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Abstract

We present the calibrated-projection MATLAB package implementing the method to
construct confidence intervals proposed by Kaido, Molinari, and Stoye (2017). This
manual provides details on how to use the package for inference on projections of par-
tially identified parameters. It also explains how to use the MATLAB functions we
developed to compute confidence intervals on solutions of nonlinear optimization prob-
lems with estimated constraints.
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1 Introduction

This manual details the structure of the Calibrated Projection Interval (CPI) algorithm and

MATLAB Package. It accompanies the paper “Confidence Intervals for Projections of Partially

Identified Parameters” (Kaido et al., 2017) and it assumes familiarity with that paper.1 The

CPI algorithm uses an EAM (evaluate, approximate, maximize) algorithm to solve:

inf / sup
θ∈Θ

p′θ

s.t.
√
n
m̄j(θ)

σ̂j(θ)
≤ ĉ(θ) j = 1, · · · , J,

where ĉ(θ) is the calibrated critical value (Jones, Schonlau, & Welch, 1998; Jones, 2001).

This version of the CPI algorithm is optimized for basis projection p = (0, · · · , 0, 1, 0, · · · , 0)

with hyperrectangle parameter constraints Θ = {θ ∈ Rd : θLB ≤ θ ≤ θUB}. We also

allow for p to be in the unit sphere and polytope constraints on the parameter space, so

that Θ = {θ ∈ Rd : θLB ≤ θ ≤ θUB, Aθθ ≤ bθ}. Additional care is required within

these extensions (see Appendix B for further details). The current version of the package

is written for moment (in)equalities that are separable in data W and parameter θ, so that

EP [mj(Wi, θ)] = EP [fj(Wi)] + gj(θ).
2 Future releases of the package will include:

• Non-separability of EP [mj(Wi, θ)] in Wi and θ.

• Objective function h(θ) not necessarily equal to p′θ.

We have structured the code so that it is portable. In order to implement a user-specified

model, the user needs only input the data, algorithm options, the function that defines the

estimators for the moment (in)equalities, as well as the gradients and standard deviation

1Some notation differs between this paper and (Kaido et al., 2017). This is made clear through-
out this manual. Unless otherwise specified, we use notation from the earlier version of the paper
(Kaido, Molinari, & Stoye, 2016). The table numbering references (Kaido et al., 2017).

2In this manual and in the CPI MATLAB package data is defined as W . The function f and g are the
two components of the separable moment (in)equality EP [mj(Wi, θ)]. This is in contrast to Kaido et al.
(2017), where data is X , f(θ) refers to the objective function, and ḡ(θ) appears in the EAM algorithm. The
subscript n has also been dropped from all estimators.
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estimators of the moment functions. Section 2 details how to use the portable code with a

user-specified partially identified model with separable moment inequalities. Section 2 also

provides instructions on how to replicate the simulations in Kaido et al. (2017). Section

3 provides a deeper insight into how the CPI algorithm is structured. Section 4 discusses

extensions to the algorithm and concludes.

2 Using the Calibrated Projection Interval Algorithm

In this section we detail the steps required to run the simulations in Kaido et al. (2017), and

how to run a user-specified model. We use as a working example the Entry Game Model

in Section 5 of Kaido et al. (2017). This section is organized as follows. Section 2.1 briefly

describes the key files in the package. Section 2.2 details how to set up CVXGEN and CVX, both

are fast disciplined convex solvers that we use to compute the calibrated critical value ĉ(θ)

(Mattingley & Boyd, 2012; Grant & Boyd, 2014, 2008). Section 2.3 provides instructions on

how to replicate the simulations to reproduce the tables in Kaido et al. (2017). Section 2.4

provides instructions on how to implement a user-specified model and compute Projection

Intervals (either Calibrated or Andrew and Soares (AS) (Andrews & Soares, 2010)) using

the CPI algorithm.

2.1 Overview of Important Files and Folders

First, we briefly describe the key MATLAB files and folders.

• KMS Simulation.m. This executes the simulations in Kaido et al. (2017). The DGP,

method (Calibrated Projection, Andrew and Soares (AS), or Bugni, Canay, and Shi

(BCS)-Profiling),3 nominal significance level, projection directional vector, number of

observations, and number of simulations are set by the user here. The data is generated

3The code implementing BCS is the code provided by these authors and is available at
http://qeconomics.org/ojs/index.php/qe/article/view/431.
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and passed to either KMS 0 Main.m or BCS Main, which computes the Calibrated or AS

Projection Interval, or the BCS-Profiled Interval, respectively.

• KMS 0 Main.m. This is the file that the user calls to execute the CPI algorithm and

compute the Projection Interval (either Calibrated or AS). The user specifies data

W, the initial guess for a feasible parameter theta 0, the projection direction p, a

set of pre-specified feasible points theta feas, the lower bound on parameter space

LB theta, the upper bound on parameter space UB theta, the polytope constraints on

the parameter space A theta and b theta so that Aθθ ≤ bθ, the nominal significance

level alpha, a one-sided or two-sided confidence interval type, the projection method

(calibrated or AS) CI method, the GMS tuning parameter kappa, the GMS function

phi, the name of the MEX files for CVXGEN (discussed in Section 2.2 below) CVXGEN name,

and a structure of algorithm options KMSoptions.

The package assumes that the moment (in)equalities are separable, so that EP [mj(Wi, θ)] =

EP [fj(Wi)] + gj(θ).

• moments w.m is the user-specified function for the estimator of EP [fj(Wi)], namely

f̂j. We allow for both moment inequalities and equalities, as well as paired moment

inequalities. If fj(Wi) is a Bernoulli random variable and if its expectation is too close

to 0 or 1, then the corresponding moment (in)equalities are dropped. The output

f ineq keep and f eq keep defines the moment (in)equalities that are not discarded.

• moments theta.m is the user-specified function for gj(θ).

• moments gradient.m is the user-specified function for the gradient of gj(θ), which is

denoted Dθgj(θ).

• moments stdev.m is the user-specified function for the estimator for the standard de-

viation σj(Wi).

3



• KMSoptions.m defines a structure of algorithm options. KMSoptions is also passed

to the four user-specified functions above, so the user can pass additional parameters

through KMSoptions to the user-specified functions (e.g., the support for dataWi). The

function KMSoptions.m is called before running KMS 0 Main.m, and is passed through

the last argument of KMS 0 Main.m, which is KMSoptions.

• Rho Polytope Box.m and bound transform.m are additional user-written functions

needed when polytope constraints on the parameter space are provided (see the argu-

ments A theta and b theta in KMS 0 Main.m) or when p is not a basis vector. If p is a

non-basis vector or if polytope constraints on the parameter space are included, then

sensitivity in the estimate for the projection interval can arise. Details about these

files, as well as more detail on the sensitivity issues, is discussed in Appendix B.

The disciplined convex solver CVXGEN is used to check whether the set

Λb(θ, ρ, c) = {λ ∈ √
n(Θ− θ) ∩ ρBd : Gb

j +Dθgj(θ)λ+ ϕj(ξ̂j(θ)) ≤ c, j = 1, · · · , J}

is empty for each bootstrap repetition b = 1, · · · , B. In order to run CVXGEN, the user first

compiles a MEX file that defines the parameters of the problem (details in Section 2.2).

• The compiled MEX files are stored in the subfolder \CVXGEN. The file name for this is

chosen by the user. For example, we choose csolve DGP8.mex64 for the BCS Entry

Game. The file name must also be defined when KMS 0 Main.m is called. The name is

passed via the argument CVXGEN name.
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2.2 CVXGEN and CVX Setup

The calibrated critical value ĉ(θ) is computed using a fixed-point algorithm. The fixed-point

mapping is computed by checking whether the following set is empty:

Λb(θ, ρ, c) = {λ ∈
√
n(Θ− θ) ∩ ρBd : Gb

j(θ) +Dθgj(θ)λ+ ϕj(ξ̂j(θ)) ≤ c, j = 1, · · · , J}. (1)

This amounts to solving many linear programs (LP), which is done using the fast disciplined

convex solver CVXGEN (Mattingley & Boyd, 2012) or CVX (Grant & Boyd, 2014, 2008).

