0321 0.399 0.349 0.001
pBananas -0.224 -0.0876 -0.323 -0.0215 0.688 0.908 -0.0213
pBerries -0.349 -0.21 -0.0912 -0.125 -2e-11 -0.0415 0.198
pCherries 0.267 0.000685 0.128 0.0312 0.293 4.29 0.0904
pDates 0 0.00606 0 0.0455 0 0 -1.35e-05
pApples 0.0496 -0.111 0.378 -0.0936 -0.153 -1.01 0.481
pEasyPeelers -0.34 -0.227 0.117 -0.287 -0.703 0.352 0.311
pGrapes 0.482 0.287 -0.338 -0.119 0.889 -0.0955 0.834
pGrapefruits 0 0.0379 0 0 0 0 -0.000403
pKiwis 0 0.00042 0.00163 0.000768 0.121 -0.17 -0.0505
pLemons 0.149 0.0436 0.0791 0.00201 0 0.449 0.122
pLimes 0.019 0.0293 0 0.0165 0 0 0
pLychees 0 0 0 0 0 0 0
pMangos -4.7 0.0456 0.253 0.024 0 0 0.0299
pMelons 0.541 -1.81 0.0612 0.401 0.0461 0 0.0297
pNectarines 0.659 0.0134 -2.67 0.0483 0 0 0.0833
pOranges 0.253 0.357 0.197 -1.83 0.547 0 0.212
pPassionfruits 0 0.000309 0 0.00412 -3.12 0 -0.0128
pPaw−paws 0 0 0 0 0 -6.63 2.43e-05
pPeaches 0.12 0.0101 0.129 0.0809 -0.65 0.0133 -3.64
pPears 0.558 0.279 0.1 0.434 0 0.738 0.0703
pPineapples 0.0734 0 0 0 0 0 0.0347
pPlums 0.0124 -0.000398 0.0075 -0.00211 -0.262 -0.439 -0.0724
pPomegranates 0 0 -0.00361 0.00295 0.00605 0 0
pRhubarb 0 0.00498 0 0.00733 0 0 -2.64e-05
pSharonfruits -0.167 0.0244 0.0196 0.0823 0 0 0
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Table 11: Elasticities (4)

Price Pears Pineapples Plums Pomegranates Rhubarb Sharon fruits
pApricots 0 0 0.00329 -0.2 0 0
pAvocados 0.0285 -0.0068 0.00165 0.0226 0.167 -0.0101
pBananas 0.198 0.135 -0.0112 0.303 -0.233 0.106
pBerries -0.0466 0.196 -0.239 0.116 0.0735 0.353
pCherries 0.0342 -0.0149 0.00431 0 0 0.00359
pDates 2.17e-05 0 -0.000368 0 0 0.17
pApples 0.0682 3.96e-05 0.533 0.182 -0.0225 -0.0944
pEasyPeelers 0.726 0.00703 0.41 0.244 -0.101 -1.01
pGrapes -0.263 0.429 0.021 0.00759 0.11 0.477
pGrapefruits 0 0 -8.6e-05 0 0.0437 0.0984
pKiwis 0.0199 0.0612 0.51 0.0788 0 0
pLemons -0.00579 0.0102 -0.0543 0.206 0.324 0.881
pLimes 0.00117 0 0 0 0 0.232
pLychees 0 0 0 0 0 0
pMangos 0.0302 0.0277 0.00125 0 0 -0.18
pMelons 0.179 0 -0.000476 0 0.678 0.311
pNectarines 0.0141 0 0.00197 -0.0598 0 0.0548
pOranges 0.248 0 -0.00225 0.199 0.889 0.934
pPassionfruits 0 0 -0.0021 0.00307 0 0
pPaw−paws 0.000295 0 -0.000327 0 0 0
pPeaches 0.0155 0.053 -0.0294 0 -0.00122 0
pPears -2.15 0.000314 -0.0263 0.0819 0 1.76
pPineapples 4.49e-05 -2.35 0.0793 0 0 0
pPlums -0.0141 0.298 -1.97 -0.522 0 0
pPomegranates 0.000696 0 -0.00827 -3.85 0 0
pRhubarb 0 0 0 0 -6.03 0
pSharonfruits 0.0885 0 0 0 0 -5.36
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Table 12: Percentage change in price due to tax/price change

