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Abstract

We show, both theoretically and empirically, that liquidity creation induces nega-
tive exposure to volatility risk. Intuitively, liquidity creation involves taking positions
that can be exploited by privately informed investors. These investors’ ability to pre-
dict future price changes makes their payoff resemble a straddle (a combination of
a call and a put). By taking the other side, liquidity providers are implicitly short a
straddle, suffering losses when volatility spikes. Empirically, we show that short-term
reversal strategies, which mimic liquidity creation by buying stocks that go down and
selling stocks that go up, have a large negative exposure to volatility shocks. This ex-
posure, together with the large premium investors demand for bearing volatility risk,
explains why liquidity creation earns a premium, why this premium is strongly in-
creasing in volatility, and why times of high volatility like the 2008 financial crisis
trigger a contraction in liquidity. Taken together, these results provide a new, asset-
pricing view of the risks and rewards to financial intermediation.
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We show, both theoretically and empirically, that liquidity creation—making assets

cheaper to trade than they otherwise would be—induces exposure to volatility risk. Given

the very large premium investors pay to avoid volatility risk (Carr and Wu, 2008), this ex-

plains why liquidity creation earns a premium (Krishnamurthy and Vissing-Jorgensen,

2015), why this premium is strongly increasing in volatility (Nagel, 2012), and why times

of high volatility like the 2008 financial crisis trigger a contraction in liquidity (Brunner-

meier, 2009). Taken together, these results provide a new, asset-pricing view of the risks

and rewards of financial intermediation.

Why does liquidity creation induce exposure to volatility risk? To create liquidity for

some investors in an asset, a liquidity provider takes positions that can be exploited by

other, privately informed investors (e.g. Kyle, 1985). These investors buy the asset if they

think it will rise in value and sell it if they think it will fall. Their ex post payoff therefore

resembles a straddle (a combination of a call and a put option). Like any straddle, this

payoff is high if volatility rises and low if it falls. By taking the other side, the liquidity

provider is implicitly short the straddle, earning a low payoff if volatility rises and a high

one if it falls. In other words, the liquidity provider is exposed to volatility risk.

The relation between liquidity creation and volatility risk is fundamental; it arises

directly from the presence of asymmetric information (a staple of the literature since Ak-

erlof, 1970). As a result, it applies widely across a variety of market structures. For in-

stance, one way financial institutions create liquidity is by issuing relatively safe securities

against risky assets (Gorton and Pennacchi, 1990). In doing so, they are betting against

private information possessed by those who originate the assets or in some other way

take a position against them (e.g. through derivatives). Consequently, when volatility

spikes and this private information becomes more valuable, financial institutions suffer

losses, as they did during the 2008 financial crisis.

Financial institutions and other investors also create liquidity by trading in secondary

markets such as those for stocks and bonds. We present a model to formalize how this

type of liquidity creation induces volatility risk and how this risk drives the liquidity

premium. We also use the model to motivate our empirical analysis.

The model builds on the framework of Kyle (1985), but with the added ingredient of
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stochastic volatility. A liquidity provider observes order flow, which captures the liquid-

ity demand of informed and uninformed investors alike. She sets prices to break even on

average, earning profits against the uninformed to offset losses against the informed. To

do so, she has to predict the value of the informed investors’ private signal. This value

depends on the remaining volatility in the asset’s payoff. As a result, prices conditional

on order flow depend on expected volatility going forward. When expected volatility

is high, assets with negative order flow have lower prices and assets with positive order

flow have higher prices. When expected volatility is low, prices depend less on order flow.

If, however, volatility rises in the following period, the value of the informed investors’

information also rises. This earns them a higher expected profit than was priced in by the

liquidity provider who therefore incurs an expected loss. Thus, the liquidity provider has

a negative exposure to volatility shocks. The magnitude of this exposure depends on the

expected size of these shocks, i.e. on the volatility of volatility.

The model has many assets and liquidity providers are free to trade all of them. Yet

they cannot diversify away their volatility risk because volatility follows a factor struc-

ture across assets. As Herskovic et al. (2016) show, this assumption is strongly supported

in the data. Also strongly supported is that the factors that drive asset-level volatility are

highly correlated with aggregate volatility (e.g. Campbell et al., 2001; Bekaert, Hodrick

and Zhang, 2012). Hence, our model predicts that liquidity providers have negative ex-

posure to aggregate as well as asset-level volatility. The asset pricing literature shows that

aggregate volatility in particular carries a very large negative risk premium (Carr and Wu,

2008; Bollerslev, Tauchen and Zhou, 2009).1 Therefore, our model predicts that liquidity

providers should earn a positive premium for their negative exposure to volatility. This

liquidity premium arises purely as compensation for bearing volatility risk.

We test the predictions of our model using U.S. stock return data from 2001 to 2016

(covering the period after “decimalization,” when liquidity provision became competi-

tive; see Bessembinder, 2003). Each day, we sort stocks into deciles based on their return

(normalized by its rolling standard deviation) and quintiles based on their size (small

1Given the high correlation between asset-level and aggregate volatility, it is possible that the priced risk
factor is actually asset-level volatility and not aggregate volatility, or that the premium is for both, but this
possibility is rarely explored in the literature. Herskovic et al. (2016) is one exception.
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stocks are known to be much less liquid). Within each size quintile, we construct long-

short portfolios that buy stocks in the low return deciles and sell stocks in the high return

deciles. These are known as short-term reversal portfolios in the literature (e.g. Lehmann,

1990). In our model, a large return reflects high order flow and hence high liquidity de-

mand.2 The reversal portfolio therefore mimics the position of the liquidity provider,

hence, as in Nagel (2012), we can use it to analyze the returns to liquidity creation.

Consistent with the model, and with the prior literature, our reversal portfolios earn

substantial returns that cannot be explained by exposure to market risk. Among large

stocks, which account for the bulk of the market by value, the reversal strategy across the

lowest and highest return deciles has an average return of 27 bps over a five day holding

period, or about 13.5% per year. The annual Sharpe ratio is 0.6.

Figure 1 plots the return of the large-stock reversal strategy averaged over a 60-day

forward-looking window against the level of VIX, a risk-neutral measure of the expected

volatility of the S&P 500 over the next 30 days. The figure shows that the reversal return

is strongly positively related to VIX (the raw correlation is 46%). In a regression, we

find that a one-point higher VIX leads to a 5.37 bps higher reversal return over the next

five days, which is large relative to the average return of the strategy. The R2 of this

regression is 2.18%, which is very high for daily data. These findings confirm the main

result of Nagel (2012) that VIX predicts reversal returns.3 They are also a prediction of

our model. A high level of VIX is associated not only with high expected volatility but

also with high volatility of volatility (and high aversion to volatility risk). In our model

this makes liquidity creation riskier and raises the price of liquidity.

The bottom panel of Figure 1 tests this mechanism by plotting a measure of the volatil-

ity risk of the reversal strategy. We compute it by running 60-day rolling window regres-

sions of the five-day large-stock reversal return on the daily VIX changes during the hold-

ing period. The figure plots the annualized standard deviation of the fitted value from

this regression, which captures the systematic volatility of the reversal strategy due to

2In practice, returns also reflect the release of public news, which makes them a noisy proxy. To partly
reduce this noise, we follow Collin-Dufresne and Daniel (2014) and remove earnings announcement days.

3Our methodology differs somewhat from Nagel (2012) in that we focus on large stocks and opt for
decile sorting instead of weighting by returns.
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VIX changes, i.e. its volatility risk. The figure shows that the volatility risk of the reversal

strategy is substantial and that it covaries strongly with the level of VIX (the raw correla-

tion is 58%). This confirms the prediction that when VIX is high the reversal strategy is

exposed to more volatility risk, which is consistent with its higher premium.

To formally test if the reversal strategy is exposed to volatility risk, we regress its

return on changes in VIX. We find a strong negative beta coefficient: the five-day large-

stock reversal return drops by 64 bps if VIX rises by an average of one point per day

over the holding period, which is equivalent to 1.3 standard deviations. The beta is large

relative to the average return of the strategy (27 bps). It rises to 71 bps if we control for the

market return, and the results are similar for small stocks. Thus, the reversal strategies

have substantial negative exposure to volatility risk, a central prediction of the model.

The negative impact of VIX changes on the reversal strategy returns is highly persis-

tent. A one-point increase in VIX one day after portfolio formation induces a same-day

drop of 19-bps in the large-stock reversal strategy, which remains essentially unchanged

at 21 bps by the end of the holding period. This persistence is in line with our model

where an increase in expected volatility raises the value of private information about the

value of the asset. It goes against alternative models where a rise in VIX forces constrained

liquidity providers to offload their positions. In such a model the impact on prices would

be transitory.

