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Abstract

This paper examines the effects of the heterogeneity of agents’ beliefs about the
persistence of long-run risks in consumption-based asset-pricing models. Agents who
believe in a lower persistence level dominate the economy rather quickly, even if their
belief is wrong. In a standard calibration of the long-run risk model, this dominance
drives the equity premium down below the level observed in the data. Simultaneously,
belief heterogeneity can generate significant excess volatility and priced consumption
risk due to changes in the wealth distribution. This effect in turn helps to explain
several asset-pricing puzzles such as the large countercyclical variation of expected risk
premia, the volatility of the price–dividend ratio, and the predictability of cash flows
and returns. A new calibration of the heterogeneous-agents long-run risk model can
simultaneously explain the large equity premium and the aforementioned puzzles.
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1 Introduction

This paper examines the effect of agent belief heterogeneity about the persistence of long-run
risks in consumption-based asset-pricing models. Agents who believe in a lower persistence
level dominate the economy rather quickly, even if their belief is wrong. In a standard calibra-
tion of the long-run risks model, this dominance drives the equity premium down below the
level observed in the data. Simultaneously, belief heterogeneity can generate excess volatility
and priced consumption risk due to significant changes in the wealth distribution. We show
that a new calibration of the heterogeneous agents long-run risk model can simultaneously
explain the large equity premium and, in particular, generate a large counter-cyclical variation
in expected risk premia consistent with the empirical findings in Martin (2017) and Martin
and Wagner (2018). Moreover, the model helps to explain several asset-pricing puzzles such
as the large volatility of the price-dividend ratio, and the predictability of cash flows and
returns. In sum, the paper demonstrates that belief heterogeneity can significantly improve
the explanatory power of long-run risk asset-pricing models.

The Bansal–Yaron long-run risk model (Bansal and Yaron (2004)) has emerged as one of
the premier consumption-based asset-pricing models. It can generate many of the features of
aggregate stock prices that have long been considered puzzles. The model generates a high
equity premium by combining two mechanisms—investors with a taste for the early resolution
of uncertainty, and very persistent shocks to the growth rate of consumption. For long-run risk
to generate a high equity premium, the level of persistence must be very close to a unit root.
The amount of persistence in the data is very difficult to measure, and arguments for a range
of estimates have appeared in the literature (Bansal, Kiku, and Yaron (2016), Schorfheide,
Song, and Yaron (2018), and Grammig and Schaub (2014)). This literature suggests that
there is considerable scope for disagreement over the true value.

In this paper, we consider the consequences if the agents themselves disagree about the
persistence of exogenous shocks. Naturally, the analysis of belief differences requires us to
move from the standard representative-agent model of the consumption-based asset-pricing
framework to a model with multiple agents. For this purpose, we begin the paper with a
description of a heterogeneous-agent economy with complete markets. Solving this model
reveals a critical difference from the representative-agent model. Even for Markovian shocks,
equilibrium allocations are no longer a function of the exogenous state alone. As a result,
the standard solution methods from consumption-based asset pricing are not applicable. We
employ a reformulation of the first-order conditions for the equilibrium that is recursive,
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through the device of introducing new endogenous state variables. These state variables have
a clear interpretation in terms of time-varying weights in a social planner’s problem. The
weights capture the relative trend in an agent’s consumption—an agent who has a declining
share of consumption will have a declining weight.1

Using the theoretical framework for the heterogenous-agent asset-pricing model, we can
provide an in-depth numerical analysis of the effects of belief differences. Before we do so,
however, we first provide some helpful economic intuition on the different effects of belief
heterogeneity in models with CRRA (constant relative risk aversion) preferences and in models
with Epstein–Zin preferences. Most importantly, we show why the general result (Sandroni
(2000), Blume and Easley (2006), Yan (2008)) for CRRA preferences—namely, that agents
with wrong beliefs do not survive in the long run—does not always hold for Epstein–Zin
agents. (Borovička (2018) provides a theoretical analysis of this phenomenon in a continuous-
time framework with i.i.d. consumption growth.) For CRRA preferences, agents gamble on
the realization of the state next period. How much they gamble depends on their risk aversion
and their subjective beliefs—we call this the speculation motive—but in the long run, only the
investors with the correct beliefs survive. For Epstein–Zin preferences, agents are also willing
to pay a premium to hedge future risks. Agents believing in high persistence levels demand
large risk premia in the long-run risk model. Agents who believe in a lower persistence are
therefore willing to provide insurance against these long-run risks—we call this mechanism the
risk-sharing motive. As long as risk premia in the economy are sufficiently large, this motive
will, on average, transfer wealth to the agents who believe in a lower persistence irrespective
of the true data-generating process.

The interaction of the economic effects resulting from the two motives has interesting
economic implications. To analyze these implications, we perform a comprehensive numerical
analysis of the complete-markets heterogeneous-agent economy. As our baseline calibration
of the model, we employ the calibration (without stochastic volatility) of Bansal and Yaron
(2004, Case I) with the only exception being that we use two different persistence levels close
to their original persistence for the long-run risk.

If the disagreement is sufficiently large, the speculation motive is stronger than the risk-
sharing motive and agents whose beliefs are more correct dominate the economy, in accordance
with the market selection hypothesis of Alchian (1950) and Friedman (1953). For small

1Similar approaches have been used to solve models with multiple goods (Colacito and Croce (2013)), discrete
state models without growth, and risk-sensitive preferences (Anderson (2005)), overlapping generation models
with different preference parameters (Gârleanu and Panageas (2015)) and different beliefs (Collin-Dufresne,
Johannes, and Lochstoer (2016a)), and models with i.i.d. consumption growth and belief differences (Borovička
(2018)).
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differences, the situation changes dramatically and the risk-sharing motive dominates the
speculation motive. Investors who believe in a lower persistence level not only survive in the
long run, they, in fact, enjoy a larger share of consumption, even if their belief is wrong,
because they collect a premium for providing the insurance against long-run risks. If they
initially hold only a very small consumption share, their share increases rapidly over time. As
small differences in beliefs about the long-run risk process have large effects on asset prices,
we report a drop in the equity premium of 2 percent within a century.

When we increase the belief difference, the speculation motive becomes stronger and it
becomes more important which investor holds the correct beliefs. If the investor who believes
in the larger persistence has the correct beliefs, both agents survive and due to the interaction
of the two motives we observe a large variation in the consumption shares. Hence, belief
heterogeneity itself can serve as a source of endogenous asset-price volatility. This result gives
a model-based explanation for the empirical findings of Carlin, Longstaff, and Matoba (2014),
who use data from the mortgage-backed security market and show that higher disagreement
leads to higher volatility. They also show that, as in our model, disagreement is time-varying
and correlated with macroeconomic variables.

In the final step of our analysis, we show that the heterogenous-agent model with long-run
risk can jointly generate a large equity premium and explain several asset-pricing puzzles.
In particular, it can explain the large countercyclical time variation in risk premia recently
reported in Martin (2017) and Martin and Wagner (2018). We modify the calibration of
Bansal and Yaron (2004, Case I) by replacing the original persistence value of the long-run
risk process with two different values; compared to the original value, the first agent believes
in a slightly larger and the second agent in a slightly smaller persistence level. We show that
belief heterogeneity endogenously adds priced consumption risks to the model due to persistent
changes in the wealth distribution. These risk premia are countercyclical and time varying.
The risk-sharing motive implies that when there are negative shocks to the long-run risk
component the insurance provided by the investors with lower beliefs about the persistence
will pay off. Hence, when the economy enters a recession (multiple negative shocks to the
long-run risk component), there is a wealth transfer to the investor who beliefs in a larger
value for the persistence. As these are the investors that demand the larger risk premia,
belief heterogeneity adds significant countercyclical variation in risk premia to the long-run
risk model.

We report a standard deviation of expected risk premia of 5.73 percent in line with the
values reported in Martin (2017). Representative-agent long-run risk models are not able to
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replicate this finding even when including exogenous stochastic volatility, a feature that is
deliberately included to obtain time variation in risk premia (see Bansal and Yaron (2004)).
Furthermore, the heterogeneous belief model generates a large and significant equity premium
and also addresses other empirical deficiencies of the representative-agent model, which have
been emphasized by Beeler and Campbell (2012). Beeler and Campbell (2012) show that the
long-run risk model cannot explain the large volatility of the price–dividend ratio observed
in the data (a value of 0.45 compared to 0.28 in the model). In the heterogeneous-agent
setup, the shifts in the wealth distribution increase the volatility of the price–dividend ratio
to levels close to the data (0.38) as the impact of the different agents on asset prices varies over
time. Furthermore, the variation in the wealth distribution helps to address the predictability
puzzle pointed out by Beeler and Campbell (2012). The endogenous variation in asset prices
increases the predictability of returns while simultaneously decreasing the predictability of
consumption and dividend growth.

Our results are complementary to the findings of Collin-Dufresne, Johannes, and Lochstoer
(2016b) and Bidder and Dew-Becker (2016), which show that the asset-pricing implications
of long-run risk can emerge endogenously from parameter uncertainty, even without long-run
risk being present. Collin-Dufresne, Johannes, and Lochstoer (2016b) show that if investors
learn the growth rate from the data, then innovations to expectations of growth rates are
permanent. Agents then price in the risk from this permanent shock to their expected growth
rates. Bidder and Dew-Becker (2016) show that ambiguity-averse investors will price in long-
run risk if they cannot rule it out a priori. In our setup, neither investor suffers from model
uncertainty, but despite this difference a clear picture of the effect of long-run risk emerges.

While in the present paper the agents agree to disagree about the long-run risks in the
economy, Andrei, Carlin, and Hasler (2016) provide an explanation of how this disagreement
can arise from model uncertainty as market participants calibrate their models differently.
They find that uncertainty about long-run risks can explain many stylized facts of stock return
volatilities, such as large volatilities during recessions and booms and persistent volatility
clustering. Andrei, Hasler, and Jeanneret (2017) show how model uncertainty can lead to
long-run-risk-like behavior in the presence of a noisy signal of the growth rate.

The remainder of the paper is organized as follows. In Section 2 we describe the general
asset-pricing model with heterogeneous investors and recursive preferences. Section 3 explains
the main economic mechanism of the two-agent economy in a stylized version of the model.
In Section 4 we present results for the model based on the calibration by Bansal and Yaron
(2004) and explain the underlying economic mechanism in the full model. Section 5 presents
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a recalibration of the model showing that the heterogeneous-agent framework not only gen-
erates the high equity premium but also significantly improves upon the representative-agent
long-run-risk models in multiple dimensions. Section 6 concludes. Online appendices with
a discussion of additional literature, the proofs of all theoretical results, a description of the
numerical solution method, and additional results complete the paper.

2 Theoretical Framework

We consider a standard infinite-horizon discrete-time endowment economy with a finite num-
ber of heterogeneous agents. Agents can differ with respect to both their utility functions
and their subjective beliefs. We restrict our attention to the complete-markets setting, which
allows us to reformulate the problem as a social planner’s problem. Here we run into a critical
difference from the representative-agent problem—even for a Markov economy, equilibrium
allocations are no longer required to be functions of the exogenous state alone. This failure
of recursiveness occurs for essentially economic reasons—even if aggregate consumption does
not contain a trend, the individual consumption allocations can do so. This feature defeats
most of the approaches to solving for equilibrium in an infinite-horizon asset-pricing model.

We present a reformulation of the first-order conditions for equilibrium that is recursive.
This reformulation involves introducing new endogenous state variables. These state variables
have a clear interpretation in terms of time-varying weights in the social planner’s problem.
The weights capture the relative trend in an agent’s consumption—an agent who has a de-
clining share of consumption will have a declining weight.

2.1 The Heterogeneous-Agents Economy

Time is discrete and indexed by t = 0, 1, 2, . . .. Let yt denote the exogenous state of the
economy in period t. The state has continuous support and may be multidimensional. The
economy is populated by a finite number of infinitely lived agents, h ∈ H = {1 . . . H}. Agents
choose individual consumption at time t as a function of the entire history of the exogenous
state, yt, where yt = (y0, . . . , yt). Let Ch(yt) be the individual consumption for agent h.
Similarly, C(yt) ∈ R++ denotes the aggregate consumption of all agents as a function of the
history, yt. The individual consumption levels satisfy the usual market-clearing condition,

H∑
h=1

Ch(yt) = C(yt). (1)
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Agents have subjective beliefs about the stochastic process of the exogenous state. We denote
the expectation operator for agent h at time t by Eh

t . Each agent has recursive utility.
Let {Ch}t = {Ch(yt), Ch(yt+1), . . .} denote the consumption stream of agent h from time t
forward. The utility of agent h at time t, Uh({Ch}t), is specified by an aggregator, F h(c, x),
and a certainty equivalence, Gh(x),

Uh({Ch}t) = F h
(
Ch(yt), Rh

t

[
Uh({Ch}t+1)

])
, (2)

with
Rh
t [x] = G−1

h

(
Eh
t [Gh(x)]

)
. (3)

We assume that the functions F h and Gh are both continuously differentiable. This preference
framework includes both Epstein–Zin utility and discounted expected utility, for the appro-
priate choices of F h and Gh. To simplify the analysis, we ensure that agents never choose zero
consumption, in any state of the world, by imposing an Inada condition on the aggregator
F h; so, F h

1 (c, x) → ∞ as c → 0, where F h
1 denotes the derivative of F h with respect to the

first argument.
We also impose a condition on the agents’ beliefs. Let P h

t,t+1 be the subjective conditional
distribution of yt+1 given yt, and Pt,t+1 be the true conditional distribution. We assume that
each agent’s expectation can be written in terms of the true distribution as

Eh
t [x] = Et

[
x

dPh
t,t+1

dPt,t+1

]
,

for some measurable function dPh
t,t+1/dPt,t+1. In mathematical terms, every agent’s condi-

tional distribution is absolutely continuous with respect to the true distribution. Then, by
the Radon–Nikodym theorem (see Billingsley (1999, Chapter 32)) such a dPh

t,t+1/dPt,t+1 must
exist. Accordingly, dPh

t,t+1/dPt,t+1 is known as the Radon–Nikodym derivative of Ph
t,t+1 with

respect to Pt,t+1. We also assume that, vice versa, the true distribution is absolutely contin-
uous with respect to every agent’s subjective distribution.

To solve for equilibrium, we assume that markets are complete so that we can reformulate
equilibrium as a social welfare problem (Mas-Colell and Zame (1991)). The social planner
maximizes a weighted sum of the individual agents’ utilities at t = 0. Let λ =

(
λ̄1, . . . , λ̄H

)
∈

RH
++ be a vector of positive Negishi weights and let {C}0 =

(
{C1}0, . . . , {CH}0

)
be an H-
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vector of the agents’ consumption processes. Then, the social planner maximizes

SP ({C}0;λ) =
H∑
h=1

λ̄hUh
(
{Ch}0

)
(4)

subject to the market-clearing equation (1). We denote an optimal solution to the social
planner’s problem for given Negishi weights λ by {C}∗0. For each agent h ∈ H, let Uh

t =

Uh({Ch}∗t ) be the utility in period t at the optimal solution. Also, for ease of notation, we
suppress the state dependence of consumption and simply write Ch

t for Ch(yt).

Theorem 1. The vector of consumption processes {C}∗0 solves the social planner’s problem
(4,1) for given Negishi weights λ =

(
λ̄1, . . . , λ̄H

)
if and only if the consumption processes

satisfy the following first-order conditions in each period t ≥ 0:

λht F
h
1 (C

h
t , R

h
t

[
Uh
t+1

]
) = λ1tF

1
1 (C

1
t , R

1
t

[
U1
t+1

]
), (5)

where the weights λht satisfy

λh0 = λ̄h, (6)
λht+1

λ1t+1

=
Πh
t+1

Π1
t+1

λht
λ1t
, t ≥ 0, h ∈ {2, . . . H}, (7)

with Πh
t+1 given by

Πh
t+1 = F h

2

(
Ch
t , R

h
t [U

h
t+1]
)
·

G′
h(U

h
t+1)

G′
h(R

h
t [U

h
t+1])

dPh
t,t+1

dPt,t+1

. (8)

Appendix B contains the proof of this theorem as well as those of the theoretical results
presented later in this section.

In each period t, the weights λht are only determined up to a scalar factor, so we are free
to choose a normalization. For numerical purposes, the normalization requiring the weights
λht to lie in the unit simplex in every period is convenient. From a conceptual point of view,
an attractive choice is to let λ1t+1 = Π1

t+1λ
1
t , because then for all h, λht+1 = Πh

t+1λ
h
t .

