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1 Introduction

Both modern monetary theory and �nancial economics formalize asset trades in the context of decentralized

markets where agents meet bilaterally (e.g., Du¢ e et al., 2005; Lagos and Wright, 2005). The extensive and

intensive margins of trade are captured by two core components: a technology through which buyers and

sellers meet one another and a mechanism through which prices and trade sizes are determined. This paper

focuses on the latter: the negotiation of asset prices and trade sizes.

While there is a long tradition in the search-theoretic literature to place stark restrictions on individual

inventories of assets and goods, going back to Diamond (1982), recent advances have allowed for unrestricted

portfolios (e.g., Lagos and Wright; 2005; Lagos and Rocheteau, 2009; Uslu, 2016). In models with a single

indivisible asset, the only item to negotiate is the price of the asset in terms of a divisible commodity.1 In

contrast, in models with multiple divisible assets, there are many ways to liquidate a portfolio, e.g., agents

can sell their whole portfolio at once, as a large block, or they can negotiate the sale of assets gradually over

time. This raises the following questions. What is the optimal way to sell an asset portfolio, e.g., should the

portfolio be divided in smaller parts? Does the order according to which assets are sold matter for prices

and allocations? Does the outcome depend on the side choosing the agenda of the negotiation, i.e., what to

negotiate and when?

Our contribution is to introduce a new approach with both strategic and axiomatic foundations, to

bargaining over portfolios of assets into a model of decentralized asset market. This approach assumes that

agents sell their assets gradually, one unit at a time. It is a natural extension of the bargaining protocol

in Shi (1995) and Trejos and Wright (1995). In those models, assets holdings are restricted to {0,1} and

agents negotiate some amount of divisible output for one unit of asset. Similarly, we divide asset holdings

into N equal parts and consider an extensive-form bargaining game composed of N rounds. In each round,

agents negotiate some amount of output in exchange for at most a fraction 1=N of the overall assets.2 For

simplicity, there is one player in each round making an ultimatum o¤er and the identity of the proposer

alternates across rounds. (We also consider alternating o¤ers within each round.) While the Rubinstein�s

(1982) alternating-o¤er bargaining game has a (quasi-)stationary structure, our alternating-ultimatum-o¤er

bargaining game is nonstationary since payo¤s change over time as units of assets are sold. We show the

1 In Osborne and Rubinstein (1990) agents trade an indivisible consumption good and pay with transferable utility. The
interpretation is reversed in Shi (1995) and Trejos and Wright (1995) where the indivisible good is �at money and agents
negotiate over a divisible consumption good. In Du¢ e et al. (2005) the indivisible good is a consol and agents pay with
transferable utility.

2The gradual aspect of asset trades is a key characteristic of many trading practices observed on �nancial markets. For
example, broker-dealers are known to break large orders (�block orders") into smaller ones and execute them over the span of
several days (see, e.g., Chan and Lakonishok, 1995).
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existence and uniqueness of a subgame perfect equilibrium and characterize equilibrium payo¤s through a

system of di¤erential equations in the limit as N goes to in�nity.

We check the robustness of our solution by adopting an axiomatic approach that abstracts from the details

of the extensive-form game in order to focus on some fundamental properties of the outcome. The relevant

axiomatic approach comes from O�Neill et al. (2004) that extends Nash (1953) by adding the agenda of the

negotiation, formalized as a collection of expanding bargaining sets. We choose the agenda to be consistent

with our strategic game, i.e., agents add assets on the negotiating table gradually over time, and reach a

de�nitive agreement over each unit added. The solution of O�Neill et al. (2004) is a path that shares three

axioms with the Nash (1953) solution, Pareto optimality, scale invariance, and symmetry, and satis�es two

new axioms, continuity and time consistency. The unique solution satisfying the �ve axioms of O�Neill et al.

(2004) coincides with the subgame perfect equilibrium of the alternating ultimatum o¤er bargaining game.

A common thread throughout the paper is the need to specify an agenda for the negotiation of asset

portfolios. In order to compare di¤erent agendas we extend our extensive form game so that agents play an

aternating-o¤er game with exogenous risk of break-down, as in Rubinstein (1982), in each of the N rounds.

Our game admits the Nash solution and the gradual solution as particular cases when N = 1 or N = +1.

We show that asset owners maximize their surplus when N = +1. We also study an alternative agenda

according to which agents bargain gradually over the decentralized market good, which can be interpreted

as an illiquid asset sold over the counter. In that case the gradual solution coincides with the proportional

solution of Kalai (1975). So our model provides, as a by-product, new strategic and axiomatic foundations

to the use of the proportional solution in the context of decentralized asset markets.

Our next step consists in incorporating bargaining solutions with an agenda into a general equilibrium

model of decentralized asset markets where portfolios are endogenous. We augment the analysis by intro-

ducing a new asset characteristic �negotiability �de�ned as the amount of time required for the sale of

each unit of the asset to be concluded, e.g., each asset added to the negotiation table needs to be authen-

ticated and ownership rights take time to transfer.3 We make this negotiability relevant by assuming that

the time agents have to complete their negotiation is stochastic and exponentially distributed �which can

be interpreted as a risk of breakdown or discounting.4 While we interpret the negotiability of an asset as an

3The concept of negotiability dates back to the 17th century and referred to institutional arrangements aiming at enhancing
liquidity by �centralizing all rights to the underlying asset in a single physical document, [...] reducing the costs a prospective
purchaser incurs in acquiring [...] information about the asset" (Mann, 1996). The concept of blockchains - immutable,
decentralized ledgers that can record ownership and transfer of intangible assets - can be seen as a digital incarnation of the
original idea of negotiability.

4According to Du¢ e (2012) search and matching frictions encompass not only �delays associated with reaching an awareness
of trading opportunities" but also delays due to �arranging �nancing and meeting suitable legal restrictions, negotiating trades,
executing trades, and so on." For evidence on these delays, see, e.g., Saunders et al. (2012) and Pagnotta and Phillipon (2017).
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exogenous technological parameter in most of the paper, we develop an extension to endogenize it. The gen-

eral equilibrium spread between the rate of return of the asset and the rate of time preference is the product

of four components: the search friction, the bargaining power, the negotiability friction, and a measure of

liquidity needs. An increase in the asset supply, or a reduction in search frictions, raises both the rate of

return of the asset and its negotiability.

In terms of the normative properties of the equilibrium, if the asset is scarce, the decentralized choice

of asset negotiability is too low relative to the planner�s choice, even if asset owners have all the bargaining

power, because of a pecuniary externality. The equilibrium under all-at-once bargaining (N = 1) features

asset misallocation because a fraction of the asset supply end up being held by agents with no liquidity

needs. In contrast, under gradual bargaining (N = +1), assets are held by agents with liquidity needs, and

the �rst best is implemented as long as the asset supply is su¢ ciently abundant.

Finally, we extend our environment to allow for an arbitrary number of assets. All assets, except �at

money, generate the same stream of dividends but di¤er by their negotiability. For instance, more complex

assets take more time to be negotiated than simpler ones. We let asset owners choose the agenda of the

negotiation, i.e., the order according to which assets are negotiated. Our model generates an endogenous

pecking order: assets that are more negotiable are put on the negotiating table before the less negotiable

ones. This pecking order has implications for asset prices and velocities: the most negotiable assets have

lower rates of return and higher velocities. Hence, our model explains rate-of-return di¤erence di¤erences

of seemingly identical assets. Moreover, we show that interest spreads can be expressed as the sum of a

liquidity and a negotiability premia. The liquidity premium measures the e¤ect of an increases in wealth

on the marginal utility of consumption assuming the negotiation lasts for long enough for the wealth to be

spent. The negotiability premium measures the marginal utility gain from spending an asset that is relatively

more negotiable than other assets, thereby allowing for larger trades in a given negotiation time.

We conclude the paper by considering two applications of our multiple-asset model. The �rst application

has money and government bonds and studies the e¤ects of open-market operations. Our model predicts

that an open market sale of bonds raises the nominal interest rate and reduces output because less-negotiable

bonds are replaced with �at money, which is more negotiable. Our second application is a dual-currency

economy where the two currencies have di¤erent money growth rates and negotiabilities. For example,

the time it takes for crypto-currencies transactions to be con�rmed di¤ers greatly between the most popular

coins.5 We show that the exchange rate is determinate: the currency with higher negotiability appreciates vis-

5As of November 2017, it took on average less than 4 seconds for a Ripple transaction to be con�rmed, against 5 minutes
with Ethereum, 12 minutes with Litecoin, 15 minutes with Dash, and 45 minutes with Bitcoin.
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a-vis the high-return currency if the frequency of trades increases, if consumers�bargaining power increases,

or if the time horizon of the negotiation shortens.

Literature

The standard approach to price formation in decentralized asset markets consists in applying axiomatic

bargaining solutions, such as Nash (1950), or equivalent extensive-form games, as described in Osborne and

Rubinstein (1990). Early applications to monetary economies were provided by Shi (1995) and Trejos and

Wright (1995). In models with unrestricted asset holdings, the Nash solution has properties that have been

largely seen as undesirable, e.g., its lack of monotonicity (e.g., Aruoba et al., 2007). The proportional solution

of Kalai (1977) avoids this issue by being strongly monotone, but it is not invariant to a¢ ne transformation

of utilities.6

The gradual bargaining solution was developed by O�Neill et al. (2004). A key innovation consists in

introducing as part of the primitives of the bargaining problem the agenda of the negotiation represented

by a continuum of Pareto frontiers.7 To the best of our knowlege we provide its �rst application.8 One

conceptual di¢ culty is to identify the proper agenda of the portfolio negotiation. We show how to address

this question in the context of mainstream models of decentralized asset trades.

While O�Neill et al. (2004) are silent about the strategic foundations of the solution, an earlier working

paper by Wiener and Winter (1998) conjectures that a bargaining game with alternating o¤ers should

generate the same outcome. We formalize this conjecture in details in the context of our model of asset

markets by considering an alternating ultimatum-o¤er bargaining game. This game is not stationary because

the amount left to negotiate varies as the negotiation progresses. Somewhat related, Coles and Wright (1998)

describe the strategic negotiation of units of money in continuous time in the non-stationary monetary

equilibria of the model of Shi (1995) and Trejos and Wright (1995). Tsoy (2016) proposes a model with

bargaining and delays in equilibrium and applies it to OTC markets. Gerardi and Maestri (2017) formalize

the bargaining of a divisible asset whose quality, unknown to buyers, can only be assessed by observing

the seller�s response to take-it-or-leave-it o¤ers; they show that gradual trading emerges endogenously for

high-quality assets.

6Other trading mechanisms studied in the context of these models include competitive search (Rocheteau and Wright, 2005;
Lester et al., 2015), price taking (Rocheteau and Wright, 2005), auctions (Galenianos and Kircher, 2008), price posting (Jean
et al., 2010), and monopolistic competition (Silva, 2017). Socially optimal mechanisms were characterized by Hu et al. (2009).

7Multi-issue bargaining with agendas was studied by Fershtman (1990), Bac and Ra¤ (1996), Inderst (2000), and In and
Serrano (2003, 2004) among others. In these studies, the agenda refers to the order of the multiple issues. In Fershtman (1990),
the agenda is exogenously given, whereas in Bac and Ra¤ (1996), Inderst (2000), and In and Serrano (2003, 2004), the agenda
is endogenously determined within the bargaining games.

8An early application can be found in the working paper of Rocheteau and Waller (2005) in the context of a pure currency
economy.
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We incorporate the gradual bargaining game into two general equilibrium models of asset markets. The

main framework is the decentralized asset market with divisible Lucas trees from Geromichalos et al. (2007)

and Lagos (2010).9 We also consider a variant where agents trade assets because of idiosyncratic valuations,

as in Du¢ e et al. (2005) and Lagos and Rocheteau (2009) for a version with unrestricted portfolios.10 This

second version is closely connected to Geromichalos and Herrenbrueck (2016), Lagos and Zhang (2018), and

Wright, Xiao, and Zhu (2018), who study the reallocation of assets in OTC trades �nanced with money.

Our extension with multiple assets contributes to the literature on asset price puzzles in markets with

search frictions, e.g., Vayanos and Weill (2008) based on increasing-returns-to-scale matching technologies;

Rocheteau (2011), Li et al. (2012) and Hu (2013) based on informational asymmetries; and Lagos (2013)

based on self-ful�lling beliefs in the presence of assets�extrinsic characteristics. Our emphasis on the nego-

tiation is tied to Zhu and Wallace (2007) and Nosal and Rocheteau (2013) but in contrast to those models

we do not let the bargaining power depend on the portfolio.11

Our paper is also related to the literature on the optimal execution of large asset orders, e.g. Bertsimas

and Lo (1998), Almgren and Chriss (1999), Almgren and Chriss (2001), Almgren (2003). These papers

formalize the trade-o¤ between trading large volumes quickly and breaking the order into small pieces sold

gradually. Obizhaeva and Wang (2006) endogenize the price impact of trading aggressively by formalizing

the dynamics of supply and demand through a limit book order market (see also Alfonsi et al., 2010).

2 Environment

Time is discrete, continues forever, and each period is divided into two stages. There is a continuum of

agents with measure two evenly divided between two types, called consumers and producers. An agent�s

type corresponds to his role in the �rst stage, where only consumers wish to consume while only producers

have the technology to produce. Throughout most of the paper we think of consumers as natural asset

holders who receive liquidity shocks that make them want to sell their assets while producers are potential

buyers of those assets. During that stage, labeled DM (for decentralized market), a fraction � of consumers

and producers are matched bilaterally. The second stage, labeled CM (for centralized market), features a

centralized Walrasian market. There is a one good in each stage and we take the CM good as numeraire.

Consumers� preferences are represented by the period utility function, u(y) � h, where y is DM con-

sumption and h is the CM supply of labor. Producers�preferences are represented by ��(y) + c, where y

9 In those models, the asset owner has all the bargaining power. Rocheteau and Wright (2013) adopt the proportional
bargaining solution, endogenize participation, and consider non-stationary equilibria. Lester et al. (2012) introduce a costly
acceptability problem. Rocheteau (2011) and Li et al. (2012) add informational asymmetries.
10See Trejos and Wright (2016) for a model that nests Shi (1995), Trejos, Wright (1995) and Du¢ e et al. (2005).
11Hu and Rocheteau (2013, 2015) show that having the bargaining power depend on portfolios is part of an optimal mechanism.
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corresponds to the production of the DM good and c is the consumption of the CM good. The DM good can

be given di¤erent interpretations, e.g., a perishable consumption good, a real asset, or services from �nancial

assets. We assume u0(y) > 0, u00(y) < 0, u(0) = �(0) = �0(0) = 0, �0(y) > 0, �00(y) > 0, and �(�y) = u(�y) for

some �y > 0. Let y� denote the solution to u0(y�) = �0(y�). All agents share the same discount factor across

periods, � � (1 + �)�1 2 (0; 1).

Agents are anonymous and hence cannot issue private IOUs to �nance their DM consumption. There is an

exogenous supply of Lucas trees, At, that are perfectly durable, storable at no cost, and non-counterfeitable.

Each Lucas tree pays o¤ d � 0 units of numeraire in the CM, where the case d = 0 corresponds to �at money.

The supply grows at rate �, At+1 = (1 + �)At, where new trees are allocated to consumers in a lump-sum

fashion. We set � = 0 when d > 0 but we allow � 2 (� � 1;+1) when d = 0. We denote �t the price of

Lucas trees in terms of the numeraire.

3 Preliminary results

We �rst derive some preliminary results that will be useful to set up the bargaining problem in the DM. We

restrict our attention to stationary equilibria where the price of Lucas trees is constant at � and hence their

gross rate of return is also constant and equal to R = 1 + r = (� + d)=�. We measure a consumer�s asset

holdings in the DM in terms of their value in the coming CM. More precisely, a units of asset in the DM are

worth

z = (�+ d)a:

The lifetime expected utility of a consumer (i.e., buyer of DM goods) with wealth z in the CM is

W b(z) = max
z0;h

�
�h+ �V b(z0)

	
s.t. z0 = R (z + h+ T ) ; (1)

where T denotes lump-sum transfers (expressed in terms of CM goods), z0 are next-period asset holdings,

and V b(z0) is the value function at the start of the DM. From (1) the consumer chooses his supply of labor

and future asset holdings in order to maximize his discounted continuation value net of the disutility of work.

According to the budget constraint, next-period asset holdings are equal to current asset holdings, plus labor

income and net transfer, everything multiplied by the gross rate of return of assets. Substituting h by its

expression coming from the budget identity into the objective, we obtain

W b(z) = z + T +max
z0�0

�
�z

0

R
+ �V b(z0)

�
: (2)

As is standard, W b is linear in wealth. By a similar reasoning, the value function of a producer is

W s(z) = z +max
z0�0

�
�z

0

R
+ �V s(z0)

�
:
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The lifetime expected utility of a consumer holding z assets in the DM solves

V b(z) = �
�
u [y(z)] +W b [z � p (z)]

	
+ (1� �)W b(z); (3)

where y(z) is the consumer�s consumption and p(z) is his sale of Lucas trees in the DM in terms of numeraire.

Note that we conjecture (and verify later) that the terms of trade in a bilateral match, [y(z); p(z)], only depend

on the consumer�s wealth. According to (3) a consumer meets a producer with probability �, in which case

he enjoys y(z) units of DM consumption in exchange for p(z) units of real balances. With probability 1� �

the consumer is unmatched and enters the CM with z units of asset. We now turn to the choice of asset

holdings in the CM. Substituting V b(z) by its expression given by (3), the consumer�s choice of asset holdings

solves

max
z�0

f�sz + � fu [y(z)]� p (z)gg ; (4)

where s is the spread between the real interest rate on an illiquid asset that cannot be traded in the DM

and the real rate on liquid Lucas trees,

s =
�� r
R

� 0: (5)

According to (4), the consumer chooses his asset holdings in order to maximize his expected surplus from

trading in the DM net of the cost of holding liquid assets measured by s. By a similar reasoning, the lifetime

expected utility of a producer at the start of the DM solves

V s(z) = �
�
��

�
y(zb)

�
+ p

�
zb
�	
+W s(z);

where zb are the consumer�s assets in equilibrium. For all s > 0 it is weakly optimal for the producer to

choose z = 0.

4 Gradual bargaining

We introduce gradual bargaining to determine the terms of trade in pairwise meetings. We �rst propose an

extensive-form game and then adopt an axiomatic approach to show the robustness of the solution. Under

both approaches we make the assumption that it takes time to negotiate the sale of assets, e.g., it takes

time to authenticate assets to avoid fraud and counterfeiting and it also takes time to secure the transfer

of ownership of the asset. We index time within the negotiation by � . The technology to autheticate and

transfer assets is such that � units of assets can be negotiated per unit of time. Hence, the higher �, the

more negotiable the asset. In order to make the time dimension and negotiability relevant, we assume that

there is a time limit, �� , to complete the negotiation. For now we assume that �� is su¢ ciently large so that

it is not a binding constraint.
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4.1 The alternating-ultimatum-o¤ers bargaining game

We start by considering an extensive-form game between a consumer (i.e., buyer of the DM good) holding

z > 0 units of assets, expressed in terms of the numeraire, and a producer (i.e., seller of the DM good).

The game has N rounds. In each round, the consumer can negotiate at most z=N units of assets for some

output.12 Agreements reached in each round are �nal. Each round corresponds to a two-stage ultimatum

game: in the �rst stage an o¤er is made; in the second stage the o¤er is accepted or rejected. In order

to maintain some symmetry between the two players (in particular when N is large) we assume that the

identity of the proposer alternates across rounds. We assume N is odd and the consumer is the one making

the �rst o¤er. These assumptions will be inconsequential when we consider the limit as N becomes large.

...