The next step in our analysis is to test whether this volatility risk exposure can account

for the average returns of the reversal strategies. This prediction differentiates our the-

ory from others, which are based on the inventory risk of liquidity providers (Stoll, 1978;

Grossman and Miller, 1988; Gromb and Vayanos, 2002; Duffie, 2010). We note that inven-

tory risk is in principle fully diversifiable, hence it should not command any premium, let

alone one as large as the one we find in this recent sample. This tension is present in all

models of the liquidity premium based on inventory risk. In contrast, our model shows

that there is a tight relationship between liquidity creation and volatility risk, which is

nondiversifiable, and thus ties together their premiums.

Our first pricing test runs Fama-MacBeth regressions of the five-day reversal portfolio

returns on the daily market returns and VIX changes during the holding period. We find
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that exposure to VIX changes is strongly priced and substantially reduces the pricing er-

rors of the portfolios. The pricing error of the largest quintile reversal strategy drops from

25 bps to −7 bps. The pricing errors of the next two quintiles are similarly driven down

(20 bps to 4 bps and 33 bps to 6 bps, respectively). Only the pricing errors of the two

smallest quintiles remain significant (these stocks account for just 0.4% of market value).

Hence, outside these very small stocks, our results show that the returns to liquidity pro-

vision are well priced by volatility risk exposures.

Our final test asks if volatility risk can price the reversal strategies with the same price

of risk that prevails in other markets. If so, it would suggest that the price of liquidity

creation reflects broad economic risks rather than institutional frictions.

The natural place to measure the price of volatility risk is in option markets. The

VIX index itself is based on the price of a basket of options whose payoff replicates the

realized variance of the S&P 500 over a 30-day period. Since this basket changes from day

to day as options near expiration, the change in VIX is not a valid return from which we

can estimate a price of risk. However, it is straight-forward to compute such a return by

simply holding the basket fixed from one day to the next. We do so using data on S&P 500

options and following the methodology of the Chicago Board Options Exchange (CBOE).

The resulting VIX return has a sample average of −1.54% per day.

Whereas VIX has a 30-day horizon, liquidity provision in equity markets typically

takes place on a shorter time scale. This is why we follow the literature and focus on

reversal returns out to five trading days. While it is not feasible to target such a short

horizon with index option data,4 we are able to move in that direction by calculating the

return associated with VIXN, the “near-term VIX”, which is one of the two cross sections

of options used by CBOE in the computation of VIX (the average horizon of VIXN is 22

days). We find that the VIXN return is −2.01% per day, which is larger even than the VIX

return.

We calculate a price of risk associated with exposure to VIX changes by dividing the

average VIX return by its loading on VIX changes. This gives a price of −22 bps, i.e.

4Options often behave erratically near expiration, hence the CBOE discards options with less than a
week to expiration from the computation of VIX.
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an asset that rises by one percent when VIX rises by one point is predicted to have an

average return of −22 bps per day. We do the same for the VIXN return with respect to

VIXN changes and obtain a price of risk of −33 bps.

Using these prices of risk and the betas of the reversal portfolios, we calculate pre-

dicted returns and pricing errors.5 We find that these restricted pricing tests perform

similarly to the unrestricted Fama-MacBeth regressions, especially when we use the near-

term VIXN. Specifically, when we use VIX changes as the priced factor and the VIX re-

turn to obtain its price, the pricing error of the large-stock five-day reversal strategy drops

from 25 bps to 11 bps and remains marginally significant. On the other hand, when we

use VIXN changes as the priced factor and the VIXN return to obtain its price, this pric-

ing error drops to just 1 bp. Thus, near-term volatility risk prices the large-stock reversal

strategy almost perfectly. The pricing errors of the second and third largest quintiles also

become insignificant. Only the two smallest quintiles retain significant pricing errors,

similar to the Fama-MacBeth regressions. Overall, these results indicate that the returns

to liquidity creation reflect compensation for the risks of betting against volatility.

The rest of this paper is organized as follows. Section 1 reviews the literature, Section

2 presents the model, Section 3 introduces the data, Section 4 discusses the empirical

results, and Section 5 concludes.

1 Related literature

A large literature in asset pricing studies how liquidity is priced in financial markets.

Amihud and Mendelson (1986) , Brennan and Subrahmanyam (1996), and Easley and

O’hara (2004) show that illiquid stocks have higher expected returns. Chordia, Roll and

Subrahmanyam (2000) and Hasbrouck and Seppi (2001) show that different measures

of illiquidity comove strongly. Amihud (2002) and Pástor and Stambaugh (2003) show

that aggregate illiquidity is priced both in the time series and cross section of stocks.

Acharya and Pedersen (2005) provide an equilibrium model that captures these facts. This

5This is analogous to including the VIX and VIXN returns as additional test assets and imposing the
restriction that they be priced perfectly. This approach is also followed by Constantinides, Jackwerth and
Savov (2013).
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literature has also shown that liquidity is decreasing in volatility. Chordia, Sarkar and

Subrahmanyam (2004) show that increases in volatility are associated with a reduction in

liquidity. Hameed, Kang and Viswanathan (2010) show that liquidity provision strategies

earn high returns following stock market downturns. Nagel (2012) shows that expected

returns to liquidity provision in stocks are increasing in the level of VIX.

A second large literature in asset pricing studies how volatility is priced in financial

markets. Carr and Wu (2008) show that investors pay a large premium (the variance risk

premium) to hedge aggregate volatility risk. Todorov (2009) and Bollerslev and Todorov

(2011) extend these results to jump risk. Bollerslev, Tauchen and Zhou (2009) and Drech-

sler and Yaron (2010) show that the variance risk premium strongly predicts aggregate

stock returns. Manela and Moreira (2017) extend these results by over a century. Bao, Pan

and Wang (2011) and Longstaff et al. (2011) find similar results for bonds. Drechsler and

Yaron (2010), Drechsler (2013), and Dew-Becker et al. (2017) provide theories that explain

the behavior of the variance risk premium as driven by macroeconomic risk.

The contribution of our paper is to integrate the literatures on the pricing of liquidity

and volatility. First, we show theoretically that liquidity provision induces exposure to

volatility risk. Second, we confirm this prediction empirically and show that volatility

risk can explain the observed returns to liquidity provision strategies.

Our model is rooted in the theoretical literature on how asymmetric information im-

pacts asset prices and liquidity (e.g. Hellwig, 1980; Grossman and Stiglitz, 1980; Diamond

and Verrecchia, 1981; Kyle, 1985; Glosten and Milgrom, 1985). Specifically, we introduce

stochastic volatility in the framework of Kyle (1985).6 We show that informed traders

are effectively long a straddle because they can trade in the direction of subsequent price

changes. Liquidity providers, who take the other side, are therefore short a straddle. As

a result, they suffer losses when volatility comes in higher than expected. This expo-

sure cannot be diversified away because volatility is highly correlated across assets and

with market volatility. Our model shows how this leads to the emergence of a liquidity

6Collin-Dufresne and Fos (2016) solve a dynamic version of this framework with stochastic noise trader
volatility. While this feature does not create volatility risk exposure for the liquidity provider, our frame-
works share the presence of long-lived private information, which contrasts with earlier papers like Admati
and Pfleiderer (1988) and Foster and Viswanathan (1990).
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premium as compensation for volatility risk.

A more recent literature focuses on the role of financial frictions in generating fluc-

tuations in liquidity (e.g. Eisfeldt, 2004; He and Krishnamurthy, 2013; Brunnermeier and

Sannikov, 2014). Gromb and Vayanos (2002), Brunnermeier and Pedersen (2008), and

Adrian and Shin (2010) show how, when financial institutions are risk averse or subject

to a Value-at-Risk (VaR) constraint, a rise in volatility leads to a contraction in the supply

of liquidity. Moreira and Savov (2017) show how such a liquidity contraction impacts

asset prices and the macroeconomy. Our paper shows how these dynamics can arise as a

result of fluctuations in the variance risk premium. Of course, it is also possible that the

variance risk premium itself is a reflection of the scarcity of liquidity, particularly at the

short end. We return to this intriguing possibility at the end of the paper.

2 Model

We present a model in the tradition of Kyle (1985) that shows why liquidity provision

is fundamentally exposed to aggregate volatility risk and thus inherits its substantial,

negative price of risk. The model makes several further predictions and guides the con-

struction and implementation of our empirical tests.

There are three time periods, 0, 1, and an in-between period t ∈ (0, 1), and N assets

that are traded at time 0. There are three types of market participants: insiders, liquidity

demanders, and liquidity providers. For each asset there is a single insider, a unit mass

of liquidity demanders, and a competitive fringe of liquidity providers.

Each asset i has a single payoff pi,1 that is realized at time 1 and is given by:

pi,1 = vi + σi,1 vi, (1)

where v̄i is a constant and vi ∼ N (0, 1) is an idiosyncratic shock that is uncorrelated

across assets and is scaled by the volatility σi,1. Thus, σi,1 represents asset i’s idiosyncratic

volatility. The value of vi is known by all investors prior to time 0 and is the price of the

asset before any trading takes place. At time 0 insiders learn the value of vi, whereas its

8



value remains unknown to the other market participants. Trading then takes place.

