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Abstract

We propose the Volume Coefficient of Variation (VCV), the ratio of the standard de-
viation to the mean of trading volume, as a new and easily computable measure of
information asymmetry in security markets. We use a microstructure model to demon-
strate that VCV is strictly increasing in the proportion of informed trade. Empirically,
we find that firm-year observations of VCV, computed from daily trading volumes,
are correlated with extant firm-level measures of asymmetric information in the cross-
section of US stocks. Moreover, VCV increases following exogenous reductions in an-
alyst coverage induced by brokerage closures, and steeply decreases around earnings
announcements.
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1 Introduction

In this paper, we analyze the distribution of trading volume in security markets, and in-

vestigate how it depends on the proportion of informed trade. We consider a market

where liquidity seekers submit orders to competitive liquidity providers (market mak-

ers), who absorb the order imbalance and set the clearing price, as in Kyle (1985). Liq-

uidity seekers are either informed or uninformed. Uninformed liquidity seekers place

uncorrelated orders, while informed orders are highly correlated. Uninformed orders are

therefore mostly matched to each other, while informed orders generate order imbalances

that need to be absorbed by market makers. We derive simple expressions for the first

two moments of the distribution of total trading volume as functions of the proportion

of informed trade. Specifically, we show that the coefficient of variation (the ratio of the

standard deviation to the mean) of trading volume increases monotonically in the propor-

tion of informed trade. We propose the volume coefficient of variation (VCV) as a novel

measure of the proportion of information trade. VCV is easy to compute and requires

only observations of trading volume, as opposed to quotes, prices, or signed order flow.

The intuition behind our measure is that the distribution of trading volume depends

on the correlation of individual orders. If all liquidity seekers are uninformed and place

uncorrelated orders, their orders are mostly netted out against each other, and net order

flow is relatively low compared to observed trading volume. In this case, trading volume

follows a slightly skewed Normal-like distribution. As more market participants are in-

formed, liquidity demand becomes more correlated, so that the expected net order flow

takes up a higher share of total trading volume, resulting in a more dispersed and skewed

distribution of trading volume. We show that the coefficient of variation adequately cap-

tures the mapping from the proportion of informed and hence correlated trade to the vol-

ume distribution. In addition to the analytical results, we conduct an extensive simulation

exercise and provide empirical evidence in support of our main result: VCV increases in
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the proportion of informed trade.1

Adverse selection and asymmetric information in security markets have been widely

studied since Bagehot (1971) identified it as the key determinant of market illiquidity.

Copeland and Galai (1983), Kyle (1985, 1989), Glosten and Milgrom (1985), Karpoff (1986),

Easley and O’Hara (1992), Admati and Pfleider (1989), Foster and Viswanathan (1994),

and many others, have increased our understanding of the strategic behavior of asymmet-

rically informed traders and their effect on security markets. There has been no shortage

of subsequent papers that aim to measure information asymmetries in security markets.

Easley et al. (1996) develop a measure for the probability of informed trading, the

well-known PIN measure. They use the model of Glosten and Milgrom (1985) to estimate

the proportion of informed traders from the dynamics of the signed order process. The

PIN measure has been widely used to study information asymmetries in security mar-

kets.2 Both PIN and VCV are expected to increase in the order imbalance generated by

correlated informed demand. The PIN measure is estimated from transaction-level data

and requires trades to be classified as either buy- or sell-initiated. Also other information

asymmetry measures, such as order flow volatility (Chordia et al., 2017) and XPIN (Bon-

gaerts et al., 2016), rely on signed transaction-level data. It has been recognized that such

order classification, e.g. using the Lee and Ready (1991) algorithm, is not error-free and

has become increasingly problematic due to high-frequency trading (e.g. Boehmer et al.,

2007; Easley et al., 2012; Johnson and So, 2018). Computing VCV does not require signed

transaction-level data. Instead, VCV is estimated from volume data only.

1To the best of our knowledge, we are the first to relate the coefficient of variation of trading volume
to asymmetric information. Chordia et al. (2001) use the coefficient of variation of trading volume when
examining the relation between stock returns and the variability of trading volume, without relating this
measure to asymmetric information.

2Easley et al. (1997a and 1997b) analyze the information content around trade lags and trade size. Appli-
cations of PIN include, among others, the pricing of information asymmetry (Easley et al., 2002), the impact
of analyst coverage on informational content (Easley et al., 1998), stock splits (Easley et al., 2001), dealer vs.
auction markets (Heidle and Huang, 2002), trader anonymity (Gramming et al., 2001), information disclo-
sure (Vega, 2006; Brown and Hillegeist, 2007), corporate investments and M&A (Chen et al., 2007; Aktas et
al., 2007), ownership structure (Brockman and Yan, 2009), and the January effect (Kang, 2010).
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Duarte and Young (2009) argue that (unadjusted) PIN is not only measuring informed

trade, but also general illiquidity unrelated to information asymmetry.3 They derive a

new measure of general illiquidity unrelated to informed trading: PSOS (Probability of

Systematic Order-flow Shock), as well as a measure called Adjusted PIN, which measures

asymmetric information, net of unrelated illiquidity effects. We compare VCV to various

PIN measures and find that VCV is strongly related to PIN, but even more so to Adjusted

PIN, while the relationship to PSOS is weak. This corroborates that VCV is a measure of

informed trading, rather than general illiquidity.

Llorente et al. (2002) propose the C2-measure that captures the relation between daily

trading volume and return persistence, as a proxy for information asymmetry. C2 de-

duces the proportion of informed trade from the premise that returns generated by in-

formed trade are likely to be persistent, while uninformed trade leads to return reversals.

In a recent paper, Johnson and So (2018) propose the multimarket information asymme-

try (MIA) measure, which is based on the relative daily trading volumes in options and

stocks, following the premise that informed investors are more likely than uninformed

investors to trade in options. Although MIA, like VCV, is a simple measure to compute,

it requires access to option trading volume in addition to equity trading volume. We find

that our VCV measure is positively correlated with both the MIA measure of Johnson and

So (2018) and the C2 measure of Llorente et al. (2002).

Recent studies find that institutional ownership is associated with improved disclo-

sure of information (Boone and White, 2015) and more informative market prices (Bai et

al., 2016). Consistent with these results, we find from 13F filings that firms with more

institutional shareholders (i.e. high breadth of ownership) have on average lower VCVs.

We also look specifically at two types of institutional investors that can be considered rela-

3Other papers in the debate on the validity of PIN include Easley et al. (2010), Akay et al. (2012),
and Duarte et al. (2017). Other studies focus on the estimation robustness, particularly in high-turnover
stocks (Lin and Ke, 2011; Yan and Zhang, 2012). In response to these latter critiques, and the advent of
high frequency trading, Easley et al. (2012) develop the volume synchronized PIN, or VPIN. This estimator
captures not only information asymmetry but also order flow toxicity, i.e.: the risk of unbalanced orderflows.
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tively informed about a firm: monitoring investors, defined as those institutional investors

for which the firm represents a significant allocation of funds in the institution’s portfolio

(Fich et al., 2015), and dedicated investors, defined as institutional investors that predom-

inantly make long-term investments in a selective set of stocks (Bushee and Noe, 2000;

Bushee, 2001). We find that, controlling for breadth of ownership, VCV is higher for firms

with monitoring and/or dedicated (i.e. informed) investors.

The crux of our theoretical analysis in Section 2 is a Kyle (1985) model with informed

and uninformed liquidity seekers and price-setting market makers. Instead of focusing

on prices and orderflows, we analyze the total trading volume. We introduce a simple ex-

pression for the observed total trading volume, and derive the first and second moments

as a function of the number of market participants, their trading intensity, and the pro-

portion of informed trade. We demonstrate that both the expected value and the standard

deviation of volume increase linearly in the proportion of informed trade, but that the

standard deviation does so at a higher rate. The coefficient of variation of trading vol-

ume is therefore a natural measure of the proportion of informed trade, as VCV increases

monotonically in the proportion of informed trade, while it is asymptotically independent

of the number of market participants and of their trading intensity.

We recognize that the proportion of informed trade is endogenous and depends on

the number of informed traders, the strength of their informational advantage, and the

trading activity of the uninformed traders, as in Kyle (1985) and follow up papers.4 In

this paper, we are agnostic about the strategic motives, preferences or time horizons of the

informed traders, and are only interested in the resulting proportion of liquidity seeking

demand originating from these informed market participants. Our analytical expression

of VCV in terms of the proportion of informed trade holds regardless of the mechanism

by which the proportion of informed trading is determined. To illustrate this, we con-

4Strategic behaviour of informed traders is also considered by Admati and Pfleiderer (1988), Subrah-
manyam (1991), Holden and Subrahmanyam (1992), and Foster and Viswanathan (1996), among others.
Collin-Dufresne and Fos (2015) provide empirical evidence of such strategic timing by informed investors.
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sider a model in which the informed traders choose their demand strategically, so that

the proportion of informed trade is endogenously determined in equilibrium, and find an

equivalent relation between VCV and the equilibrium proportion of informed trade. We

also demonstrate that VCV is distinct from Kyle’s lambda. The relation between lambda

and the proportion of informed trade is weak and not monotonic. The reason is that when

the number of informed traders increases, they reduce the aggressiveness of their trad-

ing, thereby mitigating price impact. Also in our empirical analysis, we find that VCV is

distinct from measures of price impact, such as Amihud (2002) illiquidity.

To further analyze the relation between informed trading and the distribution of total

trading volume, and to gain insight into the small sample properties of VCV, we conduct

a Monte Carlo analysis in Section 3. We start by simulating our benchmark model and

find, as predicted, that the generated volume distribution changes markedly as a function

of the proportion of informed trade. Our simulations confirm that VCV strictly increases

in the proportion of informed trade, even when the sample size or the number of market

participants is low.

For our empirical analysis in Section 4, we compute annual firm-level observations

of VCV from daily volumes of all NYSE, AMEX and NASDAQ stocks from 1980 until

2016, obtained from CRSP. We use three distinct volume measures: (i) trading volume in

dollars, (ii) turnover, and (iii) volume market shares (dollar-volume as a fraction of total

market dollar-volume). These three measures of VCV turn out to be virtually identical,

implying that VCV is not sensitive to aggregate market-level variation in trading volume.

This is important, since it is well known that other factors besides idiosyncratic firm-level

information can drive variation in trading activity, such as sentiment (Kumar and Lee,

2006), or common liquidity shocks (Admati and Pfleiderer, 1988; Brogaard et al., 2018).

