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ASSET PRICING UNDER COMPUTATIONAL COMPLEXITY
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Murawski, Shireen Tang and Nitin Yadav

We study asset pricing in a setting where correct valuation of securities re-

quires market participants to solve instances of the 0-1 knapsack problem, a

computationally “hard” problem. We identify a tension between the need for

absence of arbitrage at the market level and individuals’ tendency to use me-

thodical approaches to solve the knapsack problem that are effective but easily

violate the sure-thing principle. We formulate hypotheses that resolve this ten-

sion. We demonstrate experimentally that: (i) Market prices only reveal inferior

solutions; (ii) Valuations of the average trader are better than those reflected in

market prices; (iii) Those with better valuations earn more through trading; (iv)

Price quality is unaffected by the size of the search space, but decreases with

instance complexity as measured in the theory of computation; (v) Participants

learn from market prices, in interaction with trading volume.
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“An intellect which at a certain moment
would know all forces that set nature in motion,

and all positions of all items of which nature is composed,
if this intellect were also vast enough to submit these data to analysis [...];

for such an intellect nothing would be uncertain.”

Pierre-Simon de Laplace, A Philosophical Essay on Probabilities, 1814

1. INTRODUCTION

The Efficient Markets Hypothesis (EMH) is one of the foundations of

modern asset pricing theory. Markets are called “efficient” when “security

prices fully reflect all available information” (Fama, 1991, p. 1575). Theo-

retical analyses of this statement usually envisage a setting where the value

of securities is a function of information that is distributed in the economy,

and correct valuation requires aggregation of the different bits of informa-

tion (Grossman and Stiglitz, 1976).1 As such, uncertainty can be resolved

efficiently through sampling, because a law of large numbers holds: one could

start with a randomly chosen agent, collect her information, then visit ad-

ditional agents, and add their information; as more agents are sampled, one

obtains a gradually improving estimate of the true value of the security

at hand, eventually reaching perfect precision (see, e.g., Grossman (1976,

1978); Hellwig (1980); Diamond and Verrecchia (1981)).

Here, we consider a fundamentally different setting. Uncertainty emerges

because of computational complexity, instead of a lack of information. Specif-

ically, we envisage a situation where correct valuation of securities require

market participants to combine publicly available information in the right

way. As such, valuation is a combinatorial problem that is computationally

complex.2

1The market microstructure literature sometimes takes a different approach, where
better-informed compete on the basis of the same information (see, e.g., Holden and
Subrahmanyam (1992)). There, the issue is whether prices eventually reveal their infor-
mation, and how (see Bossaerts et al. (2014) for an experimental investigation.)

2We follow computer science convention and define computational complexity as the
amount of computational resources required to solve a given problem (Arora et al., 2010).
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To put this differently: uncertainty about the value of a security is the

consequence of not knowing what information is pertinent, rather than not

having the information in the first place. We would claim that this char-

acterization of uncertainty is germane to the “fundamentalist” approach

to finance: the value of equity, for instance, requires one to think about

what projects belong to a firm, how much and what types of debt it should

issue, where it should operate, etc. But even in standard quantitative anal-

ysis, our characterization of uncertainty has become more relevant recently:

many market participants have access to large data sets, so the issue is not

unavailability of data; instead, the problem is that of not knowing which

data are relevant.

We formalize this as follows. We envisage a situation where the values of

securities depend on the solution of instances of the 0-1 knapsack problem

(KP), a combinatorial optimization problem (Kellerer et al., 2004). In the

KP, the decision-maker is asked to find the sub-set of items of different

values and weights that maximizes the total value of the knapsack (KS),

subject to a weight constraint. The KP is computationally hard. There is

no known algorithm that both finds the solution and is efficient, that is, can

compute the solution in polynomial time.3 Intuitively, it is “easy” to verify

that a particular set of items achieves a given total value, but it is “hard”

Note that recent analyses of “complexity” in finance and economics either take a less
formal approach (e.g., Skreta and Veldkamp, 2009), or model complexity in probabilistic
terms (e.g., Spiegler, 2016). Problems that require resources (usually in terms of time)
beyond those available are referred to as “computationally intractable” (Cook, 1983).

3In computational complexity theory, an algorithm is called “efficient” if the rate at
which the amount of time to compute the solution grows as the size of the computa-
tional problem increases, is upper-bounded by a polynomial. The KP can be solved with
dynamic programming. This algorithm is polynomial in the number of items; however,
the memory required to implement dynamic programming grows exponentially. There-
fore, dynamic programming substitutes exponentially growing time to address memory
for exponentially growing time to compute. Experiments demonstrate that humans do
not appear to use dynamic programming when solving the KP, which is not surprising:
human working memory is very small (Murawski and Bossaerts, 2016).
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to find the set of items with the highest total value.4

One could argue that there is really no uncertainty here, since all the

information (knapsack capacity, items, item values and weights) is publicly

available. There is a long tradition in decision theory, however, to insist that

situations like this represent uncertainty. De Finetti, for instance, defines an

event as a decision problem, i.e., a question that can be answered in only two

ways: yes (true) or no (false). Uncertainty then emerges when the answer

cannot be determined purely using logical inference (De Finetti, 1995). The

question is then reduced to: is it appropriate to use the tools of probability

theory in order to find the right answer? Can we pretend that a law of large

numbers holds, sample, update one’s prior belief (about the answer) using

Bayes’ law, and thereby reduce uncertainty? Some, like Kolmogorov, would

claim that the answer is no (Kolmogorov, 1983).

For Savage (Savage, 1972), the answer is yes. As long as the decision-

maker exhibits choices that satisfy a minimal number of rationality restric-

tions (such as the sure-thing principle), her actions can be modeled as if she

has a utility profile over outcome quantities, and beliefs that she updates

using Bayes’ law. Whether she learns effectively is not an issue; she chooses

coherently, and remains coherent as she samples. See Bossaerts et al. (2018).

To be sure, in the context of the KP, randomly trying out knapsacks and

learning using Bayes’ law is extremely ineffective.5 We shall illustrate this

with an example later on, where an agent who adheres to Savage’s principles

would find the optimum with 95% chance only after 400 trials, in a problem

4Technically, the version of the KP used here is the optimization version of the prob-
lem. This problem is NP-hard. The corresponding decision version of the problem is
NP-complete. The optimisation version is at least as hard as the corresponding decision
version.