2.2.1 CVXGEN Setup

To set up CVXGEN, the user needs to: 1) install a MEX Compiler; 2) generate C code at

https://cvxgen.com; 3) compile and save the MEX file; 4) Instruct the CPI algorithm to use

CVXGEN rather than CVX.

The first step is to install a MEX compiler. We use the MinGW-w64 Compiler on a Windows

machine, which is an add-on in MATLAB. To install: open MATLAB, go to Home tab, go to

Add-Ons. An add-on search window appears on the screen. Search MinGW-w64 Compiler

and install MATLAB Support for MinGW-w64 C/C++ Compiler v. On a Mac, a C compiler is

supplied with Xcode. On a Linux based system, one can use GCC (GNU Compiler Collection).

The next step is to generate the C code for a specific problem. First, create an account

at https://cvxgen.com and log in. Next, navigate to the edit tab under problem. Copy-

and-paste the following:

dimensions

dim p = XX

J1 = YY

J2 = ZZ

S = VV

end

parameters

5
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A ( J1 + 2∗J2 + 2∗dim p + 2 + S , dim p )

b ( J1 + 2∗J2 + 2∗dim p + 2 + S , 1)

end

v a r i a b l e s

x ( dim p , 1 )

end

minimize

0

sub j e c t to

A∗x<= b

end

Replace XX with the dimension of the parameter θ, YY with the number of moment

inequalities, ZZ with the number of moment equalities (do not double count EP [mj(Wi, θ)] ≤

0 and −EP [mj(Wi, θ)] ≤ 0 here), and VV with the number of polytope box constraints. If no

polytope constraints Aθθ ≤ bθ are included, set VV= 0.

Next, navigate to the generate C tab under CODEGEN. Click Generate code. As a re-

sult, a list of files populate the webpage. Download the cvxgen.zip file and extract. Run

make csolve.m. The file csolve.mex64 should appear in the folder (if on a Linux or Mac

machine, the extension is slightly different).4 Rename csolve.mex64 to CVXGEN name.mex64

(where CVXGEN name is specified by the user) and move the file to the subfolder \CVXGEN.

Last, set KMSoptions.CVXGEN = 1 to instruct CPI algorithm to use CVXGEN.

There is an upper bound of 4, 000 non-zero Karush-Kuhn-Tucker matrix entries for the

linear program in CVXGEN. The size of the problem is determined jointly by J1, J2, and d.

As an example, CVXGEN can handle θ ∈ R10 with J1 = 55 and J2 = 55.

2.2.2 CVX Setup

An alternative solver to CVXGEN is CVX. This solver is slower than CVXGEN, but can han-

dle significantly larger LPs and, in our experience, is significantly faster than MATLAB’s

4If an error occurs here, it is likely that the MEX compiler is not installed correctly.
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LP solver LINPROG. CVX is a MATLAB “wrapper” for five different disciplined convex solvers

(Grant & Boyd, 2014, 2008). Among these, the solver MOSEK is the fastest for our problem.

To run CVX with MOSEK:

1. Ensure that there is a copy of CVX is located in the subfolder \CVX. If not, navigate to

http://cvxr.com/cvx/ and deposit a copy in the subfolder \CVX.

2. Request a license from http://cvxr.com/cvx/ and deposit it in the same folder.

3. Run cvx setup.m.

4. Set solver using the command cvx solver MOSEK in the MATLAB command window.

5. Set KMSoptions.CVXGEN = 0.

6. Set CVXGEN name to the empty set.

Once CVXGEN or CVX is set up, either a simulation model (Section 2.3) or a user-specified

model (Section 2.4) can be called via the CPI algorithm.5

2.3 Running Simulations

In this section we discuss how to replicate the simulation results in Kaido et al. (2017) (see

Tables 1-7 in the paper). As per CVXGEN policy, we are unable to distribute the MEX files for

these simulations. So the first step is to generate the relevant MEX files, see Section 2.2 for

instructions and Table 1 for CVXGEN parameters and naming conventions.

The next step is to set parameters in KMS Simulation.m. Open an instance of KMS Simul-

ation.m and set the following:

• method = ’KMS’ to compute the Calibrated Projection Interval; or method = ’AS’ to

compute the AS Projection Interval.

5For additional help with CVXGEN or CVX, please visit https://cvxgen.com and http://cvxr.com/cvx/.
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• DGP=k where k∈ {1, 2, 3, 4, 5, 6, 7, 8}. This parameter selects the data-generating pro-

cess. k = 1 − 4 corresponds to the rotated box described in the earlier version

Kaido et al. (2016). k = 5 − 8 corresponds to the Entry Games: k = 5 is the point-

identified Entry Game with zero correlation (Table 3); k = 6 is the partially-identified

Entry Game with zero correlation (Tables 4, 6 and 7); k = 7 is the partially-identified

Entry Game with Corr(u1, u2) = 0.5 (Table 5); k = 8 is the BCS simulation (Tables

1-2 in Kaido et al. (2017)).

• KMS=1 or KMS=0 determines if KMS 0 Main or BCS Main is called. KMS=0 is a valid input

only if DGP=8, and component=1 or component=2.

• component=k where k∈ {1, · · · , dim p} selects the projection direction. That is, the

projection vector is p with pi = 1 if i = k and pi = 0 otherwise.

• n is the sample size. n is set to 4000 for Tables 1-7.

• Nmc is the number of Monte Carlo simulations requested. Nmc is set to 300 in Table 1

and 1000 in Tables 2-7.

• sim lo and sim hi determine which simulations are run. These parameters are used

to split the simulations into batches if needed.

Among other things, convergence criteria are set in KMSoptions. All DGPs other than the

correlated error DGP, which is DGP 7, use what we call the baseline options. DGP 7,

on the other hand, is a fairly difficult problem to solve. Therefore, we use more stringent

convergence criteria for this DGP. The options listed below and, in particular, the contraction

rates are discussed in more detail in Section 3.2.

The baseline options are:

• KMSoptions.EAM maxit=20. This sets the maximum number of EAM iterations to 20.

• KMSoptions.h rate=1.8. This determines the contraction rate of the parameter space

for the M-step.
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• KMSoptions.h rate2=1.25. This determines the contraction rate of the parameter

space for additional points

• KMSoptions.EAM obj tol = 0.005. One requirement for convergence is that the ab-

solute difference between the expected improvement projection and the current feasible

point θ∗,L is less than EAM obj tol.

• KMSoptions.EI points=10. The M step is initialized with a set of starting points.

The algorithm selects EI points points around the current feasible point θ∗,L that

have positive expected improvement. Additional points are also selected.

The stringent options for DGP=7 are:

• KMSoptions.EAM maxit=50.

• KMSoptions.h rate=1.25.

• KMSoptions.h rate2=1.15.

• KMSoptions.EAM obj tol = 0.0001.

• KMSoptions.EI points=20.

The number of bootstrap repetitions is also set in KMSoptions.m. Table 1 sets this number

equal to 301, so that KMSoptions.B=301. For Tables 2-7 set KMSoptions.B=1001.

Finally, run KMS Simulation to run a simulation with the parameters and options spec-

ified above. The results are saved in the subfolder \Results.