Our cross-sectional analysis shows that VCV correlates, as expected, with various firm-

level characteristics: firms that are smaller and younger have higher VCVs, as do stocks

that see lower turnover, higher return volatility, and wider bid-ask spreads. In addition,
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VCV is significantly correlated with other indicators of asymmetric information, in par-

ticular with Adjusted PIN (Duarte and Young, 2009), and with patterns in institutional

ownership. As further evidence of VCV measuring informed trading, we show that, con-

trolling for Amihud (2002) illiquidity, return reversals are weaker for high-VCV stocks,

consistent with informed trading being predictive of future price changes.

Section 5 documents time-series patterns of VCV around information events. First, we

exploit exogenous terminations in analyst coverage due to brokerage closures, similar to

Kelly and Ljungqvist (2012), Derrien and Kecskes (2013), and Chen and Lin (2017). We

find that the VCV of affected firms significantly increases in the year following such dis-

ruptions to the information environment. We expect the impact of coverage terminations

to be more severe for firms that already have low analyst coverage prior to the broker-

age closure. Our results confirm this hypothesis: the increase in VCV following closure-

induced coverage terminations is much larger for stocks with low analyst coverage.

Finally, we analyze the cross-sectional VCV computed from the cross section of trading

volumes around earnings announcements. It has been widely recognized that information

asymmetries are resolved around these events. We expect that the proportion of informed

trade is high close to earnings announcements, as information asymmetries build up and

discourage uninformed traders to trade just before such events (See Milgrom and Stokey,

1982; Black, 1986; Wang, 1994; and Chae, 2005). After the announcement, the playing field

is levelled and the market is more attractive for uninformed traders. Our empirical inves-

tigations bear this out. From a comprehensive sample of over 300,000 quarterly earnings

announcements of U.S. firms, we find VCV to be relatively high prior to announcements,

while VCV is significantly lower in the days following the announcement.
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2 Theory

To analyze the distribution of trading volume, we first present a simple model in which

we postulate M individual liquidity seekers, who each submit Normally distributed or-

ders with mean zero and standard deviation σ, and where competitive liquidity providers

(market makers) absorb the net order flow. Proportion η of the M liquidity seekers is in-

formed, with ηM being an integer. We refer to σ as trading intensity. The assumption that

informed and uninformed traders have equal trading intensity is for convenience only

and without loss of generality: the trading volume distribution would be identical if the

there were be kηM informed traders who each trade with intensity σ
k

. For now, we as-

sume η to be exogenous. In the next subsection, we endogenize η by allowing informed

investors to choose their trading intensity strategically.

We denote the individual demands of all (informed and uninformed) liquidity seekers

yi, for which positive values indicate buy orders and negative values indicate sell orders.

The order imbalance (net order flow) is the sum of all orders,
∑

M yi, which is taken up by

the liquidity providers who determine the price. This imbalance is typically not publicly

observable. Total trading volume can then be written as:

V = 1
2

(∑
M

|yi|+

∣∣∣∣∣∑
M

yi

∣∣∣∣∣
)
. (1)

The term inside brackets is the "double-counted transaction volume", counting both buys

and sells, of (i) the liquidity seekers (the first term) and (ii) the liquidity providers (the

second term). This double-counted volume includes the trades among liquidity seekers,

as well as the trades between the liquidity providers and unmatched liquidity seekers.5

As an example, consider five liquidity seekers whose demands are -1, 2, 2, -2, 1. The

net order flow is two, which means that the liquidity providers end up selling two units.

5This expression for trading volume is similar to that in Admati and Pfleiderer (1988) and Grundy and
McNichols (1989).
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The observed trading volume is five: we have three units sold by liquidity seekers, five

units bought by liquidity seekers and two units sold by liquidity providers. The double-

counted volume is thus ten, and the commonly recorded single-counted volume is half

this number.

The orders of the informed liquidity seekers are perfectly correlated, so that all ηM in-

formed traders submit identical orders. On the other hand, the demands of the (1− η)M

uninformed liquidity seekers are uncorrelated (i.i.d.). Following these assumptions, the

net order flow follows a Normal distribution around zero, as in Kyle (1985):

∑
M

yi ∼ N
(
0, σ2

(
η2M2 + (1− η)M

))
. (2)

The variance of the net order flow is a nonlinear function of η, due to the different correla-

tions of informed and uninformed demand. When most liquidity seekers are uninformed,

their orders will be mostly matched to each other and net order flow is low. When most

traders are informed, their correlated demands can lead to large imbalances. As a result,

the standard deviation of the unobservable net order flow is increasing in the proportion

of informed trade η.

We now derive the first two moments of the observable total trading volume (Eq.1) as

a function of η. Using the properties of the Half Normal distribution we find:6

E
[
V
]

= 1
2

(
E
[∑

M |yi|
]

+ E
[
|
∑

M yi|
])

= σM√
2π

(
1 +

√
η2 + (1− η)M−1

)
.

(3)

From this we see that as the number of market participants M increases, expected trading

volume per capita converges to a linear increasing function of the proportion of informed

trade η:

lim
M→∞

E

[
V

M

]
=

σ√
2π

(1 + η) . (4)

6If x ∼ N
(
0, σ2

)
, then |x| follows a Half Normal distribution with E (|x|) = σ

√
2√
π

and V ar (|x|) =

σ2
(
1− 2

π

)
.

8



To analyze the variance of the observed trading volume, we consider each of the three

components of the double-counted volume that can be attributed to (i) informed liquidity

seekers
(∑

1...ηM |yi|
)

, (ii) uninformed liquidity seekers
(∑

ηM+1...M |yi|
)

, and (iii) liquidity

providers (|
∑

M yi|). The variances and covariances of these three components are derived

in Appendix A. For large M , we find that the variance of of the per capita trading volume

increases in η2:

lim
M→∞

V ar

(
V

M

)
= σ2

(
1− 2

π

)
η2. (5)

We thus see that for largeM , the ratio of the standard deviation to the mean (the coefficient

of variation) of trading volume is strictly increasing in η and is independent of the number

of market participants M and their trading intensity σ.

Proposition 1

Consider a market where M liquidity seeking traders submit Normally distributed market orders

with mean zero and standard deviation σ, and where the net order flow is absorbed by liquidity

suppliers. If ηM of the M liquidity seeking traders are informed:

i. The coefficient of variation of observed trading volume increases monotonically in the propor-

tion of informed traders, η.

ii. For large M , the relationship converges to:

lim
M→∞

σV
µV

=
√

2π − 4
η

η + 1
, (6)

where µV and σV denote the expected value and standard deviation of trading volume V .
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Corollary

If µ̂V and σ̂V denote the sample average and standard deviation of a sample of trading volumes

generated by trading sessions with parameters {σ,M, η},

V CV ≡ σ̂V
µ̂V

(7)

is a consistent estimator of σV
µV

.

The Volume Coefficient of Variation (VCV) is a measure of informed trade. E[V CV ] increases

monotonically in η.

Our finding that VCV is independent of σ and M is important. It means that even when

σ and M are subject to exogenous variation, e.g. due to sentiment (Kumar and Lee, 2006),

or correlated liquidity shocks (Admati and Pfleiderer, 1988; Brogaard et al., 2018), VCV

will increase in the proportion of informed trade. We present simulations and empirical

analyses in the next sections that strongly support this result.

The above analysis also shows that a direct estimator of the proportion of informed

trade is implied from Eq.(6):

η̂ ≡ σ̂V

µ̂V
√

2π − 4− σ̂V
. (8)

However, as our simulation results in Section 3 show, η̂ is a consistent estimator of η only

when demand is Normally distributed, M is large, and η is constant across observations.

We find that η̂ behaves particularly poorly in small samples or when we relax the assump-

tions of the model, primarily because its denominator can be close to zero or turn negative.

On the other hand, We find that VCV is monotonically increasing in η under general con-

ditions, including non-Normality and time-varying proportions of informed trade. For

this reason, we propose VCV, as opposed to η̂, as our measure of informed trade.
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2.1 VCV in equilibrium

In this subsection, we demonstrate that the insights from our simple model also hold in

a setting where the proportion of informed trade is endogenously determined, as in Kyle

(1985). We now consider a model where multiple informed investors, with correlated

noisy signals, choose their orders strategically while taking into account the strategies of

the other informed investors.

In particular, we assume that there are m informed liquidity seekers, n uninformed

liquidity seekers, and competitive liquidity providers whose number is sufficient to be

competitive. We assume a zero interest rate and risk neutrality of all market participants.

The informed traders place orders, denoted by xj , after receiving a signal sj equal to the

liquidation value (v) plus an independent noise term: sj = v + εj . The orders of the

uninformed, denoted ui, are i.i.d., Normally distributed with mean zero and standard

deviation σu. Due to risk neutrality and zero-interest, the expected liquidation value E[v]

equals the previous clearing price, p0.

The n + m individual liquidity seekers submit orders to the market where buy orders

are matched to sell orders and the net orderflow
∑

n ui +
∑

m xj , is taken up by liquidity

providers who set the price. Our model is thus a modified Kyle (1985) model, in which

multiple imperfectly informed insiders compete. Similar models have been analyzed by

Holden and Subrahmaniam (1992), Foster and Viswanathan (1994, 1996) and others.

We use the terminology and symbols of Kyle (1985), and look for the linear equilibrium

in which the informed traders choose their trade as a linear function of their signal and

the last traded price p0:

xj = βj(sj − p0), (9)

and the competitive market makers use the following linear pricing function:

p = p0 + λ

(∑
n

ui +
∑
m

xj

)
. (10)
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In equilibrium βj and λ are determined jointly: the βs follow from the profit opti-

mization problem of the informed traders, who take λ, sj , p0, and the other parameters

(n,m, σu, σv,σε) as given, and (Kyle’s) λ is determined by the liquidity providers who set

the price at the expected value given the observed orderflow and knowledge on the trad-

ing aggressiveness of the informed investors (i.e. the βs).

The m profit maximizing informed investors each solve:

max
xj

xj(E[v|sj]− p0 − λ(xj + E[
∑
n

ui +
∑
m−1

x−j|sj]), (11)

where x−j denotes the orders of the informed traders other than j. The first order con-

dition is x∗j(sj) =
sj−p0
2λ
− m−1

2
E[x−j|sj]. Since the signal’s noise component εj are i.i.d.,

the final term, E[x−j|sj], equals β−j(sj − p0), where β−j is the trading aggressiveness

for all traders except j. Hence, all traders set their demand following x∗j(sj) = (sj −

p0)
(

1
2λ
− m−1

2
β−j
)
, so that in equilibrium we have βj = β−j = β = 1

λ(m+1)
.

