Term structure of risk in expected returns *

Irina Zviadadze!

This Draft: March 8, 2018

Abstract

Return predictability reveals economic variables that drive expected returns. Alternative economic
theories relate fluctuations in predictive variables to different sources of risk. I develop an empirical
approach that exploits these observations and measures how economically interpretable shocks
propagate in the term structure of expected buy-and-hold returns. Shock propagation patterns
constitute term structure of risk in expected returns whose shape and level serve as informative
moments to test competing equilibrium theories of return predictability. As an application, I
examine sources of stock return predictability. I find that equilibrium shocks in the long-run mean
of the variance of consumption growth can justify the level and the shape of the term structure of
expected stock returns, in contrast to consumption disasters or long-run risk.
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1 Introduction

We have seen compelling evidence of return predictability in different asset classes: bonds,
stocks, commodities, and currencies. This evidence conveys at least two economic messages. One
is about designing profitable investment strategies to pocket risk premia. The other one is about
understanding which economic variables drive expected returns and aggregate discount rates. While
economic performance of investment strategies may be fragile at turbulent times, we can forcefully
use the second message as a direct source of information about economic shocks reflected in time
varying expected returns at alternative investment horizons.

The dynamics of expected returns reveals interactions between risk preferences of economic
agents and macroeconomic shocks across alternative horizons. A vector autoregressive model (VAR)
of a return and a predictive variable captures these interactions implicitly via multi-horizon return
predictability, whereas economic theory describes these interactions explicitly. A natural question
then is what multi-horizon return predictability implies for sources of the multi-period risk-return
tradeoff in equilibrium models, and whether known equilibrium models are in line with these im-
plications.

For any well-accepted predictive variable, there are multiple theories advocating competing
risk channels behind the return predictability. In this paper, I propose an empirical methodology
which identifies how alternative economic sources of return predictability propagate in expected
buy-and-hold returns of different horizons. I label these shock propagation patterns the term
structure of risk in expected returns. The level and the shape of the term structure of risk are
informative metrics about the multi-period dynamics of prices and quantities of risk, and therefore,
they are useful moments to target in calibrations of structural models. As a result, my empirical
methodology delivers a new set of facts that can be used to discipline an equilibrium theory of
time-varying risk premia.

To identify economic shocks in expected returns, I estimate a predictive system, in which I
explicitly relate the predictive variable to economic states, suggested by theory. This system is a
VAR of a one-period return and state variables augmented by an observation equation describing an
unrestricted mapping between the predictive variable and the economic states. As an implication of
return predictability, the vector autoregressive model necessarily features nonnormal shocks. These
shocks are particularly interesting because they reflect a notion of extreme events and innovations
in the macroeconomic variance, default probabilities, or disaster intensities, and they also represent
central sources of risk compensated in financial markets.

To describe how the identified economic shocks propagate in the term structure of expected
returns, I compute an incremental expected return (ZER). The ZER measures how a future multi-
period expected return changes if next period one of the state variables or return itself experiences
an injection of an extra amount of risk; and it applies to both normal and nonnormal shocks. The
collection of ZERs of different holding periods constitute the term structure of risk in expected
returns.



To the best of my knowledge, this paper is first to describe the term structure of risk for
nonnormal shocks in asset pricing. The closest predecessor of the ZER is a shock elasticity of
Borovicka and Hansen| (2014), which was developed to characterize marginal sensitivities of multi-
period expected returns or cash flows to normal sources of risk. I extend the notion of shock
elasticity to the case of nonnormal shocks and show that the two metrics coincide for normal
shocks but differ for nonnormal shocks. I explain the source of difference.

I develop three tractable cases of ZER for nonnormal shocks: (i) Poisson mixture of gamma
distributions with a scale parameter of one for volatility shocks, jump intensity shocks, or de-
fault probability shocks, (ii) Poisson mixture of exponentials for one-sided jumps such as jumps
in variance, and (iii) Poisson mixture of normals for two-sided jumps, for example jumps in cur-
rency returns. The aforementioned sources of volatility and jump risk are dominant drivers of
predictability and sources of risk premia in the state-of-the-art asset pricing literaturef'_-]

To illustrate how my approach works in practice, I examine the term structure of macroeco-
nomic risk in equity returns. I rely on the predictive ability of the price-dividend ratio to forecast
future expected returns and map fluctuations in the price-dividend ratio to alternative sources of
equity risk premium advocated by several leading structural models. I choose tractable, parsi-
monious, and yet stylized macro-based asset pricing models that account for many salient data
properties.

I study how alternative risk channels, such as (i) a long run risk with stochastic volatility of
consumption growth (Bansal and Yaron| (2004)), (ii) time-varying consumption disasters (Wachter
(2013))), and (iii) stochastic volatility of consumption growth with a time-varying long-run mean and
self-exciting jumps (Drechsler and Yaron| (2011])), are reflected in the term structure of expected
returns. These risk channels are interesting to explore on their own but also because they are
prevalent in applications in which the entire term structure of risk must be a natural object of
interest. Examples include but not limited to a climate change research (e.g., Bansal, Kiku, and
Ochoa, (2015) and Barro (2013)), impact of monetary policy and fiscal policy on asset prices (e.g.,
Gallmeyer, Hollifield, Palomino, and Zin (2007) and |Liu (2016])), and impact of innovation risk
on financial markets (e.g., |Croce, Nguyen, Raymond, and Schmid| (2017)) and |Kung and Schmid
(2015)).

To accomplish my task, I estimate three systems containing a predictive model for stock returns
and a law of motion for the state vector featured in one of the aforementioned structural models.
I document that in every case the term structure of expected buy-and-hold returns is downward
sloping. This property is a manifestation of the multivariate mean-reversion in returns (Cochrane),

TAugustin| (2016), Le, Singleton, and Dai| (2010)), and Zviadadze (2017) use an autoregressive Gamma pro-
cess to model the credit default process, the inverse consumption surplus ratio, and the stochastic volatility
of macroeconomic fundamentals, respectively. Hassler and Marfe| (2016)) use the Poisson mixture of expo-
nentials to model disasters and recoveries in the expected consumption growth and in the expected dividend
growth. Drechsler and Yaron| (2011)) use the Poisson mixture of normals to model disasters in the long-run
risk component of consumption growth.



2001)), and it also serves as a reality check of my empirical procedure. As a consequence, every
empirical model should have at least one shock associated with a downward sloping term structure
of risk in expected returns. My empirical results identify such a shock: it is the long-run risk shock
in the economic environment motivated by Bansal and Yaron! (2004); it is a disaster intensity shock
in the economic environment motivated by Wachter| (2013), and it is a long-run volatility shock in
the economic environment motivated by Drechsler and Yaron| (2011)).

Next, I analyze the term structures of risk implied by original calibrations of the structural
models, that is theoretical term structures of risk. I find discrepancy between empirical and theo-
retical moments. In[Bansal and Yaron| (2004), the long-run risk shock has an upward sloping (not a
downward sloping, like in the data) term structure of risk in expected returns. In |Wachter| (2013)),
the intensity shock features a downward sloping term structure of risk like in the data; yet the
disaster shock has a flat negative (not a positive, like in the data) term structure of risk. Thus, in
these models there is a tension between getting both the level and the shape of the term structure
of risk right. The model of Drechsler and Yaron (2011) shows success along the term structure
dimension: it matches both the shape and the level of the term structure of risk for all sources of
risk.

Because the empirical term structures of risk in expected returns are new moments, perhaps,
it is not surprising that the original calibrations of Bansal and Yaron| (2004 and Wachter| (2013)
fall short to match them. Instead of re-calibrating the models, I ask what are the necessary
conditions to match, at least qualitatively, the shape of the term structure of the long-run risk
shock and the level of the term structure of the disaster risk. They turn out to be (i) a negative
value for the parameter of the intertemporal elasticity of substitution in Bansal and Yaron| (2004)
and (ii) modeling an aggregate dividend as a levered consumption claim with a negative leverage
parameter in [Wachter| (2013). Because these conditions are economically implausible, I conclude
that alternative calibrations would not allow these models to match the evidence on the term
structure of risk in expected returns.

This simple empirical exercise illustrates how an asset return predictability translates into a
set of informative moments about the term structure of risk in expected returns. An interesting
aspect of this analysis is that I exploit a joint likelihood of macroeconomic and asset pricing data for
highlighting weak aspects of structural models. In the literature, there is a well-grounded scepticism
regarding the use of asset prices when estimating macro-based structural models (e.g., |Chen, Dou,
and Kogan| (2017)). The concern is that asset prices imply such properties of macroeconomic data
that are impossible to test, and therefore impossible to reject. I turn exactly this feature of a tight
dependence of the distribution of macroeconomic risk on asset prices, via predictability, into an
informative set of moments about the properties of economic shocks in the data and in asset pricing
models.

Related literature

This paper speaks to several strands of literature. First, it contributes to a rapidly growing
empirical literature on the term structure of risk premia. Recent contributions include Bansal,



Miller, and Yaron| (2017), Binsbergen, Brandt, and Koijen| (2012)), Binsbergen, Hueskes, Koijen,
and Vrugt| (2013)), [Dew-Becker, Giglio, Le, and Rodriguez] (2015)), [Gormsen| (2017)), Binsbergen
and Koijen| (2017) and references therein. The aforementioned studies rely on novel datasets of
zero-coupon yields of different maturities and compare the risk-return profile of short-term and
long-term instruments. The challenge for general equilibrium theorists is to relate these empirical
facts to specific sources of macroeconomic risk. In this paper, I propose a model-based methodology,
which (i) overcomes the above mentioned challenge, (ii) provides a complementary evidence on the
multi-period risk-return tradeoff in financial markets, and (iii) does not use data on zero-coupon
yields of different maturities whose availability is still limited. I exploit empirical patterns of return
predictability to describe how economically interpretable shocks propagate in the term structure of
buy-and-hold returns on the same asset.

My methodology is motivated by macroeconomics literature on testing economic theories by
means of examining shock propagation patterns in key macroeconomic indicators across alternative
horizons, also known as, impulse response functions (e.g., |Christiano, Eichenbaum, and Evans
(2005)), [Fernandez-Villaverde, Rubio-Ramirez, and Schorfheide| (2016, |Giacomini (2013)), [Smets
land Wouters| (2007), among others)El I apply a similar idea to structural dynamic asset pricing
models. I introduce a novel metric labeled an incremental expected return ZER that applies to
both normal and nonnormal shocks. The metric quantifies the impact of a change in the amount
of risk on expected returns of alternative holding periods. The ZER for normal shocks coincides
with the shock elasticity of Borovicka and Hansen| (2014). I extend the methods of dynamic value
decomposition (Borovicka and Hansen, [2014}; Borovicka, Hansen, Hendricks, and Scheinkman), 2011}
Borovicka, Hansen, and Scheinkman), [2014; Hansen| (2012))) to nonnormal shocks and delineate the
difference between the ZER and shock elasticity for nonnormal sources of risk. This extension is a
separate methodological contribution of this paper. The ZER and shock elasticity for nonnormal
sources of risk may serve as a useful tool for diagnostics methods of discrete-time macro-based asset
pricing models with time-varying risk premia.