The file Analysis.m carries out post analysis for a particular set of simulations. To

run the post analysis, load a results file and run Analysis.m. The output includes the

median lower bound for the Calibrated Projection Interval; the median upper bound for

the Calibrated Projection Interval; coverage percent at the end points of the identification

region, as well as at the true parameter; average ĉ(θ); and average computational time.
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2.4 User-specified Model

In this section we detail the files that need to be modified so that a user can implement the

algorithm to compute the Calibrated Projection Interval for a user-specified problem. We use

DGP=6 as a working example (this is the partially-identified Entry Game with zero correlation

between the unobservable shocks u1 and u2). For tractability, we have created a working

example file ExampleDGP6.m. Here, we generate one data set with n = 4000 observations.

We assume that the parameter space is a hyperrectangle and p is a basis vector throughout

the rest of this section.

Step 1: Set up CVXGEN or CVX

The first step is to set up either CVXGEN or CVX. This is described in detail in Section 2.2. The

required parameters are the dimension of the parameter θ, dim p, the number of moment

inequalities, J1, and the number of moment equalities, J2. In our working example, set

dim p = 8, J1 = 8, and J2 = 8. Name the MEX file as exampleDGP6.mex64 and deposit it

in the subfolder \CVXGEN. Set KMSoptions.CVXGEN = 1. Alternatively, if CVX is used, follow

the installation instructions at the end of Section 2.2 and set KMSoptions.CVXGEN = 0.

Step 2: Moment (In)equality: Estimator for EP [fj(Wi)]

The moment (in)equalities are separable so that EP [mj(Wi, θ)] = EP [fj(Wi)] + gj(θ) for

j = 1, · · · , J . The estimator for EP [fj(Wi)] is defined in the function moments w.m. Override

the file moments w.m with the following shell:

func t i on [ f i n e q , f eq , f i n eq keep , f eq keep , paired mom , J1 , J2 , J3 ] . . .

= moments w(W, KMSoptions )

f k e ep th r e s ho l d = KMSoptions . f k e ep th r e s ho l d ;

J1 = XX1;

J2 = XX2;

J3 = XX3;

f i n e q = ze ro s ( J1 , 1 ) ;
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f e q = ze ro s (2∗J2 , 1 ) ;

f i n e q k e ep = ze ro s ( J1 , 1 ) ;

f e q k e ep = ze ro s (2∗J2 , 1 ) ;

paired mom = zero s ( J3 , 1 ) ;

%% Def ine output here %%

end

The inputs are data W, which is n-by-dW and KMSoptions. The outputs are:

1. f ineq is a J1-by-1 vector of moment inequalities. As an example, consider Lines

208-212 in moments w.m, which correspond to the Entry Game moment inequalities

(See Equations 5.3-5.4 in Kaido et al. (2017)):

EP [mj(Wi, θ)] = EP [fj(Wi)] + gj(θ), with

EP [fj(Wi)] = EP [1(Y = (0, 1))1(X = x)] and

gj(θ) = −Gr((−∞,−x′
1(β1 +∆1)× [−x′

2β2,∞)))px

EP [mj+1(Wi, θ)] = EP [fj+1(Wi)] + gj+1(θ), with

EP [fj+1(Wi)] = −EP [1(Y = (0, 1))1(X = x)] and

gj+1(θ) = [Gr((−∞,−x′
1(β1 +∆1)× [−x′

2β2,∞))

−Gr((−x′
1β1,−x′

1(β1 +∆1)× [−x′
2β2,−x′

2(β2 + δ2)))]px,

where W = (Y,X).6 Moment inequalities j ∈ {1, 3, 5, 7} and j + 1 correspond to a

point x in the support X ≡ {(−1,−1), (−1, 1), (1,−1), (−1,−1)}. For each x ∈ X ,

EP [fj+k(Wi)], k = 0, 1, is estimated by:

f̂j =
1

n

n
∑

i=1

1(Yi = (0, 1))1(Xi = x)

f̂j+1 = −1

n

n
∑

i=1

1(Yi = (0, 1))1(Xi = x).

This corresponds to Lines 208-212 in moments w.m:

f i n e q ( ( i i −1)∗2 + 1 ,1) = sum(Y1 == 0 & Y2 == 1 & X1 == x1 & X2 == x2 )/n ;

6We define data W with firm-entry decisions Y and market characteristics X . Kaido et al. (2017) define
data X with firm-entry decisions Y and market characteristics Z.
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f i n e q ( ( i i −1)∗2 + 2 ,1) = − sum(Y1 == 0 & Y2 == 1 & X1 == x1 & X2 == x2 )/n ;

2. f eq is a 2J2-by-1 vector of moment equalities. Entries j = 1, · · · , J2 of f eq are defined

on Lines 215-218 in moments w.m and correspond to the moment equalities with

EP [mj(W, θ)] ≤ 0. Entries j = J2+1, · · · , 2J2 of f eq correspond to −EP [mj(W, θ)] ≤

0. It is important to include both the positive and negative of EP [mj(X, θ)] for the

moment equalities, see Line 222 in moments w.m: f eq = [f eq ; -f eq];.

3. f ineq keep and f eq keep are J1-by-1 and 2J2-by-1 vectors of indicators. These

define which moment (in)equalities we keep. If fj(W ) has unbounded support, then

set the corresponding entry in f ineq keep and f eq keep equal to 1 (see the rotated

box example on Lines 87-88 in moments w.m). In the Games Example, fj(Wi) is

bounded by 0 and 1. If EP [fj(Wi)] is close to 0 or 1, Assumption 4.1-(iv) in Kaido et al.

(2017), which is taken from Andrews and Soares (2010) and common in the literature,

is violated. Therefore, if f̂j is within the tolerance of KMSoptions.f keep threshold

of 0 or 1, then the corresponding component of f ineq keep or f eq keep is set equal

to 0, indicating that moment is dropped completely from the analysis – it is not used to

compute ĉ(θ) and it does not enter the M-step (see Section 3.2, Pg 24).7 Otherwise it

is set to 1. See Lines 235-236 in moments w.m. KMSoptions.f keep threshold is a

user-specified option with default value equal to 10−4 and may be modified in different

applications.

4. paired mom is a J3-by-1 vector indicating the paired moment inequalities. If there

are no paired moment inequalities, set paired mom to the empty set. For each paired

moment inequalities, set the corresponding elements in paired mom equal to a unique

indicator j = 1, · · · , J3. See Lines 227-230 in moments w.m.

5. J1, J2, and J3 define the number of moment inequalities, equalities, and paired moment

7In the Games Example, the moment inequality functions fj(Wi) for j ∈ {2, 4, 6, 8} are bounded by −1

and 0. Thus moment inequality j ∈ {2, 4, 6, 8} is dropped for the analysis if f̂j is too close to −1 or 0.
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inequalities.

In the shell above, replace XX1 - XX3 with the number of moment inequalities, moment

equalities, and paired moment inequalities. Preset each output to the zero vector or the

empty set as described above. Last, input user-specified functions for each output.

Step 3: Moment (In)equality: Model-implied Moment Function gj(θ)

The model-implied function gj(θ) is defined in the function moments theta.m. Override

moments theta.m with the following shell:

func t i on [ g ineq , g eq ] = moments theta ( theta , J1 , J2 , KMSoptions )

g ineq = ze ro s ( J1 , 1 ) ;

g eq = ze ro s (2∗J2 , 1 ) ;

%% Def ine output here %%

end

The inputs are the d-by-1 parameter vector theta, number of moment inequalities J1, num-

ber of moment equalities J2, and algorithm options KMSoptions. The outputs are the J1-

by-1 vector of moment inequalities g ineq and the 2J2-by-1 vector of moment equalities

g eq, where entries j = 1, · · · , J2 of g eq correspond to EP [mj(Wi, θ)] ≤ 0 and entries

j = J2 + 1, · · · , 2J2 of g eq correspond to −EP [mj(Wi, θ)] ≤ 0.

In the shell above, input user-specified functions for outputs g ineq and g eq.

As an example, consider DGP=6. The moment functions are defined on Lines 100-169

in moments theta.m. For example, the moment inequality in Equation (5.3) in Kaido et al.