If the aggregator F h is additively separable, then the allocation of consumption in (5)
depends only on the current value for the weights λht . Additive separability is the most common
case in applications. Discounted expected utility is additively separable, while Epstein–Zin can
be transformed to be so. In this particular case, the Negishi weights and individual agents’
consumption allocations are closely linked. The following theorem provides an asymptotic

8



result relating the limits of weights λht to the limits of consumption.

Theorem 2. Suppose that F h is additively separable for all h ∈ H and that the aggregate
endowment is bounded, Ct ∈ [C,C] for finite constants C ≥ C > 0. If λjt/λit → ∞, then
Ci
t → 0. If Ci

t → 0, then for at least one other agent j, lim supt λ
j
t/λ

i
t = ∞.

Note that lim supt λj/λi is a random variable—the limit can depend on the history. The-
orem 2 generalizes a similar result by Blume and Easley (2006).

2.2 The Growth Economy with Epstein–Zin Preferences

We now consider the special case of our heterogeneous-agent economy in which aggregate
consumption is expressed exogenously in terms of growth rates and agents have Epstein–Zin
preferences (see Epstein and Zin (1989) and Weil (1989)). For this popular parametrization of
asset-pricing models, we can sharpen the general results of Theorems 1 and 2. Here we state
the equilibrium conditions for this model parametrization and refer any interested reader to
Appendix B.2 for a proper derivation of those conditions.

If agent h has Epstein–Zin preferences, then

F h(c, x) =
[
(1− δh)cρ

h

+ δhxρ
h
]1/ρh

(9)

Gh(x) = xα
h (10)

with parameters ρh ̸= 0, αh < 1. In this case, the equations are all homogeneous, so we can
divide through by aggregate consumption and express the equilibrium allocations in terms of
individual consumption shares, sht = Ch

t /Ct. Market clearing (1) implies that

H∑
h=1

sht = 1. (11)

Let V h
t be agent h’s value function. We also normalize this function by aggregate consumption,

vht = V h
t /Ct. Let ct = logCt and ∆ct+1 = ct+1 − ct. The normalized value function of agent h

satisfies the following fixed-point equation,

vht =
[
(1− δh)(sht )

ρh + δhRh
t

(
vht+1e

∆ct+1
)ρh] 1

ρh

, h ∈ H, (12)

with Rh
t (x) =

(
Eh
t

[
xα

h
]) 1

αh . The parameter δh is the discount factor, ρh = 1− 1
ψh determines

the elasticity of intertemporal substitution (EIS), ψh, and αh = 1−γh determines the relative
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risk aversion, γh, of agent h.
To accompany the normalized value function we introduce a normalized Negishi weight,

λht =
λht

(vht )
ρh−1

. In Appendix B.2 we show that the consumption share sht of agent h is given by

λht (1− δh)(sht )
ρh−1 = λ1t (1− δ1)(s1t )

ρ1−1. (13)

Finally, the equations for λht simplify to

λht+1

λ1t+1

=
Πh
t+1

Π1
t+1

λht
λ1t

Πh
t+1 = δheρ

h∆ct+1
dPh

t,t+1

dPt,t+1

(
vht+1e

∆ct+1
)αh−ρh

Rh
t

(
vht+1e

∆ct+1
)αh−ρh , h ∈ H−.

This simplification gives us H − 1 nonlinear equations for the equilibrium. In our numerical
calculation, we complete the system by requiring that

∑
λht = 1 when we solve for the weights,

λht , given by

λht+1 =
λhtΠ

h
t+1∑H

h=1 λ
h
tΠ

h
t+1

Πh
t+1 = δheρ

h∆ct+1
dPh

t,t+1

dPt,t+1︸ ︷︷ ︸
CRRA-Term

(
vht+1e

∆ct+1
)αh−ρh

Rh
t

(
vht+1e

∆ct+1
)αh−ρh︸ ︷︷ ︸

Additional EZ-Term

, h ∈ H−.
(14)

Unlike in the discounted expected utility case, the dynamics of the weights λht depend on
the value functions (12), which in turn depend on the consumption decisions (13). Hence, to
compute the equilibrium we need to jointly solve equations (11)–(14). As there are—to the
best of our knowledge—no closed-form solutions for the general model, we present in Appendix
C.1 a numerical solution approach, which is based on projection methods as proposed in Pohl,
Schmedders, and Wilms (2018) to approximate for the equilibrium functions.

In this setting, we can derive an improvement over Theorem 2—the limiting behavior for λht
drives the limiting behavior for an agent’s share of aggregate consumption. This result requires
no assumptions on aggregate consumption, only that agents have utility in the Epstein–Zin
family.

Theorem 3. Suppose all agents in the economy have Epstein–Zin preferences. If λjt/λit → ∞,
then sit → 0. If sit → 0, then for at least one agent j, lim supt λ

j
t/λ

i
t = ∞.

This completes our discussion of the theoretical framework for our analysis. Appendix B
provides proofs for the three theorems in this section. Along the way, we derive a system of
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first-order conditions for Epstein–Zin preferences. This system constitutes the foundation for
our numerical solution method (see Appendix C).

3 Belief Differences and Long-Run Risks: Model Setup
and Economic Intuition

We consider a standard long-run risk model as in Bansal and Yaron (2004), in which log
aggregate consumption growth ∆ct+1 and log aggregate dividend growth ∆dt+1 are given by

∆ct+1 = µc + xt + ηc,t+1

xt+1 = ρxxt + ηx,t+1

∆dt+1 = µd + Φxt + ηd,t+1.

(15)

The process xt captures the long-run variation in the mean of consumption and of dividend
growth and ηc,t+1, ηx,t+1, and ηd,t+1 are independent normally distributed shocks with mean 0
and standard deviations σ, ϕxσ, and ϕdσ respectively. A key feature of long-run risk models
is highly persistent shifts in the growth rate of consumption. With a preference for the early
resolution of risks (γ > 1

ψ
), investors will dislike shocks in xt and require a large premium

for bearing those risks. Hence, the results in the long-run risk literature rely on a highly
persistent state process xt, or, put differently, the parameter ρx needs to be very close to 1
(0.979 in the original calibration of Bansal and Yaron (2004)).

In this paper, we analyze the equilibrium implications of differences in beliefs with regard
to the long-run risk process. As xt is not directly observable from the data, it is reasonable to
assume that investors disagree—at least slightly—about the data-generating process of xt. In
Appendix D, we provide evidence that even for 500 years of data, point estimates of ρx show
significant variation. Hence, as there are less than 100 years of data available, it is reasonable
to assume that there are differences in the beliefs about ρx.

Our baseline setup is an economy with H = 2 agents in which the first agent believes that
ρx is close to 1 while the second agent believes that ρx is slightly smaller. We denote by ρhx the
belief of agent h about ρx. As xt+1 conditional on time t information is normally distributed
with mean ρxxt and variance σ2

x = ϕ2
xσ

2, agents’ beliefs dPh
t,t+1 are given by

dPh
t,t+1 =

1√
2πσx

exp

(
−1

2

(
xt+1 − ρhxxt

σx

)2
)
.
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We observe that for xt = 0 both agents have the same beliefs and that the belief difference
increases the further away xt is from its long-run mean. Hence, the state of the economy
plays an important role for the equilibrium consumption shares. Before we analyze the full
long-run risk model, we provide some intuition to better understand the influence of the
belief differences. To obtain such an intuition, it is helpful to understand the difference
between the standard case of CRRA preferences and the new mechanism that emerges due
to the importance of continuation values for Epstein–Zin utility (see Equation (14)). For
CRRA preferences, it is always the investor with the more correct beliefs who dominates the
economy in the long run (see, for example, Blume and Easley (2006) and Yan (2008)). This
result does not hold true for Epstein–Zin preferences. Borovička (2018) shows that agents with
more optimistic beliefs (believing in a larger mean growth rate) can dominate the economy
in the long run even if their beliefs are wrong. In the following, we first show how the belief
differences affect the equilibrium consumption shares in the long-run risk economy with CRRA
preferences and then show the difference to the Epstein–Zin setup.

3.1 The CRRA Case

We begin our analysis by considering the CRRA case as a simple benchmark. In this case,
only the speculation motive matters, in contrast to the general Epstein–Zin case. We denote
the two investors by A and B. In Appendix E we show that the log consumption share of
agent A is a linear function of ηx,t+1,

log
(
sAt+1

)
= aCRRA + bCRRAηx,t+1. (16)

The coefficients are given by

bCRRA =
(1− sAt )xt(ρ

A
x − ρBx )

σ2
xγ

aCRRA = log
(
sAt
)
+

(1− sAt )x
2
t

2σ2
xγ

[
(ρx − ρBx )

2 − (ρx − ρAx )
2
]
.

The slope bCRRA determines how the consumption share of investor A changes—in response
to shocks to xt+1. Assume that ρAx > ρBx . The sign of bCRRA depends on the sign of xt. If
xt is positive (negative), bCRRA is positive (respectively, negative); this sign implies that the
larger the shock to xt+1, the larger (smaller) will be log sA1 and, hence, the larger (smaller)
the consumption share of agent A. The intuition is that investor B believes in faster mean
reversion and hence puts more probability weight on states where xt+1 moves toward its long-
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run mean of 0. So investors bet on states depending on the subjective probabilities they
assign to those states. This speculation motive increases with |ρAx −ρBx | and |xt| and decreases
with the risk aversion γ. The larger the difference in the beliefs, |ρAx − ρBx |, the larger is the
difference in probabilities that the investors assign to different states. For xt = 0 investors
share the same beliefs but the larger |xt|, the more important becomes the difference in the
beliefs about the speed of mean reversion. Finally, the more risk averse investors are, the less
they are willing to speculate on future outcomes.

We observe that this speculation motive is independent of the true persistence ρx. However,
the true persistence does influence the average change in the consumption share. Assume that
investor A has the correct beliefs, ρx = ρAx . The average change in the log consumption share
is then given by

Et
(
log
(
sAt+1

))
− log

(
sAt
)

= aCRRA − log
(
sAt
)

=
(1− sAt )x

2
t

2σ2
xγ

(ρAx − ρBx )
2 ≥ 0. (17)

We observe that—independent of the states sA0 and x0 and whether ρAx is larger or smaller
than ρBx —the consumption share of investor A, who has the correct beliefs, will always increase
on average. So for CRRA utility, the only thing that matters for the average change in the
consumption shares is which investor has the correct beliefs. The speed at which he or she
accumulates wealth depends on the risk aversion of the investor. So the more risk averse the
investor, the less he or she will be willing to speculate on future outcomes and, hence, the
slower will be the wealth accumulation.

3.2 The Epstein–Zin Case

We next consider a stylized version of the Epstein–Zin model. Instead of the fully stochastic
setup (15), we consider an infinite-horizon economy, but there is only a single shock in the
model, to long-run risk in the first period. Subsequently, xt slowly converges back to the
long-run mean of zero. In period zero, agents disagree about the persistence of xt, but they
learn about the true persistence once all uncertainty is resolved in period 1.2 We abstract
from shocks to ∆ct+1 as they do not affect the equilibrium consumption shares.3

2If belief differences persist into period 1, the model has no equilibria.
3As agents agree on ∆ct+1, ηc,t+1 only affects the equilibrium consumption share (14) if agents have different
preference parameters, which is not the case in this setup.
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In the initial period, the two agents have the following beliefs about the economy:

∆c1 = µ+ x0

x1 = ρhxx0 + ηx,1, ηx,1 ∼ N(0, σ2
x),

with the true persistence being ρx. In period 1 all uncertainty is resolved and both investors
know the true persistence ρx:

∆ct+1 = µ+ xt

xt+1 = ρxxt, ∀t ≥ 1.

To solve the model, we follow the approach in Colacito, Croce, and Liu (2018b).4 As in
Colacito, Croce, and Liu (2018b), we set the EIS to 1 (ψ1 = ψ2 = 1). The value functions of
the investors are then given by

vht = (1− δ) log sht +
δ

1− γ
logEh

t

(
e(1−γ)(v

h
t+1+∆ct+1)

)
, h ∈ A,B. (18)

In Appendix F we show how to derive the solutions for the model. As there is no disagree-
ment and hence no trading after period 0, the solution is characterized by the equilibrium
consumption share in period 1. We show that, as in the CRRA case, the log consumption
share of investor A in period 1, log sA1 , is a linear function of the shock ηx,1

log
(
sA1
)
= a+ bηx,1 (19)

and the coefficients are given by

b =
(1− sA0 )x0(ρ

A
x − ρBx )

γσ2
x

(20)

a = log
(
sA0
)
+

(1− sA0 )x
2
0

2σ2
x

[
(ρx − ρBx )

2 − (ρx − ρAx )
2
]

+(1− sA0 )
δ

1− δρx
(ρBx − ρAx )x0

(1− γ)

γ

+
x20(1− γ)2(ρAx − ρBx )

2(1− sA0 )(2s
A
0 − 1)

2σ2
xγ

2
. (21)

We observe that the slope coefficient is the same for Epstein–Zin and CRRA utility with the
4We consider the infinite-horizon economy instead of the simple 2-period setup in Colacito, Croce, and Liu
(2018b) to obtain effects on continuation values due to the slow convergence of xt.
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same coefficient of risk aversion (b = bCRRA). So investors bet again on the occurrence of
future states, depending on their subjective beliefs. We call this mechanism the speculation
motive. However, the constant terms a differ significantly. Assume again that investor A has
the correct beliefs, ρx = ρAx . The average change in the consumption share is then given by

E0

(
log
(
sA1
))

− log
(
sA0
)

= a− log
(
sA0
)

=
(1− sA0 )x

2
0

2σ2
x

(ρAx − ρBx )
2︸ ︷︷ ︸

>0

 1︸︷︷︸
CRRA-Term

+
(1− γ)2(2sA0 − 1)

γ2︸ ︷︷ ︸
EZ-Risk Adjustment


+ (1− sA0 )

δ

1− δρx
(ρBx − ρAx )x0

(1− γ)

γ︸ ︷︷ ︸
New EZ-Channel

.

The first term in the second line is the same as the CRRA term with risk aversion 1. So
there is a wealth transfer to the investor with the correct beliefs irrespective of the state. The
second term in the first line is a risk adjustment, which is negative for sA0 < 0.5 and positive
for sA0 > 0.5. So for small levels of sA0 , investor A is more conservative relative to the CRRA
case with unit risk aversion and is not willing to bet as much money. Therefore, the average
increase of investor A’s consumption share is not as strong as for CRRA utility. Note that
1+

(1−γ)2(2sA0 −1)

γ2
> 0 for γ > 1. Thus, as in the CRRA case, the term in the second line always

increases the wealth of investor A, who holds the correct beliefs.5

The third line shows the key difference between the Epstein–Zin and the CRRA case. The
sign of the third line depends on the sign of x0 as well as the sign of the difference ρAx − ρBx .
So the average change in the consumption share depends on whether an investor believes in
a larger or smaller ρx compared to the other agent and not only on which investor has the
correct beliefs. Note that (1−γ)

γ
is negative for γ > 1 and we assume ρAx − ρBx > 0. For x0 < 0

the EZ channel is therefore negative and there is a wealth transfer to investor B who beliefs
in a smaller ρx. Hence, even though investor A has the correct beliefs, there is a channel that
decreases his consumption share if x0 < 0. Put differently, investors who believe in a larger
persistence ρx, are, on average, willing to give away parts of their consumption share to hedge
against risks in x1 if x0 < 0. This channel increases with the degree of risk aversion of the
investor since

∣∣∣ (1−γ)γ

∣∣∣ increases for γ > 1. The larger the degree of risk aversion the more are
those investors, who believe in a larger ρx, willing to pay to hedge against future risks. This

5As 1 +
(1−γ)2(2sA0 −1)

γ2 is increasing in sA0 , its minimum is obtained for sA0 = 0. This yields 1− (1−γ)2

γ2 = 2γ−1
γ2 ,

which is > 0 for γ > 1.
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risk-sharing motive is the key channel that drives our results in the following section.
Finally, note that in the stylized economy with no uncertainty after period 1, the average

change in the consumption share for x0 = 0 is always zero. For x0 = 0 investors agree on the
outcomes in the first period and, hence, there is neither speculation nor risk-sharing demand.
In the fully stochastic economy in the next section this is not true. Even for x0 = 0 the
investors face the risk that xt becomes negative after period 1 and, hence, are willing to pay
a premium to insure against these risks. We show that this risk-sharing motive is present and
strong; even for x0 > 0, investors who are (more) highly afraid of bad shocks to xt will be
willing to pay a premium to insure against these risks.