Last but not least, it contributes to the methodological literature that relates properties of
data to model-based metrics with the purpose of guiding progress in building equilibrium mod-
els. Examples include but not limited to |Alvarez and Jermann| (2005)), Backus, Chernov, and Zin
(2014)), Backus, Boyarchenko, and Chernov| (2015), Bakshi and Chabi-Yo| (2012), Bakshi, Gao, and
Panayotov] (2017), |[Chabi-Yo and Colacito| (2017)), [Cochrane and Hansen| (1992), Hansen and Ja-
gannathan| (1991). Especially relevant studies are those that use properties of return predictability
(e.g., Bekaert and Liu, 2004, [Chabi-Yol [2008, [Favero, Ortu, Tamoni, and Yang), 2017, |Gallant,|
Hansen, and Tauchen, (1990, Yang, 2014) for developing performance measures for structural mod-
els. A distinctive feature of my approach is that I use an empirical model for summarizing properties
of the data, whereas the previous studies rely on model-free statistics. Extra assumptions that I
make decode properties of specific economic shocks in the term structure of asset returns. Thus,

2There is a growing literature on estimating macroeconomic dynamic stochastic general equilibrium
(DSGE) models by matching impulse response functions. For example, see |Guerron-Quintana, Inoue, and|

and references therein.




I can analyze models not as a whole but on a shock by shock basis. As a result, my approach is
more granular in nature.

Relatedly, this paper adds to an on-going discussion of alternative channels and mechanisms
that may provide a realistic macroeconomic view on the term structure of risk premia in financial
markets. |[Andries, Eisenbach, and Schmalz (2017)), Belo, Collin-Dufresne, and Goldstein| (2015),
Croce, Lettau, and Ludvigson (2015), Hassler and Marfe (2016)), and Marfe| (2016]) are some exam-
ples of prominent contributions to this debate.

The paper is organized as follows. Section I discusses how to examine propagation of various
economic shocks (normal and nonnormal) in the term structure of expected returns. Section II
develops an empirical framework for analyzing the term structure of macroeconomic risk in equity
returns. Section III documents the estimation results and examines the term structures of alter-
native sources of risk premium in structural models and in the data. Section IV concludes. The
Internet Appendix contains supplementary material.

2 Term structure of risk in expected returns

A joint model of an asset return and of an observable predictive variable is informative about
the multi-period dynamics of expected returns. Trajectories of shocks that originate in the pre-
dictive variable and propagate in future expected returns reveal the presence or absence of such
patterns in returns as mean reversion and momentum. In equilibrium, these patterns depend
on the asset’s exposures to risk and prices of risk across alternative horizons, and therefore they
characterize the multi-period risk-return tradeoff.

What are the economic origins of the multi-period risk-return tradeoff? For every established
return predictor, the existing literature proposes a number of alternative theories of (i) why the
predictive variable varies over time and (ii) why it has a forecasting power for future returns. An
economic interpretation of return predictability goes hand in hand with shock identification. In the
language of econometric analysis, every structural model represents a number of shock identifying
assumptions.

In this section, I describe a methodology for examining the term structure of economic shocks
in expected buy-and-hold returns. This methodology has two important ingredients. One ingredi-
ent is an identification of economic sources of predictability by means of augmenting a reduced-form
predictive system with a number of theoretically motivated shock identifying assumptions. Another
ingredient is a characterization of the trajectories of alternative economic shocks in the term struc-
ture of expected returns. An empirical application of this methodology, which I discuss in the next
section, delivers a collection of stylized facts about the multi-horizon properties of economic sources
of stock return predictability.



To fix ideas, I start with a simple illustrative example. I denote a one-period log return
log r¢ ++1 and its predictive variable y; and model their joint dynamics as the following system

logreir1 = f(ye) + Wrig1, (1)
Yir1 = K(Ye) + Wyes1. (2)

Fluctuations wy¢41 and wy41 can be correlated; functions f and x can be nonlinear; y; can be a
vector of predictors (without loss of generality and for simplicity, y; is a single predictor here); and
the system may contain extra exogenous variables, which are without loss of generality omitted
hereE| The drift of the return equation does not contain the lagged return because returns are
nearly iidE| The order of the predictive system does not have to be necessarily equal to 1. If lags
of the predictive variable larger than 1 have forecasting power for future returns, the vector 3 can
be extended by incorporating those lags as separate predictive variables.

I specify the predictive equation for returns in logs rather than in levels because of conve-
nience of linear time series analysis. The multi-period log returns are naturally a sum of one-period
log returns, and therefore, the autoregressive structure of the model — provides direct evidence
about how the predictive variable g affects future multi-period returns. As emphasized in|Cochrane
(2008), separate regressions for returns of alternative horizons do not convey any additional eco-
nomic message regarding predictability over and above that reflected already by the system like one
described by expressions —. In addition, the long-run predictive evidence obtained through the
lens of multivariate predictive systems exhibits greater statistical power (Campbell, [2001; Cochrane,
2008; [Valkanovl, [2003) [

Return predictor is an endogenous variable. Every equilibrium model maps it, through the
first-order optimality conditions, to a model-specific state vector, and therefore, to a number of
economic shocks. As a result, the system —, augmented by a model-implied representation of
the predictive variable y; as a function of a state vector, encodes properties of economic sources of
return predictability. This observation lies at the core of my analysis.

For example, consider a hypothetical structural model which describes the risk attitude of an
economic agent to the distribution of underlying shocks. The model features a state vector s; which
summarizes time variation in the aggregate discount rate and follows the law of motiorﬁ

St41 = FR(St) + Wstr1- (3)

3In the empirical section of this paper, I use tractable processes with linear functions f and &.

4See|Cochrane, (2001)) for a discussion of why returns can appear iid in the presence of return predictability.

SRecently |Giglio and Kelly| (2017)) argue that the variability of prices on short-term and long-term claims
on variety of different cash flows rejects the internal consistency conditions of autoregressive processes pre-
dominantly used in asset pricing modeling. In this paper, I stick to predictive systems modeled as autoregres-
sive multivariate processes because I have to augment a reduced-form model with identifying assumptions
stemming from structural models. To the best of my knowledge, there are no structural models reconciling
evidence of |Giglio and Kelly| (2017)) yet.

SWithout loss of generality, s; is a scalar random variable here.



The first-order optimality conditions imply that the predictive variable y; is some function g of the
state s

Yo = g(8t>7 (4)

and the parameters of the function g depend on the preference parameters and the parameters
governing the distribution of risk in the economy. In addition, the underlying assumptions of the
structural model relate reduced-form fluctuations in returns w1 to structural shocks wgy1 via

mapping 7
Wrt4+1 = n(wst+1)7 (5)

so that the return dynamics is

logrisyr = f(se) +n(wsey1), (6)

where f(s;) = f(g(st)) As a result, the predictive system — augmented with economic
restrictions — is equivalent to the state-space model represented by equations and @
The state-space formulation of the predictive system encodes multi-horizon properties of economic
sources of return predictability w4 1.

I examine the multi-period risk-return tradeoff in asset markets by focusing on how alternative
economic shocks propagate through expected buy-and-hold returns on the same asset across invest-
ment horizons. I define these propagation patterns as a term structure of risk in expected returns.
I analyze both the level and the shape of the term structure of risk for each individual shock, that
is (i) whether a positive shock shifts returns up or down and (ii) whether the corresponding impact
is horizon-dependent. These seemingly basic properties of economic shocks serve as informative
and powerful metrics for evaluating economic mechanisms in macro-based asset pricing models.

Mathematically, I define the term structure of risk in expected returns as a set of revisions
of expected multi-period returns, conditional on an information set Z;, that coincides with one
individual economic shock arriving at ¢ + 1. Effectively, I measure the impact of a shock on
returns of alternative horizons, and therefore, I use terms “risk” and “term structure”. I reserve
term “incremental expected return” ZER to describe one element of the term structure of risk
corresponding to a horizon 7

ISR(Tt,t—i—Ta ShOth+1,It) = E(Y’t7t+7—‘zt, ShOthJ,_l) - E(Tt7t+7—’l-t). (7)

The ZER takes into account the presence of other sources of risk in the economic environment,
that is it measures an incremental effect of a shock. It applies both to normal and nonnormal
shocks, and therefore, it is a suitable metric for analyzing the term structure of risk for sources
of time-varying risk premium, such as variance shocks and time-varying disaster shocks, among
others.

"In the macroeconomic literature mapping 7 is usually represented by a linear combination of shocks.



In what follows, I illustrate how to characterize the term structure of economic shocks in two
simple examples. I consider a predictive system — for stock returns logr; 11 and a price-
dividend as a predictive variable 7;. I borrow shock identification restrictions from two competing
theories of stock return predictability: (1) price-dividend ratio reflects variance risk and (2) price-
dividend ratio reflects risk driving the time-varying probability of crashes in returns; and then
characterize how the identified economic sources of return predictability propagate in returns across
alternative horizonsﬁ In Example 1, I examine the case of a normal variance shock, and in Exzample
2, I examine the case of a nonnormal disaster risk shock.

Example 1: Term structure of variance risk in expected returns

For simplicity and tractability, I consider the system — with linear mappings f and k.
The vector of the log return and of the price-dividend ratio follows a vector autoregressive process
of order 1 with two restrictions: (i) the lagged return does not Granger-cause the future return and
(ii) the lagged return does not predict the price-dividend ratio,

logrigy1 = a+b-logpd; + wrig1, (8)
logpdyy1 = (1 Vpd)vpd + Vpa - log pdy + opaWpd,t+1- 9)

The first parameter restriction is standard because of the absence of serial correlation in stock re-
turns. The second restriction stems from the fact that empirically the price-dividend ratio Granger-
causes the stock returns, but the stock returns do not Granger-cause the price-dividend ratio.

As a persistent variable, the price-dividend ratio follows an autoregressive process. Strictly
speaking the autoregressive process is not a suitable choice for modeling the price-dividend ratio,
because it does not eliminate the possibility of a negative realization of the variable. However, in the
context of my illustrative example it is not a concern. I take a proper care of modeling nonnegative
variables in the empirical section by replacing an autoregressive process with an autoregressive
gamma process (Gourieroux and Jasiak (2006), |Le, Singleton, and Dai| (2010)).