Yes

Yes

Yes YesYes Yes

Yes

No

No

No

No No No

No

Buyer

Buyer

BuyerBuyerBuyerBuyer

Buyer

Seller Seller

SellerSellerSellerSeller

Seller
Round #1

Round #3

Round #2

Figure 1: Game tree of the alternating ultimatum o¤er game

We de�ne � � nz=(�N). Given that � units of asset can be negotiated per unit of time, � is the time

until the end of the nth round. The utility accumulated by the consumer up to � is

ub(�) = u [y(�)] +W b [z � p(�)] = u [y(�)]� p(�) + ub0; (6)

where (y(�); p(�)) is the intermediate agreement and ub0 =W b(z). The utility accumulated by the producer

12Each round is similar to the negotiations described in earlier monetary search models by Shi (1995) and Trejos and Wright
(1995) where agents would negotiate some output in exchange for an indivisible unit of money. A di¤erence is that z=N is
divisible in our analysis.
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up to � is

us(�) = �� [y(�)] + p(�) + us0; (7)

where us0 =W s(0). Given the feasibility constraint p(�) � �� , we obtain a Pareto frontier for each � . These

Pareto frontiers will play a key role to characterize the subgame perfect equilibrium of our game.

Lemma 1 (Pareto frontiers) The Pareto frontier at time � satis�es

H(ub; us; �) = 0; (8)

where

H(ub; us; �) =

�
u(y�)� �(y�)� (ub � ub0)� (us � us0) if us � us0 � �� � �(y�)
�� � �[u�1(�� + ub � ub0)]� (us � us0) otherwise

: (9)

The function H is continuously di¤erentiable, increasing in � (strictly so if y < y�), decreasing in ub and

us. Consequently, each Pareto frontier has a negative slope:

@us

@ub

����
H(ub;us;�)=0

=

(
�1 if us � us0 � �� � �(y�)
��0(y)
u0(y) otherwise

The Pareto frontier is linear when y = y�. When y < y�, it is strictly concave. We are now in position to

characterize subgame perfect equilibria of the bargaining game. We call a bargaining round an active round

if there is equilibrium trade in that round. We say that a subgame perfect equilibrium is simple if in each

active round the buyer o¤ers z=N units of assets (except possibly for the last active round) and active rounds

are followed by inactive rounds (if any).

Proposition 1 (Subgame-perfect equilibria of the alternating ultimatum o¤ers game.) There

exists a subgame perfect equilibrium (SPE) in each alternating-ultimatum o¤er game, and all SPE share

the same �nal payo¤s. When the output level corresponding to the �nal payo¤s is less than y�, the SPE is

unique and is simple; otherwise, there is a unique simple SPE. Moreover, in any simple SPE, the intermediate

payo¤s, f(ubn; usn)gn=1;2;:::;N , converge to the solution (ub(�); us(�)) to the following di¤erential equations as

N approaches 1 with � = nz=N :

ub0(�) = �1
2

@H(ub; us; �)=@�

@H(ub; us; �)=@ub
(10)

us0(�) = �1
2

@H(ub; us; �)=@�

@H(ub; us; �)=@us
: (11)

An increase in � by one unit expands the bargaining set by @H=@� . According to (10), the consumer

enjoys half of the maximum utility gain generated by the expansion of the bargaining set. We combine (10)
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and (11) to obtain the slope of the gradual agreement path:

@us

@ub
=
@H(ub; us; �)=@ub

@H(ub; us; �)=@us
: (12)

According to (12), the slope of the gradual bargaining path is equal to the opposite of the slope of the Pareto

frontier.13 We represent the solution in Figure 2.

su

bu

*

*

Bargaining
path

0),,( =τsb uuH

0)',,( =τsb uuH

Figure 2: Solution to a gradual bargaining problem

The proof of Proposition 1 consists of two steps: �rst, we characterize the subgame perfect equilibrium

(SPE) for any game (or subgame) with an arbitrary odd number of rounds, N . In the second part, we

establish that the sequence of intermediate payo¤s of the SPE converges to the solution to the system of

di¤erential equations, (10) and (11), as N approaches1. The logic goes as follows. Suppose the negotiation

enters its last round, N , and the two agents have agreed upon some intermediate payo¤s (ubN�1; u
s
N�1). The

buyer makes the last take-it-or-leave o¤er, which maximizes his payo¤by keeping the seller�s payo¤unchanged

at usN�1. Graphically, the �nal payo¤s are constructed from the intermediate payo¤s by moving horizontally

from the lower Pareto frontier to which (ubN�1; u
s
N�1) belongs to the upper Pareto frontier corresponding

to an increase in real balances of z=N , as shown in Figure 3. We now move backward in the game by one

round. Suppose that the negotiation enters round N � 1 with some intermediate payo¤s (ubN�2; usN�2), with

the seller making the o¤er. The o¤er makes the buyer indi¤erent between accepting it and rejecting it. Now,

if the buyer rejects the seller�s o¤er, the negotiation enters its last round and the buyer�s payo¤ is obtained

as before, i.e., by moving horizontally from the lower frontier to the upper frontier. This determines the

13Another geometric interpretation of the solution is that the direction of the agreement path is orthogonal to the �ipped
gradient.
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buyer�s payo¤. Given this payo¤, the seller�s payo¤ is obtained such that the pair of payo¤s is located on

the last Pareto frontier. Graphically, there is �rst a horizontal move from the initial payo¤, (ubN�2; u
s
N�2),

to the next Pareto frontier that determines the buyer�s terminal payo¤, (ubN�1; u
s
N�2), and then a vertical

move to the following frontier that determines the seller�s payo¤, (ubN�1; u
s
N ), as shown in Figure 3. We can

iterate this procedure until we reach the start of the game. In order to pin down the terminal payo¤s we

need a starting point. We use the fact that the negotiation starts with initial payo¤s (ub0; u
s
0). The sequence

of payo¤s is then obtained by alternating horizontal and vertical moves across consecutive frontiers.

su su

bu bu

s
Nu 1−

Round N1:
Buyer makes an offer

Round N2:
Seller makes an offer

b
Nu 1−

s
Nu 2−

b
Nu 2−

Figure 3: Left panel: O¤er in last round; Right panel: o¤er in (N � 1)th round

Once we have the terminal payo¤s, we use another backward induction to determine the sequence of

intermediate payo¤s. The intermediate payo¤s on the (N�1)th frontier are obtained by moving horizontally

from the N th frontier to the (N � 1)th frontier since the buyer is making the last o¤er. The intermediate

payo¤s on (N�2)th frontier are obtained by moving vertically from the N th frontier to the (N�1)th frontier

and then horizontally from the (N � 1)th frontier to the (N � 2)th frontier by using the same reasoning as

above. It turns out that the two sequences constructed above get closer to one another as N becomes large,

and, both converge to the gradual bargaining path according to (12).

A feature of our game is that if an o¤er is rejected, the z=N of assets that are unsold cannot be renego-

tiated. The solution to our game, however, is robust to this feature. In the appendix we study a variant of

the game where agents have �� units of time to negotiate, where �� can be larger than z=�, the time required

to sell the whole portfolio. As long as the whole portfolio has not be sold and the time limit has not been

reached, agents can keep on negotiating. The SPE payo¤s of this game solve (10)-(11).

12



4.2 An axiomatic approach

One might wonder how the solution to our extensive game depends on the details of the bargaining protocol,

e.g., the ultimatum game in each round. An axiomatic approach, by abstracting from the details of the

bargaining game, provides a sense of the robustness of our solution. O�Neill et al. (2004) developed an

axiomatic approach that extends Nash (1953) to formalize negotiation that take place gradually over time.

A gradual bargaining problem admits as a primitive a family of feasible sets indexed by the di¤erent items

that are up for negotiation at a given point time in the negotiation.14 Formally, in the context of our model:

De�nition 1 A gradual bargaining problem between a consumer holding z units of asset and a producer is

a collection of Pareto frontiers,


H(ub; us; �) = 0; � 2 [0; z=�]

�
and a pair of disagreement points, (ub0; u

s
0).

A gradual agreement path is a function, o : [0; z] ! R+ � [0; z], that speci�es an allocation (y; p) for all

� 2 [0; z=�] and associated utility levels,


ub(�); us(�)

�
. The gradual Nash solution of O�Neill et al. (2004)

is the unique solution to satisfy �ve axioms: Pareto optimality, covariance with respect to positive linear

transformations of utility, symmetry, directional continuity, and time-consistency. The �rst three axioms are

axioms imposed by Nash (1950).15 The last two axioms are speci�c to the new de�nition of the bargaining

problem. Directional continuity imposes a notion of continuity for the bargaining path with respect to

changes in the agenda. More importantly, the key addition is the requirement of time-consistency according

to which if the negotiation were to start at time � with that agreement being the disagreement point, then

the bargaining path going onward would be the same as the one obtained starting at � = 0. The key theorem

of O�Neill et al. is the following:

Theorem 1 (Ordinal solution of O�Neill et al., 2004) There is a unique solution to the gradual

bargaining problem given by


H(ub; us; �) = 0; � 2 [0; z=�]

�
and it satis�es (10)-(11).

It follows from this theorem that the solution to the alternating ultimatum o¤ers bargaining game coin-

cides with the axiomatic solution from O�Neill et al. (2004). Finally, it is worth noticing that while scale

invariance was imposed as an axiom, the solution exhibits ordinality endogenously: the solution is covariant

with respect to any order-preserving transformation.16

14 In contrast Nash (1950) de�nes a bargaining problem as a single set of utility levels for the two parties and a pair of
disagreement points.
15This axiomatization does not require Nash�s fourth and more controversial axiom, independence of irrelevant alternatives.
16This result is noteworthy because Shapley (1969) shows that in the standard Nash framework, with two players, no single-

valued solution can satisfy Pareto e¢ ciency, symmetry, and ordinality.
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4.3 Negotiated price and trade size

We now turn to the implications of the gradual bargaining solution for asset prices and trade sizes. From

the de�nition of H in (9), the solution to the bargaining game, (10)-(11), can be reexpressed as

ub0(�) = �
u0(y)� �0(y)
2�0(y)

(13)

us0(�) = �
u0(y)� �0(y)
2u0(y)

; (14)

if �� < us � us0 + �(y�) and ub0(�) = us0(�) = 0 otherwise. From (13) and (14) the slope of this gradual

bargaining path is @us=@ub = �0(y)=u0(y), which is increasing in y, i.e., it becomes steeper as the negotiation

progresses.

Proposition 2 (Prices and trade sizes) Along the gradual bargaining path, the price of the asset in

terms of DM consumption is

y0(�)

�
=
1

2

0BB@
bid pricez }| {
1

�0(y)
+

ask pricez }| {
1

u0(y)

1CCA for all y < y�: (15)

The overall payment for y units of consumption is

p(y) =

Z y

0

2�0(x)u0(x)

u0(x) + �0(x)
dx: (16)

If z � p(y�) then y = y� and y = p�1(z) otherwise.

Equation (15) has a simple interpretation. The bid price of one unit of asset at time � , i.e., the maximum

price in terms of DM goods that the producer is willing to pay to acquire it, is equal to 1=�0(y). The ask

price at time � , i.e., the minimum price in terms of DM goods that the consumer is willing to accept to give

it up, is 1=u0(y). So, according to (15), the negotiated price is the arithmetic average of the bid and ask

prices. Note that the bid price decreases with y because the producer incurs a convex cost to acquire an

additional unit of asset. The ask price increases with y because the consumer enjoys a decreasing marginal

utility in exchange of an additional unit of asset. So the negotiated price can be non-monotone with the size

of the trade. A natural case is when the cost of the seller is linear, �0(y) = 1, e.g., think of the buyer of the

asset as a large dealer. In this case the bid price is constant and equal to one, and the negotiated price is

y0(�)=� =
�
1 + [u0(y)]

�1
�
=2. It increases with the quantities of assets sold. This result captures the idea

that larger trades are more expensive. From (16) we can compute the buyer�s surplus from a trade:

u(y)� p(y) =
Z y

0

u0(x) [u0(x)� �0(x)]
u0(x) + �0(x)

dx; for all y � y�:

The surplus increases with y, is strictly concave for all y < y�, and is maximum when y = y�.

14



4.4 Asymmetric gradual bargaining

The gradual bargaining solution presented so far treats the two players symmetrically. For several appli-

cations, however, it is useful to allow for asymmetric bargaining powers. In the following we modify the

strategic game to provide a noncooperative foundation for asymmetric bargaining powers. In each round

where the consumer is making the o¤er, the amount of assets that can be negotiated is now 2�z=N where

� 2 [0; 1]. In each round where the producer is making the o¤er, the amount of assets up for negotiation is

2(1 � �)z=N . Note that � = 1=2 corresponds to the bargaining game studied earlier. See the Appendix B

for details. The solution to this bargaining game generalizes (10)-(11) as follows:

ub0(�) = �� @H(u
b; us; �)=@�

@H(ub; us; �)=@ub
(17)

us0(�) = � (1� �) @H(u
b; us; �)=@�

@H(ub; us; �)=@us
; (18)

where � 2 [0; 1] is interpreted as the buyer�s bargaining power.17 This solution coincides with the axiomatic

solution of Wiener and Winter (1998).

By the same reasoning as above, the DM price of assets evolves according to

y0(�)

�
=

0BB@�
bid pricez }| {
1

�0(y)
+ (1� �)

ask pricez }| {
1

u0(y)

1CCA : (19)

It is now a weighted average of the bid and ask prices where the weights are given by the relative bargaining

powers of the consumer and the producer. From (19) the DM price of the asset is increasing in �. The

payment for y units of DM consumption is

p(y) =

Z y

0

u0 (x) �0(x)

�u0(x) + (1� �)�0(x)dx for all y � y�: (20)

5 More on the agenda

The agenda of a negotiation speci�es how much of each asset to put up for negotiation at di¤erent stages. The

literature has implicitly assumed that portfolios were sold all at once, e.g., according to the Nash solution.

In contrast, we described a negotiation where assets were sold gradually. In the following we compare the

outcomes of the two agendas, including players�payo¤s. In a second part, we set up an alternative agenda

under which agents negotiate gradually over the DM good (instead of the liquid assets). We conclude by

letting one player pick the agenda.

17One could make the bargaining power a function of time, � , or output traded, y, without a¤ecting the results signi�cantly.
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5.1 Bundled vs gradual asset sales

We generalize the extensive-form game to allow for alternating o¤ers in each round in accordance with

Rubinstein�s (1982). We will show that our game admits the Nash solution in the limiting case where there

is a single round and the gradual solution in the limiting case where the number of rounds becomes in�nite.

As before the extensive-form game has N rounds. Each round, n 2 f1; :::; Ng, is composed of an in�nite

number of stages during which the two players bargain over z=N units of assets following an alternating-o¤er

protocol as in Rubinstein (1982). The buyer is the �rst proposer if n is odd, and the seller is the �rst

proposer otherwise. The round-game is as follows. In the initial stage, the �rst proposer makes an o¤er and

the other agent either accepts it or rejects it. If the o¤er is accepted, round n ends and agents move to round

n+ 1. If the o¤er is rejected then there are two cases. With probability (1� �) round n is terminated and

the player moves to round n+ 1 without having reached an agreement. With probability � the negotiation

continues and the responder becomes the proposer in the following stage. We will consider the limit where

� approaches one in each round.

...

Yes

Yes

No

No

Buyer

Round #1 ......Round #2 Round #n Round #N

Move to
next round

Move to
next round

Trade and move
 to next round

Trade and move
 to next round

Buyer

Buyer

Seller

Seller

][ξ

][ξ

]1[ ξ−

]1[ ξ−

Round game

Figure 4: Game tree with alternating o¤ers in each round
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Proposition 3 (Repeated Rubinsten game.) There exists a SPE of the repeated Rubinstein game char-

acterized by a sequence of intermediate allocations, f(yn; pn)gNn=0, solution to:

(yn; pn) 2 argmax
y;p

[u(y)� p� u(yn�1) + pn�1] [��(y) + p+ �(yn�1)� pn�1] s.t. p � nz

N
; (21)

for all n 2 f1; :::; Ng with (y0; p0) = (0; 0). As N ! 1 the solution converges to the solution of the

alternating ultimatum o¤er game.

In each round the intermediate payo¤s coincide with the Nash solution where the endogenous disagree-

ment points are given by the intermediate payo¤s of the previous round. From (21) f(yn; pn)gNn=0 is the

solution to Z yn

yn�1

�0(yn)u
0(x) + u0(yn)�

0(x)

u0(yn) + �0(yn)
dx � z

N
" = " if yn < y�; (22)

pn � pn�1 = min
�
[u(y�)� u(yn�1)] + [�(y�)� �(yn�1)]

2
;
z

N

�
;

with y0 = 0. When the liquidity constraint, pn � nz=N , binds, then the payment is equal to the weighted

sum of the marginal utility of consumption and the marginal cost of production going from yn�1 to yn.

Proposition 4 Consumers obtain a higher surplus by negotiating the sale of their assets gradually over

time, N = +1, instead of bundling assets across a �nite number of rounds, N < +1.

Proof. (Complement of proof) Summing (22) from n = 1 to N :

NX
n=1

"Z yn

yn�1

�0(yn)

u0(yn) + �0(yn)
u0(x)dx+

Z yn

yn�1

u0(yn)

u0(yn) + �0(yn)
�0(x)dx

#
= z:

It can be expressed more compactly asZ yN

0

h
1��

�
x;

z

N

�i
u0(x) + �

�
x;

z

N

�
�0(x)dx = z;

where

�
�
x;

z

N

�
=

NX
n=1

u0(yn)

u0(yn) + �0(yn)
1(yn�1;yn](x):

Note that for all N < +1 and for all x =2 fyng,

�
�
x;

z

N

�
<

u0(x)

u0(x) + �0(x)
:

Hence, Z yN

0

h
1��

�
x;

z

N

�i
u0(x) + �

�
x;

z

N

�
�0(x)dx >

Z yN

0

2�0(x)u0(x)

u0(x) + �0(x)
dx:
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So for all N < +1, the payment to �nance yN units of consumption, the left side of the inequality, is larger

than the one when N = +1, the right side of the inequality. Hence, the consumer extracts the largest

surplus when N = +1.

In order to illustrate Proposition 4, consider the two limiting cases, N = 1 and N = +1. If N = 1 the

SPE outcome corresponds to the symmetric Nash solution, in which case z = p1(y) where

p1(y) �
�0(y)u(y) + u0(y)�(y)

u0(y) + �0(y)
:

Relative to the gradual solution where N = +1 the consumer must pay an additional

p1(y)� p1(y) =
Z y

0

�
�0(y)

u0(y) + �0(y)
� �0(x)

u0(x) + �0(x)

�
[u0(x)� �0(x)] dx:

The di¤erence arises from the fact that under Nash bargaining the seller�s share in each increment of the

match surplus is �0(y)= [u0(y) + �0(y)], which is larger than the share they get under gradual bargaining,

�0(x)= [u0(x) + �0(x)] for all x < y. Selling all the assets at once has a negative impact on the price that can

be mitigated by selling them through small quantities.18

5.2 Gradual bargaining over DM goods

So far we described an agenda according to which agents add assets on the negotiation table gradually over

time. Alternatively, suppose that agents add DM output on the negotiation table gradually over time and

bargain over the price of each unit. This agenda is still consistent with gradual bargaining over assets if y is

interpreted as an (illiquid) asset traded over-the-counter, as in Du¢ e et al. (2005) and Lagos and Rocheteau

(2009). In that case each Pareto frontier in the de�nition of the gradual bargaining problem is indexed by

the amount of DM good, �y, that is up for negotiation at a given point in time. With no loss in generality

we normalize ub0 = us0 = 0.