Simultaneously, the market makers set the equilibrium price at the expected value of

v, conditional on the net orderflow
∑

n ui+
∑

m xj . From the projection theorem, we know

that E[v|
∑

n ui,
∑

m xj; p0, β, σv, σu, n,m] = p0 +
mβ(σ2

v+σ
2
ε)

nσ2
u+m

2β2(σ2
v+σ

2
ε)

(
∑

n ui +
∑

m xj), implying

that λ =
mβ(σ2

v+σ
2
ε)

nσ2
u+m

2β2(σ2
v+σ

2
ε)

. Combining these two results, we find that in equilibrium:

β =

√
nσu√

m (σ2
v + σ2

ε)
; λ =

√
m (σ2

v + σ2
ε)

(m+ 1)
√
nσu

. (12)

We now express trading volume as a function of the model’s parameters. We first observe

that total trading volume can now be written, similar to Eq.(1), as:

V =
1

2

(∑
n

|ui|+
∑
m

|xj|+

∣∣∣∣∣∑
n

ui +
∑
m

xj

∣∣∣∣∣
)
. (13)

The demands ui and xj both follow a Normal distribution around zero. We find from (9)

and (12) that the variance of informed demand (σ2
x) is only dependent on the variance of
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uninformed demand (σ2
u) and the ratio of uninformed to informed investors:

σ2
x = β2

(
σ2
v + σ2

ε

)
=

n

m
σ2
u. (14)

The intuition of (14), is that the trading aggressiveness of each informed investor in-

creases in the number of the uninformed investors, and decreases in the number of other

informed investors. The distribution of the trading volume thus depends only on n, m,

and σu and is, unlike the distribution of prices and returns, independent of σv and σε.

Given that all components of (13) follow (correlated) Normal distributions, we can find

the first two moments of total trading volume from integration. We find that both the

mean and the standard deviation of volume are linear in σu. In particular we have:

Proposition 2

Consider a market where n uninformed liquidity seeking traders submit Normally distributed mar-

ket orders with mean zero and variance σ2
u; m informed liquidity seeking traders, who receive noisy

signals on the asset’s liquidation value, submit Normally distributed market orders with mean zero

and variance β2 (σ2
v + σ2

ε); and the net order flow is absorbed by competitive liquidity suppliers. In

equilibrium:

i. The expected value of trading volume is given by:

E[V ] =
σu√
2π

(n+
√
nm+

√
n(m+ 1)). (15)

ii. The variance of trading volume is given by:

V ar(V ) = 2nσ2
u

∫∞
0
x2(mΦ(

√
mx) + Φ(

x√
mn+ n− 1

))φ(x)dx

+σ2
u

n
√
m(1− (m+ 1)

3
2 ) + (mn+ n− 1)

3
2 − (mn+ n)

3
2 − n(m+ 1)2

π(m+ 1)
,

(16)

where φ(·) and Φ(·) denote the probability density function and cumulative density function
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of the Standard Normal distribution.

iii. The coefficient of variation of trading volume is a function of n and m only. For a given

number of uninformed traders n, the volume coefficient of variation increases in the number

of informed traders m. For a given m, the volume coefficient of variation decreases in n.

Proof: See Appendix A.

Panel A of Figure 1 graphically depicts the relationship between the equilibrium VCV and

the number of uninformed and informed traders. For the case where n = m = 1 the VCV is

equal to
√

3π−4
√
2

2+
√
2

. There is no closed form solution for all other finite (n,m) combinations.

The figure shows that for a given n, the equilibrium VCV is a concave increasing function

of the number of informed investors. As m goes to infinity, VCV approaches 1
2

√
2π − 4 ≈

0.756, which is the coefficient of variation of the Half-Normal distribution and the VCV

implied by our earlier model (Proposition 1) with η = 1. Additionally, for a given number

of informed traders m, VCV is decreasing in the number of uninformed traders n. When

n is very large relative to m, VCV approaches zero, as in Proposition 1 with η = 0. Panel

A also shows that VCV decreases in n
m

along any diagonal with constant (n+m).

Panel B of Figure 1 shows how the price elasticity of net order flow (Kyle’s λ) varies

with n and m. It is interesting to see that λ shows a very different pattern than VCV.

Kyle’s λ is not a strictly increasing function of the proportion of informed traders (for a

given number of traders): moving along diagonals with constant n + m, we see that λ is

a non-monotonic convex function of n
m

. The intuition for this pattern is that an increase

in the number of informed traders increases the total informed orderflow (and price in-

formativeness), thereby lowering the price elasticity. As the number of informed traders

increases further, they become less aggressive (i.e. β declines), reducing λ.

The model outlined in this subsection is one specific example of how the proportion

of informed trade η is endogenously determined in equilibrium and is a function of the

numbers of uninformed and informed traders only. We know also see that how the as-
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Figure 1: Equilibrium VCV (Panel A) and Kyle’s λ (Panel B) as a function of n uninformed and m informed

traders. Kyle’s λ (Eq. 12) is divided by
√

σ2
v+σ

2
ε

σ2
u

to make it invariant to σε, σv , and σu.

sumption of equal trading intensity for all traders was for convenience only, and that we

can define η and M as:

η =
σxm

σxm+ σun
; M = n+

σx
σu
m. (17)

That is, M is a measure of total trading activity, in which the number of individual traders

are weighted by their trading intensities, while eta is the proportion of informed trade,

rather than the proportion of informed traders.

If informed traders are risk neutral and receive signals with i.i.d. noise terms, we find

from Eq.(14) that η =
√
nm√

nm+n
and M = n +

√
nm. Further enriching the model with risk

aversion, or long lived information will change the above expressions for the equilibrium

η and M , but will not change Proposition 1, as there will always be a proportion of in-

formed trade, and an equivalent number of market participants.

3 Simulations

In this section, we analyze the distribution of trading volume generated by our model, for

different values of η (proportion of informed trade) and M (equivalent number of liquid-

ity seekers). To do this, we draw 1 + (1 − η)M random observations from the Standard
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Figure 2: Histogram of T=1,000 volume realizations simulated from the model outlined in Section 2, for
various values of the proportion of informed trading η. The number of liquidity seekers (M ) is 1,000 and
the trading intensity (σ) is fixed at unity.

Normal distribution to simulate the individual demands (i.e. we assume σ = 1). The first

observation is multiplied by ηM , and represents the aggregate informed demand. The

remaining observations represent the individual uninformed demands. We compute the

observed trading value volume V from Eq.(1). For each (M , η) pair, we generate a sample

of T volume (V ) observations, from which we compute the coefficient of variation VCV.

Figure 2 displays four histograms of simulated volumes with M = 1, 000 liquidity

seekers, for different values of η. The sample size is T = 1, 000 trading sessions. The

simulation confirms the analysis in the previous section: In case of no informed traders

(η = 0), the volume distribution follows a slightly skewed bell-curve, while in the presence

of informed traders volume is higher in level and far more dispersed. The simulated VCVs

for the four panels are 0.03, 0.14, 0.48 and 0.77, respectively.7

7The slightly skewed bell-curved volume distribution for η = 0 converges (asM →∞) to the distribution
of the maximum of two Normally distributed random variables, which was first described by Clark (1961).
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Figure 3: Average VCV obtained fromR = 1, 000, 000 replications of T = 100 volume realizations simulated
from the model outlined in Section 2, for various values of the proportion of informed trading η and number
of liquidity seekers M.

Figure 3 reports the average VCV from R = 1, 000, 000 repetitions of simulating a sam-

ple of T = 100 trading sessions withM traders, for different values of η andM . As we see,

the average VCV only deviates substantially from its theoretical value (Eq.6) when both

M and η are low. Nevertheless, even for small M , the average VCV is strictly increasing

in η. The insensitivity to M is encouraging as it implies that there is little concern for con-

founding a high η with a lowM . The insensitivity toM is also desirable from an empirical

perspective, because the number of traders (M ) in markets is typically unknown.

In Table 1, Panel A, we report the average VCV as plotted in Figure 3 for selected

values of η, as well as the standard deviations to evaluate VCV’s precision. In addition

to VCV, we also report these statistics on simulated values of η̂ (Eq.8). Both VCV and η̂

increase monotonically in the true proportion of informed trade (η). This is even the case

for markets with low trading activity M . Also, the estimator η̂ in our simulations traces

the true value of η closely, in particular when eitherM or η are not too low. Panel B of Table

1 reports simulation results for smaller simulated samples, of T = 10 trading sessions. We

still find the average VCV and η̂ to increase monotonically in η, although VCV, and more
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Table 1: Simulation results - Benchmark model

This table reports the average and standard deviation of VCV (left) and η̂ (right) obtained from R =
1, 000, 000 replicated samples of T volume realizations, simulated from the model outlined in Section 2,
for various values of the proportion of informed trade η and number of liquidity seekers M . In Panel A,
the number of volume observations in each replication is T = 100. In panel B, T = 10. Detailed simulation
results are reported in Internet Appendix Tables A.1-2.

Panel A: T = 100

η 0 0.2 0.5 0.8 1 0 0.2 0.5 0.8 1

V CV η̂
M = 10 M = 10

Avg 0.29 0.32 0.5 0.67 0.75 0.24 0.27 0.50 0.80 1.01
s.d. 0.02 0.02 0.04 0.05 0.06 0.02 0.03 0.05 0.10 0.15

M = 100 M = 100
Avg 0.10 0.25 0.50 0.67 0.75 0.07 0.20 0.50 0.80 1.01
s.d. 0.01 0.02 0.03 0.05 0.06 0.01 0.02 0.05 0.10 0.15

M = 1000 M = 1000
Avg 0.03 0.25 0.50 0.67 0.75 0.02 0.20 0.50 0.80 1.01
s.d. 0.00 0.02 0.03 0.05 0.06 0.00 0.02 0.05 0.10 0.15

Panel B: T = 10

η 0 0.2 0.5 0.8 1 0 0.2 0.5 0.8 1

V CV η̂
M = 10 M = 10

Avg 0.28 0.31 0.48 0.65 0.74 0.23 0.26 0.49 0.81 1.27
s.d. 0.07 0.07 0.11 0.15 0.17 0.07 0.08 0.18 4.12 50.5

M = 100 M = 100
Avg 0.10 0.24 0.48 0.65 0.74 0.07 0.19 0.49 0.83 1.11
s.d. 0.02 0.06 0.11 0.15 0.17 0.02 0.06 0.17 0.46 3.05

M = 1000 M = 1000
Avg 0.03 0.24 0.48 0.65 0.74 0.02 0.19 0.49 0.78 1.16
s.d. 0.01 0.06 0.11 0.15 0.17 0.01 0.06 0.17 14.28 24.67

so η̂, are less precisely estimated.

Next, we investigate the robustness of VCV as a measure of asymmetric information

by simulating trading volumes from various modified versions of our benchmark model.