I identify economic sources of return predictability by applying the shock identification scheme
summarized in Hypothesis 1 to the system (8)-(9): (i) the variance of log returns is stochastic,
Vary(wyiy1) = vy and perfectly (positively or negatively) correlated with the price-dividend ratio

log pdy = qo + qut, (10)

. . . . 1/2
and (ii) conditional on the current information set Z; the shocks to returns wy;y1 = vt/ Eptr1 are

orthogonal to the variance shocks €,;41, corrt(vt1 / 2srt+1,5vt+1) = OH As a result, the predictive

8In this section, I am agnostic about the exact nature of the sources of risk. For example, I do not take
a stand on whether these are macroeconomic shocks.

9The restriction corrt(fut1 / 25Tt+1,5vt+1) = 0 is an over-identifying restriction. At this stage, I do not
contemplate whether some of or all the identifying restrictions are empirically realistic.



system given in —@ can be represented as

log Ttt+l = Gy + bvvt + ’Utl/2€rt+1, (11)
Ut+1 = (1 - Vv)vv + UVt + OpEutt1, (12)
where
ay = a-+ bQOa
b, = me
Vv = Vpd,
v, = [(1- Vpd)vpd —qo+ Vpdqo]/[%(l - Vpd)]a
Oy = Upd/Qv-

The state-space representation and describes the dynamics of stock returns 74, as a
function of the state variable v; and economic shocks e,4+11 and €11, rather than as a function of
the predictive variable pd; and reduced-form shocks w411 and wpgs41. The primer representation
is useful for analyzing how economic sources of variation in stock returns propagate in the term
structure of expected returns across alternative horizons.

The main challenge in computing the ZER is to dissect the impact of alternative shocks
at different horizons on expected returns. I achieve my goal by (i) representing the multi-period
expected returns as a function of state variables at time ¢ and shocks at time ¢+ 1 and (ii) comparing
the trajectories of expected returns, if shocks at time ¢ + 1 experience and do not experience a
predetermined exogenous shift. The first step guarantees that the future propagation of the shocks
arrived at t+1 are taken into account and their impact is isolated from that of shocks arriving later.
The second step operationalizes computation of the revisions in the expected returns coinciding
with a shock at time t + 1.

Below I illustrate step by step how to compute the ZERs associated with €,,11 and e,441. 1
start by characterizing the expected returns

log(Eyregr) = Ao(T) + Au(T)vr,
via a standard recursive system

Ao(T) = ay+Ao(t — 1) + Ay(t — D)1 — 1)y + A% (1 — 1)0?/2,
Ay(1) = by + Ap(T — Dy + A2(r — 1)/2

with initial conditions

Ao(l) = ay,
A,(1) = by +1/2.



Next I apply the law of iterated expectations to Fir; 4~ in order to represent the expected multi-
period returns in terms of the variables belonging to the information set Z; and shocks of interest
arriving at ¢t + 1

log EtTt,t—i-T = log(EtTt,tH : Et+17't+1,t+7)
= log Ey(exp(ay + Ao(r — 1) + Ay(r — 1)(1 = 1) + (by + Au(r — D)vy + v, %eresn
+ AT — 1)opepit1))-
Finally, I consider the following thought experiment. First, I introduce an additional amount of
variance risk, so that the stochastic variance of returns at time t + 1 is equal to Up41 = vir1 + Ay,

where v;11 is a random variable and A, is known, or equivalently I shift the shock e,.11 by the
amount A, /oy, Eytr1 = Evtr1 + Ay /0y

6t+1 = VUt+1 -+ AU = (1 — I/)U —+ VU + UU(EUt+1 -+ AU/O'U).

Then, I measure how the expected multi-period returns change as a result of the extra amount of
variance risk A, /o, at t 4+ 1
TER(rtt1rs€vtr1,ve) = 1og E(rypyr Ty, Vo1 = veg1 + Ay) — log E(re 14+|Zt)
= log Ei(exp(ay, + byvy + vtl/QartH +Ao(7 — 1) + Ay (7 — 1) (ve1 + Ay)))
log E¢(exp(a, + byvs + vtl/2€rt+1 + Ao(T — 1) + Ay(7 — Dvgy1))
= AU(T - 1) * Av- (13)
The choice of A, is a matter of normalization. I set A, to be equal to an unconditional standard

deviation of the state variable shifted by the shock of interest, that is, in this case, at one standard
deviation of the stochastic variance vy, A, = o, /(1 — v2)'/2.

Similarly I characterize the term structure of the direct return shock €,;41. I introduce an ad-
ditional amount of the direct return risk A, into the economic environment at time t+1, log 7t 441 =
log 7t ¢4+1+ A, which is equivalent to shifting the shock e,411 by Ay /v, €41 = €re41 + Ay /vy, and
compute the incremental expected returns for alternative 7]

ISR(Tt,H—Ty Ert+1, ’Ut) = log E(Tt,t+T|It, Utl/2§rt+1 = vt1/257‘t+1 + Ar) — log E(Tt,t+T|It)
= log Ei(exp(ay, + byve + (Utl/2€7~t+1 +A) + Ao(t = 1) + Ay(7 — 1)vegr))
log By (exp(ay + buyvy + v errsr + Ao(T — 1) + Ay(r — Dvgi1))
= A,. (14)

I set A, to be equal to one standard deviation of the log return (the only variable affected by the
shock), A, = Va'rl/z(log rtt+1)- The shape and the level of the term structure of risk associated

10The state-dependent shift in the shock eret1 Offsets the state-dependence in the stochastic volatility.
There are alternative ways to treat state-dependence which I leave out of scope in this paper. Questions of
state dependence are relevant for characterizing the conditional dynamics of shocks in asset prices.
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with the shock €,;41 is determined by a recursion for A, (7). The term structure of &, is flat at
the level of A,., because e,+11 is a permanent shock in returns.

Ezxample 2: Term structure of disaster risk in expected returns

The starting point is the same reduced-form predictive system given in expressions and
@. I consider an alternative hypothesis of return predictability, and therefore, I identify alterna-
tive economic shocks that potentially lie at the core of the multi-period risk-return relationship.
Hypothesis 2 reflects the idea that the only source of variation in log returns is time-varying crashes,
—zt+1, and that their probability A; is a source of return predictability, that is

log pd; = qo + @A (15)

The negative of a crash, that is a random variable 2.1, follows a distribution defined as a Poisson
mixture of Gammas,

zey1|per1 ~ T(pey1,0),  where  pgi1 ~ Poisson()), (16)

so that z;y1 is a nonnegative shock, and therefore a crash, if realized, is a negative disturbance
—2¢+1. The crashes —z;1 are conditionally uncorrelated with the shocks driving the probability of
crashes eys11: corry(—zp41,x41) = 0.

The reduced-form predictive model and @D augmented with the identifying assumptions
for shocks in returns and price-dividend ratio given in expressions and is equivalent to
the system

logriiy1 = ax+ b\ — 241, (17)
A+1 = (L—wn)vn + i + 0aEN 1415 (18)
where
a), = a + bQQ,
b)\ - bq)\a
UVx = Vpd,
o = [(1 = vpa)vpd = qo + vpadal/[ar (1 = vpa)]-
ox = Opd/Qr

I use the state-space model specified in expressions — to characterize how the crash risk
and intensity shock ey;11, that is an economic source of predictability, affect future returns at
alternative horizons.

There is one distinct feature of nonnormal sources of risk, such as a crash risk. These risks are
characterized by two random shocks: (i) one controling how many crashes occur per period of time
and (ii) the other controling the size of a crash. Analyzing these shocks separately is challenging
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because they work as a whole. See Backus| (2014)) for a discussion on this issue. For this reason,
I bundle these shocks together into one demeaned random variable and examine its corresponding
pricing implications.

Specifically, T use an insight from |Gourieroux and Jasiak (2006) and represent the random
shock z:y1 as a random process

Z1 = O+ (2000)Y% e
Er(zt41) Var,*(z11)
martingale difference

The shock €141 ~ D(0,1) is nonnormal with known nonzero moments of order higher than 1. I
characterize the term structure implications of the disaster risk z;1 by studying how the shock
€,1+1 Propagates in the term structure of expected returns. This is a legitimate and sensible exercise
because what an investor cares about is an uncertain component of 2,11 represented here by €, 1.

To characterize the term structures of €,;41 and ey;11, I follow the same procedure as in
Example 1. 1 start by computing the term structure of expected returns

log(Ereivr) = Ao(r) + Ax(T) A,

where
Ao(T) = a)\+./40(7'71)+./4)\(7'71)(17I/>\)’U)\+.A§(’7'71)0'§\/2,
Ax(T) = b+ AT =D —0/(1-90),
Ao(1) = ay,
(1)

= —0/(1-0).

Next, I apply the law of iterated expectations to F;r; 4, and represent the expected multi-period
returns as a function of variables belonging to the information set Z;, and shocks of interest arriving
att+1

log Eyrypyr = log(Ei(reit1 Ergitsr))
= log Ei(exp(ax + by — ze41 + Ao(7 — 1) + Ax(7 — 1) Ai11))
= log Ei(exp(ay — OX+ Ao(T — 1) + Ax(7 — 1)(1 — vy)uy
+ (bx + Ax(T — D) — (2020)Y %6041 + Ax(T — 1)orert1)- (19)

Finally, I inject an extra amount A, of crash risk, that is equivalent to shifting the shock .41 by
AZ/(202)\t)1/2a ézt+1 = Ezt+1 + Az/(292)\t)1/2a

Zi41 = 241 AL =0 + (292)\t)1/2(5zt+1 + Az/(292)‘t)1/2)’
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or an extra amount Ay of risk driving the probability of a crash, that is equivalent to shifting the
shock exi1 by Ax/ox, Extt1 = extr1 + Ax/on,

A1 = M1+ Ay = (1 — va)on + vak + oa(excss + Ax/oy),

and measure the resulting revisions of expected multi-period returns

IER(Tt 47> Ext+1: M) = 108 E(re v |Lt, Zeg1 = 2e41 + A2) = log E(re 1 |1i) = Az, (20)
ISR(Tt,t-i-T? EXt+1, >\t) = log E(Tt,t-‘r’r|zt7 At1 = A1 + AA) —log E(T’t,t+r|zt) = AA(T - 1) “Ay.
(21)

I set A, to be equal to one standard deviation of 241

o2 1/2
A, = <(b,\ -0 + 20%)
I —vg
for characterizing the term structure of €,:41, and I set Ay to be equal to one standard deviation
of )\t

OX

Ay=—2
A=)

for charactering the term structure of €y;y1. The shape and the level of the term structure of risk
associated with the shock )41 is determined by a recursion for Ay (7). The term structure of &,
is flat at the level of A,, because €,,11 is a permanent shock in log returns.