Lemma 2 Assume agents are bargaining gradually over the DM good. For a given asset holding z, the

bargaining problem is a collection of Pareto frontiers,


H(ub; us; �y) = 0; �y 2 [0; y�]

�
where:

H(ub; us; �y) =

�
u(�y)� �(�y)� ub � us if us � z � �(�y)
z � � � u�1

�
ub + z

�
� us otherwise

; (23)

for all us � min
�
u(�y)� �(�y); z � � � u�1(z)

	
.

As long as the DM output to be negotiated is su¢ ciently small relative to the consumer�s real balances,

z � u(�y), then the Pareto frontier is entirely linear. It is Pareto optimal to trade �y � y� and the real balances

18We compare the two solutions taking into account risk of termination when bargaining gradually. Once can generalize
our result that showing that there exists �� 2 (0;+1) such that for all � > �� buyers prefer gradual bargaining to all-at-once
bargaining.
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are used to split the surplus. In contrast, if z < u(�y) then the payment constraint binds if the seller receives

a su¢ ciently large surplus. In that case the Pareto frontier is strictly concave.

The alternative ultimatum o¤er game associated with this agenda is analogous to the one described

earlier. It is composed of N rounds with two stages each. In the �rst stage an o¤er is made; in the second

stage the o¤er is accepted or rejected. The producer can now transfer at most y�=N units of DM goods

for some liquid assets in each round. The transfer of liquid asset is also subject to a feasibility constraint

according to which the consumer cannot transfer more liquid asset than what he holds in a given round

(taking into account the assets spent in earlier rounds). So the game ends when either the N th round has

been reached or the liquid assets of the consumer have been depleted. The identity of the proposer (the

consumer or the producer) alternates across rounds.

We now apply the gradual solution to this bargaining problem.

4y

5y

3y

2y
1y

Gradual bargaining
path

*y

su

bu

Figure 5: Bargaining gradually over output

Proposition 5 (Gradual bargaining over DM output) Suppose agents bargain gradually over the DM

output. The payment function is

p(y) =
1

2
[u(y) + �(y)] :

The outcome of the bargaining is given by y that solves p(y) = min fz; p(y�)g.

Proposition 5 shows that the payment made by the consumer is the arithmetic mean of the utility of

the consumer and the cost of the producer. As a result, the surplus is shared equally between the consumer

and the producer and the gradual bargaining path is linear. Equivalently, the gradual bargaining solution

coincides with the egalitarian solution. The proportional solution has been used extensively in the monetary
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literature since Aruoba et al. (2007) because of its tractability and strong monotonicity property. However,

two types of criticisms have been formulated against the proportional solution. First, it is not scale invariant.

Second, it does not have strategic foundations in terms of an extensive form game. Proposition 5 shows that

these two criticisms are unwarranted since our solution is ordinal and has strategic foundations in terms of

an alternating o¤ers game.19

We now endogenize the agenda by adding a stage prior to the negotiation where one of the players is

picked at random to choose whether to bargain gradually over the DM good or the asset. For simplicity, we

assume that there is no constraint on the horizon of the negotiation.

Proposition 6 (Endogenous agenda). Suppose that either the consumer or the producer of the DM good

has to choose the agenda of the negotiation. The consumer chooses to bargain gradually over the asset while

the producer chooses to bargain gradually over the DM good.

If we let the asset owner (the consumer) decide the agenda of the negotiation, then he will decide to

bargain gradually over his asset holdings, one unit of asset at a time. In contrast, the producer would prefer

to bargain gradually over the DM good. In both cases, the agent choosing the agenda prefers to negotiate

gradually the asset or good he has to o¤er.

6 Asset prices and negotiability

We now move to the general equilibrium implications of the gradual bargaining protocol for asset prices,

allocations, and welfare. We �rst study the pricing of Lucas trees (d > 0 and � = 0) in a New-Monetarist

model with idiosyncratic spending opportunities (e.g., Geromichalos et al., 2007; Lagos, 2010) taking the

negotiability of assets, �, as exogenous. In the second part we endogenize negotiability by describing it as a

costly investment decision.

In order for negotiability to matter, we assume that the total time for the negotiation is a random variable

�� , which is exponentially distributed with mean 1=�. It is realized at the beginning of a match. It captures

the idea that agents might have more or less time to negotiate the sale of their assets in order to take

advantage of idiosyncratic expenditure opportunities. Our assumption is also reminiscent to the existence

of a risk of breakdown in bargaining models with alternating o¤ers (e.g., Osborne and Rubinstein, 1990).

Finally, throughout the section we assume that the buyer�s bargaining power is � 2 [0; 1].
19The strategic foundations we present in section 4.1 provide microfoundations for the egalitarian solution in that con-

text. Dutta (2012) also proposes non-cooperative foundations for the Kalai solution, however not in the spirit of Rubinstein�s
alternating-o¤ers game since players must simultaneously coordinate on an allocation.
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6.1 Negotiability, asset prices, and welfare

We rewrite the portfolio problem, (4), as a choice of DM consumption, taking into account that the amount

of assets a consumer can sell, ��� , is exponentially distributed, and the payment function, p(y), is given by

(20). It becomes:

max
y�0

�
�sp(y) + �

Z y

0

e�
�
� p(x)

�u0(x) [u0(x)� �0(x)]
�u0(x) + (1� �)�0(x)dx

�
: (24)

From (24) the consumer chooses asset holdings, and hence DM output, to maximize his expected surplus from

trade, net of the cost of holding liquid assets, sp(y). The second term in the objective function corresponds

to the consumer�s expected surplus from a DM trade by holding p(y) assets (its full derivation is given in

the Appendix). For any x � y, with probability e��p(x)=� there is su¢ cient time to negotiate p(x) units

of assets, and the consumer can purchase x units of DM good by selling his �rst p(x) units of asset; the

terms of trade is then given by the gradual bargaining solution. The gradual bargaining solution keeps the

choice of asset holdings tracatable. Indeed, the objective function is continuous and strictly concave for all

y 2 (0; y�).

By market clearing,

p(y) �
�
1 + �

�� s

�
Ad, " = " if s > 0, (25)

where we have used that the cum-dividend price of the asset is �+d = (1+�)d=(�� s). When s > 0, buyers

hold exactly p(y) = (� + d)A. If s = 0, then from (27) y = y�. The total supply of the asset, (� + d)A,

is larger or equal than p(y�) since assets can also be held as a pure store of value. An equilibrium can be

reduced to a pair (s; y) solution to (24) and (25). We measure social welfare as the sum of surpluses in

pairwise meetings but do not take into account the output from Lucas trees, Ad:

W = �

Z y

0

e�
�
� p(x) [u0(x)� �0(x)] dx: (26)

Proposition 7 (Asset prices and welfare.) An equilibrium exists and is unique.

1. If Ad � �p(y�)=(1 + �) then s = 0 and y� is implemented in a fraction e�
�
� p(y

�) of all matches. Social

welfare is independent of Ad but it increases with � and decreases with �.

2. If Ad < �p(y�)=(1 + �) then

s = ��e�
�
� p(y)`(y) > 0; (27)

where `(y) = u0(y)=�0(y)�1, and y� is never implemented. The asset spread, s, decreases with Ad and

� but increases with �. Social welfare increases with Ad and � but decreases with �.
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3. Suppose � = 0 and � = 1=2. If Ad � �p(y�)=(1 + �) then equilibrium under gradual bargaining

implements the �rst best. In contrast, the equilibrium under Nash bargaining never implements the

�rst best, i.e., y < y� for all A > 0.

Proposition 7 identi�es two regimes. In the �rst regime consumers hold enough wealth to buy y� provided

that the negotiation lasts long enough, with probability e�
�
� p(y

�). As � decreases or � increases then the

fraction of matches where y� is implemented increases and welfare increases. The asset price, however, is

not a¤ected by � or �. In the second regime consumers hold less than p(y�) and hence trades are ine¢ cient

in all matches. From (27) the interest rate spread is the product of four components: the search friction, �,

the bargaining power, �, the negotiability friction, e�
�
� p(y), and the marginal value of wealth in the DM. It

decreases with A, and it increases with both � and �.

The last part of Proposition 7 compares equilibria under symmetric Nash bargaining and equilibria

under symmetric gradual Nash bargaining when � = 0, i.e., there is enough time to negotiate the whole

asset portfolio. Under gradual bargaining, if A is su¢ ciently large, then y = y�. In contrast, under Nash

bargaining, y � ~y < y�, the equilibrium never achieves �rst best. Indeed, the asset is misallocated since a

fraction of the asset supply is held by producers even though they have no liquidity needs while consumers

are liquidity constrained. This result shows that gradual bargaining is not only desirable for asset owners to

increase their surplus (Proposition 4), it is also socially desirable to avoid the misallocation of assets.

6.2 Endogenous negotiability

We now endogenize the negotiability of assets, �, by allowing consumers to choose the speed at which their

assets are negotiated and transferred.20 Buyers choose � when a match is formed but before �� is realized,

where �� is exponentially distributed with mean 1=�. There is a cost,  (�), associated with the speed of the

transaction, where  (0) =  0(0) = 0,  0(�) > 0 and  00(�) > 0. We can think of it as the cost of computer

power to execute a trade and transfer assets safely.

The consumer�s choice of asset holdings and speed of negotiation can be written compactly as:

max
zb;�

�
�szb + �

�
� (�) + Sb(zb; �)

�	
; where Sb(zb; �) =

Z y

0

e��
p(x)
�
�u0 (x) [u0 (x)� v0 (x)]
�u0(x) + (1� �)�0(x) dx; (28)

i.e. Sb(zb; �) is the expected surplus of a consumer holding zb assets when the speed of negotiation is � and

y = p�1(zb). The novelty in (28) is the �rst term in squared brackets that represents the cost to invest

in a technology to negotiate assets at speed �. Despite the lack of concavity of the problem we can still

20Blockchain technologies provide us with a topical example, allowing market participants to choose the speed at which they
want to �nalize transactions. For instance, in the case of crypto-currencies, sellers of currencies can choose among a menu of
fees to remunerate the miners who will check their transactions and add them to the blockchain.
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fully characterize its solution and in the Appendix (see Lemma 5) we show that it is generically unique.

Moreover, as the cost of holding asset, s, increases consumers reduce both their asset holdings and the speed

of negotiation. A reduction in search frictions raises the demand for assets and the speed of negotiation.

The following proposition shows the existence of a unique general equilibrium with endogenous nego-

tiability, and compares the equilibrium outcome to the constrained e¢ cient �. The speed of negotiation is

constrained e¢ cient if it maximizes the social welfare subject to the same cost as private agents,  (�), and

subject to the same trading protocols in the DM and CM. It means that the pricing in the DM is given by

p(y) and the asset spread in the CM is a market clearing price.

Proposition 8 (Equilibrium with endogenous negotiability.)

1. There exists a steady-state equilibrium and the equilibrium spread, s, is uniquely determined. If Ad �

�p(y�)=(1 + �) then s = 0 and � is maximum. If Ad < �p(y�)=(1 + �) then an increase in A reduces s,

but raises �.

2. Asset negotiability is constrained-e¢ cient if and only if Ad � �p(y�)=(1 + �) and � = 1.

The �rst part of the above proposition shows that an increase in A reduces the spread s, which leads to a

higher �. Intuitively, if consumers have to sell more assets, they will �nd it worthwhile to increase the speed

at which they can negotiate those assets. The second part shows that equilibrium negotiability is constrained

e¢ cient if and only if A is abundant, so that s = 0, and consumers have all the bargaining power. This

result is intuitive since the costly investment in asset negotiability creates a holdup problem that can only

be solved by having the ones making the investment receive the whole match surplus. However, if A is low

so that s > 0, then the investment in � is ine¢ ciently low even when � = 1. This ine¢ ciency occurs because

of a pecuniary externality according to which the demand for the asset, and hence its price, increases with

�. As the asset becomes more valuable, consumers�wealth increases, which relaxes their liquidity constraint.

The planner understands this externality and hence chooses a � larger than the one that consumers would

choose even if they had all the bargaining power.

7 Gradual bargaining and prices in OTC markets

In order to illustrate the versatility of our approach we now reinterpret our model as one where agents,

called investors, have idiosyncratic valuations for an illiquid asset that can only be traded through pairwise

meetings, similar to Du¢ e, Garleanu, and Pedersen (2005, 2007). At the end of each period, each agent

receives an equal endowment of Lucas trees, 
, that pay o¤ at the end of the following period. The payo¤
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from holding ! units of trees is "f(!) where " 2 f"h; "`g is an idiosyncratic valuation with "h > "` > 0.21

Upon entering the DM half of the agents draw "h while the other half draw "`. These Lucas trees can only

be traded in an over-the-counter market, through pairwise meetings, in the DM. The e¢ cient trade size is

such that "hf 0(
 + y�) = "`f
0(
� y�).

In accordance with the literature on OTC markets, investors can either meet directly or they can trade

through dealers. Dealers are risk-neutral agents with linear preferences for the numeraire who have access

to a competitive interdealer market in the DM.22 Upon contact with a dealer, investors can buy and sell

assets at the competitive interdealer price in terms of the numeraire, q, in exchange for the payment of an

intermediation fee, ', also expressed in the numeraire.

Investors, who cannot commit, must accumulate liquid assets to pay for illiquid Lucas trees. The liquid

asset takes the form of �at money with d = 0 and � 2 (� � 1;1). We denote i � (1 + �)(1 + �)� 1 as the

cost of holding money. We assume that dealers can commit to deliver the assets they purchase on behalf of

investors in the interdealer market.

The matching technology in the OTC market is described as follows. We denote �u the product of

the probability of drawing a high (low) valuation times the probability of being matched with a low (high)

valuation investor. We denote �d the probability of drawing a high (low) valuation times the probability of

meeting a dealer.

We need to make assumptions on how agents bargain in these di¤erent meetings. For simplicity we

assume that � = 0, which corresponds to the case where the time constraint never binds. In matches

between investors, we follow our approach in Section 6 and assume that agents bargain gradually over the

liquid asset, here �at money. We later compare the equilibrium outcome to the one where agents bargain

gradually over the illiquid asset. In matches between a dealer and an investor, we assume that the agents

bargain gradually over the asset that the investor wants to sell, i.e., money in matches with h-investors and

the illiquid asset in matches with `-investors. As shown in Proposition 6, this choice corresponds to each

investor�s preferred agenda.

Consider a match between an h-investor and an `-investor. The solutions from the previous sections

apply, where we de�ne u(y) � "h [f(
 + y)� f(
)] and �(y) � "` [f(
)� f(
� y)]. It follows that the

payment function for the illiquid asset is

21One can interpretation f(!) as a production function and ! as physical capital, as in Nosal and Rocheteau (2011, 2017) or
Wright et al. (2017). In that case " is an idiosyncratic productivity term. One can also think of f(!) as some reduced form
utility for di¤erent services provided by the asset, e.g., liquidity and hedging services, as in Du¢ e, Garleanu, and Pedersen
(2005) and Lagos and Rocheteau (2009).
22 In our environment, dealers are not endowed with Lucas trees. In a version with long-lived DM assets that can also be

traded in the CM Lagos and Zhang (2018) show that dealers might have incentives to hold those assets in equilibrium since
they are better at trading them.
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pu(y) =

Z y

0

2"`f
0(
� x)"hf 0(
 + x)

"hf 0(
 + x) + "`f 0(
� x)
dx: (29)

Hence, at the margin, the price of an illiquid asset is

pu0(y) = 2

�
1

"`f 0(
� y)
+

1

"hf 0(
 + y)

��1
:

The price is the harmonic mean of the marginal productivities of the buyer and the seller. At the e¢ cient

quantity, the price is the marginal productivity of both agents, pu0(y�) = "hf
0(
 + y�).

We now turn to a match between an h-investor holding z real balances and a dealer. An allocation,

(y; 'a), speci�es a quantity of assets purchased by the dealer on behalf of the investor and a payment

(in real balances) equal to qy + 'a, where q + 'a=y is interpreted as an average ask price, and 'a is the

intermediation fee to the dealer associated with this ask price. The allocation is subject to the feasibility

constraint, qy + 'a � z.23 The surplus of the investor is ub = "hf(
 + y) � qy � 'a � "hf(
) while the

dealer�s pro�ts are ud = 'a. Applying the gradual bargaining solution where the agenda speci�es that the

h-investor sells his real balances gradually over time, the marginal surplus of the buyer is (see Appendix for

detailed derivations)

ub0(z) =
"hf

0 (
 + y) =q � 1
2

; (30)

if y � ~yhq where "hf
0 �
+ ~yhq � = q and ub0(z) = 0 otherwise. According to (30) the increase in the buyer�s

surplus from an additional unit of real balances is half of the gains that the buyer would enjoy by purchasing

assets in the interdealer market directly. By the de�nition of the buyer�s payo¤, ub0(z) = "hf
0(
+y)@y=@z�1.

Substituting this expression into (30) and integrating, the total payment for y units of assets is

pa(y) = 'a(y) + qy = q

Z y

0

2"hf
0 (
 + x)

"hf 0 (
 + x) + q
dx;

for all y � ~yhq . This payment function is increasing and concave in y. Hence, the average ask price decreases

with trade size and increases with the investor�s valuation, "h.

In a match between an `-investor and a dealer, an allocation, (y; 'b), speci�es the quantity y of assets

purchased by the dealer in exchange for a payment qy � 'b, where q � 'b=y is the average bid price and

'b is the intermediation fee to the dealer associated with this bid price. The investor�s surplus is us =

"`f(
� y) + qy�'b � "`f(
) and the dealer�s pro�ts are 'b. If the `-investor sells his assets gradually over

time, then the total payment function is given by the egalitarian solution:

pb(y) = qy � 'b(y) = qy + "`f(
)� "`f(
� y)
2

;

23This feasibility constraint di¤ers from the one in Lagos and Zhang (2017) where it is assumed that qy � z and 'a is �nanced
with credit repaid in the CM. This formulation makes their model with linear f and Nash bargaining more tractable.
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for all y � ~y`q where "`f
0 �
� ~y`q� = q. This function is increasing and convex in y. Hence, the average bid

price is increasing in y. The optimal y maximizes "`f(
� y) + pb(y), i.e., assuming an interior solution,

q = "`f
0(
� yd); (31)

where we use yd to denote the amount of assets traded between an `-investor and a dealer. In equilibrium,

this will also be the amount traded between an h-investor and a dealer.

The investor�s optimal choice of real balances, assuming an interior solution, satis�es a generalized version

of (27) that is derived in the Appendix, i.e.,

i =
�u

2

�
"hf

0(
 + yu)

"`f 0(
� yu)
� 1
�
+
�d

2

"
"hf

0 �
+ yd�
"`f 0(
� yd)

� 1
#
; (32)

where yu = min
�
y�; (pu)�1(z)

	
is the amount of asset traded in direct trades, yd = min

�
~yhq ; (p

a)�1(z; q)
	
is

the amount of asset traded in intermediated trades, and we have replaced q by its expression above. The �rst

term on the right side of (32) is the marginal bene�t of real balances to the investor in direct trades. The

second term is the marginal bene�t in intermediated trades. An equilibrium is a list (z; yu; yd; q) solution to

(31), (32), and the bargaining outcomes.

Consider �rst an OTC market without dealers, �d = 0.24 The trade size is uniquely determined by (32)

and it is such that @yu=@i < 0. Moreover, as i approaches 0, yu approaches y�. The same results hold

if agents bargain gradually over the illiquid asset since in that case the bargaining solution coincides with

the proportional solution. However, the trade size is larger if agents bargain gradually over the liquid asset

instead of the illiquid one. This is another illustration of how the agenda of the negotiation matters for

allocations and welfare. If agents bargain according to Nash, then yu < y� even when i is driven to 0. So

trade volume is ine¢ ciently low. Gradual bargaining leads to larger trade sizes and larger trade volume

by allowing agents to capture some of the gains from trade that each unit of real balances generates. We

summarize these results in the following proposition.