All market participants share the same information and expectations about the ran-

dom variable σi,1, which is uncertain until time 1. The realization of σi,1 is driven by both

a market (i.e., systematic) volatility factor σm that is common to all N assets’ idiosyncratic

volatilities, and an asset-specific component εσi :

σi,1 = kiσm,1 + εσi . (2)

The parameter ki gives the loading of asset i’s idiosyncratic volatility on the market

volatility factor σm,1. We assume ki > 0 to capture the observed strong comovement

of idiosyncratic and market volatilities.

At the intermediate time t ∈ (0, 1), news arrives about volatilities that changes market

participants’ expectations of the value of σi,1. To focus on the impact of this volatility

news, we assume that only liquidity providers trade at time t, so that changes in prices at

this time are due only to updates in volatility expectations.

The single insider in each asset maximizes the value of profits under the economy’s

pricing kernel:7

y∗i = arg max
yi

EQ
0 [yi (pi,1 − pi,0) | vi] , (3)

where EQ
0 denotes expectation at time-0 under the risk-neutral probabilities implied by

the pricing kernel, yi is the insider’s share position in asset i, and pi,0 is the time-0 price

of the asset. Liquidity traders demand for shares of asset i is given by zi ∼ N
(
0, σ2

zi

)
,

which we assume is uncorrelated across assets. Finally, there is the unit mass of liquidity

providers. We assume liquidity providers are integrated with the rest of the market (no

segmentation), and thus also price payouts according to the economy’s pricing kernel.

As in Kyle (1985), liquidity providers cannot distinguish between the trades of in-

siders and liquidity traders and only observe their net order flow, Xi = zi + y∗i . Since

7The assumption of a single insider is inessential. We could instead model a mass of competitive insiders
who are risk-averse. The essential requirement is that some consideration limits the intensity of insiders’
trading, so that their trading does not fully reveal their private information.
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liquidity providers are competitive, they set the time-t price pi,t so that they break even

in expectation:

pi,t = EQ
t [pi,1 | Xi] . (4)

As in Kyle (1985), we conjecture (and later verify) that the insider’s demand is given by

y∗i = φ
(

EQ
0 [pi,1 | vi]− p̄i

)
= φ

(
v̄i + EQ

0 [σi,1] vi − p̄i

)
, (5)

where φ and pi are determined in equilibrium. By Bayes’ rule, the price at time t ∈ [0, 1)

is

pi,t = vi + EQ
t [σi,1] EQ

t [vi | Xi] = vi + EQ
t [σi,1] λXi, (6)

where λ =
cov0 (vi, Xi)

var0(Xi)
=

φEQ
0 [σi,1]

φ2(EQ
0 [σi,1])2 + σ2

zi

. (7)

The solution for λ is based only on time-0 information because the insider’s demand y∗i is

determined at time 0 and there is no additional information about vi in the time-t volatility

news. Substituting the price schedule (6) into the insider’s problem and simplifying gives:

y∗i = arg max
yi

EQ
0

[
yi

(
EQ

0 [σi,1]vi − λEQ
0 [σi,1](zi + yi)

) ∣∣∣ vi

]
(8)

= arg max
yi

yiE
Q
0 [σi,1]vi − y2

i λEQ
0 [σi,1] (9)

=
1

2λ
vi. (10)

Setting this expression equal to (5) and solving the resulting equation jointly with (7) gives

the values of λ, φ, and pi and confirms the conjecture (5) for y∗i . We obtain the following.

Proposition 1. φ, pi, and λ are given by

φ =
σzi

EQ
0 [σi,1]

, pi = vi, λ =
1

2σzi

, (11)
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and asset i’s price at time 0 ≤ t < 1 is

pi,t = vi +
Xi

2σzi

EQ
t [σi,1]. (12)

Thus, the time-0 price is pushed in the direction of the net order flow Xi. This is intu-

itive since liquidity providers absorb this order flow by taking the opposite position,−Xi.

The sensitivity of the price to the order flow imbalance is inversely related to the expected

amount of uninformed liquidity trading, σzi , and proportional to expected volatility. A

higher expected volatility makes insiders’ information more powerful and thus increases

adverse selection, making the price more sensitive to imbalances in order flow.

Unfortunately, neither the sign nor magnitude of Xi are directly observable in the

data. While volume is observable, it is unsigned and represents only the gross quantity

of trading, whereas Xi is a net quantity. The relationship between net and gross can be

complicated and unstable across different assets and markets, depending on the number

of individual liquidity traders and the amount of netting that occurs within this group.

Fortunately, equation (12) shows that the change in the asset’s price at time 0 contains

information about the sign and magnitude of liquidity providers’ exposure to the asset’s

volatility. Let ∆pi,0 = (pi,0 − vi) denote asset i’s time-0 price change. We have the follow-

ing.

Lemma 1. The exposure of liquidity providers to asset i’s volatility, −Xi/σzi , is proportional to,

and has the opposite sign of, its time-0 price change:

−Xi

σzi

= −∆pi,0
2

EQ
0 [σi,1]

(13)

Thus, liquidity providers hold a portfolio of reversals: they take larger long (short) exposures in

assets that have larger time-0 price decreases (increases).

Together, equations (12) and (13) show that assets’ time-0 price changes give their

exposures to volatility news. As the following proposition shows, liquidity providers are

negatively exposed to increases in volatility on all of their positions, both long and short.

When volatilities increase, both legs of the reversals go against the liquidity providers–
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long positions decline while short positions advance. Let ∆pi,t = pi,t − pi,0 denote the

time-t price change of asset i. We have the following:

Proposition 2. The change in the price of asset i at time t is given by

∆pi,t =
Xi

2σzi

(EQ
t [σi,1]− EQ

0 [σi,1]). (14)

and hence the beta of liquidity providers’ holdings of asset i (−Xi∆pi) to shocks to market volatility

(EQ
t [σm,1]− EQ

0 [σm,1]) is

βi,σm =
−Xi∆pi,t

EQ
t [σi,1]− EQ

0 [σi,1]
ki = −

X2
i

2σzi

ki < 0. (15)

Thus, all of the liquidity provider’s positions, long and short, have negative betas to changes in

market volatility. When market volatility increases, the reversal portfolio loses on both sides–long

positions decline while short positions advance.

Therefore, the liquidity provider is negatively exposed to systematic, undiversifiable

market volatility risk. This is surprising because assets’ payoffs in the model are purely

idiosyncratic in nature, and have no correlation with the market return. Moreover, even

if there were market risks, liquidity providers hold zero-investment portfolios that are

neither net long nor short. Nevertheless, they have inescapably negative market volatility

betas. The explanation is that, even though assets’ cash flows are purely idiosyncratic,

there is commonality in their expected volatilities. It is this commonality in their second

moments that exposes the liquidity provider to an undiversifiable risk in the portfolio’s

first moment. This is important in practice, since empirically there is a very high degree

of commonality in volatilities, both idiosyncratic and systematic, across all assets.

A large literature in volatility and option pricing documents that market volatility

risk commands a very substantial and negative price of risk. Formally, this means that

EP
0 [σm,1] < EQ

0 [σm,1], i.e., risk-adjusted (Q-measure) volatility expectations are substan-

tially higher than objective expectations, so that selling insurance against market volatil-

ity risk earns a large price premium. Since the reversal portfolio has a large negative beta

to this risk, the liquidity provider demands a large risk premium to bear it.
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Proposition 3. The expected payoff on the liquidity provider’s portfolio from time 0 to time 1 is:

EP
0

[
N

∑
i=1
−Xi∆pi,1

]
=

(
N

∑
i=1

βi,m

)(
EP

0 [σm,1]− EQ
0 [σm,1]

)
> 0. (16)

Hence, the return to liquidity provision reflects the large volatility risk exposure of

the reversal portfolios, as captured by their market volatility betas.

For testing the model, it will be useful to create a cross-section of reversal portfolios

with differing exposures to market volatility risk. Equations (13) and (14) show this can

be done by forming a cross-section of reversal portfolios based on the magnitude of as-

sets’ time-0 price changes (returns). Within each reversal portfolio, one can approximate

the liquidity providers’ position (Xi) in each asset by weighting it by a proxy for σzi . Al-

though σzi is not directly observable, we can proxy for it using the asset’s volume, which

is proportional to σzi . Thus, the model predicts that we can obtain a cross-section of expo-

sures to market volatility risk by sorting assets into volume-weighted reversal portfolios

according to their time-0 returns.

2.1 Discussion

In this section we start by summarizing the key predictions of the model. We then clarify

a few points about what our model.

Prediction 1. The liquidity provision portfolio is a bet on stock level reversals. It has weights that

are linearly decreasing in the standardized stock realized return, i.e. it is a portfolio that is long

losers and short winners.