3 Empirical application. Term structure of risk in ex-
pected stock returns

In this section, I describe an empirical strategy for examining the term structure of risk in
expected stock returns. I build my analysis on the examples discussed above but consider them
in the context of explicit economic models. Alternative economic models explain why the price-
dividend ratio has a forecasting power for future stock returns, but little is known about the
empirical properties of competing economic channels of return predictability. There are at least
two natural reasons for this lack of evidence. One is in the complexity of estimating fully-fledged
structural models with latent states and nonlinearities on a short sample of available macroeconomic
dataE] Another reason is that any fully parametrized structural model, as a simplification of the
real world, is misspecified.

"WBansal, Gallant, and Tauchen (2007), Bansal, Kiku, and Yaron| (2014), |Calvet and Czellar| (2013),
Constantinides and Ghosh|(2011)),Colacito and Croce|(2011)),|Schortheide, Song, and Yaron|(2017) are among
few prominent examples of thorough empirical evaluation of various macro-based asset pricing models.
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My approach for examining the term structure of risk uses structural models partially and
solely for the purpose of identifying sources of fluctuations in expected returns. I model the joint
dynamics of returns and macroeconomic fundamentals without imposing cross-equation restrictions
which are stemming from the interaction of risk preferences and fundamental risk. T identify
shocks responsible for return predictability by augmenting the empirical model with an observation
equation that maps the return predictor into a state vector from economic theory. I let the data
show, how different economic shocks propagate in future returns across alternative holding periods.

There are two alternative ways to identify the competing economic sources of time-variation
in multi-period equity returns. One is to develop and estimate a big model nesting alternative
hypothesis of return predictability, the other one is to estimate the models separately on a case-
by-case basis. I follow the latter approach because of the limited informational content of scarce
macroeconomic data. For example, the available data are not sufficient to tell apart whether
relatively big fluctuations in economic variables are a consequence of jumps or normal shocks with
a high level of volatility.

I base my empirical analysis on three compelling hypotheses of time-varying equity risk pre-
mium: (i) long-run risk with stochastic variance of consumption growth (Bansal and Yaron| |2004),
(ii) time-varying consumption disasters (Wachter, 2013), and (iii) a multi-factor volatility model
of consumption growth with crashes in the stochastic variance of consumption growth (Drechsler
and Yaron, 2011)). These different risk channels generate realistic properties of excess stock return
predictability by the price-dividend ratio in the structural models. I examine how these shocks
propagate in expected gross returns in the dataB

I conduct my empirical analysis on a sample of quarterly U.S. consumption growth, stock
returns, and price-dividend ratios from 1947 to 2015. I identify alternative sources of equity risk
premium by estimating three empirical models of a joint evolution of consumption growth and
stock returns with latent states and an observation equation that linearly maps the price-dividend
ratio into the latent states. I use the Bayesian MCMC methods, which are particularly useful in
the context of this exercise, as they allow me to identify latent states (e.g., stochastic variance of
consumption growth or intensity of consumption disasters) and jumps (e.g., consumption disasters,
jumps in the variance of consumption growth) in the data.

I do not pursue the goal of discriminating structural models based on the goodness of fit
criterion, yet my empirical results have a bite for diagnostics of economic models. I can confront
the empirical term structures of economic shocks in the expected buy-and-hold returns with those in
structural models. The propagation trajectories of economic shocks in the future expected returns,
as implied by estimated empirical models, that is models without cross-equation restrictions, are
the term structures of risk in the data. An economic mechanism of return predictability has an
empirical support, if the term structure of risk in the structural model is the same as in the data.

12The patterns of gross and excess stock return predictability are very similar. By looking at gross returns,
I avoid the need of making assumptions about how to measure the term structure of real risk-free rates.
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I characterize the term structures of risk in the structural models based on standard realistic
calibrations, which account for salient properties of macroeconomic data and asset prices.

I use two metrics for comparing the term structures of risk in the data and in structural models:
(i) the level and (ii) the shape. The level indicates how much a shock contributes to the time
variation in returns (a criterion similar to a variance decomposition exercise). The shape indicates
whether returns are more exposed to a specific risk over a short or long horizon. In structural
models, cross-equation restrictions determine the level and the shape of the term structures of risk,
and therefore, a comparison of theoretical and empirical term structures of risk serves as an implicit
test of cross-equation restrictions.

The empirical term structures of risk is a set of stylized facts about the properties of economic
shocks in the context of a specific state-space representation of a joint dynamics of macroeconomy
and asset returns. There are many structural models sharing the same or similar state-space repre-
sentations, and therefore, the empirical term structures of risk can be viewed as standard moments
that those structural models should match. A GMM exercise minimizing the distance between
theoretical and empirical moments, including the moments characterizing the term structure of
risk, can deliver a calibration with realistic short-term and long-term asset pricing implications or
indicate rejection of the structural model.

A natural question is whether it is economically interesting to match moments characterizing
the term structure of risk over and above the multi-period covariances of returns and the predic-
tive variable, that is return predictability. The answer is yes and the reason is simple — within
one structural model there could be alternative ways to generate the desired properties of return
predictability. At the same time, understanding how various sources of risk propagate in returns
across alternative investment horizons delivers a lot more information about the multi-period dy-
namics of prices and quantities of risk. On a separate note, in general equilibrium models featuring
monetary and/or fiscal policy or endogenous growth, a shock-by-shock analysis is a necessary tool
for evaluating policy implications.

The methodology for analyzing the term structure of risk in the data and in structural asset
pricing models is motivated by the way how macroeconomists test and estimate DSGE models. It is
customary in the macroeconomics literature to test economic mechanisms of DSGE models by com-
paring how key economic shocks propagate across alternative horizons in the data and in different
models. Alternatively, macroeconomists use empirical trajectories of structural shocks in economic
indicators for estimating DSGE models by means of matching empirical and model-implied im-
pulse response functions. Empirical impulse response functions are obtained after estimating a
VAR implied by a linear or log-linear approximation of the DSGE model of interest with relaxed
cross-equation restrictions.

Below I describe the empirical models that I use to identify alternative sources of return
predictability in stock returns. I relegate the details of the estimation procedure to the online
Appendix and describe the estimation output in Appendix [A]
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A The model with the long-run risk and stochastic volatility of
consumption growth

The model of Bansal and Yaron| (2004)) has become a standard reference in modern asset pricing
as a successful framework rationalizing the magnitude of and the countercyclical time variation in
the equity risk premium. The key modeling ingredients, such as the presence of a slow moving
component in the expected consumption growth, stochastic volatility in consumption growth, and
recursive preferences, have proved useful in accounting for the risk-return trade-off in other asset
markets as well (e.g., [Bansal and Shaliastovich, 2013, |Colacito and Croce, |2011, among others). In
this subsection, I develop an empirical model that is suitable for an empirical identification of the
long-run risk in consumption growth and of the shock in the variance of consumption growth.

I group variables like consumption growth logg;—14, latent expected consumption
growth x;, stock returns logr;_1;, and dividend growth logd;_1; into a vector Y; =
(log gt—1,¢, ¢, logri_1+, log dt_l,t)’ and posit that it follows a discrete-time vector autoregressive
model with the state X; = (1, log g;, @), stochastic variance v, and shocks e; = (4, €at, €at)’

Y%Jrl = @G X+ H, (Ut+1 — Et/UtJrl) + H Ut1/25t+17 (22)
4x3 Ax1 4x3
viprr = (1= 9y) + ppve + 0o (1 — @y + Q‘vat)/2)1/25vt+1- (23)

The stochastic variance v; follows a scalar autoregressive process of order one v; ~ ARG(1) with the
scale parameter 02/2, the degrees of freedom 2(1—¢,)/02, and the serial correlation ,. The shocks
ggt ~N(0,1) and g4 ~ N (0, 1) are normal, whereas the stochastic variance shock g,¢ ~ D(0,1) is
nonnormal with a mean of zero and standard deviation of one. All the shocks are orthogonal to
each other. While the original formulation of the model features an autoregressive process for the
stochastic variance, I work with the autoregressive gamma processF_gl The ARG process guarantees
positivity of the stochastic variance regardless of the realization of the shock e,;. The change of
the process does not alter quantitative implications of the model.

The original model of |Bansal and Yaron| (2004]) implies that the price-dividend ratio is (ap-
proximately) an affine function of the expected consumption growth x; and the conditional variance
of consumption growth v;. I use this implication of the structural model as an identifying assump-
tion for the shocks driving latent states, that is 4411 and e4¢41. To this end, I add an observation
equation

Ingdt = Qo0+ QzT¢ + QU + Opd€pdt, (24)

to the system of equations —, where the independent and identically distributed (iid) shock
Epdt 1S an observation error orthogonal to the economic shocks, and 0,4 is very small and to be

13The autoregressive gamma process can be viewed as the discrete-time counterpart to the continuous-time
square-root model. See, for example, |Gourieroux and Jasiakl (2006) and |Le, Singleton, and Dail (2010)).
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estimated. At the estimation stage, I leave parameters qq, ¢, and q,, as well as the elements of
the matrices F', G, H,, and H, free, that is I do not impose the cross-equation restrictions implied
by the original structural model. Appendix [B] presents the solution of the structural model and
illustrates the cross-equation restrictions that I relax.

I exclude the dividend equation from the system given in —, because of an approximate
linear relationship between the log price-dividend ratio, log stock returns, and log dividend growth

logrii41 =~ Ko+ Kk1logpdiyr — logpd; +logdy gy, (25)

that is in the current system with six economic variables there are only five independent shocks. I
recover the implied dividend dynamics by using the log-linear approximation and the estimated
dynamics of returns and that of the price-dividend ratio. I exclude the dividend equation rather
than the return equation or the price-dividend mapping , because (i) dividends are poorly
measured (for example, seasonalities), (ii) dividends feature weaker predictability than returns,
and (iii) dividends are not as informative about latent states of the consumption growth as the
price-dividend ratio.