Proposition 9 (Gradual bargaining in OTC markets) Suppose �d = 0.

1. (Gradual bargaining over real balances) If ("h � "`)=(2"`) > i=�, then there exists a unique

steady-state monetary equilibrium. It is such that y approaches y� as i approaches 0.

2. (Gradual bargaining over illiquid assets) If ("h � "`)=("h + "`) > i=�, then there exists a unique

steady-state monetary equilibrium. It is such that y approaches y� as i approaches 0. The trade size, y,

is lower if agents bargain gradually over the DM asset instead of bargaining gradually over real balances.
24Models of OTC markets without dealers include Afonso and Lagos (2016), Hugonnier, Lester, and Weill (2017), Uslu (2017),

and Wright, Xiao, and Zhu (2018).
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3. (Nash bargaining) In any steady-state monetary equilibrium, y < y�.

Consider the other polar case of a pure dealer market where all trades are intermediated, �u = 0.25 From

(32), the equilibrium trade size is the solution to:

"hf
0 �
+ yd�

"`f 0(
� yd)
� 1 + 2i

�d
; " = " if yd > 0. (33)

The trade size decreases with i and increases with �d. As i goes to 0 then yd tends to y�. In accordance

with Proposition 9, the Friedman rule implements the �rst best trade size under gradual bargaining while it

fails to do so under Nash bargaining. From (31) the interdealer price decreases with i because as i goes up,

investors reduce their real balances, which reduces the demand for illiquid assets.

Finally, consider an economy with both �u > 0 and �d > 0. First, replacing q by its expression given by

(31) into pa(y), we obtain pu(y) < pa(y) for all y � yd. For the same trade size, buyers pay less in direct

trades than in intermediated trades. It follows that for i close to 0, investors trade the �rst best in direct

trades, yu = y�, while they are liquidity constrained in trades with dealers, i.e., yd solves (33). So for low

interest rates, an increase in i does not a¤ect prices and trade sizes in direct trades but it reduces trade sizes

in intermediated trades.

8 Bargaining with multiple assets and endogenous agenda

In Section 7 we described an economy with two assets: an illiquid assets traded in an OTC market and a

liquid asset that can be traded in both a centralized market and an OTC market. We now extend our model

to have multiple liquid assets in order to investigate cross-sectional di¤erences in asset prices. We will show

that our model can generate a pecking order of payments and rate-of-return di¤erences across assets.

There are J types of one-period lived Lucas trees indexed by j 2 f1; :::; Jg, where each Lucas tree born

in t� 1 pays o¤ one unit of numeraire in the CM of t. The supply of each Lucas tree is denoted Aj and the

new Lucas trees are distributed to buyers in a lump-sum fashion at the beginning of each CM. We index �at

money by j = 0. Since assets are negotiated gradually over time, a natural dimension to distinguish di¤erent

assets is the time it takes to negotiate their sale, which includes assessing and authenticating the asset and

securing the transfer of the ownership. The negotiability of asset j is �j .26 We rank assets according to their

negotiability, �0 � �1 � �2 � ::: � �J . So, by assumption, �at money is the most negotiable asset. In each

25This corresponds to the version of the model by Lagos and Rocheteau (2007, 2009), and Lagos and Zhang (2018).
26The idea that it is costly to authenticate assets has been formalized recently by Lester, Postlewaite, and Wright (2012).

In their model, the recognizability cost in terms of utils is incurred before matches are formed and does not interfere with the
negotiation. In our model, authentication is a time cost while agents bargain that delays an agreement.
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pairwise meeting, the negotiation ends at time �� where �� is exponentially distributed with mean 1=�. The

consumer�s bargaining power is constant over time and equal to �.27

We let consumers choose the agenda of the negotiation de�ned as the order according to which assets

are sold. The amount of asset of type j up for negotiation at time � is denoted !j(�) and total wealth up

for negotiation is !(�). They obey the following law of motion:

!0(�) =
JX
j=0

!0j(�)

!0j(�) = �j�j(�) for all j 2 f0; 1; :::; Jg; (34)

where �j(�) 2 [0; 1] is the fraction of time devoted to the sale of asset j at time � and
PJ

j=0 �j(�) = 1.

Moreover, feasibility implies �j(�) 2 [0; 1] if !j(�) < aj and �j(�) = 0 otherwise. In words, an agent can

add asset j on the negotiating table at time � only if he has not sold all his holdings of asset j prior to � .

Replacing � by !0j in (19), the change in the consumer�s consumption and the change in the overall payment

over time are

y0(�) =
�u0(y) + (1� �) v0(y)

u0(y)v0(y)
!0 (35)

p0(�) = !0; (36)

if y(�) < y� and y0(�) = p0(�) = 0 otherwise.

The expected surplus of a consumer in a DM match with portfolio a = [aj ]Jj=0 is:

S(a) =

Z +1

0

�e��x
Z x

0

fu0 [y(�)] y0(�)� p0(�)g d�dx = �

Z +1

0

e��� `[y(�)]!0(�)d� : (37)

Over a small time interval of length d� the consumer raises his consumption by y0(�)d� , where consumption

is valued according to the marginal utility u0(y), and increases his payment by p0(�)d� � !0(�)d� . The

negotiation ends at some random time, x, that is exponentially distributed. From (35)-(36) y(�) and p(�)

depend on the portfolio a through the feasibility constraints according to which if !j(�) < aj then �j(�) = 0.

The right side of (37) is obtained by changing the order of integration in the middle term and replacing y0(�)

and p0(�) by their expressions given by (35) and (36). It states that the consumer�s surplus is the discounted

sum of the marginal surpluses along the bargaining path where the discount rate is the survival rate of the

negotiation, e��� .

In order to characterize the optimal strategy to sell assets we denote T0 = 0 and

Tj (a) =

j�1X
k=0

ak
�k
for all j 2 f1; 2; :::; J + 1g: (38)

27One could allow � to be a function of � , which would not a¤ect our results qualitatively. One could also assume that �
varies with the type of asset that is currently under negotiation. Such extension would allow our theory to encompass the
explanations for rate-of-return di¤erences across assets by Zhu and Wallace (2007) and Nosal and Rocheteau (2011).
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So Tj is the time that it takes to sell the �rst j � 1 most negotiable assets.

Lemma 3 (Pecking order) For any portfolio a, the optimal choice �� = [��j ] is given by

��j (�) =

�
1 if Tj < � � Tj+1
0 otherwise

:

Lemma 3 shows that it is optimal to adopt a pecking order to sale assets.28 Consumers start paying with

money. When their money holdings are exhausted, they start selling asset 1. And so on. Hence, our theory

endogenizes and generalizes cash-in-advance constraints. In a fraction 1 � e��T1 of matches only money is

used to �nance consumption, where T1 is endogenous and depends on a. In a fraction e��T1 � e��T2 of

matches both money and type-1 Lucas trees serve as means of payments. And so on. Given this pecking

order the maximized surplus of the consumer is:

S(a) = �
JX
j=0

�j

Z Tj+1

Tj

e��� `[y(�)]d� : (39)

Over the time interval [Tj ; Tj+1] agents negotiate asset j where the speed of the negotiation is given by �j .

The asset owner gets a fraction � of the surplus of the negotiation.

We now turn to the asset pricing implications of this pecking order. The portfolio problem in the CM is

given by

max
a�0

f�sa+ �S(a)g ; (40)

where s = [sj ] is the vector of asset spreads, i.e., sj = (i� ij) = (1 + ij) where the nominal interest rate of

asset j is ij . For �at money, i0 = 0 and s0 = i. According to (40) the consumer maximizes his expected DM

surplus net of the costs of holding assets as measured by the spreads [sj ]. The FOCs of the maximization

problem (40) are:

sj = �
@S(a)

@aj
: (41)

The left side of (41) is the opportunity cost of holding asset j. The right side is the probability � that the

consumer receives an opportunity to spend, �, times the marginal liquidity value from holding asset j. The

expression of this last term is given in the following lemma.

Lemma 4 The marginal value of asset j to a consumer with portfolio a is

@S(a)

@aj
=

negotiability valuez }| {
��

JX
k=j+1

Z Tk+1

Tk

(�j � �k)
�j

e��� `[y(�)]d� +

liquidity valuez }| {
�e��TJ+1`[y(TJ+1)]: (42)

28For a pecking-order theory of payments based on informational asymmetries between consumers and producers, see Ro-
cheteau (2011).
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From (42), holding an additional unit of aj has two bene�ts to the consumer. First, the consumer has

more wealth, which relaxes his liquidity constraint and allows him to consume more if the negotiation is not

terminated before the whole portfolio has been sold. This e¤ect, which corresponds to the liquidity value of

the asset, is captured by the last term on the right side, which is analogous to the expression for the spread in

the one asset case. This term is common to all assets, and hence it cannot explain rate-of-return di¤erences.

The novelty is given by the �rst term according to which asset j speeds up the negotiation relative to less

negotiable assets of types j + k. We interpret this term as the negotiability value of the asset. This term

is asset speci�c, as it depends on �j , and it can potentially help explain di¤erences in rates of return across

assets.

By market clearing aj = Aj for all j � 1. Hence, an equilibrium can be reduced to a list
D
a0; fsjgJj=1

E
solution to (41). In the following proposition we measure the liquidity of an asset by its velocity or turnover

de�ned as

Vj �
�
R +1
0

�e��x
R x
0
!�0j (�)1f!�(�)<p(y�)gd�dx

Aj
: (43)

The numerator corresponds to the aggregate quantity of asset j sold in pairwise meetings while the denom-

inator is the supply of the asset.

Proposition 10 (The negotiability structure of asset yields.) For all fAjgJj=1 if �0 > �1 then there

is a �� > 0 such that for all i < �� there exists a unique steady-state monetary equilibrium with aggregate real

balances A0(i) > 0. Let 
1 = A0(i) and for each j = 2; ::; J , let 
j = A0(i) +
Pj�1

k=1Ak.

1. If 
j+1 < p(y�) and �j > �j+1, then sj > sj+1. If 
j+1 � p(y�), then sj+k = 0 for all k � 0.

2. If �j > �j+1 and p(y�) > 
j, then Vj > Vj+1. If p(y�) � 
j then Vj = 0.

3. As � approaches 0, jsj � sj0 j approaches 0 for all j; j0 2 f0; :::; Jg. Asset velocity, Vj, approaches �

for all j such that 
j � p(y�), 0 for all j such that 
j � p(y�), and � [p(y�)� 
j ] =Aj for j such that

p(y�) 2 (
j ;
j+1).

Proposition 10 has several implications. First, �at money is valued for low i irrespective of the supply

of Lucas trees. Even if the capitalization of all Lucas trees,
PJ

k=1Ak, is larger than liquidity needs, p(y
�),

money is useful because it allows agents to secure some consumption when the time horizon of the negotiation

is short.

Second, even though all Lucas trees yield identical dividends, our model generates rate-of-return dif-

ferences across assets. Provided that asset supplies are not too large, assets with a high negotiability will
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command a lower interest rate than assets with a low negotiability, i.e., ij < ij+1 if �j > �j+1. We obtain

this result even though there is no informational asymmetries regarding the intrinsic values of the assets.

The key components of our theory is that negotiation takes time as assets are sold gradually, and not all

assets can be sold at equal speed due to technological di¤erences to authenticate and transfer assets. Part 2

of Proposition 10 shows that assets that are more negotiable have a higher velocity, which is a consequence of

the endogenous pecking order. As a result, there is a positive correlation between velocity and asset prices.

Finally, Part 3 of Proposition 10 considers the limit when the expected time horizon of the negotiation

becomes arbitrarily large. If the risk that the negotiation ends before the portfolio of assets has been sold

goes to zero, then the rates of return of all assets converge to the same value, i.e., there is rate of return

equality. In that case the negotiability of assets, and the order according to which they are negotiated, does

not a¤ect their rates of return. The order at which assets are sold, however, matters for velocities. Indeed,

only a fraction of assets are used for transactions and those assets have a maximum velocity equal to �.

There is a fraction of assets that are not used for transaction so that their velocity is 0.

9 Two applications

We now propose two applications of our model with multiple assets. In the �rst application, we study the

e¤ects of open-market operations in equilibria where money and interest-bearing government bonds coexist.

The second application considers an economy with two currencies that di¤er by their in�ation rate and their

negotiability, allowing us to break exchange rate indeterminacy.

9.1 Money and bonds

We now illustrate some novel comparative statics of our model regarding the e¤ects of open-market operations

(OMOs) on aggregate output. We consider the case where J = 1 with asset 1 being interpreted as short-term

government bonds. We start with the case where �� is deterministic, which will allow us to build intuition

for the results, and we will return to the case where �� is exponentially distributed later.

The buyer�s portfolio problem in the CM is given by

max
(a0;a1)

�ia0 � s1a1 + �fu[y(a0; a1)]� p[y(a0; a1)]g;

where DM output is

y(a0; a1) =

8<: p�1 (�0��)
p�1 [a0 (1� �1=�0) + �1�� ]
p�1 (a0 + a1)

if ��
� a0=�0
2 (a0=�0; a0=�0 + a1=�1]
� a0=�0 + a1=�1

.

While a1 = A1 by market clearing, a0 is endogenous and depends on policy through both i and A1. We

interpret an open-market operation as a change in A1 associated with a change of opposite sign of the money
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supply. Because money is neutral, only the change in A1 is relevant (e.g., Rocheteau, Xiao, and Wright,

2018). We distinguish four regimes represented in the parameter space (�� ; A1) in Figure 6, where y1 satis�es

i = �� [(�0 � �1)=�0] [u0(y)=v0(y)� 1] and y2 satis�es i = �� [u0(y)=v0(y)� 1].

In regime I, � = T1, the buyer holds just enough real balances to spend them all by the time the

negotiation ends. In such an endogenous "cash-in-advance" regime, y = p�1(a0), i = ��`(y), and s1 = 0.

In regime II, �� 2 (T1; T2), only a fraction of bonds can be sold before the negotiation ends. Hence, s1 = 0.

Output and real balances solve y = p�1 [a0(1� �1=�0) + �1�� ] and i = (�0 � �1)��`(y)=�0. In both regimes I

and II a change in A1 has no e¤ect on interest rates and output. In regime IV, � > T2, changes in A1 are also

ine¤ective. In such equilibria the negotiability constraint does not bind. Hence, y = min
�
p�1(a0 + a1); y

�	,
s1 = i, and i1 = 0.

We will now focus on regime III, T2 = �� , where the consumer�s portfolio is sold in exactly � units of time.

The following proposition describes the e¤ects of an open-market operation and money growth on output

and interest rates.

Proposition 11 (Coexistence of money and interest-bearing bonds and policy.) A monetary equi-

librium with T2 = �� exists if

�1 [�0� � p(y2)]
�0 � �1

< A1 < min

�
�1 [�0� � p(y1)]

�0 � �1
; �1�

�
and

p(y1)

�0
< �� <

p(y2)

�1
.

Output and the interest-rate spread are determined recursively according to:

y = p�1
�
�0�� �

�
�0 � �1
�1

�
A1

�
s1 =

�0
�1
i� ��

�
�0 � �1
�1

�
`(y):

An open-market sale of bonds raises i1 and reduces y. An increase in the money growth rate has no e¤ect

on output. Assuming � and � are close to 0, money growth a¤ects nominal interest rates according to

@i

@�
� 1, @i1

@�
� �1 � �0

�1
< 0:

As A1 increases buyers reduce a0 so that they are still able to sell their whole portfolio in � units of

time. But bonds take more time than money to be sold, and hence buyers�consumption decreases. Formally,

a0=�0 + A1=�1 = �� and hence @a0=@A1 = ��0=�1 < �1. So real balances fall by more than the increase in

the bond supply. This type of equilibrium captures the view that an open market sale of bonds reduces the

overall liquidity of the economy and hence it reduces aggregate output.

In this equilibrium where agents would hold more real balances if they were not constrained by �� , an

increase in the money growth rate does not a¤ect real balances. The interest rate on illiquid bonds increases
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Figure 6: Typology of equilibria with money and bonds

one-to-one by the Fisher e¤ect. Interestingly, the interest rate on liquid government bonds decreases with

in�ation according to the Mundell-Tobin e¤ect.

By �xing the time horizon of the negotiation we have been able to isolate the negotiability e¤ect of

OMOs. We now present a numerical example where �� is exponentially distributed to allow for both the

negotiability and liquidity e¤ects of OMOs.29 The black line on Figure 7 plots y as a function of �� when

A1 = 0:15. Following an increase in A1 (from 0.15 to 0.35) consumers reduce their real balances but T2

increases. For low values of �� , y is not a¤ected by the change in A1. If �� falls into an intermediate range,

then output is lower. This negotiability e¤ect of OMOs corresponds to the gray region in Figure 7: the

OMO decreases output by crowding out a highly negotiable asset, money, for a less negotiable asset, bonds.

If �� is big enough, output is higher through a liquidity e¤ect, as visible in the blue region. The impact on

aggregate output depends on the relative sizes of the negotiability and liquidity e¤ects, which are eventually

determined by the distribution of �� . In our example, the weight on the blue region is high enough for the

liquidity e¤ect to dominate, causing the expected aggregate output to increase overall.

9.2 Multiple (crypto-)currencies

Our model can be applied to economies with multiple �at monies. This application is topical given the

development of multiple cryptocurrencies, such as Bitcoins, Litecoin, Ethereum, and others. A transaction

29Preferences are de�ned by u(y) = 2
p
y and v(y) = (2=3)y3=2, thus y� = 1. We pick � = 1, � = 0:5, �0 = 2, �1 = 1, i = 0:15.

� = 3:33, so that the mean time horizon is 0.3.
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Figure 7: Stochastic case with money and bonds: Output distribution

with cryptocurrencies requires con�rmation that takes time and con�rmation times vary across currencies.30

Our negotiability parameter, �, is a proxy for the time it takes to transfer the ownership of coins.

We now consider an economy with two currencies, currency 0 with money growth rate �0 and currency

1 with money growth rate �1. Currency 0 has lower con�rmation times and can be transferred faster than

currency 1, i.e., �0 > �1. We focus on steady-state equilibria where the rate of return of each currency is

constant. If �0 � �1 then agents will not want to hold the currency 1. Hence, we focus on the case where

�0 > �1, i.e., currency 1 has a lower in�ation rate than currency 0.

We start with the simple case where �� is deterministic. For the two monies to coexist the equilibrium

must feature �� � T2 since otherwise one of the two currencies would have no utility as means of payment at

the margin. The FOCs are

�i0 �
�

�0
+ ��`(y) � 0, �= � if a0 > 0 (44)

�i1 �
�

�1
+ ��`(y) � 0, �= � if a1 > 0: (45)

where � � 0 is the Lagrange multiplier associated with the negotiability constraint. If the negotiability

constraint does not bind, � = 0, then (44)-(45) imply i0 = i1. The two currencies must have the same rate

of return, which requires �0 = �1 in a steady-state equilibrium. If the negotiability constraint binds, � > 0,

then the two currencies will be held only if i0 > i1. Moreover, by market clearing, the values of the two

currencies solve �0;tA0;t + �1;tA1;t = p(y) and the nominal exchange rate is et = �0;t=�1;t.

Proposition 12 (Dual currency economy.)