4 Belief Differences in the Standard Calibration

In the following, we present the results for the fully stochastic infinite-horizon economy with
the exogenous processes given in system (15). As before, we assume that there are two in-
vestors who have different beliefs about ρx. In light of the results from the representative-agent
literature on long-run risks, the majority of investors need to believe in a highly persistent
long-run risk process. Otherwise, asset prices would be determined by those investors who
don’t believe, or who believe less, in long-run risks; and, hence, the model outcomes would
certainly not be consistent with the data. Therefore, we assume that a majority of investors
believe in a highly persistent long-run risk process. Then we address the question of what hap-
pens if there is a small fraction of investors who believe in slightly less persistent shocks—that
is, who are somewhat skeptical of the presence of long-run risks. We do not make a specific
assumption about which agent has the correct beliefs. In fact, we show below that for small
belief differences the true distribution has a negligible influence on equilibrium outcomes.

Most long-run risk models calibrate the underlying cash-flow parameters in order to match
asset-pricing data. For example, Bansal and Yaron (2004) use a value of ρx = 0.979. Bansal,
Kiku, and Yaron (2012) use ρx = 0.975, and Drechsler and Yaron (2011) assume ρx = 0.976.
They obtain high values of ρx by construction, as otherwise the models would not be consistent
with the high equity premium and other pricing moments observed in the data. The study
by Bansal, Kiku, and Yaron (2016) relies on cash-flow and asset-pricing data to estimate the
long-run risk model parameters and reports a value of ρx ≈ 0.98 with a standard error of 0.01.
For our baseline calibration, we assume that the first agent believes that ρ1x = 0.985. This
value implies an equity premium of 6.53 percent for the representative-agent economy, which is
consistent with the value observed in the data. The second agent believes in a slightly smaller
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persistence level, ρ2x = 0.975. Both values lie well within the confidence interval provided by
Bansal, Kiku, and Yaron (2016). A small change in ρx has large effects on asset prices. For
ρx = 0.975, the equity premium decreases to 2.76 percent in the representative-agent economy.
For ρx = 0.95, it collapses to 0.26 percent and the influence of xt on asset prices is negligible.
For completion, we also analyze the model for the values ρ1x = 0.985 and ρ2x = 0.95 of the
persistence parameter.

While the two agents have different beliefs, they have identical Epstein–Zin utility pa-
rameters in the benchmark economy. They share the properties of the representative agent
of Bansal and Yaron (2004) with ψ1 = ψ2 = 1.5, γ1 = γ2 = 10, and δ1 = δ2 = 0.998. For
the remaining parameters of the state processes (15) we also use the calibration from Bansal
and Yaron (2004, Case I) (model without stochastic volatility), with µc = µd = 0.0015, σ =

0.0078,Φ = 3, ϕd = 4.5, and ϕx = 0.044. (This calibration is used for all the results in the
present paper.)

4.1 Equilibrium Consumption Shares in the Infinite-Horizon Econ-
omy

Before we look at the consumption dynamics and asset-pricing implications of the model, we
investigate how the belief differences affect the equilibrium consumption shares and relate the
results to the intuition obtained in the previous section. Colacito and Croce (2013) show that
the equilibrium consumption shares in the infinite-horizon economy can be characterized by
a mean-variance trade-off of the continuation utilities of the investors. Let v̄ht =

(vht )
ρh

ρh
. The

value functions of the investors (12) are then given by

v̄ht = (1− δh)
(sht )

ρh

ρh
+ δhEh

t

(
(v̄ht+1)

αh

ρh eα
h∆ct+1

) ρh

αh

, h ∈ H. (22)

If all investors share the same preference parameters γh = γ and ψh = ψ, then v̄ht+1 is
independent of ∆ct+1 (see Equation (14)). Colacito and Croce (2013) then show that by
assuming log-normality for v̄ht+1, the equation can be rewritten as

v̄ht ≈ (1− δh)
(sht )

ρ

ρ
+ δktE

h
t (v̄

h
t+1)− δkt

ρ− α

2ρ

Varht (v̄
h
t+1)

Eh
t (v̄

h
t+1)

, h ∈ H, (23)

where kt = Eh
t (e

α∆ct+1)
ρ
α . Note that ρEh

t (v̄
h
t+1) is positive and, hence, for ρ > α—that is,

for preferences for the early resolution of risks—a higher variance of the continuation utility,
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Varht (v̄
h
t+1), reduces welfare. So the investor is willing to trade off expected future utility

Eh
t (v̄

h
t+1) for uncertainty about future utility Varht (v̄

h
t+1). As there is a one-to-one mapping

between the continuation values vht and the lifetime wealth of the agents (see Epstein and Zin
(1989)), the mean-variance trade-off of continuation utilities can also be interpreted as the
effects on the wealth shares of the investors.

Figure 1 shows this trade-off for our benchmark economy. As expected, the conditional
mean of the continuation utilities of investor 1 (2) decreases (respectively, increases) with the
consumption share of investor 2. The conditional variance of investor 1 gradually increases
when investor 1’s consumption share increases. In contrast, for investor 2, who is less afraid
of long-run risks, the variance sharply increases when moving from a share of 0 to a small
share of consumption. Hence, the presence of a small fraction of investors who are less afraid

Figure 1: Conditional Mean and Variance of Continuation Utilities
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The figure plots the conditional mean and variance of continuation utilities as a function of the
consumption share of the second investor. The left panel shows the results for investor 1, who
believes that ρ1x = 0.985, and the right panel for investor 2, who believes that ρ2x = 0.975. Results
are shown for three different values of xt. For the data-generating process, we use µx = 0, σx =
0.0003432, µ = 0.0015, and σ = 0.0078.

of long-run risks is sufficient to induce strong risk sharing. In line with the results obtained in
the previous section, this mechanism is especially strong for small (“more negative”) xt—that
is, when the influence of long-run risks is large. Hence, in low x-states, where the marginal
utility of investor 1 is low due to the bad state of the economy, investor 1 is willing to trade
future wealth in order to reduce his risks. Investor 2, who is less afraid of the risks, is willing
to take on the additional risks but she must be compensated by higher future wealth shares.
So the risk sharing will transfer wealth from the first to the second investor.

Figure 2 shows the corresponding results for an increase in the belief difference (ρ2x =
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0.965 instead of 0.975). We observe that the willingness of investor 2 to provide risk sharing
increases. For xt = −0.0013, Var 2t (v̄2t+1) increases significantly compared to the case where
investor 2 holds all the wealth (moving from the right corner of the graphs to the left).
Furthermore, the variance of investor 1 decreases sharply compared to the case where investor
1 holds all the wealth (moving from the left corner of the graph to the right). As investor 2
must be compensated by investor 1 for bearing these additional risks, there is a wealth transfer
from investor 1 to investor 2.

Figure 2: Conditional Mean and Variance of Continuation Utilities—Large Disagreement
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The figure plots the conditional mean and variance of continuation utilities as a function of the
consumption share of the second investor. The left panel shows the results for investor 1, who
believes that ρ1x = 0.985, and the right panel for investor 2, who believes that ρ2x = 0.965. Results
are shown for three different values of xt. For the data-generating process, we use µx = 0, σx =
0.0003432, µ = 0.0015, and σ = 0.0078.

For a different view of the described trade-off between the conditional variances and con-
ditional means of the continuation utilities, we plot them directly against each other. Figures
3 and 4 are the corresponding plots to Figures 1 and 2. In accordance with our observations
above, we observe a strict convexity in the graph of the first investor’s conditional variance
versus the conditional mean of that investor’s continuation utility. Moreover, the plots nicely
show that the trade-off is more extreme the worse the level of the long-run-risk state, xt.

4.2 Simulation Results

The previous section has shown that investors who are more afraid of long-run risks (large
ρx) are willing to trade future wealth to hedge against risks in xt. Investors with smaller ρx
are willing to provide this “insurance”. This channel transfers wealth from investors with high
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Figure 3: Mean-Variance Frontier of Continuation Utilities
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The figure plots the conditional variance against the conditional mean of continuation utilities. The
left panel shows the results for investor 1, who believes that ρ1x = 0.985, and the right panel for
investor 2, who believes that ρ2x = 0.975. For the data-generating process, we use µx = 0, σx =
0.0003432, µ = 0.0015, and σ = 0.0078.

Figure 4: Mean-Variance Frontier of Continuation Utilities—Large Disagreement

(a) Investor 1

0 0.5 1 1.5 2 2.5 3

E1
t (U1

t+1)

0

0.5

1

1.5

2

2.5

3

3.5

4

V
ar

1 t(U
1 t+

1
)

10-4

x
t
 = -0.0013

x
t
 = 0

x
t
 = 0.0013

(b) Investor 2

0 1 2 3 4

E2
t (U2

t+1)

0

0.5

1

1.5

2

2.5

3

3.5

4

V
ar

2 t(U
2 t+

1
)

10-4

x
t
 = -0.0013

x
t
 = 0

x
t
 = 0.0013

The figure plots the conditional variance against the conditional mean of continuation utilities. The
left panel shows the results for investor 1, who believes that ρ1x = 0.985, and the right panel for
investor 2, who believes that ρ2x = 0.965. For the data-generating process, we use µx = 0, σx =
0.0003432, µ = 0.0015, and σ = 0.0078.
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ρx to investors with low ρx irrespectively of the true persistence value. In the following we
analyze how this channel affects consumption shares and asset prices.

We begin with an analysis of the equilibrium dynamics of the consumption shares of
the individual agents. Figure 5 shows the consumption share of the second, skeptical agent
(ρ2x = 0.975) over time for different initial shares s20 = {0.01, 0.05, 0.5}. We report the median,
5%, and 95% quantile paths using 1,000 samples each consisting of 500 years of simulated
data. To minimize the influence of the initial value of xt, we initialize each simulated path
by running a “burn-in” period of 1,000 years before using the output. The left panel shows
the results for ρx = ρ1x = 0.985 (the first agent has the correct beliefs) and the right panel for
ρx = ρ2x = 0.975 (the second agent has the correct beliefs).

We observe that in all cases the consumption share of the skeptical agent, agent 2, strongly
increases over time. While this increase occurs faster if agent 2 has the correct beliefs (right
panel), the increase is almost as strong if agent 1 has the correct beliefs (left panel). Hence,
given a small difference in the beliefs, independent of whether agent 1 or agent 2 has the correct
beliefs, in the long run the agent who believes in a smaller ρx will dominate the economy. So,
using the terminology from the stylized model in Section 3.2, the influence of the risk-sharing
motive is stronger than the influence of the speculation motive. Most importantly, even if
the economy is initially almost entirely populated by agent 1, s20 = 0.01, his consumption
share decreases sharply, leading the agent to lose significant share in a short amount of time.
This observation is in line with the results from Section 4.1, which show that the risk-sharing
motive is especially strong if there is a small fraction of skeptical investors.

Table 1 reports the corresponding median consumption shares for different time horizons
and for values s20 ∈ {0.01, 0.05, 0.5}. We observe that for s20 = 0.01 the consumption share
of agent 1 has decreased by more than 27% after 100 years, by 62% after 200 years, and by
almost 92% after 500 years.

Figure 6 shows the corresponding results for ρ2x = 0.95 and an initial allocation of s20 = 0.01.
The left panel shows the results for ρx = 0.985 (agent 1 has the correct beliefs). We observe
that the initial increase in the consumption share is stronger compared to the case with
ρ2x = 0.975 but that the median share does not become as large in the long run (the median
shares of the second agent after 100, 200, and 500 years are given by 32.59%, 37.82%, and
40.19%, respectively). As shown in the previous section, the larger the belief difference, the
stronger becomes the influence of the risk-sharing channel for small s2t and hence the larger is
the wealth transfer to the second agent.

The 5% and 95% quantile paths and the grey sample path show that there is significantly
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Figure 5: Consumption Shares—Simulations
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(d) ρx = 0.975, s20 = 0.05
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(e) ρx = 0.985, s20 = 0.01
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The figure shows the median, 5%, and 95% quantile paths of the consumption share of agent 2 for
1,000 samples each consisting of 500 years of simulated data. Agent 2 believes that ρ2x = 0.975
and agent 1 believes that ρ1x = 0.985. Results are shown for different initial consumption shares
(s20 = {0.01, 0.05, 0.5}). The left panel depicts the case where the skeptical agent, agent 2, has the
wrong beliefs about the long-run risk process (ρx = 0.985 = ρ1x) and in the right panel the skeptical
agent has the right beliefs (ρx = 0.95 = ρ2x).
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Table 1: Consumption Shares—Summary Statistics

ρx = 0.985 ρx = 0.975

Years 100 200 500 100 200 500
s20 = 0.5 0.7429 0.8515 0.9628 0.8904 0.9683 0.9995

(0.0500) (0.0481) (0.0212) (0.0118) (0.0072) (4.2e-5)
s20 = 0.05 0.4507 0.7143 0.9393 0.5140 0.7947 0.9787

(0.0589) (0.0636) (0.0293) (0.0301) (0.0252) (0.0049)
s20 = 0.01 0.2824 0.6376 0.9278 0.3404 0.7249 0.9732

(0.0509) (0.0681) (0.0326) (0.0294) (0.0293) (0.0060)

The table shows the median and the standard deviation (in parenthesis) of the consumption share
of agent 2 using 1,000 samples each consisting of 500 years of simulated data. Agent 2 believes that
ρ2x = 0.975 and agent 1 believes that ρ1x = 0.985. Summary statistics are shown for different initial
consumption shares (s20 = {0.01, 0.05, 0.5}) and different time periods T = {100, 200, 500} years.
The left panel depicts the case where the skeptical agent, agent 2, has the wrong beliefs about the
long-run risk process (ρx = 0.985 = ρ1x) and in the right panel the skeptical agent has the right
beliefs (ρx = 0.95 = ρ2x).

Figure 6: Consumption Shares for ρ2x = 0.95—Simulations
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The figure shows the median, 5%, and 95% quantile paths of the consumption share of agent 2 for
1,000 samples each consisting of 500 years of simulated data as well as a sample path (grey line).
Agent 2 believes that ρ2x = 0.95 and agent 1 believes that ρ1x = 0.985. Results are shown for an initial
consumption share of s20 = 0.01. The left panel depicts the case where the skeptical agent, agent 2,
has the wrong beliefs about the long-run risk process (ρx = 0.985 = ρ1x) and in the right panel the
skeptical agent has the right beliefs (ρx = 0.95 = ρ2x).
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more variation in the shares. We observe that there are large drops and recoveries in the
consumption share. The large drops occur because the second agent assigns “wrong” proba-
bilities to extreme states and hence “bets” on states that turn out to occur less often in the
long run. As belief differences are large, this speculation motive has a large influence. This
channel works in favor of agent 2, once she has the correct beliefs and is therefore more likely
to bet on the correct states. This case is shown in the right panel (ρx = ρ2x = 0.95), where we
indeed observe that the increase in the consumption share is much stronger and that the large
drops in consumption are no longer present. The increase in the left panel occurs much more
slowly as the speculation motive works against agent 2 on average. However, the risk-sharing
channel transfers wealth to investor 2. As belief differences are large and the first investor
strongly dislikes shocks in xt, that investor is willing to pay a high premium to insure against
these risks, while the second investor is willing to provide this insurance. This risk-sharing
channel will transfer significant amounts of wealth to the second investor. We provide a more
detailed analysis of the speculation channel and the risk-sharing channel in the economy in
Section 4.3 below.

What does the change in the consumption shares imply for asset prices and aggregate
financial market statistics? We assume that the economy is initially almost entirely populated
by agent 1 in order to generate a high equity premium consistent with the data. But the
consumption share of the first agent decreases rapidly, and so will that agent’s influence on
asset prices. In Table 2 we show the annualized equity premium in the years 0, 100, 200, and
500, assuming an initial share of s20 = 0.01.6 The left panel shows the results for ρ2x = 0.975

where agent 1 has the correct beliefs. For the initial allocation s2t = 0.01, when agent 1
dominates the economy, the aggregate risk premium is 6.42%. This value is very close to
that of the representative-agent economy populated only by the first agent, which generates
a premium of 6.53%. After 100 years, when the share of agent 1 has decreased from 99% to
72%, the premium decreases to 4.59%. Hence, even if agent 1 holds almost all the wealth
initially, which implies a high risk premium, the premium will drop by almost 2% within a
century. After 200 years, the premium decreases by almost 3% and after 500 years it is almost
at the level of the representative-agent economy populated only by agent 2, with a premium
of 2.89%. The right panel shows the corresponding results for ρ2x = 0.95. We observe that
the sharp increase in the consumption share decreases the premium from 5.42% initially to

6Note that Table 2 does not report the premium starting with a given value for s20 and simulating a long time
series, but that we report the average premium for a given consumption share s2t = s̄. Hence, we take the
expectation over all xt while keeping the consumption share constant at s̄. The population moment for 500
years of simulated data is given in Table 3.
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Table 2: Equity Premium for Different Consumption Shares

ρ2
x = 0.975 ρ2

x = 0.95

s2t Equity Premium s2t Equity Premium
Rep. Agent 1 0 6.53 0 6.53

0 Years 0.01 6.42 0.01 5.42
100 Years 0.2824 4.59 0.3259 1.84
200 Years 0.6376 3.49 0.3782 1.64
500 Years 0.9278 2.89 0.4019 1.56

Rep. Agent 2 1 2.76 1 0.26

The table shows the annualized equity premium for a specific consumption share s2t = s̄. The premium
is reported for the equilibrium allocations after 0, 100, 200, and 500 years of simulated data assuming
an initial share of s20 = 0.01 (see Table 1). Agent 1 has the correct beliefs with ρ1x = ρx = 0.985. The
left panel depicts the case for ρ2x = 0.975 and the right panel for ρ2x = 0.95.

