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Abstract

We develop a class of demand models for differentiated products based on the

concept of entropy. The new models facilitate the BLP method (Berry et al., 1995)

by avoiding numerical inversion of the demand system. They accommodate rich pat-

terns of substitution and complementarity while being easily estimated with standard

regression techniques and allowing very large choice sets. We use the new models

to describe markets for differentiated products that exhibit segmentation along sev-

eral dimensions and illustrate their application by estimating the demand for cereals in

Chicago.
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1 Introduction

This paper develops a new class of discrete choice demand models that allow for rich
patterns of substitution and complementarity. These models can be employed to estimate
the demand for differentiated products using the famous BLP method (Berry et al., 1995)
for dealing with endogeneity concerns. The models also avoid the need to invert the demand
system numerically, and therefore may be estimated using standard instrumental variables
regression techniques on very large choice sets.

This approach builds on new insights regarding the relationship between the additive
random utility model (ARUM) and the representative consumer model (RCM). Since the
seminal paper by McFadden (1974), the ARUM has been widely used in many fields of
economics including industrial organization, game theory, experimental economics, and
transportation. Crucially, the ARUM explicitly models the preferences of a single consumer
and relies on the assumption that each consumer buys one unit of the product that provides
her the highest utility. As a consequence, products can only be substitutes in an ARUM,
not complements.1

Among other applications, the RCM has been a workhorse of the international trade
literature since Dixit and Stiglitz (1977) and Krugman (1979). In contrast to the ARUM,
the RCM assumes the existence of a variety-seeking representative consumer who aggre-
gates a population of consumers. The representative consumer chooses some quantity of
every product, trading off variety against quality. In the standard representative consumer
approach, consumers are not restricted to buying just one unit of one product (see e.g.,
Hausman et al., 1994; Pinkse et al., 2002; Pinkse and Slade, 2004) and products can be
substitutes or complements.

Despite their fundamental differences, the two approaches are closely linked. Anderson
et al. (1992) show the existence of a RCM corresponding to any given ARUM. Anderson
et al. (1988) and Verboven (1996b) explicitly derive the representative consumer’s direct
utility for the logit model and the nested logit model, respectively. These direct utilities
are specified as the sum of a term that captures the utility derived from consumption in the
absence of interaction among products, and a second term that expresses the representa-
tive consumer’s taste for variety. The concept of entropy plays an important role in these

1In this paper, complementarity (resp., substitutability) is defined by a negative (resp., positive) cross
derivative of demand with respect to product-specific characteristics or price. This is the standard definition
of complementarity or substitutability (Samuelson, 1974). The definition we use is similar to the definition
of Gentzkow (2007) based on random utility.
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relationships: in the logit model the taste for variety is captured by the Shannon (1948)
entropy, while in the nested logit model it is captured by a sum of Shannon entropies.

In this paper, we define the class of generalized entropy models (GEM) as RCM in
which the taste for variety is captured by a generalization of the Shannon entropy. With
the Shannon entropy, all products are treated symmetrically. Hence the identity of products
does not matter and it is not possible to account for the degree of similarity between prod-
ucts. In contrast, our class of generalized entropies allows for general relationships in the
taste for variety, enabling us to capture rich patterns of substitution and complementarity.

The class of GEM is large. We show that we can always find a GEM that leads to the
same choice probabilities as any given ARUM. This improves on the existence result of
Anderson et al. (1992) by providing a construction of the representative consumer’s direct
utility for any ARUM. Our class of GEM is actually strictly larger than the class of ARUM.
Whereas ARUM rule out complementarity, we find that there are GEM which allow for
complements. This is a very attractive feature as there are many market settings in which
complementarity is likely to occur (see Berry et al., 2014, 2017).

In their seminal paper, Berry et al. (1995) provide a method for estimating the demand
for differentiated products while accounting for price endogeneity due to the presence of an
unobserved characteristics term, which is the structural error of the model. They propose a
generalized method-of-moments (GMM) estimator, together with an estimation algorithm
to compute it. To evaluate the BLP’s GMM objective function, the demand system must
be inverted to obtain the structural error as a function of the data and parameters. When
this cannot be performed analytically, Berry et al. (1995) propose inverting numerically
using a contraction mapping nested into the GMM minimization procedure, which must be
performed each time the GMM objective function is evaluated.2

In contrast, with the GEM, we obtain the structural error term directly as a known func-
tion of the data and parameters, enabling us to implement the BLP method with standard
regression techniques. This is because GEM are formulated in the space of consumption,
and not in the dual space of indirect utilities, making the inverse demand system directly
available.3 However, some GEM lead to demands which do not have analytic formula,

2To the best of our knowledge, only the logit and nested logit models allow for an analytical inversion
(see Berry, 1994; Verboven, 1996b). For example, the inverse demands in the random coefficient logit model
exist, but have no analytic form (see Berry et al., 1995).

3In this respect, GEM are alternatives to the algorithms in Dubé et al. (2012) and Lee and Seo (2015).
Dubé et al. (2012) transform the BLP’s GMM minimization into a mathematical program with equilibrium
constraints (MPEC), which minimizes the GMM objective function subject to the constraint that observed
market shares be equal to predicted market shares. Lee and Seo (2015) approximate by linearization the non-
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suggesting that an inversion step must be done once to obtain predicted demands after es-
timates have been obtained. We establish existence and uniqueness of the inverse system.
Our results supplement earlier results on demand invertibility in different settings (see e.g.,
Berry, 1994; Beckert and Blundell, 2008; Berry et al., 2013), but is not implied by them.

GEM lead to demands with a tractable and familiar form that generalizes the logit de-
mand in a nontrivial way. We employ our general theory to build a generalized nested
entropy (GNE) with a corresponding GEM that generalizes the nested logit model by al-
lowing the nests to overlap in any way. This allows us to build GEM that are similar in
spirit to existing generalized extreme value (GEV) models that have already proved use-
ful for demand estimation purposes. We also show how to build a GNE model describing
markets having a natural ordering of products (as in Small, 1987; Grigolon, 2017) and a
cross-nested GNE model that is similar in spirit to the product differentiation logit model
of Bresnahan et al. (1997), describing product segmentation along several dimensions.

We apply the cross-nested GNE model to estimate the demand for cereals in Chicago
in 1991–1992 using aggregate data. The cross-nested GNE model provides rich patterns
of substitution and complementarity, while being parsimonious, computationally fast and
very easy to estimate. We show how it can be estimated by a linear regression model of
market shares on product characteristics and terms related to segmentation.

The cross-nested GNE model is related to Hausman et al. (1994) who also classify
products into groups, allow consumers to buy several products, and estimate their model
by a sequence of linear regressions. However, they treat consumers’ choice as a sequence
of separate but related choices. They also require a large number of instruments, and thus
cannot handle large choice sets.

The cross-nested GNE model is also related to Pinkse and Slade (2004) who construct
a continuous-choice demand model. Their model is simple to estimate, allows rich sub-
stitution patterns, handles large choice sets, makes cross-price elasticities functions of the
distance between products in characteristics space and allows consumers to buy multiple
products. However, their model is not as parsimonious as the cross-nested GNE model and
also requires a large number of instruments.

The remainder of the paper is organized as follows. Section 2 introduces the class of
GE demand models and provides general methods for construction. Section 3 studies the
linkages between ARUM, GEM and the class of perturbed utility models (introduced in
that section). Section 4 shows how to estimate GEM with aggregate data and discusses

linear system of market shares for the random coefficient logit model, and, in turn, do inversion analytically.
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identification. Section 5 applies the cross-nested GNE model to estimate the demand for
cereals in Chicago. Section 6 concludes.

2 The Class of Generalized Entropy Models

2.1 Notation

We use italics for scalar variables and real-valued functions, boldface for vectors, matrices
and vector-valued functions, and script for sets. By default, vectors are column vectors.

Let J = {0, 1, . . . , J}. Let q = (q0, . . . , qJ)ᵀ ∈ RJ+1 and δ = (δ0, . . . , δJ)ᵀ ∈ RJ+1

be two vectors. |q| =
∑

j∈J |qj| denotes the 1-norm of vector q and δ · q =
∑

j∈J δjqj

denotes the vector scalar product.
Let Ω : RJ+1 → R. Then, Ωj (q) = ∂Ω(q)

∂qj
denotes its partial derivative with respect

to its jth entry and ∇qΩ (q) denotes its gradient with respect to the vector q. A univariate
function R → R applied to a vector is a coordinate-wise application of the function, e.g.,
ln (q) = (ln (q0) , . . . , ln (qJ)).

Let S : RJ+1 → RJ+1 be a vector function composed of functions S(j) : RJ+1 → R:
S (q) =

(
S(0) (q) , . . . , S(J) (q)

)
. Then, its Jacobian matrix JS (q) has elements ij given

by ∂S(i)(q)
∂qj

.
Aᵀ ∈ RJ×J denotes the transpose matrix of A ∈ RJ×J . 0J = (0, . . . , 0)ᵀ ∈ RJ

and 1J = (1, . . . , 1)ᵀ ∈ RJ denote the J-dimensional zero and unit vectors, respectively.
IJ ∈ RJ×J and 1JJ ∈ RJ×J denote the J × J identity matrix and unit matrix (where every
element equals one), respectively.

Let RJ
+ = [0,∞)J and RJ

++ = (0,∞)J . Let ∆ =
{

q ∈ RJ+1
+ :

∑
j∈J qj = 1

}
denote

the unit simplex, with int (∆) = ∆ ∩ RJ+1
++ its interior and bd (∆) = ∆ \ int (∆) its

boundary.

2.2 Definitions

Consider a representative consumer facing a choice set of J + 1 differentiated products,
J = {0, 1, . . . J}, and a homogeneous numéraire good, with demands for the differenti-
ated products summing to one. Let pj and vj be the price and the quality of product j ∈J ,
respectively. We normalize the price of the numéraire good to 1 and assume that the rep-
resentative consumer’s income y is sufficiently high, y > maxj∈J pj , that consumption of
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the numéraire good is necessarily strictly positive.
Let q = (q0, . . . , qJ)ᵀ be the vector of quantities consumed of the differentiated prod-

ucts and z be the quantity consumed of the numéraire good. The representative consumer’s
direct utility function u, which is quasi-linear in the numéraire, is given by

u (q, z) = αz +
∑
j∈J

vjqj + Ω (q) , (1)

where α > 0 is the marginal utility of income, and Ω is a nonlinear function of q.
The utility in (1) has two components: the first describes the utility derived from the

consumption of (q, z) in the absence of interaction among products while the second ex-
presses the consumer’s taste for variety.

The representative consumer chooses q ∈ ∆ and z ∈ R+ so as to maximize her utility
(1) subject to her budget constraint. She solves

max
(q,z)∈∆×R+

u (q, z) , subject to
∑
j∈J

pjqj + z ≤ y. (2)

The budget constraint is always binding,4 so that (2) can be rewritten as

max
q∈∆

αy +
∑
j∈J

δjqj + Ω (q)

 , (3)

where δj = vj − αpj is the net utility that the consumer derives from consuming one unit
of product j.5

We build the class of generalized entropy models (hereafter, GEM) by first defining a
class of vector functions S that we call generators. A generalized entropy (hereafter, GE)
is then defined in terms of a generator and a GEM is a RCM in which the taste for variety
is modeled by a GE.

Definition 1 (Generator). The vector function S =
(
S(0), . . . , S(J)

)
: RJ+1

+ → RJ+1
+ is a

generator if it is twice continuously differentiable, linearly homogeneous, and the Jacobian
of ln S, JlnS, is positive definite and symmetric on int (∆).

4This is because α > 0 and y > maxj∈J pj .
5In the empirical industrial organization literature, δj is referred to as the mean utility of product j.
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Definition 2 (GE). A GE is a function Ω : RJ+1
+ → R ∪ {−∞} given by

Ω (q) = −
∑
j∈J

qj lnS(j) (q) , q ∈ ∆, (4)

with Ω (q) = −∞ when q /∈ ∆, where S is a generator.

Definition 3 (GEM). A GEM is a demand system that solves (2), where Ω (q) is a GE.

