Optimal Linear Instrumental Variables Approximations

Juan Carlos Escanciano* Wei Li f

Indiana University North Carolina State University

May 7th, 2018

Abstract

Ordinary least squares provides the optimal linear approximation to the true regression function
under misspecification. This paper investigates the Instrumental Variables (IV) version of this prob-
lem. The resulting population parameter is called the Optimal Linear IV Approximation (OLIVA).
This paper shows that a necessary condition for regular identification of the OLIVA is also sufficient
for existence of an IV estimand in a linear IV model. The necessary condition holds for the important
case of a binary endogenous treatment, leading also to a LATE interpretation with positive weights.
The instrument in the IV estimand is unknown and is estimated in a first step. A Two-Step IV
(TSIV) estimator is proposed. We establish the asymptotic normality of a debiased TSIV estimator
based on locally robust moments. The TSIV estimator does not require neither completeness nor
identification of the instrument. As a by-product of our analysis, we robustify the classical Hausman
test for exogeneity against misspecification of the linear model. Monte Carlo simulations suggest

excellent finite sample performance for the proposed inferences.
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1 Introduction

The Ordinary Least Squares (OLS) estimator has an appealing nonparametric interpretation—it pro-
vides the optimal linear approximation (in a mean-square error sense) to the true regression function.
That is, the OLS estimand is a meaningful and easily interpretable parameter even under misspec-
ification of the linear model. Unfortunately, except in special circumstances (such as with random
assignment), this parameter does not have a causal interpretation. Commonly used estimands based
on Instrumental Variables (IV) do have a causal interpretation, but do not share with OLS the ap-
pealing nonparametric interpretation (see Imbens, Angrist and Graddy (2000)). The main goal of our
paper is to fill this gap and propose an IV analog to OLS.

The parameter of interest is thus the vector of slopes in the optimal linear approximation of the
structural regression function. We call this parameter the Optimal Linear IV Approximation (OLIVA).
We first investigate regular identification of the OLIVA, i.e. identification with a finite efficiency bound,
based on the results in Severini and Tripathi (2012). The main contribution of our paper is to show
that the necessary condition for regular identification of the OLIVA is also sufficient for existence of
an IV estimand in a linear IV regression. That is, we show that under a minimal condition for regular
estimation, it is possible to obtain an IV version of OLS.

The identification result is constructive and leads to a two-step estimation strategy. The necessary
condition for regular identification is a conditional moment restriction that is used to estimate a suitable
instrument in a first step. The second step is simply a standard linear IV estimator with the estimated
instrument from the first step. The situation is analogous to optimal IV (see, e.g., Robinson (1976)
and Newey (1990)), but technically more difficult due to the possible lack of identification of the first
step and the first step problem being statistically harder than a nonparametric regression problem. We
overcome these difficulties combining two ingredients: a Penalized Sieve Minimum Distance (PSMD)
first step estimator of the type discussed in Chen and Pouzo (2012) (to address the lack of identification)
and the use of locally robust moments that have zero derivatives with respect to first steps (to obtain
asymptotic normality under weak assumptions). The combination of these two ingredients for obtaining
asymptotic normality appears to be new in the literature, and is of independent interest.

Locally robust moments in a general GMM setting have been discussed in Chernozhukov, Escan-
ciano, Ichimura, Newey and Robins (2018), including linear functionals of structural functions identified
by conditional moment restrictions, such as the OLIVA . These authors provide a general asymptotic
theory based on sample splitting. We complement their theory with an asymptotic theory that does
not require neither sample splitting nor identification of the first steps. The proposed TSIV estimator
has an excellent finite sample performance in simulations, being competitive with the oracle standard
IV under linearity of the structural model, while robustifying it otherwise.

An important by-product of our approach is a Hausman test for exogeneity that is robust to
misspecification of the linear model. This robustness comes from our TSIV being nonparametrically
comparable to OLS under exogeneity. We establish the asymptotic null distribution for the robust
Hausman test. Lochner and Moretti (2015) consider a different exogeneity test comparing the classical

IV estimator with a weighted OLS estimator when the endogenous variable is discrete. In contrast,



our test compares the standard OLS with our IV estimator, allowing for general endogenous variables
(continuous, discrete or mixed), more in the spirit of the original Hausman (1978)’s exogeneity test.
Monte Carlo simulations confirm the robustness of the proposed Hausman test, and the inability of the
standard Hausman test to control the empirical size under misspecification of the linear model.