B The model with time varying consumption disasters

Wachter| (2013) argues that a risk exposure of dividends to time-varying consumption disas-
ters is a leading risk channel that generates a sizeable and time varying equity risk premium. A
representative investor fears big negative fundamental shocks that lead to dramatic drops in cash
flows, hence a large magnitude of the risk premium, with a time-varying rate of arrival, hence time-
variation in the equity risk premium. This idea has proved useful in rationalizing the risk-return
tradeoff not only in the stock market, but also in the foreign exchange market (e.g.,|Du, 2013, Farhi
and Gabaix 2016)), fixed-income market (e.g., |Gabaix| 2012, Tsai, [2014), and credit market (e.g.,
Gourio), 2013)@ In this subsection, I develop an empirical model suitable for an identification of
the time-varying consumption disasters in the data.

I group variable like consumption growth log g;—1¢, log return log ;1 ¢, and dividend growth
logd;_1; into a vector Y; = (log gi—14+, logri_14, logdi—14)’, and posit that it follows a discrete-
time autoregressive process with a state X; = (1, loggi—1+, A¢)’, shocks e = (egt, €4¢)' and ey,
and time-varying disasters —z; with time-varying intensity hyA:—1

Yiiir = GXoe+Ho( M1 — Eedigr) + Heppr + T 241, (26)
3x3 3x1 3x2 3x1
Ayt = (L=a) + o+ oa((1 = ox + 20a00)/2) Penisa. (27)

The negative of a consumption disaster, z;4+1, is modeled as a Poisson mixture of gammas:
Zi4+1|dgt+1 ~ Gamma(jgi11,0y). Its central ingredient jg41 is a Poisson random variable, jgeq1 ~

MTsai and Wachter| (2015) is an excellent survey on the role of the hypothesis of time-varying disaster
risk in asset pricing.
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Poisson(hyA;), which controls how many jumps of average size 0, arrive per period of time. The
normalized jump intensity \; follows the scalar autoregressive process of order one Ay ~ ARG(1)
with the scale parameter o3 /2, the degrees of freedom 2(1 — ¢,)/0%, and the serial correlation 5.
The normal shocks €441 ~ N(0,1) and g1 ~ N (0, 1) are orthogonal to each other. The nonnor-
mal shock €y¢41 ~ D(0,1) has a mean of zero and standard deviation of one and is independent of
Egt+1 and ggy1.

The original model of Wachter| (2013) implies that the price-dividend ratio log pd; is (approx-
imately) an affine function of the disaster intensity A;. I use this implication of the structural
model to identify the shock driving the probability of consumption disasters. To this end, I add
the following observation equation

logpd: = qo+ @A + Tpacpat (28)

to the system —, where €,4; is an observation error orthogonal to the economic shocks &4,
€4, and €)¢, and 0,,q is small and to be estimated. The parameters qo and gy, as well as the elements
of the matrices H, Hy, G, and T, are left free. Appendix [C| presents the solution of the structural
model and illustrates the implied cross-equation restrictions which I relax at the estimation stage.

I exclude the dividend equation from the system given in — because of the approximate
linear relationship between the log price-dividend ratio, log stock returns, and log dividend growth
described in . I recover the implied dynamics of the dividend growth based on the estimation
output. I exclude the dividend equation from the system — rather than the return equation
or the price-dividend mapping because (i) dividends are poorly measured (e.g., seasonalities), (ii)
dividends feature weaker predictability than returns and (iii) dividends are not as informative about
the unobservable disaster intensity as the price-dividend ratio.

C The two-volatility factor model with jumps in variance

The model of Drechsler and Yaron| (2011) extends the structural model of Bansal and Yaron
(2004) by adding time variation in the long-run mean of the variance of consumption growth and
jumps in the conditional mean and in the conditional variance of consumption growth. The model
generates realistic properties of stock return predictability, successfully matches standard moments
of macro and asset pricing data, and also delivers realistic properties of the variance risk premium.
Benzoni, Collin-Dufresne, and Goldstein (2011]) build on this model to explain asset pricing puzzles
associated with the 1987 crash; |[Drechsler| (2013)) extends the modeling environment of|Drechsler and
Yaron| (2011)) by adding model uncertainty for explaining the option-implied volatility surface. In
this subsection, I develop an empirical model with multiple sources of variance risk as in [Drechsler
and Yaron (2011) and show how to identify themFE] I exclude from consideration the long-run

15Multi-factor volatility models are known to capture more realistically the term structure of return volatil-
ities (Bates, [1997, Bollerslev and Mikkelsen, 1996, |Gallant, Hsu, and Tauchen, {1999} |Duftie, Pan, and Sin-
gleton, [2000).
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component of consumption growth as it is already explored in the model motivated by |Bansal and
Yaron| (2004) in subsection A.

I group variables like consumption growth log g;—1¢, log stock returns logr;_1 ¢, and log divi-
dend growth log d;—1 ; into a vector Y; = (log gi—1,4, logri—1,, log di—1.)', and posit that it follows a
discrete-time autoregressive model with a state X; = (1, log gi—1,, v, vy)’, shocks e, = (gg¢, €ar)’s
Eut, Enp, and time-varying jumps in the stochastic variance of consumption growth z,; with time-
varying intensity h,vi_1

Yiqn = 3§4Xt + gvl(vtﬂ — Eyi1 — zut41) + g{(”fﬂ — Eyyq) + Hea+ T zuer, (29)
vep1r = (1= @)y + (1= 9u)v + @ + 0o (((1 = pp)v + Q‘vat)/2)1/25vt+l + Zut41, (30)
v = (L= @) + o) + op((1— @)v* +2¢507)/2) %e, ). (31)

The stochastic variance of consumption growth vy,; follows an autoregressive gamma process of
order one shifted by a positive process (1 — @, )v; which defines the time variation in the long-
run mean of vy41, and includes self-exciting jumps z,¢41. The time-varying mean of the stochastic
variance v}, ; follows an autonomous autoregressive gamma process of order 1, v/ ; ~ ARG (1), with
the scale parameter o2 /2, the degrees of freedom 2(1—*)v* /¥, and the serial correlation ¢. For
the ease of referral, I label the shock &3, , | that feeds the stochastic trend of v;41 a trending variance
risk. The self-exciting jump 2,41 is modeled as a Poisson mixture of Gammas: 2yi41l;,, b
T(jyt+1,0,). Its central ingredient j,¢11 is a Poisson random variable, j,;+1 ~ Poisson(h,v:), which
controls how many jumps of average size 6, arrive per period of time. When these jumps arrive,
the stochastic variance spikes up. Despite the absence of a separate state variable controling
the persistent component of consumption growth, the model allows for the time-varying expected
growth via the lagged consumption growth and multiple variance factors.

The simplified version of the structural model of Drechsler and Yaron| (2011) without the long-
run risk in consumption growth, implies that the price-dividend ratio log pd; is (appoximately) an
affine function of the variance factors vy and vf. I use this implication of the structural model to
identify the multiple sources of variance risk €y¢11, €, 1 and 2zy11. To this end, I add the following
observation equation

logpd, = qo+ quvt + GV} + OpaEpdts (32)

to the system given in —, where €,4; is an observation error orthogonal to the economic
shocks e4¢, €4t, €ut, and ey, and opg is small and to be estimated. The parameters qo, g, and g;;,
as well as the elements of the matrices G, Hy, H:), H, and I, are left unrestricted. Appendix
presents the solution of the structural model and illustrates the implied cross-equation restrictions
that are relaxed at the estimation stage.

I exclude the dividend equation from the system — because of the approximate linear
relationship between the log price-dividend ratio, the log stock returns, and the log dividend growth
given in and recover the implied dividend dynamics based on the estimation output. I exclude
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the dividend equation rather than the return equation or the price-dividend mapping because
(i) dividends are poorly measured (e.g., seasonalities), (ii) dividends feature weaker predictability
than returns and (iii) dividends are not as informative about the unobservable multiple stochastic
variance factors as the price-dividend ratio.

4 Results

In this section, I describe the empirical term structures of risk for (i) the long run consumption
growth shock and the shock in the stochastic variance of consumption growth, (ii) the consumption
disaster risk and the shock in the intensity of consumption disasters, and (iii) the multiple shocks
in the stochastic variance of consumption growth: the direct shock, the trending risk, and the jump
risk. I focus on the two properties of the term structure: the level and the shape. I analyze whether
upon arrival of a positive shock, which increases one of the state variables in the next period, the
expected stock returns move up or down, and whether these effects are horizon-dependent.

Independently of the shock identification scheme, the term structure of expected buy-and-hold
stock returns implied by the empirical model is downward sloping (Figure . The slope of the term
structure of expected returns is defined in a standard way as the difference between the long-term
and short-term expected returns. The negative slope is a manifestation of the multivariate mean-
reversion in returns (Cochranel 2001). The fact that my results are consistent with this property
serves as a reality check for my empirical procedure. A necessary condition for observing a negative
slope is the presence of at least one shock associated with a monotonically decreasing absolute value
of the ZER as the function of holding period. My empirical results indicate what this shock is,
that is they reveal the source of stock return predictability. Appendix [E] describes how properties
of individual shocks generate different shapes of the term structures of expected returns.

Under the shock identification scheme motivated by Bansal and Yaron| (2004), I find that the
long-run risk shock ;411 has a downward sloping term structure of risk in expected returns (Figure
. As a result, this shock is the main driver of predictability in gross stock returns. At short- and
medium-term horizons, the expected returns exhibit a positive sensitivity to the shock: the returns
go up upon arrival of a shock ;441 that improves the future growth prospects of the macroeconomy.
At horizons longer than 3 years, the expected returns are immune to the long-run risk shock.

Under the identification scheme motivated by Wachter| (2013), the shock driving the time-
varying probability of a consumption disaster €);11 exhibits a downward sloping term structure of
risk in expected returns (Figure|3): returns go down and more so in the short run upon arrival of a
positive shock ey;41. As the shock )41 is tightly tied up with the consumption disaster risk €441,
I also analyze the term structure of €,;11 and find that the returns of any horizon go slightly up
upon arrival of a consumption disaster.

The identification scheme motivated by the parsimonious version of Drechsler and Yaron
(2011)), reveals that the only source of predictability in gross stock returns is a trending variance
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risk e}, (Figure 4 ). Upon arrival of a shock €}, |, which increases the long-run mean of the
stochastic variance of consumption growth, the stock returns decrease and more so in the short
run. The direct variance shock €,;41 and the jump risk €,:41 have the term structures of risk in
expected returns with a significant negative level but insignificant slope.

The documented above properties of the alternative sources of equity risk premium can be
viewed as stylized facts. Structural models that have similar state-space representations to those
behind the shock identification schemes, have to be consistent with these empirical facts. As a
next step, I pursue an analysis of theoretical term structures of risk. I use original calibrations
of the underlying structural models to infer theoretical (or model-implied) term structures of risk
in expected returns. I compare theoretical and empirical term structures along the level and the
shape of ZERs of different holding periods. These two simple metrics of the term structure of risk
turn out to be informative about the plausibility of alternative predictability channels advocated
by competing economic theories.