(2017) is:

EP [mj(Wi, θ)] = EP [fj(Wi)] + gj(θ)

= EP [fj(Wi)] +

[

−Gr((−∞,−x′
1(β1 +∆1)× [−x′

2β2,∞)))px

]

,

where x ∈ X and px is the probability of support point x occurring. Gr(·, ·) is the Bivariate

Gaussian process with correlation r. DGP=6 assumes r = 0, so the moment gj(θ) can be

13



expressed as:

gj(θ) = −Φ(−x′1(β1 +∆1))(1− Φ(−x′2β2))px,

where Φ(µ) is the univariate Gaussian CDF with mean µ and variance equal to 1. Compare

to Line 143 in moments theta.m:

g ineq ( ( i i −1)∗2 + 1 ,1) = normcdf(−x1 ∗( beta1+de l ta1 ))∗(1−normcdf(−x2∗beta2 ) )∗pX;

(The negative of g ineq is reported on Line 164 in moments theta.m to get the correct

sign.)

Step 4: Standard Deviation Estimator for σj(Wi)

Under the assumption that the moment functions are separable, the standard deviation does

not depend on θ. Specify the standard deviation estimator in the function moments stdev.

Override moments stdev.m with the following shell:

[ f s t d ev i n eq , f s t d e v e q ] = moments stdev (W, f i n e q , f eq , J1 , J2 , KMSoptions )

f s t d e v i n e q = ze ro s ( J1 , 1 ) ;

f s t d e v e q = ze ro s (2∗J2 , 1 ) ;

%% Def ine output here %%

end

The inputs are: data W, data-implied moment functions f ineq and f eq, number of moment

(in)equalities J1 and J2, and a structure of options KMSoptions. The outputs are the J1-by-1

vector of standard deviations for the moment inequalities f stdev ineq and the 2J2-by-1

vector of standard deviations for the moment equalities f stdev eq.

For DGP=6, the estimator for σj(Wi) is

σ̂j =

√

√

√

√

1

n

n
∑

i=1

1(Yi = y,Xi = x)

(

1− 1

n

n
∑

i=1

1(Yi = yi, X = x)

)

Compare to Lines 58-59 in moments stdev.m:

f s t d e v i n e q ( : , 1 ) = sq r t ( abs ( f i n e q ).∗(1− abs ( f i n e q ) ) ) ;

f s t d e v e q ( : , 1 ) = sq r t ( abs ( f e q ).∗(1− abs ( f e q ) ) ) ;
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Step 5: Gradient of Model-implied Moment Function Dgj(θ)

The CPI algorithm requires that the user specifies gradients of the moment functions. Since

the moments are separable, the gradient does not depend on data W , so that:

∂mj(W, θ)

∂θk
=
∂gj(θ)

∂θk
.

The gradients are specified in the function moments gradient.m, and below is a shell for

this function:

[ Dg ineq , Dg eq ] = moments gradient ( theta , J1 , J2 , KMSoptions )

dim p = KMSoptions . dim p ;

Dg ineq = ze ro s ( J1 , dim p ) ;

Dg eq = ze ro s (2∗J2 , dim p ) ;

%% Def ine output here %%

end

The inputs are: a d-by-1 parameter vector theta, the number of moment (in)equalities J1

and J2, and the structure of options KMSoptions. The outputs are the J1-by-d matrix of

gradients for the moment inequalities Dg ineq, where

Dg ineqj,k =
∂gj(θ)

∂θk
j = 1, · · · , J1, k = 1, · · · , d

and the 2J2-by-d matrix of gradients for the moment equalities Dg eq, where

Dg eqj,k =
∂gj(θ)

∂θk
j = J1 + 1, · · · , J.

As an example, consider the moment inequality in Equation (5.3) Kaido et al. (2017):

gj(θ) = −Φ(−x′1(β1 +∆1))(1− Φ(−x′2β2))px.
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The gradients are:

∂gj(θ)

∂β1
= x′1φ(−x′1(β1 +∆1))(1− Φ(−x′2β2))px

∂gj(θ)

∂β2
= −x′2Φ(−x′1(β1 +∆1))φ(−x′2β2)px

∂gj(θ)

∂∆1
= x′1φ(−x′1(β1 +∆1))(1− Φ(−x′2β2))px

∂gj(θ)

∂∆2

= 0,

where φ(µ) is the univariate Gaussian PDF with mean µ and variance equal to 1. Compare

to Lines 112-115 in moments gradient.m:

Dg3b1 = x1 .∗ normpdf(−x1 ∗( beta1+de l ta1 ) ) .∗(1−normcdf(−x2∗beta2 ) )∗pX;

Dg3b2 = −x2 .∗ normcdf(−x1 ∗( beta1+de l ta1 ) ) . ∗ normpdf(−x2∗beta2 )∗pX;

Dg3d1 = x1 .∗ normpdf(−x1 ∗( beta1+de l ta1 ) ) .∗(1−normcdf(−x2∗beta2 ) )∗pX;

Dg3d2 = ze ro s ( 1 , 2 ) ;

Step 6: Algorithm Options

Algorithm options are specified in the file KMSoptions.m. These options should be adjusted

for each user-specified model in order to balance computational time and accuracy. The key

options are highlighted below.

• KMSoptions.parallel turns on parallel computing if set equal to 1 (Line 35).

• KMSoptions.CVXGEN uses CVXGEN if set equal to 1 (Line 38).

• KMSoptions.B specifies the number of bootstrap repetitions (Line 42).

• KMSoptions.EAM maxit specifies the maximum number of EAM iterations (Line 43).

• KMSoptions.mbase sets the base-multiplier for the initial number of points in the EAM

algorithm (Line 44). In order to get a better initial approximating surface increase

this number. There is a trade off between allowing the EAM algorithm to better

approximate the surface near the global maximizer and obtaining a good initial fit.
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• KMSoptions.h rate determines the rate at which the parameter space is contracted

(Line 45). Set equal to a number between 1 and 2. See the M-step in Section 3.2 on

Page 25.

• KMSoptions.h rate2 should be set to a number between 1 and KMSoptions.h rate

(Line 46). See the Section 3.2.

• KMSoptions.EAM obj tol is one of the convergence criteria (Line 48). It is required

that the absolute difference between the expected improvement maximizer value and

p′θ∗,L is less than or equal to KMSoptions.EAM obj tol.

• KMSoptions.EAM maxviol tol is another convergence criterion (Line 56). It demands

that the maximum moment violation is close to 0. Set equal to inf to turn off.

• KMSoptions.EI points sets the minimum number of initial points with positive ex-

pected improvement for the M step Line 132.

Step 7: Determine Input Parameters

The following inputs are required:

1. W is an n-by-dW matrix of data. n is the number of observations and dW is the number

of variables in W . In our working example, n = 4000 is the number of markets and

dW = 6. The first and second variables in W are the entry decisions of firms 1 and

2. The fourth and sixth variables in W are the random market characteristics of firms

1 and 2. The third and fifth variables in W are constants. The market characteristic

has support {−1, 1}. See Lines 41-111 in ExampleDGP6.m for more detail on how the

data is generated.

2. theta 0 is a d-by-1 vector. It is the initial guess for the parameter vector θ. We

arbitrarily set theta 0 to be the midpoint in the hyperrectangle {θ ∈ R
d : θLB ≤ θ ≤
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θUB} in the working example. See Line 29 in ExampleDGP6.m. Valid input is any

value in the parameter space.

3. p is the d-by-1 directional vector in the problem supθ∈Θ p
′θ subject to

√
n

m̄j(θ)

σj
≤ ĉ(θ).

Valid input is pi = 1 for any one component and 0 otherwise. See Lines 30-31 in

ExampleDGP6.m. See Appendix B for non-basis directional vectors.

4. theta feas is a K-by-d matrix of K feasible θ stacked in row format:













θ′1
...