5Sampling does not have to be random, but the probabilistic law generating outcomes
has to be known, as in e.g., importance sampling (Hastings, 1970), for otherwise Bayes’
law cannot be applied. But one cannot know the probabilistic law that generates knapsack
values given the optima without having solved the KP in the first place, but then learning
is pointless.
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where there are merely 82 possible capacity-filled knapsacks... It would be

better to just list all the possible knapsacks and pick the best one.

Recent research has demonstrated that humans follow effective, method-

ical approaches when solving the KP. Murawski and Bossaerts (2016) dis-

covered that humans do not sample knapsacks, and instead follow strate-

gies that are reminiscent of the algorithms that computer scientists use to

solve such problems (Kellerer et al., 2004). While not always guaranteeing

a solution, these algorithms are far more efficient than random sampling.

One such algorithm is the greedy algorithm, whereby items are put into the

knapsack in decreasing order of the value-over-weight ratio, until reaching

capacity. As a result, humans perform in the KP as do computers: effort

required increases, and resulting performance decreases, as the objective

computational complexity of the instance increases.6

But these strategies easily violate Savage’s axioms. The greedy algorithm,

for instance, is inconsistent with the sure-thing principle, and it is simple

to show why. Consider two KPs with the same capacity, namely, 2. One KP

has three items with value and weight pairs (2,1), (3.5,2) and (1,1), while

the second one has only the last two items. Which would the decision-maker

choose if she is to maximize value? The greedy algorithm would have her

choose the second one, since it reaches a value of 3.5, while the first one

only generates a value of 3. Yet everything she can obtain with the second

one she can also get with the first one since the items in the first problem

are in a superset of the second one.

When convenience is called for, finance scholars have no issue with viola-

tions of the Savage axioms, and hence, expected utility. Mean-variance op-

timization, for instance, violates Savage’s axioms; like the greedy agorithm,

6Evidence is emerging that in simpler computational problems, such as that of deter-
mining the least costly fund investment under a variety of fee structures, humans do not
follow methodical approaches, but instead learn through trial-and-error. See Anufriev
et al. (2018).
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it too violates the sure-thing principle. Yet mean-variance optimization is

effective when deriving optimal portfolios of many securities. It would be

cumbersome to do the same with preference profiles that satisfy Savage’s

axioms, such as expected log utility. So, finance scholars use mean-variance

optimization, opting for efficacy over rationality.

At the market level, however, violations of the Savage axioms would be

objectionable. Indeed, to violate the sure-thing principle is tantamount to

allowing for arbitrage opportunities. The evolution of market prices should

be free of arbitrage opportunities; price updates should be as if using Bayes’

law. This is the Fundamental Theorem of Asset Pricing, of course (Dybvig

and Ross, 2003). As such, we must not expect market prices to reflect the

effective solution algorithms that individuals appear to follow.

This fundamental tension between how markets should behave and how

individuals in those markets do behave was already pointed out in Dybvig

and Ross (2003) in the context of violations of expected utility related to loss

and ambiguity aversion. Experiments have illuminated how individuals can

violate rationality assumptions yet market prices do not allow for arbitrage

opportunities; see, e.g., Bossaerts et al. (2010); Asparouhova et al. (2015).

The conclusion is simple: markets must not be modeled after the behavior

of their participants.

What could be the consequences of a tension between a market that does

not allow for arbitrage opportunities at the cost of learning effectiveness, and

individuals whose actions may violate the sure-thing principle, but makes

them learn faster? Here, we hypothesized that, in a market where valuation

depends on the solution of a 0-1 KS problem: (i) Market prices can only

reveal inferior solutions, (ii) Individual traders will, on average, do better

than the market, (iii) Individuals who find the solution earn more through

trading.

We test these predictions with a laboratory experiment, organized as
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follows. We endowed participants with shares of several securities (10 or

12), each of which corresponded to an item in a given instance of the KP.

All securities lived for a single period, after which they paid a liquidating

dividend. The dividend equalled one dollar if the corresponding item was

in the solution of the instance of the KP; and zero otherwise. This makes

the securities akin to Arrow securities, were it not that multiple securities

could pay off at once, since in general more than one item could be in the

optimal knapsack. After markets opened, participants traded the securities

in a computerised continuous open-book system (a version of the continuous

double auction where infra-marginal orders are kept in the system until

cancelled).7 All participants were provided with the same information about

the instance to be solved, that is, each item’s value and weight, and the total

capacity of the knapsack. Participants had access to a computer program

where they could try out candidate solutions. This also meant that we could

track their solution attempts.8

There exists an asset pricing paradigm that is consistent with Savage’s

axioms yet does make the the predictions that prices will not fully reveal the

right information, and where the average trader performs better than the

market. This is the Noisy Rational Expectations Equilibrium (NREE) pio-

neered in Grossman (1977). There, noise is usually modeled as uncertainty

over aggregate supplies (Grossman and Stiglitz, 1976), or uncertainty about

the demand from “irrational” traders (Long et al., 1990), or randomness in

non-traded risk (Biais et al., 2003). In our setting, one can think of noise as

uncertainty generated by computational complexity. As such, we hypoth-

esized that price quality would decrease in the level of noise, measured in

terms of instance complexity.

We measure instance complexity using the Sahni-k metric. This metric

7We used the software developed by Adhoc Markets (http://www.adhocmarkets.com).
8The program is part of the ULEEF GAMES suite and and can be accessed at

http://uleef.business.utah.edu/games.
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increases in the number of items that have to be put in the knapsack be-

fore the greedy algorithm can be used to complete the knapsack and obtain

the optimal solution. Murawski and Bossaerts (2016) showed that Sahni-k

explains individual performance. In choosing knapsack instances, we made

sure that Sahni-k was unrelated to the number of possible filled knapsacks,

so that reduction of price quality would not merely the result of an increase

in the size of the search space. As a matter of fact, it would be most inter-

esting to discover that price quality does not decrease with the number of

possible full knapsacks.9

In NREE, individuals manage to read prices, despite the inferior qual-

ity of the information revealed in those prices (compared to the average

trader’s). We wondered whether in our setting too, traders would improve

their solutions because of the availability of prices, and if so, how. Because

we tracked individuals’ attempts at solving the KS instances at hand, we

were in the position to shed light on the channels through which prices

make individuals revise their solutions. In earlier work, we had shown that

more participants find the optimal solution in the presence of markets than

if they were asked to solve the same instances individually (Meloso et al.,

2009a).