30For instance, it takes on average 10 minutes with Bitcoins to receive a network con�rmation. This transfer time is lowered
to 2.5 minutes with Litecoins, 2 minutes for Monero, 14 seconds for Ethereum, and 3.5 second for Ripple.
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1. Suppose i0 = i1 = i. If �0�� > p(y), where y solves u0(y)=v0(y) = 1 + i=��, then there exists a steady-

state equilibrium where currencies 0 and 1 are valued. If �1�� � p(y) then any e 2 (0;+1) is an

equilibrium exchange rate. If �1�� < p(y) then there is a positive lower bound for the exchange rate

equal to

e =
A1;t
A0;t

�0
�1

[p(y)� �1�� ]
[�0�� � p(y)]

: (46)

2. Suppose i0 > i1. There are thresholds 0 < ��0 < ��1 such that for all � 2 (��0; ��1) there exists a unique

steady-state equilibrium where both currencies 0 and 1 are valued and output solves

i0�0 � i1�1
�0 � �1

= ��`(y): (47)

In�ation rates a¤ect output according to @y=@�0 < 0 and @y=@�1 > 0. Moreover, currency 0 appreci-

ates vis-a-vis currency 1 as � or � increases or as �� decreases.

The �rst part of Proposition 12 shows that if currency 0 is su¢ ciently negotiable, then there exists an

equilibrium where both currencies are valued. Moreover, if currency 1 is also su¢ ciently negotiable, then

the nominal exchange rate between the two currencies, e = �0=�1, can be anything, in accordance with the

indeterminacy result of Kareken and Wallace (1981). However, if the negotiability of currency 1 is limited,

then the range of equilibrium values for e is reduced, i.e., there is a lower bond for the exchange rate.

The second part of Proposition 12 focuses on equilibria where � > 0 and T2 = �� , i.e., a0=�0 + a1=�1 = ��

and p(y) = a0 + a1. The determination of a dual currency equilibrium is illustrated in Figure 8. The

condition a0+ a1 = p(y) is represented by the red line while the negotiability constraint, a0=�0+ a1=�1 = �� ,

is represented by the blue line. If an intersection exists, then it is unique. There exists an equilibrium where

the two currencies with di¤erent in�ation rates coexist provided that the time allocated to the negotiation, �� ,

is neither too small nor too large. If �� is small, agents will choose to trade with the most negotiable currency

only. If �� is large, agents will choose to only hold the currency with the lowest in�ation rate. For intermediate

values for �� agents choose a diversi�ed portfolio of currencies. One can interpret such an equilibrium as one

where di¤erent crypto-currencies with di¤erent technologies to record transactions coexist. One can also

think of a dollarization equilibrium where the high-in�ation domestic currency coexist with the low-in�ation

foreign currency.

If the in�ation rate of the most negotiable currency increases, then output decreases. However, as i1

increases, agents �nd it optimal to reduce their holdings of currency 1 and raise their holdings of currency 0.

As a result, they can buy more output over the time horizon �� . In the context of a dollarization equilibrium

this would mean that an increase of the in�ation rate of the foreign currency raises output.
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Our model provides a resolution to the Kareken-Wallace indeterminacy result.31 In a two-currency

equilibrium the nominal exchange rate is uniquely determined and given by

et =
�0
�1

p(y)� �1��
�0�� � p(y)

A1;t
A0;t

: (48)

It is the product of three terms: the ratio of the negotiability parameters; the ratio of the money supplies;

and a middle term that captures the loss of purchasing power from using currency 1 only relative to the gain

in purchasing power from using currency 0 only. As the frequency of trading opportunities or the buyer�s

bargaining power increase, buyers shift their portfolios toward the most negotiable currency, which leads to

an appreciation of the exchange rate. Conversely, as the time to negotiate increases, agents reallocate their

portfolios toward the currency with the highest rate of return, and hence the exchange rate depreciates.

10 Conclusion

The objective of this paper was to introduce a new approach to bargaining into a model of decentralized

asset market with unrestricted portfolios. Following O�Neill et al. (2004) we de�ne the bargaining problem

between the owner of a portfolio of assets and a potential consumer as a collection of Pareto frontiers that

expand with asset holdings. This de�nition captures the idea that the di¤erent items in a portfolio are sold

sequentially, with each sale being �nal. In addition to standard axioms (Pareto e¢ ciency, scale invariance,

symmetry), the gradual bargaining solution is required to be continuous and time consistent. The solution

that obeys these �ve axioms is characterized by a system of di¤erential equations that can be solved in closed

31For information-based theories of the determinacy of the nominal exchange rate, see Zhang (2014) based on Lester et al.
(2012) and Gomis-Porqueras et al. (2017) based on Li et al. (2012).
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form. We show that the portfolio choice problem induced by this bargaining solution is concave, which makes

the model tractable.

We showed that gradual bargaining has important positive and normative implications that distinguish it

from other bargaining solutions. Relative to Nash, gradual bargaining is incentive-compatible when portfolios

are private information. Moreover, gradual bargaining can implement socially-e¢ cient outcomes while Nash

cannot. Relative to Kalai bargaining, the gradual bargaining solution is not only scale invariant� as required

by the axioms� but it is also ordinal. Thus, in contrast to all other solutions, the outcome is una¤ected by

any monotone transformation of utilities. On the positive side, gradual bargaining implements a wider range

of liquidity premia, which matters for the existence of equilibria. For instance, under Kalai bargaining,

monetary equilibria can break down for �nite in�ation rates even if the marginal utility of consumption

approaches in�nity when agents�real balances approach zero. This is not the case with gradual bargaining:

under the Inada conditions, a monetary equilibrium exists for all in�ation rates.

We extended the gradual bargaining problem to the case of portfolios composed of di¤erent assets, to

allow for time-consuming technologies to negotiate the sale of assets as well as time-varying bargaining

powers. We showed that the trading mechanism used by Zhu and Wallace (2007) to explain rate-of-return

dominance is a special case of a gradual bargaining solution. We generalized this mechanism to arbitrary

bargaining powers and investigated the implications for policy.

We proposed an alternative explanation for the rate-of-return dominance puzzle based on the idea that

the time it takes to negotiate a portfolio of assets is �nite and units of money are negotiated faster than

units of bonds, e.g., because they are easier to authenticate. This version of the model can generate a regime

where bonds pay interest and open-market operations are e¤ective. A sale of bonds raises their interest rate

and decreases aggregate output. Moreover, an increase in the money growth rate can at the same time raise

the nominal rate on illiquid bonds (a Fisher e¤ect) and lower the nominal rate on government bonds (a

liquidity e¤ect).
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Appendix A: Proofs of Lemmas and Propositions

Proof of Lemma 1. The Pareto frontier is derived from the program

ub = max
y;p���

�
u(y)� p+ ub0

	
s.t. p� �(y) + us0 � us:

The consumer chooses the terms of trade, (y; p), to maximize his utility subject the constraint that he must

guarantee some utility level us to the producer. If �� � us�us0+�(y�), then y = y� and p = us�us0+�(y�).

Moreover, ub + us = u(y�) � �(y�) + ub0 + us0. If �� < us � us0 + �(y�), then p = �� = us � us0 + �(y), i.e.,

y = ��1(�� � us + us0).

Proof of Proposition 2. By the de�nition of the consumer�s utility, ub(�) = ub0 + u [y(�)] � �� , it

follows that

ub0(�) = u0 (y)
@y

@�
� �: (49)

The change in the consumer�s utility along the gradual bargaining path is determined by the change in DM

consumption as the consumer adds assets to the negotiating table. From (13) and (49), we obtain (15). The

total transfer of assets is p(y) =
R y
0
� @�@xdx where from (15) @�=@x coincides with 1=y0(�) evaluated at x.

Proof of Proposition 4. The payment under Nash can be reexpressed as:

~p(y) =
�0(y)

u0(y) + �0(y)

Z y

0

u0(x)dx+
u0(y)

u0(y) + �0(y)

Z y

0

�0(x)dx

=

Z y

0

�0(y)u0(x) + u0(y)�0(x)

u0(y) + �0(y)
dx

=

Z y

0

�0(y)

u0(y) + �0(y)
[u0(x)� �0(x)] + �0(x)dx

Using that
�0(x)

u0(x) + �0(x)
<

�0(y)

u0(y) + �0(y)
8x < y;

and u0(x)� �0(x) > 0 for all x < y � y�, we have:

~p(y) >

Z y

0

�0(x)

u0(x) + �0(x)
[u0(x)� �0(x)] + �0(x)dx

>

Z y

0

2�0(x)u0(x)

u0(x) + �0(x)
dx = p(y):

Derivation of buyer surplus (24). The expected surplus is given by
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U b(�; zb) =

Z 1

0

�e���fu[y(minf� ; zb=�g)]� p[y(minf� ; zb=�g)]gd� (50)

=

Z 1

0

�e���
Z p�1(minf��;zbg)

0

�u0(x) [u0(x)� �0(x)]
�u0(x) + (1� �)�0(x)dxd� (51)

=

Z 1

0

Z p�1(minf��;zbg)

0

�e���
�u0(x) [u0(x)� �0(x)]
�u0(x) + (1� �)�0(x)dxd� (52)

=

Z p�1(zb)

0

Z 1

p(x)=�

�e���
�u0(x) [u0(x)� �0(x)]
�u0(x) + (1� �)�0(x)d�dx (53)

=

Z y

0

e�
�
� p(x)

�u0(x) [u0(x)� �0(x)]
�u0(x) + (1� �)�0(x)dx; (54)

where y = p�1(zb). The derivation for social welfare follows exactly the same steps except for replacing

�u0(x)[u0(x)��0(x)]
�u0(x)+(1��)�0(x) by [u

0(x)� �0(x)].

Proof of Lemma 2. The Pareto frontier is the solution to the following problem:

ub = max
y;p

fu(y)� pg s.t. � �(y) + p = us, p � z, y � �y,

where ub is the buyer�s surplus and us is the seller�s surplus. The payment cannot be greater than the

buyer�s asset holdings and the output is not greater than the upper bound �y. Substitute p = us + �(y) into

the constraints and rewrite the problem as:

ub = max
y;p

fu(y)� �(y)� usg s.t. y � min
�
��1 (z � us) , �y

	
:

If us � z � �(�y) then y = �y (note that we assume �y � y�) and the equation of the Pareto frontier is simply

ub + us = u(�y)� �(�y):

If the payment constraint binds then y = ��1 (z � us) and

ub = u � ��1 (z � us)� z:

This gives a negative relationship between ub and us since @ub=@us = �u0(y)=v0(y). Moreover, @2ub=(@us)2 <

0, i.e., the Pareto frontier is strictly concave.

Proof of Proposition 5. The gradual bargaining solution is the solution to

ub0(�y) = �1
2

@H(ub; us; �y)=@�y

@H(ub; us; �y)=@ub
(55)

us0(�y) = �1
2

@H(ub; us; �y)=@�y

@H(ub; us; �y)=@us
: (56)

Note that by (23), as long as the payment constraint does not bind, p < z, then us < z � �(�y) and the

equation of the Pareto frontier is linear, at least locally. In that case the gradual solution gives:

ub0(�y) = us0(�y) =
1

2
[u0(�y)� �0(�y)] : (57)
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The change in the buyer�s surplus and the change in the seller�s surplus are equal to half of the increase in

the match surplus from raising the output that can be negotiated. Using the de�nition of the buyer�s surplus

as ub = u(y)� p it follows that the change in the payment over the gradual bargaining path is given by:

ub0(�y) = u0(�y)� @p

@�y
=
1

2
[u0(�y)� �0(�y)] :

Hence,
@p

@�y
=
1

2
[u0(�y) + �0(�y)] :

The marginal payment (the price of the output) is equal to the average of the marginal utility of consumption

and the marginal cost of production. Integrating from �y = 0 to �y = y, we obtain p(y) = 1
2 [u(y) + �(y)] ; the

payment function in the proposition.

Finally we verify that the payment constraint does not bind up to z. Let ey = minfy�; p�1(z)g with

p(y) = 1
2 [u(y) + �(y)]. If ey = y�, then it is easy to see that the constraint never binds. Otherwise, for all

�y < ey, the constraint p(�y) � z is not binding and hence the di¤erential equations (55)-(56) apply.

Proof of Proposition 6. If agents bargain gradually over the asset then the payment function is:

p1(y) =

Z y

0

2u0 (x) �0(x)

u0(x) + �0(x)
dx:

Using that
2u0 (x) �0(x)

u0(x) + �0(x)
=

�
�0(x)

u0(x) + �0(x)
u0(x) +

u0 (x)

u0(x) + �0(x)
�0(x)

�
<
u0(x) + �0(x)

2
;

for all x < y� since u0(x) > �0(x), we obtain the following inequality:

p1(y) <

Z y

0

1

2
[u0(x) + �0(x)] dx =

u(y) + �(y)

2
= p2(y);

where p2(y) is the payment function if agents bargain gradually over the DM good. We denote y1(z) as

the solution to p1(y1) = min
�
z; p1(y�)

	
and y2(z) as the solution to p2(y2) = min

�
z; p2(y�)

	
. Using the

inequality above it follows that y1(z) > y2(z) for all z such that y2(z) < y�. We can now compare the

consumer�s surpluses under the two agendas: u(y)� z1(y) > u(y)� z2(y) and y1(z) � y2(z) for all z. Using

that surpluses are monotone increasing in y it follows that consumers are better o¤ with the �rst agenda

than the second. We now compare the producer�s surpluses under the two agendas. Let z1� = z1(y�) and

z2� = z2(y�). For all z � z1�, z � �
�
y2(z)

�
> z � �

�
y1(z)

�
since y2(z) < y1(z). For all z 2

�
z1�; z2�

�
,

z��
�
y2(z)

�
> z1��� (y�) since the bargaining solution is monotone. It follows that producers always prefer

to bargain gradually over the DM good.

Proof of Proposition 7. For each y 2 (0;y�], equation (27) gives a negative relationship between s
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and y, denoted by s = sr(y), with limy!0 s
r(y) = +1 and sr(y�), and sr is strictly decreasing. Given this

function, equilibrium is given by y that satis�es (25). Since the left-side of (25) is strictly increasing in y

and the right-side is strictly increasing in s and hence strictly decreasing in y with s = sr(y), and since the

right-side of (25) is positive at y = 0, there is unique y that satis�es (25).

(1) Since p(y�) � (1 + �)Ad=� and sr(y�) = 0, y = y� is the unique equilibrium. In this equilibrium, the

time it takes to sell p(y�) units of wealth is �� = p(y�)=� and the probability that �� � �� is e�
�
� p(y

�). From

(26), social welfare is

W = �

Z y�

0

e�
�
� p(x) [u0(x)� �0(x)] dx;

which is independent of Ad but decreasing with �=�.

(2) Since p(y�) > (1 + �)Ad=�, the unique equilibrium features y < y� and s > 0. From (27) and (25)

the spread is the unique s 2 (0; �) solution to

s = ��e�
�
� (

1+�
��s )AdL

��
1 + �

�� s

�
Ad

�
:

The right side is decreasing in Ad and �=�. Hence, s decreases with Ad and � but increases with �. From

(27) y is a decreasing function of s, hence y increases with Ad and, from (26), social welfare increases with

Ad. Similarly, y decreases with �=� and hence W decreases with �=�.

(3) From (1), when p(y�) � (1+ �)Ad=�, sr(y�) = 0, y = y�. Thus, as � approaches zero, the probability

that �� � �� approaches 1, and hence the social welfare approaches the �rst-best.

Before the proof of Proposition 8, we need the following lemma that characterize optimal speed of trade

and the asset holding.

Lemma 5 For each s � 0, there exists a solution, [ze(s); �e(s)], to (28). It is unique for all but at most

countably many s, upper-hemi continuous, non-increasing in s, and non-decreasing in �. If s = 0 then buyers

hold at least p(y�). As s tends to in�nity, [ze(s); �e(s)] goes to (0; 0).

Proof. First we compute the partial derivative

@Sb(zb; �)

@zb
= e��

zb

� �`(y) � 0;

@Sb(zb; �)

@�
=

Z y

0

�

�2
e��

p(x)
� p(x)

�u0 (x) [u0 (x)� v0 (x)]
�u0(x) + (1� �)�0(x) dx > 0; with y = p�1(zb):

Moreover, @2Sb(zb; �)=@zb@� > 0 if y < y�, a fact that we will use later. So there are complementarities

between the choice of asset holdings and the speed of negotiation. The �rst-order condition with respect to

� is then

 0(�) =

Z y

0

�

�2
e��

p(x)
� p(x)

�u0 (x) [u0 (x)� v0 (x)]
�u0(x) + (1� �)�0(x) dx: (58)

44



The buyer�s surplus is bounded above by u(y�) � �(y�). Hence, it is never optimal to choose a � larger

than �� =  �1 [u(y�)� �(y�)]. Similarly, for all s > 0 it is not optimal to accumulate more than p(y�)

units of assets. Hence, with no loss in generality, we restrict the maximization problem to the compact set,

[0; ��] � [0; p(y�)]. The objective in (28) is continuous. By the Theorem of the Maximum, a solution exists

and it is upper hemi-continuous in s.

To show generic uniqueness and monotonic statics, consider the buyer problem in two steps. First, for

any given zb 2 [0; p(y�)], consider

�S(zb) = max
�2[0;��]

�
� (�) + Sb(zb; �)

	
(59)

The objective function has strictly increasing di¤erences in (zb; �) since @Sb(zb; �)=@zb is strictly increasing in

�. By Theorem 2.8.2 and 2.8.4 in Topkis (1998) argmax�2[0;��]
�
� (�) + Sb(zb; �)

	
is increasing in zb < p(y�)

and the set of maximizers is increasing in zb < p(y�) as well. Now, for any zb, the corresponding optimal �

solves

 0(�) =

Z y

0

�

�2
e��

p(x)
� p(x)

�u0 (x) [u0 (x)� v0 (x)]
�u0(x) + (1� �)�0(x) dx;

with y = p�1(zb). Since the right-side of the above equation is strictly increasing in zb < p(y�), the set of

maximizers has to be strictly increasing as well; indeed, if zb1 < zb2, and �1 and �2 are the corresponding

maximizers, it must be the case that �1 6= �2 as the same � cannot satisfy the two FOC�s at the same time.

Now, if �S(zb1) = �S(zb2), then

Sb(zb1; �2)� Sb(zb1; �1) <  (�2)�  (�1) = Sb(zb2; �2)� Sb(zb1; �1) < Sb(zb2; �2)� Sb(zb2; �1);

but the second inequality implies that Sb(zb1; �1) > Sb(zb2; �1), a contradiction to the fact that S
b(zb; �1) is

increasing in zb. Thus, �S(zb1) < �S(zb2). Moreover, since �S(z
b) is strictly increasing, it is also di¤erentiable for

all but at most a countably many points.

Let z(s) be the correspondence that solves (59). Consider now two spreads, s1 < s2, with associated

choices of real balances z1 and z2. It follows that:

�s1z1 + � �S(z1) � �s1z2 + � �S(z2);

�s2z2 + � �S(z2) � �s2z1 + � �S(z1):

Rearrange these inequalities to obtain:

s1
�
z1 � z2

�
� �

�
�S(z1)� �S(z2)

�
� s2(z1 � z2):

Using that s2 > s1 it follows that z1 � z2. To show generic uniqueness, we �rst prove the following. Let s be

given, and suppose that z1 < z2 2 z(s). We claim that if s0 > s, then z2 =2 z(s0). Suppose, by contradiction,
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that z2 2 z(s0). Then,

�sz1 + � �S(z1) = �sz2 + � �S(z2);

�s0z2 + � �S(z2) � �s0z1 + � �S(z1):

It then follows that

�s0z2 + � �S(z2) � �(s0 � s)z1 � sz2 + � �S(z2);

that is,

(s0 � s)z1 � (s0 � s)z2;

a contradiction to z1 < z2 and s0 > s. Similarly, if s00 < s, then z1 =2 z(s00). Suppose, by contradiction, that

z1 2 z(s00). Then,

�sz1 + � �S(z1) = �sz2 + � �S(z2);

�s00z1 + � �S(z1) � �s00z2 + � �S(z2):

It then follows that

�s00z1 + � �S(z1) � �s00z2 + � �S(z2) = (s� s00)z2 � sz1 + � �S(z1);

that is,

(s� s00)z1 � (s� s00)z2;

a contradiction to z1 < z2 and s > s00. Now, for each s, let ez(s) = max z(s). Then, ez(s) is a decreasing func-
tion, and hence has at most countably many gaps. Note that only gaps in ez(s) corresponds to nondegenerate
values of z(s). This shows that the optimum is generically unique.