For the sake of the exposition, our definition of GEM specifies how the net utilities δ
depend on prices. We use this specification in our empirical application. Alternatively,
the definition of GEM can be based directly on (3) without specifying the dependence on
prices or how the utility maximization problem in (3) relates to a budget constraint. This is
useful, for example, in settings where prices are not relevant (Allen and Rehbeck, 2016).

We require the following additional condition on the generator S in order to rule out
zero demands.6 We retain Assumption 1 in the remainder of the paper, except when other-
wise stated.

Assumption 1 (Positivity). The 1-norm | ln S(q)| approaches infinity as q approaches
bd (∆).

The conditions imposed on the generator S imply the following lemma, which is essen-
tial in the sequel.

Lemma 1. Assume that S is a generator and let Ω be its corresponding GE. Then S is
invertible on int (∆), satisfies the identity

∑
j∈J

qj
∂ lnS(j) (q)

∂qk
= 1, k ∈J , q ∈ int (∆) , (5)

and Ω is strictly concave on int (∆).

Equation (5) follows from the Euler equation for homothetic functions (McElroy, 1969)
and is crucial for deriving the simple expression for demand in Theorem 1 below.

The quasi-linearity of the direct utility function (1) has two implications. First, GEM
demands for the differentiated products are independent of income, so that all income ef-
fects are captured by the numéraire.

6Hofbauer and Sandholm (2002) and Fudenberg et al. (2015) require similar conditions.
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Second, in the GEM, as in any model with quasi-linear direct utility (see e.g., Vives,
2001), the assumption of a representative consumer is not restrictive. Indeed, consider a
population of utility-maximizing consumers all with quasi-linear direct utility of the form
(1), and assume that they all have the same constant marginal utility of income α > 0.
Then individual indirect utilities have the Gorman form and can thus be aggregated across
consumers, meaning that consumers can be treated as if they were a single consumer, re-
gardless of the distribution of unobserved consumer heterogeneity or of income.7

Lastly, GEM allow consumers to buy several products in varying quantities. This as-
sumption is appropriate in situations in which consumers are observed to buy multiple
products from the same category (see evidence in Dubé (2004) for soft drinks and in Kim
et al. (2002) for yogurts) as well as products from multiple categories (see evidence in
Thomassen et al., 2017). This variety-seeking behavior is one possible mechanism that
may lead to complementarity. We will see below that GEM allow complementarity to
occur.

2.3 Demand and Consumer Surplus

The utility maximizing demand in the GEM exists, since the utility function is continuous
on the compact set ∆. The strict concavity of Ω established in Lemma 1 ensures that
demand is unique, while Assumption 1 ensures that it is interior. The Euler-type equation
(5), together with the invertibility of S, allow us to derive a tractable and familiar form for
demand in Theorem 1. We denote the inverse of S by H = S−1.

Theorem 1. Let S be a generator. Under Assumption 1, GEM lead to non-zero GE de-
mands

qi (δ) =
H(i)

(
eδ
)∑

j∈J H(j) (eδ)
, i ∈J . (6)

whereH(i)
(
eδ
)

= S−1(i)
(
eδ
)
. Net utility δ and demand q are related through the generator

7Consider a population of N consumers. Suppose that each consumer n’s maximizes her direct utility
un (qn, zn) = αzn+

∑
j∈J vjqjn+Ωn (qn) subject to her individual budget constraint. Then consumer n’s

indirect utility is given by vn (δ, yn) = αyn+ln
(∑

j∈J H
(j)
n

(
eδ
))

and has the Gorman form vn (p, yn) =

b (p) yn + an (p) with b (p) = α that is identical for all consumers and an (p) = ln
(∑

j∈J H
(j)
n

(
eδ
))

that differs from consumer to consumer.
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S and its inverse H by

δi = lnS(i) (q) + ln

∑
j∈J

H(j)
(
eδ
) , i ∈J , q ∈ int (∆) . (7)

The GE demand in (6) generalizes the logit demand in a nontrivial way through the
presence of the function H.

The mapping from demand to net utility in (7) is unique up to a constant. This shows
that GEM generate demands with an explicit inverse which can be used as basis for demand
estimation after specifying the functional form of the generator S. Note that the log-sum
term in the RHS of (7) is common across products.

For example, in the simplest possible case, the generator is the identity S (q) = q

which implies that the inverse generator is also the identity H
(
eδ
)

= eδ. In this case, the
GE reduces to the Shannon entropy Ω (q) = −

∑
j∈J qj ln (qj) and we obtain the logit

demand (see Anderson et al., 1988)

qi (δ) =
eδi∑
j∈J eδj

. (8)

In accordance with (7), utility δ and logit demand q satisfy the relations

δi = ln (qi) + ln

∑
j∈J

eδj

 , i ∈J .

Let G(δ) =
∑

j∈J δjqj(δ) + Ω (q(δ)) be the consumer surplus and w (δ, y) = αy +

G (δ) be the indirect utility, associated with the direct utility (1). The following proposition
provides an expression for the consumer surplus.

Proposition 1. The consumer’s surplus is given by

G (δ) = ln

∑
j∈J

H(j)
(
eδ
) . (9)

GE demands (6) are consistent with Roy’s identity, i.e., qi = −∂w(δ,y)
∂pi

/∂w(δ,y)
∂y

, i ∈ J , or
equivalently, qi = ∂G(δ)

∂δi
for all i ∈J .

For the logit model, it is well known that the consumer surplus is the logarithm of the
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denominator of the demands. Proposition 1 shows that this is also the case for the entire
class of GEM.

GE demands qj given by (6) are increasing in their own utility component δj .8 Propo-
sition 2 provides an expression for the whole matrix of demand derivatives.

Proposition 2. The matrix of demand derivatives ∂qj/∂δi is given by

Jq = [JlnS (q)]−1 [IJ+1 − 1J+1,J+1q
ᵀ] , (10)

where q = q (δ) given by Equation (6).

Since GEM do not allow for income effects, complementarity (resp., substitutability)
between products is just understood as a negative (resp., positive) cross derivative of GE
demands. While Proposition 2 is useful for calculating demand elasticities in applications,
it does not allow to directly determine whether products are complements or substitutes.
Example 2 below exhibits a GEM in which products may be complements.

2.4 Construction of GEM

To construct a GEM, it suffices to construct a generator that satisfies Definition 1.9 We here
propose a family of generators that lead to models that extend the nested logit (NL) model
in a very intuitive way as follows.10

We first observe that the nested logit (NL) model can be cast as a GEM. Suppose that
the choice set is partitioned into non-overlapping sets, called nests. Let gj be the nest that
contains product j. Then the generator that leads to the NL demands is given by

S(j) (q) = qµj

∑
i∈gj

qi

1−µ

,

where µ ∈ (0, 1) is the nesting parameter.11

8This property is due to the concavity of the GE and is equivalent to stating that demands are decreasing
in their own prices.

9Similarly, different GEV models (see McFadden, 1981) are obtained from different specifications of a
choice probability function (Fosgerau et al., 2013).

10In Appendix E, we provide a range of general methods for building generators along with illustrative
examples.

11The corresponding GE is given by the sum of two Shannon entropies since Ω (q) =

−µ
∑
j∈J qj ln (qj)− (1− µ)

∑G
g=1 qg ln (qg).
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Multi-level NL models generalize the NL model. They are obtained by partitioning
the choice set into nests and then further partitioning each nest into subnests, and so on
(see e.g., Goldberg, 1995; Verboven, 1996b). This hierarchical structure implies that each
product belongs to only one (sub)nest at each level, meaning that nests are not allowed to
overlap by construction. The following proposition generalizes the NL model by giving a
construction of generators through a nesting operation that allows the nests to overlap in
any way.

Proposition 3 (General nesting). Let G ⊆ 2J be a finite set of nests with associated
nesting parameters µg , where µ0 +

∑
{g∈G |j∈g} µg = 1 for all j ∈ J with µg ≥ 0 for all

g ∈ G and µ0 > 0. Let S be given by

S(j) (q) = qµ0j
∏

{g∈G |j∈g}

qµgg , (11)

where qg =
∑

i∈g qi. Then S is a generator.12

We label a GE with a generator of the form (11) as a generalized nested entropy (GNE).
Using that allows us to build a wide range of models that are similar in spirit to the well-
known GEV models based on nesting (see e.g., Train, 2009, Chapter 4 for details).

As a first example, we construct a GNE model describing a market having a natural
ordering of products. Examples could be, e.g., hotels that can be ordered according to
their number of stars or ready-to-eat cereals ordered according to sugar content. In the
GNE model that we construct, products that are nearer each other in the ordering will be
closer substitutes. This is similar to the GEV ordered models of Small (1987) and Grigolon
(2017).

Example 1 (Ordered model). Let product 0 be the outside option, and products 1, . . . , J

be ordered in ascending sequence. We make the ordering circular, letting product 1 follow
product J . Let µ0 > 0 and µ1, µ2, µ3 ≥ 0 with µ0 + µ1 + µ2 + µ3 = 1. The function S

given by

S(j) (q) =

q0, j = 0

qµ0j q
µ1
σ1(j)q

µ2
σ2(j)q

µ3
σ3(j), j > 0,

12Without the term qµ0

j , S is twice continuously differentiable and linearly homogeneous, and JlnS is
symmetric, but not necessarily positive definite. The general nesting operation leads to the following GE
Ω (q) = −µ0

∑
j∈J qj ln (qj) −

∑
{g∈G |j∈g}

[
µg
∑
j∈J qj ln (qg)

]
, where the first term is the Shannon

entropy that expresses consumer’s taste for variety over all products and the second term expresses consumer’s
taste for variety over products belonging to group g (see Verboven, 1996b).
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with qσ1(j) = qj−2 + qj−1 + qj , qσ2(j) = qj−1 + qj + qj+1, qσ3(j) = qj + qj+1 + qj+2, is a
generator.

In Subsection 2.5, similarly to the Product-Differentiation Logit (PDL) model of Bres-
nahan et al. (1997), we build and study a cross-nested GNE model describing markets that
exhibit product segmentation along several dimensions. We take this model to real-world
data in Section 5.

The next example is a GEM in which products can be complements.

Example 2. Let S be defined by

S (q) =


qµ0
(
q0 + 1

2
q1

)1−µ
,

qµ1
(
q0 + 1

2
q1

) 1−µ
2
(

1
2
q1 + q2

) 1−µ
2 ,

qµ2
(

1
2
q1 + q2

)1−µ
,

with µ ∈ (0, 1). Then S is a generator.
We show in Appendix B that the first-order conditions for utility maximization imply

that ∂q2/∂δ0 > 0 if and only if µ is small enough, i.e.,

µ <
q1

4q0q2 + 3q1q2 + 2q2
1 + 3q0q1

.

At δ such that q0 = q1 = q2 = 1/3, the condition becomes µ < 1/4, thereby showing
that there exists combinations of parameters µ and utilities δ at which some products are
complements.

We define ARUM and discuss the link to GEM in the next section. It is, however, nat-
ural to mention one relationship already at this stage. We have just seen complementarity
may arise in GEM. Combining this with the fact that all products are necessarily substitutes
in an ARUM leads to the following result.

Proposition 4. Some GEM lead to demand systems that cannot be rationalized by any
ARUM.

We show in Subsection 3.1 that any ARUM has a GEM counterpart that leads to the
same choice probabilities. Combining this with Proposition 4 shows that the class of GEM
is strictly larger than the class of ARUM.
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2.5 The Cross-Nested GNE Model

In this section, we build the cross-nested GNE model describing markets that exhibit prod-
uct segmentation along several dimensions. This model generalizes the multi-level NL
models by breaking their hierarchical structure. We take this model to real-world data in
Section 5.

Consider a market for differentiated products that exhibits product segmentation ac-
cording to C dimensions, indexed by c. Each dimension c taken separately potentially
provides a source of segmentation and defines a finite number of nests. Each product be-
longs to exactly C nests, one for each dimension, and the nesting structure is exogenous.
The dimensions taken together define product types. Products of the same type are those
that are grouped together according to all dimensions. Each dimension defines a concept of
product closeness (or distance), so that products of the same type will be closer substitutes
than products of different types.

Let nest σc (j) be the set of products that are grouped with product j in dimension c,
and qσc(j),t =

∑
i∈σc(j) qit be the market share of nest σc (j) in market t. Let Θc be the

nesting structure matrix for dimension c, having elements

(Θc)ij =

1, if i ∈ σc(j),

0, otherwise,
(12)

and let Θ = (Θ1, . . . ,ΘC) denote the array of nesting structure matrices.
We define the cross-nested GNE model as follows.