1.84% after 100 years—a decrease of more than 3.5% in a century. Hence, the difference in
beliefs brings down the equity premium to well below the levels observed in the data even
if the agent who is skeptical about the presence of long-run risks does not have the correct
beliefs. (Table 8 in Appendix G reports the corresponding results for the case where agent
2 rather than agent 1 has the correct beliefs. As expected, we observe that the drop in the
equity premium is even more severe.)

While the consumption dynamics have a negative impact on first moments, they might
positively influence second moments due to the large variation in consumption shares. Table 3
shows selected moments from the 1,000 sample paths. We report the mean and the standard
deviation of the annualized log price–dividend ratio, the annualized equity premium, and the
risk-free return. Results are shown for the case in which agent 1 has the correct beliefs. In
addition to the two-agent economy, the table also shows the two representative-agent cases,
where the economy is populated only by agent 1 (s2t = 0) or agent 2 (s2t = 1). Note that the
results only serve to obtain intuition about the effects on second moments and we conduct a
full recalibration exercise in Section 5.

We observe that the volatility of the log price–dividend ratio is significantly larger for
the two-agent economy compared to both representative-agent economies, respectively. This
effect is especially strong for ρ2x = 0.95, where the volatility is 0.48 compared to 0.25 and 0.14
for the two representative-agent economies. These results are driven by shifts in the wealth
distribution. As the wealth distribution shifts weights back and forth between the agents,
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Table 3: Annualized Asset-Pricing Moments

E (pt − dt) σ (pt − dt) E
(
rmt − rft

)
E
(
rft

)
σ (rmt ) σ

(
rft

)
ρ2
x = 0.975

s2t = 0 2.68 0.25 6.53 2.32 17.84 1.50
Two-Agent Economy 3.10 0.29 3.98 2.58 17.19 1.51
s2t = 1 3.29 0.20 2.83 2.71 16.55 1.53

ρ2
x = 0.95

s2t = 0 2.68 0.25 6.53 2.32 17.84 1.50
Two-Agent Economy 3.60 0.48 2.63 2.47 20.37 1.58
s2t = 1 6.27 0.14 0.26 2.93 14.80 1.52

The table shows selected moments from 1,000 samples each containing 500 years of simulated data
starting with an initial share of s20 = 0.01. It shows the mean and the standard deviation of the
annualized log price–dividend ratio, the annualized market over the risk-free return, and the risk-free
return. Agent 1 has the correct beliefs with ρ1x = ρx = 0.985. All returns are shown in percentages,
so a value of 1.5 is a 1.5% annualized figure.

second moments increase in response to the time variation in the wealth shares.7

Beeler and Campbell (2012) argue that one of the deficiencies of the long-run risk models
of Bansal and Yaron (2004) and Bansal, Kiku, and Yaron (2012) is that they significantly
underestimate the volatility of the price–dividend ratio (they report values of 0.28 compared
to 0.45 observed in the financial market data). Our results show that differences in beliefs can
potentially resolve this puzzle, since they lead to a significant increase in the volatility figures.
In Section 5 we conduct a re-calibration exercise to analyze whether the heterogeneous-agent
model can match both first and second moments as well as other stylized financial markets
features.

In sum, if there are different investors who all believe in long-run risks but use slightly
different estimates for the long-run risk process, the investor who is more skeptical about ρx
eventually dominates the economy. The investor who believes in a larger value of ρx rapidly
loses wealth, no matter whether those beliefs are correct or not. Recall that a large ρx is needed
to obtain a high risk premium in the long-run risk model. Even if this investor with the belief
in a large ρx almost entirely populates the economy initially, that investor’s consumption
share decreases so fast that the equity premium in the economy declines considerably in a
short amount of time. On the positive side, different beliefs about ρx introduce variations

7While for this calibration the first moments lie well within the values observed for the representative-agent
economies, in Section 5 we show that belief heterogeneity can endogenously add persistent consumption risks
to the model, which in turn generate significant risk premia.
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in the consumption shares, which in turn induces significant excess volatility of the price–
dividend ratio. We have also seen that when the more skeptical agent’s estimate of ρx is a
bit further away from the true value then both agents may survive in the long run. (And,
obviously, the skeptical agent would not survive when his or her estimate is sufficiently small
and thus sufficiently far away from the correct value of ρx.)

4.3 The Speculation and the Risk-Sharing Motives

In this section, we analyze in more detail how the speculation motive and the risk-sharing
motive influence the equilibrium consumption shares.

4.3.1 The Speculation Motive

In Section 3.1 we have seen that the speculation motive alone determines equilibrium outcomes
in the special case of CRRA preferences. The investors assign different subjective probabilities
to future states and buy assets that pay off in states they believe are more likely. Hence, for
CRRA utility the agent with the more correct beliefs will accumulate wealth in the long run,
as the investor with the more distorted beliefs bets on states that have a small probability
under the true probability measure.

To demonstrate how the speculation motive affects equilibrium outcomes in the long-
run risk model with different beliefs, we first consider the special case of CRRA preferences
(see Section 3.1 for the log-linear solutions for the CRRA case). In Figure 7 we show the
change in the Pareto weights λ2t+1 − λ2t as a function of λ2t . Note that a positive (negative)
change in the Pareto weight also implies a positive (negative) change in the consumption
share (see Equation (13)). The blue and yellow lines depict the cases of a negative shock
(xt+1 − ρxxt = −0.001) and a positive shock (xt+1 − ρxxt = 0.001) in xt+1, respectively.
The red line shows the average over all shocks. From left to right, the results are shown for
xt = −0.008, xt = −0.0013, xt = 0, xt = 0.0013, and xt = 0.008. Agent 1 has the correct
belief, ρ1x = ρx = 0.985, while agent 2 believes that ρ2x = 0.975.

The second agent believes that xt converges faster to its long-run mean than does agent
1. Hence, if xt < 0, agent 2 assigns larger probabilities to large xt+1 and bets on those states
as ρ2xxt > ρ1xxt (left panels). The opposite holds true for xt > 0. So agent 2 loses wealth if xt
is low and the shock in xt is negative (blue line in the left-hand figures) or if xt is high and
the shock in xt is also high (yellow line in the right-hand figures). Taking the average over all
future realizations of xt+1 (red line), agent 2 loses wealth on average (red line). For xt = 0

both agents share the same beliefs (ρ2xxt = ρ1xxt) and hence they assign the same probabilities
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Figure 7: Changes in the Wealth Distribution—The CRRA Case
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The figure shows the change in the optimal weights λ2
t+1−λ2

t as a function of λ2
t . From left to right,

the change is shown for xt = {−0.008,−0.0013, 0, 0.0013, 0.008} (± 4 standard deviations). The blue
line depicts the case of a negative shock in xt+1 (xt+1 − ρxxt = −0.001) and the yellow line of a
positive shock in xt+1 (xt+1−ρxxt = 0.001). The red line shows the average over all shocks. Baseline
calibration with ρx = ρ1x and CRRA preferences.

to xt+1 (the blue and yellow lines coincide with the red line and are not visible). As agent 2
loses wealth on average for all xt except for xt = 0, this agent will eventually vanish in the
long run. Note that the influence of the speculation motive becomes stronger the larger |xt|
is, as the belief dispersion grows the more xt deviates from its unconditional mean, E(xt) = 0.

The speculation motive entirely determines the equilibrium in the standard case of CRRA
preferences. For general Epstein–Zin preferences equilibrium dynamics become more complex.
In the following we first describe the general effects of the risk-sharing motive and then analyze
how the two effects interact and influence equilibrium outcomes.

4.3.2 The Risk-Sharing Motive

Section 4.1 has shown that the risk-return trade-offs are not the same among agents with
Epstein–Zin preferences; instead, agents with smaller ρx are willing to take more risks. Re-
call from Section 3.2 that an investor who believes in a large ρx is afraid of large negative
realizations of xt and would therefore like to buy insurance against these risks. The skep-
tical investor—believing in a relatively smaller value for ρx—will be willing to provide this
insurance as she is less afraid of the long-run risks. As there is a premium for bearing these
risks, the risk-sharing motive will transfer wealth from the investors who are (more) afraid of
long-run risks to the more skeptical investors.

In Figure 8 we demonstrate how this channel affects model outcomes. The figure shows the
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corresponding results to Figure 7 but for the general case of Epstein–Zin preferences. First,

Figure 8: Changes in the Wealth Distribution—The Epstein–Zin Case
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The figure shows the change in the optimal weights λ2
t+1−λ2

t as a function of λ2
t . From left to right,

the change is shown for xt = {−0.008,−0.0013, 0, 0.0013, 0.008} (± 4 standard deviations). The blue
line depicts the case of a negative shock in xt+1 (xt+1 − ρxxt = −0.001) and the yellow line of a
positive shock in xt+1 (xt+1−ρxxt = 0.001). The red line shows the average over all shocks. Baseline
calibration with ρx = ρ1x.

consider the center panel, where xt = 0 and hence the speculation motive has no effect on
equilibrium outcomes (see Figure 7). Agent 1 is more afraid of negative shocks to xt+1 than
is agent 2. Therefore, agent 1 buys insurance against the long-run risks, which pays off in
bad times when there is a negative shock to xt+1 (the blue line is negative, which implies an
increase in the weights of the first agent for all λ2t ). For this insurance, agent 1 has to pay
a premium in good times. So, for a positive shock to xt+1 the results reverse (yellow line).
The average over all shocks (red line) is positive, so agent 1 pays a positive premium to insure
against long-run risk, which is why this agent loses wealth on average. The effect is stronger
for small λ2t and decreases for large λ2t . A small value of λ2t implies that there is a large share
of agents who want to buy insurance against long-run risks. Hence, they are willing to pay a
higher price. The larger the share of the skeptical investors becomes, the lower becomes the
demand for the insurance and, hence, the increase in the Pareto weights also becomes less
pronounced.

The case of xt = 0 shows a key difference between the fully stochastic model and the
simplified setup where all uncertainty is resolved in the first period (see Section 3.2). In the
simplified setup, for x0 = 0 investors will not trade and consumption shares remain constant
as (i) there is no belief difference, and (ii) investors know that uncertainty is resolved in period
1, so there is no incentive to hedge risks that occur after period 1. As a result, the risk-sharing
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motive is much stronger in the fully stochastic setup.
Decreasing xt has two effects. First of all, agent 1 becomes more afraid of long-run risks

(given a negative value of xt, a large negative realization of xt+1 becomes more likely due to the
belief in a high persistence of ρx), which is why agent 1 wants to buy more insurance against
long-run risks and is willing to pay a higher premium. We observe this effect in the second
panel from the left (xt = −0.0013) in Figure 8, where the average increase in the Pareto weight
of the second agent (red line) increases compared to the results for xt = 0. This result is in
line with the risk-sharing motive described in Section 3.2. Additionally, the belief difference,
and hence the difference between the subjective probabilities, becomes more pronounced for
large |xt|. So the influence of the speculation motive becomes stronger the further xt is away
from its unconditional mean. This potentially shifts wealth to the first agent, who has the
correct beliefs about ρx. We observe this pattern in the left panel (xt = −0.008), where
for large λ2t the average change in the weights λ2t+1 − λ2t becomes negative. For small λ2t ,
the risk-sharing motive is larger (see Section 4.1) and, hence, the risk-sharing dominates the
speculation motive.

For positive xt agent 1 becomes less afraid of long-run risks and hence is less willing to pay
to insure against them. Therefore, the average increase in the weights of agent 2 decreases for
xt = 0.0013 compared to xt = 0. For very large xt (right panel) the influence of the speculation
motive dominates and hence the results reverse. The second agent wins if there is a negative
shock (blue line), but loses if there is a positive shock (yellow line). The risk-sharing motive
becomes negligible and the second agent loses on average as this agent bets on states that have
a vanishing probability under the true measure (see Figure 7). So, the risk-sharing motive
dominates the speculation motive for xt close to its unconditional mean; only for very large xt
does the speculation motive dominate and then agent 2 potentially loses wealth (on average).
However, values of xt = 0.008 (+4 standard deviations of xt) occur only very rarely; most of
the time the process stays within the range where the risk-sharing motive clearly dominates
the speculation motive and so, on average, agent 2’s consumption share increases.

In Figure 9 we show the corresponding results for ρ2x = 0.95 instead of ρ2x = 0.975. The
decrease in ρ2x increases the influence of the speculation motive as the beliefs of the second agent
are “more wrong” on average and hence will shift wealth to the first investor. Furthermore,
the second agent is (even) less afraid of long-run risks and therefore will be willing to sell
more insurance. So the influence of the risk-sharing motive also increases, which—on the
other hand—shifts wealth to the second investor. Looking at the aggregate effects, we observe
that for xt = 0 the change in the weights λ2t+1 − λ2t becomes larger on average. (Note the
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different scale. For a better visualization we show the average change separately in Figure
12 in Appendix G.) This increase reflects the increasing influence of the risk-sharing motive

Figure 9: Changes in the Wealth Distribution—The Epstein–Zin Case (ρ2x = 0.95)
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The figure shows the change in the optimal weights λ2
t+1 − λ2

t as a function of λ2
t . From left to

right, the change is shown for xt = {−0.008,−0.0013, 0, 0.0013, 0.008} (± 4 standard deviations).
The blue line depicts the case of a negative shock in xt+1 (xt+1− ρxxt = −0.001) and the yellow line
of a positive shock in xt+1 (xt+1 − ρxxt = 0.001). The red line shows the average over all shocks.
Calibration with ρx = ρ1x = 0.985 and ρ2x = 0.95.

compared to the case with ρ2x = 0.975. However, for larger |xt| the influence of the speculation
motive quickly increases and only for small λ2t—where there is a large share of investors who
want to buy insurance against long-run risks—does the risk-sharing motive dominate. This
observation explains why the median consumption share in Figure 6 only increases to a certain
level and does not converge further toward 1. The magnitude of the change in the weights
explains the large drops and recoveries that we observe in Figure 6. For example, for the
extreme case with xt = −0.008 a large negative shock implies a drop in the weights of more
than 0.3 for λ2t = 0.5. This implies a decrease in the consumption share of the second agent
of more than 0.3. But as the influence of the risk-sharing motive increases for small λ2t (see
Section 4.1), the second agent recovers rather quickly, as can be observed from Figure 6.

4.4 Robustness of the Results

In this section we run several robustness checks that also provide more intuition about the
results. In Figure 10a we show the median consumption share of agent 2 (as in Figure 5)
for different degrees of risk aversion γh = {2, 5, 10}. In Section 3.2 we have shown that the
risk-sharing motive increases with the degree of risk aversion, while the speculation motive

31



decreases. Hence, the smaller is γ, the less wealth should be transferred to the skeptical
investors who hold the wrong beliefs. And indeed, this is exactly what we observe in Figure
10a. For γh = 10 (yellow line) the influence of the risk-sharing motive is strong. Hence, agent
2 profits from selling the insurance against long-run risks and rapidly accumulates wealth. For
γh = 5 (red line) this effect becomes less severe and agent 2’s consumption share increases less
quickly. For γh = 2 (blue line) the risk-sharing motive has little influence as risk premia in the
economy are small and the speculation motive dominates equilibrium outcomes. As ρx = ρ1x,
the speculation motive works in favor of agent 1 (agent 2 bets on states that have a vanishing
probability under the true probability measure) and agent 1 dominates the economy in the
long run. If agent 2 has the correct beliefs ρx = ρ2x, the speculation motive works in favor
of agent 2. We show this case in Figure 10b. The blue line shows the consumption shares
for ρx = ρ1x and the red line for ρx = ρ2x. So in the absence of the risk-sharing motive, the
speculation motive determines equilibrium outcomes.