Figure [2| displays the term structure of risk in expected stock returns in the model of |Bansal
and Yaron (2004) and compares it to that in the data. In the model the shock ;441 cumulates in
expected returns as the investment horizon grows, whereas it gradually dies out in the data. The
difference in the sensitivities of the long-term expected stock returns to the shock in the model and
in the data is large. There are two questions of interest here: (i) does the difference between the
empirical and theoretical term structures of risk matter economically and (ii) would an alternative
calibration of the structural model imply a realistic term structure of the long-run risk shock in
expected returns.

The answer to the first question is affirmative. An interaction of risk preferences and the
distribution of risk produces the dynamics of the multi-period prices and quantities of risk, and
therefore, implies how the shape and the level of the term structure of risk in expected returns look
like. Whereas my methodology is silent about the individual dynamics of price and quantity of risk
in the data, the empirical results set off alarm bells as it concerns the key assumptions in structural
models. The answer to the second question is negative. A simple back-of-envelope computation
implies that unless the long-run risk shock features the negative price of risk g, < 0 or the elasticity
of intertemporal substitution is negative p > 1, the theoretical term structure of the long-run risk
is upward sloping (see Appendix [E)). The wrong slope of the term structure of £,;+1 means that
the structural model produces predictability of gross stock returns by a price-dividend ratio with
an opposite sign to that in the data.

The disagreement between the data and the structural model in Bansal and Yaron (2004)) is
pervasive. The long-run risk shock €441, which is an economic channel generating the sizeable
magnitude of the one-period risk premium in the structural model, has unrealistic implications for
the dynamics of asset returns. This result has important implications for a production-based asset
pricing literature relying on models featuring an equilibrium consumption growth process with the
long-run risk shock only (e.g., Croce, 2014; Hitzemann, [2016; Kung and Schmid, [2015).
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Figure [3| displays the term structure of risk in the structural model of Wachter| (2013) and
compares it to that in the data. The theoretical term structure of the disaster intensity risk ey;11
has a realistic shape, yet its level at the short end is not as pronounced as in the data. The structural
model posits that the consumption disaster z;11, a rare big negative shock in consumption growth,
coincides with an even larger negative shock in dividends and stock returns, so that the term
structure of risk £,,41 has a negative level. The data imply that (i) consumption disasters in the
US post-world war data are not as severe as the structural model assumes and (ii) consumption
disasters coincide with a slightly positive returns, so that the term structure of €441 is positive.

The discrepancy between the theoretical and empirical levels of the disaster risk in the term
structure of expected returns represents a major challenge for the hypothesis of rare consumption
disasters as it is formulated in Wachter (2013). If a consumption disaster that occurs in a bad
state of the world and thus has a negative price of risk coincides with a positive shock in the stock
market return, then the resulting risk premium is negative. It is not easy to overturn such a result
by choosing an alternative calibration of the structural model. In the presence of a negative risk
premium earned as a compensation for dividends’ risk exposure to the shock €,;1, there would be
a lot of pressure on the stochastic intensity shock to produce a sizeable positive risk premium.

Given the presence of the negative skewness in consumption growth and stock returns, a
model with consumption disaster risk appears to be a potentially successful working hypothesis for
explaining the joint behavior of macroeconomy and asset markets. However, as the quarterly data
suggest, the sources of the negative skewness in the two variables of interest are different. I check
whether the annual data provide more support to the hypothesis of rare consumption disasters.

I analyze the sample of real annual consumption growth and stock returns from 1871 to 2017
and non-parametrically identify historical episodes corresponding to either consumption disasters or
stock market crashes. I do not formally estimate the model on annual data given that the available
sample is half of that for quarterly data. I classify the episodes, when the realized consumption
growth falls two standard deviations (std dev is 3.55%) below its mean of 1.84%, as consumption
disasters, and the episodes, when the realized stock return falls two standard deviations (std dev
is 18.43%) below its mean of 8.20% as stock market crashes. Panel A of Figure 5| illustrates that
only 1 episode that I interpret as a consumption disaster out of four possible ones coincides with a
sizeable negative return; yet the return is within one standard deviation bound around the mean:
the real stock return is -18.6% in 1930. Panel B of Figure |5/ shows that only one out of six market
crashes coincides with a sizeable negative consumption growth: consumption growth is -3.8% in
1931. As a result, I leave it for future research to find a more realistic configuration of the disaster
hypothesis in the macroeconomy and stock market.

Figure [4] displays the term structure of equity risk in the parsimonious version of [Drechsler
and Yaron (2011) and compares it to that in the data. Because I consider the model without
the long-run risk in consumption growth, I have to modify the original calibration so that the
model still successfully reproduces key macroeconomic and asset pricing moments. Based on this
calibration, I find that the theoretical terms structures of alternative sources of variance risk in
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expected returns have realistic properties. Evidently, the main source of return predictability is
the trending variance shock €7, that features a term structure of risk with a negative slope. The
other sources of variance risk exhibit flat term structures with significantly negative levels. As a
result, upon arrival of any type of variance shock, the multi-period returns go down. The effect of

the trending variance risk is more pronounced in the short run.

The modified version of |Drechsler and Yaron| (2011) generates the realistic level and shape
of the term structure of risk in expected returns. As a result, the model-implied term structure
of expected returns coincides with that in the data (Figure [1). I dig deeper and analyze the
pricing mechanism of the model. I find that in contrast to standard calibrations of various long-run
risk models with stochastic variances, for example, |Bansal and Yaron| (2004) and Bansal, Kiku, and
Yaron, (2012])), in which the variance shock does not account for a large portion of the risk premium,
in the current calibration the variance shocks are the only source of equity premium. Thus, the
variance shocks play two important roles here: (i) they generate a sizeable risk compensation, so
that they are not a sideshow for the level of the equity risk premium and (ii) they produce a right
amount and sign of return predictability.

To conclude, empirical properties of return predictability suggest that perhaps we need to
change the way we think about the risk-return tradeoff in the stock market. The customary
theoretical sources of the level of the risk premium fall short to account for empirical regularities.
The theoretical term structure of the long-run risk shock cannot match the downward sloping term
structure of risk in expected returns as it is observed in the data. The consumption disaster shock
is associated with the negative incremental expected returns in the model but positive ones in
the data. Finally, the variance shocks, which are almost predominantly used for generating time
variation in the risk premium, may be leading sources of the level and time variation in the expected
stock returns.

5 Conclusion

I propose an empirical methodology that unites an equilibrium theory of time-varying risk
premia with an empirical evidence on multi-horizon return predictability. My approach identifies
economic shocks that are key sources of risk premium in the leading macro-based models, and mea-
sures how they propagate in expected buy-and-hold returns. Shock propagation patterns constitute
the term structure of risk in expected returns. The shape and the level of the term structure of
risk serve as informative moments for testing competing theories of time-varying risk premia.

As an application, I examine three leading equilibrium models of stock return predictability:
long-run risk with stochastic volatility in consumption growth (Bansal and Yaron, 2004)), time-
varying consumption disaster risk (Wachter, 2013), and consumption model with multiple sources
of variance risk, such as the direct variance shock, the trending variance risk, and the jump in
variance risk (in spirit of Drechsler and Yaron, 2011). I find that the models of (Bansal and Yaron,
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2004)) and (Wachter] |2013) fall short to account simultaneously for the level and the shape of the
term structure of risk in expected returns. The long-run risk shock has a downward sloping term
structure of risk in the data but an upward sloping term structure of risk in the model. The
consumption disaster shock has a negative term structure of risk in the data, but a positive term
structure of risk in the model. On a positive side, I find support for an equilibrium model with
multiple variance shocks a-la Drechsler and Yaron (2011). The trending variance shock is at the
core of return predictability both in the model and in the data.
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Figure 1

Term structure of expected stock returns.

The red lines correspond to theoretical term structures of expected buy-and-hold returns,
that is as implied by the original calibrations of Bansal and Yaronl (2004), Wachter| (2013),
and Drechsler and Yaron| (2011)). The solid blue lines correspond to empirical term structures
of expected buy-and-hold returns, that is as implied by the estimated empirical models.
Vertical bars indicate 95% credible intervals for the estimated term structures of expected
returns. Panel A represents the economic environment of Bansal and Yaron| (2004)). Panel
B represents the economic environment of Wachter (2013)). Panel C represents the economic
environment of Drechsler and Yaron| (2011). Quarterly.
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Term structure of risk in expected stock returns.
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Figure 2
Term structure of risk in expected stock returns. |Bansal and Yaron

2004).
rg‘he red) dashed lines correspond to the theoretical term structures of risk. The blue solid
lines correspond to the empirical term structure of risk. Vertical bars indicate 95% credible
intervals for the estimated term structures of risk. The incremental expected returns are
scaled by the unconditional standard deviation of the one-period stock returns. Quarterly.
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Term structure of risk in expected stock returns.
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Figure 3

Term structure of risk in expected stock returns. Wachter| (2013).
The red dashed lines correspond to the theoretical term structures of risk. The blue solid
lines correspond to the empirical term structure of risk. Vertical bars indicate 95% credible
intervals for the estimated term structures of risk. The incremental expected returns are
scaled by the unconditional standard deviation of the one-period stock returns. Quarterly.
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Term structure of risk in expected stock returns.
Trending volatility with jumps
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Term structure of risk in expected stock returns. A model in spirit
of Drechsler and Yaron| (2011).

The red dashed lines correspond to the theoretical term structures of risk. The blue solid
lines correspond to the empirical term structure of risk. Vertical bars indicate 95% credible
intervals for the estimated term structures of risk. The incremental expected returns are
scaled by the unconditional standard deviation of the one-period stock returns. Quarterly.
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Consumption disasters and stock market crashes.