Definition 4. The cross-nested GNE model is a GEM with generator given by

S(j)(q) =

q0, j = 0,

qµ0j
∏C

c=1 q
µc
σc(j)

, j > 0,
(13)

with µ0 +
∑C

c=1 µc = 1, µ0 > 0, and µc ≥ 0 for all c ∈ {1, . . . , C}.

This model satisfies Assumption 1, so that zero demands never arise. Product j = 0 is
the outside option, which defines itself a product type and is the only product of its type.
Let µ = (µ0, . . . , µC) be the vector of nesting parameters. The parameter µ0 measures
the consumers’ taste for variety over all products and each µc, c ≥ 1, measures the con-
sumers’ taste for variety across nests in dimension c (see Verboven, 1996b). The following
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proposition is useful for understanding the behavior of the model.

Proposition 5. In the cross-nested GNE model, the Independence from Irrelevant Alterna-
tives (IIA) property holds for products of the same type; but does not hold in general for
products of different types.

It is well-known that the logit model exhibits the IIA property and that, in the NL
model, IIA holds for products within each nest but not for products in different nests in
general. IIA constitutes a restriction on the models since it implies that an improvement
in one product draws demand proportionately from the other products, meaning that the
cross-price elasticities does not depend on how close products are in the characteristics
space. The cross-nested GNE model thus extends the logit and NL models by relaxing
these restrictions.

Appendix C provides some simulation results investigating the patterns of substitution
and complementarity as the nesting structure and market shares change. In summary, we
find that (i) products of the same type are never complements, while products of different
types may or may not be complements; and (ii) the size of the cross-elasticities depends on
the degree of closeness between products as measured by the value of the nesting parame-
ters and by the proximity of the products in the characteristics space used to form product
types.

3 Linkages between Choice Models

In this section, we study first the relation between GEM and ARUM and show that the
choice probabilities of any ARUM can be obtained as the demand of some GEM. Then we
discuss how a GEM is a special case of a perturbed utility model, (PUM, defined below).
Altogether we find that the GEM class of models is intermediate between ARUM and PUM.

In this section, we consider a consumer who faces a choice set J = {0, 1, . . . , J}
of J + 1 products with utility components δ = (δ0, . . . , δJ)ᵀ. Recall that in the RCM,
the utility components δj are linear in their own price due to the budget constraint. In the
ARUM and the PUM, we do not require prices to enter utilities δj in any specific way.

3.1 ARUM as GEM

We first set up the ARUM. The consumer buys one unit of the product that provides her the
highest (indirect) utility uj = δj +εj , j ∈J , where δj is a deterministic utility component
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and εj is a random utility component. The following assumption on ε = (ε0, . . . , εJ)ᵀ is
standard in the discrete choice literature.

Assumption 2. The random vector ε follows a joint distribution with finite means that is
absolutely continuous, independent of δ, and has full support on RJ+1.

Assumption 2 implies that utility ties ui = uj , i 6= j, occur with probability 0 (be-
cause the joint distribution of ε is absolutely continuous), meaning that the argmax set
of the ARUM is almost surely a singleton. Furthermore, the choice probabilities are all
everywhere positive (because ε has full support). Assumption 2 also rules out random
coefficients, since the joint distribution of ε is required to be independent of δ.

Let G : RJ+1 → R given by

G (δ) = E
(

max
j∈J

uj

)
(14)

be the expected maximum utility. Let P = (P0 (δ) , . . . , PJ (δ)) : RJ+1 → ∆ be the vector
of choice probabilities with Pj (δ) being the probability of choosing product j.

From the Williams-Daly-Zachary theorem (McFadden, 1981), the choice probabilities
and the derivatives of G (δ) coincide, i.e.,

Pj (δ) =
∂G (δ)

∂δj
, j ∈J . (15)

Let H =
(
H

(0)
, . . . , H

(J)
)

, with H
(i)

: RJ+1
++ → R++ defined as the derivative of the

exponentiated surplus with respect to its ith component, i.e.,

H
(i) (

eδ
)

=
∂eG(δ)

∂δi
. (16)

Note that
∑

j∈J H
(i) (

eδ
)

= eG(δ).13 Then the ARUM choice probabilities may be written
as

Pi (δ) =
H

(i) (
eδ
)∑

j∈J H
(j)

(eδ)
, i ∈J , (17)

which is exactly the same form as the GEM demand (6) if H = H. To establish that the

13This follows since (16) may be written as H
(i) (

eδ
)

= ∂G(δ)
∂δi

eG(δ), i ∈J . Then by (15), H
(i) (

eδ
)

=

Pi (δ) eG(δ) for all i ∈J . Finally, sum over i ∈J and use that choice probabilities sum to one.
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ARUM choice probabilities (17) can be generated by a GEM, it then only remains to show
that H has an inverse S = H

−1
and that this inverse is a generator. This is established in

the following lemma.

Lemma 2. The function H is invertible, and its inverse S = H
−1

is a generator.

Then the function −G∗ given by

−G∗ (q) = −
∑
j∈J

qj lnS
(j)

(q) , q ∈ ∆, (18)

and −G∗ (q) = +∞ when q /∈ ∆ is a GE. Fosgerau et al. (2017) show that −G∗ is the
convex conjugate of G.14

We summarize these results as follows.

Theorem 2. The ARUM choice probabilities (17) with surplus function G given by (14)
coincide with the GE demand system (6) with GE function −G∗, where G

∗
is the convex

conjugate of G given by (18).

According to Theorem 2, all ARUM have a GEM as counterpart that leads to the same
demand. However, as shown in Example 2, the converse is not true: the class of GEM is
strictly larger than the class of ARUM. When a GEM corresponds to an ARUM, the surplus
function (9) and the maximum expected utility (14) coincide, i.e., G = G; and similarly
for their generators, i.e., S = S. Figure 1 illustrates how ARUM and GEM are linked and
shows how, beginning with some ARUM, we can determine a GEM with demand that is
equal to the ARUM choice probabilities.

3.2 Link to Perturbed Utility Models

We now discuss briefly the relationship between GEM and perturbed utility model (PUM).
In a PUM, the consumer chooses a vector of choice probabilities q ∈ ∆ to maximize her
utility function ∑

j∈J

δjqj + Ω (q) , (19)

14The latter result is well-known in the special case of the logit model, i.e. that the convex conjugate
of the negative entropy f (q) =

∑
j qj ln (qj) is the log-sum f∗ (δ) = ln

(∑
j e
δj
)

(see e.g., Boyd and
Vandenberghe, 2004).
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Figure 1: LINKAGES BETWEEN GEM AND ARUM

defined as the sum of an expected utility component, which is linear in q, and a perturbation
Ω, which is a concave and deterministic function of q. See Hofbauer and Sandholm (2002),
McFadden and Fosgerau (2012) and Fudenberg et al. (2015) for more details on PUM. 15

We have shown in Lemma 1 above that a GE (4) is concave, which implies that any
GEM is also a PUM. The converse, however, does not hold, as there are many concave
functions that do not have the form of a GE. For example, Hofbauer and Sandholm (2002)
mention the concave perturbation function

∑
j∈J ln qj . The corresponding candidate gen-

erator S(j) (q) = q
1/qj
j is not linearly homogeneous and is hence not a generator according

to Definition 1.
Hofbauer and Sandholm (2002) show that the choice probabilities generated by any

ARUM can be derived from a PUM with a deterministic perturbation. In Theorem 2, we
strengthen this result by showing that the GEM structure is sufficient to recover any ARUM.

15PUM have been used to model optimization with effort (Mattsson and Weibull, 2002), stochastic choices
(Fudenberg et al., 2015), stochastic choice as the result of balancing multiple goals (?), and rational inatten-
tion (Matejka and McKay, 2015; Fosgerau et al., 2017).
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4 Estimation of GEM

We are now able to estimate GEM. In Subsection 2.4, we proposed some general methods
for constructing generators. In applications, the generators can be written as functions of
the data and some parameters to be estimated with individual-level or aggregate data. In
this section, we show how to estimate GEM with aggregate data.

4.1 Econometric Model

The aggregate data required to estimate GEM consists of the market shares, prices and
characteristics for each product in each market (see e.g., Nevo, 2001).

Consider markets t ∈ {1, . . . , T} with inside products j ∈ {1, . . . , J} and an outside
option j = 0. Let ξjt be the unobserved characteristics term of product j in market t.

The invertibility of S shown in Lemma 1, which is required for the GE demands (6) to
be well defined, is not sufficient to ensure that there is a unique δt that rationalizes qt, for
all market t. To ensure uniqueness, we normalize δ0t = 0 for all markets t.

Parametrize net utility for the inside products as

δjt (Xjt, pjt, ξjt;θ1) = β0 + Xjtβ − αpjt + ξjt,

where θ1 = (α, β0,β) is a vector of parameters that enter the linear part of the utility, and
pjt and Xjt are the price and (any function of) the characteristics of product j in market t,
respectively. The intercept β0 captures the value of consuming an inside product instead of
the outside option; the parameter vector β represents the consumers’ taste for the Xjt’s; and
the parameter α > 0 is consumers’ price sensitivity (i.e. the marginal utility of income).

Let θ2 be a parameter vector that enters the nonlinear part of the utility and parametrize
the generator as S(j) (qt;θ2). Using (7) we have

lnS(j) (qt;θ2) = δjt (Xjt, pjt, ξjt;θ1) + ct, j ∈J , t ∈ {1, . . . , T},

where ct ∈ R denotes the log-sum term that is common across products on the same market,
and qt = (q0t, . . . , qJt)

ᵀ.
Subtracting the equations for the outside good, we end up with the J × T demand

equations ξjt = ξjt (θ), where the market-specific constant terms ct have dropped out, and
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with
ξjt (θ) = lnS(j) (qt;θ2)− lnS(0) (qt;θ2)− (β0 + Xjtβ − αpjt) , (20)

where θ = (θ1,θ2) are the parameters to be estimated.
After transformation, GEM are nonlinear regression models, where the error is non-

additive. GEM can thus be estimated using standard regression techniques and can handle
very large choice sets, while, as seen before, being able of accommodating rich patterns of
substitution and complementarity. These main features make GEM appealing for merger
evaluation and for studying vertically related markets, as highlighted by Pinkse and Slade
(2004).

4.2 Identification

Prices and market shares form two different sets of endogenous variables and require dif-
ferent sources of exogenous variation for the model to be identified. Prices are endogenous
due to the presence of the unobserved product characteristics ξjt. Indeed, price competi-
tion models with differentiated products typically assume that firms consider both observed
and unobserved product characteristics when setting prices, and make prices a function of
marginal costs and a markup term. Since the markup term is a function of the (entire vector
of) unobserved product characteristics, which constitute the error terms in Equations (20),
prices are likely to be correlated with the error terms. Market shares are endogenous be-
cause demands are defined by a system of equations, where each demand depends on the
entire vectors of endogenous prices and of unobserved product characteristics.

GEM provide a system of demand equations (20), where each equation has one un-
observable ξjt and, under the standard assumption that products characteristics are exoge-
nous, depends on (J + 1) endogenous variables, namely the market shares qt and one
price pjt. The main identification assumption is the existence of as many excluded (from
the demand equations) instruments zt as there are endogenous variables. Recall that in-
struments are variables that are correlated with the endogenous variables (relevance) but
are not correlated with the error term ξjt (exogeneity). Following Berry (1994) and Berry
et al. (1995), we propose a GMM estimator based on the conditional moment restrictions
E [ξjt (θ) |zt] = 0, which lead to the unconditional moment restrictions E [ztξjt (θ)] = 0.

We require instruments for prices and for some functions of market shares, where the
need for instruments for market shares depends on the structure of the generator. For ex-
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ample, in the case of the NL model,

ξjt = ln

(
qjt
q0t

)
− µ ln

(
qjt|gj

)
+ αpjt − (Xjtβ + β0) ,

where qjt|gj is the share of product j within its corresponding nest gj . This requires only
two instruments, one for price pjt and one for the share qjt|gj .