In Figure 10c we depict the robustness of our findings with regard to the level of the
persistences of xt. We show the consumption paths for ρ2x = 0.6 and ρ1x = 0.5 instead of
for 0.975 and 0.985, respectively. Lowering the persistence will—similarly to the decrease in
risk aversion—decrease the risk-sharing motive. Risk premia in the economy are only large
for ρx close to one but collapse for smaller ρx (see Bansal and Yaron (2004)). Hence, even
those investors who believe in a larger (but significantly smaller than 1) value for ρx have
only small hedging demands. Consequently, we observe that in this setup the dynamics of
the consumption shares strongly depend on the true value of ρx as the speculation motive
dominates—that is, the agent with the correct beliefs will dominate the economy.

4.5 Correcting for the Difference in Mean Consumption Growth

Different beliefs about the persistence of the long-run risk process imply that—everything else
being equal—the agent also has different beliefs about the mean of the gross growth rate of
consumption E

(
Ct+1

Ct

)
due to Jensen’s inequality. In this section we show that our results are

not driven by this simple mean effect, but rather by the time-varying risk-sharing motive as
demonstrated in the previous section. In fact, when we correct for the belief difference in the
mean growth rate of consumption, the consumption share of the skeptical investor increases
even faster. For the long-run risk model (15), the mean growth rate of consumption is given
by

E

(
Ct+1

Ct

)
= E

(
e∆ct+1

)
= e

µc+0.5σ2+0.5
ϕ2xσ2

1−(ρx)2 . (24)
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Figure 10: The Risk Sharing and Speculation Motives
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(b) γh = 2, ρ1x = 0.985, ρ2x = 0.975
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(c) γh = 10, ρ2x = 0.6, ρ1x = 0.5
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The figure shows the median consumption share of agent 2 for 1,000 samples each consisting of 500
years of simulated data. Panel (a) shows the time series for different degrees of risk aversion γh ∈
{2, 5, 10}. Agent 2 believes that ρ2x = 0.975 and agent 1 has the correct beliefs with ρ1x = ρx = 0.985.
Panel (b) shows the time series for γh = 2, ρ1x = 0.985, and ρ2x = 0.975 for the two cases in which
either agent 1 (blue line) or agent 2 (red line) has the correct beliefs. Panel (c) shows the time series
for γh = 10, ρ1x = 0.6, and ρ2x = 0.5 for the two cases where either agent 1 (blue line) or agent 2 (red
line) has the correct beliefs.
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For ρ2x < ρ1x = ρx we have that

E2

(
Ct+1

Ct

)
= e

µc+0.5σ2+0.5
ϕ2xσ2

1−(ρ2x)2 < E

(
Ct+1

Ct

)
. (25)

So the second agent believes in a lower mean growth rate of consumption as she believes in
a lower persistence and hence a lower unconditional volatility of the long-run risk process.
We correct for this belief difference by setting the subjective belief of the second agent with
regard to mean log consumption growth to µ2

c = µc + 0.5 ϕ2xσ
2

1−(ρx)2
− 0.5 ϕ2xσ

2

1−(ρ2x)
2 . Once we correct

for this difference, the consumption shares of the skeptical investor increase even faster. For
the original specification with an initial allocation of s20 = 0.01, the consumption shares of
the skeptical investor increased to 0.2824, 0.6376, and 0.9278 after 100, 200, and 500 years,
respectively (see Table 1). With the corrected mean we obtain values of 0.2827, 0.6379,
and 0.9281. Hence, our results are not driven by the effect of different mean beliefs about
consumption growth. This result is also in accordance with Borovička (2018), who shows that
underestimation of the mean growth rate lowers the chances of survival while overestimation
has the opposite effect due to the positive risk-sharing motive. Consequently, in our model
specification, the effect of the mean growth rate should lead the skeptical investor to have
lower consumption shares. And indeed, once we correct the mean growth rate estimate of
the skeptical investor we obtain a faster increase in the consumption shares of that skeptical
investor.

5 Belief Differences in a Modified Calibration

In this final section of the paper, we demonstrate that a two-agent economy in which both
agents survive can explain several asset-pricing puzzles. In particular, it can explain the large
time variation in expected risk premia recently reported by Martin (2017). Furthermore, it
can jointly generate a large equity premium and excess volatility of the price–dividend ratio as
well as help explain the predictability of consumption, dividends, and returns. Importantly,
our model does not require stochastic volatility, which is essential in the standard log-run risk
model to generate time variation in risk premia and a large volatility of the price dividend ratio
(see Bansal, Kiku, and Yaron (2012)). But even with stochastic volatility, the implied moments
in the model of Bansal, Kiku, and Yaron (2012) are significantly smaller than observed in the
data and we show that belief heterogeneity can resolve this discrepancy.

In order to demonstrate the usefulness of the two-agent model for asset-pricing analysis,
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we deliberately restrict ourselves to the calibration of Bansal and Yaron (2004), with the
exception of the value for the long-run risk parameter. Instead of their value of ρx = 0.979,
we choose two different values, one that is slightly larger and one that in slightly smaller than
their value. The values of all other parameters in our two-agent economy are identical to
those in Bansal and Yaron (2004, Case I) (the calibration without stochastic volatility). We
emphasize that we do not attempt to find a perfect calibration of the heterogeneous-agent
model but instead only attempt to impose minimal changes to the standard calibration.

We consider an economy where the first investor strongly believes in long-run risks (ρ1x =
0.99) while the second investor is more skeptical about them (ρ2x = 0.96). The first investor
has the correct beliefs, ρ1x = ρx. In this setup, the long-term average consumption share is
about 0.5, so both investors hold the same average share in the long run. We first show that
the model implies significant countercyclical time variation in expected risk premia. Figure
11 shows the annualized expected risk premium as a function of s2t . The results are shown for
the correct beliefs, ρx = 0.99. We find that the expected risk premium changes significantly
with the consumption share. The expected risk premium is large when investor 1 holds a
larger consumption share, while it is significantly smaller when agent 2 dominates.

Recall from Section 4.3 that for Epstein–Zin preferences negative shocks to xt will increase
the consumption share of investor 1 with the larger ρx, as these investors buy insurance against
such bad shocks (see Figure 8). So when the economy enters a recession—that is, for a series
of negative shocks to xt—the consumption share of investor 1 will increase. This increase,
in turn, increases the expected risk premium, as Figure 11 shows. Hence, the changes in the
wealth distribution lead to countercyclical variations in the expected equity risk premium. Is
this variation economically significant?

In Table 4 we show the mean and standard deviation of the annualized expected risk
premium for 1,000 samples each containing 77 years of simulated data initialized at the long-
run mean of s20 = 0.5.8 Martin (2017) constructs a lower bound for the expected risk premium
in terms of its risk-neutral variance and shows that there is significantly more time variation in
the premium than previous studies have shown. We test the ability of the heterogeneous-beliefs
model to explain this finding and compare it to the standard long-run risk model. Martin
(2017) reports a mean expected risk premium of 5% per year with a standard deviation of 4.6%.
The heterogeneous-agent setup implies similar numbers with a mean of 5.42% and a standard
deviation of 5.73% (see Table 4). In the standard long-run risk model without stochastic

8We do not encounter any survival issues in this setup. Even after 1,000 years of simulated data, all agents
survive and the mean consumption share remains almost constant at about s2t = 0.5.
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Figure 11: Time Variation in Risk Premia
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The figure shows the annualized expected risk premium as a function of s2t . The results are shown
for ρ2x = 0.96, ρ1x = 0.99, and ρx = 0.99. Results are shown for ±1 unconditional standard deviations
of xt around its unconditional mean of xt = 0, as well as for xt = 0.

volatility, expected risk premia are constant as shown by Bansal and Yaron (2004). They
propose to add stochastic volatility to the model to generate countercyclical time variation
in risk premia as observed in the data. Table 4 shows that while the model of Bansal and
Yaron (2004) is able to generate a large mean premium, the standard deviation is considerably
smaller compared to the data (1.13%). In the new calibration of Bansal, Kiku, and Yaron
(2012), the influence of the stochastic volatility channel is increased in order to match second-
order moments. This should also generate more volatility in expected risk premia. However,
while the value of Bansal and Yaron (2004) is slightly improved, it is still considerably lower
compared to the data (1.61%). Hence, belief heterogeneity in the long-run risk model provides
a solution that accounts for the large variation in expected risk premia reported in the data.

Furthermore, Figure 11 reveals that belief heterogeneity can increase the model-implied
expected risk premium compared to the representative-agent cases. For small s2t , the premium
is larger compared to the representative-agent case of s2t = 0. Hence, belief heterogeneity
endogenously generates priced consumption risk—that is, investors require a premium for the
expected changes in the wealth distribution. How does this mechanism work? Consider first
the case of xt = 0. In Section 4.3, we have shown that for small s2t the influence of the risk-
sharing motive is large (see, for example, Figure 8). So if s2t is small, the consumption share of
investor 2 is expected to increase strongly. As an increase in s2t leads to larger price–dividend
ratios (investor 2 believes in a smaller ρx and therefore requires less risk compensation), the
expected increase in s2t implies an increase in the expected risk premium. Consistent with the
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Table 4: Expected Risk Premium

Data Het. Agents BY (2004) BKY (2012)

Mean 5.00 5.42 5.59 6.38
Std. dev. 4.60 5.73 1.13 1.61

The table shows the annualized mean and volatility of the expected risk premium. The first column
shows the empirical values reported in Table 1 of Martin (2017). The second column shows the
results for the heterogeneous-agent setup with ρ1x = ρx = 0.99 and ρ2x = 0.96 for the correct beliefs.
The data is obtained from 1,000 samples—each containing 77 years of simulated data—starting with
an initial share of s20 = 0.5. Columns three and four show the results for the models of Bansal and
Yaron (2004, Case II) and Bansal, Kiku, and Yaron (2012), respectively, using the same size for the
simulated data set. All returns are shown in percentages, so a value of 1.5 is a 1.5% annualized
figure.

results from Section 4.3, this effect is even stronger for xt = −0.0024, where risk prices are
larger and, hence, the consumption share of investor 2 is expected to increase even faster. For
xt = 0.0024 the speculation motive is stronger and the effect vanishes. Looking at the time
series properties of s2t , we observe a standard deviation of 0.18 and a persistence of 0.9926
in the finite data set. Hence, belief heterogeneity endogenously adds persistent consumption
risk to the model, which increases the model-implied risk premia.

Can the heterogeneous-agent setup also improve the long-run risk in other dimensions? In
Table 5 we show the annualized asset-pricing moments for the two-agent economy as well as
the representative-agent economies populated by either of the two investors.

Table 5: Annualized Asset-Pricing Moments

E (pt − dt) σ (pt − dt) AC1 (pt − dt) E
(
Rm
t −Rf

t

)
E
(
Rf
t

)
σ (Rm

t ) σ
(
rft

)
s2t = 0 2.36 0.28 0.79 12.52 1.72 18.66 1.65
Two-Ag. 3.52 0.38 0.80 5.42 2.29 21.79 1.92
s2t = 1 3.97 0.17 0.70 2.07 2.94 15.59 1.66
Data 3.36 0.45 0.87 7.09 0.57 20.28 2.86

The table shows selected moments from 1,000 samples—each containing 77 years of simulated data—
starting with an initial share of s20 = 0.5. It reports the mean, the standard deviation, and the
first-order autocorrelation of the annualized log price–dividend ratio as well as the mean and the
standard deviation of both the annualized equity premium and the risk-free return. Agent 1 has the
correct beliefs with ρ1x = ρx = 0.99 and ρ2x = 0.96. All returns are shown in percentages, so a value
of 1.5 is a 1.5% annualized figure. The estimates from the data are taken from Bansal, Kiku, and
Yaron (2012).
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We observe that even for the representative-agent case with the high ρx of 0.99, the volatil-
ity of the price–dividend ratio implied by the long-run risk model is significantly smaller
compared to the data. As documented in Section 4.2, the two-agent economy with large
belief differences generates significant excess volatility (0.38 compared to 0.28 and 0.17 for
the representative-agent economies populated by investor 1 and 2, respectively). This value
is close to the volatility of the price dividend ratio in the data (0.45). Also, it significantly
improves upon the value for the calibration of Bansal, Kiku, and Yaron (2012) (0.28), that
deliberately includes stochastic volatility to increase the volatility of the price–dividend ratio.

Simultaneously, as both agents maintain a significant consumption share in the long-run,
the equity premium is still large and significant with a value of 5.42 percent. Furthermore, the
two-agent economy generates excess volatility in the market return as well as the volatility of
the risk-free rate. The level of the risk-free rate is too high in the two-agent economy. Recall
that we deliberately have taken all parameters from Bansal and Yaron (2004) and only varied
the belief in the persistence parameter. A lower risk-free rate could be achieved by slightly
increasing the subjective discount factor δ.

In Table 6 we report the implications of the two-investor economy for the predictability of
returns and cash flows. Beeler and Campbell (2012) argue that in the long-run risk model, the
price–dividend ratio has too much predictive power for consumption and dividend growth while
the predictability of returns is too low compared to the values observed in the data. Bansal,
Kiku, and Yaron (2012) propose a solution by increasing the importance of the stochastic
volatility channel and decreasing the importance of the growth-rate channel (xt). Beeler and
Campbell (2012) acknowledge that the statistical rejections of the model are less extreme for
this calibration, but it requires extremely persistent movements in the volatility process. We
show that the heterogeneous-agent economy helps to explain the predictability puzzle.

Table 6 reports R2 statistics and regression coefficients from regressing cumulative log ex-
cess returns, consumption growth, and dividend growth on the lagged log price–dividend ratio.
Statistics are shown for the annualized time series with one-, three-, and five-year horizons.
We observe that the predictability of returns is low in the representative-agent economies and
that regression coefficients are even positive for the case with a small ρx. In the two-agent
setup, prices become more volatile and revert to the mean of the stationary distribution.
Therefore, we observe more return predictability, which also increases with the horizon. For
consumption and dividends, we observe the opposite pattern. First, predictability is too large
in the representative-agent economy. In the two-agent economy, the predictability decreases
significantly compared to both representative-agent economies due to the endogenous vari-
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Table 6: Predictability of Excess Returns, Consumption, and Dividends

R2 β

1Y 3Y 5Y 1Y 3Y 5Y∑H
h (rm,t+h − rf,t+h) = α + β(pt − dt) + ϵt+H

s2t = 0 0.0070 0.0190 0.0277 -0.0134 -0.0496 -0.1116
Two-Ag. 0.0129 0.0350 0.0540 -0.0563 -0.1676 -0.2639
s2t = 1 0.0438 0.0757 0.0700 0.1899 0.4651 0.6031
Data 0.04 0.19 0.31 -0.09 -0.27 -0.43∑H

h (∆ct+h) = α + β(pt − dt) + ϵt+H

s2t = 0 0.5121 0.5738 0.5075 0.0829 0.2187 0.3124
Two-Ag. 0.3043 0.3346 0.2825 0.0495 0.1283 0.1805
s2t = 1 0.4535 0.5074 0.4494 0.1341 0.3525 0.5012
Data 0.060 0.01 0.000 0.01 0.01 0.00∑H

h (∆dt+h) = α + β(pt − dt) + ϵt+H

s2t = 0 0.4881 0.4903 0.4393 0.3044 0.7074 0.9705
Two-Ag. 0.3088 0.2868 0.2486 0.1882 0.4233 0.5910
s2t = 1 0.5658 0.4909 0.4161 0.5615 1.2088 1.6225
Data 0.09 0.06 0.04 0.07 0.11 0.09

The table reports R2 statistics and regression coefficients from regressing cumulative log excess
returns, consumption growth, and dividend growth on the lagged log price–dividend ratio from 1,000
samples each containing 77 years of simulated data starting with an initial share of s20 = 0.5. Statistics
are shown for the annualized time series with one-, three-, and five-year horizons. The estimates
from the data are taken from Bansal, Kiku, and Yaron (2012).
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ation in the consumption shares. Overall the predictability of cash flows is still too large
compared to the data but the results show that investor heterogeneity can help resolve the
predictability deficiencies of the long-run risk model.

6 Conclusion

This paper presents a discrete-time consumption-based asset-pricing model with heterogeneous
agents. In contrast to the standard representative-agent model, equilibrium allocations are no
longer a function of the exogenous state alone. As a result, the standard solution methods from
consumption-based asset pricing are not applicable. For the purpose of solving the model,
we use a recursive reformulation of the first-order conditions, which involves new endogenous
state variables. These state variables have a clear interpretation in terms of time-varying
weights in a social planner’s problem.