First, we repeat our simulation while relaxing the assumption of Normally distributed

demand and allow for leptokurtic and skewed demand distributions, to generate jumps

in trading volume that are unrelated to informed trading. In Table 2, Panel A, we re-
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port the average VCV and η̂ from R simulations in which liquidity demand follows a

leptokurtic t-distribution with 4 degrees of freedom, or a Skew-Normal distribution with

shape parameter 10 (indicating positive skewness), for selected values of η, while keeping

M = 1, 000 and T = 100 fixed. We find that relaxing the assumption of Normality does not

change the main result of our analysis: VCV and η̂ are still strictly increasing in η. How-

ever, the standard deviations are clearly smaller for VCV than for η̂. More importantly, the

average η̂ is no longer closely following the true value of η, implying that, in the case of

non-Gaussian demand, η̂ should not be interpreted as a direct estimator of the true value

of η. We obtain qualitatively similar results when simulating demand from a Uniform

distribution, or from t- and Skew-normal distributions with different degrees-of-freedom

and shape parameters.

In practice, the proportion of informed trade η is not necessarily constant across obser-

vations, and we are typically interested in measuring the average proportion of informed

trade, over either a time series or a cross section of observations. To gauge the precision

of our measures in this context, we repeat the simulation analysis while allowing the pro-

portion of informed trade η to be random across observations. This version of our model

can be interpreted as a hybrid of our Kyle (1985)-type model in Section 2 and the PIN

model by Easley et al. (1996), in which arrival of information is random, similar to the

model by Back et al. (2018). Panel B of Table 2 reports simulation results for the case

where the number of uninformed liquidity seekers is fixed at 1,000, while the number of

informed liquidity seekers is in each of the T = 100 trading sessions randomly drawn

from a Bernoulli distribution. The number of active informed traders in each trading ses-

sion is equal to X with probability 1
5

and zero with probability 4
5
, such that the informed

traders participate in only one out of five trading sessions on average. To create variation

in the average proportion of informed trade, we adjust the potential number of informed

traders X . In this setting, η̂ clearly does not perform well as a measure of informed trad-

ing. The simulated observations of η̂ are widely dispersed, while their averages are not
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Table 2: Simulation results - Robustness

This table reports the average and standard deviation of VCV (left) and η̂ (right) obtained from R =
1, 000, 000 replicated samples of T = 100 volume realizations, simulated from various generalizations of
the model outlined in Section 2, with M = 1000 liquidity seekers, for various values of the proportion of
informed trading η. In Panel A, demand is t-distributed with 4 degrees of freedom (t4), or Skew-Normally
distributed with shape parameter 10, indicating positive skew (SN(0, 1, 10)). In Panel B, the number of
uninformed liquidity seekers is kept constant at 1, 000, while the number of informed liquidity seekers is
varying randomly across observations and follows a Bernoulli distribution such that the number of active
informed traders in each trading session is with probability 4

5 equal to zero and with probability 1
5 equal

to X . The table reports the average VCV and η̂ for different values of X , which determines the average
proportion of informed trade E[η].

Panel A: Non-Gaussian demand distributions

η 0 0.2 0.5 0.8 1 0 0.2 0.5 0.8 1

V CV η̂
t-distribution t-distribution

Avg 0.04 0.32 0.64 0.86 0.97 0.03 0.28 0.78 1.23 1.60
s.d. 0.00 0.07 0.12 0.15 0.16 0.00 0.29 7.57 81.28 48.82

Skew-Normal distribution Skew-Normal distribution
Avg 0.02 0.15 0.38 0.61 0.75 0.02 0.11 0.34 0.67 1.01
s.d. 0.00 0.01 0.03 0.04 0.06 0.00 0.01 0.03 0.08 0.15

Panel B: Random proportion of informed trade [Informed investors ∼ B(1/5, X)]

X 0 1250 5000 20000 125000 0 1250 5000 20000 125000
E[η] 0 0.2 0.5 0.8 0.96 0 0.2 0.5 0.8 0.96

V CV η̂

Avg 0.03 0.83 1.70 2.32 2.59 0.02 1.28 -13.8 -3.09 -2.56
s.d. 0.00 0.10 0.15 0.26 0.34 0.00 0.35 3861.71 0.80 0.55

monotonically increasing in E[η], and are not bounded by 0 and 1. This poor performance

of η̂ occurs because the denominator in Eq.(8) can easily take on small or negative num-

bers, which makes the estimator highly erratic. VCV, on the other hand, continues to be

monotonically increasing in E[η] while its standard deviations remain fairly low. These

results are robust to various alternative distributions for the number of active informed

investors.

Overall, the simulation results in this section demonstrate the robustness of VCV as

a measure of asymmetric information. The basic result that the coefficient of variation

of trading volume is monotonically increasing in the proportion of informed trade holds
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under general conditions and in small samples. Additional simulation results are pre-

sented in Internet Appendix A. These simulations are based on further variations of the

basic model including random variation in the number of market participants and their

trading intensities across observations, heterogeneity among the informed investors, and

endogenous informed demand. These supplementary results provide further evidence

for the robustness of VCV. In the remainder of this paper, we therefore focus on VCV as

our measure of informed trade, and investigate its properties using real empirical data.

4 The Cross-Section of VCV

After having established from theoretical and numerical analysis a positive monotonic

relation between VCV and the proportion of informed trade, we now turn to the data to

analyze the empirical properties of VCV. In this section, we describe cross-sectional vari-

ation in VCV for US stocks, while we study the time-series behavior in the next section.

We compute annual Volume Coefficients of Variation (VCV) for US stocks and compare

these figures with other firm-level characteristics, including indicators of informed trade

and illiquidity. We obtain daily trading volumes from the CRSP daily stock file for all

common stocks listed on NYSE, AMEX and NASDAQ over the period 1980-2016. We dis-

regard the most infrequently traded stocks by only including firm-year observations for

stocks with positive trading volume in at least 200 days during that year.8

Annual firm-level observations of VCV are computed by dividing the annual standard

deviation of daily trading volumes by the annual average of daily trading volumes. The

volume coefficient of variation of stock i in year τ is defined as:

8For NASDAQ listed firms, we adjust trading volume prior to 2004 following Gao and Ritter (2004):
reported volume on NASDAQ stocks is divided by 2.0, 1.8, and 1.6 during the period prior to February 1st
2001, the period between February 1st 2001-December 31st 2001, and January 1st 2002 - December 31st 2003,
respectively. Note that this adjustment does not affect VCV, in which volume is both in the nominator and
denominator, but it does affect other measures that are based on volume, such as Amihud (2002) Illiquidity.
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V CVi,τ =
σ̂V (i,t∈τ)

µ̂V (i,t∈τ)
, (18)

where µ̂V (i,t∈τ) is the sample average and σ̂V (i,t∈τ) is the sample standard deviation of all

daily trading volumes of stock i, Vi,t, in year τ . We compute VCV using three different

measures of trading volume: trading volume in US dollars:

VUSD,i,t = shares tradedi,t × closing pricei,t, (19)

volume market shares, defined as daily volume in a single stock as a fraction of total market

volume on the same day, to control for market-wide variation in trading-activity that is un-

related to firm-specific information, such as macro-level sentiment and liquidity shocks:

V%,i,t =
VUSD,i,t∑
i VUSD,i,t

, (20)

and daily turnover, to control for differences in market capitalization:

VTO,i,t =
shares tradedi,t

shares outstandingi,t
. (21)

Table 3 reports summary statistics for these three measures of VCV. The sample averages,

as well as other statistics, are highly similar for the three distinct VCV measures. The bot-

tom rows of Table 3 show that the three different measures of VCV are highly correlated.

The strong similarity between the three VCV measures offers support for the theoretical

analysis of Section 2: although trading intensity (σ) and participation (M ) are determi-

nants of the level and variance of volume, VCV is independent of both σ and M (Eq.(6)).

Market-wide variation in the number of market participants and their trading intensity

should therefore have little impact, so that VCV derived from dollar volume, volume

market shares, or turnover, are virtually equivalent. The results in Table 3 support this

premise. In the remainder of this section, our measure of informed trading VCV is de-
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Table 3: VCV Summary Statistics

This table reports summary statistics of annual firm-level observations of the Volume Coefficient of Varia-
tion (VCV) of daily dollar trading volume in US dollars (VCVUSD), daily volume market shares (daily dollar
volume as a percentage of total market dollar volume – VCV%), and turnover (dollar volume as a fraction
of market capitalization – VCVTO). The table reports the total number of observations, the number of dis-
tinct stocks in the sample (N ), the number of time-series observations/years (T ), mean, standard deviation,
s.d. (CS), the time-series average of annual cross-sectional standard deviations, s.d. (TS), the cross-sectional
average of stock-specific time-series standard deviations, selected quantiles (q), and the cross-sectional av-
erage of stock-specific first-order autocorrelations (ρ). The bottom two rows report the time-series averages
of within-year rank (Spearman) correlations between the different VCV measures. Sample: 1980-2016.

VCVUSD VCV% VCVTO

Observations 137, 522 137, 522 137, 522
N 15, 918 15, 918 15, 918
T 37 37 37
Mean 1.362 1.343 1.310
s.d. 0.798 0.811 0.748
s.d. (CS) 0.762 0.773 0.720
s.d. (TS) 0.536 0.540 0.506
q0.1 0.594 0.556 0.586
q0.25 0.840 0.814 0.817
Median 1.215 1.200 1.164
q0.75 1.650 1.641 1.583
q0.9 2.224 2.213 2.146
ρ 0.172 0.178 0.189
Correlations
VCV% 0.983
VCVTO 0.970 0.959

fined as the annual coefficient of variation of daily volume market shares (VCV%), which

controls for market-wide variation in volume that is unrelated to firm-specific informa-

tion. Highly similar results are obtained when using any of the other volume definitions.

In the Internet Appendix Table B.1, we report the VCV summary statistics for subsamples

of stocks listed on NASDAQ and stocks listed on NYSE/AMEX, and for subsamples of

observations prior to 2000 (1980-1999) and post 2000 (2000-2016), showing that the three

measures of VCV behave fairly similar across these subsamples.
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Table 4: VCV and other firm characteristics

This table reports the correlations between annual firm-level observations of VCV (obtained from daily vol-
ume market shares) and other annual firm-level characteristics. Each entry reports the time-series average
of within-year rank (Spearman) correlations. Size is the log of market capitalization at the last trading day
of June. BM ratio is the ratio of the book value to the market value of equity. Age is the number of years since
the firm’s first appearance in CRSP. Volatility is the annual standard deviation of daily returns. Turnover is
the annual average of daily trading volume as a percentage of market capitalization. Illiquidity is the log of
the annual average of the daily ratio |Ri,t|

VUSD,i,t
(Amihud, 2002). Bid-Ask spread is the annual average of daily

bid-ask spreads aski,t−bidi,t
pricei,t

. Roll’s measure is the square root of the negative of the daily return autocovari-

ance
√
−Cov (Ri,t, Ri,t−1). Coverage refers to the number of distinct analysts covering a stock in a given year

Sample: 1980-2016. Source: CRSP, COMPUSTAT, and IBES.