The red bars correspond to the real one-period stock returns, the blue bars correspons to
the real consumption growth. Panel A shows episodes when the realized real consumption
growth decline more than 2 standard deviations away from its mean. Panel B shows episodes
when the realized real returns on S&P 500 decline more than 2 standard deviations away
from its mean. The dashed grey line indicates a 2 standard deviation move below the mean
of the realized consumption growth. Annual. Data sources are the online data repository
of Robert Shiller http://www.econ.yale.edu/~shiller/data.htm/| for S&P 500 returns
and the macroeconomic data set of Barro Ursua https://scholar.harvard.edu/barro/
publications/barro-ursua-macroeconomic-data/ augmented by the NIPA tables of the
Bureau of Economic Analysis for the real consumption data.
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Figure 6

Macroeconomy. Bansal and Yaron| (2004)

Panels A, B, C display quarterly observations of consumption growth, log stock returns,
and log price-dividend ratio, respectively. Panel D displays the mean path of the stochastic
variance factor (dashed blue line) with the 95% credible interval (thin solid lines) and the
mean path of the expected consumption growth (dashed red line) with the 95% credible
interval (thin solid lines). Sample period: second quarter of 1947 to fourth quarter of 2015.
Grey bars are the NBER recessions. Quarterly.
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Figure 7

Macroeconomy. Wachter| (2013)

Panels A, B, C display quarterly observations of consumption growth, log stock returns,
and log price-dividend ratio, respectively. Panel D displays consumption disaster risk (blue
lines), jump risk in stock returns (red lines). A brown line corresponds to the estimated jump
intensity hy);, the dashed lines correspond to the 95% credible interval. Sample period:
second quarter of 1947 to fourth quarter of 2015. Grey bars are the NBER recessions.
Quarterly.
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Figure 8

Macroeconomy. Model in spirit of Drechsler and Yaron (2011)
Panels A, B, C display quarterly observations of consumption growth, log stock returns,
and log price-dividend ratio, respectively. Panel D displays the mean path of the stochastic
variance factor (dashed brown line) with the 95% credible interval (thin brown lines), right
axes, and the mean path of the variance factor v; (dashed red line) with the 95% credible
interval (thin red lines), left axes. Self exciting jumps (blue bars) are displayed on Panel D,
left axes. Sample period: second quarter of 1947 to fourth quarter of 2015. Grey bars are
the NBER recessions. Quarterly.
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A Appendix

A Estimation output

I use the data displayed in Panels A, B, C of Figure [0] to estimate the unrestricted version
of the model with the long-run risk and stochastic variance of consumption growth —, the
unrestricted version of the model with consumption disasters —, and the unrestricted version
of the mutli-factor volatility model with jumps in the stochastic variance of consumption growth

(29-(32).

Panel D of Figure [6] displays the estimated stochastic variance factor v; and the estimated long
run risk factor z; with their 95% credible intervals. The estimated stochastic variance exhibits a
significantly higher variance of variance o, = 0.178 and a smaller parameter of the serial correlation
pp = 0.8008 than the calibrated model with parameter values o, = 0.0653 and ¢, = 0.9615,
respectively. The component z; is highly persistent with the serial correlation reaching the level
of 0.9767 which is even higher than the parameter value in the original calibration of |Bansal and
Yaron| (2004) (¢, = 0.9383 at a quarterly frequency).

Panel D of Figure [7] displays the identified consumption disaster risk in the model of [Wachter
(2013), along with the estimated jump intensity. The structural model of Wachter (2013) posits
that big negative jumps in consumption growth, that is consumption disasters, coincide with even
larger negative jumps in dividend growth, and returns. This is the key mechanism of the model
which generates high equity risk premium: the representative agent experiences a big loss of wealth
at the worst states of the world. At first, the presence of a correlated jump in consumption growth
and returns seems like a plausible feature of the data: both time series exhibit negative skewness
and excess kurtosis. However, as the data suggest if anything negative jumps in consumption
growth coincide with positive jumps in equity returns. This fact puts at risk the economic channel
that facilitates matching the level of the risk premium in the structural model.

Panel D of Figure [§] displays the estimated stochastic variance v; of consumption growth with
self-exciting jumps in variance z,; and stochastic long-run mean v} in the model motivated by
Drechsler and Yaron (2011)). Evidently, this model exhibits much more pronounced spikes in the
volatility of consumption growth during the economic recessions compared to those in the model
of [Bansal and Yaron| (2004)). This is a result of jumps in variance which happen rarely and tend
to arrive during recessions. The long-run mean of the stochastic variance, vf, is highly negatively
correlated with the price-dividend ratio. This factor is persistent with the parameter of serial
correlation ¢} = 0.9881 and the volatility of volatility o;; = 0.0633. The stochastic variance itself
v exhibits the serial correlation of 0.8549 and the volatility of volatility ¢, = 0.2560. Thus, the
stochastic variance is slightly more persistent and volatile in this model compared to the model of
Bansal and Yaron| (2004).
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B Solution of the Bansal and Yaron| (2004) model

The model for consumption growth with stochastic variance is

1/2
loggiit1 = g+x+ ngt/ Egt+1s
1/2
Ti+l = P2+ YaU' Ext+1,
Ut+1 = (1 - 901)) + QU + Uv((l — Oy + 2()0111}15)/2)1/25vt+1.

A representative agent has recursive preferences

U = [(1—B)ef + Bur(Usr)?)M?, (33)
pe(Uir) = [Ef(Uf)]V

Divide expression by c¢t, denote uy = Uy /c; and g4 441 = ¢441/c+ and obtain
u = [(1—B)+ Bue(uer1ge41)], (34)
Solve a recursive problem that is a log-linear approximation of the Bellman equation ({34])

loguy =~ b+ by log pi(ges1ues1),

where

by = PBeflBH/(1— B+ BerloBr),
1
by = ;log((l — B) + BePlos1) — by log p.

Guess the value function

logu; = u+ pexy + Puvy.

Compute

1/2 1/2
loguii1 +loggiyr = u+ g+ (Pepe + 1)zt + pover1 + ’ngt/ Egt+1 +Pﬂxvt/ Ext+1

Recall that the cumulant generating function for the variance represented by a gamma au-
toregressive process of order one is

o (1 —py)log (1 — 505/2)

(3 Vi) 1-— sag/Qvt B a2/2
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Compute
(1 —py)log (1 - ap,03/2)

log py(ut1ge441) = utg-— 0023 + (prpx + )2y
v
& 9 X 9 9 PoPu
Hence
_ @ 9.2, & 2 DvPy (1 = y)log (1 — ap,0;/2)
logu = utg+ 5P+ 5%+ T apyo?/2 002 /2 :

Solve the following system of three equations in three unknowns to verify the guess of the
value function

1 (1 — py)log (1 — ap,02/2)
= —— |bo+big—0 v
u 1—b1(0+ 19 — b1 2022 ;
Px - 1_b1§01‘7
o o PvPv
— (G2 Y22, PoPv )

The quadratic equation for p, has two roots. I choose root that satisfies the requirement of
stochastic stability (Hansen, [2012]).

Compute

log(utt19t4+1) — log pue(ut+19t4+1) (1 — ¢v)log ( Pu0y/2) <

2, X 2.2, PoPv
00?2 5 Yg T 9P+ >vt

2 1 — apyo2/2

1/2 1/2
+  DyUt41 + ’YgUt/ Egt+1 +px%vt/ Ext+1-

The pricing kernel is

logmeir1 = logB+ (p—1)loggeiv1 + (. — p)(log (ui+1ge,e+1) — log pa(ues19e,e+1))
(1 —y)log (1 — OszJQ/Q)
— 1 1 - v
ogB+(p—1)g+ (a—p) 0022
logm
o o9 & 9 9 PovPv

D —(ar — b = S o
+ (p—Daz—(a—p) (2% 9Pt apvag/Q) vy

My ~"~

my

1/2 1/2
+ (= p)puvist + (@ — Vg0 Pegis + (@ — p)parye v, e
—— ——— ~——

Mev Meg Mex

1/2 1/2
= logm + mgxs + myve + MegVs' Egt+1 + MegV;' Ext41 + MeyVi41-
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The model for the dividends is

1/2
logdity1 = d+ pgxs + ’det/ Edt+1-

Guess that the price-dividend ratio is

logpd; = qo+ gzt + quot.
The log-linearized return is
logripr = ko + k1logpdiir +logds s 1 — log pdy
ko + (k1 — 1)q + logd + (pz + qu(k1px — 1) Tt —qy vt
~—
logr Tz Ty