θ′K













.

A feasible θ is one that satisfies
√
n

m̄j(θ)

σj
≤ ĉ(θ), ∀j = 1, · · · , J . This input is optional,

and if set to the empty set, the algorithm attempts to find a feasible point using an

auxiliary search. theta feas is set equal to [] on Line 115 in ExampleDGP6.m.

5. LB theta and UB theta are d-by-1 vectors defining the lower and upper bounds of the

parameter space. Valid input is θLB ≤ θUB. See Lines 27-28 in ExampleDGP6.m.

6. A theta and b theta are L-by-d and L-by-1 matrices defining the polytope constraints

on the parameter space. It is required that the parameter space has a non-empty

interior. A theta and b theta are set to [], see Line 115 in ExampleDGP6.m.

7. alpha is the nominal significance level. Valid input is a number in [0, 0.5]. It is set

equal to 0.05, see Line 6 in ExampleDGP6.m.

8. type determines if either a two-sided or one-sided confidence interval is computed.

Valid input is either ’two-sided’ or ’one-sided’. type is set equal to ’two-sided’

for a two-sided confidence interval, see Line 21 in ExampleDGP6.m.
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9. method determines whether a Calibrated Projection Interval or an AS Projection In-

terval is computed. Valid input is either ’KMS’ or ’AS’. method is set equal to ’KMS’,

see Line 4 in ExampleDGP6.m.

10. kappa specifies the tuning parameter κ. Valid input is either NaN for the default κ =
√

ln(n) or a user-specified function @(n)kappa function(n) satisfying Assumption 4.2

in Kaido et al. (2017). kappa is set equal to NaN, see Line 22 in ExampleDGP6.m.

11. phi specifies the GMS function ϕj(x). Valid input is either NaN for the default hard

thresholding function

ϕj(x) =















0 if x ≥ −1

−∞ else

or a user-specified function @(x)phi function satisfying Assumption 4.2. phi is set

equal to NaN, see Line 23 in ExampleDGP6.m.

12. CVXGEN name is the name for the CVXGEN MEX file, see Section 2.2. CVXGEN name is set

equal to ’ExampleDGP6’, see Line 39 in ExampleDGP6.m.

13. KMSoptions is the structure of algorithm options. It is called on Line 9 in ExampleDGP6.m

and updated further throughout the file.

Finally, the CPI algorithm is called on Lines 114-115 in ExampleDGP6.m, with the inputs

specified below:

[ KMS conf idence interva l , KMS output ] = KMS 0 Main(W, theta 0 , p , [ ] , LB theta , . . .

UB theta , [ ] , [ ] , alpha , type , method , kappa , phi ,CVXGEN name, KMSoptions ) ;

3 Calibrated Projection Interval Algorithm

In this section we provide an overview of the CPI algorithm. We start with KMS 0 Main,

since this is the function that calls the CPI algorithm. The empirical moments f̂j , standard
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deviation σ̂j , and the recentered bootstrap moments Gb
j do not depend on θ and can be com-

puted outside of the EAM algorithm. These are computed on Lines 217, 502, and Lines

438-493 and 509-510 in KMS 0 Main, respectively. The recentered bootstrap moments are

denoted G ineq and G eq.

It is required that the EAM algorithm is initiated with a feasible point, that is, a point

θfeas ∈ Θ satisfying:

√
n
f̂j + gj(θ

feas)

σ̂j
≤ ĉ(θfeas) ∀j = 1, · · · , J.

The CPI algorithm executes two feasible search algorithms on Lines 565-583 in KMS 0 Main.

The feasible search algorithms are KMS 1 FeasibleSearch.m and KMS 2 EAM FeasibleSearch.m.

If a feasible point(s) is supplied by the user, then the algorithm skips this step.

The EAM algorithm is called on Lines 602-635 in KMS 0 Main. The search direction p

is executed first and the search direction −p second. Output including the optimal point

θ∗,EAM , the calibrated critical value at this point ĉ(θ∗,EAM), the expected improvement

EI(θ∗,EAM), and the convergence time is reported in the structure KMS output.

An optional algorithm on Lines 637-676 in KMS 0 Main is also included (set

KMSoptions.direct solve=1 to run this algorithm). This algorithm solves the problem:

min/maxθ∈Θp
′θ

s.t.
√
n
f̂j + gj(θ)

σ̂j
≤ ĉ(θ) ∀j = 1, · · · , J

using numerical gradients (the gradient of ĉ(θ) is unknown). Even for simple problems this

algorithm requires a large amount of computational time to find a solution and the solution

is often not the global minimizer/maximizer.8

Finally, the Calibrated Projection Interval (or AS Projection Interval) is reported on

8One could specify an analytical gradient function, where the analytical gradients Dθgj(θ) are passed
and the numerical gradient for ĉ(θ) is computed. This is not done in this version of the CPI algorithm.
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Lines 678-707 in KMS 0 Main. The feasible search and EAM algorithm is discussed in

Sections 3.1 and 3.2 below. The algorithm that computes ĉ(θ) is discussed in Section 3.3

3.1 Feasible Search Algorithm

The feasible search algorithms KMS 1 FeasibleSearch and KMS 2 EAM FeasibleSearch at-

tempt to find a point θ satisfying:

θ ∈ Θfeas ≡
{

θ ∈ Θ :
√
n
f̂j + gj(θ

feas)

σ̂j
≤ ĉ(θfeas) ∀j = 1, · · · , J

}

. (2)

The algorithm KMS 1 FeasibleSearch solves the problem:

min
θ∈Θ

max
j=1,··· ,J

√
n
f̂j + g(θ)

σ̂j
. (3)

Let the minimizer be θ∗,FS1. The hope is that θ∗,FS1 satisfies the relaxed condition

√
n
f̂j + gj(θ

∗,FS1)

σ̂j
≤ ĉ(θ∗,FS1), ∀j = 1, · · · , J. (4)

If maxj
√
n

f̂j+gj(θ∗,FS1)

σ̂j
≤ 0, then the condition in Equation (4) is satisfied since ĉ(θ) ≥ 0, ∀θ ∈

Θ.

AMultiStart algorithm is used to solve Problem (3).9 On Lines 72-78 in KMS 1 Feasible-

Search, a set of starting points is drawn uniformly from Θ. These starting points are passed

to fmincon (Lines 93-119). At each solution, the constraint violation is computed on Line

134. If there is a feasible point (constraint violation = 0), then the feasible point theta feas

is returned. Otherwise, flag feas=0 is returned indicating failure to find a feasible point.

If the feasible search algorithm KMS 1 FeasibleSearch fails, the second feasible search

algorithm, KMS 2 EAM FeasibleSearch, is executed. It uses an EAM-type algorithm to try

9The solver fmincon cannot efficiently solve Problem (3) as written, since the gradient of

maxj=1,··· ,J
√
n

f̂j+g(θ)
σ̂j

is unknown. By introducing a free parameter γ, the problem can be re-written

so that fmincon can solve it. See Section 3.2.
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to find a feasible point. In particular, Line 86-92 in KMS 2 EAM FeasibleSearch.m draws

an initial set of points θ(1), · · · , θ(L). The calibrated critical value ĉ(θ) is computed at each

of these points (E-step, Line 109). If any of these points are feasible, the algorithm is

terminated and a feasible point is returned (Line 125-137). Otherwise, the surface cL(θ)

is approximated using the kriging method (A-step, Lines 139-144). Last, the following

minimization problem is solved using a MultiStart algorithm:

min
θ∈Θ

max
j=1,··· ,J

(

√
n
f̂j + g(θ)

σ̂j
− cL(θ)

)

, (5)

(M-step, Lines 174-204). Call the minimizer θ∗,L+1. This EAM algorithm is re-iterated

with the new set of points {θ(l)}Ll=1 ∪ {θ∗,L+1}, and continues until either a feasible point is

obtained or the maximum number of iterations KMSoptions.EAM maxit is reached.