Proof of Proposition 8. (1) Note that, since z(s) is upper hemi-continous, for each s, bz(s) =
lims0#s ez(s) 2 z(s), and that ez(s) is left-continuous. Thus, if we de�ne Z(s) = [bz(s); ez(s)], then Z(s) is
weakly decreasing, and is the minimal convex set that contains z(s). Moreover, for each z 2 Z(s), it

corresponds to � fraction of buyers holding ez(s) units of assets and (1� �) holding bz(s) with
�(z; s) =

z � bz(s)ez(s)� bz(s) :
Market clearing requires then

1 + �

�� sAd 2 Z(s)

whenever s > 0, and when s = 0, we only need

1 + �

�
Ad � p(y�):
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Thus, a �xed point of the following correspondence

�� (1 + �)Ad
Z(s)

is an equilibrium. Since Z(s) is upper hemi-continuous and convex-valued, Kakutani�s �xed point theorem

ensures that a �xed point exists.

Finally, we show that equilibrium is in fact unique. Suppose that es
1 + �

�� esAd 2 Z(es) = [bz(es); ez(es)]:
Then, for any s > es, z 2 Z(s), z � bz(es) but 1+�

��sAd >
1+�
��esAd � bz(es) and hence cannot be an equilibrium.

The other case is symmetric.

(2) The planner�s problem solves:

max
z;�; s

�
� (�) +

Z y

0

e��
p(x)
� [u0 (x)� v0 (x)] dx

�
(60)

s.t. z 2 argmax
z

�
�sz + �Sb(z; �)

	
(61)

p(y) �
�
1 + �

�� s

�
Ad, �= � if s > 0 (62)

According to (60) the planner maximizes the expected surplus of each match net of the negotiability cost.

It is subject to (61) according to which buyers choose their asset holdings optimally taking as given the

negotiability of the asset and its cost (which is omitted from the buyer�s objective). From (62) the spread,

s, is consistent with market clearing.

From (1), if Ad � �p(y�)=(1+ �) then equilibrium is such that s = 0 and y = y� irrespective of �. Hence,

the solution to (60) is

 0(�) =

Z y�

0

�

�2
p(x)e��

p(x)
� [u0 (x)� v0 (x)] dx:

It coincides with (58) if and only if � = 1. If � < 1 then the decentralized choice of � is smaller than the

planner�s choice. For the case Ad < �p(y�)=(1+�), we proved in Proposition 7 that s increases with �. From

market clearing p(y) =
�
1+�
��s

�
Ad, and hence y is an increasing function of s. Hence, the solution to the

planner�s problem is:

 0(�) =

Z y

0

�

�2
p(x)e��

p(x)
� [u0 (x)� v0 (x)] dx+ e��

p(y)
� [u0 (y)� v0 (y)] @y

@�
:

The second term on the right side captures the e¤ect of an increase of negotiability on the spread and hence

y. Even if � = 1 this condition does not coincide with (58).

Derivation of (32). First note that the expected surplus for an `-investor does not depend on his money

holdings, and hence, to solve the CM money holding problem, we only need to worry about h-investors. The
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expected surplus for a h-investor is given by (note that � = 0 )

�u["hf(
 + y
u)� f(
)� pu(yu)] + �d["hf(
 + yd)� f(
)� pa(yd)]

= �u

"Z yu

0

"hf
0(
 + x)["hf

0(
 + x)� "`f 0(
� x)]
"hf 0(
 + x) + "`f 0(
� x)

dx� f(
)
#
+ �d

"Z yd

0

"hf
0 (
 + x) ["hf

0 (
 + x)� q]
"hf 0 (
 + x) + q

dx� f(
)
#
;

where yu = min
�
y�; (pu)�1(z)

	
and yd = min

�
~yhq ; (p

a)�1(z; q)
	
. Thus, the CM problem then becomes

max
z�0

�iz+�u
"Z yu

0

"hf
0(
 + x)["hf

0(
 + x)� "`f 0(
� x)]
"hf 0(
 + x) + "`f 0(
� x)

dx� f(
)
#
+�d

"Z yd

0

"hf
0 (
 + x) ["hf

0 (
 + x)� q]
"hf 0 (
 + x) + q

dx� f(
)
#
:

The FOC is given by

�i+ �u

2

"hf
0(
 + yu)� "`f 0(
� yu)

"`f 0(
� yu)
+
�d

2

"hf
0 �
+ yd�� q

q
= 0;

and, in equilibrium, q = "`f
0(
� yd). This then simpli�es to (32).

Proof of Proposition 9. (1) The equilibrium condition is given by (32) with �d = 0, which can be

rewritten as
f 0(
 + y)

f 0(
� y) =
"`
"h

�
1 +

2i

�u

�
; (63)

To have a solution with y > 0, it is necessary and su¢ cient that "`"h
�
1 + 2i

�u

�
< 1, that is, ("h�"`)=2"` > i=�u.

(2) First we derive the equilibrium condition as in (32). When the agents bargain over DM asset, the

payment is determined by Egalitarian solution and hence

pDM (y) =
"h [f(
 + y)� f(
)] + "` [f(
)� f(
� y)]

2
:

Thus, the FOC for the consumer is given by

�ipDM 0(y) + �u[u0(y)� pDM 0(y)] = 0;

which can be rewritten as
f 0(
 + y)

f 0(
� y) =
"`
"h

�
i+ �u

�u � i

�
; (64)

To have a solution with y > 0, it is necessary and su¢ cient that "`
"h

�
i+�u

�u�i

�
< 1, that is, ("h�"`)=("h+"`) >

i=�u. Moroever, since �
i+ �u

�u � i

�
>

�
1 +

2i

�u

�
;

the y that solves (63) is larger than that that solves (64).

(3) Following Proposition 4, the payment determined by Nash solution is given by

pN (y) =
"`f

0(
� y)
"hf 0(
 + y) + "`f 0(
� y)

"h [f(
 + y)� f(
)] +
"`f

0(
� y)
"hf 0(
 + y) + "`f 0(
� y)

"` [f(
)� f(
� y)] ;
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Hence, the payo¤ of the h-buyer is

"hf
0(
 + y)f"h [f(
 + y)� f(
)]� "` [f(
)� f(
� y)]g

"hf 0(
 + y) + "`f 0(
� y)
:

It is easy to check that close to y� this surplus is decreasing. Hence, under Nash bargaining the trade size

is ine¢ ciently low for all i � 0.

Proof of results with intermediated trades. Here we provide the derivation of Pareto fron-

tiers for bargaining between the buyer and the dealer under intermediated trades. First, suppose that the

buyer and the dealer bargain over the real banalces. The equation of the Pareto frontier is: let ey solve
max f"hf(
 + ey)� qeyg,

ub =

(
f"hf(
 + ey)� qeyg � ud � "hf(
) if qey + ud � z;

"hf
�

+ z�ud

q

�
� z � "hf(
) otherwise.

As before, the Pareto frontier is linear if the investor is unconstrained and strictly concave otherwise. Now,

we may represent the Pareto frontier as

H(ub; ud; z) =

(
�ub + f"hf(
 + ey)� qeyg � ud � "hf(
) if qey + ud � z;

�ub + "hf
�

+ z�ud

q

�
� z � "hf(
) otherwise.

Thus, for y < ey, gradual bargaining implies
(ub)0(z) = �1

2

@H(ub; ud; z)=@z

@H(ub; ud; z)=@ub
=
1

2
["hf

0 (
 + y) =q � 1]:

As mentioned, this implies payment function

pa(y; q) = q

Z y

0

2"hf
0 (
 + x)

"hf 0 (
 + x) + q
dx:

In contrast, the payment function under direct trade is given by

pu(y) =

Z y

0

2"hf
0 (
 + x) "`f

0 (
� x)
"hf 0 (
 + x) + "`f 0 (
� x)

dx:

Equilibrium requires

z � pu(yu) and z � pd(yd; q);

with equality whenever yu < y� and/or yd < y�. Now, for all y < yd, q = "`f
0 �
� yd� > "`f

0 (
� x) for

all x � y, and hence pu(y) < pd(y; q). Thus, in equilibrium yu > yd. We show that for a range of i near 0,

in equilibrium yu = y� and yd solves

f 0(
 + yd)

f 0(
� yd) =
"`
"h

�
1 +

2i

�d

�
: (65)

To see this, let yd(i) solve (65), and let i be such that q(i) = "`f
0[
� yd(i)] and

pu(y�) = pd[yd(i); q(i)]:
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Since at y�, pu(y�) < pd[y�; q(0)] and since pd[yd(i); q(i)] is strictly decreasing in i, such i exists and is

unique. Then, for all i 2 (0; i], we can construct an equilibrium with z = pd[yd(i); q(i)].

Derivation of (37). First note that y(�) depends on � wholly through !(�). Indeed, if we let x(!)

solves
@x

@!
= �

�u0(x) + (1� �)�0(x)
u0 (x) �0(x)

; (66)

then y(�) = x[!(�)]. Here we derive (37).

S(a) =

Z +1

0

�e��x
Z x

0

fu0 [y(�)] y0(�)� p0(�)g d�dx (67)

= �

Z +1

0

Z x

0

�e��x`[y(�)]!0(�)d�dx (68)

= �

Z +1

0

�Z +1

�

�e��x`[y(�)]!0(�)dx

�
d� (69)

= �

Z +1

0

�Z +1

�

�e��xdx

�
`[y(�)]!0(�)d� (70)

= �

Z +1

0

e��� `[y(�)]!0(�)d�: (71)

Proof of Lemma 3. Using the notation (66), we can rewrite (37) as:

S(a;�j) = �

Z +1

0

e��� [u0fx[!0(�)]gx0[!(�)]� 1]!0(�)d�

= �

�
lim
�!1

e��� [ufx[!(�)]g � !(�)] +
Z +1

0

[ufx[!(�)]g � !(�)]�e���d�
�

= �

Z +1

0

[ufx[!(�)]g � !(�)]�e���d� ;

with !0(�) =
PJ

j=0 �j�j(�). Note that �e
��� > 0 for all � > 0. Now, for any list of functions [�j(�)] such

that
JX
j=0

�j(�) = 1 and �j(�) = 0 if !j(�) = aj for all � � 0;

we have !(�) � !�(�) for all � � 0. Thus, noting that u[x(!)]�! is strictly increasing in ! for all ! < p�1(y�)

and hence Z +1

0

[ufx[!(�)]g � !(�)]�e���d� �
Z +1

0

[ufx[!�(�)]g � !�(�)]�e���d� ;

and hence S(a;�j) � S(a;��j ). To obtain (39) use that !
0(�) =

PJ
j=0 �j�

�
j (�) into (37).

Proof of Lemma 4. De�ne 
j (a) =
Pj�1

k=0 ak for all j = 1; :::; J +1 with 
0 (a) = 0. Note that for all

! 2 (
j ;
j+1);

(!�)�1(!) =
(! � 
j)

�j
+ Tj ;

d

d!
(!�)�1(!) =

1

�j
:
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Then, we use the change of variable � = (!�)�1(!) to rewrite (39) as

S(a) = �
JX
j=0

Z 
j+1


j

e
��

h
(!�
j)

�j
+Tj

i
L(!)d!:

Now, let k � 0 be given. Then, for j < k,

@

@ak

Z 
j+1


j

e
��

h
(!�
j)

�j
+Tj

i
L(!)d! = 0;

and
@

@ak

Z 
k+1


k

e
��

h
(!�
k)

�k
+Tk

i
L(!)d! = �e��TkL(
k);

and for j > k,

@

@ak

Z 
j+1


j

e
��

h
(!�
j)

�j
+Tj

i
L(!)d!

= �e��Tj `
�
z�1(
j)

�
+ e

��
h
(
j+1�
j)

�j
+Tj

i
L(
j+1) +

Z 
j+1


j

�

�
1

�j
� 1

�k

�
e
��

h
(!�
j)

�j
+Tj

i
L(!)d!

= �e��Tj `
�
z�1(
j)

�
+ e��Tj+1L(
j+1) +

Z 
j+1


j

�

�
1

�j
� 1

�k

�
e
��

h
(!�
j)

�j
+Tj

i
L(!)d!:

Thus,
@

@ak
S(a) = �

JX
j=k+1

Z 
j+1


j

�

�
1

�j
� 1

�k

�
e
��

h
(!�
j)

�j
+Tj

i
L(!)d! + e��TJ+1L(
J+1);

where note that the terms e��TjL(
j) cancels one another except for the very last one. Equation (42) is

obtained by another change of variable back to � .

Proof of Proposition 10. (1) The equilibrium is solved recursively. The FOC (41) when j = 0

determines a0, which is equivalent to the following (again, by a change of variable):

i = �
JX
j=1

Z 
j+1


j

�

�
1

�j
� 1

�0

�
e
��

h
(!�
j)

�j
+Tj

i
L(!)d! + e��TJ+1L(
J+1); (72)

where 
j =
Pj�1

k=0Ak by equilibrium cond ition with A0 = a0. First we show that the RHS of (72) is strictly

decreasing in a0. Note that 
j is strictly increasing in a0, the range for c =
(!�
j)
�j

+ Tj for ! over 
j to


j+1 does not change when one changes a0, but L(!) is strictly decreasing in ! until it hits zero and stays

there. Thus, the �rst term is strictly decreasing in a0. For the second term, note that both TJ+1 and 
J+1

are strictly increasing in a0 but the term is strictly decreasing in both TJ+1 and 
J+1. Now, the RHS of

(72) is also strictly positive at a0 = 0 provided that �0 > �1 and equal to 0 as a0 goes to 1. The threshold

for the nominal interest rate below which a monetary equilibrium exists is

�� = ���
JX
k=1

(�0 � �k)
�0

Z Tk+1

Tk

e��� ` [y(�)] d�

+��e��TJ+1` [y(TJ+1)] ;
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where T1 = 0, and Tj =
Pj�1

k=1Ak=�k for all j 2 f2; :::; J +1g. Given a0, the spreads fsjgJj=1 are determined

by (41), with A0 = a0 and Tj =
Pj�1

k=0Ak=�k for all j 2 f1; :::; J + 1g. From (41) we can compute the

di¤erence between two consecutive spreads:

sj � sj+1 = ���
(�j � �j+1)

�j

Z Tj+2

Tj+1

e��� ` [y(�)] d� :

Hence, sj � sj+1 > 0 requires �j � �j+1 > 0 and y(Tj+1) < y�, i.e.,
Pj

k=0Ak < p(y�).

(2) The velocity of asset j is

Vj =
��je

��Tj
h
1� e�

�
�j
[minfp(y�)�
j ;Ajg]

i
Aj�

; (73)

By changing the order of integration we can simplify it to:

Vj =
�
R +1
0

e���!�0j (�)1f!�(�)<p(y�)gd�

Aj
:

Using Lemma 3 and the fact that !�0j (�) = �j1fTj��<Tj+1g it can be rewritten as:

Vj =
�
R Tj+1
Tj

e����j1f!�(�)<p(y�)gd�

Aj
:

Using the expressions for Tj and Tj+1 we distinguish three cases:

Vj =
A�1j ��1��je

��Tj
�
1� e�

�
�j
Aj
�

A�1j ��1��je
��Tj

h
1� e�

�
�j
[p(y�)�
j ]

i
0

if z(y�)
� 
j+1
2 (
j ;
j+1)
� 
j

and the result follows immediately.

(3) It follows directly from (41) and the fact that:

jsj � sj+1j = ���
(�j � �j+1)

�j

Z Tj+2

Tj+1

e���
�
u0 [y(�)]� v0 [y(�)]

v0 [y(�)]

�
d�

� ���
(�j � �j+1)

�j
e��Tj+1

�
u0 [y(Tj+1)]� v0 [y(Tj+1)]

v0 [y(Tj+1)]

�
d� ; (74)

which converges to zero as �!1.

Proof of Proposition 11. Since we focus on equilibria with � = T2, the buyer portfolio problem can

be written as

max
(am;ab)

�ia0 � sa1 + �fu[y(�)]� p[y(�)]g; (75)

s.t.
a0
�0
+
a1
�1
� � : (76)

The FOC�s are given as (here � � 0 is the Lagrange multiplier for (76))

�i+ ��`(y)� � 1
�0

� 0 (with equality if a0 > 0), (77)

�s+ ��`(y)� � 1
�1

� 0 (with equality if a1 > 0). (78)
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When � > 0, it implies that the constraint (76) is binding and hence adding more assets does not help

increase liquidity the buyer possess. To characterize equilibrium outcomes, �rst we de�ne the following three

functions: let ey1(i; s) solve
i
�0
�1
� s = ��`(y)

�0 � �1
�1

;

Note that ey1(i; s) is strictly increasing in s and strictly decreasing in i with y1(s) is strictly decreasing in s,
ey1(i; 0) = y2 and that ey1(i; i) = y2.

Given the conditions

�1
�0 � �1

[�0� � p(y2)] < A1 < min

�
�1

�0 � �1
[�0� � p(y1)] ; �1�

�
(79)

and
p(y1)

�0
< �� <

p(y2)

�1
; (80)

we show that

y = ey(��) = p�1
�
�0�� �

�0 � �1
�1

A1

�
;

s =
�0
�1
i� ��

�
�0 � �1
�1

�
`[ey(��)];

a0 =

�
�� � A1

�1

�
�0;

form a monetary equilibrium. First note that by (79)-(80),

p[ey(��)] = �0�� �
�0 � �1
�1

A1 2 (0; p(y2));

and is strictly increasing in �� . Moreover, A1 < �1� implies that a0 > 0. Now, let

� = ��0i+ �0��`[ey(��)] > 0;
where the last inequality follows form the fact that ey(��) < y2. Note also that (a0; A1) satis�es (76) by

construction. Finally, in equilibrium we have

s =
�0
�1
i� ��

�
�0 � �1
�1

�
`[ey(��)]:

Note that s > 0 if and only if

i� ��
�
�0 � �1
�0

�
`[ey(��)] > 0;

that is, if and only if ey(��) > y1, which is further equivalent to

�� >
p(y1)�A1

�0
+
A1
�1
;

which is guaranteed by (79)-(80).
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Proof of Proposition 12. (1) Assume i0 = i1 = i. The two FOCs (44) and (45) hold at equality if

and only if � = 0. Hence, y solves u0(y)=v0(y) = 1 + i=��. The negotiability constraint is slack if

et�1;tA0;t

�0
+
�1;tA1;t

�1
� �� ;

where we used that a0 = �0A0 and a1 = �1A1 by market clearing. Moreover, the outcome of the negotiation

is

et�1;tA0;t + �1;tA1;t = p(y):

Solving for �1;t = p(y)= (etA0;t +A1;t) and substituting into the negotiability constraint we obtain:

p(y)

etA0;t +A1;t

�
etA0;t
�0

+
A1;t
�1

�
� �� :

We rearrange the inequality to obtain:

A1;t
etA0;t +A1;t

� �1
�0 � �1

�0�� � p(y)
p(y)

:

There exists a et > 0 such that this inequality holds i¤ �0���p(y) > 0, and this is the necessary and su¢ cient

condition for both currency to be valued in equilibrium. Moreover, given that the left side is decreasing in

et, if the inequality holds for et = 0, then it holds for all et > 0. This is the case if p(y) � �1�� . If p(y) > �1��

then there is a lowest value for et consistent with the inequality. This value e is such that the inequality

holds at equality.