Prediction 2. The expected return on the reversal portfolio measures the liquidity premium, i.e.

the risk-premium earned by a strategy that provides liquidity. The absence of frictions implies that

this liquidity premium should be compensation for risks priced more broadly in financial markets.

Prediction 3. The reversal portfolio returns is negatively exposed to common increases in expected

idiosyncratic volatility during the expected duration of demand imbalances.

Prediction 4. The exposure to volatility innovations is increasing (more negative) on the mag-

nitude of the price movement, i.e. portfolios of stocks that had very large drops and very large
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increases in prices have a more negative exposure than portfolio of stocks that had mild declines

and increases in prices.

Prediction 5. The reversal portfolio premium is proportional to the beta of the reversal portfolio

with respect to shocks to the common component of expected idiosyncratic volatility, and the slope

of beta-premium relation is given by the risk-premium earned by strategies that buy insurance to

shocks to the common component of expected idiosyncratic volatility.

Alternatively, the reversal portfolio premium is proportional to the beta of the reversal portfolio

with respect to shocks to expected aggregate volatility, and the slope of beta-premium relation is

given by the variance risk-premium.

Prediction 6. Time-variation in the returns of the reversal portfolio can be explained by time-

variation in the variance risk-premium, with the forecasting coefficient being proportional to the

beta of the reversal portfolio with respect to shock to expected aggregate volatility.

The horizon of the liquidity providing strategy is driven by the persistence of demand

imbalances. To provide liquidity, the liquidity provider must hold to positions acquired

at date 0 up to date 1. In the model, date 1 is also when private information is fully

incorporated into prices, but that is not important. What is important is that the strategy is

exposed to innovations in volatility of prices in during the horizon of the trading strategy,

i.e variation in the common component of volatility between dates 0 and 1. Increases in

expected volatility beyond the horizon of the strategy should not have any additional

explanatory power to the strategy returns beyond innovations in short-term volatility.

Our model shows that the liquidation provision strategy is exposed to volatility risk,

but it is completely silent about why this risk is priced. That is, our model takes as give

the empirical fact that the variance risk-premium is very high. It

3 Data and summary statistics

Stock screens: We construct reversal portfolios using data from CRSP. We exclude stocks

with missing market capitalization or trading volume, and stocks with prices below $1

(penny stocks). Following Collin-Dufresne and Daniel (2014), we also exclude stocks that
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are within one day of an earnings announcement as recorded in COMPUSTAT. Earnings

announcements are overwhelmingly public information-driven (as opposed to liquidity-

driven) events, which confounds measurement of the returns to liquidity provision.8

Sample selection: The sample is daily from April 9, 2001 to December 31, 2016, which

covers 3,958 trading days. The starting date corresponds to “decimalization,” the transi-

tion from fractional to decimal pricing on the New York Stock Exchange and NASDAQ.

As shown by Bessembinder (2003), decimalization saw a large decrease in effective trad-

ing costs, consistent with increased competition among liquidity providers. This implies

that the returns to liquidity provision prior to decimalization reflect monopolistic rents.

Portfolio formation: Each day, we double-sort stocks independently into quintiles by

market capitalization and deciles by normalized return. The sort by market capitalization

is motivated by the fact that return reversals decrease with size (Avramov, Chordia and

Goyal, 2006). The normalized return is computed as the z-score of each stock’s log return

relative to its distribution over the past 60 trading days (i.e. by subtracting the mean

and dividing by the standard deviation). The normalization ensures that the outer decile

portfolios are not dominated by stocks with the highest volatility.

The sort by normalized return captures variation in liquidity demand. In the model,

liquidity demand is given by the order flow variable Xi. Since prices are linear in order

flow, price changes (returns) give us a proxy for liquidity demand. Prices can change

for non-liquidity reasons such as the release of public news. This makes them a noisy

proxy for liquidity demand (this is why we remove earnings announcement days). The

identification assumption we are making is that this noise is uncorrelated with exposure

to volatility risk.

We weight stocks within each double-sorted portfolio by their dollar volume on the

sorting day. This mimics the economic exposure of liquidity providers, helping to capture

the risks that they face. Dollar volume is computed as trading volume times lagged price.

Lagging the price simply ensures that we are not weighting by the day’s return a second

8Consistent with this view, the literature on post-earnings announcement drift shows that earnings an-
nouncements are associated with return continuation rather than reversal (e.g. Bernard and Thomas, 1989).
Interestingly, Sadka (2006) finds that this continuation is partly explained by liquidity risk, but does not
explore a connection to volatility risk.
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time after sorting on it.

Following Nagel (2012), we hold each portfolio for one to five trading days. This

captures the returns to low-frequency liquidity provision. Whereas liquidity provision

in recent years has been dominated by high-frequency trading, low-frequency liquidity

provision remains important as long as imbalances between ultimate buyers and sellers

persist for more than one day. The presence of a reversal premium suggests that they

do. Our results show that the reversal premium has not declined with the rise of high-

frequency trading, suggesting that low-frequency liquidity provision remains scarce.

Aggregate factors: We use the excess CRSP value-weighted market return as the market

risk factor. We compute excess returns by subtracting the risk-free rate (the return on the

1-month T-Bill from CRSP).

We obtain the VIX index from the CBOE.

We measure aggregate idiosyncratic volatility, IVOL, as the value-weighted average

squared abnormal return across stocks. Abnormal returns are calculated using a market

model. IVOL is annualized to give it the same units as VIX.

The VIX return: We use S&P 500 options data from OptionMetrics to calculate the

VIX return (the data ends on April 29, 2016). The VIX index is a model-free measure of

the implied volatility of the S&P 500 index (as proposed by Britten-Jones and Neuberger,

2000). Specifically, the squared VIX is the price of a basket of options whose payoff is

the realized variance of the S&P 500 over the next 30 days. Because this basket changes

from day to day, the change in the squared VIX itself is not a valid return. However, the

percentage change in the price of a basket of options used to construct VIX on a given day

is a valid return. We refer to it as the VIX return.

To construct the VIX return, we first replicate the VIX itself by following the method-

ology provided by the CBOE.9 The replication is very accurate: our replicated VIX has a

99.83% correlation with the official VIX. The VIX return is the percentage change in the

price of the basket of options used to construct our replicated VIX.

To maintain its constant target maturity of 30 days, the VIX is computed from a

9See the CBOE white paper at https://www.cboe.com/micro/vix/vixwhite.pdf. The current methodol-
ogy uses SPX weekly options as well as the traditional monthly ones. It was first implemented on October
6, 2014. Prior to this date, only the traditional monthly options were used.
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weighted average of the prices of two baskets of options, one with maturity less than

30 days (known as the near-term VIX) and one with maturity greater than 30 days (the

far-term VIX). The CBOE publishes these under the tickers VIXN and VIXF, respectively.

We construct their returns from the prices of the baskets that replicate them. The VIX

return is simply the weighted average of the VIXN and VIXF returns, with the weights

set to achieve an average maturity of 30 days.

3.1 Summary statistics

Table 1 presents summary statistics for the reversal portfolios. We focus on long-short

strategies across return deciles, e.g. 1–10 (labeled “Lo–Hi”), 2–9, 3–8, 4–7, and 5–6. These

are the return reversal strategies. The Lo–Hi strategy is based on the outermost return

deciles and hence carries the strongest reversal signal.

From the top panel of Table 1, there are about one hundred stocks on each side (long

and short) of each portfolio. The counts are slightly higher in the outer deciles for small

stocks and slightly lower for large stocks. The reason is that small stocks have return

distributions with fatter tails, which makes them more likely to have extreme returns

even after normalizing by their volatility.

The second panel of Table 1 reports market capitalizations. The typical stock in the

largest quintile is worth $50 billion, three orders of magnitude larger than the smallest

quintile and two orders larger than the middle quintile. The largest stocks account for

96.4% of the total value of all the portfolios, making them the by far the most important

quintile in economic terms (the smallest stocks account for less than 0.1%).

The third panel of Table 1 shows the sorting-day returns (without normalizing). Since

small stocks are more volatile than large stocks, their sorting-day returns are larger in

magnitude. For instance, the sorting-day return of the Lo–Hi strategy for the smallest

stocks is −24.36%, whereas for the largest stocks it is −7.45%.

The fourth panel of Table 1 looks at share turnover. It shows that the Lo–Hi strategy

has double the turnover of the middle decile strategies. This higher turnover, together

with the large sorting-day return and subsequent reversal, indicates that these stocks ex-
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perience an outward shift in investors’ demand for liquidity. Liquidity providers absorb

this demand shift, allowing for higher turnover, but charge for it by allowing prices to

overshoot so they can revert later.