Our paper contributes to two different strands of the literature. The first strand is the nonparamet-
ric IV literature; see, e.g., Newey and Powell (2003), Ai and Chen (2003), Hall and Horowitz (2005),
Blundell, Chen and Kristensen (2007), Horowitz (2007), Horowitz (2011), Darolles, Fan, Florens and
Renault (2011) and Santos (2012), among others. Severini and Tripathi (2006, 2012) discuss regular
and irregular identification of linear functionals of the structural function without completeness, and
their results on regular identification are adapted to the OLIVA below. Santos (2011) establishes reg-
ular asymptotic normality for weighted integrals of the structural function in nonparametric IV, also
allowing for lack of nonparametric identification of the structural function. The OLIVA functional was
not discuss in neither Severini and Tripathi (2006, 2012) nor Santos (2011). The implementation and
asymptotic normality proof for the OLIVA based local robustness can be also applied to the functionals
considered in Santos (2011) and to other problems involving linear functionals of structural functions
defined by conditional moment restrictions.

Our paper is also related to the Causal IV literature that interprets IV nonparametrically as a
Local Average Treatment Effect (LATE); see Imbens and Angrist (1994). A forerunner of our paper is
Abadie (2000). He defines the Complier Causal Response Function and its best linear approximation
in the presence of covariates. He also develops two-step inference for the resulting linear approximation
coefficients. Like in much of this literature, the endogenous variable is binary and the instrument is also
binary. In this case, we show that our IV estimator also has a LATE interpretation with non-negative
weights; see Section 2.3.

The main contributions of this paper are thus the interpretation of the regular identification of
the OLIVA as existence of an IV estimand, the asymptotic normality of a TSIV estimator, and the
robust Hausman test. The identification, estimation and exogeneity test of this paper are all robust to
the lack of the identification of the structural function (i.e. lack of completeness) and the instrument.
Importantly, the proposed methods are also robust to misspecification of linear model, sharing the
nonparametric interpretation of OLS, but in a setting with endogenous regressors.

The rest of the paper is organized as follows. Section 2 defines formally the parameter of interest and
its regular identification. Section 3 proposes a PSMD first step and establish the asymptotic normality
of the TSIV. Section 4 derives the asymptotic properties of the robust Hausman test for exogeneity.
The finite sample performance of the TSIV and the robust Hausman test is investigated in Section
5. Appendix A presents notation, assumptions and some preliminary results that are needed for the
main proofs in Appendix B. Appendix C discusses different implementations of first steps. Appendix

D reports tables for simulation results on sensitivity analysis.



2 Optimal Linear Instrumental Variables Approximations

2.1 Nonparametric Interpretation

Let the dependent variable Y be related to the p—dimensional vector X through the equation
Y =g(X)+e, (1)

where E|[e| Z] = 0 almost surely (a.s), for a g—dimensional vector of instruments Z.

The OLIVA parameter (3 solves, for g satisfying (1),
B = arg min E[(9(X) — /X)) (2)
YERP ’
where henceforth A’ denotes the transpose of A. If E[X X'] is positive definite, then
B =B(9) = BIXX']T E[Xg(X)]. 3)

When X is exogenous, i.e. E[e| X] = 0 a.s., the function g(-) is the regression function E[Y|X = -]
and J is identified and consistently estimated by OLS under mild conditions. In many economic
applications, however, X is endogenous, i.e. E[¢| X] # 0, and identification and estimation of (2)
becomes a more difficult issue than in the exogenous case, albeit less difficult than identification and
estimation of the structural function g in (1).

We first investigate regular identification of 5 in (1)-(2). The terminology of regular identification
is proposed in Khan and Tamer (2010), and refers to identification with a finite efficiency bound.
Regular identification of a parameter is desirable because it means possibility of standard inference

(see Chamberlain (1986)). The necessary condition for regular identification of 3 is
E[h(Z2)|X] =X as, (4)

for an squared integrable h(-); see Lemma 2.1, which builds on Severini and Tripathi (2012). We show
that this condition is sufficient for existence of an IV estimand identifying 8. That is, we show that 3

is identified from a linear IV regression
Y =X'8+1U, E[UKh(Z)] = 0.

The IV estimand uses the unknown, possibly not unique, transformation h(-) of Z as instruments. We
propose below a Two-Step IV (TSIV) estimator that first estimates the instruments from (4) and then
applies IV with the estimated instruments. The proposed IV estimator has the same nonparametric
interpretation as OLS, but under endogeneity.

If the nonparametric structural function ¢ is identified, then [ is of course identified. Conditions
for point identification and consistent estimation of g are given in the references on the nonparametric
IV literature cited above. Asymptotic normality for continuous functionals of a point-identified g has
been analyzed in Ai and Chen (2003), Ai and Chen (2007), Carrasco, Florens and Renault (2006),
Carrasco, Florens and Renault (2014), Chen and Pouzo (2015) and Breunig and Johannes (2016), and
we could adapt these results to obtain asymptotic normality for the OLIVA when g is identified.