(2) We have seen that for both currencies to be valued we need (47), which determines y. Equilibrium

then requires a0=�0 + a1=�1 = �� and p(y) = a0 + a1, which determine a0 and a1:

a1 =
�1

�0 � �1
[�0�� � p(y)]

a0 =
�0

�0 � �1
[p(y)� �1�� ] :

Thus, to have both a0 > 0 and a1 > 0, it is necessary and su¢ cient that

�1�� < p(y) < �0�� :

This condition can be rewritten as �� 2 (��0; ��1) where ��0 = p(y)=�0, ��1 = p(y)=�1. It is immediate from (47)

that @y=@i0 < 0 and @y=@i1 > 0. Similarly, @y=@� > 0 and @y=@� > 0 which from (48) gives @et=@� > 0

and @et=@� > 0.
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Appendix B: Proof of Proposition 1 and Extensions

As assumed in the main text, the number of bargaining rounds, N , is even, and the producer is the �rst to

make an o¤er while the consumer the last. We obtain essentially the same results for the other cases (either

N is odd or the producer is making the last o¤er), and we will comment in our proof how to handle those.

Here we also normalize ub0 = us0 = 0.

We de�ne intermediate payo¤s as the utilities that the players would enjoy based on the agreements

reached up to some round n 2 f1; :::; Ng. Let (yn; pn) denote the cumulative o¤ers that are agreed upon up

to round n. Feasibility requires 0 � pn � pn�1 � z=N and 0 � yn � yn�1 for all n = 1; :::; N and p0 = 0

and y0 = 0. Hence, equations (6) and (7) would correspond to the following intermediate payo¤s for the

consumer and the producer:

ubn = u (yn)� pn; (81)

usn = �v (yn) + pn: (82)

The payo¤s over terminal histories are simply ubN and u
s
N . If we restrict y 2 [0; y�], then there is a one-to-one

correspondence between the intermediate allocation (y; p) and the intermediate payo¤ (ub; us) such that

H(ub; us; p) = 0:

The rest of the section consists in proving Proposition 1 followed by two extensions: one with explicit

negotiation time limit and the other with asymmetric bargaining powers. The proof contains four parts:

the �rst gives a full characterization of the equilibrium payo¤s of any subgame; the second gives equilibrium

intermediate payo¤s; the third proves the uniqueness claim; the fourth shows that those intermediate payo¤s

converge to the gradual bargaining solution as N goes to in�nity.

Final equilibrium payo¤s

To solve the game, we need to solve all possible subgames. A subgame is characterized by the intermediate

payo¤, denoted by (ub0; u
s
0) with the corresponding allocation denoted by (y0; p0), and the number of rounds

remaining for bargaining, denoted by J . That is, the subgame begins at roundN�J+1, with the intermediate

payo¤ (ub0; u
s
0) that results from the bargaining in the �rst N � J rounds. The entire game then has

(ub0; u
s
0) = (0; 0) and J = N . Feasibility requires p0 � (N � J)z=N , and we only consider y0 < y� so that

there are still gains from trade to be exploited. Our �rst lemma describes the �nal payo¤s of such a game.

Let S(y) = u(y)� v(y) and S� = S(y�).
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Lemma 6 Consider a game [(ub0; u
s
0); J ] with 0 � ub0+u

s
0 < S�. Equilibrium �nal payo¤s are (eubJ ; eusJ) which

correspond to the last term of the sequence de�ned as (eub0; eus0) = (ub0; us0),
H(eubj ; eusj�1; p0 + jz=N) = 0 and eusj = eusj�1; for j � 1 odd; (83)

H(eubj�1; eusj ; p0 + jz=N) = 0 and eubj = eubj�1; for j � 2 even; (84)

where

p0 = u[S�1(ub0 + u
s
0)]� ub0 = us0 + v[S

�1(ub0 + u
s
0)]: (85)

Here we give an outline for the proof of Lemma 6, which uses backward induction. When J = 1, the game

[(ub0; u
s
0); 1] is a standard take-it-or-leave-it o¤er game (with the consumer making the o¤er). In equilibrium,

the consumer makes an o¤er that leaves the producer indi¤erent between rejecting or accepting, with the

�nal payo¤ to the producer eus1 = us0. Taking this as given, the consumer spends up to the additional z=N

units of assets so that his �nal payo¤ eub1 satis�es H(eub1; us0; p0 + z=N) = 0. (Note that the buyer will spend

exactly z=N unless y� is achieved with a slack liquidity constraint.) This proves (83) with J = 1.

Now consider J = 2, and the producer makes the �rst o¤er. If the consumer rejects the o¤er, the

subgame becomes [(ub0; u
s
0); 1], and the consumer can guarantee himself a �nal payo¤ of eub1, which we call

the consumer�s reservation payo¤ . Take this as given, the producer�s o¤er is acceptable as long as the o¤er

would lead to a consumer �nal payo¤ no less than eub1. Thus, the producer�s o¤er would maximize his �nal
payo¤, us2, subject to u

b
2 � eub1. Equivalently, the producer �nal payo¤ eus2 solves H(eub1; eus2; p0 + 2z=N) = 0.

This proves (84) with J = 2. We illustrate this logic in Figure 9.
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Figure 9: Construction of eub1 and eus2
We can continue this argument by induction. Suppose that the �nal payo¤s are given by (83) and (84)

for any game [(ub0; u
s
0); J � 1] with J � 2 and consider a game [(ub0; us0); J ] with J odd and the consumer is
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making the �rst o¤er. If the producer rejects the o¤er, his reservation payo¤ would be eusJ�1 by induction.
Following the same logic, the consumer�s o¤er maximize his �nal payo¤ uJb subject to the constraint that

the producer�s �nal payo¤ has to be no less than his reservation payo¤, eusJ�1. Thus, the �nal payo¤s in the
game [(ub0; u

s
0); J ], denoted by (eubJ ; eusJ), would solve H(eubJ ; eusJ ; p0+Jz=N) = 0 with eusJ = eusJ�1. The case for

J even is similar. This proves (83) and (84) for J .

Implicitly in the argument we assume that the agents can �nd the appropriate intermediate payo¤s to

achieve the �nal payo¤s given by (83) and (84). In the following we explicitly construct the intermediate

payo¤s (and the corresponding allocations and o¤ers) that will lead to those �nal payo¤s at each round of

the bargaining and we ensure that the o¤ers are feasible at all rounds.

To construct the equilibrium intermediate payo¤s, we expand the notation slightly to explicate the

recursive nature of the sequence f(eubj ; eusj)gJj=0. As mentioned, at each step according to (83)-(84), the next
payo¤ is computed by either a rightward or upward shift to the next Pareto frontier. Formally, we can de�ne

two operations, Fr(ub; us) and Fu(ub; us) given by

Fr(u
b; us) = (ub

0
; us0) such that us0s and H(ub

0s
; p+ z=N); (86)

Fu(u
b; us) = (ub

0
; us0) such that ub

0b
and H(ub; us0; p+ z=N); (87)

where p is given by (85). Fr(ub; us) moves from (ub; us) to the next Pareto frontier by a rightward shift, and

Fu(u
b; us) moves from (ub; us) to the next Pareto frontier by a upward shift. It then follows directly from

(83) and (84) that, for all j even,

(eubj+1; eusj+1) = Fr(eubj ; eusj); (88)

(eubj+2; eusj+2) = Fu(eubj+1; eusj+1) = (Fu � Fr)(eubj ; eusj): (89)

To compute the whole sequence, we really only need the two functions Fr and Fu: for all j even,

(eubj ; eusj) = (Fu � Fr)j=2(ub0; us0); (90)

(eubj+1; eusj+1) = Fr[(Fu � Fr)j=2(ub0; us0)]: (91)

Before we proceed, we give some comments on how to handle the case when the �rst-best is reached at

some point of the game. Once we reach y�, that is, once eubj + eusj = u(y�) � v(y�), the sequence is constant

afterwards and in equilibrium there is no trade in rounds after j. Note that this is consistent with our

de�nition of simple SPE. Thus, we may only consider the case where

eubJ�1 + eusJ�1 < S�: (92)
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Equilibrium Intermediate Payo¤s

Our construction of equilibrium intermediate payo¤s follows backward induction from the �nal payo¤s con-

structed in Lemma 6. Consider a game [(ub0; u
s
0); J ] with J even. Lemma 6 shows that the �nal payo¤s to

the agents are given by (eubJ ; eusJ). Let (bubJ�1; busJ�1) denote the equilibrium intermediate payo¤ for the agents

at the end of round-(J � 1) bargaining. Applying Lemma 6 to the game [(bubJ�1; busJ�1); 1], the equilibrium
payo¤ to that game is given by F1(bubJ�1; busJ�1). Thus, subgame perfection requires

Fr(bubJ�1; busJ�1) = (eubJ ; eusJ): (93)

The solution to (93) is to move from (eubJ ; eusJ) leftward to the next Pareto frontier: formally, it is given by
H[bubJ�1; eusJ ; p0 + (J � 1)z=N ] = 0; busJ�1 = eusJ : (94)

This process is shown in Figure 10.
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Figure 10: Backward induction

In general, the same argument shows that the equilibrium intermediate payo¤ at the end of round-(J�j)

bargaining, denoted by (bubJ�j ; busJ�j), must satisfy
(Fu � Fr)j=2(bubJ�j ; busJ�j) = (eubJ ; eusJ) for j even; (95)

Fr[(Fu � Fr)(j�1)=2(bubJ�j ; busJ�j)] = (eubJ ; eusJ) for j odd:
The solution to (95) can in fact be computed recursively as follows by constructing a sequence of payo¤s:

(ubJ ; u
s
J) = (eubJ ; eusJ), and

H(ubJ�j ; u
s
J�j+1; p0 + (J � j)z=N) = 0; and usJ�j = usJ�j+1 for j � 1 odd; (96)

H(ubJ�j+1; u
s
J�j ; p0 + (J � j)z=N) = 0; and ubJ�j = ubJ�j+1 for j � 2 even: (97)
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Graphically, for j odd, (ubJ�j ; u
s
J�j) is obtained from (ubJ�j+1; u

s
J�j+1) by moving toward left to the next

lower Pareto frontier; for j even, (ubJ�j ; u
s
J�j) is obtained from (u

b
J�j+1; u

s
J�j+1) by moving downward to the

next lower Pareto frontier. Note that (ubJ�1; u
s
J�1) = (bubJ�1; busJ�1) given by (94). Note also that (eubJ�j ; eusJ�j)

is situated in the same Pareto frontier as (ubJ�j ; u
s
J�j) but they alternate in terms of moving downward and

leftward. By construction, the sequence then has the following properties:

Fr(u
b
J�1; u

s
J�1) = (ubJ ; u

s
J) = (eubJ ; eusJ); (98)

(Fu � Fr)(ubJ�j�2; usJ�j�2) = (ubJ�j ; u
s
J�j) for all j � 1 odd. (99)

Thus, by repeated use of (89), (99) implies that for all j � 2 even

(Fu � Fr)j=2(ubJ�j�1; usJ�j�1) = (ubJ�1; usJ�1),

and hence, by (88) and (98), (ubJ�j ; u
s
J�j) satis�es (95) for all j odd. For j � 0 and j even, by (89),

(Fu � Fr)(eubJ�j�2; eusJ�j�2) = (eubJ�j ; eusJ�j);
which implies, by repeated use of (89), that (eubJ�j ; eusJ�j) satis�es (95) for all j even. To summarize, the
solution to (95) is given by

(bubJ�j ; busJ�j) = (ubJ�j ; u
s
J�j) for j odd; (100)

(bubJ�j ; busJ�j) = (eubJ�j ; eusJ�j) for j even: (101)

When J is odd, we have the dual construction of the second sequence that begins by going downward �rst

from (eubJ ; eusJ). We have the following lemma.
Lemma 7 Consider a game [(ub0; u

s
0); J ] satisfying (92) with J � 2 even. The equilibrium intermediate

payo¤s at the end of round-j bargaining is then given by (bubj ; busj) computed by (100)-(101).
The proof of Lemma 7 follows directly from the above discussion, but we need to ensure that the inter-

mediate payo¤s can be supported by feasible o¤ers, which is guaranteed by the following lemma.

Lemma 8 Let a game [(ub0; u
s
0); J ] be given with J even. The sequence f(bubJ�j ; busJ�j)gJ�1j=0 given by (100)-

(101) enjoys the following properties (where fbyJ�jgJ�1j=0 is the sequence of intermediate allocations corre-

sponding to f(bubJ�j ; busJ�j)gJ�1j=0 ):

bubJ�j > bubJ�j�1 for all j = 1; :::; J � 2; bub1 > ub0; (102)

busJ�j > busJ�j�1 for all j = 1; :::; J � 2; bus1 > us0; (103)

byj > byj�1 for all j = 1; :::; J � 2; by1 > y0: (104)
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The proof of Lemma 8 is based on induction on j and uses the fact that u(y)� v(y) is strictly concave.

The proof is rather straightforward but tedious and hence we refer the detailed proof to the Online Appendix

XXX. However, Lemma 8 implies that the two sequences, f(eubj ; eusj)gJ�1j=1 and f(ubj ; usj)g
J�1
j=1 in fact nests one

another, and hence, if one sequence converges, so would the other to the same limit.

Uniqueness of SPE

Here we prove our uniqueness claim. For this we need another lemma. Its proof is omitted but can be found

in the Online Appendix XXX. Let Fr = [F br ; F
s
r ] and Fu = [F

b
u; F

s
u ].

Lemma 9 Let (ub; us) be given such that the output corresponding to (Fu�Fr)(ub; us) is strictly less than y�.

Then, F bu[Fr(u
b; us)] is strictly increasing in ub and decreasing in us and F su [Fr(u

b; us)] is strictly decreasing

in ub and strictly increasing in us.

First we show that, for any subgame, [(ub0; u
s
0); J ], the equilibrium �nal payo¤s in any SPE (not just

simple SPE) is given by (83)-(84), denoted by (eubJ ; eusJ). For J = 1 this is the standard ultimatum game and

the uniqueness is standard. Suppose that we have uniqueness for J�1, J � 2. Then, �x a SPE and consider

the game at �rst bargaining round, and, without loss of generality, assume that consumer is making an o¤er

and J is odd. Suppose that equilibrium intermediate payo¤ is given by (bub1; bus1). Let (ub1; us1) be such that
(Fu � Fr)(J�1)=2(ub1; us1) = (eubJ ; eusJ) = Fr[(Fu � Fr)(J�1)=2(ub0; us0)] � Fr(eubJ�1; eusJ�1):

Lemma 8 shows that such intermediate payo¤ is achievable with some o¤er (y1; d1). Moreover, by rejecting

the consumer o¤er, by the induction hypothesis, the unique equilibrium payo¤ to the producer is eusJ�1 = eusJ .
Thus, any o¤er that leads to a �nal payo¤ lower than eusJ will be rejected. Now, by o¤ering (y1 � "; d1)

for " small the consumer can guarantee producer acceptance and hence, taking " to zero, the consumer can

guarantee a �nal payo¤ of eubJ . Since the payo¤ (eubJ ; eusJ) lies on the Pareto frontier for which the two agents
can achieve by the end of the game, and each can guarantee the payment, this �nal payo¤ is unique.

Now we show that the intermediate payo¤s we constructed are unique in simple SPE. Note �rst that in

a simple SPE, the game e¤ectively ends when active rounds end. Let J be the number of active rounds and

the �nal payo¤s are given by (eubJ ; eusJ). By backward induction, along the equilibrium path, in J-th round

the starting intermediate payo¤, (bubJ�1; busJ�1), has to satisfy
Fr(bubJ�1; busJ�1) = (eubJ ; eusJ): (105)

Now, when the output corresponding to (eubJ ; eusJ) is y�, there can be multiple solution to (105), but the
solution is unique otherwise.
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Similar reasoning shows that for all j = 1; :::; J � 1, (95) must hold. Lemma 9 implies that there is a

unique solution to that except for (bubJ�1; busJ�1). However, that payo¤ can be pinned down by the fact that
buyer has to spend z=N in a simple SPE in round J � 1.

Finally, when the output corresponding to (eubJ ; eusJ) is less than y�, then J = N , and the solution to (105)

is unique for all j. Since y� is not achievable in any subgame, it follows that the SPE is unique.

Convergence to Gradual Nash Solution

We consider convergence of games with N even. The limit will be the same for N odd and hence we have

convergence. By Proposition 7 the sequence of intermediate equilibrium payo¤s at the end of each round

is given by f(bubn; busn)gNn=1 with (ub0; us0) = (0; 0), and that (bubn; busn) = (eubn; eusn) for n even. Consider two
bargaining rounds, n � 1 and n + 1, where n is a odd number. So, (eubn�1; eusn�1) and (eubn+1; eusn+1) are
corresponding equilibrium intermediate payo¤s.

Let �ub = eubn+1 � eubn�1 (note that, however, eubn+1 = eubn) denote the buyer�s incremental payo¤s (on the
equilibrium path) in rounds n � 1 and n + 1, and �us = eusn+1 � eusn�1 (note that, however, eusn = eusn�1)
denote the seller�s incremental payo¤ (on the equilibrium path) in rounds n � 1 and n + 1. Similarly, let

�z = 2z=N . Note that for �z we have increment of 2z=N corresponding to the jumps in asset payments in

�ub and �us. Then we have

H(eubn�1; eusn�1; n� 1N
z) = 0 (106)

H(eubn�1 +�ub; eusn�1; n� 1N
z +

�z

2
) = 0 (107)

H(eubn�1 +�ub; eusn�1 +�us; n� 1N
z +�z) = 0: (108)

According to (106), at the end of round n � 1 the intermediate payo¤s of the buyer and the seller are�eubn�1; eusn�1� and they belong to the Pareto frontier such that (n�1)z=N real balances are up for negotiation.

According to (107), at the end of round n the intermediate payo¤s are obtained by moving horizontally from

the (n�1)th frontier to the nth frontier (since n is odd). Hence, the seller�s intermediate payo¤ is unchanged

at eusn�1 while the buyer�s intermediate payo¤ increases by �ub. The amount of assets up for negotiation
on the nth frontier are nz=N . According to (108), at the end of round n + 1 the intermediate payo¤s are

obtained by moving vertically from the nth frontier to the (n+ 1)th frontier (since n+ 1 is even).

A �rst-order Taylor series expansion of (107) in the neighborhood of (ub; us; �) =
�eubn�1; eusn�1; n�1N z

�
yields:

H(eubn�1 +�ub; eusn�1; nN z) = H1�u
b +H3

�z

2
+ o(�ub) + o(

1

N
);

where limN!1
o(�ub)
�ub

= limN!1No( 1N ) = 0, we used that H(eubn�1; eusn�1; n�1
N z) = 0 from (106), and the
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partial derivatives H1, H2, and H3 are evaluated at
�eubn�1; eusn�1; n�1N z

�
. Similarly, a �rst-order Taylor series

expansion of (108) yields

H(eubn�1 +�ub; eusn�1 +�us; n+ 1N
z) = H1�u

b +H2�u
s +H3�z + o(�u

b) + o(�us) + o(
1

N
);

where limN!1;n=N!�
o(�ub)
�ub

= limN!1;n=N!�
o(�us)
�us = limN!1No( 1N ) = 0. Using that H = 0 for payo¤s

on the Pareto frontiers, we obtain that

H1�u
b + o(�ub) = �H3

�z

2
+ o(

1

N
);

H1�u
b + o(�ub) +H2�u

s + o(�us) = �H3�z + o(
1

N
);

o(�ub) +H2�u
s + o(�us) = �H3

�z

2
+ o(

1

N
):

From the �rst one and rearranging terms, we obtain

�ub

�z
= � H3

2H1
+
o(�ub)

H1�z
+

o( 1N )

H1�z
:

Note that

lim
N!1

o( 1N )

H1�z
=
o( 1N )N

H1z
= 0 and lim

N!1

o(�ub)

H1�z
= lim

N!1

o(�ub)

H1z�ub
(�ubN) = 0;

where

�ubN = (eubn+1 � eubn�1)N 2 [[1� v0(eyn+1)=u0(eyn+1)]z; [1� v0(eyn�1)=u0(eyn�1)]z]
and hence it limit exists and is bounded away from zero by the concavity of the function S(). Thus,

@ub

@�
= lim

N!1

�ub

�z
= �1

2

H3

H1
= �1

2

@H=@�

@H=@ub
:

Similarly, combining these two equations and rearranging, we obtain

�us

�z
= � H3

2H2
+
o(�ub)

H2�z
+
o(�us)

H2�z
+

o( 1N )

H2�z
:

By the same arguments, we have

@us

@�
= lim

N!1

�us

�z
= �1

2

H3

H2
= �1

2

@H=@�

@H=@us
:

These correspond to (10) and (11).