Finally, the bottom panel of Table 1 shows the illiquidity measure from Amihud

(2002), i.e. the absolute value of the return divided by dollar volume (multiplied by 106

for readability).10 As expected, illiquidity is strongly decreasing in size: the largest stocks

have illiquidity measures that are three orders of magnitude smaller than for the smallest

stocks. Liquidity is thus relatively cheap among the largest stocks (per dollar traded). Yet

even among these stocks illiquidity is three times higher for the Lo–Hi strategy than for

the middle deciles, indicating that liquidity provision is costly.

Panel A of Table 2 presents summary statistics for the daily changes in VIX, near-term

VIX (VIXN), and far-term VIX (VIXF). While the three series look similar, VIXN changes

are slightly more volatile with a standard deviation of 2.19 points versus 1.71 points for

VIX. The distribution of VIXN changes also has slightly fatter tails with a 90% confidence

interval ranging from −2.61 to 3.07 versus −2.22 to 2.39 for VIX.

Panel A of Table 2 also presents summary statistics for the return series associated

with VIX, VIXN, and VIXF. The average VIX return is −1.54% per day. This number is

similar to estimates of the variance premium (e.g. Carr and Wu, 2008; Bollerslev, Tauchen

and Zhou, 2009; Drechsler and Yaron, 2010).11 As expected, the VIX return is highly right-

skewed, with a 99th percentile of 66.61%.

The average VIXN return is −2.01%, which is larger than the average VIX return

(the average VIXF return is smaller). The difference is partly explained by the slightly

higher volatility of VIXN changes in Panel A. Yet, as Panel B shows, the VIXN return is

larger than the VIX return even per unit of beta with respect to its underlying index. In

particular, the VIXN return is −35 bps per unit of beta (−2.01% divided by 5.696), while

the VIX return is only −22 bps. This shows that the price of short-term volatility risk

10Since we want to measure illiquidity on the sorting day, we do not average the measure for each stock
over time as is customary. Instead, we average it across stocks within each portfolio and then over time for
the portfolio itself.

11The variance premium is the realized variance over a period of 30 days divided by the squared VIX at
the start of the period. Since the variance premium can only be computed at 30-day horizons, comparing
it to the VIX return requires dividing by 21 (the number of trading days in a typical 30-day period). This
implicitly assumes a flat term structure of volatility risk premia within the 30-day period.
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(as captured by VIXN) is higher than the price of relatively longer-term volatility risk (as

captured by VIX).

Finally, the VIXN return has a somewhat lower correlation with VIXN changes than

the VIX return has with VIX changes (61% versus 73%, based on the square root of the R2).

This is explained by the fact that the VIXN return depends more strongly on the current

day’s realized variance (the “dividend” of the strategy), while the VIX return, which is

more long-term, depends more on expected future realized variance (the “capital gain”).

The changes in both VIX and VIXN omit the realized variance component, hence the

lower correlation of the VIXN return with VIXN changes than the VIX return with VIX

changes. Nevertheless, both correlations are very high, which suggests that these returns

capture well the premium paid for hedging volatility risk.

4 Empirical results

4.1 Reversal strategy returns

Table 3 shows the post-formation returns of the reversal strategies, focusing on the five-

day horizon. From Panel A, the Lo–Hi strategy delivers a five-day return of 27 bps for

the largest stocks. This corresponds to an annual return of 13.5%, which is economically

large. Using the standard deviation in Panel B, the associated annual Sharpe ratio is 0.6.

As expected, the reversal returns decline as we move from the Lo–Hi strategy toward the

middle deciles, reaching near zero for the 5–6 strategy. Interestingly, standard deviations

also decline, suggesting that there is greater risk in the extreme portfolios, and that this

risk is not diversified at the portfolio level.

The reversal returns increase as we move from large stocks toward small stocks. This

is consistent with Avramov, Chordia and Goyal (2006), who show that reversal returns are

especially large among small stocks. For the smallest stocks, the Lo–Hi strategy delivers

a massive 116 bps five-day return (the Sharpe ratio is 0.8). About half of this return (56

bps) is earned on the very first day, which is likely due to the well-known bid-ask bounce
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effect.12 This effect does not impact large stocks, which have much narrower bid-ask

spreads. Accordingly, the first-day return of the Lo–Hi strategy for the largest stocks is

only 3 bps (see Figure 3 below).

Panel C of Table 3 reports the CAPM alphas of the reversal strategies, which are ob-

tained from the time-series regressions:

Rp
t,t+5 = αp +

5

∑
s=1

β
p
s RM

t+s + ε
p
t,t+5, (17)

where Rp
t,t+5 is the cumulative excess return of portfolio p from t to t + 5 and RM

t+s is the

excess market return on day t + s, s = 1 . . . 5. Allowing for separate coefficients β
p
s for

each day s of the holding period captures the changes in exposure that occur as stocks

revert back from the initial spike in liquidity demand on the portfolio formation date.13

To account for the overlapping nature of the holding-period returns, we compute Newey-

West standard errors with five lags and report the associated t-statistics in Panel D.

Panel C shows that the CAPM cannot account for the returns of the reversal strategies.

In all cases, the CAPM alphas are about the same as the raw average returns. For instance,

the Lo–Hi strategy for the largest stocks has an alpha of 25 bps, only marginally lower

than its 27-bps average return. The associated t-statistic is 4.51, strongly rejecting the null

hypothesis that the CAPM prices this strategy. The same is true across all size quintiles

in the Lo–Hi and 2–9 strategies. Overall, the table shows robust evidence of a substantial

reversal premium.

12As shown by Roll (1984), stocks with a low (high) return on the portfolio formation date are more likely
to have finished the day at the bid (ask). Since they are equally likely to finish the following day at the bid
and ask, on average they experience a reversal of about half the bid-ask spread. This effect does not extend
beyond the first day. For the purposes of this paper, it can be argued that the bid-ask bounce is part of the
return to liquidity provision. The counter-argument is that it only applies to the first share traded and that
it is in part due to the discreteness of the price grid.

13We note that since daily market returns have a small negative autocorrelation (−6%), the sum of the
daily coefficients does not exactly equal the coefficient that would obtain in a regression on the cumulative
market return over the holding period, though the two are very close. The same is true of VIX changes,
which we use in Section 4.3 below.
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4.2 Predicting reversals using VIX

Table 4 shows results from predictive regressions of reversal strategy returns on the level

of VIX on the portfolio formation date. Panel A reports predictive loadings at the five-day

horizon (times a hundred). Focusing on the Lo–Hi strategy, the loadings are similar across

size quintiles, ranging from 2.94 to 7.01. From Panel B, they are all highly statistically

significant except for the smallest stocks where significance is marginal. For the largest

stocks, the coefficient is 5.37, implying that a one-point increase in VIX is associated with

a 5.37 bps higher return over the subsequent five days. This number is large relative to

the 27-bps average return of the strategy.

Panel C of Table 4 shows the R2 coefficients of the predictive regressions. Focusing

again on the Lo–Hi strategy, the R2 is lowest for the smallest quintile (0.09%) and highest

for the largest quintile (2.18%). The difference is explained by the fact that small stocks

have much higher idiosyncratic volatility than large ones. Not all of this volatility is

diversified away in the reversal portfolios because they contain only about a hundred

stocks and because their returns are weighted by dollar volume (equal weighting would

lead to more diversification). In terms of economic magnitude, the 2.18% R2 for the largest

quintile Lo–Hi strategy is extremely high for five-day returns.14

Overall, Table 4 corroborates and extends the main finding of Nagel (2012) that ex-

pected reversal strategy returns are increasing in the level of VIX. Nagel’s (2012) results

are largely representative of small stocks because they are not value-weighted and rely

on raw rather than normalized returns. The evidence presented here shows that the pre-

dictability is present, and in terms of R2 is even stronger, among large stocks.

Nagel (2012) interprets the predictive power of VIX as evidence that liquidity providers

face a value-at-risk (VaR) constraint.15 A rise in VIX causes the VaR constraint to tighten,

which leads to less liquidity provision and a higher price of liquidity. Thus, a rise in VIX

shifts the liquidity supply curve inward.

14In particular, following Campbell and Thompson (2007), it is about three times the strategy’s squared
five-day Sharpe ratio. Thus, an investor using VIX to time the large-stock reversal strategy would see a
three-fold increase in expected return relative to a buy-and-hold strategy.

15While VaR constraints are arguably important for small stocks, it is less likely that they significantly
impact liquidity provision among large stocks, which are heavily traded and hence less dependent on
specialized intermediaries.
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We can test whether VIX shifts the liquidity supply curve by looking at the quantity

of liquidity, as well as the price. The top panel of Figure 2 plots the turnover of the large-

stock reversal strategy against VIX. We compute this turnover by first taking the weighted

average turnover within the long and short sides of the portfolio, then averaging across

the two sides and over a 60-day forward-looking window.