1/2 1/2
+ kigy v + kideve vy men + a0 ed,
~~~ SN—— ~~

Tev Tex Ted
where
log (pd) - pd
= log(1 d) — ————,
Ko og (1 + pd) 11 pd
pd
K =
1 1 + pd’
pd = E(pdy).
Or in compact form
1/2 1/2
logrit1 = logr +rexs + 1oV + repVy ' “€xt41 + TedVy’ “Edi+1 + TeoVit1-

Use the law of one price Ey¢[my 41714+1] = 1 to obtain

(1 - SDU) log (1 - (Tsv + msv)ag/Q)

logr + logm — 02/2 -
Te + Mg = Oa

L, s Lo, efretme)
1 1 1 =0.

Ty + My + 2m€g + 2(7'51 +m5a:) + 27'5d+ 1— (Tev +m5y)03/2
Solve for ¢, g, and g

_tatpol
r 1-— leOz '
ou(k1gy + Mmey) +D =0,

Y1 — (kg + mey)o2/2

(1 —py)log (1 — (rev + msv)ag/Q))
02/2 ’

1
q=—— | ko +logd+logm —
1—Fk
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where

D = m,+ ng/2 + (Tsx + max)2/2 + T?d/z

The quadratic equation for ¢, has two roots. I choose one that satisfies the requirement of
stochastic stability (Hansen, 2012).

C Solution of the [Wachter| (2013)) model

A representative agent is averse to consumption risk and has a recursive utility

Uy = [(1-8)e} + BuUp1))V?, (35)
p(Uir) = [EfUR)]V.

The joint data generating process for consumption growth logg;:+1 and dividend growth
log d; 141 with consumption disasters z;41 featuring time-varying arrival intensity \; is

loggitt1 = g+ Vg€gt+1 — 241,
Jgt+1la, ~ Bernoulli(hyA¢),
Zt+1’jgt+1 ~ Gamma(jgt+1799)7
Mar = (L=@a) + o+ oal((1— @) +20a0) /2 2e s,

logdii1 = d+ Qavegtt1 + Vd€dt+1 — PdZt+1,
where z;y1 is a consumption disaster modeled as a Bernoulli mixture of gammas with its central
component jg as a Bernoulli random variable and with a 6, as an average disaster size. The
mean of jg; is a jump arrival rate hyE(\;) = hy. The normalized jump intensity A; follows the
scalar autoregressive process of order one A\; ~ ARG(1) with the scale parameter J?\ /2, the degrees
of freedom 2(1 — ,)/03, and the serial correlation ¢,. The normal shocks e441 ~ N(0,1) and

edqt+1 ~ N(0,1) are orthogonal to each other. The nonnormal shock €41 has a mean of zero and
standard deviation of one.

Divide expression by ¢, denote uy = Up/c; and gy 441 = ce41/¢: and obtain

w = [(1-B)+ Bue(usrge41)"1?, (36)

Solve a recursive problem that is a log-linear approximation of the Bellman equation ({34])

logus ~ b+ by log pe(ge1ues1),
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where

b = BelE1/(1— B+ fel B,
1
by = ;log (1 = B) + BePler) — by log .
Guess the value function
logu; = u+ pak.
Compute
logugyr +log gt = (u+g) +vgEger1 + Padis1 — Zer1,
2 2
ay, OAMDA (1 —x)log (1 —aproy/2)
I = 9 _
og pt (Ut419,4+1) (wtg)+ "+~ apro?)2 00?2
B OghaA:
1+ ozé?g.

Solve for the parameters of the value function.
There is a quadratic equation for py:

Cop3 + Cipx + Co = 0,

where
Cy = ao}/2,
C1 = bipy—1— Aac}/2,
Cy = A,
A
N 1+,
Finally
1 abiy?  bi(1—pa)log (1 — aprol/2)
1 = b b g 2 ‘
ogu -0, (0-1— 19 + 5 aaf\/Q
Compute
2
ADAA ay
].Og Ut—l—lgt,t—f—l - log Mt(ut-‘rlgt,t—‘,—l) —= ’Ygggt+1 +p}\)\t+1 o Zt+1 _ ()0 p t - g

1-— Oép/\O'i/Q 2
(1= pn)log (L —apro3/2) . byl
ac?/2 1+ab,
A g
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The pricing kernel is

logmg1 = log B+ (p—1)loggrir1 + (a — p)(loguss1gee+1 — log pre(uer19e,641))
= m+ MmN + MeaAer1 + MegEgry1 + M2z 41,

where

(1—¢x)log (1 —aproi/2)  aygla—p)
o /2 2 ’

my = —(a—p) ey bghy
1—apyo3/2 14ab,)’

m = logB+(p—1)g+ (a—p)

Meg = (a_l)’Ygu
m, = —(a—1),

mex = (a—p)pa

Guess that the price-dividend ratio is

logpdi+1 = qo+ @ Ai+1-

The log return is

logriivr = ko + kilogpdiyr + logds 1 — log pdy
= ko+ kigo — qo + logd

DA

k1gxAt41

PdVgEgt+1

+ + +

YdEdt+1
—  Pdrt+1
T TAA F TexAi11 + TegEgtr1l + T22e41 + Ted€dit1-

where

r = ko+ kilogqy—logqo + logd,
—ax,

k1qx,

PdYg>

Ted Vd>

T2 = —®d-

LD

Tel

Teg
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Use the law of one price
Ey(reev1mesn) = 1,

to solve for qo and ¢). The two equations are

(1—x)log (1 — (mex +722)03/2) | 1 1
rm = 0’?\/25 . +§(m€g+7“6g) +27" O,
my + 7y oA(mey +72) (ng + ng)hAQg _ o

1 — (mey + 7“5)\)03\/2 1 — (mzg+r29)0y
Parameter ¢ is the stochastically stable solution to the quadratic equation

Cogi + Cigr + C2 =0,

where
A = my+ (Mg + 729) a0y ’
1 — (mzg +729)0

Co = kio}/2,

Ch = k:lgo)\+mg,\0§/2—1—k:1A0§/2,
Cy = go,\ma,\—}—A—Ama,\U?\/Q.

Also
1 (1—pa)log (1 — (mex +7er)03/2) 1 1
Qo = - <k0+d+m— 0/2\/2 +§(m€g+r€g) —1—27“ .

D Solution of the Drechsler and Yaron (2011) model

The model for consumption growth with stochastic variance v; which has a time-varying long
run mean driven by v} and self-exciting jumps z, is

loggiiy1 = g+ ’ngtI/QEgtH,
Vi1 = (]— - @v)vz + (1 - QOU)U + YU + Jv(((l - va)’U + 2<vat)/2)1/25vt+l + Zut+1,
v = (L= @) + @il + on((1— @})v™ + 2055)/2) %en .

Jot+1le, ~ Poisson(h,vy),

th+1‘jvt+1 ~ Gamma(]ﬂt-ﬁ-la )7

where @, = @y + Oyhy, v =1/2, and v = (1 )/2, so that Ev, = 1 and Ev} = 1/2.
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A representative agent has recursive preferences

Ui = [(1-B)) + Buy(Upsr) 1,
w(Ur) = [B(UR))Y

Divide expression by c¢t, denote uy = Uy /¢, and g¢ 441 = ¢441/c¢ and obtain
w = [(1-B)+ Buu(uerge11)1?,
Solve a recursive problem that is a log-linear approximation of the Bellman equation ([34])
logus = by + by log it (ge+1ut+1),

where

b = BerUEr/(1— 84 BerioEn)
1
by = ;log((l — B) + BePlos 1) — by log p.

Guess the value function

logus = u+ pyvr + pyvy.
Compute
loguir1 +loggrivr = u+ g+ pyveyr + 79“2/2591#1 + Pyvis

Compute
g n(uesigran) =t g - LPIIEL ennilD Qoo nien )

- Tt Tt T ot 0P
Hence

ot = g o - L ENIOBAepet)n) (1 O gL i)
Popu Pubuho Doyt

+pv(1 - ‘ﬁv)v* +

I OszO'g/Q 1- O‘pvgv 1- ap;U;Z '
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Solve the following system of three equations in three unknowns to verify the guess of the
value function

1 1— log (1 — 2/92 1 —o*)v*log (1 — apo*?/2
U — bO + blg o bl( SO’U)U Og(2 OépUO',U/ ) o bl( SO’U),U Og (2 OszO'U / ) ,
1—b ac?/2 aoc?/2
« 25y pvevhv

= b | =92

Py 1(279+1—apvag/2 1—apvt9v)
. . PyPy

= b 1-— — .

Dy 1 <p’U( 901)) + 1_ apzo_:;Q/?)

The pricing kernel is

(a—p)(1 — py)vlog (1 — ap,02/2) L (a=p)(1 = pp)otlog (1~ aphos?/2)

1 = 1 —1
0g My 141 ogB+(p—1)g+ 00?2 /2 ac2/2
m
(a - P)Sovpv (a - p)pvevhv a(a - P) 2
+ - P - - 79 vt
1 — apyo?2/2 1 — ap,b, 2
my
(o = p)Piey 57 o
S S 72 5% o R 1—
+ ( pp——y (a=p)po(1 =) | vy

*
my,

1/2
+ (o= Dy v egeer + (@ — p)py vips + (0 — p)pvf4s.-
——— —— ——

Meg Mey m,

The model for the dividends is

1/2
logdi i1 = d+ povr + 75,005 + ’Yedvt/ Edt+15

Guess that the price-dividend ratio is

logpd;y = q+ qui + qu;.
The log-linearized return is
logrip1 = Ko+ K1logpdiyr +logds i1 — log pdy
= ko+ (k1 —1)g+d+ (po — qu) v + (—qy) v¢
—_—— ———
r Ty rk

v

+  kigo v + (kg +95,) vipn + Vd Ut/ Edi+15
~— —_— ~—

Tev rE, Ted
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where

log (pd) - pd
ko = log(l+pd) — —————,
0 g (1+pd) T+ pd
pd
Kl = ——
! 1+ pd’
pd = E(pdy).
Or in compact form
logriyr = r4ryue+ryvf + redvt/ Edt4+1 T TewVi1 + T2y Viy -

Use the law of one price Ey[my 417¢¢+1] = 1 to obtain three equations in three unknown ¢, ¢y, ¢;

ey (L= p)ulog (1= (mey +7)03/2) (L= @)o"log (1= (m2, +72,)033/2) _
05/2 ox2/2 ’
2 2
Meg | T2 (Mey + Tew) Qo MeyBuhy
My + 7Ty + 5 + 5 + 1= (mev n 7"51;)03/2 Tr—

*

(m:v + 7451})%0: — O
1- (m;v + T;v)o—;2/2

=0,

m: + T; + (1 - @v)(msv + "'sv) +

E Decomposition of the term structure of risk

TBC

F Calibration of the structural models

48



Table [1]

Calibrations of the leading equity premium models

Quarterly calibrations of discrete-time models with modeling ingredients from |Bansal and
Yaron (2004)), [Wachter (2013), and Drechsler and Yaron (2011)). A model in spirit of |Bansal
and Yaron (2004)): I choose parameters to match means, unconditional volatility, and per-
sistence of the variables implied by the original monthly calibration of Bansal and Yaron
(2004). I posit that the stochastic variance follows the autoregressive process of order one.
The calibration inputs are g = 0.0045, v, = 0.0135, ¢, = 0.9383, 7, = 0.0010, ¢, = 0.9615,
o, = 0.0653, d = 0.0045, u, = 6, 74 = 0.0653, « = =9, p = 1/3, B = 0.998, ko = 0.0449,
k1 = 0.9923. A model in spirit of Wachter| (2013): I posit that consumption disasters are
binomial mixtures of exponentials, whereas the stochastic disaster intensity is an autore-
gressive gamma process of order one. The calibration inputs are g = 0.063, v, = 0.01,
hy = 0.0075, ¢y = 0.9802, oy = 0.1743, ¢4 = 2.6, d = 0.0163, 74 = 0, 0, = 0.2, o, = —2,
p=0,5=0.997, kg = 0.0449, k; = 0.9923. A model in spirit of Drechsler and Yaron| (2011)):
I cut off the long-run risk channel from the model and posit that the stochastic volatility
of consumption growth as well as its long-run mean follow two independent autoregressive
gamma processes or order one. The jump in the volatility of consumption growth is mod-
elled as a Poisson mixture of exponentials. The jump arrival rate is a linear function of
the volatility of consumption growth. The calibration inputs are g = 0.0045, v, = 0.0108,
e = 0985, of = 0.1025, v* = 1/2, ¢, = 0.955, 0, = 0.8, h, = 0.025, o, = 0.175,
v = (1=, —0,h,)/(v-(1—=,),d=0.0175, p, = —0.004, 7%, = —0.0125, v4 = 0.05,
a=-9, 4 =0.9985 p=1/3, Ky = 0.0449, x; = 0.9923. In percent.

BY %Y DY Data
(2004) (2013) (2011)

Log equity premium 1.1785 1.0356 1.0122 1.4971
Std dev of equity return 10.1507 7.6654 10.1828 8.1712
Risk-free rate 0.3125 0.2755 0.3156 0.2768
Std dev of the risk-free rate 0.1993 0.5474 0.1412 0.5455
Mean consumption growth 0.4500 0.4750 0.4500 0.4750
Std dev of consumption growth 1.3821 2.6458 1.0808 0.5067
Mean dividend growth 0.4500 1.2350 0.7250 0.6821
Std dev of dividend growth 6.7823 6.8557 5.0472  2.3355
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