Extensions

Negotiation with limited time

Here we introduce a time frame within which the negotiation can occur. Suppose that the two players are

given a speci�c amount of time, � , to negotiate their trades. Each unit of the asset takes 1=� units of time
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and hence the maximum amount of assets that can be traded is ��. Our target is the continuous time model

but here we provide a discrete time foundation. So suppose that there are M rounds of bargaining, and

hence each round of bargaining takes � = �=M units of time and in each round at most �� units of assets

can be put up for negotiation.

Let z be the consumer�s asset holding. If z � ��, then the game is exactly the same as in the last section

with asset holding z0 = ��. So suppose that z < ��. For simplicity we assume that there exists N such that

N = z
�� < M , and hence it takes exactly N rounds to negotiate the whole asset holdings, and at each round

up to z=N units of assets can be negotiated. As before, we use (yn; pn) to denote cumulative o¤ers accepted

up to round n. We can de�ne the intermediate payo¤s as in (81)-(82).

Given these background assumptions, we now analyze the game. As before, we consider the case where

the consumer makes the very last o¤er, at round M . We denote such a game by (z;M; � ; �). The following

is our proposition.

Proposition 13 The game (z;M; � ; �) has a unique SPE �nal payo¤s that coincide with the �nal payo¤ of

the game [(ub0; u
s
0); N ] with u

b
0 = 0 = us0 as constructed in Lemma 6, where N = z

�� .

We prove this by induction. Indeed, if N = M , then the result follows directly from Lemma 6. Thus

we shall prove this by induction on M � N . For this exercise we shall �x z and N , and increase M .

Notice that for any M , once we reach round-(M �N + 1), we are in the game [(ubM�N ; u
s
M�N ); N ], where

(ubM�N ; u
s
M�N ) is the intermediate payo¤s reached at the end of round-(M � N). As mentioned, when

M�N = 0, (ubM�N ; u
s
M�N ) = (0; 0) and hence the equilibrium �nal payo¤s are given by (~u

b
N ; ~u

s
N ) computed

by (83)-(84).

Suppose that N is even. Now consider M = N + 1 and hence the consumer is the �rst to make the

o¤er. Then, at the �rst stage, the producer can secure a �nal payo¤ of ~usN by rejecting any o¤er form the

consumer. Moreover, we also know that in this game, any �nal payo¤ (ub; us) must satisfy

H(ub; us; z) � 0: (109)

Since there is no other pair of �nal payo¤ (ub; us) that satis�es both (109) and that ub > ~ubN and u
s � ~usN , it

follows that it is optimal for the consumer to o¤er (0; 0) at the �rst stage, and hence (~ubN ; ~u
s
N ) is achievable;

moreover, it is the unique equilibrium �nal payo¤, as in any equilibrium we would have us � ~usN and ub � ~ubN .

Suppose, by induction, that the result holds for some M � 1, M > 0. Then consider the game with M

stages and suppose that M is even and hence the producer is the �rst to make the o¤er. By induction, we

know that the consumer can secure a �nal payo¤ of ~ubN by rejecting any o¤er form the producer. As before,
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we also know that in this game, any �nal payo¤ (ub; us) must satisfy (109). The rest of the argument then

follows.

Note that there are other SPEs sharing the same SPE payo¤s. For example, it is also an SPE that they

complete surplus-sharing bargaining in the initial N rounds and then there is no trade in the remaining

M �N rounds.

Asymmetric bargaining powers

Here we revise our game to support gradual Nash solution with asymmetric bargaining power, denoted by �.

The parameter � a¤ects the game as follows. We assume that the number of rounds is 2N , and the producer

is the one making the �rst o¤er and the consumer is making the last o¤er.

1. In each round 2n�1 2 f1; 3; : : : ; 2N � 1g, it is the producer�s turn to make an o¤er, with asset transfer

within the range [0; (1� �)z=N ]; the consumer then decides to accept or reject the o¤er.

2. In each round 2n 2 f2; 4; : : : ; 2Ng, it is the consumer�s turn to make an o¤er, with asset transfer within

the range [0; �z=N ]; the producer the decides to accept or reject the o¤er.

Note that at the end of round 2n� 1, the maximum cumulative asset transfer is [(n� 1) + (1� �)]z=N ,

and at the end of round 2n, the maximum cumulative asset transfer is nz=N , for all n = 1; :::; N .

As before, to solve the game, we need to solve all possible subgames. Also, such subgame can still be

characterized by [(ub0; u
s
0); J ], where (u

b
0; u

s
0) is the intermediate payo¤ at the beginning of the subgame and

J is the number of remaining bargaining rounds.

Proposition 14 Fix some � 2 [0; 1]. There exists a subgame perfect equilibrium (SPE) in each alternating-

ultimatum o¤er game, and all SPE share the same �nal payo¤s. When the output level corresponding

to the �nal payo¤s is less than y�, the SPE is unique and is simple; otherwise, there is a unique simple

SPE. Moreover, in any simple SPE, the intermediate payo¤s, f(ubn; usn)gn=1;2;:::;2N , converge to the solution

(ub(�); us(�)) to the di¤erential equations (17) and (18) as N approaches1 with � = [(n�1)=2+(1��)]z=N

if n is odd and � = nz=2N if n is even.

Note that Proposition 1 is a special case of Proposition 14 with � = 1=2.

The proof follows exactly the same outline as that of Proposition XXX. In particular, we will use the same

technique to compute the �nal payo¤s for any subgame, but with necessary modi�cation to accommodate

the fact that the consumer has control over � fraction of assets to be negotiated every two rounds. As before,

we can denote an arbitrary subgame by [(ub0; u
s
0); J ] with 0 � ub0 + u

s
0 < u(y�)� v(y�).
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The �nal payo¤ is computed as follows. De�ne f(eubj ; eusj)gJj=0 as (eub0; eus0) = (ub0; us0), and, for j � 0,
H(eub2j+1; eus2j ; p0 + �z=N + jz=N) = 0; and eus2j+1 = eus2j ; (110)

H(eub2j+1; eus2j+2; p0 + (j + 1)z=N) = 0; and eub2j+2 = eub2j+1; (111)

where p0 is given by (85). Below we show that the �nal equilibrium payo¤s for the agents are given by

(eubJ ; eusJ).
The logic behind this construction is exactly the same as the symmetric case, except for the fact that the

consumer and the producer controls di¤erent shares of assets up for negotiation. In particular, when J = 1,

the game [(ub0; u
s
0); 1] is a standard take-it-or-leave-it o¤er game (with the consumer making the o¤er). Since

the consumer can o¤er up to additional �z=N units of assets, the �nal payo¤ is computed by a rightward

shift to next Pareto frontier with intermediate payments p0 + �z=N , as in (110) with j = 0. When J = 2,

the producer makes the �rst o¤er and take the �nal payo¤ for consumer in case he rejects the o¤er as given.

Note that with J = 2 the �nal Pareto frontier has intermediate payment of p0+ z=N , as in (111) with j = 0.

To compute the intermediate payo¤s, we �rst de�ne the functions Fr and Fu analogous to (86) and (87):

Fr(u
b; us) = (ub

0
; us0) such that us0s and H(ub

0s
; p+ �z=N); (112)

Fu(u
b; us) = (ub

0
; us0) such that ub

0b
and H(ub; us0; p+ (1� �)z=N); (113)

where p is given by (85). Now we are ready to explain how to compute intermediate payo¤s. Consider a

game [(ub0; u
s
0); J ] with J even. Using the same backward induction argument as in the symmetric case, if

(bubJ�1; busJ�1) is the equilibrium intermediate payo¤ for the agents at the end of round-(J � 1) bargaining,

then

Fr(bubJ�1; busJ�1) = (eubJ ; eusJ): (114)

As before, the solution would be obtained by a leftward shift, but, under �, to the lower Pareto frontier with

intermediate payment lowered by �z=N ; that is,

H[bubJ�1; eusJ ; p0 + Jz=2N � �z=N ] = 0; busJ�1 = eusJ : (115)

Note that in this case, (bubJ�1; busJ�1) and (eubJ�1; eusJ�1) do not lie on the same Pareto frontier unless � = 1=2.
In general, we can still use (95) to compute the equilibrium intermediate payo¤at the end of round-(J�j)

bargaining, denoted by (bubJ�j ; busJ�j), with Fr and Fu de�ned by (112)-(113). Similar to the symmetric case,
we de�ne a second sequence, f(ubJ�j ; usJ�j)gJ�1j=0 as follows: (u

b
J ; u

s
J) = (eubJ ; eusJ), and

H(ubJ�j ; u
s
J�j+1; p0 + (J � j � 1)z=2N + (1� �)z=N) = 0; and usJ�j = usJ�j+1 for j � 1 odd, (116)

H(ubJ�j+1; u
s
J�j ; p0 + (J � j)z=2N) = 0; and ubJ�j = ubJ�j+1 for j � 1 even.(117)
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Graphically, for j odd, (ubJ�j ; u
s
J�j) is obtained from (ubJ�j+1; u

s
J�j+1) by moving toward left to the next

lower Pareto frontier, with a decrease of incremental transfer of �z=N ; for j even, (ubJ�j ; u
s
J�j) is obtained

from (ubJ�j+1; u
s
J�j+1) by moving downward to the next lower Pareto frontier, with a decrease of incremental

transfer of (1 � �)z=N . Note that (ubJ�1; u
s
J�1) = (bubJ�1; busJ�1) given by (115). Note also that, in contrast

to the symmetric case, (eubJ�j ; eusJ�j) is situated in the same Pareto frontier as (ubJ�j ; usJ�j) if and only if j is
even; for j odd, (ubJ�j ; u

s
J�j) lies on a di¤erent frontier. To summarize, intermediate payo¤s are then given

by

(bubJ�j ; busJ�j) = (ubJ�j ; u
s
J�j) for j odd; (118)

(bubJ�j ; busJ�j) = (eubJ�j ; eusJ�j) for j even: (119)

Moreover, with the appropriately modi�ed argument adopted to �, we can show that the corresponding o¤ers

to these intermediate payo¤s are all feasible at each round.

Now we show that the intermediate payo¤s converge to the same limit. As in the symmetric case, consider

convergence of games with N even. The limit will be the same for N odd and hence we have convergence.

By the above arguments we have that the sequence of intermediate equilibrium payo¤s at the end of each

round is given by f(bubn; busn)gNn=1 with (ub0; us0) = (0; 0), and that (bubn; busn) = (eubn; eusn) for n even. Consider
two bargaining rounds, 2n and 2n + 2. So, (eub2n; eus2n) and (eub2n+2; eus2n+2) are corresponding equilibrium
intermediate payo¤s. Let �ub = eub2n+2 � eub2n denote the buyer�s incremental payo¤s (on the equilibrium
path) in rounds 2n and 2n + 2, and �us = eus2n+2 � eus2n denote the seller�s incremental payo¤ (on the
equilibrium path) in rounds 2n and 2n+ 2. Let �z = z=N be the corresponding change in assets. Then we

have

H(eub2n; eus2n; nz=N) = 0 (120)

H(eub2n +�ub; eus2n; ��z + n

N
z) = 0 (121)

H(eub2n +�ub; eus2n +�us; nz=N +�z) = 0: (122)

A �rst-order Taylor series expansion of (121) in the neighborhood of (ub; us; �) =
�eubn; eusn; nN z� yields:

H(eub2n +�ub; eus2n; nN z) = H1�u
b +H3��z + o(�u

b) + o(
1

N
);

where limN!1
o(�ub)
�ub

= limN!1No( 1N ) = 0, we used that H(eub2n; eus2n; n
N z) = 0 from (120), and the partial

derivatives H1, H2, and H3 are evaluated at
�eub2n; eus2n; nN z�. Similarly, a �rst-order Taylor series expansion

of (122) yields

H(eub2n +�ub; eus2n +�us; n+ 1N
z) = H1�u

b +H2�u
s +H3�z + o(�u

b) + o(�us) + o(
1

N
);
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where limN!1
o(�ub)
�ub

= limN!1
o(�us)
�us = limN!1No( 1N ) = 0. Using that H = 0 for payo¤s on the Pareto

frontiers, we obtain that

H1�u
b + o(�ub) = �H3��z + o(

1

N
);

H1�u
b + o(�ub) +H2�u

s + o(�us) = �H3
z

N
+ o(

1

N
);

H2�u
s + o(�us) + o(�ub) = �(1� �)H3

z

N
+ o(

1

N
)

From the �rst equation with rearranging, we obtain

�ub

�z
= ��H3

H1
+
o(�ub)

H1�z
+

o( 1N )

H1�z
:

Similarly, from the thrid equation with rearranging, we obtain

�us

�z
= �(1� �)H3

H2
+
o(�ub)

H2�z
+
o(�us)

H2�z
+

o( 1N )

H2�z
:

Thus, we have

@ub

@�
= lim

N!1;n=N!�

�ub

�z
= ��H3

H1
= �� @H=@�

@H=@ub
;

@us

@�
= lim

N!1;n=N!�

�us

�z
= �(1� �)H3

H2
= �(1� �) @H=@�

@H=@us
:

Appendix C

Proof. Dual currency with exponential time constraint

Here we consider the dual currency economy with �� exponentially distributed. From (41), and assuming

an interior solution,

i1 = ��e��T2`[y(T2)] (123)

i0 � i1 = ���
(�0 � �1)

�0

Z T2

T1

e��� `[y(�)]d� ; (124)

where T1 = a0=�0, T2 = a0=�0 + a1=�1, y(T2) = p�1(a0 + a1), and y(�) = a0 + �1(� � a0=�0). We have the

following results.

Proposition 15 (Dual currency economy) Suppose that �0 > �1 and let i0 be given. There exists

a unique dual-currency steady-state equilibrium with for all i1 2 (�; i0) where �(�0; �1) < i0. Moreover,

@�=@�0 < 0 and @�=@�1 > 0.

Proof. Real that T2 = a0
�0
+ a1

�1
. First note that there exists a unique ea(i1) such that a0 = ea(i1) and

a1 = 0 satisfy (123). For any given a0 2 (0;ea(i1)), from (123) we can determine a unique a1 = g(a0; i1) > 0
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with g(0; i1) = �a(i1) > 0, and ea(i1) < �a(i1), and g0 < 0 for all such a0. We can then rewrite the second

equation as:

i0 � i1 = ���
(�0 � �1)

�0
e��

a0
�0

Z g(a0;i1)
�1

0

e��x

"
u0
�
p�1 (a0 + �1x)

�
� v0

�
p�1 (a0 + �1x)

�
v0 [p�1 (a0 + �1x)]

#
dx:

The right side is decreasing in a0. There is a positive solution provided that i1 > � where � solves

i0 � � = ���
(�0 � �1)

�0

Z �a(�)
�1

0

e��x

"
u0
�
p�1 (�1x)

�
� v0

�
p�1 (�1x)

�
v0 [p�1 (�1x)]

#
dx:

It is easy to check that the right side is increasing in �0 and decreasing in �1, hence @�=@�0 < 0 and

@�=@�1 > 0.

Provided that the di¤erential of in�ation rates is not too large, there is coexistence of the two currencies.

The di¤erential consistent with a dual currency economy increases as currency 0 becomes more negotiable

and decreases as currency 1 becomes more negotiable. Moreover, our model predicts that small trades are

conducted with the most negotiable currency while larger trades are �nanced with both currencies.

Proposition 16 (Exchange rate) In any dual-currency, steady-state equilibrium the nominal exchange

rate is uniquely determined and can be expressed as et = �e(�0; �1)A1;t=A0;t where �e(�0; �1) increases with �0

but decreases with �1.

Proof. The exchange rate can be expressed as et � (a0=a1) � (A1;t=A0;t). It can be checked from the

proof of previous proposition that a0 increases with �0 and decreases with �1. Moreover, a1 = g(a0; i1)

decreases with a0.

Endogenous search

So far we have endogenized the time required to negotiate the sale of assets. We now endogenize the time

it takes to receive trading opportunities, 1=�. To do this, we introduce a participation decision on one side

of the market. Suppose that producers of the DM good can choose to participate in the DM at some cost.32

The measure of producers who participate is denoted n and the measure of DM matches is �(n) where �(n)

is strictly concave. Assuming an interior solution n solves

� =
�(n)

n

Z y

0

e��
z(x)
�
(1� �)�0(x) [u0 (x)� �0(x)]
�u0(x) + (1� �)�0(x) dx: (125)

The entry cost, �, is equal to the expected surplus of the producer, which is equal to the matching probability,

�(n)=n, times the expected surplus from the negotiation. Entry requires � < 1 and it increases with y and

�.
32There are several ways to endogeneize the measure of trades taking place within a period: through costly entry (e.g.,

Rocheteau and Wright, 2005), endogenous search intensity (Lagos and Rocheteau, 2005), endogenous market composition
(Rocheteau and Wright, 2009), endogenous asset acceptability (e.g., Lester et al., 2012).
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From the previous subsection we can derive an equilibrium condition between y and � by substituting

the market clearing spread, s(Ad; �), into the asset demand, zb(s; �), and using the fact that zb = z(y). As

� increases so does y. Hence, there is a positive relationship between y and n. As n approaches 0, s tends

to 0 and z(y) = min f(1 + �)Ad=�; z(y�)g. As n tends to in�nity, � approaches 1 and z(y) approaches a

�nite limit. The second relationship between n and y is given by (125). Provided that � is not too large,

an active equilibrium exists. Moreover, the model can generate multiple steady-state equilibria. At the

high equilibrium the entry curve intersects the asset demand curve by below in the space (n; y). Hence, a

reduction in � that shifts the entry curve to the right leads to higher n and y and hence higher �. This

illustrates how search and negotiation frictions are complement.

We now compare equilibrium allocations to the constrained-e¢ cient allocation in the absence of bargain-

ing friction, � goes to 0. The constrained-e¢ cient allocation is a pair (y; n) that maximizes total welfare,

�(n) [u(y)� �(y)]� �n. The solution is y = y� and �0(n) [u(y�)� �(y�)] = �.

Proposition 17 Suppose there is free entry of producers and asymmetric gradual bargaining. An equilibrium

allocation coincides with the constrained-e¢ cient allocation if

Ad � �

1 + �

Z y�

0

u0 (x) �0(x)

�u0(x) + (1� �)�0(x)dx (126)

and

�0(n)n

�(n)
= (1� �)

R y�
0

�0(x)[u0(x)��0(x)]
�u0(x)+(1��)�0(x)dxR y�

0
[u0 (x)� �0(x)] dx

: (127)

Proof of Proposition 17. We verify that s = 0, y = y� and n = n�is an equilibrium. Note that (126)

ensures that s = 0 and y = y� solve (??) and (??), regardless of n. Now, (127) ensures that n� solves (125).

The gradual Nash bargaining solution can implement the e¢ cient allocation while the generalized bar-

gaining solution cannot. The �rst best requires liquidity to be plentiful and a modi�ed version of the Hosios

condition to be satis�ed. The bargaining power must be such that the e¤ective producers�share is equal to

the producers�contribution in the matching process.
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