3.2 EAM Algorithm

The EAM algorithm (KMS 3 EAM) for search direction q ∈ {−p, p} is called on Lines 603-635

in KMS 0 Main.m. The inputs for the EAM algorithm are:

1. q is the directional vector, set equal to either p or −p.

2. sgn q is equal to −1 or 1. It specifies whether we are maximizing in direction q = p

or q = −p.

3. theta feas is a K-by-d matrix of feasible points stacked in row format.

4. theta init, c init, CV init, maxviol init are a set of θs, calibrated critical val-

ues, constraint violations, and maximum violations passed from the feasible search

algorithm. These can be empty.

5. f ineq, f eq, f ineq keep, f eq keep are output from moments w.m, which are the

data-implied moment (in)equalities and the moment (in)equalities that we keep.
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6. f stdev ineq and f stdev eq are output from moments stdev.m, which are the stan-

dard deviations of the moment (in)equalities.

7. G ineq and G eq are the recentered bootstrap moment (in)equalities.

8. KMSoptions is a structure of algorithm options.

The outputs are:

1. theta hat is the d-by-1 solution to maxθ∈Θ q
′θ subject to the calibrated moment in-

equality constraints from the EAM algorithm. Call this optimal point θ∗,EAM .

2. theta optbound is the value q′θ∗,EAM .

3. c is the calibrated critical value ĉ(θ∗,EAM).

4. CV is the maximum constraint violation at θ∗,EAM . This should be zero if θ∗,EAM is

feasible.

5. EI is the expected improvement at θ∗,EAM .

6. flag opt is a flag equal to 1 if the EAM algorithm converged.

The key steps in the EAM algorithm are detailed below.

Initialization: A initial set of points is drawn on Lines 93-99 in KMS 3 EAM. The set

of feasible points theta feas is also added to the pool of initial points {θ(l)}L0
l=1. The set

of points to be evaluated is saved in the L-by-d matrix theta Estep (where L = L0 on the

first iteration).

The following steps are iterated until either the program converges or a preset maximum

number of iterations is reached.

E-step, Evaluation: Line 143 in KMS 3 EAM calls the function KMS 31 Estep. Within

this function, c Estep is the L-by-1 vector of calibrated (or AS) critical values ĉ(θ) for each
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θ ∈ {θ(l)}Ll=1; CV Estep and maxviol Estep are the constraint violation and maximum vio-

lation for each θ ∈ {θ(l)}Ll=1, respectively. The subfunctions KMS 31 Estep, KMS 32 Critval,

and KMS 33 Coverage are discussed in more detail in Section 3.3.

Lines 145-155 in KMS 3 EAM prepare the matrices theta Astep and c Astep, which keep

track of all points to be passed to the A-step. The kriging model is sensitive if two points

θ(l) and θ(k) are too close together. Therefore, if two points are too close to one another,

only one point is passed to the kriging model, see Line 161 in KMS 3 EAM.

A-step, Approximation: The surface ĉ(θ) is approximated via a kriging model. The

set of points {θ(l), ĉ(θ(l))}Ll=1 is passed to the kriging function on Line 163 in KMS 3 EAM.

We use the DACE package (Lophaven, Nielsen, & Sondergaard, 2002). The DACE MATLAB

files are saved in the subfolder \dace. The output is the structure dmodel. The function

[c,Dc,mse,Dmse]=predictor(theta,dmodel) uses the interpolated surface to predict the

value of ĉ(θ) and gradient Dθĉ(θ) at θ. The standard deviation ζ̂sL(θ) is also estimated and

is equal to
√
mse.10

M-step, Maximization: Using the approximated surface cL(θ) and standard devia-

tion ζ̂sL(θ), the next point in the sequence {θ(l)}Ll=1 is chosen to maximize the expected

improvement function:

θ∗,Mstep = argmax
θ∈Θ

EI(θ) = (q′θ − q′θ∗,L)+

(

1− Φ

(

maxj=1,··· ,J ĥj(θ)− cL(θ)

ζ̂sL(θ)

))

, (6)

where

θ∗,L ≡ argmax
θ∈{θ(l)}L

l=1

q′θ s.t.
√
n
f̂j + gj(θ)

σ̂j
≤ ĉ(θ), ∀j = 1, · · · , J,

(x)+ ≡ max(0, x),

ĥj(θ) ≡
√
n
f̂j + gj(θ)

σ̂j
.

10For more information and source files for the DACE MATLAB package, go to
http://www2.imm.dtu.dk/projects/dace/.
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Problem (6) is solved using a MultiStart algorithm. Three important steps are required

to resolve numerical issues with Problem (6):

1. The gradients of the functions (x)+ and maxj=1,··· ,J ĥj(θ) are undefined at crossing

points (e.g, at x = 0 for (x)+). Problem (6) is rewritten as:

− min
θ∈Θ,q′θ≥q′θ∗,L

max
j=1,··· ,J

[

−(q′θ − q′θ∗,L)Φ

(

− ĥj(θ)− cL(θ)

ζ̂sL(θ)

)]

.

The min /max problem can be solved using fmincon by introducing a free parameter

γ and rewriting the problem as a minimization problem with nonlinear constraints.

min
γ∈R,θ∈Θ,q′θ≥q′θ∗,L

γ (7)

s.t. − (q′θ − q′θ∗,L)Φ

(

− ĥj(θ)− cL(θ)

ζ̂sL(θ)

)

− γ ≤ 0, ∀j = 1, · · · , J.

The gradients of the objective function and constraints in Problem (7) are well-defined,

so it can be solved using fmincon with analytical gradients. See the functions KMS 34 EI-

objective.m and KMS 35 EI constraint.m. The same technique is used to solve

Problems (3) and (5) in the feasible search algorithms.

2. Problem (6) can become ill-conditioned in the sense that the objective function is

numerically equal to zero for θ such that the (in)equalities are modestly violated.

Consequently, the non-linear programming solver fmincon may get stuck. To overcome

this issue, we use an auxiliary method to draw θ such that EI(θ) > 0 (see Line 287

in KMS 3 EAM and see KMS 36 drawpoints). These points are passed to fmincon and

Problem (7) is solved using MultiStart.

To further explain the numerical issue, observe that the argument of Φ(·) is

− ĥj(θ)− cL(θ)

ζ̂sL(θ)
.
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If the approximated moment condition ĥj(θ) − cL(θ) is violated and hence positive,

the argument of Φ(·) is negative. If, in addition, ζ̂sL(θ) is small relative to ĥj(θ) −

cL(θ), then the term Φ
(

− ĥj(θ)−cL(θ)

ζ̂sL(θ)

)

can be numerically equal to zero. Therefore, the

objective function may have many local minima, and in applications fmincon may get

stuck.

3. The expected improvement objective function trades off increasing the value of q′θ

and increasing the likelihood that θ satisfies the moment conditions via the term

Φ
(

− ĥj(θ)−cL(θ)

ζ̂sL(θ)

)

. The approximation cL(·) to ĉ(·) is not perfect. Therefore, the value

of Φ
(

− ĥj(θ)−cL(θ)

ζ̂sL(θ)

)

can be positive for θ 6∈ Θfeas (defined in Equation (2)). In later

iterations of the EAM algorithm, we may find that the expected improvement maxi-

mizer θ∗,Mstep is not feasible. Adding non-feasible θ∗,Mstep improves the fit of cL(θ) and

Φ
(

− ĥj(θ)−cL(θ)

ζ̂sL(θ)

)

converges in probability to 0 for θ 6∈ Θfeas as the number of EAM

iterations increases. To increase the likelihood that θ∗,Mstep ∈ Θfeas, we contract the

parameter space, which constrains the expected improvement function. The contrac-

tion forces the expected improvement maximizer θ∗,Mstep to be near θ∗,L if the EAM

algorithm begins to stall, increasing the likelihood that θ∗,Mstep is feasible.