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5
Fruit Baseline EU tariff UK cost shock Merger Subsidy VAT
Apricots 3.44 6.52% -7.15e-11% 2.21% -10% 20%
Avocados 4.3 1.93% 6.19e-11% 1.73% -10% 20%
Bananas 2.55 -4.67e-11% -4.67e-11% 1.56% -10% 20%
Berries 7.49 3.54% 4.3% 1.75% -10% 20%
Cherries 7.1 3.47% 1.9% 1.45% -10% 20%
Dates 1.54 0.05% 1.97e-11% 1.08% -10% 20%
Apples 4.91 2.86% 1.54% 1.66% -10% 20%
Easy Peelers 5.28 4.24% -6.45e-11% 1.71% -10% 20%
Grapes 5.84 3.39% 0.08% 1.46% -10% 20%
Grapefruits 2.39 0.87% -3.6e-11% 1.75% -10% 20%
Kiwis 4.84 6.65% 7.56e-11% 1.55% -10% 20%
Lemons 4.41 5.21% -1.67e-11% 1.7% -10% 20%
Limes 2.89 2.27% -7.48e-11% 1.91% -10% 20%
Lychees 1.37 -6.87e-11% -6.87e-11% 1.4% -10% 20%
Mangos 3.87 6.5e-11% 6.5e-11% 1.38% -10% 20%
Melons 2.6 1.81% -8.08e-11% 1.51% -10% 20%
Nectarines 4.17 5.96% 9.81e-11% 1.91% -10% 20%
Oranges 4.94 2.88% 8.79e-11% 1.66% -10% 20%
Passion fruits 1.8 6.02e-12% 6.02e-12% 1.51% -10% 20%
Paw-paws 1.22 -1.02e-10% -1.02e-10% 1.48% -10% 20%
Peaches 2.57 8.97% -1.67e-11% 1.54% -10% 20%
Pears 4.98 5.15% 1.54% 1.59% -10% 20%
Pineapples 2.48 6.22e-11% 6.22e-11% 1.22% -10% 20%
Plums 4.65 3.19% 0.26% 1.61% -10% 20%
Pomegranates 3.27 3.71% -5.3e-11% 1.14% -10% 20%
Rhubarb 2.51 0.11% 9.87% 1.78% -10% 20%
Sharon fruits 8.27 0.5% 9.95e-11% 1.7% -10% 20%

Note: The first column shows the baseline price for each fruit (GBP per kilogram). The
remaining columns show the percentage impact of the change in tax or prices.
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Table 13: Percentage change in demand due to tax/price change

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5
Fruit Baseline (kg) EU tariff UK cost shock Merger Subsidy VAT
Apricots 2.39e-08 -21.5% -1.15% -9.06% 29.6% -29.7%
Avocados 4.32e-07 1.42% -1.26% -2.44% 14.3% -22.7%
Bananas 1.01e-05 1.97% 0.566% -0.644% 4.28% -8.1%
Berries 4.96e-06 -1.3% -3.75% -0.692% 3.15% -5.95%
Cherries 2.36e-07 -2.45% -7.37% -1.4% 14.9% -23.4%
Dates 2.89e-07 5.69% -5.05% 0.481% 7.42% -14.6%
Apples 1.2e-05 0.0861% -0.283% -0.602% 3.97% -7.31%
Easy Peelers 9.56e-06 -2.46% 0.805% -1.18% 6.92% -12.4%
Grapes 6.89e-06 -3.07% 1.83% -1.24% 9.3% -16.8%
Grapefruits 2.08e-07 3.49% -0.241% -2.51% 11.5% -20.8%
Kiwis 1.75e-06 -11.5% -0.0034% -1.69% 12.3% -19.6%
Lemons 1.26e-06 -9.77% 1.76% -2.28% 13.5% -20.4%
Limes 1.58e-07 -6.59% 0.357% -4.62% 21.2% -33.5%
Lychees 1.69e-08 11.8% 3.13% -3.68% 36.9% -52.4%
Mangos 3.59e-07 13.6% -0.474% -2.7% 26.5% -40.4%
Melons 6.35e-06 -0.612% -0.7% -1.95% 13.9% -23.2%
Nectarines 8.65e-07 -12% 1.35% -3.95% 19.5% -30.9%
Oranges 2.97e-06 -3.25% 0.245% -2.2% 13% -23.2%
Passion fruits 6.14e-08 7.31% 2.62% -2.87% 18.9% -28.1%
Paw-paws 8.42e-09 21% 23% -1.85% 16.7% -15.6%
Peaches 2.18e-06 -26.6% 2.37% -1.81% 13.9% -22.6%
Pears 5.15e-06 -7.35% -3.61% -1.14% 8.41% -16%
Pineapples 1.48e-06 4.91% 1.34% -0.829% 12.7% -20.6%
Plums 2.97e-06 -1.43% -0.786% -1.24% 8.2% -13.9%
Pomegranates 6.66e-08 -12.2% 0.677% -3.41% 39.2% -44.4%
Rhubarb 4.82e-08 8.78% -56.6% -7.49% 56.6% -59.8%
Sharon fruits 1.56e-07 15.4% 2.51% -2.54% 12.7% -22.6%

Note: The first column shows baseline demand for each fruit (kilograms per household per
shopping trip). The remaining columns show the percentage change in demand resulting
from the change in tax or prices.
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Table 14: Tax impact on expenditure and welfare

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5
Baseline EU tariff UK cost shock Merger Subsidy VAT