We find broad support for all our hypotheses: (i) Market prices reveal

little information about the optimal solution; in fact, they behave as if

a representative agent is merely randomly sampling knapsacks; (ii) The

average trader performs better than the market; (iii) Individuals who are

close to the solution earn more through trading; (iv) Market (and individual)

performance decreases in instance complexity, or Sahni-k, and not in the size

of the search space; (v) Individuals manage to improve their solutions by

reacting to high volume in low-priced securities.

9In the classical paradigm of valuation through aggregation of disparate information,
asset pricing theory predicts that increase in the number of possible values does not
impede full revelation, as long as this number is finite (Radner, 1979).
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Our findings are in sharp contrast with those from experiments that build

on the classical uncertainty paradigm. There, information bits are dispersed

among participants, and correct valuation merely requires one to add the

bits together. When security payoffs are common-knowledge (i.e., everyone

knows how everyone else values the payoffs given aggregate information),

controlled experiments with centralized, double auctions, have confirmed

that markets manage to aggregate available information (Plott and Sunder,

1982, 1988; Plott, 2000).10 The aggregation is so good that participants will

refuse to pay for information (Sunder, 1992; Copeland and Friedman, 1992).

That is, the Grossman-Stiglitz paradox emerges (Grossman and Stiglitz,

1976).

The remainder of the paper is organized as follows. In the next section,

using a simple example inspired by our experimental setup, we illustrate

how random sampling is far less effective in the 0-1 knapsack problem than

when information merely needs to be aggregated. Section 3 presents the

experimental paradigm. Section 4 reports the results. We then discuss the

further implications in a Conclusion.

2. SAMPLING IN THE PRESENCE OF COMPUTATIONAL COMPLEXITY: AN
ILLUSTRATION

Here, we illustrate how resolution of uncertainty is fundamentally dif-

ferent when uncertainty emerges because of lack of information vs. when

it emerges because of computational complexity. We assume an agent who

adheres to Savage’s principles (Savage, 1972), and hence, assigns beliefs to

the possible values, and gradually updates these based on random sampling

and Bayes’ law. We refer to this agent as the “Savage agent.”

We first consider a situation of lack of information. There, one needs to

10The ability of decentralized markets to aggregate dispersed information is hotly dis-
puted, with Wolinsky (1990) and Duffie and Manso (2007) taking opposite views. See
Asparouhova and Bossaerts (2017) and Asparouhova et al. (2017) for experimental evi-
dence.
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gather information, and we assume, as in the classical paradigm, that a law

of large numbers holds, so that information collection and subsequent aver-

aging gradually lead one close to the truth. Imagine there are ten securities

that pay a liquidating dividend of 1 or 0 dollars, with equal chance. Each

period (“trial”), our agent receives a signal, drawn from a Bernoulli distri-

bution with p = 0.70 if the final dividend is 1, and with p = 0.30 otherwise.

The agent uses Bayes’ law to update beliefs about the final payoff. Assuming

a quadratic loss function, the agent’s valuation is the posterior mean, start-

ing from an unconditional estimate of 0.5. The top panel of Fig. 1 shows

how valuations of the securities quickly separate between those that will

end up paying 1 and those that expire worthless.

As such, repeated sampling gets one closer to the fundamental value: the

chance that one deviates too far from knowing the truth decreases with

sample size. As time progresses, the chance of one valuation to veer off (say,

from close to 1 down to 0) is drastically reduced. That is, even for finite

samples (finite number of signals), the valuation estimate is “probably ap-

proximately correct.” Computer scientists would refer to this situation as

one of finite sample complexity (Valiant, 1984), that is, a close approxima-

tion of the true value can be obtained with a finite number of samples.

Now consider a different problem. Here, all the information is available

from the beginning, but uncertainty emerges because of computational com-

plexity. Consider securities whose terminal values depend on the solution

of an instance of the 0-1 KP (instance is #8 in Murawski and Bossaerts

(2016)). There is a security for each available item. If the item is in the

optimal solution, the security’s terminal value equals 1; otherwise it expires

worthless. As before, we assume that the agent assigns a prior value to each

security, say 0.5. She then gradually adjusts beliefs by sampling, as follows.

Each trial, the agent randomly tries a subset of the items that fills the KS

to capacity. The agent then computes the value of the KS and compares to

date: August 28, 2018
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Figure 1.— Simulations When Valuations Require Averageing (Top) vs.
Combinatorics (Bottom). Top: Evolution of valuations of ten securities where correct
valuations require information aggregation; as sampling increases over time, the proba-
bility of being correct increases gradually. This is the situation in traditional theoretical
analyses of EMH. Terminal values of the 10 securities are listed on top, in ascending
order of security number. Bottom: Evolution of prices of ten securities in a situation
where correct valuations require combining information in the right way; as sampling
increases over time, the probability of being correct – even approximately – does not
increase gradually. Only the securities with numbers listed on top (“Optimal”) pay a
liquidating dividend of 1; all others expire worthless. See text for details.
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the maximum value obtained in previous trials. If the new KS value is less

than the previous maximal value, then she constructs signals as follows. The

signal for a security equals 1 when the corresponding item was in the earlier

(better) solution, and 0 otherwise. If the new KS value is higher than the

trailing maximum, then the signal for a security equals 1 when it is in the

current solution; otherwise the signal is 0. The agent then updates security

valuations in trial t by weighing the valuation in the previous trial t − 1

by (t− 1)/t and the signal in the present trial by 1/t. This may not sound

like Bayesian because it does not use the true likelihood (of observing full

knapsack values given the optimal solution). However, this is without con-

sequence, because a Savage agent does not need to use the true likelihood:

subjective beliefs are allowed. We merely posit that there exists a belief that

is justified by the reinforcement learning rule.

The bottom panel of Fig. 1 illustrates the evolution of securities values

under the above updating rule. Even after 30 trials, it is still unclear which

item is in the optimal solution (which security will pay one dollar). Worse,

valuations can erratically move from high to low and vice versa even in later

trials. Since there are only a finite, albeit large, number of possible capacity-

filled knapsacks, the algorithm will eventually find the optimal solution. This

will happen when, just by chance, the best knapsack is drawn. But this takes

time. In the present situation, there are (a mere) 82 possible capacity-filled

knapsacks, so the chance of drawing the best knapsack in any trial equals

1/82. This implies, among others, that the chance that the algorithm finds

the optimal knapsack within 30 trials is about 5%; it takes approximately

four hundred trials to bring this chance up to 95%.