VCV Size BM Age Vol. Turn. Illiq B-A Roll

Size −0.64
BM ratio 0.17 −0.22
Age −0.29 0.34 0.11
Volatility 0.38 −0.61 −0.04 −0.40
Turnover −0.31 0.33 −0.21 −0.02 0.16
Illiquidity 0.68 −0.94 0.22 −0.33 0.55 −0.52
Bid-Ask spread 0.62 −0.87 0.25 −0.24 0.61 −0.42 0.91
Roll’s measure 0.25 −0.36 0.19 −0.05 0.24 −0.30 0.41 0.52
Coverage −0.58 0.79 −0.25 0.19 −0.32 0.47 −0.81 −0.71 −0.29

4.1 VCV and other firm characteristics

Table 4 reports the correlations between VCV and other firm-level characteristics: size,

book-to-market ratio, firm age, return volatility, turnover, Amihud (2002) illiquidity, bid-

ask spread, Roll’s (1984) estimate of the bid-ask spread, and analyst coverage. Size is

defined as the log of market capitalization on the last trading day of June. Return volatility

is the annual standard deviation of daily returns. Amihud (2002) illiquidity is defined as

the the log of the annual average of the daily ratio |Ri,t|
VUSD,i,t

. The bid-ask spread is the annual

average of daily closing bid-ask spreads as a percentage of the closing price aski,t−bidi,t
pricei,t

.

Roll’s (1984) measure is the square root of the negative of the daily return autocovariance√
−Cov (Ri,t, Ri,t−1).9 The book-to-market ratio is the ratio of the book value of equity

9In the case of positive return autocorrelations, we set Roll’s measure equal to −
√
Cov (Ri,t, Ri,t−1),

following Roll (1984). We obtain qualitatively similar results when we either set these observations of Roll’s
measure to zero, or omit them from our sample.

24



at the fiscal year end, obtained from COMPUSTAT, to the market value of equity at the

end of the same calendar year. Firm age is proxied by the number of years passed since

the firm appeared for the first time in the CRSP database. Analyst coverage is defined as

the number of distinct analysts covering a stock in a given year (Source: IBES). Summary

statistics of these variables and subsample analyses are provided in Internet Appendix

Tables B.2 and B.3.

As can be seen from Table 4, VCV is negatively correlated to size and turnover and pos-

itively correlated to return volatility, Amihud illiquidity and the bid-ask spread. These re-

sults are consistent with our proposition that VCV is a measure of informed trading, since

information asymmetry is likely to be stronger in smaller stocks and asymmetric infor-

mation reduces liquidity. The negative correlation with firm age suggest that information

asymmetry is lower for more mature firms. Analyst coverage is likely to reduce informa-

tion asymmetry, which is consistent with the negative correlation with VCV. In Section 5,

we study the impact of exogenous reductions in analyst coverage due to brokerage clo-

sures and find that reductions in analyst coverage are associated with an increase in VCV.

4.2 Return reversals

The correlation between VCV and the bid-ask spread reported in Table 4, is clearly higher

than the correlation between VCV and Roll’s (1984) estimate of the bid-ask spread. This

result is expected, as it is well known from Huang and Stoll (1997) and others, that Roll’s

measure underestimates the bid-ask spread in the presence of information asymmetries,

since price changes due to informed trading are less likely to be reversed by the bid-

ask bounce, and are characterized by less negative autocorrelations. To further evaluate

the relationship between VCV and the bid-ask spread, we double-sort stocks within each

year into quartiles based on the bid-ask spread and on Roll’s measure. Table 5 shows the

average VCV for each of these sixteen groups of firms. We find that VCV is monotonically

increasing in the bid-ask spread but not in Roll’s measure, which is consistent with the
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Table 5: VCV and the Bid-Ask spread

This table reports the sample average VCV for 16 groups of stocks double-sorted within each year on the Bid-
Ask spread (the annual average of daily bid-ask spreads aski,t−bidi,t

pricei,t
) and Roll’s (1984) measure (the square

root of the negative of the daily return autocovariance
√
−Cov (Ri,t, Ri,t−1)). The final row and column

report the difference in average VCV between high and low quartiles, with significant differences at the
10%, 5%, and 1% level indicated by ∗, ∗∗, and ∗∗∗. Source: CRSP.

Roll: Low 2 3 High High-Low

Bid-Ask: Low 0.949 0.803 0.748 0.949 −0.001
2 1.157 1.114 1.114 1.018 −0.139∗∗
3 1.384 1.350 1.488 1.404 0.020
High 1.949 1.717 1.822 2.015 0.067∗

High-Low 0.999∗∗∗ 0.914∗∗∗ 1.074∗∗∗ 1.067∗∗∗ 0.067

downward bias of Roll’s measure in the presence of information asymmetry. Stocks with

high information asymmetry are expected to have a relatively high bid-ask spread but a

relatively low value of Roll’s measure. We see from Table 5 that these stocks are precisely

the stocks with a high VCV.

To further study the relation between VCV and return autocorrelation, we consider

weekly return reversals. It is well known that returns on individual stocks, in particular

illiquid stocks, exhibit significant short-term reversals (e.g. Jegadeesh, 1990). We compute

weekly return autocorrelations for each firm within each year in our sample. We then

double-sort stocks within each year into quartiles based on Amihud’s (2002) Illiquidity

and VCV. In Table 6, we report the average weekly return autocorrelation, for each of these

16 groups. Across all 16 groups, we find return reversals (i.e. negative autocorrelation).

These reversals are stronger for the more illiquid stocks. However, within each liquidity

quartile, we find that reversals are decreasing in VCV. The final column of Table 6 shows

that return autocorrelation is lower for High VCV stocks than for Low VCV stocks. This

result implies, similar to Table 5, that short-term reversals are in general more profound

for illiquid stocks, but that these reversals are weaker when the illiquidity is associated

with information asymmetry.
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Table 6: VCV and weekly reversals

This table reports the sample average of weekly return autocorrelations for 16 groups of stocks double-
sorted within each year on Amihud (2002) Illiquidity and VCV. The final row and column report the differ-
ence in average weekly return autocorrelations between high and low quartiles, with significant differences
at the 10%, 5%, and 1% level indicated by ∗, ∗∗, and ∗∗∗. Source: CRSP.

Illiq: Low 2 3 High High-Low

VCV: Low −0.058 −0.065 −0.087 −0.102 −0.044∗∗∗
2 −0.047 −0.046 −0.065 −0.094 −0.046∗∗∗
3 −0.039 −0.039 −0.049 −0.084 −0.045∗∗∗
High −0.040 −0.028 −0.040 −0.081 −0.041∗∗∗

High-Low 0.018∗∗ 0.037∗∗∗ 0.047∗∗∗ 0.021∗ 0.003

The results reported in this section are qualitatively similar across exchanges and in

different time periods. Subsample analyses are reported in Internet Appendix Tables B.4

and B.5. These results are also consistent with existing research: Llorente et al. (2002),

Hameed et al. (2008), Bongaerts et al. (2016), and Johnson and So (2018) use various mea-

sures to show that asymmetric information is associated with weaker short-term reversals.

In the next subsection, we have a closer look at the empirical relation between VCV and

existing measures of asymmetric information.

4.3 VCV and other measures of asymmetric information

In this subsection, we compare VCV with various incumbent measures of asymmetric

information. These measures include the probability of informed trade (PIN; Easley et

al., 1996), C2 (Llorente et al., 2002), and the Multimarket Information Asymmetry mea-

sure (MIA; Johnson and So, 2018). PIN is estimated by fitting a structural microstructure

model to signed transaction data. C2 measures the relation between daily volume and

return persistence, based on the premise that price changes due to informed trading are

predictive of future price changes. MIA is based on relative trading volume in options and

stocks, based on the assumption that informed traders are more likely to trade in options.

For our analysis, we make use of the various PIN and MIA measures that are kindly
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Table 7: VCV and other information asymmetry measures

This table reports the correlation between the annual firm-level coefficients of variation of daily volume
market shares (VCV) and various annual firm-level information asymmetry measures. Each entry reports
the time-series average of within-year rank (Spearman) correlations. PINBHL is estimated by Brown, Hil-
legeist and Lo (2004). PINBH is estimated by Brown and Hillegeist (2007). PINEHO is estimated by Easley,
Hvidkjaer, and O’Hara (2010). PINDY , Adjusted PIN, and the illiquidity measure PSOS are estimated by
Duarte and Young (2009). MIA is the annual average of firm-day level observations estimated by Johnson
and So (2017). C2 is estimated following Llorente et al. (2002). Sources: CRSP and cited authors’ websites.

VCV PINBHL PINBH PINEHO PINDY Adj.PIN PSOS MIA

PINBHL 0.53
PINBH 0.60 0.74
PINEHO 0.53 0.62 0.68
PINDY 0.57 0.65 0.69 0.86
Adjusted PIN 0.52 0.58 0.71 0.64 0.72
PSOS 0.46 0.45 0.44 0.62 0.71 0.39
MIA 0.26 0.37 0.44 0.12 0.24 0.32 0.05
C2 0.10 0.12 0.11 0.03 0.03 0.04 0.04 0.02

made publicly available by the authors of previous studies. These measures include MIA

estimated by Johnson and So (2018) and PIN measures estimated by Easley et al. (2010

– PINEHO); Brown, Hillegeist and Lo (2004 – PINBHL); Brown and Hillegeist (2007 –

PINBH); and Duarte and Young (2006 – PINDY ).10 We compute annual firm-level obser-

vations of MIA as the annual average of the available daily observations for each firm. We

derive annual stock-level observations of C2 as the estimated slope coefficient from run-

ning regressions, for each firm in each year, of daily returns on the interaction of lagged

returns and lagged (detrended) turnover, while controlling for daily lagged returns (see

Llorente et al., 2002, for details).

Table 7 shows the correlations between VCV and various annual firm-level informa-

tion asymmetry measures. Our VCV measure is positively correlated to all PIN measures.