Consumer expenditure
10th percentile 6.19 -0.369% 0.48% 0.0333% 0.225% -2.94%
25th percentile 10 0.0411% 0.646% 0.224% -1.65% 0.419%
50th percentile 15.3 0.559% 0.59% 0.377% -3.19% 3.58%
75th percentile 21.8 0.892% 0.537% 0.503% -3.68% 5.16%
90th percentile 29.7 0.841% 0.478% 0.494% -3.58% 4.93%
Change in consumer surplus (GBP)
10th percentile 6.24 -0.259 -0.0723 -0.126 0.855 -1.47
25th percentile 12.6 -0.366 -0.106 -0.184 1.28 -2.2
50th percentile 22.6 -0.529 -0.148 -0.265 1.78 -3.06
75th percentile 37.7 -0.73 -0.2 -0.35 2.31 -4.14
90th percentile 55.6 -0.87 -0.277 -0.425 2.73 -4.82
Per capita effects
Consumer surplus (GBP) 27.5 -0.553 -0.157 -0.272 1.75 -3.14
Tax revenue (GBP) 0.0 1.02e-05 2.93e-06 5.1e-06 -3.43e-05 5.5e-05
Firm Revenue 0.000318 -7.97e-06 -1.26e-06 -3.72e-06 2.45e-05 -4.31e-05

Note: The first column shows the baseline values for expenditure, consumer surplus, firm revenue and tax
revenue. All amounts are measured in pounds per household per shopping trip. Columns 2 - 7 show the
percentage change in expenditure, the absolute change in consumer surplus, the absolute change in firm revenue
and the absolute change in tax revenue arising in each scenario. Because of quasilinear utility the change in
consumer surplus equals compensating variation.
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Figure 1: Prices of apricots, bananas and cherries
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Figure 2: Frequency of basket size by household type
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As prices vary from 50% - 200% of baseline, each panel shows the frequency of basket sizes for a single
household type. Household types are defined by realizations of (η1, η2). Each element of η1 and η2 takes
one of three values drawn from the 25th, 50th, and 75th percentiles of the respective marginal distribution.
Types 1-3 are in the top level panels, types 4-6 are in the middle three panels, and types 7-9 are in the
bottom. Within a row, households are arranged in increasing order from left to right.
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Figure 3: Demand vs. banana price: by household type
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Each panel shows demand for fruit vs. banana price for one household type. Only fruits with non-zero
demand are shown.
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Figure 4: Demand vs. apple price: by household type
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Each panel shows demand for fruit vs. apple price for one household type. Only fruits with non-zero demand
are shown.
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Figure 5: Aggregate demand curves (1)

(a)

price (GBP: average market price = 3.4 GBP)
1 2 3 4 5 6 7

q
u
a
n
ti
ty

 (
k
ilo

g
ra

m
s
)

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05
Demand for Apricots

One item
Two items
Three items
Four items
Five items

(b)

price (GBP: average market price = 4.3 GBP)
2 3 4 5 6 7 8 9

q
u

a
n

ti
ty

 (
k
ilo

g
ra

m
s
)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09
Demand for Avocados

One item
Two items
Three items
Four items
Five items

(c)

price (GBP: average market price = 2.6 GBP)
1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

q
u
a
n

ti
ty

 (
k
ilo

g
ra

m
s
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Demand for Bananas

One item
Two items
Three items
Four items
Five items

(d)

price (GBP: average market price = 7.5 GBP)
2 4 6 8 10 12 14 16

q
u

a
n

ti
ty

 (
k
ilo

g
ra

m
s
)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
Demand for Berries

One item
Two items
Three items
Four items
Five items

(e)

price (GBP: average market price = 7.1 GBP)
2 4 6 8 10 12 14 16

q
u

a
n

ti
ty

 (
k
ilo

g
ra

m
s
)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09
Demand for Cherries

One item
Two items
Three items
Four items
Five items

(f)

price (GBP: average market price = 1.5 GBP)
0.5 1 1.5 2 2.5 3 3.5

q
u

a
n

ti
ty

 (
k
ilo

g
ra

m
s
)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
Demand for Dates

One item
Two items
Three items
Four items
Five items

(g)

price (GBP: average market price = 4.9 GBP)
2 3 4 5 6 7 8 9 10

q
u

a
n

ti
ty

 (
k
ilo

g
ra

m
s
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Demand for Apples

One item
Two items
Three items
Four items
Five items

(h)

0.5 1 1.5 2 2.5 3 3.5 4

price (GBP: average market price = 1.8 GBP)

0

1

2

3

4

5

6

7

q
u

a
n

ti
ty

 (
g

ra
m

s
)

×10 4 Demand for Easy Peelers

One item

Two items

Three items

Four items

Five items

(i)

price (GBP: average market price = 5.8 GBP)
2 3 4 5 6 7 8 9 10 11 12

q
u

a
n

ti
ty

 (
k
ilo

g
ra

m
s
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Demand for Grapes

One item
Two items
Three items
Four items
Five items

Each panel shows aggregate demand for a fruit category as that fruit’s price varies from 50% to 200% of its
baseline level. The figure also shows what fraction of demand comes from baskets of size 1 through 5.
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Figure 6: Aggregate demand curves (2)
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Each panel shows aggregate demand for a fruit category as that fruit’s price varies from 50% to 200% of its
baseline level. The figure also shows what fraction of demand comes from baskets of size 1 through 5.
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Figure 7: Aggregate demand curves (3)
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Each panel shows aggregate demand for a fruit category as that fruit’s price varies from 50% to 200% of its
baseline level. The figure also shows what fraction of demand comes from baskets of size 1 through 5.
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