Following the prevailing literature (Berry and Haile, 2014; Reynaert and Verboven,
2014; Armstrong, 2016), both cost shifters and BLP instruments are required. Cost shifters
separate exogenous variation in prices due to exogenous cost changes from endogenous
variation in prices from unobserved product characteristics changes. They are valid under
the assumption that variation in cost shifters is correlated with price variation, but not with
changes in unobservable product characteristics. However, they are not sufficient on their
own, because costs affect the endogenous market shares only through prices.

BLP instruments are functions of the characteristics of competing products and are valid
instruments under the assumption that Xjt is exogenous (i.e., ξjt is independent of Xjt).
They separate exogenous variation in prices due to changes in Xjt from endogenous vari-
ation in prices from unobserved product characteristics changes. They are commonly used
to instrument prices with the idea that characteristics of competing products are correlated
with prices since the (equilibrium) markup of each product depends on how close products
are in characteristics space (products with close substitutes will tend to have low markups
and thus low prices relative to costs). They are also appropriate instruments for market
shares on the RHS of Equation (20).16 BLP instruments can suffice for identification but
cost shifters are useful in practice (see e.g., Reynaert and Verboven, 2014).

4.3 Link to Berry Inversion

Berry inversion consists in inverting the system that equates observed market shares to
predicted market shares, in which the terms ξjt enter non-linearly in general, to get a system
of equations in which the terms ξjt enter linearly. Inversion can be done analytically or
numerically, depending on whether the inverse system has a closed form or not. The inverse
system thus obtained serves as a basis for demand estimation. The inverse system thus
obtained serves as a basis for demand estimation.

16This is because identifying the effects of markets shares in the inverse demand system amounts to iden-
tifying the effects of v on market shares and that BLP instruments directly shifts v.
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Berry et al. (2013) generalize Berry (1994)’s invertibility result and show that their
“connected substitutes” structure is sufficient for invertibility. They require that (i) products
be weak gross substitutes (i.e., everything else equal, an increase in δj weakly decreases
demand qi for all other products) and (ii) the “connected strict substitution” condition holds
(i.e., there is sufficient strict substitution between products to treat them in one demand
system). Their structure can accommodate models with complementary products, but the
first requirement is not always satisfied in GEM, meaning that Berry et al. (2013)’s results
are not applicable.

GEM provide the system (7) which is just the inverse system obtained by Berry inver-
sion. This is because GEM are formulated in the space of market shares and not in the
space of indirect utilities. In the GEM, the inverse system is thus directly available and has
a known and analytic formula. When GEM lead to demands that do not have analytic for-
mula, we obtain predicted demands by inverting numerically the system (7) just once after
estimation. In contrast, in the BLP method, the inversion step is performed each time the
GMM objective function is evaluated and is nested into the GMM minimization procedure.
Note also that the GEM inversion and the BLP inversion go in opposite directions.

We establish the existence and uniqueness of the inverse system as follows. Existence
follows by homogeneity and invertibility of the generator S. Uniqueness is obtained by
the normalization of the outside option’s net utility, δ0t = 0 for all t. Our result supple-
ments earlier results on demand invertibility in different settings (Berry, 1994; Beckert and
Blundell, 2008; Berry et al., 2013), but is not implied by these results.

5 Empirical Application: Demand for Cereals

In this section, we apply the GEM structure to estimate the demand for ready-to-eat (RTE)
cereals in Chicago in 1991 – 1992. The assumption of the GEM that consumers buy multi-
ple products in varying quantities seems more appropriate for RTE cereals than the single-
unit purchase assumption of the ARUM, thereby justifying the use of a GEM. In addition,
to take into account the feature that the RTE cereals market exhibits product segmentation
along several dimensions, we use the cross-nested GNE model proposed in Subsection 2.5.
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5.1 Product Segmentation on the Cereals Market

Data. We use data from the Dominick’s Database made available by the James M. Kilts
Center, University of Chicago Booth School of Business. This is weekly store-level scanner
data, comprising information on 30 categories of packaged products at the UPC level for
all Dominick’s Finer Foods chain stores in the Chicago metropolitan area over the period
1989-1997. We consider the RTE cereal category during the period 1991–1992; and we
supplement the data with the nutrient content of the RTE cereals using the USDA Nutrient
Database for Standard Reference (fiber, sugar, lipid, protein, energy, and sodium), and with
monthly sugar prices from the website www.indexmundi.com. Following the prevailing
literature, we aggregate UPCs into brands (e.g., Kellogg’s Special K), so that different size
boxes are considered one brand, where a brand is a cereal (e.g., Special K) associated to its
brand name (e.g., Kellogg’s). We focus attention on the top 50 brands, which account for
73 percent of sales of the category in the sample we use. We define a product as a brand,
and a market as a store-month pair. Market shares and prices are computed following Nevo
(2001) (see Appendix F.1 for more details).

Product segmentation. For the application, we focus on two segmentation dimensions
that form 17 product types: one measures the substitutability between products within the
same market segment, where segments are family, kids, health/nutrition, and taste enhanced
(see e.g., Nevo, 2001); and the other measures the advantages the brand-name reputation
provides to the products, where brand names are General Mills, Kellogg’s, Quaker, Post,
Nabisco, and Ralston.

The structure of the cross-nested GNE model in the present application to cereals is
illustrated in the left panel of Figure 2. Each dot illustrates the location of a product in the
nesting structure and there are 17 non-empty types. The two segmentation dimensions are
treated symmetrically in this model.

The right panel of Figure 2 illustrates one of the two NL models that are possible with
the same two segmentations. The NL models have a hierarchical nesting structure, in which
the second layer of nesting is a partitioning of the first. Both NL models can be represented
as cross-nested GNE models and we estimate both for comparison. This is easily done
using the same regression setup while changing only the nesting structure.
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Figure 2: PRODUCT SEGMENTATION ON THE CEREALS MARKET

5.2 Estimation

We now turn to the estimation of the cross-nested GNE model. The demand equations (20)
can be written as

ξjt = µ0 ln (qjt) +
C∑
c=1

µc ln
(
qσc(j),t

)
− ln (q0t)− (β0 + Xjtβ − αpjt) .

Using the parameter constraint µ0 +
∑C

c=1 µc = 1, we obtain

ln

(
qjt
q0t

)
= β0 + Xjtβ − αpjt +

C∑
c=1

µc ln

(
qjt

qσc(j),t

)
+ ξjt, (21)

for j ∈ J \ {0} and t ∈ {1, . . . , T}, where θ = (θ1,θ2), with θ1 = (β0,β, α) and
θ2 = (µ1, . . . , µC), are the parameters to be estimated.

Equation (21) has the same form as the logit and NL equations (see Berry, 1994; Ver-
boven, 1996a), except for the terms µc ln

(
qjt/qσc(j),t

)
; this suggests estimating the GNE

model by a linear instrumental variables regression of market shares on product character-
istics and terms related to market segmentation.

Price pjt is endogenous due to the presence of the unobserved product characteristics
ξjt. In addition, the C nesting terms ln

(
qjt/qσc(j),t

)
are endogenous by construction: any

shock to ξjt that increases the dependent variable ln (qjt/q0t) also increases the nesting
terms ln

(
qjt/qσc(j),t

)
. Assuming that product characteristics are exogenous, identification
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requires finding at least one instrument for price and each of the C nesting terms.
We define markets as month-store pairs and products as brands. Following Bresnahan

et al. (1997), we include brand name and segment fixed effects, ξs and ξb, and market-
invariant continuous product characteristics xj (i.e., fiber, sugar, lipid, protein, energy, and
sodium). The fixed effects, ξb and ξs, capture market-invariant observed and unobserved
brand name (i.e. company) and segment-specific characteristics. We also include month
and store fixed effects, ξm and ξs, that capture monthly unobserved determinants of demand
and time-invariant store characteristics, respectively. The structural error that remains in
ξjt therefore captures the unobserved product characteristics varying across products and
markets (e.g., changes in shelf-space, positioning of the products among others) that affect
consumers utility and that consumers and firms (but not the modeller) observe so that they
are likely to be correlated with prices.

We use two sets of instruments. First, as cost shifters, we use the market-level price
of sugar times the sugar content of the cereals, interacted with brand name fixed effects.
Multiplying the price of sugar by the sugar content allows the instrument to vary by product;
and interacting this with fixed effects allows the price of sugar to enter the production
function of each firm differently.

Second, we form BLP instruments by using other products’ promotional activity in a
given month, which varies both across stores for a given month and across months for a
given store: for a given product, other products’ promotional activity affects consumers’
choices, and is thus correlated with the price of that product, but uncorrelated with the
error term.17 We use the number of other promoted products of rival firms and the number
of other promoted products of the same firm, which we interact with brand names fixed
effects. We also use these numbers over products belonging to the same segment, which
we interact with segment fixed effects. We distinguish between products of the same firm
and of rival firms, and interact instruments with brand name fixed effects with the idea that
(equilibrium) markup is a function of the ownership structure since multi-product firms set
prices so as to maximize their total profits. Interaction with segment fixed effects accounts
for within-segment competitive conditions.

A potential problem is weak identification, which happens when instruments are only
weakly correlated with the endogenous variables. With multiple endogenous variables, the

17The promotion is treated as an exogenous variable since, at Dominick’s Finer Foods, the promotional cal-
endar is known several weeks in advance of the weekly price decisions. In addition, we do not use functions
of the continuous product characteristics as instruments since by construction of the data they are invariant
across markets (see Nevo, 2001).
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standard first-stage F-statistic is no longer appropriate to test for weak instruments. We
therefore use Sanderson and Windmeijer (2016)’s F-statistic to test whether each endoge-
nous variable is weakly identified. F-statistics are larger than 10, suggesting that we can be
quite confident that instruments are not weak.

5.3 Empirical Results

Demand parameters. Table 1 presents the two-stage least squares (2SLS) estimates of
demand parameters from the GNE model and the three-level NL models with nests for
segment on top and with nests for brand on top, in columns (1), (2), and (3), respectively.

Table 1: PARAMETER ESTIMATES OF DEMAND

(1) (2) (3)
GNE 3NL1 3NL2

Price (−α) -1.831 (0.116) -2.908 (0.118) -4.101 (0.156)
Promotion (β) 0.0882 (0.00278) 0.102 (0.00305) 0.144 (0.00365)
Constant (β0) -0.697 (0.0593) -0.379 (0.0645) -0.195 (0.0755)
Nesting Parameters (µ)

Segment/nest (µ1) 0.626 (0.00931) 0.771 (0.00818) 0.668 (0.0109)
Brand/subnest (µ2) 0.232 (0.00944) 0.792 (0.00725) 0.709 (0.00961)

FE Segments (γ)
Health/nutrition (γH) -0.672 (0.00990) -0.855 (0.00751) -0.0693 (0.00538)
Kids (γK) -0.433 (0.00875) -0.529 (0.00869) 0.0705 (0.00522)
Taste enhanced (γT ) -0.710 (0.0102) -0.903 (0.00747) -0.0877 (0.00558)

FE Brand Names (θ)
Kellogg’s (θK) 0.0243 (0.00460) -0.0563 (0.00344) 0.104 (0.00635)
Nabisco (θN ) -0.754 (0.0242) -0.218 (0.0109) -2.105 (0.0201)
Post (θP ) -0.485 (0.0144) -0.187 (0.00830) -1.364 (0.00931)
Quaker (θQ) -0.553 (0.0150) -0.329 (0.0137) -1.508 (0.00653)
Ralston (θR) -0.732 (0.0249) -0.200 (0.0111) -2.131 (0.0211)

Observations 99281 99281 99281
RMSE 0.210 0.242 0.270
Notes: The dependent variable is ln(qjt/q0t). Regressions include fixed effects (FE) for brand
names and segments, months, and stores, as well as the market-invariant continuous product
characteristics (fiber, sugar, lipid, protein, energy, and sodium). Robust standard errors are
reported in parentheses. The values of the F-statistics in the first stages suggest that weak
instruments are not a problem.

Consider first the results from the cross-nested GNE model. The estimated parameters
on the negative of price (α) and on promotion (β) are significantly positive. The estimated
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nesting parameters (0 < µ2 < µ1 < 1) are consistent with the GEM (µ1 + µ2 < 1);
this provides an empirical check on the appropriateness of the cross-nested GNE model
as no constraint was imposed on the estimates. The parameter estimates imply that there
is product segmentation along both dimensions: products with the same brand name are
closer substitutes than products with different brand names; and products within the same
segment are closer substitutes than products from different segments. Overall, products of
the same type are closer substitutes.