Figure 2 shows that the turnover of the large-stock reversal strategy is strongly in-

creasing in the level of VIX. The raw correlation between the two series is very high at

39%. This shows that VIX positively predicts both the price (the expected return) and the

quantity (turnover) of liquidity provision among large stocks. Thus, the dominant feature

of the data is that VIX shifts the liquidity demand curve.

The bottom panel of Figure 2 shows that when VIX is high the reversal strategy be-

comes riskier. It plots the annualized volatility of the large-stock reversal strategy, calcu-

lated over the same 60-day rolling window as turnover. The figure shows that volatility

is strongly increasing in VIX. The raw correlation is 64% and the economic magnitude is

large: a one-point increase in VIX is associated with a 0.386-point increase in the reversal

strategy’s volatility. Therefore, when VIX is high, the reversal strategy becomes much

riskier, which could explain why its expected return rises.

4.3 Reversal strategy volatility risk

The next question we tackle is whether the risk in the reversal strategy is diversifiable or

if it has a systematic component. It is certainly plausible that some idiosyncratic variance

remains at the portfolio level, even among the largest stocks. At the same time, we know

from the the variance risk premium literature (e.g., Drechsler and Yaron, 2010) that a

higher VIX is associated with higher systematic risk, both in terms of the volatility of the

market return and the volatility of volatility itself. Our model predicts that the latter type

of systematic risk, volatility risk, is important for the returns to liquidity provision.

In this section we test whether the reversal strategy is exposed to volatility risk by
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regressing its return on VIX changes:

Rp
t,t+5 = αp +

5

∑
s=1

β
p,VIX
s ∆VIXt+s +

5

∑
s=1

β
p,M
s RM

t+s + ε
p
t,t+5. (18)

These regressions have the same form as (17), but with the daily VIX changes included

alongside the market return. As before, we compute t-statistics based on Newey-West

standard errors with five lags. We begin by focusing on the cumulative coefficients,

∑5
s=1 β

p,VIX
s , and we look at their individual components in the next section.

Table 5 presents the results. Panel A reports the betas from a specification with only

VIX changes. Focusing first on the Lo–Hi strategy, the VIX betas are consistently negative

and highly statistically significant. They are slightly larger for small stocks but overall

similar across size quintiles. They are still negative and statistically significant for the 2–9

strategy and decline steadily toward zero for the inner deciles.

The estimated cumulative beta is−0.64 for the large-stock Lo–Hi strategy. This means

that the strategy loses 64 bps if VIX rises on average by one point per day over the five

trading days of the holding period. Such a rise is not unusual: it is 1.3 times the five-day

standard deviation of VIX changes. Its impact, on the other hand, is substantial: it is two

and a half times the strategy’s abnormal return.

Panel B of Table 5 adds the market return as an additional control. This addresses a

potential concern that the negative VIX exposure reflects market risk rather than volatility

risk. The table shows that this is not the case. Betas with respect to VIX changes remain

similar to those in Panel A. In the case of the large-stock Lo–Hi strategy, the beta actually

increases slightly in magnitude to −0.71 and remains highly significant.

The strong negative correlation between the market return and VIX does make the be-

tas in Panel B noisier than those in Panel A, as reflected in the somewhat lower t-statistics.

Overall, however, Table 5 clearly shows that the reversal strategy has a substantial nega-

tive exposure to volatility risk, as captured by VIX.
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4.4 Reversal strategy dynamics

Figures 3 and 4 plot the dynamics of the returns and volatility risk exposures of the rever-

sal strategies for large stocks. Looking at these dynamics allows us to see how average

returns, predictive loadings, and volatility risk exposures evolve with horizon. This is

useful for robustness and for further testing the predictions of our model.

Panel A of Figure 3 shows that the average reversal returns rise steadily with horizon,

leveling off slightly toward the five-day mark. They are similar for the Lo–Hi and 2–9

strategies and uniformly smaller for the inner-most deciles. The steady pattern in Panel

A is reassuring because it shows that the reversal returns for large stocks are not driven

by bid-ask bounce, which can only affect the first day of the holding period. Rather, the

pattern is consistent with a stable premium paid over time.

Panel B of Figure 3 shows that the predictive loadings on the level of VIX follow the

same steady pattern as the average returns. This bolsters the evidence that VIX predicts

reversal returns in a robust way.

Panels A and B of Figure 4 show the same pattern for the cumulative betas with re-

spect to VIX changes, whether we control for the market return (Panel B) or not (Panel

A). The increasing pattern of betas indicates that stocks in the reversal portfolio are about

equally exposed to volatility risk throughout the holding period. The fact that these risk

loadings line up with the average returns in Panel A suggests that they may be able to

explain them. We test this proposition in the next section.

Panels C and D of Figure 4 plot the reversal strategy betas with respect to a VIX change

that occurs one day after portfolio formation (βp,VIX
1 in (18)). Comparing these betas

across horizons allows us to see if the impact of a VIX change is persistent or transitory.

This is a useful test because our model predicts that this impact should be persistent (see

Proposition 2). The intuition is that an increase in expected volatility reveals information

about the value of the asset. A transitory effect would instead be consistent with tempo-

rary selling pressure that might occur, for instance, if liquidity providers were forced to

offload their positions due to a tightening VaR constraint.

Panels C and D Figure 4 show that the impact of the day-1 VIX change is highly
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persistent across horizons. From Panel C, a one-point increase in VIX on day 1 makes the

Lo–Hi large-stock reversal strategy drop by 19 bps on the same day. This again is large

relative to the 27 bps average five-day return. The impact remains constant and settles

at 21 bps at the end of day five. The results in Panel D, where we control for the market

return, are similar though somewhat noisy. Here the initial impact is 13 bps and the five-

day impact is 17 bps. Thus, there is no evidence that the impact of VIX changes dissipates.

This result is consistent with our model.

4.5 Fama-MacBeth regressions

In this section we run two-stage Fama-MacBeth regressions to see if volatility risk expo-

sure can account for the average returns of the reversal strategies. The first stage of the

Fama-MacBeth regressions estimates betas as in Section 4.3 (see (18)). We again sum the

individual coefficients to obtain portfolio-level betas, e.g. βp,VIX = ∑5
s=1 β

p,VIX
s .16 These

betas enter the second-stage regression:

Rp
t,t+5 = λVIX

t βp,VIX + λM
t βp,M + ε

p
t,t+5. (19)

Note that by omitting an intercept in the second-stage regression, we require it to price the

zero-beta rate. This prevents a situation where test assets with small differences in betas

are priced by an implausibly high price of risk (Lewellen, Nagel and Shanken, 2010).

The second-stage regression provides us with time series of the factor premia. We

report the averages of these premia:

λVIX =
T

∑
t=1

λVIX
t λM =

T

∑
t=1

λM
t . (20)

We use the time series variation in the factor premia to calculate t statistics based on

Newey-West standard errors to account for overlap in the holding periods.

Using the factor premia (20), we calculate a pricing error for each portfolio. We also

16Summing up the individual coefficients effectively imposes the same price of risk on each day of the
holding period. This is natural in a frictionless setting but is potentially restrictive under segmented mar-
kets (e.g., “slow-moving capital,” see Duffie, 2010).
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calculate the root-mean-squared pricing error across all portfolios and a p-value for the

hypothesis that the pricing errors are jointly equal to zero.

The results of the Fama-Macbeth regressions are presented in Table 6. Panel A con-

tains the factor premia. The first row reports a specification with the market return as

the sole factor. It earns a significant positive risk premium of 3 bps, similar to its average

daily return. The root-mean-squared pricing error is 18 bps and the model is rejected with

a p-value close to zero. The second row of Panel A adds the change in VIX as a second

factor. The change in VIX earns a large and highly significant premium of −49 bps. Thus,

an asset that rises by 1% when VIX rises by 1 point is predicted to have an average re-

turn of −49 bps per day. The root-mean-squared pricing error is a smaller 14 bps but the

model is also rejected.

Panel B shows the pricing errors of the underlying long-short reversal strategies. The

top set of pricing errors are for the one-factor market model. As expected, the results are

very close to the CAPM alphas in Table 3. In particular, the Lo–Hi strategy has a large

positive pricing error of 113 bps for small stocks and 25 bps for large stocks. These pricing

errors are also highly statistically significant.

The pricing errors of reversal strategies decline substantially when we include the

change in VIX as a second factor. For the largest stocks, the pricing error of the Lo–Hi

strategy drops from 25 bps to −7 bps and becomes insignificant. The pricing errors of

the third and fourth largest quintiles are also eliminated. Only the smallest and second

smallest quintiles retain significant pricing errors, although they are between a third and a

half smaller. This pattern, where small stocks retain substantial pricing errors while large

stocks see their pricing errors eliminated, explains why the root-mean-squared pricing

error in Panel A drops by a relatively small amount when we add VIX changes as a second

factor. By squaring the pricing errors, the root-mean-squared pricing error overweights

outliers, which in this case are the smallest stocks.