Nonparametric identification of g is, however, not necessary for identification of the OLIVA; see also
Severini and Tripathi (2006, 2012). It is indeed desirable to obtain identification of § without requiring
completeness assumptions, which are known to be impossible to test (cf. Canay, Santos and Shaikh
(2013)). In this paper we focus on regular identification of the OLIVA without assuming completeness.
Inference under irregular identification is known to be less stable and non-standard, see Chamberlain

(1986), and it is beyond the scope of this paper.

2.2 Regular Identification

We observe a random vector W = (Y, X, Z) satisfying (1), or equivalently,
H(z)i= BIY|Z = 2] = Elg(X)| Z = 2] :i= T"g, (5)

where T™* denotes the adjoint operator of 7. Let G denote the parameter space for g, with g € G C
Ly(X). Assume T% : G — Lo(Z) and r € Lo(Z), where henceforth, for a generic random variable V,
Lo(V) denotes the space of (measurable) square integrable functions of V, i.e. f € Lo(V) if ||f|? :=
E [[f(V)|2] < 00, and where |A| = trace (A’A)l/2 is the Euclidean norm.!

The next result, which follows from an application of Lemma 4.1 in Severini and Tripathi (2012),
provides a necessary condition for regular identification of the OLIVA. Define gy := arg ming.,—7+4 ||g|| -
Correct specification of the model guarantees that gg is uniquely defined; see Engl, Hanke and Neubauer
(1996). Define £ =Y — go(X), Q(2) = E[§2| Z = z], and let Sz denote the support of Z. We consider

the following assumptions.

Assumption 1: The model (1) holds with E[X X'] finite and positive definite.

Assumption 2: 0 < inf.cs, Q(2) < sup,cs, 2(2) < oo and T is compact.

Assumption 3: There exists h(-) € La(Z) such that (4) holds.

Lemma 2.1 Let Assumptions 1-2 hold. If B is n'/%-reqularly estimable, then Assumption 3 holds.

The proof of Lemma 2.1 and other results in the text are gathered in Appendix B. The concept of
n'/2-regular estimation is defined in e.g. Chamberlain (1986). Another way to state Lemma 2.1 is
that Assumption 3 is necessary for the OLIVA to be identified with a finite efficiency bound, i.e. to be
regularly identified. Assumption 3 may hold when completeness fails (see Newey and Powell (2003) for
discussion of completeness). If Z has discrete support, then Assumption 3 can be tested. We expect
that this condition is also testable when Z and X are continuous and the distribution of X given Z
is not complete (see Chen and Santos (2015)). When X is binary, Assumption 3 holds under a mild
condition, as shown below. More generally, for X discrete, (4) becomes a finite system of equations,
which makes the condition more likely to hold, provided the support of Z is large enough relative to
that of X.

"When f is vector-valued, by f(V) € L2(V) we mean that its components are all in L2(V).




The main observation of this paper is that the necessary condition for n'/2-estimability of 3 is also
sufficient for existence of an IV estimand. This follows because by the law of iterated expectations,
Assumption 3 and E[¢| Z] =0 a.s.,

B = E[XX'|T E[Xg(X)]
= B[E[h(Z)| X]X'| ' B[E[M(Z)| X]9(X)]
= E[M2)X'] T E[h(Z)Y],

which is the IV estimand using h(Z) as instruments for X. The following Proposition summarizes this
finding and shows that, although there are potentially many solutions to (4), the corresponding 3 is

unique.
Proposition 2.2 Let Assumptions 1-3 hold. Then, 3 is identified by the IV with instruments h(Z).

Remark 2.1 By (/), E[h(Z)X'] = E[XX']. Thus, non-singularity of E[h(Z)X'] follows from that of
E[XX']. Thus, the strength of the instruments h(Z) is measured by the level of multicollinearity in X .

2.3 LATE Interpretation

As an important example, consider the case where the endogenous variable X is binary, like an endoge-
nous treatment indicator. In this case Assumption 3 is satisfied under a mild condition. Furthermore,
a unique minimum norm solution to (4) can be easily characterized (see the proof of Proposition 2.3).
Such minimum norm solutions will also play an important role in our implementation of the continuous

case as well.

Proposition 2.3 If X is binary, and the propensity score p(Z) = E[X|Z] is not constant, with
0 < E[p(Z)] < 1, then Assumption 8 holds. Moreover, there exists a unique solution of (/) of the form

ho(Z) = a+vp(Z), and this hg is the unique minimum norm solution among all solutions of (4).