The advantages provided by the two dimensions are parametrized by the segment and
brand name fixed effects (the γ’s and θ’s) and the nesting parameters (µ1 and µ2). The fixed
effects measure the extent to which belonging to a nest shifts the demand for the product,
and the nesting parameters measure the extent to which products within a nest are protected
from competition from products from different nests along each dimension.

We find that the brand-name reputation of the cereals confers a significant advantage
to products from General Mills and Kellogg’s (θK > θG = 0 > θP > θQ > θR > θN );
moreover cereals for family also benefit from a significant advantage (γF = 0 > γK >

γH > γT ). In addition, we find that µ1 > µ2, i.e., the segments confer more protection
from competition than brand-name reputation does (products within the same segment are
more protected from products from different segments than products with the same brand
name are from products with different brand names).

Turn now to the results from the three-level NL models. They are both consistent with
random utility maximization (µ2 > µ1), which means that it is not possible to decide
between them based on this criterion. However, the Rivers and Vuong (2002) test strongly
rejects both NL models in favor of the GNE model.18

Alternative specification with very large choice set. In many situations, consumers face
choices involving a very large number of products (e.g., choice of a car or of a breakfast
cereal). We have estimated an alternative model in which all brand-store combinations are
considered as choice alternatives, as it is common in the vertical relationships literature (see
e.g., Villas-Boas, 2007), while markets are taken to be months. The resulting model has
more than 4,000 products, but was estimated very quickly without any issues. This shows

18The test statistic is given by TN =
√
N
σ̂

(
Q̂1 − Q̂2

)
, where N is the number of observations, Q̂i is the

value of the estimated RMSE of model i, and σ̂2 is the estimated value of the variance of the difference
between Q̂i’s. This statistic must be evaluated against the standard normal distribution and we estimate σ̂2

using 500 bootstrap replications. The test statistics of the two NL models (model 1 in the statistic) against
the GNE model (model 2) are 2891.97 and 4879.82, respectively.
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the ability of the GNE model to deal with very large choice sets.
The parameter estimates were not significantly affected by this change in specification,

which indicates that the results are fairly robust.

Substitution patterns. Figure 3 presents the estimated density of the own- and cross-
price elasticities of demands of the cross-nested GNE and NL models (see Tables 7 and
8 in Appendix F.2 for the estimated own- and cross-price elasticities of demands, aver-
aged across markets and within product types). We compute elasticities after estimation in
two steps. First, we compute the predicted market shares by solving the system of nonlin-
ear equations (7) derived in Theorem 1, which amounts to solve the utility maximization
program (2). As seen before, from Lemma 1, the solution exists and is unique. Second,
we compute the matrix of derivatives using the formula obtained in Proposition 2 where
the generator S is given by Equation (13), which we pre-multiply by the prices and post-
multiply by the predicted market shares to obtain the elasticities (see Appendix F.1 for more
details).

Figure 3: ESTIMATED ELASTICITIES

The estimated own-price elasticities are in line with the literature (see e.g., Nevo, 2001).
On average, the estimated own-price elasticity of demands is −2.815 for the cross-nested
GNE model. However, there is an important variation in price responsiveness across
product types: demands for cereals for kids produced by General Mills exhibit a much
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higher own-price elasticity than cereals for health/nutrition produced by Post (−3.427 vs.
−1.524).

Consider the cross-price elasticities. Among the 17 × 50 different cross-price elastici-
ties in the cross-nested GNE model, 48.5 percent (resp., 51.5 percent) are negative (resp.,
positive), meaning that some cereals are substitutes while others are complements. For
example, cereals for families produced by General Mills are complementary to those with
taste enhanced produced by Kellogg’s; but are substitutable with those for kids produced
by General Mills.

6 Conclusion

In this paper, we have developed the class of generalized entropy models (GEM). They are
based on the representative consumer approach of demand for differentiated products. In
the GEM, the representative consumer’s taste for variety is captured by a generalization of
the Shannon entropy, which allows for general relationships in taste for variety.

We employ these models for two purposes. First, we explore the linkages between
the ARUM and the RCM. We show that the class of GEM is strictly larger than the class
of ARUM: the GEM structure allows to recover all ARUM, but the reverse is not true.
In particular, in contrast to any ARUM, GEM allow for complementarity. This is a very
attractive feature since complementarity is likely to occur in many markets. In our empirical
application, we find that complementarity is a salient feature of the ready-to-eat cereals
market, since about one half of the products are estimated to be complements. The presence
of complementarity has important implications for many economic questions, such as the
effect of a merger and the incentive to introduce a new product on the market.

Second, we use GEM for estimating the demand for differentiated products with aggre-
gate data. GEM facilitate the BLP method. With the ARUM, the method requires inverting
the demand system, which cannot generally be performed analytically. Berry et al. (1995)
thus propose inverting numerically using a contraction mapping nested into a GMM min-
imization procedure, which must be performed each time the GMM objective function is
evaluated. With the GEM, the inverse demand system is directly available, so that GEM
can be estimated using the BLP method while avoiding this inversion step. However, some
GEM lead to demands which do not have analytic formula, suggesting that must be done
once to obtain predicted demands after estimation is complete.

With the GEM, we have opened the door to a new family of models. The further
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development of GEM provides many opportunities for research. Specifically, the models
and methods developed in this paper can be extended in two ways. First, we have developed
methods to estimate demands using aggregate data. It remains to study how the methods
can be adapted to individual-level data. Second, we have considered static choice models.
Further work to develop dynamic GEM that parallel the dynamic discrete choice model of
Rust (1987) can help us to better understand the behavior of forward-looking consumers.
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For Online Publication

A Preliminaries

For easy reference, this section states some mathematical results that are used in the proofs
below.

Lemma 3. Let φ : Rn
+ → R and F : R → R be two continuous and differentiable

functions. Define f : Rn
+ → R by f (x) = F (φ (x)), with x = (x1, . . . , xn)ᵀ, and

h : R→ R by h = F−1. Assume that φ is linearly homogeneous. Then,

a. (Euler equation for homogeneous functions)

φ (x) =
n∑
i=1

∂φ (x)

∂xi
xi.

b. (Generalized Euler equation for homothetic functions (McElroy, 1969)) If F is non-
decreasing, then f is homothetic, and

n∑
i=1

∂f (x)

∂xi
xi =

h (y)

h′ (y)
.

Proof. a. See e.g., proof of Theorem M.B.2. in Mas-Colell et al. (1995).
b. Consider h (y) = φ (x). Differentiate with respect to xi and rearrange terms to get

∂y

∂xi
=

1

h′ (y)

∂φ (x)

∂xi
.

Then

n∑
i=1

∂f (x)

∂xi

xi
y

=
n∑
i=1

∂y

∂xi

xi
y

=
n∑
i=1

1

h′ (y)

∂φ (x)

∂xi

xi
y
,

=
1

h′ (y) y

n∑
i=1

∂φ (x)

∂xi
xi =

h (y)

h′ (y) y
,

where the last equality uses a. applied to the homogeneous function φ. Multiplying both
side by y yields the required equality.
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A matrix A ∈ Rn×n is said to be positive quasi-definite if its symmetric part 1
2

(A + Aᵀ)

is positive definite.

Lemma 4 (Gale and Nikaido 1965, Theorem 6). If a differentiable mapping F : Θ→ Rn,
where Θ is a convex region (either closed or non-closed) of Rn, has a Jacobian matrix that
is everywhere quasi-definite in Θ, then F is injective on Θ.

Lemma 5 (Simon and Blume, 1994, Theorem 14.4). Let F : Rn → Rn and G : Rn → Rn

be continuously differentiable functions. Let y ∈ Rn and x = G (y) ∈ Rn. Consider the
composite function

C = F ◦G : Rn → Rn.

Let JF (x) ∈ Rn×n be the Jacobian matrix of the partial derivatives of F at x, and
let JG (y) ∈ Rn×n be the Jacobian matrix of the partial derivatives of G at y. Then the
Jacobian matrix JC (y) is given by the matrix product of the Jacobians as

JC (y) = JF◦G (y) = JF (x) JG (y) .

B Proofs for Section 2

Proof of Lemma 1. Lemma 1 is implied by Lemma 6.

Lemma 6. Assume that S is twice continuously differentiable and linearly homogeneous.
Then,

a. JlnS is symmetric on int (∆) if and only if

∑
j∈J

qj
∂ lnS(j) (q)

∂qk
= 1, k ∈J , ∀q ∈ int (∆) . (22)

b. If JlnS is symmetric and positive definite on int (∆), then Ω is strictly concave on
int (∆).

c. If JlnS is positive definite, then S is invertible on int (∆).

Proof of Lemma 6. a. Assume that JlnS is symmetric. S(k) is linearly homogeneous, then
lnS(k) is homothetic.
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Let φ (q) = S(k) (q) and F (q) = ln (q), then h (δ) = exp (δ). Define δ = f (q) =

F (φ (q)) = ln
(
S(k) (q)

)
and h (δ) = φ (q) = exp (δ). Then, by Lemma 3, S(k) satisfies

∑
j∈J

qj
∂ lnS(k) (q)

∂qj
=

exp (δ)

exp (δ) δ
δ = 1.

By symmetry of JlnS, we end up with

∑
j∈J

qj
∂ lnS(j) (q)

∂qk
= 1.

Assume now that
∑

j∈J qj
∂ lnS(j)(q)

∂qk
= 1. Then, for each j, k ∈J ,

∂Ω (q)

∂qj
= − lnS(j) (q)− 1;

∂Ω (q)

∂qk
= − lnS(k) (q)− 1,

so that
∂2Ω (q)

∂qj∂qk
= −∂ lnS(j) (q)

∂qk
;

∂2Ω (q)

∂qk∂qj
= −∂ lnS(k) (q)

∂qj
.

Since Ω is twice continuously differentiable, then by Schwarz’s theorem,

∂2Ω (q)

∂qj∂qk
=
∂2Ω (q)

∂qk∂qj
,

i.e.,
∂ lnS(j) (q)

∂qk
=
∂ lnS(k) (q)

∂qj
,

Then JlnS is symmetric as required.
b. From Part 1, we find that JlnS (q) = ∇2

q (−Ω (q)), for all q ∈ int (∆). Then Ω is strictly
concave by positive definiteness of JlnS.
c. The function ln S is differentiable on the convex region int (∆) of RJ+1. In addition, JlnS

is positive quasi-definite on int (∆), since its symmetric part 1
2

(JlnS + (JlnS)ᵀ) = JlnS

is positive definite on int (∆). Then, by Lemma 4, ln S is injective, implying that S is
injective.
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Proof of Theorem 1. The Lagrangian of the GEM is

L (q, λ, λ0, . . . , λJ) = αy +
∑
j∈J

δjqj −
∑
j∈J

qj lnS(j) (q) + λ (1− qj) +
∑
j∈J

λjqj,

where λ ≥ 0 and λj ≥ 0 for all j ∈J .
The first-order conditions are

δi − lnS(i) (q)−
∑
j∈J

qj
∂ lnS(j) (q)

∂qk
− λ+ λi = 0, i ∈J ,

∑
j∈J

qj = 1.

Using Lemma 1, we get

δi − lnS(i) (q)− 1− λ+ λi = 0, i ∈J ,∑
j∈J

qj = 1.

Observe that if q ∈ bd (∆), then | ln S(q)| = +∞ by Assumption 1. Hence, q cannot
solve the first-order conditions, since the λi’s must be finite. Therefore the solution must
be interior with λi = 0 for all i ∈J . Then the first-order conditions reduce to

S (q) = eδ−1−λ > 0, (23)∑
j∈J

qj = 1. (24)

The linear homogeneity of S implies that also H = S−1 is linearly homogeneous. Then
(23) yields

q = S−1
(
eδ−1−λ) = H

(
eδ−1−λ) = e−(1+λ)H

(
eδ
)
.