Using the recursive formulation, we have performed a detailed study of heterogeneity in
agents’ beliefs for the long-run risk model of Bansal and Yaron (2004). In particular, we
consider agents with different beliefs about the level of persistence of long-run risk. For the
standard calibration of the long-run risk model, we find that for modest levels of disagreement
agents who believe in a lower level of persistence come to dominate the economy rather quickly
relative to agents who believe in a higher level of persistence. This result holds even if the
agent who believes in the higher level of persistence holds the correct belief. As a consequence,
the model’s equity premium falls much below the level observed in the data. Simultaneously,
belief heterogeneity can generate significant excess volatility due to endogenous movements in
the wealth distribution.

These observations motivate a modestly altered calibration of the heterogeneous-agent
model, where both agents survive. In this calibration, one agent believes in a slightly smaller
amount of persistence relative to the original paper, while one agent believes in a slightly
higher amount (and is correct). This model not only generates a large and significant equity
premium, it also addresses many of the empirical deficiencies of the representative-agent model.
Notably, it adds significant countercyclical time variation in expected risk premia to the
model, consistent with the data reported in Martin (2017). Furthermore, shifts in the wealth
distribution increase the volatility of the price–dividend ratio to levels close to the data as the
impact of the different agents on asset prices varies over time. The variation in the wealth
distribution also helps to address the predictability puzzle pointed out by Beeler and Campbell
(2012). The endogenous variation in asset prices increases the predictability of returns while
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simultaneously decreasing the predictability of consumption and dividend growth.
These findings suggest that belief heterogeneity can contribute to a solution for several

asset-pricing puzzles.
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Appendix

A Additional Literature

The study of agent belief heterogeneity begins with the market selection hypothesis of Alchian
(1950) and Friedman (1953). By analogy with natural selection, the market selection hypoth-
esis states that agents with systematically wrong beliefs will eventually be driven out of the
market. The influence of agent heterogeneity on market outcomes under the standard assump-
tion of discounted expected utility is well understood, and consistent with market selection.
Sandroni (2000) and Blume and Easley (2006) find strong support for this hypothesis under
the assumption of time-separable preferences in an economy without growth. Yan (2008) and
Cvitanić, Jouini, Malamud, and Napp (2012) analyze the survival of investors in a continuous-
time framework where there are not only differences in beliefs but also potentially differences
in the utility parameters of the investors. They show that it is always the investor with the
lowest survival index9 who survives in the long run. However, the “long run” can indeed
be very long and, therefore, irrational investors can have significant effects on asset prices
even under the assumption of discounted expected utility. David (2008) considers a similar
model setup, in which both agents have distorted estimates of the mean growth rate of the
economy, showing that—as agents with lower risk aversion undertake more aggressive trading
strategies—the equity premium increases the lower the risk aversion is. Chen, Joslin, and
Tran (2012) analyze how differences in beliefs about the probability of disasters affect asset
prices. They show that even if there is only a small fraction of investors who are optimistic
about disasters, this fraction sells insurance for the disaster states and so eliminates most of
the risk premium associated with disaster risk. Bhamra and Uppal (2014) consider the case
of habit utility.

For recursive utility, this qualitative behavior changes fundamentally. However, there has
been less research in this area as solving such models is anything but trivial. Lucas and
Stokey (1984) observe in the deterministic case that the problem of finding all Pareto-optimal
allocations can be made recursive if we allow the weights in the social welfare function to be
time-varying. This approach is extended by Kan (1995) to the stochastic case with finite state

9Yan (2008) shows that the survival index increases with belief distortion, risk aversion, and the subjective
time discount rate of the investor.
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spaces. Anderson (2005) develops an extensive theory for the special case of risk-sensitive
preferences, no growth, and finite state spaces, and finds first-order conditions similar to
those we use below. In particular, he shows how to characterize the equilibrium by a single
value function instead of one value function for each agent. Collin-Dufresne, Johannes, and
Lochstoer (2015) derive similar first-order conditions to ours for recursive utility by equating
marginal utilities, but use a different procedure to solve for their allocations. Duffie, Geoffard,
and Skiadas (1994) formulate the problem in continuous time, while Dumas, Uppal, and Wang
(2000) reformulate it in terms of variational utility. Borovička (2018) uses this formulation
to explore the question of the survival of agents with recursive utility in continuous time,
and shows that agents with fundamentally wrong beliefs can survive or even dominate. So,
inferences about market selection and equilibrium outcomes fundamentally differ under the
assumption of general recursive utility compared to the special case of standard time-separable
preferences. While Borovička (2018) concentrates on the special case of i.i.d. consumption
growth, Branger, Dumitrescu, Ivanova, and Schlag (2011) generalize the results to a model
with long-run risks as a state variable.

However, most papers with heterogeneous investors and recursive preferences consider only
an i.i.d. process for consumption growth. For example, Gârleanu and Panageas (2015) analyze
the influence of heterogeneity in the preference parameters on asset prices in a two-agent OLG
economy. Roche (2011) considers a model in which the heterogeneous investors can only invest
in a stock but there is no risk-free bond. Hence, as there is no savings trade-off, the impact
of recursive preferences on equilibrium outcomes will be quite different.

Exceptions that relax the i.i.d. assumptions include the papers by Branger, Konermann,
and Schlag (2015) and Collin-Dufresne, Johannes, and Lochstoer (2016a). Both papers reex-
amine the influence of belief differences regarding disaster risk with Epstein–Zin instead of
CRRA preferences as in Chen, Joslin, and Tran (2012). Branger, Konermann, and Schlag
(2015) provide evidence that the influence of investors with more optimistic beliefs about
disasters is less profound when the disaster occurs to the growth rate of consumption and
show that the risk sharing mechanism persists even when markets are incomplete. Collin-
Dufresne, Johannes, and Lochstoer (2016a) make a similar claim but for a different reason.
They show that if the investors can learn about the probability of disasters and if they have
recursive preferences, the impact of the optimistic investor on asset prices decreases. Opti-
mists are uncertain about the probability of disasters and hence will provide less insurance to
pessimistic investors. Collin-Dufresne, Johannes, and Lochstoer (2016a) use an OLG model
with two generations to model optimists and pessimists. Hence—in contrast to the results
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in the present study—the consumption shares of the investors are fixed and the increasing
influence of optimistic agents over time is not captured.

A different strand of literature, which does not rely on the i.i.d. assumption, is comprised of
papers on international asset pricing. This area (advanced by Riccardo Colacito and Mariano
Croce in particular), considers models with Epstein–Zin preferences, two investors, and also
two goods for which investors have different preferences (home bias). For example, Colacito
and Croce (2013) argue that a model with highly correlated international long-run components
in output can explain both the low correlation between consumption differentials and the
tendency of high interest rate currencies to appreciate. The authors furthermore show that
an increase in capital mobility can explain the structural break in the data for the pre- and
post-1970 period. Colacito, Croce, and Liu (2018b) provide the theoretical foundation for
the multiple good economy by providing results on equilibrium existence and agents’ survival;
they also compare computational methods to solve the model. Furthermore, Colacito, Croce,
Ho, and Howard (2018a) use a model with Epstein–Zin preference and short- and long-run
productivity shocks to study the effects of these shocks on international investment flows.

In a different direction, Epstein, Farhi, and Strzalecki (2014) argue that an Epstein–Zin
investor dislikes long-run risk to the extent that he or she would pay a substantial premium
to get rid of it. In a model with two agents, the agent who believes that risk is longer term
than the other is willing to pay an insurance premium to the other agent to hedge against
long-run risk.

B Proofs and Details

In this appendix, we provide proofs for the theoretical results presented in Section 2. Along
the way, we derive a system of first-order conditions for Epstein–Zin preferences. This system
constitutes the foundation for our numerical solution method (see Appendix C).

B.1 Proofs for Section 2.1

Proof of Theorem 1. Let λ = {λ̄1, . . . , λ̄H} be a set of Negishi weights and let {C}0 =

{{C1}0, . . . , {CH}0} denote a vector of agents’ consumption processes. The optimal decision
{C}∗0 of the social planner in the initial period assigns consumption streams to all individ-
ual agents for all periods and possible states. Obviously, the optimal decisions must satisfy
the market-clearing condition (1) in all periods and states. For ease of notation we again
abbreviate the state dependence; we use Ch

t for Ch(yt) and Uh
{t} for Uh

(
{Ch}t

)
.
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To derive the first-order conditions, we borrow a technique from the calculus of variations.
For any function ft, we can vary the consumption of two agents by

Ch
t → Ch

t + ϵft

C l
t → C l

t − ϵft.
(26)

It is sufficient to consider the variation with l = 1 and h ∈ H−. For an optimal allocation it
must be true that

dSP ({C}0;λ)
dϵ

∣∣∣∣
ϵ=0

= 0. (27)

This gives us
λ̄hÛh

0,t = λ̄1Û1
0,t, h ∈ H−, (28)

where Ûh
t,t+k is defined as

Ûh
t,t+k =

dUh(Ch
t , . . . , C

h
t+k + ϵft+k, . . .)

dϵ

∣∣∣∣
ϵ=0

. (29)

Using the expression given in Equation (2), the derivative Ûh
t,t+k satisfies a recursive equation

with the initial condition

Ûh
t,t =

dUh(Ch
t + ϵft, . . .)

dϵ

∣∣∣∣
ϵ=0

= F h
1

(
Ch
t , Rt[U

h
{t+1}]

)
· ft, (30)

where F h
k

(
Ch
t , R

h
t [U

h
{t+1}]

)
denotes the derivative of F h

(
Ch
t , R

h
t [U

h
{t+1}]

)
with respect to its

kth argument. The recursive step is given by

Ûh
t,t+k =

dF h
(
Ch
t , R

h
t

[
Uh(Ch

t+1, . . . C
h
t+k + ϵft+k, . . .)

])
dϵ

∣∣∣∣
ϵ=0

= F h
2

(
Ch
t , R

h
t [U

h
{t+1}]

)
·
dRh

t

[
Uh(·)

]
dϵ

∣∣∣∣
ϵ=0

= F h
2

(
Ch
t , R

h
t [U

h
{t+1}]

)
·
dG−1

h

(
Eh
t Gh

[
Uh(·)

])
dEh

t Gh[Uh(·)]
· dE

h
t Gh[U

h(·)]
dϵ

∣∣∣∣
ϵ=0

= F h
2

(
Ch
t , R

h
t [U

h
{t+1}]

)
· 1

G′
h(G

−1
h (Eh

t Gh[Uh
{t+1}]))

· Eh
t

(
G′
h(U

h
{t+1}) · Ûh

t+1,t+k

)

= F h
2

(
Ch
t , R

h
t [U

h
{t+1}]

)
·
Eh
t

(
G′
h(U

h
{t+1}) · Ûh

t+1,t+k

)
G′
h(R

h
t [U

h
{t+1}])

, (31)

where we use ∂G−1(x)
∂x

= 1
G′(G−1(x))

and abbreviate Uh(Ch
t+1, . . . C

h
t+k + ϵft+k, . . .) by Uh(·). We
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can recast this recursion into a useful form. For this purpose, we define a second recursion
Uh
t,t+k by

Uh
t,t = F h

1

(
Ch
t , R

h
t [U

h
{t+1}]

)
(32)

and
Uh
t,t+k = Πh

t+1 · Uh
t+1,t+k, (33)

where
Πh
t+1 = F h

2

(
Ch
t , R

h
t [U

h
{t+1}]

)
·

G′
h(U

h
{t+1})

G′
h(R

h
t [U

h
{t+1}])

dPh
t,t+1

dPt,t+1

. (34)

A simple induction shows that
Ûh
t,t+k = Et(U

h
t,t+kft). (35)

Plugging (35) into the optimality condition (28) we obtain

E0

(
(λ̄hUh

0,t − λ̄1U1
0,t)ft

)
= 0, h ∈ H−. (36)

Under a broad range of regularity conditions, this condition implies that

λ̄hUh
0,t = λ̄1U1

0,t, h ∈ H−. (37)

For example, if λ̄hUh
0,t− λ̄1U1

0,t has finite variance, then this holds for the Riesz Representation
Theorem for L2 random variables. We can then split Expression (37) into two parts. First
define λh0 ≡ λ̄h to obtain

λh0
λ10

=
U1
0,t

Uh
0,t

=
Π1

0

Πh
0

U1
1,t

Uh
1,t

=
Π1

0

Πh
0

λh1
λ11
, h ∈ H−,

where λh1 denotes the Negishi weight in the social planner’s optimal solution in t = 1. General-
izing this equation for any period t, we obtain the following dynamics for the optimal weight10

λht+1:
λht+1

λ1t+1

=
Πh
t+1

Π1
t+1

λht
λ1t
, h ∈ H−. (38)

Inserting the initial condition (32) into (37) for t = 0 and generalizing it for any social planner’s

10Note that we can either solve the model in terms of the ratio λh
t

λ1
t

(this is equal to setting λ1
t = 1 for all t as

done in Judd, Kubler, and Schmedders (2003)) or we can normalize the weights so that they remain bounded
in (0, 1). Our solution method uses the latter approach as it obtains better numerical properties.
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optimal solution at time t yields

λht F
h
1

(
Ch
t , R

h
t [U

h
{t+1}]

)
= λ1tF

1
1

(
C1
t , R

1
t [U

1
{t+1}]

)
, h ∈ H−. (39)

Equation (39) states the optimality conditions for the individual consumption choices at any
time t. This completes the proof of Theorem 1.

Note that for time-separable utility, F h
1

(
Ch
t , R

h
t [U

h
{t+1}]

)
is simply the marginal utility of

agent h at time t, and so we obtain the same optimality condition as, for example, Judd,
Kubler, and Schmedders (2003) (see Equation (7) on page 2209). In this special case the
Negishi weights can be pinned down in the initial period and thereafter remain constant. For
general recursive preferences this is not true. The optimal weights vary over time following
the law of motion described by Equation (38).

We can use Equations (38) and (39) together with the market-clearing condition (1) to
compute the social planner’s optimal solution. We therefore define λ−

t = {λ2t , λ3t , . . . , λHt } and
let V h denote the value function of agent h ∈ H. We are looking for model solutions of the
form V h(λ−

t , y
t). So, the model solution depends on both the exogenous state yt and the

time-varying Negishi weights λ−
t . An optimal allocation is then characterized by the following

four equations:

• the market-clearing condition (1)

H∑
h=1

Ch(λ−
t , y

t) = C(yt); (40)

• the value functions (2) of the individual agents

V h(λ−
t , y

t) = F h
(
Ch(λ−

t , y
t), Rh

t [V
h(λ−

t+1, y
t+1)]

)
, h ∈ H; (41)

• the optimality conditions (39) for the individual consumption decisions for h ∈ H−

λht F
h
1

(
Ch(λ−

t , y
t), Rh

t [V
h(λ−

t+1, y
t+1)]

)
= λ1tF

1
1

(
C1(λ−

t , y
t), R1

t [V
1(λ−

t+1, y
t+1)]

)
; (42)

• the equations (38) for the dynamics of λ−
t

λht+1

λ1t+1

=
Πh
t+1

Π1
t+1

λht
λ1t
, h ∈ H−, (43)
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with

Πh
t+1 = F h

2

(
Ch(λ−

t , y
t), Rh

t [V
h(λ−

t+1, y
t+1)]

)
·

G′
h(V

h(λ−
t+1, y

t+1))

G′
h(R

h
t [V

h(λ−
t+1, y

t+1)])

dPh
t,t+1

dPt,t+1

. (44)

This concludes the general description of the equilibrium obtained from the social planner’s
optimization problem.

To prove Theorem 2, we first derive a variant of Lemma 1 in Blume and Easley (2006).

Lemma 1. Let X i
t , i = 1, 2, . . . , H, be a family of positive random variables for each t =

0, 1, 2, . . ., such that A ≤
∑

iX
i
t ≤ B with B ∈ R++. Let f i : R++ → R++, i = 1, 2, . . . , H,

be a family of decreasing functions such that f i(x) → ∞ as x → 0. If f i(X i
t)/f

j(Xj
t ) → ∞,

then X i
t → 0 for t→ ∞. If X i

t → 0, then for at least one j, lim supt f
i(X i

t)/f
j(Xj

t ) = ∞.

Proof. Since X i
t is positive, X i

t ≤ B for all i, t. By assumption, 0 < f j(B) ≤ f j(Xj
t ). Thus,

f i(X i
t)/f

j(Xj
t ) → ∞ if and only if f i(X i

t) → ∞, which happens when X i
t → 0 as t→ ∞.