10Annual firm-level observations of PINDY , PINEHO, PINBH and PINBHL are made available
by Jefferson Duarte (http://www.owlnet.rice.edu/~jd10/), Søren Hvidkjær (https://sites.
google.com/site/hvidkjaer/data) and Stephen Brown (http://scholar.rhsmith.umd.edu/
sbrown/pin-data), respectively. Daily firm-level observations of MIA are made available by Travis
Johnson (http://travislakejohnson.com/data.html). Summary statistics of the measures em-
ployed in this section, as well as subsample analyses, are provided in Internet Appendix Tables B.6-B.8.
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Table 8: VCV and Adjusted PIN

This table shows the results from regressing annual firm-level coefficients of variation of daily volume mar-
ket shares (VCV) on the measures by Duarte and Young (2009): PINDY , Adjusted PIN, and PSOS (probabil-
ity of symmetric order-flow shock). All regressions include fixed effects for each year, industry, size decile,
book-to-market decile and Illiquidity decile. Two-way clustered standard errors, clustered at the year and
industry level, are in parentheses. ∗, ∗∗ and ∗∗∗ indicate statistical significance at the 10%, 5%, and 1% level.
Source: CRSP and the website of Jefferson Duarte (http://www.owlnet.rice.edu/~jd10/)

VCV

(1) (2) (3) (4)

PINDY 0.448∗∗∗ 0.961∗∗∗ 0.506∗∗∗

(0.125) (0.164) (0.112)

Adjusted PIN 0.957∗∗∗ 1.186∗∗∗ 0.924∗∗∗

(0.158) (0.181) (0.162)

PSOS 0.049 0.188∗∗∗ −0.129∗∗
(0.055) (0.052) (0.059)

Observations 37,986 37,986 37,986 37,986
Adjusted R2 0.357 0.356 0.353 0.357
Fixed effects Yes Yes Yes Yes

The correlation between VCV and PIN is of similar magnitude as the correlations between

the various PIN measures. Compared to these PIN measures, however, our VCV measure

is far easier to compute and does not require intraday data on the order process. The cor-

relations between VCV and the MIA and C2 measures are substantially lower, although

still positive.

Duarte and Young (2009) argue that PIN does not only measure informed trading,

but also other illiquidity effects. They therefore decompose PIN into Adjusted PIN, which

is proposed as a cleaner measure of asymmetric information; and PSOS (probability of

symmetric order-flow shock), which is a measure of illiquidity unrelated to asymmetric

information. These additional variables are included in Table 7. Both Adjusted PIN and

PSOS are positively correlated with VCV.

In Table 8, we examine the correlation between VCV and the three measures by Duarte

and Young (2009) in a regression context. To control for time variation and firm character-
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istics unrelated to asymmetric information, we include year fixed effects, 48 Fama-French

industry fixed effects, and decile fixed effects for size, book-to-market and Amihud illiq-

uidity deciles.11 The regression results indicate that VCV is mostly associated with ad-

justed PIN, while there is no robust relation between VCV and PSOS, thereby supporting

our claim that VCV, like adjusted PIN, is indicative of asymmetric information rather than

general illiquidity.

4.4 VCV and institutional ownership

In this subsection, we study the relationship between VCV and various indicators of in-

stitutional ownership that we obtain from 13F filings recorded in the Spectrum database.

Table 9 reports the results from regressing VCV on various institutional ownership char-

acteristics. These characteristics include institutional holdings (defined as the percentage

of shares of a firm held by institutional investors at the end of the year) and breadth of

ownership (defined as the number of institutional investors holding shares in the firm, as

a percentage of the total number of institutional investors reported in the Spectrum 13F

database at the end of each year – Chen et al., 2002). Boone and White (2015) find that in-

stitutional ownership leads to an improvement in disclosure practices and therefore lower

information asymmetry. The first column of Table 9 shows indeed that VCV has a signif-

icantly negative association with breadth of ownership. VCV is lower (implying lower

information asymmetry) for firms that have high breadth of ownership.

In addition, we consider two measures that identify groups of presumably well-informed

investors: monitoring investors and dedicated investors. Following Fich et al. (2015), we

define an institutional investor to be a ’monitor’ for a certain firm if that firm belongs to

the top 10% of holdings in the institution’s portfolio. These monitoring investors are likely

to be better informed about the firm than non-monitoring investors. Dedicated investors

11Rather than including size, book-to-market and illiquidity as control variables, we control for these
characteristics using decile fixed effects, in order to accommodate nonlinearities and outliers.
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Table 9: VCV and institutional ownership

This table reports the results from regressing annual firm-level coefficients of variation of daily volume
market shares (VCV) on various measures of institutional ownership. Holdings is the percentage of shares
of the firm held by institutional investors at the end of the year; Breadth is the percentage of all institutional
investors that hold shares of the firm (Chen et al., 2002); Monitors is the fraction of institutional investors in
each firm for which the firm is in the top 10% of the institution’s holdings (Fich et al., 2015); and Dedicated is
the fraction of institutional investors in each firm that are classified as ’Dedicated’ investors by Bushee and
Noe (2000). All regressions include fixed effects for each year, industry, size decile, book-to-market decile
and illiquidity decile. Two-way clustered standard errors, clustered at the year and industry level, are in
parentheses. ∗, ∗∗ and ∗∗∗ indicate statistical significance at the 10%, 5%, and 1% level. Sources: CRSP, 13F
and the website of Brian Bushee http://acct.wharton.upenn.edu/faculty/bushee/

VCV

(1) (2) (3) (4)

Holdings −0.0003 −0.0004 −0.0003 −0.0004
(0.0005) (0.0005) (0.0004) (0.0005)

Breadth −1.125∗∗∗ −1.732∗∗∗ −1.102∗∗∗ −1.677∗∗∗
(0.070) (0.115) (0.072) (0.113)

Monitors 1.011∗∗∗ 0.973∗∗∗

(0.155) (0.155)

Dedicated 0.311∗∗∗ 0.308∗∗∗

(0.082) (0.079)

Observations 83,339 83,339 77,225 77,225
Adjusted R2 0.408 0.409 0.406 0.407
Fixed effects Yes Yes Yes Yes

are those institutional investors that Bushee and Noe (2000) and Bushee (2001) classify as

’dedicated’. They are characterized by large, stable holdings in a small number of firms,

as opposed to ’quasi-indexing’ investors and ’transient’ investors.12

The variable Monitors in Table 9 is the percentage of institutional investors in each firm

that are defined as monitoring investors. The variable Dedicated in Table 9 is the percentage

of institutional investors in each firm that are classified as dedicated investors. Columns

2–4 of Table 9 show that these variables are both significantly positively associated with

12Classification into these three groups is based on a factor and cluster analysis approach (see Bushee,
2001, for details). The classification of institutional investors in the 13F Spectrum database is made available
on the website of Brian Bushee http://acct.wharton.upenn.edu/faculty/bushee/.
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VCV, consistent with our proposition that VCV measures informed trade.

The relationship between patterns in institutional ownership and VCV reported in Ta-

ble 9 reaffirms that VCV is a measure of asymmetric information. Suppose that a firm is

held by only a small number of institutional investors, who each assign a relatively large

fraction of their portfolio to this firm’s stock (i.e. Breadth is low, while Monitors and Dedi-

cated are high). Ownership of such a firm is therefore relatively concentrated in the hands

of a small number of presumably well informed investors. When trading this firm, infor-

mation asymmetry should be a significant concern, as it is likely that the counter party is

one of these better informed investors. On the other hand, for a firm that is widely held

among institutional investors, each of which holding only a relatively small share of the

firm (i.e.: Breadth is high, while Monitors and Dedicated are low), the risk of asymmetric

information should be lower, which is in accordance with the results reported in Table

9. Summary statistics of the measures employed in this section, as well as subsample

analyses, are provided in Internet Appendix Tables B.9-B.10.

5 VCV around information events

After having analyzed cross-sectional variation in VCV, we now study the behavior of

VCV over time. The solid black line in Figure 4 shows the cross-sectional average of the

firm-level VCVs (derived from volume market shares), for each year in our sample ana-

lyzed in Section 4. The gray bars show the cross-sectional average of the firm-level mean

and standard deviation of volume market shares. The declining trend of VCV post-2000

suggests that asymmetric information has reduced over this period, which is consistent

with recent studies (e.g. Duarte at al., 2008; Lambert et al., 2012; Horton et al., 2013) that

document improved market transparency as the result of regulatory changes, such as the

enactment by the SEC in 2000 of Regulation Fair Disclosure (Reg FD) and the adoption of

International Financial Reporting Standards (IFRS). In Internet Appendix Figure B1, we
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Figure 4: The black line shows the annual cross-sectional average of annual firm-level VCVs, calculated
from volume market shares (Eq.(20)) over the period 1980-2016. The bars show the annual cross-sectional
average of annual firm-level means and standard deviations of volume market shares.

reproduce this graph for firm-level VCVs computed from dollar volume and turnover,

showing once again that VCV is highly similar for the three volume measures.13

In the remainder of this section, we study the behavior of VCV around information

events. First, we exploit a natural experiment to identify exogenous changes in informa-

tion asymmetry: brokerage closures. Various recent studies (e.g. Kelly and Ljungqvist,

2012; Derrien and Kecskes, 2013) consider terminations of analyst coverage due to bro-

kerage closures as exogenous shocks to the information environment of individual stocks.

Consistent with the hypothesis that information asymmetry increases following such re-

ductions in analyst coverage, we document an increase in VCV. Next, we analyze VCV

around quarterly earnings announcements and find that VCV is relatively high shortly

before, and significantly lower after announcements.

5.1 VCV around brokerage closures

Kelly and Ljungqvist (2012) find that information asymmetry increases following termi-

nations in analyst coverage that are caused by exogenous closures or acquisitions of bro-

13The level shift in the means and standard deviation of volume shares after 1982 occurs because of the
inclusion of NASDAQ shares.
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kerage firms. For the 22 brokerage closures between April 2000 and January 2008 listed

in Appendix A of Kelly and Ljungqvist (2012), we identify in the IBES database a treat-

ment sample of a total of 1,764 observations of firms that experience reductions in analyst

coverage due to one of these closures.

We perform a simple difference-in-differences regression, to compare the VCV of treated

firms (i.e. firms that experience closure-induced coverage terminations) to non-treated

firms (the control group), before and after the brokerage closure. For each brokerage clo-

sure, our control group includes all non-treated firms in our sample analyzed in Section

4, for which analyst coverage in the calendar year prior to the brokerage closure is strictly

positive. The VCV before closure is defined as the coefficient of variation of daily volume

market shares over a 12-month period before the closure, while the VCV after closure

is calculated over a 12-month period after the closure. Following Derrien and Kecskes

(2013), we impose three-month gaps between the event and the estimation windows, such

that the VCV before (after) closure is calculated from trading volumes over the months -14

to -3 (+3 to +14), with the brokerage closure occurring in month 0. These observations of

VCV are regressed on a dummy variable indicating observations in the treatment group, a

dummy variable indicating the observations after each brokerage closure, and an interac-

tion term of the two dummy variables.

The results of the difference-in-differences regression are reported in the first column

of Table 10. The coefficient on the interaction term After×Treated is of primary interest.