Lastly, (24) implies that e1+λ =
∑

j∈J H(j)
(
eδ
)

such that any solution to the first-order
conditions satisfies

qi =
H(i)

(
eδ
)∑

j∈J H(j) (eδ)
, i ∈J . (25)

The strict concavity of the utility u on int (∆) implies that this solution is unique and
is the argmax to the utility maximization problem.
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Relation (7) between δ and q. Note that if q is an interior solution to the utility max-
imization problem then it satisfies Equation (6), which, by invertibility and linear homo-
geneity of S implies that

lnS(i) (q) + ln

∑
j∈J

H(j)
(
eδ
) = δi, i ∈J .

Conversely, if ∀i ∈J , we have δi = lnS(i) (q)+ln
(∑

j∈J H(j)
(
eδ
))

, then q solves
(6).

Proof of Proposition 1. The surplus function G is defined by

G (δ) =
∑
j∈J

δjqj (δ) + Ω (q (δ)) ,

with qj (δ) given by (6). The log-sum (9) results substituting qj (δ) by (6).
We now show that demands (6) satisfy Roy’s identity, i.e.,

qj (δ) =
∂G (δ)

∂δj
.

Let δ = ln S (q), so that (ln S)−1 (δ) = H ◦ exp (δ) = q. Then by Lemma 5,

JlnS (q) =
[
J(lnS)−1 (ln S (q))

]−1

= [JH◦exp (δ)]−1 . (26)

Since JlnS (q) is symmetric, JH◦exp is also symmetric, i.e.,

∂H(i)
(
eδ
)

∂δj
=
∂H(j)

(
eδ
)

∂δi
. (27)

This is because every positive definite matrix is invertible, and the inverse of a symmetric
matrix is also a symmetric matrix. Then,

∂G
(
eδ
)

∂δi
=

∑
k∈J

∂H(k)(eδ)
∂δi∑

j∈J H(j) (eδ)
=

∑
k∈J

∂H(i)(eδ)
∂δk∑

j∈J H(j) (eδ)
,

=

∑
k∈J

∂H(i)(eδ)
∂eδk

eδk∑
j∈J H(j) (eδ)

=
H(i)

(
eδ
)∑

j∈J H(j) (eδ)
,
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where the second equality comes from the symmetry of JH◦exp, and the last equality comes
from the Euler equation (in Lemma 3) applied to the linearly homogeneous function H(i).

Proof of Proposition 2. From Theorem 1, (7) we obtain

I = JlnS(q)Jq + 1qᵀ.

This can be solved to obtain the desired result since JlnS(q) is invertible.

Proof for Example 2. Consider the generator S in Example 2 and write the corresponding
first-order conditions (23) and (24). Differentiating them with respect to δ0, we obtain the
following system of equations:


1

0

0

0

 =


µ
q0

+ 1−µ
q0+q1/2

(1−µ)/2
q0+q1/2

0 1
(1−µ)/2
q0+q1/2

µ
q1

+ (1−µ)/4
q0+q1/2

+ (1−µ)/4
q1/2+q2

(1−µ)/2
q1/2+q2

1

0 (1−µ)/2
q1/2+q2

µ
q2

+ (1−µ)
q1/2+q2

1

1 1 1 0




∂q0
∂δ0
∂q1
∂δ0
∂q2
∂δ0
∂λ
∂δ0


This can be solved to find that ∂q2/∂δ0 > 0 if and only if

µ <
q2

1 + q0q1 + q1q2

4q0q2 + 3q1q2 + 2q2
1 + 3q0q1

,

and noting that q0 + q1 + q2 = 1, if and only if

µ <
q1

4q0q2 + 3q1q2 + 2q2
1 + 3q0q1

.

Proof of Proposition 5. Using the relation (7) between δ and q, we get, for any pair of
products j and k,

qj (δ)

qk (δ)
= exp

(
δj − δk
µ0

+
C∑
c=1

µc
µ0

ln

(
qσc(k) (δ)

qσc(j) (δ)

))
. (28)

Then, for products j and k of the same type (i.e., with σc (k) = σc (j) for all c), (28) re-
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duces to qj
qk

= exp
(
δj−δk
µ0

)
, and, in turn, the ratio qj/qk is independent of the characteristics

or existence of all other products, i.e., IIA holds for products of the same type. However,
for any two products of different types, this ratio can depend on the characteristics of other
products, so that IIA does not hold in general for products of different types.

C Numerical properties of the Cross-Nested GNE Model

Using Proposition 2, the matrix of own- and cross-price derivatives for the cross-nested
GNE model is given by

Jq = −αΨ (Θ;µ) diag (q) [IJ+1 − 1J+1q
ᵀ] , (29)

where

Ψ (Θ;µ) =

[
µ0IJ+1 +

C∑
c=1

µcΘcQσc

]−1

,

with Θc given by (12) and Qσc being the diagonal matrix of the market shares of products
within their nest σc (j), i.e., (Qσc)jj =

qj
qσc(j)

. This means that we cannot obtain an analytic
formula for each entry of the matrix of own- and cross-price derivatives independently.
We therefore perform simulations to better understand substitution and complementarity
patterns the cross-nested GNE model can accommodate.

To do so, we simulate NS different nesting structures (i.e. allocations of products in
nests) along C dimensions (with M nests per dimension), NS different vectors of nesting
parameters µ = (µ0, . . . , µC), and NS different vectors of market shares q = (q0, . . . , qJ).
Setting NS = 20, C = 3, M = 3, and J = 30, we end up with 8, 000 market structures
by combining these dimensions. We obtain (i) a nesting structure by simulating a NS ×C
matrix of binomial random numbers; (ii) a vector of nesting parameters by simulating a
(C + 1) vector of uniformly distributed random numbers where the first element is µ0,
then by normalizing the vector of the other nesting parameters to get a unit vector µ; (iii)
a vector of market shares by simulating a (J + 1) vector of uniformly distributed random
numbers where the first element is q0, then by normalizing the vector of market shares of
inside products to get a unit vector q. The normalizations are to simulate markets with very
low and very high values for µ0 and q0.

The following table gives summary statistics on the simulated data:

41



TABLE 2: SUMMARY STATISTICS ON THE SIMULATED DATA

Variable Mean Min Max
q0 0.5253 0.0064 0.9906
qj 0.0158 3e-06 0.0697
µ0 0.4662 0.0697 0.9532
µ1 0.2014 0.0135 0.8480
µ2 0.1420 0.0175 0.4036
µ3 0.1904 0.0059 0.5212

Nesting structure. Table 3 shows the distribution of the own- and cross-price derivatives
for the simulated data according to the proximity of the products in the characteristics space
used to form product types.

Own-price elasticities are always negative, while cross-price elasticities can be either
negative (complementarity) or positive (substitutability). Products of the same type are
always substitutable. As products become different, products are less likely to be substi-
tutable. Products that are very similar (i.e., that are grouped together according to all the
dimensions, but one) are always substitutable too. However, products that are completely
different can be either substitutable or complementary. To summarize, complementarity
may or may not arise for products that are of different types, while products of the same
type are always substitutable.

Table 3: DISTRIBUTION OF PRICE DERIVATIVES ACCORDING TO THE NUMBER OF

COMMON NESTS

Same nests Jq > 0 Median Min Max Freq.
Own-price derivatives
– 0.00% -0.0222 -0.7781 -3e-06 100.00%
Cross-price derivatives
0 (None) 45.33% -7e-07 -0.1539 0.0251 25.09%
1 90.38% 0.0002 -0.1114 0.2082 43.59%
2 100.00% 0.0006 -1e-09 0.2641 26.47%
3 (All) 100.00% 0.0009 -1e-09 0.3100 4.85%
Total 82.09% 0.0002 -0.1539 0.3100 100.00%
Notes: Column "Jq > 0" gives the percentage of positive cross-price elastic-
ities (i.e., the percentage of substitutable products). Column "Freq." gives the
frequencies (in percentage) of the cross-price elasticities (e.g., 4.85 percent
of the cross-price elasticities involve products of the same type).

.
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Nesting parameters. Table 4 shows the distribution of cross-price derivative according
to the level of the closeness of products, as measured by the sum of nesting parameters
µjk =

∑3
c=1 µi1 {j ∈ σc (k)} for two products j and k.

As the parameter µjk increases, we observe first that the size of the derivatives decreases
in their negatives values, and increases in their positive values; then that the share of sub-
stitutable products increases. This comes from the fact that a higher value of µik indicates
that products j and k are perceived as more similar.

Table 4: PERCENTAGE OF SUBSTITUTES ACCORDING TO THE VALUE OF µjk

µjk Jq > 0 Median Min Max
[0, 0.1[ 65.60% 0.0000 -0.1539 0.0286

[0.1, 0.2[ 96.37% 0.0002 -0.0538 0.1462
[0.2, 0.3[ 93.52% 0.0003 -0.1114 0.1670
[0.3, 0.4[ 94.16% 0.0007 -0.0673 0.2082
[0.4, 0.5[ 93.89% 0.0009 -0.0432 0.2049
[0.5, 0.6[ 100.00% 0.0020 1e-08 0.2295
[0.6, 0.7[ 100.00% 0.0026 3e-08 0.2339
[0.7, 0.8[ 100.00% 0.0032 3e-08 0.2641
[0.8, 0.9[ 100.00% 0.0041 6e-08 0.1615
[0.9, 1[ 100.00% 0.0130 2e-07 0.3100

D Supplemental Material and Proofs for Section 3

Define Λ =
{
δ :
∑

j δj = 0
}

as the tangent space of ∆. The following lemma collects

some properties of the expected maximum utility G.

Lemma 7. The surplus G has the following properties.

a. G is twice continuously differentiable, convex and finite everywhere.

b. G (δ + c1) = G (δ) + c for any c ∈ R.

c. The Hessian of G is positive definite on Λ.

d. G is given in terms of the expected residual of the maximum utility product by

G (δ) =
∑
j∈J

Pj (δ) δj + E (εj∗ |δ) .
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Proof of Lemma 7. McFadden (1981) establishes convexity and finiteness of G as well as
the homogeneity property (b.) and the existence of all mixed partial derivatives up to order
J . This also implies that all second order mixed partial derivatives are continuous, since
J ≥ 2. Hofbauer and Sandholm (2002) show that the Hessian of G is positive definite on
Λ (see the proof of their Theorem 2.1).

Let j∗ be the index of the chosen product. The last statement of the lemma follows
using the law of iterated expectations:

G (δ) =
∑
j∈J

E
(

max
j∈J
{δj + εj} |j∗ = j, δ

)
Pj (δ) ,

=
∑
j∈J

(δj + E (εj∗|j∗ = j, δ)Pj (δ)) ,

=
∑
j∈J

Pj (δ) δj + E (εj∗|δ) .

Proof of Lemma 2. Invertibility of H. Note first that H is differentiable.
In addition, the Jacobian of δ → H

(
eδ
)
, labeled JH, is positive quasi-definite on Λ.

The Jacobian JH has elements ij given by{
eG(δ)Gi (δ)Gj (δ)

}
+
{
eG(δ)Gij (δ)

}
.

The first matrix is positive semi-definite. By part d. of Lemma 7, the second matrix is
positive definite on Λ. The Jacobian is therefore positive definite on Λ. Lastly, since JH

is symmetric, its symmetric part is itself, and thus positive quasi-definiteness of JH is
equivalent to its positive definiteness. Then, by Lemma 4, H is invertible on the range
H(eΛ). Global invertibility follows, since by the homogeneity property we have for δ ∈
RJ+1 that

H(eδ) = e1
ᵀδeG(δ−1JJδ)P(δ − 1JJδ).

The range of H is RJ+1
++ since the range of P is the interior of ∆. To conform to

the definition of a generator, we need to extend H continuously to have domain and range
RJ+1

+ . Fosgerau et al. (2017, Proposition 2) show that H does in fact have such a continuous
and invertible extension H.19 We may therefore define a candidate generator S : RJ+1

+ →
19The argument is fairly long, so we do not repeat it here.
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RJ+1
+ as the inverse of H.

Generator S. The function S is twice continuously differentiable and linearly homoge-
neous. As shown above, the Jacobian of H is symmetric and positive definite. Then the
same is true of the Jacobian of ln S (see Lemma 5).

E Construction of Generators

In this section, we provide a range of general methods for building generators along with
illustrative examples. According to Definition 1, candidate generators must be shown to
be twice continuously differentiable, linearly homogeneous, and with a Jacobian of their
logarithm that is symmetric and positive definite.