As such, assigning beliefs to the outcomes and learning by sampling, while

very effective when the cost of processing information is low, is highly inef-

fective when the cost of processing information is high. In our example, it

would have been better to just list all 82 possible capacity-filled knapsacks
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and pick the optimum. This simple, deterministic procedure, finds the op-

timum for sure in 82 steps, while the sampling approach may not find it

in 5% of the cases even after a much as four hundred trials. Of course, the

deterministic approach quickly becomes ineffective too. In some of the KP

instances we will consider next, there are up to 400 capacity-filled knap-

sacks.

3. EXPERIMENTAL DESIGN

Participants

Participants were recruited from the University of Melbourne community,

in four experimental sessions with 18 (one session) or 20 (three sessions)

participants. To be eligible, participants had to be current students of the

University of Melbourne aged between 18 to 30 years old with normal or

corrected-to-normal vision. The final sample included a total of 78 partici-

pants (age range: 18 to 26 years, mean age = 22, standard deviation = 4,

gender: 44 male, 34 female). The study was approved by the University of

Melbourne Human Research Ethics Committee (Ethics ID: 1647059.1) and

was conducted in accordance with the World Medical Association Declara-

tion of Helsinki. All participants provided written informed consent.

Task

Participants attempted five instances of the 0-1 knapsack problem, while

simultaneously trading in an online marketplace. In each instance, partic-

ipants selected items with given values and weights from a set, in order

to maximize the total combined value within the weight constraint for the

selection. Formally, participants were asked to solve the following maximiza-
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tion problem:

max
x

I∑
i=1

xivi s.t.
I∑

i=1

xiwi ≤ C and xi ∈ {0, 1} ∀i,

where i, w, v and C denote the item number, item weight, item value and

knapsack capacity, respectively. The number of items in an instance varied

between 10 and 12. Instances were taken from two prior studies (Meloso

et al., 2009b; Murawski and Bossaerts, 2016). The sequence of instances

in an experimental session was counterbalanced across sessions. Parameters

for the five instances are provided in Table I.

The KP instances were made available electronically on a computer in-

terface where participants could try out different solutions.11 The software

recorded every move of an item into and out of the knapsack. Importantly,

the software did not indicate if a candidate solution was optimal.

Each item in an instance mapped into a security in the online market-

place. Therefore, between 10 to 12 markets were available in each instance.

Exchange was organized using the continuous double-sided open book sys-

tem, like most purely electronic stock markets globally. Trading was done

on the online experimental markets platform Flex-E-Markets.12 Participants

traded for 15 minutes, or in later rounds, less. The user interfaces of the

two systems, knapsack solver and online marketplace, are shown in Fig. 2.

Sessions started with a brief motivation and a reading of the instruc-

tions, after which participants were given ample time to familiarise them-

selves with knapsack solver, online marketplace, and how to exploit, through

trading, knowledge acquired when attempting to solve a practice instance.

Motivation, instructions and practice took a total of one hour. After a break,

we ran the (five) rounds that counted for final earnings. In total, a session

11The application is part of a game suite called ULEEF GAMES; it can be accessed
at http://uleef.business.utah.edu/games.

12See http://www.flexemarkets.com.
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Figure 2.— Knapsack Problem Interface and Online Trading Platform

Left: Knapsack solver, where participants were shown the instance, and could attempt

solutions by moving items from the OUT panel (right) to the IN KNAPSACK panel

(left). Capacity, capacity used, and KS value were displayed on top (left). Right: Online

marketplace. Each of the 12 colour-coded markets corresponded to an item in the KS,

and promised to pay one dollar if the item was in the optimal solution. The book of

limit orders was shown in the middle, listed by price level, and colour-coded (blue: bids;

red: asks). To the right is the order form, where participants could submit buy and sell

limit orders, or cancel previous orders.
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took between two and two-and-a-half hours.

Participant instructions including the timeline of a typical experimental

session can be found in the Supplementary Online Material (SOM).

We recorded every order and trade in the marketplace, as well as every

move into or out of the knapsack from each participant. Timestamps were

synchronized between the knapsack solver and the online marketplace.13

Participant incentives

Participants took positions in the items they believed to be in the optimal

knapsack by buying shares of the corresponding security. They could also

sell shares corresponding to items they believed not to be in the solution;

short sales were not permitted, however. In every instance, participants

were endowed with $25 in cash holdings (Australian dollars, approximately

eighteen U.S. dollars), and 12 shares randomly allocated to securities. The

price range of a share was bounded between $0 and $1.

Final earnings consisted of: (i) liquidating dividends for the shares held

at market close; (ii) any change in cash holdings between the beginning and

end of trading. Earnings were cumulative across instances. Additionally,

participants received a fixed reward ($2) for submitting a proposed solution

through the knapsack solver, as well as a show-up fee of $5.

Initial Allocations

We designed initial allocations of securities to induce trade, by concentrat-

ing individual endowments in particular markets. While initial allocations

were randomized, they were “fair” in the sense that all participants received

the same number of shares in correct items across the five instances. Ini-

13The marketplace server became unreachable during the second round in the final
session, so we have no trade data for that round. This denial of service originated with
the server service provider, and hence was beyond our control.
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tial allocations were such that $31.20 in liquidating dividends were paid

per participant on average. Participants were not told that they had “fair”

initial allocations. We imposed fairness in the belief that earnings would

suffer from the Hirshleifer Effect if prices were to fully reveal all available

information (see Discussion for more details).

Although the concepts of “risk” and “risk aversion” have yet to be defined

precisely in the context of computational complexity, we intuited that un-

certainty about the solution to a KP instance would induce participants to

diversify holdings across multiple securities. As a result, participants would

trade not only because of perception of superior information. We eliminated

aggregate risk by ensuring that there were an equal numbers of shares across

securities. This was meant to avoid price distortions that could arise from

differences in relative supplies.

Additionally, payment for submission of a solution through the KP in-

terface was fixed and independent of whether the submission was correct.

This made it impossible for participants to hedge between trading in the

marketplace and submission of solutions through the KP interface.