This interaction coefficient is positive and significant, meaning that the VCV of firms that

face exogenous analyst reductions as a result of brokerage closures increases relative to

the VCV of control firms that are not exposed to the brokerage closures. The coefficient

on After is negative, which reflects that VCV is on average decreasing over time, as can

be seen from Figure 4. The Treated coefficient indicates that there is a minor difference
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between the VCV of treated and control firms, prior to the event.14

The second and third column of Table 10 show that the interaction coefficient becomes

larger when we restrict the sample to firms with low analyst coverage. The intuition

behind this result is that the event of one analyst discontinuing coverage of a firm is a

greater disruption to the information environment when the firm has already low analyst

coverage to begin with. Indeed, the difference-in-differences estimate is approximately

doubled (tripled) when covering only firms with analyst coverage of less than 10 (5) in the

calendar year prior to the event. Overall, the results in Table 10 provide strong evidence

for our proposition that VCV measures information asymmetry.

5.2 VCV around earnings announcements

In this subsection we look at the VCV computed from the cross section of volume. In par-

ticular, we document the pattern of the cross-sectional VCV around earnings announce-

ments It is widely recognized that earnings announcements resolve information asymme-

tries (e.g. Chae, 2005; George et al., 1994). In this section we show that, consistent with this

view, VCV is relatively high prior to announcements and low afterwards, suggesting that

uninformed traders delay their trades until information asymmetries are resolved after

the announcement.

We obtain N = 339, 257 quarterly earnings announcement dates from COMPUSTAT,

for a total of 13, 885 distinct NYSE, AMEX, and NASDAQ listed US firms over the period

1980-2016. To evaluate the evolution of information asymmetry in event time, we intro-

duce the so-called cross-sectional VCV for each day around the announcement date. We

calculate the coefficient of variation at day d ∈ [−30, 30] around the event date, using the

N daily trading volumes of each stock on d days after the firm’s earning announcement

14In Internet Appendix Tables B.11-B12, we report results for VCV computed over a 6-month period,
and for a regression with a smaller control sample matched on firm size and analyst coverage, and find
qualitatively similar results.
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Table 10: Brokerage closures

This table reports the results from difference-in-differences regressions around brokerage closure-induced
terminations of analyst coverage. The treatment sample consist of 1,764 observations of firms that experi-
ence a reduction in analyst coverage due to a total of 22 distinct brokerage closures between April 2000 and
January 2008. The control sample consists of 31,661 observations. For all 33,425 observations, we compute
VCV over the months [−14,−3], and over the months [3, 14], with the brokerage closure occurring in month
0, resulting in a total of 66,850 observations of VCV. These VCVs are regressed on dummies indicating the
treatment group (Treated), the post-closure window (After), and their interaction. In the second (third) col-
umn, the sample is restricted to firms with analyst coverage of less than 10 (5) in the calendar year prior to
the closure. All regressions include fixed effects for each year, industry, size decile, book-to-market decile
and illiquidity decile. Two-way clustered standard errors, clustered at the year and industry level, are in
parentheses. ∗, ∗∗ and ∗∗∗ indicate statistical significance at the 10%, 5%, and 1% level.

Full sample Coverage < 10 Coverage < 5

VCV VCV VCV

After × Treated 0.035∗∗∗ 0.051∗∗ 0.113∗∗∗

(0.007) (0.020) (0.040)

After −0.081∗∗∗ −0.090∗∗∗ −0.097∗∗∗
(0.009) (0.010) (0.011)

Treated −0.024∗∗ −0.022∗ −0.045
(0.011) (0.012) (0.031)

Observations 66,850 46,952 27,760
Adjusted R2 0.401 0.395 0.434
Fixed effects Yes Yes Yes

announcement date:

V CVXS,d =
σ̂V (t=ti+d)

µ̂V (t=ti+d)

, (22)

where µ̂V (t=ti+d) is the sample average and σ̂V (t=ti+d)) is the sample standard deviation ofN

daily trading volumes on day d after the firm-specific announcement date ti. All volumes

are as before defined as volume market shares, V%i,t, i.e.: volumes as a percentage as total

trading volume on that calendar date t.

This cross-sectional VCV is computed for all days d over the interval from -30 days

before the announcement to +30 days after the announcement. The black line in Fig-

ure 5 shows the pattern of VCV over this interval, while the shaded areas indicate 95%
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Figure 5: The black line shows the evolution of the daily cross-sectional V CVXS around quarterly earnings
announcements. The full sample includes all daily trading volumes over 61 days windows (day -30:30)
around N = 339, 257 quarterly announcements (sources: CRSP and COMPUSTAT). The reported VCV at
d days after the announcement is estimated from the subsample of each stock’s trading volume market
shares at date d after each firm’s announcement. The gray shaded areas indicate 95% confidence intervals:
V CVXS,d ± 1.96× S.E.(V CVXS,d). Standard errors (S.E.) are derived following Albrecher et al. (2010).

confidence bounds, computed from the asymptotic distribution of sample coefficients of

variation as derived by Albrecher et al. (2010). Figure 4 clearly shows that VCV is higher

in the weeks prior to the announcement, which could be due to uninformed investors

delaying their trading activity when the announcement date is approaching. After infor-

mation asymmetries are resolved on the announcement date, VCV is relatively low for

multiple trading days. After 30 trading days, the cross-sectional VCV is approximately

equal to the cross-sectional VCV 30 trading days prior to the announcement. In internet

Appendix Figure B.1, we reproduce Figure 5 for various subsets of the data, showing a

qualitatively similar pattern of VCV around earnings announcements for both NASDAQ

and NYSE/AMEX stocks as well as before and after 2000.
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Table 11: Volume around earnings announcements

This table reports the cross-sectional mean µ̂d, standard deviation σ̂d (both multiplied by 10,000), and coef-
ficient of variation V CVCS,d of all firms’ daily trading volume shares on day d before and after N = 339, 257
firm-specific earnings announcement dates, as well as the difference between these moments d days before
and after the announcement. ∗, ∗∗ and ∗∗∗ indicate significant differences at the 10%, 5%, and 1% level.

µ̂d × 10, 000 σ̂d × 10, 000 V CVXS,d
d Before After Diff Before After Diff Before After Diff
0 0.86 0.86 0.00 1.55 1.55 0.00 1.81 1.81 0.00
1 0.81 0.87 0.06 *** 1.47 1.55 0.08 *** 1.83 1.78 -0.04 **
2 0.75 0.86 0.11 *** 1.39 1.52 0.13 *** 1.85 1.77 -0.07 ***
3 0.74 0.83 0.10 *** 1.37 1.49 0.12 *** 1.85 1.78 -0.07 ***
4 0.73 0.82 0.09 *** 1.36 1.46 0.11 *** 1.87 1.80 -0.07 ***
5 0.73 0.80 0.07 *** 1.36 1.46 0.09 *** 1.86 1.81 -0.05 **
6 0.73 0.79 0.06 *** 1.36 1.43 0.07 *** 1.86 1.81 -0.05 **
7 0.73 0.79 0.06 *** 1.37 1.43 0.06 *** 1.86 1.81 -0.05 **
8 0.74 0.79 0.05 *** 1.37 1.43 0.06 *** 1.86 1.81 -0.05 *
9 0.74 0.78 0.05 *** 1.38 1.42 0.05 *** 1.87 1.81 -0.05 **

10 0.74 0.78 0.03 *** 1.38 1.42 0.04 *** 1.86 1.82 -0.04
11 0.75 0.78 0.02 *** 1.39 1.41 0.02 *** 1.85 1.82 -0.03
12 0.75 0.78 0.02 *** 1.39 1.41 0.02 *** 1.85 1.82 -0.03
13 0.75 0.77 0.02 *** 1.39 1.41 0.02 *** 1.84 1.82 -0.02
14 0.76 0.77 0.02 *** 1.40 1.41 0.01 *** 1.85 1.82 -0.02
15 0.76 0.77 0.01 * 1.40 1.41 0.01 ** 1.84 1.83 -0.01
16 0.76 0.77 0.01 1.39 1.40 0.01 *** 1.83 1.83 0.00
17 0.77 0.77 0.00 1.40 1.40 0.00 1.83 1.82 -0.01
18 0.77 0.77 0.00 1.40 1.40 -0.00 1.83 1.82 -0.01
19 0.77 0.77 0.00 1.40 1.40 -0.00 1.83 1.83 -0.01
20 0.77 0.77 -0.00 1.40 1.40 -0.00 1.83 1.83 0.00
21 0.77 0.77 -0.00 1.41 1.41 -0.00 1.83 1.83 0.00
22 0.77 0.77 0.01 * 1.40 1.41 0.01 ** 1.83 1.83 0.00
23 0.77 0.77 0.00 1.41 1.41 -0.00 1.84 1.83 -0.01
24 0.77 0.77 0.00 1.41 1.41 -0.00 1.84 1.83 -0.01
25 0.77 0.77 0.00 1.41 1.41 0.00 1.83 1.83 -0.00
26 0.77 0.77 0.00 1.40 1.41 0.01 * 1.82 1.83 0.01
27 0.77 0.77 0.00 1.40 1.41 0.01 ** 1.83 1.83 0.00
28 0.77 0.77 0.00 1.41 1.41 0.00 * 1.83 1.83 -0.00
29 0.77 0.77 0.00 1.41 1.41 0.00 1.84 1.83 -0.00
30 0.77 0.77 -0.00 1.42 1.41 -0.01 * 1.84 1.83 -0.00

Table 11 reports the components of VCV: the cross-sectional mean and standard devia-

tion of volume shares for each day around the announcement. The level of volume is low

prior to announcements and high following announcement, which is consistent with the

patterns documented by Chae (2005) and Akbas (2016). The standard deviation of volume
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moves in the same direction as the mean, which could be due to be the increased illiquid-

ity and price elasticity in the days before the announcement, as documented by George et

al. (1994) and Chae (2005). What we are most interested in is the pattern of VCV as a proxy

for information asymmetry. Since the changes in the standard deviation are smaller in rel-

ative terms than the changes in the mean, VCV is high prior to the announcement and low

afterwards. As Table 11 shows, the differences between VCV are statistically significant

up to nine days up to nine days before and after the announcement.

This pattern of VCV around earnings announcements is consistent with the premise

that information asymmetries are resolved around earnings announcements, and with

the behavior of alternative information asymmetry measures. Johnson and So (2018) doc-

ument that the Multimarket Information Asymmetry (MIA) measure, calculated from the

relative trading volume of options and stocks, increases in the days before earnings an-

nouncements, and rapidly declines around the announcement, similar to VCV. Also Chor-

dia et al. (2017) find that the volatility of order flow, driven by correlated liquidity de-

mand, significantly increases before earnings announcements. There is mixed evidence

on the behavior of PIN around announcement dates. Benos and Jochec (2007) and Duarte

et al. (2017) find that PIN is in fact lower prior to earnings announcements and higher

afterwards. Duarte et al. (2017) explain this puzzling result by showing that the PIN

measure mis-identifies asymmetric information when applied on a daily frequency, and

instead simply indicates abnormal turnover. Easley et al. (2008), on the other hand, esti-

mate a generalized PIN model in which the arrival rate of information is time-varying and

find that PIN is high (low) before (after) earnings announcements, resembling the pattern

of VCV in Figure 5.