Constructing generators, we will encounter many instances where it is possible to con-
struct a candidate generator that satisfies all the requirements for being a generator except
the Jacobian of the log generator may be only positive semi-definite. We call such a can-
didate an almost generator. The first result in this section shows that averaging such an
almost generator with a generator produces a new generator.

Proposition 6 (Averaging). Let Tk : RJ+1
+ → RJ+1

+ , k ∈ {1, . . . , K}, be almost generators
with at least one being a generator. Let (α1, . . . , αK) ∈ int(∆). Then S : RJ+1

+ → RJ+1
+

given by

S (q) =
K∏
k=1

Tk (q)αk (30)

is a generator.

Proof of Proposition 6. S given by (30) is twice continuously differentiable. It is also
linearly homogeneous since for λ > 0

S (λq) =
K∏
k=1

Tk (λq)αk =
K∏
k=1

λαkTk (q)αk ,

=

(
K∏
k=1

λαk

)(
K∏
k=1

Tk (q)αk

)
,

=
(
λ
∑K
k=1 αk

)( K∏
k=1

Tk (q)αk

)
= λS (q) ,
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where the second equality comes from the linear homogeneity of the functions Tk and the
fourth equality comes from the restrictions on parameters

∑K
k=1 αk = 1.

The Jacobian of ln S, given by JlnS =
∑K

k=1 αkJlnTk , is symmetric as the linear com-
bination of symmetric matrices; and positive definite as the linear combination of at most
K − 1 positive semi-definite matrices and at least one positive definite matrix.

Proposition 6 has two corollaries: Proposition 3 stated in the main text and Corollary 1
given below.

Proof of Proposition 3. For each g ∈ G , let Tg =
(
T

(1)
g , . . . , T

(J)
g

)
with T

(j)
g (q) =

q
1{j∈g}
g , and let T (j)

0 (q) = qj . Then the Jacobian of ln Tg has elements jk given by
1{j∈g}1{k∈g}

qg
, and thus JlnTg =

1g1
ᵀ
g

qg
where 1g = (1 {1 ∈ g} , . . . ,1 {J ∈ g})ᵀ. Each

Tg, g ∈ G is an almost generator while T0 is the logit generator. Lastly,
∑
{g∈G|j∈g} µg +

µ0 = 1. Then the conditions for application of Proposition 6 are fulfilled.

The following corollary provides another application of Proposition 6, which allows to
build models with analytic formulae for both the demand functions and their inverse, as it is
the case for the logit and NL models. Let un-normalized demands q̃ be demands obtained
before normalizing their sum to 1, i.e., q = q̃/|q̃|.

Corollary 1 (Invertible nesting). Let G = {g0, . . . , gJ} be a finite set of J + 1 nests (i.e.,
the number of nests is equal to the number of products). Let µg > 0, for all g ∈ G , be the
associated nesting parameters where

∑
{g∈G |j∈g} µg = 1 for all j ∈J , and qg =

∑
i∈g qi.

Let S be given by
S(j) (q) =

∏
{g∈G |j∈g}

qµgg . (31)

Let W = diag (µg0 , . . . , µgJ ) and let M ∈ R(J+1)×(J+1) with entriesMjk = 1{j∈gk} (where
rows correspond to products and columns to nests). If M is invertible, then S is a generator,
and the un-normalized demands satisfy

δ = ln S (q̃)⇔ q̃ =
(
MT

)−1
exp

(
W−1M−1δ

)
.

The generator (31) satisfies Assumption 1 only when there is at least one degenerate
nest (i.e., a nest with a single product). This means that Corollary 1 allows for zero demands
when there is no degenerate nest. Note that zero demands may also arise in an ARUM
where the error terms have bounded support.
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Proof of Corollary 1. Following the proof of Proposition 3, the (candidate) generator S

given by (31) is clearly an almost generator. Thus, it remains to show that, if M is invertible,
then the Jacobian of ln S is positive definite.

Note that

lnS(j) (q) =
∑
k∈J

µgk1 {j ∈ gk} ln (qgk) ,

=
∑
k∈J

µgk1 {j ∈ gk} ln

∑
i∈J

1 {i ∈ gk} qi

 ,

and, in turn,
∂ lnS(j) (q)

∂ql
=
∑
k∈J

µgk
1 {j ∈ gk}1 {l ∈ gk}

qgk
,

which can be expressed in matrix form as

JlnS (q) = MVMᵀ,

where V = diag
(
µg0
qg0
, . . . ,

µgJ
qgJ

)
. This is positive definite since all µg are strictly positive

and M is invertible.
Lastly, with M invertible, un-normalized demands solve ln S (q) = MW ln (Mᵀq) =

δ and are given by
q = (Mᵀ)−1 exp

(
W−1M−1δ

)
.

Example 3. Define nests from the symmetric incidence matrix M with entries Mij =

1{i 6=j}, so that each product belongs to J nests. The inverse of the incidence matrix has
entries ij equal to 1

J
− 1{i=j}.

Let µg = 1/J for each nest g = 1, . . . , J . Then the un-normalized demands are given
by q̃ = (M)−1 exp [JM−1δ] which leads to the following demands

qi =
q̃i∑
j∈J q̃j

=

∑
j∈J e−Jδj − Je−Jδi∑

j∈J e−Jδj
. (32)

These demands are non-negative only for values of δ within some set. To ensure positive
demands, it is possible to average with the simple logit generator, since then Assumption 1
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is satisfied and Theorem 1 applies.
Demands (32) are not consistent with any ARUM since they do not exhibit the (re-

strictive) feature of the ARUM that the mixed partial derivatives of qj alternate in sign
(McFadden, 1981). Indeed, products are substitutes

∂q1

∂δ2

= −J2e−J(δ1+δ2)/

∑
j∈J

e−Jδj

2

< 0,

but

∂2q1

∂δ2∂δ3

= −2J3e−J(δ1+δ2+δ3)/

∑
j∈J

e−Jδj

3

< 0.

The following proposition shows how a generator can be transformed into a new gen-
erator by application of a location shift and a bistochastic matrix (i.e., a matrix with non-
negative elements that sum to 1 across rows and columns).

Proposition 7 (Transformation). Let T be a generator and m ∈ RJ+1 be a location shift
vector. Let A ∈ R(J+1)×(J+1) be an invertible bistochastic matrix, so that aij ≥ 0 and∑

i∈J aij =
∑

j∈J aij = 1. Then S given by

S (q) = exp
(
AT [ln (T (Aq))] + m

)
(33)

is a generator, and the un-normalized demands are given by

q̃ = A−1T−1
(
exp

[
(Aᵀ)−1 (δ −m)

])
.

Proof of Proposition 7. S defined by (33) is twice continuously differentiable. It is also
linearly homogeneous since for λ > 0,

S (λq) = exp (Aᵀ ln T (A (λq)) + m) ,

= exp (Aᵀ lnλ+ Aᵀ lnT (Aq) + m) ,

= exp (lnλ+ Aᵀ lnT (Aq) + m) = λS (q) ,

where the second equality comes from the linear homogeneity of T, and the third equality
comes from the fact that columns of A sum to 1.

By Lemma 5, the Jacobian of ln S is JlnS = AᵀJlnTA, which is symmetric and positive
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definite.
The final conclusion follows from solving ln S (q̃) = δ.

By Proposition 7, if A is an invertible bistochastic matrix and Ω a GE, then q →
Ω (Aq) is also a GE, since Ω(Aq) = −qᵀAᵀ ln S(Aq). This construction may be useful
if choice products can be viewed as mixtures of another level of choice products. In addi-
tion, similarly to Corollary 1, Proposition 7 allows the construction of models with analytic
formulae for both their demand functions and their inverse. Lastly, it allows for zero de-
mands: this may arise when the generator T does not satisfy Assumption 1. We illustrate
Proposition 7 with a generator that leads to demands where products may be complements.

Example 4. Let J + 1 = 3, m = 0, and T (q) = q, and

A =

 p 1− p 0

1− p p 0

0 0 1

 ,

with p < 0.5. Then we obtain

q̃ = A−1
(

exp
[(

AT
)−1

δ
])

=


p

2p−1e
p

2p−1 δ1−
1−p
2p−1 δ2 − 1−p

2p−1e
p

2p−1 δ2−
1−p
2p−1 δ1

p
2p−1e

p
2p−1 δ2−

1−p
2p−1 δ1 − 1−p

2p−1e
p

2p−1 δ1−
1−p
2p−1 δ2

eδ3

 ,

so that

q3 =
eδ3

e
p

2p−1 δ1−
1−p
2p−1 δ2 + e

p
2p−1 δ2−

1−p
2p−1 δ1 + eδ3

,

and ∂q3
∂δ1

> 0 if and only if δ2 − δ1 > (2p− 1) ln
(

1−p
p

)
.

F Supplemental Material for Section 5

F.1 Data

Data. We use data from the Dominick’s Database made available by the James M. Kilts
Center, University of Chicago Booth School of Business. They comprise all Dominick’s
Finer Foods chain stores in the Chicago metropolitan area over the period 1989-1997, and
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concern 30 categories of packaged products. They are weekly store-level scanner data at
the UPC level, and include unit sales, retail price, and weekly stores traffic.

We supplement the data with the nutrient content of the cereals using the USDA Nutri-
ent Database for Standard Reference. This dataset is made available by the United States
Department of Agriculture and provides the nutrient content of more than 8,500 differ-
ent foods including ready-to-eat cereals (in particular, we use releases SR11 and SR16
for sugar). We use six characteristics: fiber, sugar, lipid, protein in grams/100g of cere-
als, energy in Kcal/100g of cereals, and sodium in mg/100 g of cereals. We convert each
characteristics into g/serve, Kcal/serve, and mg/serve, respectively.

We supplement the data with the sugar monthly price in dollars/kg. We use this variable
to form a cost-based instrument: the price of the cereal’s sugar content (i.e., sugar content
in grams times the sugar monthly price in dollars/g).

Market shares and prices. Following Nevo (2001), we define market shares of the (in-
side) products by converting volume sales into number of servings sold, and then by divid-
ing it by the total potential number of servings at a store in a given month.

To compute the potential market size, we assume that (i) an individual in a household
consumes around 15 servings per month, and (ii) consumers visit stores twice a week.20

Indeed, according to USDA’s Economic Research Service, per capita consumption of RTE
cereals was equal to around 14 pounds (that is, about 6350 grammes) in 1992, which is
equivalent to serving 15 servings per month (without loss of generality, we assume that a
serving weight is equal to 35 grammes). Then, the potential month-store market size (in
servings) is computed as the weekly average number of households which visited that store
in that given month, times the average household size for that store, divided by two, times
the number of servings an individual consumes in a month. Using the weekly average
number of households itself allows to take into account the fact that consumers visit stores
once a week. The market share of the outside option is then the difference between one and
the sum of the inside products market shares.

Following Nevo (2001), we compute the price of a serving weight by dividing the dollar
sales by the number of servings sold, where the dollar sales reflect the price consumers paid.

20As a robustness check, we have also estimated the models with the alternative assumption that consumers
visit stores once a week. Results do not change significantly.
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Descriptive statistics. The sample we use consists of the six biggest companies men-
tioned above. Brand names seem to play a non-negligible role: Kellogg’s is the biggest
company with large market shares in all segments; and General Mills, the second biggest
one, is especially present in the family and kids segments. Taken together they account for
around 80 percent of the market. As regards market segments, the family and kids segments
dominate and account for almost 70 percent of the market.

Table 5 shows the nutrient content of the cereals according to their market segment and
brand name. We observe that cereals for health/nutrition contain less sugar, more fiber, less
lipid, and less sodium, and are less caloric. Cereals for kids contain more sugar and more
calories. Nabisco offers cereals with less sugar and less calories, and Quaker and Ralston
offer cereals with more calories.

Implementing the GNE model. We first select the dimensions along which the market
is segmented.

Then, we estimate the GNE model by 2SLS (or GMM) using cost shifters and BLP
instruments as instruments for prices and nesting terms. Practically, we use ivregress or
ivreg2 commands of the software package STATA.