The contracted parameter space is:

Θ(hcounterrate ) =

{

θ : θLB ≤ θ ≤ θUB, Aθθ ≤ bθ, q
′θ∗,L ≤ q′θ ≤ q′θ∗,L +

q′θ† − q′θ∗,L

hcounterrate

}

,

(8)

where q′θ† = maxθ∈Θ q
′θ. For example, if q = p, then q′θ† = q′θUB. The term

hcounterrate controls the rate of contraction. hrate is specified by the user and is equal

to KMSoptions.h rate. The exponent counter is a natural number that increases by

one on iteration i of the EAM algorithm if insufficient progress is made on iteration

i− 1. If θ∗,L is too close to the contracted boundary, then counter decreases by one.

Problem (7) is solved subject to θ ∈ Θ(hcounterrate ). Our convergence criteria (described
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below) are chosen to make sure that no mechanical convergence occurs.

The contraction of the parameter space occurs on Lines 200-273 in KMS 3 EAM, Lines

281-328 draw points, and Lines 336-373 call fmincon.

Updating and Convergence: The final step in the EAM algorithm is to update the

set of points and check convergence criteria. Provided we find a point with positive expected

improvement in the M-step, we add both the M-step solution as well as a uniformly-drawn

point to the set of evaluation points {θ(l)}Ll=1. We also add two points, θǫ1 and θǫ2 that are

close to θ∗,L and satisfy q′θǫk > q′θ∗,L. The distance between θǫk and θ∗,L is determined by

the option KMSoptions.h rate2. See Lines 430-439 in KMS 3 EAM.

The convergence check occurs on Lines 464-485 in KMS 3 EAM. We first check if θ∗,L is

too close to the boundary of Θ. If |p′θ∗,L − p′θUB| < 10−4 (for search direction p), then a

warning that the parameter is on the boundary is displayed and we output θ∗,EAM = θ∗,L.

Otherwise, if all of the following conditions are satisfied, we say that the EAM algorithm

has converged, and we output θ∗,EAM = θ∗,L.

1. iter >= EAM minit: The current iteration i of the EAM algorithm is greater than

or equal to KMSoptions.EAM minit. This ensures that the EAM algorithm does not

terminate early. Default is KMSoptions.EAM minit=4.

2. change EI proj < EAM obj tol: The absolute difference in the value of the objective

function q′θ between the expected improvement maximizer θ∗,Mstep and the current

feasible optimal θ∗,L is less than the tolerance parameter KMSoptions.EAM obj tol.

3. change proj < EAM tol: The absolute difference in the value of the objective func-

tion q′θ between the current feasible optimal θ∗,L and the previous iteration’s feasible

optimal θ∗,L−1 is less than the tolerance parameter KMSoptions.EAM toll.

4. feas points>num feas: We have found at least one feasible point inside the EAM

algorithm. This ensures that we do not terminate the EAM algorithm with only the

feasible points that are fed into the EAM function.
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5. abs(opt dagger - q.’*theta hash) > 1e-4: The point θ∗,L is not too close to the

boundary of the contracted parameter space. This ensures that the EAM algorithm is

not terminated mechanically.

6. abs(maxviol hash) <EAM maxviol tol: The value

∣

∣

∣

∣

maxj=1,··· ,J

√
n

f̂j+gj(θ
∗,L)

σ̂j
−ĉ(θ∗,L)

∣

∣

∣

∣

is less than the tolerance parameter KMSoptions.EAM maxviol to. If this condition is

violated, then by continuity of ĉ(·) it is possible to increase the value of q′θ∗,L and not

violate the moment conditions.

Last, the contraction counter is updated (Lines 487-494). If |q′θ∗,L−q′θ∗,L−1| < 1×10−6

(so that no progress is made between this iteration and the previous iteration), then the

contraction counter is increased by one: counter = counter + 1. If the contraction counter

is positive and θ∗,L is too close to the contracted parameter space the contraction counter is

decreased by one: counter = counter - 1.

3.3 Root-Finding Algorithm Used to Compute ĉn(θ)

This section explains in detail how to compute the calibrated critical value ĉ(θ):

ĉ(θ) ≡ inf{c ∈ R+ : P ∗(Λb(θ, ρ, c) ∩ p′λ = 0} 6= ∅ ≥ 1− α}, (9)

where P ∗ is the bootstrap empirical frequency. The relevant MATLAB files are: KMS 31 Estep.m,

KMS 32 Critval.m, and KMS 33 Coverage.m. For a given θ ∈ Θ, P ∗(Λb(θ, ρ, c)∩{p′λ = 0} 6=

∅) increases in c (with Λb(θ, ρ, c) defined in Equation (1)), and so ĉ(θ) can be quickly com-

puted via a root-finding algorithm, such as the Brent-Dekker Method (BDM), see Brent

(1971) and Dekker (1969). To do so, define Ψα(c) =
1
B

∑B

b=1 ψb(c)− (1− α) where

ψb(c(θ)) = 1(Λb(θ, ρ, c) ∩ {p′λ = 0} 6= ∅).

28



Let c̄(θ) be an upper bound on ĉ(θ), for example, the asymptotic Bonferroni bound c̄(θ) ≡

Φ−1(1−α/J). It remains to find ĉ(θ) such that Ψα(ĉ(θ)) = 0 when Ψα(0) ≤ 0. It is possible

that Ψα(0) > 0 in which case we output ĉ(θ) = 0. Otherwise, we use BDM to find the unique

root to Ψα(c) on [0, c̄(θ)] where, by construction, Ψα(c̄(θ)) ≥ 0. We propose the following

algorithm:

Step 0 (Initialize)

1. Set Tol equal to a chosen tolerance value;

2. Set cL = 0 and cU = c̄(θ) (values of c that bracket the root ĉn(θ));

3. Set c−1 = cL and c−2 = ⊥ (proposed values of c from 1 and 2 iterations prior). Also

set c0 = cL and c1 = cU .

4. Compute ϕj(ξ̂j(θ)) for j = 1, · · · , J ;

5. Compute Dθgj(θ) for j = 1, · · · , J ;

6. Compute G
b
j for b = 1, · · · , B, j = 1, · · · , J ;

7. Compute ψb(cL) and ψb(cU) for b = 1, · · · , B;

8. Compute Ψα(cL) and Ψα(cU).

Step 1 (Method Selection)

Use the BDM rule to select the updated value of c, say c2. The value is updated using

one of three methods: Inverse Quadratic Interpolation, Secant, or Bisection. The selection

rule is based on the values of ci, i = −2,−1, 0, 1 and the corresponding function values.

Step 2 (Update Value Function)

Update the value of Ψα(c2). We can exploit the previous computation and monotonicity

of the function ψb(c2) to reduce computational time:

1. If ψb(cL) = ψb(cU) = 0, then ψb(c2) = 0;
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2. If ψb(cL) = ψb(cU) = 1, then ψb(c2) = 1.

Step 3 (Update)

1. If Ψα(c2) ≥ 0, then set cU = c2. Otherwise set cL = c2.

2. Set c−2 = c−1, c−1 = c0, c0 = cL, and c1 = cU .

3. Update corresponding function values Ψα(·).

Step 4 (Convergence)

1. If Ψα(cU) ≤ Tol or if |cU − cL| ≤ Tol , then output ĉn(θ) = cU and exit. Note:

Ψα(cU) ≥ 0, so this criterion ensures that we have at least 1− α coverage.

2. Otherwise, return to Step 1.

The computationally difficult part of the algorithm is computing ψb(·) in Step 2. This is

simplified for two reasons. First, evaluation of ψb(c) entails determining whether a constraint

set comprised of J + 2d+ 2 linear inequalities in d variables is feasible. This can be accom-

plished by efficiently employing CVXGEN or CVX. Second, we exploit monotonicity in ψb(·) to

reduce the number of linear programs needed to be solved.