Conversely, assume X i
t → 0. Every period, for at least one j, Xj

t ≥ A/H (otherwise∑H
i=1X

i
t < A). Since there are only finitely many random variables, for at least one j we have

Xj
t ≥ A/H infinitely often. Then, by assumption, f j(Xj

t ) ≤ f j(A/H) infinitely often, and so
lim sup f i(X i

t)/f
j(Xj

t ) = ∞.

Proof of Theorem 2. By the first-order condition (5), λjt/λit = F i
1(C

i
t , R

i
t)/F

j
1 (C

j
t , R

j
t ). Since

F h is additively separable, F h
1 is a function of consumption alone. Let f i = F i

1, f
j = F j

1 ,
A = C, and B = C, and apply Lemma 1.

B.2 Proofs for Section 2.2

In this section we provide the specific expressions for V h, F h
1 , F

h
2 , and Πh when the heteroge-

neous investors have recursive preferences as in Epstein and Zin (1989) and Weil (1989). The
value function for Epstein–Zin (EZ) preferences is given by11

V h
t =

[
(1− δh)(Ch

t )
ρh + δhRh

t

(
V h
t+1

)ρh] 1

ρh (45)

with

Rh
t

(
V h
t+1

)
= G−1

h

(
Eh
t

[
Gh(V

h
t+1)

])
Gh(V

h
t+1) =

(
V h
t+1

)αh

.

11For ease of notation, we again abbreviate the dependence on the exogenous state yt and the endogenous state
λ−
t . Hence we write V h

t for V h(λ−
t , yt) or Ch

t for Ch(λ−
t , yt).
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Recall that the parameter δh is the discount factor, ρh = 1 − 1
ψh determines the EIS, ψh,

and αh = 1 − γh determines the relative risk aversion γh of agent h. The derivatives of
F h
(
Ch
t , R

h
t [V

h
t+1]
)
= V h

t with respect to its first and second argument are then given by

F h
1,t = (1− δh)(Ch

t )
ρh−1(V h

t )
1−ρh (46)

and
F h
2,t = δhRh

t

(
V h
t+1

)ρh−1
(V h

t )
1−ρh . (47)

In this paper we focus on growth economies. Therefore, we introduce the following normal-
ization to obtain a stationary formulation of the model. We define the consumption share of
agent h by sht =

Ch
t

Ct
and the normalized value functions, vht =

V h
t

Ct
. Recall that ∆ct+1 = ct+1−ct

with ct = log (Ct). The value function (45) is then given by

vht =
[
(1− δh)(sht )

ρh + δhRh
t

(
vht+1e

∆ct+1
)ρh] 1

ρh

. (48)

By inserting (46) into (42) we obtain the optimality condition for the individual consumption
decisions

λht F
h
1

(
Ch(λ−

t , y
t), Rh

t [V
h(λ−

t+1, y
t+1)]

)
= λ1tF

1
1

(
C1(λ−

t , y
t), R1

t [V
1(λ−

t+1, y
t+1)]

)
,

which simplifies to

λht (1− δh)(Ch
t )
ρh−1(V h

t )
1−ρh = λ1t (1− δ1)(C1

t )
ρ1−1(V 1

t )
1−ρ1 . (49)

Recall the definition of the normalized Negishi weights, λht =
λht

(vht )
ρh−1

. From Equation (49) we
obtain

λht (1− δh)(sht )
ρh−1 = λ1t (1− δ1)(s1t )

ρ1−1. (50)

This equation is the optimality condition for the individual consumption decisions we employ
for solving for the model with Epstein–Zin preferences. Inserting the de-trended weight λht
into the dynamics for the weights (43), we obtain

λht+1

λ1t+1

=
λht+1(v

h
t+1)

ρh−1

λ1t+1(v
1
t+1)

ρ1−1
=
λht (v

h
t )
ρh−1

λ1t (v
1
t )
ρ1−1

Πh
t+1

Π1
t+1

, h ∈ H−. (51)

Plugging the expressions for Epstein–Zin preferences (45)–(47) into Equation (44), we obtain
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the following expression for Πh
t+1:

Πh
t+1 = δhRh

t

(
V h
t+1

)ρh−1
(V h

t )
1−ρh

(
V h
t+1

)αh−1

Rh
t

(
V h
t+1

)αh−1

dPh
t,t+1

dPt,t+1

= δh(V h
t )

1−ρh
(
V h
t+1

)αh−1

Rh
t

(
V h
t+1

)αh−ρh
dPh

t,t+1

dPt,t+1

. (52)

Using the normalized value function vht =
V h
t

Ct
, we have

Πh
t+1 = δh(vht )

1−ρh
(
vht+1e

∆ct+1
)αh−1

Rh
t

(
vht+1e

∆ct+1
)αh−ρh

dPh
t,t+1

dPt,t+1

. (53)

Equation (51) can then be written as

λht+1

λ1t+1

=
λht
λ1t

Πh
t+1

Π1
t+1

, h ∈ H−, (54)

where

Πh
t+1 = δheρ

h∆ct+1
dPh

t,t+1

dPt,t+1︸ ︷︷ ︸
CRRA-Term

(
vht+1e

∆ct+1
)αh−ρh

Rh
t

(
vht+1e

∆ct+1
)αh−ρh︸ ︷︷ ︸

New EZ-Term

. (55)

For αh = ρh, we obtain the standard term for CRRA preferences; the dynamics of λht+1 only
depend on the subjective discount factor, the EIS, and the subjective beliefs of the investors.
For Epstein–Zin preferences, we obtain an extra term that reflects the time trade-off. Using
the normalization

∑H
h=1 λ

h
t = 1, the dynamics for λht+1 are then given by

λht+1 =
λhtΠ

h
t+1∑H

h=1 λ
h
tΠ

h
t+1

. (56)

Hence, for Epstein–Zin preferences we obtain the following system for the first-order con-
ditions (40)-(44):

The market-clearing condition:

H∑
h=1

sht = 1. (MC)

The optimality condition for the individual consumption decisions:
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λht (1− δh)(sht )
ρh−1 = λ1t (1− δ1)(s1t )

ρ1−1, h ∈ H−, (CD)

with
∑H

h=1 λ
h
t = 1.

The value functions of the individual agents:

vht =
[
(1− δh)(sht )

ρh + δhRh
t

(
vht+1e

∆ct+1
)ρh] 1

ρh

, h ∈ H. (VF)

The equation for the dynamics of λht :

λht+1 =
λhtΠ

h
t+1∑H

h=1 λ
h
tΠ

h
t+1

Πh
t+1 = δheρ

h∆ct+1
dPh

t,t+1

dPt,t+1

(
vht+1e

∆ct+1
)αh−ρh

Rh
t

(
vht+1e

∆ct+1
)αh−ρh , h ∈ H−.

(Dλ)

Note that the conditions (MC, CD, VF, Dλ) are just the equilibrium conditions (11)–(14)
stated in Section 2.2. We observe that Equation (CD) and hence the individual consumption
decisions sht only depend on time t information and that there is no intertemporal dependence.
This feature allows us to first solve for sht given the current state of the economy, and in
a second step to solve for the dynamics of the Negishi weights. Hence, we can separate
solving the optimality conditions (11)–(14) into two steps in order to reduce the computational
complexity. In Appendix C we describe this approach in detail.

Using condition (CD) we can prove Theorem 3. Recall that ρh = 1− 1
ψh < 1 for all possible

values of an agent’s EIS, ψh > 0.

Proof of Theorem 3. Condition (CD) implies

λjt
λit

=
(1− δi)(sit)

ρi−1

(1− δj)(sjt)
ρj−1

.

Now let f i(s) = sρ
i−1, f j(s) = sρ

j−1, and A = B = 1, and apply Lemma 1.

C Solution Method

We describe our solution method for asset-pricing models with heterogeneous agents and
recursive preferences.
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C.1 Computational Procedure—A Two-Step Approach

For ease of notation the following procedures are described for H = 2 agents and a single state
variable yt ∈ R1. However, the approach can analogously be extended to the general case of
H > 2 agents and multiple states. We solve the social planner’s problem using a collocation
projection. For this we perform the usual transformation from an equilibrium described by
the infinite sequences (with a time index t) to the equilibrium being described by functions
of some state variable(s) x on a state space X. We denote the current exogenous state of the
economy by y and the subsequent state in the next period by y′ with the state space Y ∈ R.
The term λ2 denotes the current endogenous state of the Negishi weight and λ′2 denotes the
corresponding state in the subsequent period with Λ2 ∈ (0, 1).

We approximate the value functions of the two agents, vh(λ2, y), h = {1, 2}, by two-
dimensional cubic splines and we denote the approximated value functions by v̂h(λ2, y). For
the collocation projection we have to choose a set of collocation nodes {λ2k}

n
k=0 and {yl}ml=0 at

which we evaluate v̂h(λ2, y). The individual consumption shares only depend on the endoge-
neous state λ2k . So in the following we show how to first solve for the individual consumption
shares at the collocation nodes shk = sh(λ2k), which are then used to solve for the value func-
tions vh and the dynamics of the endogenous state λ2.

Step 1: Computing Optimal Consumption Allocations

Equation (13) has to hold at each collocation node {λ2k}
n
k=0:

λ2k(1− δ2)
(
s2k
)ρ2−1

= (1− λ2k)(1− δ1)
(
s1k
)ρ1−1

.

Together with the market-clearing condition (11) we get

λ2k(1− δ2)
(
s2k
)ρ2−1

= (1− λ2k)(1− δ1)
(
1− s2k

)ρ1−1
. (57)

So for each node {λ2k}
n
k=0 the optimal consumption choice s2k can be computed by solving

Equation (57) and s1k is obtained by the market-clearing condition (11).12 For the special case
of ρ2 = ρ1 we can solve for s2 as a function of λ2 analytically, and hence we do not have to
solve the system of equations for each node.

12Note that in the case of H agents we have to solve a system of H − 1 equations that pin down the H − 1
individual consumption choices sh ∈ H−.
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Step 2: Solving for the Value Function and the Dynamics of the Negishi Weights

Solving for the value function is not as straight-forward, as it depends on the dynamics
of the endogenous state λ2, which are unknown and follow Equation (14). We compute the
expectation over the exogenous state by a Gaussian quadrature with Q quadrature nodes.
This implies that the values for y′ at which we evaluate vh are given by the quadrature rule.
We denote the corresponding quadrature nodes by {y′

l,g}
m,Q
l=0,g=1 and the weights by {ωg}Qg=1.13

We can then solve Equation (14) for a given pair of collocation nodes {λ2k , yl}
n,m
k=0,l=0 and the

corresponding quadrature nodes {y′

l,g}
m,Q
l=0,g=1 to compute a vector λ⃗

′
2 of size (n+1)×(m+1)×Q

that consists of the corresponding values λ′2k,l,g for each node. For each λ′2k,l,g , Equation (14)
then reads

λ′2k,l,g =
λ2kΠ

2

(1− λ2k)Π
1 + λ2kΠ

2

Πh = δheρ
h∆c(y′l,g)

(
vh(λ′2k,l,g , y

′
l,g)e

∆c(y′l,g)

Rh
[
vh(λ′2, y

′)e∆c(y′)|λ2k , yl
])αh−ρh

dPh(y′l,g|yl)
dP(y′l,g|yl)

, (58)

where

Rh
[
vh(λ′2, y

′)e∆c(y
′)|λ2k , yl

]
= G−1

h

(
E

[
Gh

(
vh(λ′2, y

′)e∆c(y
′)
) dPh(y′)

dP(y′)

∣∣∣∣λ2k , yl]) .
Note that λ′2k,l,g depends on the full distribution of λ′2 through the expectation operator. By
applying the Gaussian quadrature to compute the expectation we get

E

[
Gh

(
vh(λ′2, y

′)e∆c(y
′)
) dPh(y′)

dP(y′)

∣∣∣∣λ2k , yl] ≈ Q∑
g=1

Gh

(
vh(λ′2k,l,g , yl,g)e

∆c(yl,g)
)
· ωg.

By computing the expectation with the quadrature rule, we do not need the full distribution of
λ′2; instead, we only have to evaluate vh at those values λ′2k,l,g that can be obtained by solving
(58) for each pair of collocation nodes {λ2k , yl}

n,m
k=0,l=0 and the corresponding quadrature nodes

{y′

l,g}
m,G
l=0,g=1. So at the end we have a square system of equations with (n+ 1)× (m+ 1)×G

unknowns, λ′2k,l,g , and as many equations (58) for each {k, l, g}.
The value function is in general not known so we have to compute it simultaneously when

13Note that the quadrature nodes {{y′

l,g}Gg=0}ml=0 depend on the state today, {yl}ml=0.
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solving for λ′2k,l,g . Plugging the approximation v̂h(λ2, y) into the value function (12) yields

v̂h(λ2k , yl) =

[
(1− δh)

(
shk
)ρh

+ δhRh

(
v̂h(λ′2, y

′)e∆c(y
′)

∣∣∣∣λ2k , yl)] 1

ρh

. (59)

The collocation projection conditions require that the equation has to hold at each colloca-
tion node {λ2k , yl}

n,m
k=0,l=0. So we obtain a square system of equations with (n+1)×(m+1)×2

equations (59) and as many unknowns for the spline interpolation at each collocation node,
which we solve simultaneously with the system for λ′2k,l,g described above.

C.2 Computational Details

For the projection method outlined above we need to choose certain collocation nodes. In
this paper we use 17 uniform nodes for the λ2 dimension and 13 uniform nodes for the xt
dimension for the results with ρ2 = 0.975 and ρ1 = 0.985. For solving the models with
ρ2 = 0.95, ρ1 = 0.985 and ρ2 = 0.96, ρ1 = 0.99, respectively, we use 51 uniform nodes for the
λ2 dimension and 23 uniform nodes for the xt dimension. For λ2 the minimum and maximum
values are given by 0 and 1. For xt we choose the approximation interval to cover ±4 standard
deviations around the unconditional mean of the process. We approximate the value functions
using two-dimensional cubic splines with not-a-knot end conditions. We provide the solver
with additional information that we can formally derive for the limiting cases. For example,
we know that for λ2t = 1 (λ2t = 0) agent 2 (1) consumes everything, so it corresponds to the
representative-agent economy populated only by agent 2 (1). Hence, we require that the value
function for these cases equals the value function for the corresponding representative-agent
economy. We also know that for λ2t = 0 (λ2t = 1) the consumption of agent 2 (1) is 0, and hence
the value function is also 0. As the shocks in the model are normally distributed, we compute
the expectations over the exogenous states by Gauss–Hermite quadrature using 5 nodes for
the shock in xt+1 and 3 nodes for the shock in ∆ct+1. Euler errors for the value function
approximations evaluated on a 200× 200 uniform grid for both states are less than 1× 10−6,
suggesting a high accuracy of our results. We double-checked the accuracy by increasing the
approximation interval as well as the number of collocation nodes, with no significant change
in the results.
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D Plausibility of Persistent Belief Differences

The benchmark economy exhibits two agents with persistent belief differences. A critical
reader may argue that this assumption is unrealistic, since we may expect the agents to learn
the true exogenous growth processes over time. To address such potential criticism, we now
examine the speed of learning in the long-run risk model. For this purpose, we suppose that
investors need to estimate model parameters from the data. We show that it is difficult to
obtain a precise estimate for the persistence parameter ρx of the xt process in small, finite
samples. Very long time series—much longer than those observed in our simulations (of up
to 500 years)—are required for the belief differences to vanish. Therefore, learning the true
persistence parameter is a very slow process.