Lastly, to compute the own- and cross-price elasticities, we proceed as follows. First,
we get the estimated net utility δ̂, the estimated marginal utility of income α̂, and the es-
timated nesting parameters µ̂ = (µ̂1, . . . , µ̂C). Second, we compute the predicted market
shares q̂ by solving for q the system of nonlinear equations ln S (q, µ̂) = δ̂ + c (see
Equations (7)), with S defined by (13) and with c = − ln (q0) = − ln

(
1−

∑J
j=1 qj

)
by

normalization δ0 = 0. Practically, we use the Stata command solvenl or the Matlab com-
mand fsolve.21 Third, we compute the matrix of elasticities η = diag (p) Jqdiag (q̂)−1,
where Jq is given by (29) with α = α̂, q = q̂, and µ = µ̂.

F.2 Results: Elasticities for the Main Specifications

Tables 7 and 8 give the estimated average own- and cross-price elasticities of demands for
the main specifications, averaged over markets and product types.

21Equivalently, we can solving for q the utility maximization program (3) using Matlab command
fmincon.
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Table 5: SAMPLE STATISTICS BY SEGMENT AND BY BRAND NAME

Dimensions Sugar Energy Fiber Lipid Sodium Protein N
g/serve Kcal/serve g/serve g/serve mg/serve g/serve

Segment
Family 7.54 130.41 2.22 0.99 269.66 2.88 17

(5.27) (9.83) (2.61) (0.71) (88.64) (1.03)
Health/nutrition 5.03 122.54 3.16 0.54 168.54 3.84 9

(3.69) (5.78) (1.31) (0.21) (133.62) (1.35)
Kids 13.40 137.75 1.00 1.35 211.38 2.01 16

(4.17) (3.80) (0.69) (0.79) (44.77) (0.87)
Taste enhanced 9.70 129.28 3.32 2.22 166.43 3.16 8

(2.05) (15.50) (1.12) (1.93) (76.38) (0.34)
Brand Name
General Mills 9.92 132.09 1.99 1.51 230.69 2.65 17

(4.67) (7.69) (0.98) (0.82) (60.83) (0.83)
Kellogg’s 9.58 127.50 2.47 0.85 228.49 2.88 18

(5.52) (11.16) (2.81) (0.96) (103.93) (1.43)
Nabisco 0.25 125.48 3.43 0.58 2.10 3.83 2

(0.09) (0.74) (0) (0) (1.98) (0.02)
Post 12.02 130.76 2.09 1.03 212.03 2.49 5

(4.64) (14.83) (2.02) (0.78) (22.31) (1.15)
Quaker 8.50 139.44 2.26 2.43 159.88 3.59 5

(4.04) (9.20) (0.66) (1.86) (94.60) (1.15)
Ralston 7.09 138.48 0.58 0.51 305.43 2.04 3

(6.61) (1.41) (0.08) (0.65) (71.57) (0.39)
Total 9.31 131.16 2.17 1.22 216.29 2.82 50

(5.21) (10.21) (1.92) (1.08) (93.53) (1.15)
Notes: Standard deviations are reported in parentheses. Column "N" gives the number of
brands by segment and by brand name.
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Table 6: TOP 50 BRANDS

Nb. Brand Product Type Brand name Segment Shares (%)
Dollars Volume

1 Apple Cinnamon Cheerios 1 General Mills Family 2.23 2.02
2 Cheerios 1 General Mills Family 7.67 6.76
3 Clusters 1 General Mills Family 1.03 0.89
4 Golden Grahams 1 General Mills Family 2.28 2.12
5 Honey Nut Cheerios 1 General Mills Family 4.82 4.47
6 Total Corn Flakes 1 General Mills Family 0.87 0.59
7 Wheaties 1 General Mills Family 2.59 2.75
8 Total 2 General Mills Health/nutrition 1.29 1.00
9 Total Raisin Bran 2 General Mills Health/nutrition 1.61 1.49

10 Cinnamon Toast Crunch 3 General Mills Kids 2.16 1.94
11 Cocoa Puffs 3 General Mills Kids 1.22 0.98
12 Kix 3 General Mills Kids 1.68 1.29
13 Lucky Charms 3 General Mills Kids 2.35 1.94
14 Trix 3 General Mills Kids 2.43 1.75
15 Oatmeal (Raisin) Crisp 4 General Mills Taste enhanced 2.05 2.09
16 Raisin Nut 4 General Mills Taste enhanced 1.60 1.60
17 Whole Grain Total 4 General Mills Taste enhanced 1.77 1.29
18 All Bran 5 Kellogg’s Family 0.97 1.11
19 Common Sense Oat Bran 5 Kellogg’s Family 0.49 0.46
20 Corn Flakes 5 Kellogg’s Family 4.12 6.96
21 Crispix 5 Kellogg’s Family 1.88 1.70
22 Frosted Flakes 5 Kellogg’s Family 6.01 6.77
23 Honey Smacks 5 Kellogg’s Family 0.85 0.84
24 Rice Krispies 5 Kellogg’s Family 5.58 6.06
25 Bran Flakes 6 Kellogg’s Health/nutrition 0.90 1.16
26 Frosted Mini-Wheats 6 Kellogg’s Health/nutrition 3.35 3.69
27 Product 19 6 Kellogg’s Health/nutrition 1.06 0.86
28 Special K 6 Kellogg’s Health/nutrition 3.07 2.53
29 Apple Jacks 7 Kellogg’s Kids 1.67 1.32
30 Cocoa Krispies 7 Kellogg’s Kids 0.99 0.85
31 Corn Pops 7 Kellogg’s Kids 1.80 1.52
32 Froot Loops 7 Kellogg’s Kids 2.66 2.22
33 Cracklin’ Oat Bran 8 Kellogg’s Taste enhanced 1.91 1.66
34 Just Right 8 Kellogg’s Taste enhanced 1.07 1.12
35 Raisin Bran 8 Kellogg’s Taste enhanced 3.96 4.83
36 Shredded Wheat 9 Nabisco Health/nutrition 0.77 0.88
37 Spoon Size Shredded Wheat 9 Nabisco Health/nutrition 1.59 1.63
38 Grape Nuts 10 Post Health/nutrition 2.27 3.06
39 Cocoa Pebbles 11 Post Kids 1.11 0.92
40 Fruity Pebbles 11 Post Kids 1.14 0.94
41 Honey-Comb 11 Post Kids 1.05 0.90
42 Raisin Bran 12 Post Taste enhanced 0.93 1.10
43 Oat Squares 13 Quaker Family 0.91 1.02
44 CapNCrunch 14 Quaker Kids 1.00 1.10
45 Jumbo Crunch (Cap’n Crunch) 14 Quaker Kids 1.27 1.35
46 Life 14 Quaker Kids 1.73 2.24
47 100% Cereal-H 15 Quaker Taste enhanced 1.42 1.84
48 Corn Chex 16 Ralston Family 0.81 0.72
49 Rice Chex 16 Ralston Family 1.15 1.03
50 Cookie-Crisp 17 Ralston Kids 0.89 0.68
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Table 7: AVERAGE PRICE ELASTICITIES FOR THE CROSS-NESTED GNE MODEL

O
w

n
C

ross

Type
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

1
-3.165

0.241
0.111

0.085
0.092

0.092
-0.038

-0.064
-0.056

0.003
0.013

-0.013
-0.005

0.133
-0.023

-0.016
0.077

-0.079
2

-3.146
0.072

0.379
0.069

0.074
-0.039

0.269
-0.041

-0.037
0.113

0.238
-0.072

-0.064
-0.003

-0.006
-0.002

-0.004
-0.006

3
-3.427

0.066
0.083

0.316
0.076

-0.026
-0.009

0.225
-0.016

0.002
-0.059

0.174
-0.064

-0.100
0.150

-0.090
-0.044

0.206
4

-2.950
0.067

0.083
0.071

0.384
-0.034

-0.018
-0.030

0.282
0.003

-0.035
-0.047

0.255
-0.051

-0.047
0.266

-0.004
-0.000

5
-2.560

0.097
-0.063

-0.035
-0.049

0.211
0.050

0.078
0.065

-0.007
-0.017

0.011
-0.003

0.125
-0.008

-0.021
0.074

-0.058
6

-2.700
-0.028

0.308
-0.008

-0.018
0.035

0.372
0.056

0.046
0.122

0.251
-0.066

-0.072
-0.015

0.005
-0.005

-0.009
0.011

7
-3.366

-0.037
-0.037

0.169
-0.024

0.044
0.044

0.250
0.057

-0.005
-0.062

0.144
-0.046

-0.084
0.122

-0.071
-0.036

0.170
8

-2.531
-0.042

-0.042
-0.016

0.288
0.046

0.046
0.072

0.376
-0.005

-0.056
-0.029

0.265
-0.063

-0.036
0.268

-0.009
0.017

9
-1.949

0.001
0.074

0.001
0.002

-0.003
0.069

-0.003
-0.003

0.909
0.062

-0.011
-0.009

0.005
0.005

0.006
0.005

0.005
10

-1.524
0.008

0.225
-0.047

-0.028
-0.010

0.208
-0.065

-0.045
0.090

—
0.399

0.396
0.033

-0.022
-0.002

0.016
-0.038

11
-3.175

-0.006
-0.046

0.092
-0.026

0.004
-0.036

0.102
-0.016

-0.011
0.266

0.404
0.272

-0.029
0.069

-0.050
-0.010

0.087
12

-1.949
-0.003

-0.050
-0.042

0.184
-0.001

-0.048
-0.040

0.186
-0.011

0.337
0.344

—
-0.005

-0.044
0.182

0.013
-0.026

13
-2.337

0.050
-0.002

-0.048
-0.027

0.045
-0.008

-0.053
-0.032

0.005
0.020

-0.025
-0.004

—
0.233

0.254
0.040

-0.058
14

-2.273
-0.011

-0.004
0.090

-0.030
-0.003

0.003
0.098

-0.022
0.005

-0.016
0.079

-0.040
0.285

0.387
0.266

-0.013
0.089

15
-1.778

-0.008
-0.001

-0.056
0.177

-0.010
-0.003

-0.059
0.174

0.006
-0.003

-0.058
0.170

0.326
0.277

—
0.012

-0.037
16

-2.607
0.028

-0.002
-0.019

-0.002
0.026

-0.005
-0.021

-0.004
0.005

0.009
-0.008

0.009
0.038

-0.009
0.008

0.808
0.759

17
-3.382

-0.021
-0.003

0.072
-0.000

-0.014
0.004

0.078
0.006

0.003
-0.017

0.057
-0.014

-0.041
0.051

-0.021
0.581

—
N

otes:
E

lasticities
are

averaged
overproducttypes

and
overm

arkets.
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Table 8: AVERAGE PRICE ELASTICITIES FOR THE THREE-LEVEL NL MODELS

Type 3NL1 3NL2

Own Cross Own Cross

Same Same Different Same Same Different
subgroup group group subgroup group group

1 -3.528 0.182 0.137 0.005 -3.524 0.208 0.147 0.007
2 -3.414 0.426 0.257 0.004 -3.530 0.332 0.104 0.005
3 -3.778 0.300 0.228 0.004 -3.876 0.226 0.129 0.006
4 -3.228 0.403 0.302 0.004 -3.398 0.255 0.117 0.006
5 -2.840 0.178 0.145 0.006 -2.868 0.169 0.124 0.008
6 -2.994 0.353 0.282 0.004 -3.181 0.186 0.089 0.006
7 -3.678 0.261 0.172 0.003 -3.763 0.199 0.080 0.005
8 -2.781 0.386 0.296 0.004 -2.971 0.215 0.092 0.006
9 -2.804 0.309 0.169 — -2.030 1.102 — 0.003

10 -1.930 — 0.244 0.003 -1.605 — 0.507 0.005
11 -3.671 0.229 0.111 0.002 -3.435 0.488 0.329 0.003
12 -2.295 — 0.201 0.003 -2.028 — 0.396 0.004
13 -2.584 — 0.059 0.002 -2.270 — 0.298 0.003
14 -2.685 0.213 0.129 0.002 -2.480 0.434 0.321 0.004
15 -2.064 — 0.203 0.003 -1.845 — 0.357 0.004
16 -3.494 0.226 0.058 0.002 -2.713 1.029 0.800 0.003
17 -3.929 — 0.089 0.002 -3.236 — 0.667 0.002

Notes: Elasticities are averaged over product types and over markets.
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