Figure 5 plots the average returns of the reversal strategies against their predicted

values based on the Fama-MacBeth regression estimates. Each size quintile is represented

by a different shape and color and contains five data points corresponding to the five

long-short strategies across deciles.
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The left plot shows clearly that the market model cannot explain the returns of the

reversal strategies. The average returns display wide variation along the vertical axis

while the predicted returns are confined to a very narrow range along the horizontal axis.

Moreover, the predicted returns are all close to zero. Thus, predicted and average returns

differ by a wide margin.

By contrast, the right panel of Figure 5 shows that adding VIX changes largely ex-

plains the average returns of the reversal strategies. Predicted returns cover a wide range

along the horizontal axis, lining up well with the average returns along the 45-degree

line. Only the extreme small-stock strategies (the Lo–Hi and 2–9 strategies for the small-

est quintile and the Lo–Hi strategy for the second smallest quintile) lie away from the

45-degree line. Thus, the reversal strategies among small stocks earn abnormally high

returns even after accounting for volatility risk. This is consistent with some degree of

segmentation in liquidity provision for these stocks. Yet, since they represent only about

0.4% of total market value, this segmentation has low economic significance. For the

larger stocks, which are the economically important ones, Table 6 and Figure 5 show that

volatility risk can account for the returns to liquidity provision.

4.6 Restricting the price of volatility risk

The next question we address is whether the price of volatility risk needed to price the

reversal strategies is consistent with the price of volatility risk that prevails in other asset

markets. Answering this question sheds further light on the broader question of whether

the returns to liquidity provision reflect intermediation frictions or more widespread eco-

nomic risks.

The natural place to obtain the price of volatility risk is from options markets. The

VIX index itself is computed from the price of a basket of options whose payoff replicates

the realized variance of the S&P 500 over a 30-day window. Yet while we can think of VIX

as a price, the change in VIX is not a valid return because the VIX basket changes from

day to day, hence it does not reflect the premium paid for bearing exposure to VIX. This

problem is straight-forward to solve, however, as it simply requires tracking the price of
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a given VIX basket to the day after it was used to construct VIX. The percentage change

in this price over that day is the VIX return, RVIX.

A remaining issue is that liquidity providers are likely to have a shorter horizon than

the 30-day window captured by VIX because their inventory turns over faster. This is why

throughout the paper we focus on reversal returns over one to five trading days, as does

the rest of the literature. Yet constructing a five-day volatility index is infeasible because

options are known to behave erratically as they approach expiration (this is why no option

with fewer than seven days to expiration is used in the construction of VIX). To get a

measure of shorter-term volatility risk, we use VIXN, which is the near-term component

used in the construction of VIX (see Section 3). VIXN has an average maturity of 22 days,

which is significantly shorter than VIX. Its associated return is the VIXN return, RVIXN.

Table 2 shows the moments of the distribution of RVIX and RVIXN. Their means are

−1.54% and−2.01%, respectively, and their loadings on ∆VIX and ∆VIXN are 6.938 and

5.696. Thus, the price of ∆VIX exposure is −22 bps per unit, while the price of ∆VIXN

exposure is −35 bps per unit. This shows that the price of shorter-term volatility risk is

higher than relatively longer-term volatility risk.

Table 7 shows the pricing errors of the reversal strategies, where we restrict the price

of volatility risk to −22 bps when we use VIX as the pricing factor (Panel A) and −35 bps

when we use VIXN as the pricing factor (Panel B). We also restrict the price of market

risk to 3 bps, equal to the average return of the market factor. To obtain the pricing errors

reported in the table, we first calculate the betas of the reversal portfolios in the same way

as in (18), but we replace ∆VIX with ∆VIXN in the case of Panel B. We then multiply

these betas by the restricted prices of risk and subtract the resulting predicted returns

from the average returns to calculate the pricing errors.

Panel A shows that the restricted price of VIX exposure is able to explain a substan-

tial fraction of the reversal strategy returns, although it does not explain them fully. In

particular, the pricing error of the Lo–Hi strategy for large stocks declines by about three

fifths, from 25 bps to 11 bps, though it remains marginally statistically significant. The

reduction is similar in levels but smaller in percentage terms for the small-stock strategies

whose initial pricing errors are quite a bit larger.
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Panel B shows that the restricted price of VIXN exposure explains a significantly

larger fraction of the reversal strategy returns. Most prominent, the pricing error of the

large-stock Lo–Hi strategy drops from 25 bps to just 1 bp and becomes statistically in-

significant. Short-term volatility risk is thus able to fully explain the returns to liquidity

provision among large stocks. The pricing errors of the third and fourth largest quin-

tiles are similarly driven down and become insignificant. Only the smallest two quintiles

retain substantial pricing errors, similar to those of the unrestricted Fama-MacBeth re-

gressions in Section 4.5. Thus, as before, the ability of volatility risk to explain the returns

to liquidity provision is concentrated among large stocks, which make up over 99.6% of

market value. We now know that it is short-term volatility risk in particular that is able

to do so.

Figure 6 depicts the average versus predicted returns of the reversal strategies with

the restricted prices of risk. The left plot uses VIX and corresponds to Panel A of Table 7,

while the right plot uses VIXN and corresponds to Panel B. Both plots show a reasonable

alignment between average and predicted returns, except in the case of the outer decile

strategies among the smallest two quintiles. The fit is significantly better, however, when

we use the shorter-term VIXN, consistent with the conclusion from Table 7. In particular,

the fit is very similar to the unrestricted Fama-MacBeth regressions in Figure 5, indicating

that volatility risk is priced similarly in options markets and in reversal returns. This find-

ing favors the interpretation that the returns to liquidity provision reflect broad economic

risks rather than narrow intermediation frictions.

5 Conclusion

Just how broad are the economic risks reflected in the returns to liquidity provision?

While the literature on the variance risk premium emphasizes risks embedded in the con-

sumption process of a representative agent, these risks could themselves be a reflection of

the economy’s dependence on the financial sector. We find this possibility particularly in-

triguing as it promises to further integrate the asset pricing and financial intermediation

literatures.
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If we were to speculate about how this integration might proceed, it could go as fol-

lows. A spike in volatility like the one that hit the U.S. economy in the summer of 2007

increases the flow of private information into asset markets. Liquidity providers respond

by raising the sensitivity of asset prices to order flow, which raises the cost of liquidity for

investors. As liquidity becomes more scarce, consumption and investment become mis-

allocated throughout the economy, ultimately resulting in an economic contraction. The

ex post contraction implies a high variance risk premium, which, as we showed in this

paper, will be reflected in a high liquidity premium. To the extent that there are financial

frictions, they would be worsened by the volatility risk exposure of liquidity providers,

exacerbating the liquidity crunch, further harming the economy, amplifying the variance

risk premium, and so on.
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Table 1: Reversal strategy summary statistics

This table shows summary statistics for the reversal portfolio strategies. Each day, stocks
are sorted into deciles by normalized return and quintiles by market capitalization. The
normalized return is calculated based on the return distribution over the previous 60 trad-
ing days. Stocks with share price less than $1 and stocks with an earnings announcement
within one trading day of the sorting date are excluded. The portfolios are constructed
using dollar volume as weights. The sample is from April 9, 2001 to December 31, 2016.

Number of stocks
Lo-Hi 2-9 3-8 4-7 5-6

Small 137 109 102 100 100
2 119 109 107 107 107
3 105 109 110 111 112
4 94 109 114 115 116
Big 92 112 115 114 113

Market cap (billions)
Lo-Hi 2-9 3-8 4-7 5-6

Small 0.05 0.05 0.05 0.05 0.05
2 0.16 0.16 0.17 0.17 0.17
3 0.43 0.44 0.44 0.44 0.44
4 1.35 1.37 1.37 1.37 1.37
Big 49.57 54.15 56.02 56.02 55.40

Sorting-day returns (%)
Lo-Hi 2-9 3-8 4-7 5-6

Small −24.36 −6.92 −4.21 −2.34 −0.74
2 −17.54 −6.05 −3.73 −2.07 −0.64
3 −14.77 −5.43 −3.34 −1.87 −0.60
4 −11.97 −4.70 −2.92 −1.64 −0.52
Big −7.45 −3.43 −2.13 −1.18 −0.38

Share turnover (%)
Lo-Hi 2-9 3-8 4-7 5-6

Small 10.28 7.37 6.71 6.28 6.07
2 7.84 4.45 3.85 3.60 3.42
3 6.41 3.11 2.63 2.46 2.36
4 5.59 2.76 2.44 2.25 2.21
Big 3.28 2.13 1.99 1.89 1.83

Amihud illiquidity (×106)
Lo-Hi 2-9 3-8 4-7 5-6

Small 33.60 21.08 14.42 10.34 8.58
2 5.73 3.98 2.79 2.07 1.70
3 1.36 1.00 0.71 0.52 0.43
4 0.30 0.22 0.16 0.11 0.09
Big 0.03 0.02 0.01 0.01 0.0134



Table 2: VIX return summary statistics

This table shows summary statistics for the VIX return (Panel A) and regressions of VIX
returns on VIX changes (Panel B). The VIX index is constructed from the prices of two
baskets of options, one with expiration less than 30 days and one with expiration greater
than 30 days. These are called VIXN and VIXF, respectively, where the additional letters
stand for “near” and “far”. The VIX return, RVIX, is the percentage change in the price
of the portfolio of options used to construct VIX. The VIXN and VIXF returns, RVIXN

and RVIXF, are the percentage changes in the prices of the portfolios of options used to
construct VIXN and VIXF, respectively. The sample is from April 9, 2001 to April 29, 2016.