Expert Traders

All participants were given the same information about the KP instance

in a session at the beginning of each session. Thus, there was no information

heterogeneity and no information asymmetry. However, we did not provide

participants with the solutions, and since our instances were hard while per-

formance was variable (the proportion of participants who submitted the

correct solution varied between 6.4% and 60.3%; see SOM for details), het-

erogeneity (and asymmetry) arose spontaneously as participants started to

search for the correct solution. Because all traders were given the same infor-

mation, we cannot really talk about “informed” and “uninformed” traders

when referring to those who found the optimal solution and those who failed
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to find it. So, for the purposes of our study, we define the former as an “Ex-

pert Trader.” However, we re-emphasize that even expert traders may not

have been aware that they knew the solution. Such is the nature of the KP...

4. RESULTS

Descriptive Statistics

Each of the 78 participants solved five instances of the KP (390 attempts

in total). We first looked at computational performance of participants, that

is, participants’ ability to find optimal solutions. To this end, we examined

the proportion of participants that were able to solve an instance. Overall,

37.2% of attempts were correct. Performance varied both by participant

(min = 0, max = 1, SD = 0.26) and experimental session (min = 0.33,

max = 0.47, SD = 0.06).

Next, we investigated whether computational performance in an instance

was related to the instance’s complexity. We measured instance complexity

with Sahni-k. This metric increases with both the number of computational

steps and the amount of memory required to solve an instance. Intuitively,

Sahni-k is equal to the number of items that have to be selected into the

knapsack before the knapsack can be filled up using the greedy algorithm

to find the solution. The greedy algorithm fills the knapsack by selecting

items in decreasing order of the ratio of value over weight until none of

the remaining items fits into the knapsack. If Sahni-k equals 0, the greedy

algorithm generates the solution of the instance. If k is greater than 0,

the Sahni algorithm generates all feasible k-element subsets, fills up the

knapsack using the greedy algorithm and finds the set of items with the

highest total value. The Sahni-k of the instances in this study varied from

0 to 4; they are listed in Table I.14

14Note that the number of sets the algorithm considers is given by the binomial co-
efficient with n equal to the number of items in the instance and k equal to Sahni-k.
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The proportion of participants who solved the instance correctly de-

creased from 60.3% when Sahni-k was equal to 0, to 6.4% when Sahni-k

was equal to 4. To test the negative relation between computational per-

formance and Sahni-k, we estimated a mixed-effects model with a binary

variable set to 1 if an attempt was correct as dependent variable (0 oth-

erwise), a fixed effect for Sahni-k and random effects (varying intercepts)

for participant and experimental session. We found a significant main effect

of Sahni-k (β = −0.578, p < 0.001). The pattern confirms the validity of

Sahni-k as a measure of instance difficulty for humans, first documented

in Meloso et al. (2009b) and Murawski and Bossaerts (2016).15 This means

that the negative relation between Sahni-k and computational performance

previously documented at individual level Murawski and Bossaerts (2016)

also exists at the level of markets (see SOM for further details).

We used the number of items participants moved into and out of the

knapsack as a proxy for effort. The mean total number of moves in an

instance was 24.7 (min = 3, max = 123, SD = 19.5; descriptive statistics

can be found in SOM). To test whether the number of moves depended on

instance complexity, we related the number of moves a participant made, to

Sahni-k of the instance (mixed-effects model with a fixed effect for Sahni-k

and random effects for participant and session). We found a positive effect

of Sahni-k on the number of item moves (β = 1.649, p < 0.05). This means

that participants expended more effort on harder instances. This finding is

consistent with Murawski and Bossaerts (2016), who also found a positive

correlation between proxies of instance difficulty and effort, using a larger

number of instances than in the present study.

The number of subsets being considered increases with k and quickly grows beyond the
capacity of human working memory. For an instance with 12 items, the number of sets
considered if k is equal to 1, is 1 whereas if k is equal to 4, the number of sets considered
equals 495.

15For a comparison of Sahni-k as a measure of instance complexity with other mea-
sures, see Murawski and Bossaerts (2016).
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The mean number of trades per session was 135.0 (min = 91, max = 202,

SD = 28.0). The mean number of trades varied by both session (min =

117.4, max = 161.6, SD = 18.9) and instance (min = 127.2, max = 165.7,

SD = 17.0). The number of trades did not vary with instance difficulty as

measured with Sahni-k (one-way ANOVA, F (4, 14) = 1.27, p > 0.1). The

number of trades in items in the optimal solution did not differ from the

number of trades in items that were not in the optimal solution (two-sample

t-test, t(52) = −0.811, p > 0.1).

Fig. 3 plots the evolution of trade prices in the third round of the first

session. Each security is indicated by the weight and value of the correspond-

ing item (weight value) and whether the item is in the optimal knapsack.

Notice how prices do not monotonously decrease towards zero (indicating

that the corresponding item is “OUT”) or one (the corresponding item is

“IN”). Shares in item 129 15, for instance, bounce back and forth between

a minimum of 25 cents and a maximum of 95 cents. By the end, they were

trading at 60 cents. The shares expired worthless because the correspond-

ing item was not in the optimal knapsack (more descriptive statistics on

prices, including range of prices per item, stratified by instance difficulty,

are available in the SOM).

Finally, participants earned $6.32 on average per instance (min = −1.66,

max = 11.41, SD = 1.92) and 31.58 on average in total (min = −8.30,

max = 49.25, SD = 9.59) from trading in the market.16 To test whether the

earnings from trading depended on instance complexity, we related earnings

of a participant in an instance, to Sahni-k of the instance (mixed-effects

model with a fixed effect for Sahni-k and random effects for participant and

16Instance earnings could be negative because participants were allowed to buy, and
hence spend cash, on shares that eventually did not pay a dividend; the change in cash
was subtracted from total dividends earned on final share holdings. Earnings cumulated
across instances. At the end of the experimental session, participants were paid the
minimum of $25 and cumulative earnings plus sign-up reward of $5 plus per-instance
submission reward of $2.
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Figure 3.— Evolution of Traded Prices in One Instance.

Shown are time series of transaction prices for the 3rd instance in the first session.

Series are identified by the weight and value of the corresponding item (weight value)

and whether the item was in the optimal knapsack (“IN,” in which case the shares paid

one dollar; when “OUT,” they expired worthless).

session on the intercept). We did not find a systematic relation between

Sahni-k and earnings from trading (β = −0.177, p > 0.1).17

Testing our predictions

In the following, we test the five predictions.