Suppose the true persistence parameter of the long-run risk process is ρx = 0.985, which is
just the value of ρ1x in the benchmark economy. Now suppose an investor does not know this
parameter but estimates it from a finite sample. To analyze this estimation, we simulate 1,000
time series consisting of 500 years of monthly data and calculate estimates after 100, 200, and
500 years. As a first estimation approach, we assume that the investor directly observes xt
and simply estimates the AR(1) process

xt+1 = µx + ρxxt + σxηx,t+1. (60)

We distinguish two cases of this estimation approach; first, the investor estimates the process
with the constant µx; and second, the investor estimates the process without a constant and
knows that µx = 0. We use least-squares to obtain consistent estimates. In reality, the process
xt is not directly observable but must be inferred from the consumption growth time series.
Therefore, as a second approach, we also estimate the full state-space model (15) using the
Kalman filter:

∆ct+1 = µc + xt + σηc,t+1

xt+1 = ρxxt + σxηx,t+1.
(61)

Table 7 reports the results of the two estimation approaches. We observe that for 100 years
of data there is the usual significant finite-sample downward bias in the mean of the point
estimates ρ̂x (see, for example, James and Smith (1998)). Kendall (1954) shows that the bias is
approximately −(1+3ρx)/T = −0.0033 for the model with a constant, which is in accordance
with the value we observe. (The investor can approximate the bias using the point estimate
ρ̂x and the number of periods, T = 1200.) The table also reports the 5% and 1% quantiles
of the point estimates from the 1,000 simulations. After 100 years, even after adjusting for
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Table 7: Parameter Estimates from Simulated Data

xt observable xt unobservable
with constant w/o constant all parameters

100 Years
ρ̂x 0.9817 0.9837 0.9715
ρ̂x,0.05 0.9709 0.9742 0.9329
ρ̂x,0.01 0.9660 0.9692 0.8252

200 Years
ρ̂x 0.9834 0.9844 0.9806
ρ̂x,0.05 0.9760 0.9773 0.9627
ρ̂x,0.01 0.9727 0.9742 0.9408

500 Years
ρ̂x 0.9844 0.9847 0.9833
ρ̂x,0.05 0.9804 0.9810 0.9745
ρ̂x,0.01 0.9786 0.9789 0.9691

The table shows the mean point estimates of ρx as well as the 5% and 1% quantiles after 100, 200,
and 500 years obtained from simulating 1,000 monthly time series of data. In the first approach,
Equation (60) is used for xt, assuming the process is directly observable, and least-squares is used
to estimate the model parameters; we distinguish the two cases of estimating the AR(1) model,
with and without a constant. The second approach assumes that xt is unobservable and the full
state-space model (61) is estimated using the Kalman filter. For the data-generating process, we use
µx = 0, ρx = 0.985, σx = 0.0003432, µ = 0.0015, and σ = 0.0078.

the bias, the 5% quantile is still smaller than ρ2x = 0.975 in the benchmark economy. After
200 years, again after adjusting for the bias, the 1% quantile is still smaller than 0.975. If
the investor knows that µx = 0, then both the standard errors of the estimation and the bias
become slightly smaller.

In reality, however, the investor does not observe xt but must estimate the full model (61).
In this case, the bias in ρ̂x becomes significantly larger with a mean value of 0.9715 and a 5%
quantile value of 0.9329. Hence, also the second value of ρ2x = 0.95 used for the second agent
is well above this quantile after 100 years. After 200 years, the standard error and the bias
become smaller, but a value of 0.95 is still well within the 1% quantile. After 500 years the
bias slowly vanishes but ρ2x = 0.975 is still within the 1% range (even after correcting for a
bias).

In light of the estimation results, we conclude that even if the investor might learn about
the true data-generating process after 500 or more years, it is reasonable to assume that any
nontrivial initial belief differences persist for at least 100 years, if not for much longer.
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E Closed-Form Solutions for the CRRA Case

In this section we derive closed form solutions for the long-run risk model with two investors
and CRRA utility. Assume that the two agents A and B have CRRA utility with the same
degree of risk aversion. The equilibrium conditions (54) and (50) then simplify to

(
sAt+1

sBt+1

)γ
=

(
sAt
sBt

)γ dPA
t,t+1

dPB
t,t+1

. (62)

Taking logs and using the market-clearing condition yields

log

(
sAt+1

1− sAt+1

)
= log

(
sAt

1− sAt

)
+

1

γ
log

(
dPA

t,t+1

dPB
t,t+1

)
. (63)

We log-linearize log(1− sAt+1) around log(sAt+1) = log(sAt ). This step gives us

log
(
1− elog(s

A
t+1)
)

≈ log
(
1− sAt

)
− sAt

1− sAt
(log

(
sAt+1

)
− log

(
sAt
)
)

= log
(
1− sAt

)
+

sAt
1− sAt

log
(
sAt
)
− sAt

1− sAt
a− sAt

1− sAt
bηx,t+1. (64)

Using the linearization (77) and the expression for
(

dPA
t,t+1

dPB
t,t+1

)
given in Equation (78), we find

that the consumption share in t+ 1 is a linear function of ηx,t+1,

log
(
sAt+1

)
= aCRRA + bCRRAηx,t+1 (65)

and the coefficients are given by

bCRRA =
(1− sA0 )x0(ρ

A
x − ρBx )

σ2
xγ

aCRRA = log
(
sA0
)
+

(1− sA0 )x
2
0

2σ2
xγ

[
(ρx − ρBx )

2 − (ρx − ρAx )
2
]
.

F Closed-Form Solutions for the Unit EIS Case

In this section we show how to solve a special case of the long-run risk model with two investors
in closed form. We denote the two investors by A and B to avoid confusion with the time
indices we later introduce for the first two periods. We derive closed-form solutions under
the assumption that both investors have an EIS of ψA = ψB = 1. We consider the following
setup.
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F.1 Model Setup

In period 0 agents are endowed with a given consumption share. The only uncertainty in the
model arises in period 1. Investors have different beliefs about the state of the economy in
period 1 and investors trade based on their beliefs. After period 1, there is no more uncertainty
and investors know the true distribution of the state. So in periods 2, . . . ,∞ the investors
keep the consumption share that results from the trading in period 1.

F.2 The Unit EIS Case

We assume that both investors have an EIS of 1. The value functions are then given by

vht = (1− δh) log sht +
δh

1− γh
logEh

t

(
e(1−γ

h)(vht+1+∆ct+1)
)
, h ∈ {A,B}. (66)

Following the methodology of Appendix B, we obtain the following equilibrium conditions;
first, we have the market-clearing condition

sAt + sBt = 1. (67)

The optimality condition for the individual consumption decisions simplifies to

λAt
λBt

=
sAt
sBt

(68)

and the equation for the dynamics of λt is given by

λAt+1

λBt+1

=
λAt
λBt

ΠA
t+1

ΠB
t+1

Πh
t+1 = δh

dPh
t,t+1

dPt,t+1

e(1−γ
h)(vht+1+∆ct+1)

Eh
t (e

(1−γh)(vht+1+∆ct+1))
, h ∈ {A,B}.

(69)

We assume that investors have the same preference parameters (γ = γA = γB, δ = δA =

δB). Plugging (68) into (69) and making use of the market-clearing condition, we obtain the
following equilibrium condition:

sAt+1

1− sAt+1

=
sAt

1− sAt

dPA
0,1

dPB
0,1

e(1−γ)(v
A
t+1−vBt+1)

EB
0 (e

(1−γ)(vBt+1+∆ct+1))

EA
0 (e

(1−γ)(vAt+1+∆ct+1))
. (70)

We are interested in how shocks to the mean growth rate of consumption xt affect the
consumption shares and the risk sharing of investors. For this task, we consider a simplified
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version of the exogenous processes (15), in which we omit the short-run shocks to consumption
ηc,t+1. As mentioned above, the only uncertainty arises in period 1, so we have

∆c1 = µ+ x0

x1 = ρhxx0 + ηx,1, ηx,1 ∼ N(0, σ2
x)

and

∆ct+1 = µ+ xt

xt+1 = ρxxt, ∀t ≥ 1.

Before we analyze the risk-sharing motives in period 0, we first need to derive the value
function in period 1. The value function (66) in the deterministic case simplifies to

vht = (1− δ) log sht + δvht+1 + δ∆ct+1. (71)

Iterating forward yields

vht =
∞∑
i=1

δiµ+
∞∑
i=0

δi(1− δ) log(sht ) +
∞∑
i=1

δiρi−1
x xt.

As there is no more disagreement, agents no longer trade and hence sht = sht+1 for t ≥ 1. We
also have ∑

i=1

δiρi−1
x xt = δxt

∑
i=0

δiρix = δxt/(1− δρx).

Therefore, we obtain
vht =

δ

1− δ
µ+

δ

1− δρx
xt + log sht . (72)

All uncertainty is resolved in period 1; the value functions of the two agents are then given by

vA1 =
δ

1− δ
µ+

δ

1− δρx
x1 + log sA1 (73)

vB1 =
δ

1− δ
µ+

δ

1− δρx
x1 + log(1− sA1 ). (74)

Given the value functions in the first period, we can determine the risk-sharing rule. The
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risk-sharing rule (70) for period 1 is given by

sA1
1− sA1

=
sA0

1− sA0

dPA
0,1

dPB
0,1

e(1−γ)(v
A
1 −vB1 )E

B
0 (e

(1−γ)(vB1 ))

EA
0 (e

(1−γ)(vA1 ))
. (75)

Plugging in the value functions, taking logs, and simplifying yields

log

(
sA1

1− sA1

)
= log

(
sA0

1− sA0

)
+ log

(
dPA

0,1

dPB
0,1

)
+ (1− γ) log

(
sA1

1− sA1

)
(76)

+ log
(
EB

0 (e
(1−γ)( δ

1−δρx
x1+log(1−sA1 )))

)
− log

(
EA

0 (e
(1−γ)( δ

1−δρx
x1+log sA1 ))

)
We now guess and verify that log(sA1 ) = a + bηx,1 holds true (given a log-linearization).

We log-linearize log(1− sA1 ) around log(sA1 ) = log(sA0 ). This step gives us

log
(
1− elog(s

A
1 )
)

≈ log
(
1− sA0

)
− sA0

1− sA0
(log

(
sA1
)
− log

(
sA0
)
)

= log
(
1− sA0

)
+

sA0
1− sA0

log
(
sA0
)
− sA0

1− sA0
a− sA0

1− sA0
bηx,1, (77)

which we need below. In the following we derive the different terms in (76). Since x1 ∼
N(ρxx0, σ

2
x), the probability ratio is given by

log

(
dPA

0,1

dPB
0,1

)
= log

(
e
−0.5

(ρxx0+ηx,1−ρAx x0)
2

σ2
x

+0.5
(ρxx0+ηx,1−ρBx x0)

2

σ2
x

)

=
x20
2σ2

x

(
(ρx − ρBx )

2 − (ρx − ρAx )
2
)
+
x0
σ2
x

(
ρAx − ρBx

)
ηx,1, (78)

which is linear in ηx,1. We know that EA
0 (e

c1+c2ηx,1) = ec1+0.5c22σ
2
x for constants c1 and c2 since

ηx,1 ∼ N(0, σ2
x). So, for the last two terms in (76) we obtain

log
(
EA

0 e
(1−γ)( δ

1−δρx
x1+log sA1 )

)
= log

(
EA

0 e
(1−γ)( δ

1−δρx
ρAx x0+

δ
1−δρx

ηx,1+a+bηx,1)
)

= (1− γ)a+ (1− γ)
δ

1− δρx
ρAx x0 + 0.5(1− γ)2(b+

δ

1− δρx
)2σ2

x (79)
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and, using (77),

log
(
EB

0 e
(1−γ)( δ

1−δρx
x1+log(1−sA1 ))

)
≈ log

(
EB

0 e
(1−γ)( δ

1−δρx
ρBx x0+

δ
1−δρx

ηx,1+log(1−sA0 )+
sA0

1−sA0

log(sA0 )−
sA0

1−sA0

a− sA0
1−sA0

bηx,1)

)

= (1− γ)
δ

1− δρx
ρBx x0 + (1− γ) log

(
1− sA0

)
+ (1− γ)

sA0
1− sA0

log
(
sA0
)

− (1− γ)
sA0

1− sA0
a+ 0.5(1− γ)2(

δ

1− δρx
− sA0

1− sA0
b)2σ2

x.

Plugging (78), (79), and (80) into (76) yields

a+ bηx,1 − log
(
1− sA0

)
− sA0

1− sA0
log
(
sA0
)
+

sA0
1− sA0

a+
sA0

1− sA0
bηx,1

= log
(
sA0
)
− log

(
1− sA0

)
+

x20
2σ2

x

((ρx − ρBx )
2 − (ρx − ρAx )

2) +
x0
σ2
x

(ρAx − ρBx )ηx,1

+ (1− γ)a+ (1− γ)bηx,1 − (1− γ) log
(
1− sA0

)
− (1− γ)

sA0
1− sA0

log
(
sA0
)

+ (1− γ)
sA0

1− sA0
a+ (1− γ)

sA0
1− sA0

bηx,1

+ (1− γ)
δ

1− δρx
ρBx x0 + (1− γ) log

(
1− sA0

)
+ (1− γ)

sA0
1− sA0

log
(
sA0
)

− (1− γ)
sA0

1− sA0
a+ 0.5(1− γ)2(

δ

1− δρx
− sA0

1− sA0
b)2σ2

x

− (1− γ)a− (1− γ)
δ

1− δρx
ρAx x0 − 0.5(1− γ)2(b+

δ

1− δρx
)2σ2

x.

Simplifying gives

a

1− sA0
+

b

1− sA0
ηx,1 =

log
(
sA0
)

1− sA0
+

x20
2σ2

x

((ρx − ρBx )
2 − (ρx − ρAx )

2) +
x0
σ2
x

(ρAx − ρBx )ηx,1

+ (1− γ)
b

1− sA0
ηx,1 + (1− γ)

δ

1− δρx
(ρBx − ρAx )x0

+ 0.5(1− γ)2(
δ

1− δρx
− sA0

1− sA0
b)2σ2

x

− 0.5(1− γ)2(b+
δ

1− δρx
)2σ2

x. (80)

Equation (80) has to hold for every ηx,1, so we can collect coefficients for ηx,1 and for the
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constant term. For the terms with ηx,1 we have

b

1− sA0
ηx,1 =

x0
σ2
x

(ρAx − ρBx )ηx,1 + (1− γ)
b

1− sA0
ηx,1, (81)

which gives

b =
(1− sA0 )x0(ρ

A
x − ρBx )

γσ2
x

. (82)

For the constant terms we have

a = log
(
sA0
)
+

(1− sA0 )x
2
0

2σ2
x

[
(ρx − ρBx )

2 − (ρx − ρAx )
2
]

+ (1− γ)(1− sA0 )
δ

1− δρx
(ρBx − ρAx )x0

+ 0.5(1− γ)2(1− sA0 )(
δ

1− δρx
− sA0

1− sA0
b)2σ2

x

− 0.5(1− γ)2(1− sA0 )(b+
δ

1− δρx
)2σ2

x, (83)

which equals

a = log
(
sA0
)
+

(1− sA0 )x
2
0

2σ2
x

[
(ρx − ρBx )

2 − (ρx − ρAx )
2
]

+ (1− γ)(1− sA0 )
δ

1− δρx
(ρBx − ρAx )x0

+ 0.5(1− γ)2σ2
x

(
b2
2sA0 − 1

1− sA0
− 2b

δ

1− δρx

)
.

Inserting b yields

a = log
(
sA0
)
+

(1− sA0 )x
2
0

2σ2
x

[
(ρx − ρBx )

2 − (ρx − ρAx )
2
]

+ (1− sA0 )
δ

1− δρx
(ρBx − ρAx )x0

(1− γ)

γ

+
x20(1− γ)2(ρAx − ρBx )

2(1− sA0 )(2s
A
0 − 1)

2σ2
xγ

2
. (84)

The first line is the CRRA term. The second line, which is the most interesting, shows that
the change in the weights depends on whether ρAx is smaller or larger than ρBx . The third line
is a risk adjustment term.
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G Additional Results

This section presents some additional results, which have been referenced in the main body
of the paper. Table 8 reports equity premia for the economy in which agent 2 has the correct
beliefs, ρx = ρ2x (see Section 4.2). Figure 12 displays plots of the average changes in the wealth
distribution for the economy with the larger belief differences, ρ2x = 0.95. (see Section 4.3.2).

Table 8: Equity Premia for Different Consumption Shares (ρx = ρ2x)

ρ2
x = 0.975 ρ2

x = 0.95

s2t Equity Premium s2t Equity Premium
Rep. Agent 1 0 6.49 0 6.50
0 Years 0.01 6.38 0.01 5.36
100 Years 0.3404 4.39 0.8147 0.49
200 Years 0.7249 3.33 0.8810 0.41
500 Years 0.9732 2.83 0.9388 0.34
Rep. Agent 2 1 2.75 1 0.25

The table shows the annualized equity premium for a specific consumption share s2t = s̄. The premium
is reported for the equilibrium allocations after 0, 100, 200, and 500 years of simulated data assuming
an initial share of s20 = 0.01 (see Table 1). Agent 1 believes that ρ1x = 0.985 and agent 2 has the
correct belief (ρx = ρ2x). The left panel depicts the case for ρ2x = 0.975 and the right panel for
ρ2x = 0.95.
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Figure 12: Changes in the Wealth Distribution—The Epstein–Zin Case 2 (ρ2x = 0.95)
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The figure shows the change in the optimal weights λ2
t+1−λ2

t as a function of λ2
t . From left to right,

the change is shown for xt = {−0.008,−0.0013, 0, 0.0013, 0.008} (± 4 standard deviations). The red
line shows the average over all shocks in xt+1. Calibration with ρx = ρ1x = 0.985 and ρ2x = 0.95.
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