Panel A: Summary statistics
Mean St.Dev. P1 P5 P10 P90 P95 P99

∆VIX −0.00 1.71 −4.39 −2.22 −1.51 1.55 2.39 5.21
∆VIXN −0.00 2.19 −5.74 −2.61 −1.81 1.96 3.07 6.96
∆VIXF −0.00 1.53 −3.69 −2.02 −1.45 1.48 2.23 4.95
RVIX −1.54 16.49 −24.37 −16.77 −13.92 14.25 25.79 66.61
RVIXN −2.01 20.47 −31.22 −21.63 −17.29 16.57 30.72 75.56
RVIXF −0.87 12.17 −20.60 −13.57 −10.70 11.02 19.45 47.19

Panel B: Regressions of VIX returns on ∆VIX
RVIX RVIXN RVIXF

(1) (2) (3)
∆VIX 6.938***

(0.106)

∆VIXN 5.696***
(0.120)

∆VIXF 6.244***
(0.080)

Constant −1.511*** −1.986*** −0.849***
(0.184) (0.264) (0.123)

Obs. 3,788 3,787 3,787
R2 0.529 0.372 0.615
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Table 3: Reversal strategy returns

Average returns, standard deviations, CAPM alphas, and associated t-statistics for the
reversal strategies over a five-day holding period. Stocks are sorted into deciles by nor-
malized return and quintiles by market capitalization. Penny stocks and earnings an-
nouncements are excluded. The portfolios are weighted by dollar volume. The CAPM
alphas are the intercepts from the regression:

Rp
t,t+5 = αp +

5

∑
s=1

β
p
s RM

t+s + ε
p
t,t+5,

where Rp
t,t+5 is the cumulative excess return on portfolio p from t to t + 5 and RM

t+s is the
excess market return on day t + s, s = 1 . . . 5. The t-statistics are based on Newey-West
standard errors with five lags to account for the overlap in returns. The sample is from
April 9, 2001 to December 31, 2016.

Panel A: Average returns Panel B: Standard deviations
5-day average return (%)

Lo–Hi 2–9 3–8 4–7 5–6
Small 1.16 0.56 0.21 0.05 0.04
2 0.65 0.30 0.17 0.03 −0.03
3 0.35 0.24 0.01 0.11 −0.01
4 0.22 0.23 0.13 0.06 0.01
Big 0.27 0.25 0.18 0.11 0.05

5-day standard deviation (%)
Lo–Hi 2–9 3–8 4–7 5–6

Small 10.54 7.11 6.19 5.99 5.89
2 6.44 4.59 4.03 3.82 3.74
3 5.11 3.18 2.71 3.02 2.28
4 3.88 2.47 2.10 1.92 1.77
Big 3.25 2.28 1.78 1.55 1.31

Panel C: CAPM alphas Panel D: CAPM alpha t-statistics
5-day CAPM alpha (%)

Lo–Hi 2–9 3–8 4–7 5–6
Small 1.14 0.55 0.20 0.04 0.04
2 0.62 0.30 0.16 0.02 −0.03
3 0.34 0.23 −0.00 0.10 −0.01
4 0.20 0.23 0.13 0.06 0.01
Big 0.25 0.24 0.18 0.11 0.05

5-day CAPM alpha t-statistic
Lo–Hi 2–9 3–8 4–7 5–6

Small 6.57 4.88 1.97 0.44 0.39
2 5.83 3.96 2.43 0.33 −0.50
3 3.85 4.31 −0.03 2.25 −0.14
4 3.13 5.54 3.82 2.00 0.31
Big 4.51 6.48 6.24 4.35 2.50
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Table 4: Predicting reversal strategy returns using VIX

Coefficients, t-statistics, and R2 from predictive regressions of reversal strategy returns
over a five-day holding period on the level of VIX on the formation date. Stocks are
sorted into deciles by normalized return and quintiles by market capitalization. Penny
stocks and earnings announcements are excluded. The portfolios are weighted by dollar
volume. The predictive regressions are

Rp
t,t+5 = ap + bpVIXt + ε

p
t,t+5,

where Rp
t,t+5 is the cumulative excess return on portfolio p from day t to day t + 5 and

VIXt is the VIX index on day t, the portfolio formation date. The t-statistics are based
on Newey-West standard errors with five lags to account for the overlap in returns. The
sample is from April 9, 2001 to December 31, 2016.

Panel A: Predictive coefficients Panel B: t-statistics
5-day return VIX loading (×102)

Lo–Hi 2–9 3–8 4–7 5–6
Small 3.53 3.48 3.51 2.72 0.16
2 7.01 3.14 2.68 1.40 −0.27
3 4.84 2.98 1.16 0.93 −0.10
4 2.94 2.33 1.52 −0.04 0.44
Big 5.37 3.69 1.74 0.67 0.08

5-day return VIX t-statistic
Lo–Hi 2–9 3–8 4–7 5–6

Small 1.95 2.62 2.55 2.16 0.13
2 3.70 2.77 3.66 2.05 −0.34
3 4.03 3.42 1.60 1.59 −0.21
4 2.80 3.70 2.83 −0.11 1.24
Big 3.98 4.64 3.26 1.70 0.22

Panel C: R2

5-day return VIX R2 (%)
Lo–Hi 2–9 3–8 4–7 5–6

Small 0.09 0.19 0.26 0.16 0.00
2 0.95 0.37 0.35 0.11 0.00
3 0.72 0.70 0.15 0.08 0.00
4 0.46 0.71 0.42 0.00 0.05
Big 2.18 2.11 0.77 0.15 0.00
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Figure 1: Reversal strategy average return and volatility risk

The figure shows the average return and volatility risk of the large-stock reversal strategy
against the VIX index. The reversal strategy takes a long position in the lowest normal-
ized return decile portfolio and a short position in the highest normalized return decile
portfolio within the largest stock quintile. It holds these positions for five trading days.
The average return of the reversal strategy is computed over a 60-day forward-looking
window. The systematic volatility of the reversal strategy due to VIX changes is obtained
from 60-day rolling regressions of the five-day return on the corresponding five daily
changes in the VIX index and taking the annualized standard deviation of the fitted com-
ponent. The sample is from April 9, 2001 to December 31, 2016.
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Figure 2: Reversal strategy turnover and volatility

The figure shows the volatility and turnover of the large-stock reversal strategy against
the VIX index. The reversal strategy takes a long position in the lowest normalized re-
turn decile portfolio and a short position in the highest normalized return decile portfo-
lio within the largest stock quintile. It holds these positions for five trading days. The
turnover of the reversal strategy is the average turnover of the long and short side on
the portfolio formation date. The figure plots annualized volatility and daily turnover
averaged over a 60-day forward-looking window. The sample is from April 9, 2001 to
December 31, 2016.
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Figure 3: Dynamics of the reversal strategy returns

The figure shows the average returns and predictive loadings on VIX for reversal strategy
portfolios of large-cap stocks. The Lo–Hi reversal strategy takes a long position in the
lowest normalized return decile portfolio and a short position in the highest normalized
return decile portfolio within the largest stock quintile. The other strategies are defined
analogously among the inner normalized return deciles. Each strategy is held for one to
five trading days. The horizontal axis shows the holding period. On the vertical axis,
Panel A plots the average return and Panel B plots the predictive loading on the level of
VIX. The sample is from April 9, 2001 to December 31, 2016.
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Figure 4: Dynamics of the reversal strategy volatility risk exposure

The figure shows the cumulative exposures to VIX changes and the exposures to day-
1 VIX changes for reversal strategy portfolios of large-cap stocks. The Lo–Hi reversal
strategy takes a long position in the lowest normalized return decile portfolio and a short
position in the highest normalized return decile portfolio within the largest stock quintile.
The other strategies are defined analogously among the inner normalized return deciles.
Each strategy is held for one to five trading days. The horizontal axis shows the hold-
ing period. On the vertical axis, Panel A plots the cumulative betas with respect to VIX
changes, Panel B plots the cumulative betas while controlling for the market return (see
18). Panels C and D plot only the betas with respect to VIX changes one day after portfolio
formation (βp,VIX

1 in (18)). The sample is from April 9, 2001 to December 31, 2016.
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