Prediction 1: Securities Prices Reveal Only Inferior Solutions

The first prediction is that markets do not reveal optimal solutions. In

our sessions, there was always at least one participant who solved to in-

stance at hand, and often multiple participants (see SOM). Consequently,

17Mean earnings were highest in the instance with Sahni-k equal to 0 and lowest in
the instance with Sahni-k = 2. Mean earnings amounted to $8.41, $5.13, $5.03, $5.93 and
$7.08 for Sahni-k 0 to 4, respectively. Mean maximum payoff was $21.05 in the instance
with Sahni-k equal to 0, compared to $12.50, $13.70, $16.25, and $11.95 for instances with
Sahni-k equal to 1 to 4, respectively. Notice the non-monotonicity of earnings. This is
related to the way we allocated shares, which, as mentioned before, attempted to balance
incentives to trade and fairness.
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if prices were to perfectly reflect available knowledge, they should allow us

to formulate an algorithm that always finds the optimum. We hypothesized

this not to be the case.

To evaluate the prediction, we constructed a “market performance” met-

ric, defined as the distance from the optimal solution, in item space, of

“market solutions” implied by trade prices. Distance in item space is mea-

sured as a score which is incremented by one point if a correct item was in

the submitted knapsack or an incorrect item was left out of the knapsack.

The score is subsequently scaled by dividing by the total number of items

in the knapsack.

To construct “market solutions,” we interpreted the last traded price of an

item as the market’s “belief” that the item belonged in the optimal solution.

We then bootstrapped a “market knapsack” by drawing without replace-

ment items based on these beliefs and filling the knapsack until capacity was

reached. We computed the performance score of this “market knapsack.”

We repeated this procedure 10,000 times. We then averaged the resulting

market performance scores across the bootstraps. If prices correctly valued

securities, and hence, correctly revealed an instance’s solution, we would

draw only from “IN” items, and hence, obtain a perfect performance met-

ric.

Information revealed in market prices allowed us to reach a performance

score of 78% in case of the instance with Sahni-k equal to 0. This score de-

creased monotonically to 68%, 64%, 57% and 52% as Sahni-k increased from

1 to 4. We conclude that market prices always revealed inferior solutions,

and that the solutions became worse as instance complexity increased.

Prediction 2: The Average Trader Outperforms The Market

In the next step, we examined whether the market did better in solving

the instances than the average participant. Specifically, we compared the
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performance of the “market knapsack” to the performance of the knapsacks

submitted by individual participants. To do so, we constructed performance

scores for individuals the way we did for the market. We found that the mar-

ket knapsack performed worse than the knapsack submitted by the average

participant for every level of computational complexity (Fig. 5). In three

out of five instances, the market’s score was significantly worse (two-sample

t test with unequal variances; Bonferroni-Holm family-wise error correction

at the p = 0.05 level). Performance of the market decreased with instance

difficulty (Sahni-k; slope = −0.06, p < 0.001), at the same rate as for indi-

vidual participants.

Prediction 3: Expert Traders Make Money

To determine whether Expert Traders earned more money from trading,

we correlated individual computational performance in an instance with

earnings (in Australian dollars) from trading in the marketplace. We com-

puted the former as distance in item space of submitted knapsack from the

optimal solution, using the score computed as described above.

The mean payoff in an instance for Expert Traders (those who found the

solution of the instance) was $8.21 (min = −0.85, max = 21.05, SD =

3.51), compared to $5.11 (min = −10.55, max = 13.7, SD = 3.93) of

the remaining participants. Moreover, in every instance, the highest payoff

among all participants was earned by an Expert Trader.

To test whether the ability to earn money increased in expertise, we re-

lated computational performance, as measured by the score described above,

to earnings from trading. A higher score implies that the participant had

more correct items in the submitted knapsack and more incorrect items out

of the submitted knapsack, and as such, the participant knew the correct

value of more securities than someone with a lower score. We estimated

a generalized linear mixed-effects model with earnings in a session as de-
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pendent variable, a fixed effect for score (computational performance) and

random intercepts for participant and instance. We found a significant ef-

fect of score (β = 7.011, p < 0.001). A ten percentage point increase in

computational performance score was associated with additional earnings

of 70 cents (see Fig. 4, top panel).

Considering overall session earnings per participant and computational

performance, we found that they were highly correlated as well: an increase

in performance score of 10 percentage points increased earnings in the mar-

ketplace by almost $4 on average (Fig. 4, bottom panel). Note that only

two participants received a perfect score, implying that only two partici-

pants solved all five KP instances correctly.

Prediction 4: Market Performance Decreases with Instance Complexity,

Not with Size of Search Space

We proposed that a measure of computational complexity unrelated to

the number of possible filled knapsacks determines price quality. One way

to measure computational complexity of the instance at hand is to use the

Sahni-k metric introduced before. As Sahni-k increases, both the number

of computational steps and the amount of memory required to solve the

instance increases. Errors in computations or memory retrieval accumulate,

and hence, noise in the proposed solution increases, or the computer runs

out of computational resources. As mentioned before, we propose Sahni-k

since this metric was found to predict individual performance in solving

KP instances (Murawski and Bossaerts, 2016). Sahni-k is inspired by algo-

rithms that approximate KP solutions. The higher Sahni-k, the more likely

a computer using those algorithms will not find the optimum.

We found that market performance (performance of knapsack solutions

one can construct from trade prices) gradually decreased as Sahni-k in-

creases (Fig. 5). The decrease in performance is highly significant (univari-
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Figure 4.— Individual Trading Payoff Against Performance Score Of
Submitted Knapsack. Individual payoff from trading, per instance (top; colour-coded
by difficulty) and per session (bottom), against average performance score for the submit-
ted solutions; performance score is measured as distance in item space of the submitted
knapsack; see text for details; per-instance observations are stratified by Sahni-k. Slope
coefficient per instance (mixed-effects regression; see text) equals 7.01 (p < 0.001); Pear-
son correlation r = 30.3%. Slope coefficient per participants equals 37.1 (p < 0.001);
Pearson correlation r = 42.2%.
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Figure 5.— Performance Of Instance Solutions Generated From Last
Trade Prices Compared To Average Individual Submissions. Market perfor-
mance score, measured as distance in item space of “market knapsack” obtained from
simulations based on last trade prices (blue), against corresponding average score of in-
dividual participants (red), across all sessions, stratified by instance difficulty (Sahni-k).
Error bars cover +/- 1 standard error (Market: across sessions; Individuals: across indi-
viduals in all sessions). Dashed lines are corresponding regression lines (slope of market
line: −0.006; p value < 0.001)). Asterisks in boxes indicate that the average individual
score is significantly higher than market score at p = 0.05 significance level, corrected for
multiple comparisons. INSERT: Market performance score against number of possible
knapsacks filled at capacity. Dashed lines: regression line.
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ate LS of mean performance on Sahni-k: slope = −0.06, p < 0.001).