39



6 Conclusion

In this paper, we use the Kyle (1985) model to demonstrate that the distribution of total

observed trading volume depends on the proportion of informed (correlated) liquidity

seeking demand. Specifically, we show that the Volume Coefficient of Variation (VCV)

increases in the proportion on informed trade. We therefore propose VCV as a measure

of information asymmetry. Monte Carlo simulations confirm that VCV increases in the

proportion of informed liquidity seekers, for a wide selection of model specifications.

Our empirical results indicate that stocks with high VCVs tend to have characteristics

that are typically associated with asymmetric information (e.g.: high PIN, low breadth of

institutional ownership, low analyst coverage, small size, low liquidity) and vice versa.

Consistent with the hypothesis that informed trade is predictive of future price changes,

we find that short-term return reversals are weaker for high VCV stocks, confirming that

VCV is not just a measure of illiquidity. Our finding that VCV significantly increases

following exogenous reductions in analyst overage due to brokerage closures, provides

further evidence that VCV captures information asymmetry.

We introduce the cross-sectional VCV, which can be applied to evaluate information

asymmetry in event time, e.g. following regulatory changes or other information events.

We apply this measure to quarterly earnings announcements and find, consistent with

prior research, that asymmetric information is higher shortly before the announcement,

and lower afterwards.

Collectively, our empirical results provide broad support for the hypothesis that VCV

is a measure of informed trading not only within our stylized microstructure model, but

also when applied to observational data. Moreover, as we report in our internet appendix,

all empirical results are qualitatively similar for subsamples of NYSE/AMEX and NAS-

DAQ stocks, as well as for pre- and post-2000 periods, validating the robustness of VCV

as a measure of information asymmetry in different market environments.

VCV is an appealing proxy for information asymmetry because of its simplicity: com-
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puting VCV, by dividing the sample standard deviation of daily trading volumes over

the sample mean, is very straightforward. Unlike alternative measures of information

asymmetry, estimating VCV requires only total trading volumes, as opposed to intraday

transaction-level data. The measure is therefore applicable to any security for which trad-

ing volume is observable and can be implemented both in cross-sections and in time-

series. The potential applications of our measure are numerous. For example, VCV can

be used as a control variable in empirical corporate finance research when there is a need

to control for information asymmetry, as a sorting characteristic in empirical asset pricing

when studying the pricing effects of asymmetric information, or as the dependent vari-

able of interest to compare information asymmetry across firms, countries, asset classes,

or over time.
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Appendix A: Variance of trading volume

Th first part of this appendix derives the variance of trading volume (Eq.5). The second

part derives the variance of trading volume for the (m,n) model given in Proposition 2.

Define YMM = |
∑

M yi| as the part of double-counted volume traded by liquidity

providers (the order imbalance), YI =
∑

1...ηM |yi| as the part traded by informed liquidity

seekers and YU =
∑

ηM+1...M |yi| as the part traded by uninformed liquidity seekers. Then

Eq.(1) can be rewritten as:

V = 1
2

(YI + YU + YMM) . (23)

The variance of double-counted trading volume is given by:

V ar (2V ) = V ar (YI) + V ar (YU) + V ar (YMM)

+2Cov (YI , YU) + 2Cov (YI , YMM) + 2Cov (YU , YMM) .
(24)

Using the properties of the Half Normal distribution, we find that:

V ar (YI) = η2M2σ2
(
1− 2

π

)
V ar (YU) = (1− η)Mσ2

(
1− 2

π

)
V ar (YMM) = (η2M2 + (1− η)M)σ2

(
1− 2

π

)
.

(25)

Cov (YI , YU) = 0, because the demands of informed and uninformed liquidity seekers are

independent. Moreover, when M is large and η > 0, the order imbalance consists mainly

of orders submitted by informed liquidity seekers. The orders of uninformed traders tend

to net out against each other because of the i.i.d property. This implies that in the limit

(M →∞), the liquidity suppliers trade exclusively to offset the imbalance from informed

seekers. Therefore, limM→∞Cor (YU , YMM) = 0 and limM→∞Cor (YI , YMM) = 1. Given

these correlations, Eq.(24) implies that when M →∞:

V ar
(
2V
M

)
= V ar

(
YI
M

)
+ V ar

(
YU
M

)
+ V ar

(
YMM

M

)
+ 2
√
V ar

(
YI
M

)
V ar

(
YMM

M

)
, (26)
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which, given the variances in Eq.(25), results in:

V ar
(
2V
M

)
= η2σ2

(
1− 2

π

)
+ (1− η)M−1σ2

(
1− 2

π

)
+ (η2 + (1− η)M−1)σ2

(
1− 2

π

)
+2
√
η2σ2

(
1− 2

π

)√
(η2 + (1− η)M−1)σ2

(
1− 2

π

)
= 2σ2

(
1− 2

π

) (
η2 + (1− η)M−1 + η

√
η2 + (1− η)M−1

)
= 4σ2

(
1− 2

π

)
η2,

(27)

where the last step follows from M−1 → 0 for large M . The standard deviation of trad-

ing volume divided by M thus equals to ση
√

1− 2
π

, from which Proposition 1 is easily

derived:

lim
M→∞

s.d.(V )

E [V ]
= lim

M→∞

s.d.(V/M)

E [V/M ]
=
√

2π − 4
η

η + 1
. (28)

Proof of Proposition 2

The expected volume of trading volume is found by applying the properties of the Half-

Normal distribution, given that ui, xj and (
∑

n ui+
∑

m xj) all follow a Normal distribution

around zero. To evaluate the variance of the trading volume we use the following lemma:

Lemma: If r and s are two i.i.d. random variables from the Standard Normal distribution, and α is

a positive scalar, we have:

Cov(|r|, |r + αs|) = 4

∫ ∞
0

r2Φ(
r

α
)φ(r)dr +

2α3 − 2(α2 + 1)
3
2

(α2 + 1)π
− 1, (29)

Where φ(·) and Φ(·) denote the probability density function and cumulative density function of

the Standard Normal distribution.

Proof:

Cov(|r|, |r + αs|) = E[|r||r + αs|]− E[|r|]E[|r + αs|]

= E[|r||r + αs|]− 2
π

√
1 + α2.

(30)
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We evaluate the first term by integration:

E[|r||r + αs|] =
∫∫
|r(r + αs)|dφ(r)dφ(s)

=
∫ 0

−∞ (
∫ − r

α

−∞ (r2 + αrs)φ(s)ds+
∫∞
− r
α

(−r2 − αrs)φ(s)ds)dr

+
∫∞
0

(
∫ − r

α

−∞ (−r2 − αrs)φ(s)ds+
∫∞
− r
α

(r2 + αrs)φ(s)ds)φ(r)dr

=
∫ 0

−∞ (r2Φ(− r
α

)− αr√
2π
e−

r2

2α2 − r2(1− Φ(− r
α

))− αr√
2π
e−

r2

2α2 )φ(r)dr

+
∫∞
0

(−x2Φ(− r
α

) + αr√
2π
e−

r2

2α2 + r2(1− Φ(− r
α

)) + αr√
2π
e−

r2

2α2 )φ(r)dr

= 2
∫ 0

−∞ r
2Φ(− r

α
)φ(r)dr −

∫ 0

−∞ r
2φ(r)dr − 2α

2π

∫ 0

−∞ re
− r2

2α2
− r

2

2 dr

−2
∫∞
0
r2Φ(− r

α
)φ(r)dr +

∫∞
0
r2φ(r)dr + 2α

2π

∫∞
0
re−

r2

2α2
− r

2

2 dr

= 2
∫∞
0
r2Φ( r

α
)φ(r)dr − 1

2
+ α3

(α2+1)π

−2
∫∞
0
r2(1− Φ( r

α
))φ(r)dr + 1

2
+ α3

(α2+1)π

= 4
∫∞
0
r2Φ( r

α
)φ(r)dr + 2α3

(α2+1)π
− 2

∫∞
0
r2φ(r)dr

= 4
∫∞
0
r2Φ( r

α
)φ(r)dr + 2α3

(α2+1)π
− 1.

(31)

Substitute (31) into (30) to obtain the lemma (29).

To evaluate the variance of the trading volume we use:

V ar(2V ) =
∑

n var(|ui|) + var(|
∑

m xj|) + var(|z|)

+2Cov(|
∑

m xj|, |z|) + 2
∑

nCov(|ui|, |z|),
(32)

where z =
∑

m xi +
∑

n ui. Note that we can consider the total informed demand, x ≡∑
m xj = mβv =

√
mnσu

σv
v as a single random variable. Using again the properties of the

Half-Normal distribution, we find that the variance terms are:

∑
n V ar(|ui|) + V ar(|x|) + V ar(|z|) = nσ2

u(1− 2
π
) +mnσ2

u(1− 2
π
)

+(1 +m)nσ2
u(1− 2

π
)

= 2(m+ 1)nσ2
u(1− 2

π
).

(33)
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The first covariance term in (32) can be evaluated as follows:

Cov(|
∑
m

xj|, |z|) = Cov(|x|, |x+ u|), (34)

where x ≡
∑

m xj ∼ N(0,mnσ2
u) and u ≡

∑
n ui ∼ N(0, nσ2

u), and x and u are independent.

From the Lemma, it follows that:

Cov(|x|, |x+ u|) = mnσ2
u(4

∫ ∞
0

x2Φ(
√
mx)φ(x)dx+

2(1− (m+ 1)
3
2 )

π
√
m(m+ 1)

− 1). (35)

The final covariance terms in (32) are all identical, and can be evaluated as:

Cov(|ui|, |z|) = Cov(|ui|, |ui + z−i|), (36)

where ui ∼ N(0, σ2
u) and z−i ≡

∑
n|i uj + x ∼ N(0, (n− 1 +mn)σ2

u) are two i.i.d. Normally

distributed random variables. From the Lemma, it then follows that:

Cov(|ui|, |z|) = σ2
u(4
∫∞
0
x2Φ( x√

mn+n−1)φ(x)dx

+2(mn+n−1)
3
2−2(mn+n)

3
2

π(mn+n)
− 1).

(37)

Combining the variance terms (33), and the covariance terms (35) and (37) gives, after

re-arranging, the variance of trading volume (V ar(V )) as given in Proposition 2.
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