The file KMS 31 Estep fixes θ and computes the GMS function ϕ(ξ̂j(θ)) and gradients

Dθgj(θ); KMS 32 Critval executes the BDM algorithm; and KMS 33 Coverage computes

ψb(c) for b = 1, · · · , B.

4 Discussion

We have described how to implement the CPI algorithm to solve

inf / sup
θ∈Θ

p′θ (10)

s.t.
√
n
m̄j(θ)

σ̂j(θ)
≤ ĉ(θ) j = 1, · · · , J. (11)
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One difficulty in solving this problem is that ĉ(θ) is a “black-box function” with an unknown

gradient. Directly solving this problem using fmincon with numerical gradients is slow and

can return local solutions that are far from the global solution(s). The EAM algorithm is

employed to solve this problem. This manual and MATLAB package can serve as a guide on

how to implement the EAM algorithm to solve other black-box functions, provided sufficient

continuity assumptions hold.

In the next release of the MATLAB package, we will allow for non-separability of the moment

(in)equalities. Additional numerical issues are presented in this case. The estimator for the

moment function, the estimator for the standard deviation, and the bootstrap need to be

recomputed at each visit of θ ∈ Θ in the EAM algorithm. The gradients of the moment

functions also depend on the data, so this adds additional numerical complexity in the

optimization routine.

Another feature we plan to incorporate is an objective function h(θ) in Equation (10)

that is not necessarily equal to p′θ. The objective function, for example, could be a wel-

fare function from a partially identified model that is parameterized by θ (for example, see

Barseghyan, Coughlin, Molinari, and Teitelbaum (2017)). Consequently, the welfare func-

tion is also partially identified. Using the CPI algorithm one can obtain uniformly valid

bounds on the function h(θ). Modifications to the feasible search, fixed-point algorithm, and

M-step are required.
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Appendices

A Tables

DGP dim p J1 J2 S CVXGEN name

1-3 2 4 0 0 csolve DGP1

4 2 8 0 0 csolve DGP4

5-6 8 8 8 0 csolve DGP5

7 9 8 8 0 csolve DGP7

8 5 8 4 13 csolve DGP8

Table 1: List of parameters for creating the CVXGEN MEX files for simulations in Kaido et al. (2017). The
first column corresponds to the parameter DGP in KMS Simulation.

B Polytope Constraints and Non-basis Directional Vec-

tors

In this appendix we describe the numerical issues that arise when either p is a non-basis

directional vector or polytope constraints are imposed on the parameter space. We also

propose a method on how to resolve these issues. The key issue is how to draw points from

the contracted parameter space, see Equation (8). If the constraints Aθθ ≤ bθ are included

or if p is not a basis vector, then the contracted parameter space is a polytope but not

a hyperrectangle (henceforth, called a non-basis polytope). In either case the numerical

problem amounts to drawing points uniformly from a non-basis polytope.

We have identified three methods that can be used to draw points from a non-basis

polytope. We, however, find that only the third method is reliable.

1. Hit-and-Run (HR) sampling. HR sampling uses Monte Carlo Markov Chain methods

to draw points uniformly from the non-basis polytope Θ(hcounterrate ) ⊂ Rd. The method

is, however, numerically unstable if the non-basis polytope is thin. The contracted pa-
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rameter space in the EAM algorithm converges to a polytope in R
d−1 as the contraction

counter increases Therefore, HR sampling is unreliable for our problem.

2. Weighted average of vertices. In this method, the vertices of the contracted parameter

space Θ(hcounterrate ) are computed. A randomly generated point can be generated from

a random weighted average of the vertices. Uniform weights do not guarantee that

the point is uniformly drawn from Θ(hcounterrate ). This, never-the-less, does not violate

convergence assumptions for the EAM algorithm provided that there is positive mass

at all points θ ∈ Θ(hcounterrate ). The algorithm that computes the vertices suffers from

numerical issues as the parameter space becomes thin, and so this method is not

appropriate for the CPI algorithm.

3. Draw-and-Discard sampling (DD). The algorithm first draws points uniformly from

a box B ⊃ Θ(hcounterrate ). It then discards any points that are not in Θ(hcounterrate ). The

volume of B relative to Θ(hcounterrate ) must be small for this method to work well. If not,

then a large number of initial points are required in order to achieve a target number

of points. Therefore, the box B needs to be carefully defined.

In the current version of the CPI algorithm, the DD method only works for when p is

a basis vector and the parameter space is a non-basis polytope. Modifications to the user-

written function bound transform.m are required. We explain the modifications with an

example. The parameter space for DGP 8 is the polytope:

Θ = {θ ∈ R
5 : θ1 ∈ [0, 1], θ2 ∈ [0, 1], θk ∈ [0,min{θ1 θ2}], k = 3, 4, 5}.

First, to run DD sampling set KMSoptions.HR=0 (to use hit-and-run sampling set KMSoptions-

.HR=1). To draw points from this space we use the draw-and-discard sampling method. The

file bound transform.m defines the box B above. It is not advised to set B to be the pa-

rameter bounds θLB and θUB, as the volume of this box relative to the contracted parameter

space Θ(hcounterrate ) quickly diverges. The inputs of bound transform are: LB in, UB in, and
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KMSoptions. The inputs LB in and UB in define the contracted parameter space (contracted

in direction p). The outputs are the modified bounds LB out and UB out . Points drawn from

{θ ∈ R5 : LBin ≤ θ ≤ UBin} are unlikely to satisfy the polytope constraints. In particular,

if

LBin =

























0

0

0

0

0

























, UBin =

























10−4

1

1

1

1

























then it is likely that components 3− 5 violate the condition θk ∈ [0,min{θ1 θ2}]. To resolve

this issue the upper bound is modified, so that UBout,1 = UBin,1, UBout,2 = UBin,2, and

UBout,k = min{UBin,1, UBin,2, UBin,k} for k = 3, 4, 5 (see Lines 39-44 in bound transform.m).

The lower bound is unchanged. The box B defined by LBout and UBout contains the con-

tracted parameter space and retains a good volume ratio. The modifications to bound trans-

form.m are model specific, and depend on the constraints Aθθ ≤ bθ.

If the parameter space is a polytope, then additional constraints for the linear program

that computes ĉ(·) are required. These constraints are determined by the user-specified

function Rho Polytope Box. Recall that we require λ ∈ √
n(Θ − θ) ∩ ρBd. The constraint

λk ∈ [−ρ, ρ] is already included in KMS 33 Coverage. For DGP 8, the following constraints

need to be added:

λk ≤
√
n(1− θk), k = 1, 2

− λk ≤
√
n(0− θk), k = 1, 2, 3, 4, 5

− λ1 + λk ≤ −√
n(−θ1 + θk), k = 3, 4, 5

− λ2 + λk ≤ −√
n(−θ2 + θk), k = 3, 4, 5.
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Observe that the constraint −λ1 + λk ≤ −√
n(−θ1 + θk) is implied by the condition θk ≤

min{θ1, θ2}. These S = 13 constraints are specified in Rho Polytope Box. In the CVXGEN C

code generator, we set S = 13 for this DGP.

37


	1 Introduction
	2 Using the Calibrated Projection Interval Algorithm
	2.1 Overview of Important Files and Folders
	2.2 CVXGEN and CVX Setup
	2.2.1 CVXGEN Setup
	2.2.2 CVX Setup

	2.3 Running Simulations
	2.4 User-specified Model

	3 Calibrated Projection Interval Algorithm
	3.1 Feasible Search Algorithm
	3.2 EAM Algorithm
	3.3 Root-Finding Algorithm Used to Compute n()

	4 Discussion
	References
	Appendices
	A Tables
	B Polytope Constraints and Non-basis Directional Vectors