In contrast, market performance did not change with the number of pos-

sible knapsacks filled to capacity; see Insert of Fig. 5 (|slope| < 0.001,

p > 0.10). That is, merely increasing the size of the search space does

not lower price quality.

Prediction 5: Traders Improve Their Solutions by Reacting to High Volume

in Low-Priced Securities

In traditional “rational expectations” asset pricing models (Radner, 1979),

lesser informed traders are assumed to know the mapping from states to

prices and use this mapping to infer states from observed prices. In this

setting, the term “state” refers to an expectation based on all the informa-

tion available in the economy. Here, we can interpret “state” as the correct

solution to the KP instance.

We investigated whether traders indeed “read” prices. Specifically, we

studied to what extent trade induced traders to re-visit and improve their

knapsack, moving it closer to optimum in item space. Overall, descriptive

statistics of moves of correct and incorrect items in and out of knapsacks

can be found in SOM.

Prior research has shown that an important reason why humans may not

find the optimum is because they tend not to re-consider incorrect items that

they put into the knapsack early on (Murawski and Bossaerts, 2016). Poor

episodic memory may explain this reluctance to re-visit early moves. Here,

we ask whether trade in such items made it more likely that uninformed

traders took them out.

To test whether participants improved their knapsack based on informa-

tion available in the market, we regressed the probability of removing an

incorrect item that was included early on, onto the price of, and the trading

volume in, the corresponding security, as well as their interaction using a
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generalized linear model with a logit link function.18 We consider an item to

be included “early on” if the participant moved it into the knapsack within

the first two minutes of trading. We found that there was a significant main

effect of price (β = −3.491, p < 0.001). This means a 10% decrease in

price of a security was associated with a 11% increase in the probability of

removing the corresponding item from the knapsack.

The effect was stronger when the security corresponding to the item was

traded more heavily (interaction term of price and trading volume, β =

13.725, p < 0.05). However, there was no main effect of trading volume

(β = −7.125, p = 0.068). The negative relation between security price and

probability of removal is displayed in Fig. 6.

Figure 6.— Impact Of Trade Prices On Removal Of Incorrect Items
Incorrect items chosen into knapsack within two minutes of trading: Fraction of those
items that are eventually removed, as a function of average trade price. Red line: least
squares fit of β/(1 + x)2 where x = price level, β = 0.85 (p < 0.01).

These findings suggest that trade, combined with low prices, induced par-

ticipants to re-consider incorrect inclusions of items, thus improving overall

18Model selection analysis based on the Bayesian Information Criterion suggested that
a model with random effects for participant, instance difficulty (Sahni-k) and session
fitted worse than a fixed-parameter regression.
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computational performance, and hence, securities valuation.

We did not find an effect on item selection from trade in high-priced secu-

rities. We conjecture that short-sale restrictions contributed to the asymme-

try between high-priced and low-priced securities: if an item was deemed to

be overpriced, participants could only sell shares that they already owned,

and hence could not put more pressure on prices.

5. CONCLUSION

In this study, we investigated to what extent computational complexity

affected market outcomes. Like with loss or ambiguity aversion (Dybvig and

Ross, 2003), there is a fundamental tension between individual behaviour

and the need for market prices to be free of arbitrage opportunities. Indi-

viduals solve computationally “hard” problems in a methodical way, which,

although highly effective, easily leads to violations of the sure-thing princi-

ple. These violations cannot be exposed at the market level, because they

would amount to arbitrage opportunities. We formulated hypotheses aimed

at resolving the tension. These hypotheses are in line with predictions of the

Noisy Rational Expectations Equilibrium, provided one interprets “noise”

as (instance) complexity.

We reported results from a markets experiment aimed at testing our pre-

dictions. We found that prices generally revealed incorrect solutions, and

that price quality deteriorated as instance complexity increased, though

price quality was no worse when the search space increased (number of pos-

sible capacity-filled knapsacks). We also documented that Expert Traders

(those who submitted the optimal solution) earned significantly more from

trading on their information; in general, the closer one was to the correct

solution, the more was earned through trading. Market prices converted

into candidate solutions that were worse than those submitted by the aver-

age participant. Information revealed in prices did feed back into individual
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problem solving, but only in conjunction with volume.

A number of remarks are in order, which should put our findings in per-

spective.

We found that traders learned from prices, which is one of the core tenets

of “rational expectations” asset pricing theory. To our knowledge, we are

the first to show this directly, by recording participants’ thinking (their

attempts to solve the valuation problems) and how it changed as a function

of prices. Here, we discovered that markets actually mitigated a strong bias

that keeps individuals from discovering the correct solution of KP instances,

namely, hesitation to re-consider items that were added to the knapsack

early on (Murawski and Bossaerts, 2016). Prices, in conjunction with trade,

made participants re-visit parts of the solution that they had constructed

within the first two minutes of trading.

Our finding suggests that markets may provide a powerful mechanism to

help individuals solve complex problems. This raises the issue whether a

market mechanism is preferable to mechanisms that provide clearer incen-

tives for problem solving, such as a prize system, where only the first to

submit the correct solution wins a prize. Meloso et al. (2009b) reports that

more participants manage to find the correct solution of KP instances with

markets than with a prize mechanism.

This last finding is relevant for the debate on the desirability of patents

as a way to promote intellectual discovery, for two reasons. First, the prize

system is analogous to the current patent system. Second, intellectual dis-

covery can be thought of as the solution of a combinatorial optimization

problem such as the KP (Boldrin and Levine, 2002).19 Evidently, markets

may facilitate intellectual discovery better than patents.20

19A recent empirical study corroborates this claim, by showing that patents filed with
the U.S. Patent Office between 1790 and 2010 were mostly for inventions that combined
existing technologies in novel ways rather than opening up fundamentally new avenues
of exploration (Youn et al., 2015).

20To illustrate how, consider markets in Li, Na, Mg and other chemicals (we are
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The conclusion that markets may trump patents is important for eco-

nomic history as well. It is generally accepted that the patent system pro-

vided the main impetus for technological advances over the last century and

a half (Khan and Sokoloff, 2001). However, at the same time markets pen-

etrated all parts of life, and it may very well have been that markets were

the major facilitator of innovation rather than patents. This conjecture is

consistent with historical evidence that technological advances can be far

bigger during epochs with share trading but without patents than in epochs

with only patents (Nuvolari, 2004).

Our findings allow one to put into perspective the evidence on EMH (the

Efficient Markets Hypothesis) from historical analyses of field data. Fama

(1991, 1998) surveys a vast body of studies that appears to suggest that

EMH holds, because anomalies could be attributed to chance (sometimes

the null will be rejected) or to methodological errors. Behavioral finance

scholars reject this conclusion, starting with Bondt and Thaler (1985), who

claimed that long-run price reversals are caused by overreaction. Among

others, Hirshleifer (2001) summarizes the evidence against EMH, and argues

against chance or methodological mistakes.

Our experiment could shed new light on the EMH controversy. When het-

erogeneous information emerges because agents hold dispersed information

from which security prices can easily be computed, markets may be expected

to satisfy EMH. But it is obvious that not all real-world situations can be

described as such. Instead, correct valuation may be computationally hard,

at which point the conclusions from our experiment become important, and

using standard chemical abbreviations). These are potential components of future battery
technology. To determine which chemicals markets to invest in requires one to assess
which component, or maybe combination of components, will be required for the best
battery technology. This casts intellectual discovery squarely in terms of the KP, and
to profit from it, one needs markets as we organized them. Inventors are induced to
participate in the marketplace, and earn money by buying those components that they
believe are in the best battery technology, while selling others.
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violations of EMH will ensue. Examples of high computational complexity

includes corporate valuation when valuation depends on how the corpora-

tion is structured (Which departments should be spun off? Which companies

should be acquired in order to create “synergistic” valuation effects? Etc.).

To measure computational complexity, we used standard notions from

computer science. These notions are based on a theoretical computational

model (Turing machine), and it was not a priori obvious that they would

extend to human computing. Recent evidence suggests that computational

complexity theory does extend to decision-making by humans (Murawski

and Bossaerts, 2016), and the findings reported here corroborate this notion.

Therefore, evidence is mounting that the theory of computation is universal,

in support of the Church-Turing thesis (Church, 1934; Turing, 1936).

In the present study, we showed that computational complexity theory

extends even to markets: we found that markets performed worse when valu-

ation had higher computational complexity, where complexity was measured

in terms of Sahni-k. This metric, one possible measure of computational re-

sources required to solve an instance, tracks human performance in solving

KP instances (Murawski and Bossaerts, 2016).

Finally, we chose to have participant trade Arrow securities whose payoffs

depended on whether the corresponding item was in the optimal solution.

One could envisage alternative security designs. For instance, we could have

let participant trade a single security that paid the value of the optimal

solution to the KP at hand. According to traditional asset pricing logic,

the latter should generate worse outcomes: a given knapsack value may

translate into multiple possible knapsack compositions, many of which could

be far off the optimal knapsack. That is, one security may not be enough

to “invert” from knapsack values to choice of items. Intuitively, directly

trading one Arrow security per item seemed to be the most effective way

for participants to share information about potential solutions to the KP
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at hand. The market with Arrow securities seems to be more “complete.”

Whether this is true remains to be proven empirically. We leave this for

future work. If pricing is more accurate, and more participants find the

optimal solution when only one security is traded (whose payoff depends

on the value of the optimal knapsack), then we would definitely know that

asset pricing under computational complexity is fundamentally different

from classical asset pricing theory. Our intuition that “more securities is

better” would fail.
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TABLE I

Five KS Instances Used In The Experiment. Available items, capacity C,
and Sahni-k k, for the instances in the experiment. Density is defined as
the ratio of value v to weight w. IN means the item is in the solution;
OUT means it is not. NFKS denotes the number of possible knapsacks

filled to capacity. Problem 5 has a second solution (not indicated), with
a higher weight and higher Sahni-k however.

1 (k = 1) C = 1, 900, NFKS = 80
Items 1 2 3 4 5 6 7 8 9 10
v 505 435 350 505 640 465 170 220 500 50
w 564 489 406 595 803 641 252 330 750 177
Density 0.90 0.89 0.86 0.85 0.80 0.73 0.67 0.67 0.67 0.28
Solution IN IN OUT IN OUT OUT IN OUT OUT OUT

2 (k = 3) C = 1, 044, NFKS = 22
Items 1 2 3 4 5 6 7 8 9 10
v 300 350 400 450 47 20 8 70 5 5
w 205 252 352 447 114 50 28 251 19 20
Density 1.46 1.39 1.14 1.01 0.41 0.40 0.29 0.28 0.26 0.25
Solution IN OUT IN IN OUT OUT OUT OUT IN IN

3 (k = 2) C = 850, NFKS = 399
Items 1 2 3 4 5 6 7 8 9 10
v 28 28 10 9 25 31 15 24 14 3
w 184 184 66 60 184 229 129 219 144 77
Density 0.15 0.15 0.15 0.15 0.14 0.14 0.12 0.11 0.10 0.04
Solution IN IN IN OUT IN IN OUT OUT OUT OUT
Items 11 12
v 3 1
w 77 72
Density 0.04 0.01
Solution OUT OUT

4 (k = 0) C = 1500, NFKS = 36
Items 1 2 3 4 5 6 7 8 9 10
v 37 32 44 23 45 85 62 106 71 72
w 50 46 180 107 220 435 360 700 530 820
Density 0.74 0.70 0.24 0.21 0.20 0.20 0.17 0.15 0.13 0.09
Solution IN IN IN IN IN IN IN OUT OUT OUT

5 (k = 4) C = 1300, NFKS = 301
Items 1 2 3 4 5 6 7 8 9 10
v 227 129 113 127 303 144 84 147 86 201
w 212 121 106 120 288 137 80 140 82 192
Density 1.07 1.07 1.07 1.06 1.05 1.05 1.05 1.05
Solution IN IN OUT OUT IN IN IN IN IN OUT
Items 11 12
v 251 167
w 240 160
Density 1.05 1.04
Solution IN OUT
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