The last part of Proposition 2.3 is particularly important, as it implies that Condition 3 in Imbens
and Angrist (1994) holds. This condition states that (i) for all zj, 22 in the support of Z, it follows
that p(z1) < p(z2) implies either ho(z1) < ho(z1) or ho(z1) > ho(z1); and (ii) Cov(X, ho(Z)) # 0.
Both conditions are satisfied by hg in Proposition 2.3 (note Cov(X,ho(Z)) = Var(X) > 0). Hence,
when other standard assumptions in Imbens and Angrist (1994) are satisfied (Conditions 1 and 2),
their Theorem 2 implies that our IV estimator has a LATE interpretation as a weighted average of
local average treatment effects with nonnegative weights. More generally, for continuous endogenous
variables and continuous instruments our estimator, being an I'V estimator, has a LATE interpretation
as described in Imbens, Angrist and Graddy (2000).

3 Two-Step Instrumental Variables Estimation

Proposition 2.2 suggests a TSIV estimation method where, first, an h is estimated from (4) and then,

an IV estimator is considered using the estimated h as instrument. To describe the estimator, let



{Y;, X, Z;}7, be an independent and identically distributed (iid) sample of size n satisfying (1). The
TSIV estimator follows the steps:

Step 1. Estimate a function h satisfying E[h(Z)| X] = X a.s., say hy, as defined in (9) below.

Step 2. Run linear IV using instruments h,,(Z) for X in Y = X'8+ U, i.e.

n -1 n
. 1 . 1 -
= =D h(Z)X] =) hn(Z)Y; |,
i= (A h) (LS h@y) ©
where h,, is the first-step estimator given in Step 1.

For ease of exposition, we consider first the case where X and Z have no overlapping components

and are continuous. We also analyze below the case of overlapping components and discrete variables.

3.1 First-Step Estimation

To deal with the problem of lack of uniqueness of h, we consider a Tikhonov-type estimator. This
approach is commonly used in the inverse problem literature, and is also popular in econometrics, see
Hall and Horowitz (2005), Carrasco, Florens and Renault (2006), Florens, Johannes and Van Bellegem
(2011), Chen and Pouzo (2012) and Gagliardini and Scaillet (2012), among others. Chen and Pouzo
(2012) propose a PSMD estimator of g and show the Lo—consistency of a solution identified via a
strict convex penalty. These authors also obtain rates in Banach norms under point identification. Our
first-step estimator h,, is a PSMD estimator of the form considered in Chen and Pouzo (2012) when
identification is achieved with an Ls-penalty. Their results are used below to establish consistency of
our TSIV, but they are not applicable to establish asymptotic normality, for which rates are required,
due to the possible lack of identification of h.

Defining m(X; h) := E[h(Z) — X|X], we estimate the unique hg satisfying ho = limy o ho()), where

ho(N) = argmin{|[m(; h)||* + AllR|[* - h € La(Z)},

and A > 0. Assumption 3 guarantees the existence and uniqueness of hg. The function hg is the
minimum norm solution of (4), as in Proposition 2.3. For the case where X is continuous, we propose
to estimate hg by a PSMD estimator.

Let E,[g(W)] denote the sample mean operator, i.e. E,[g(W)] = n=1Y " g(W;), let ||g|ln =

1/2 .
(En[|g(W)]2]> be the empirical Ly norm, and let E[h(Z)| X] be a series-based estimator for the

conditional mean E[h(Z)| X], which is given as follows. Consider a vector of approximating functions

p(a) = (p1(2), s pr, (@)
having the property that a linear combination can approximate E[h(Z)| X = x]. Then,

BINZ)| X = a] = p""(x)(P'P)7V Y pf (X)) h(Z0),
=1

7



where P = [pf»(X}), ...,p""(X,,)] and K,, — 0o as n — oc.
Let H C Lo(Z) denote the parameter space for h. Then, define the estimator

i = arg min{] i (0 R) |2 + Aal[BIJ% < b € Ho, (7)

where H,, C H C Ly(Z) is a linear sieve parameter space whose complexity grows with sample size,
m(Xs;h) = E(h(Z) — X|X;), and A, is a sequence of positive numbers satisfying that A, | 0 as
n T oo, and some further conditions given in the Appendix A. In our implementation H, is the finite

dimensional linear sieve given by
JIn
Mo =S hih=>ajq() (8)
j=1

where ¢’ (2) = (q1(2), ..., qJ,(2))" is a vector containing a linear sieve basis, with .J,, — 0o as n — oo.
The proposed TSIV estimator uses h, in (7) with #, as in (8), and has a simple closed-form
expression given as follows. Define ¢(X) = E[q’(Z)| X], D, = E,[4(X)X"], Qon = Enlq’(2)¢’ (2)],
and
Ay, = Eald(X)d(X)] + AaQan.

Then, the closed form solution to (7) is given by
ha() = DL A (). (9)

An alternative minimum norm approach requires choosing two sequences of positive numbers a,, and

b, and solving the program
hp := argmin{||h||2 : b € Hp, ||[(X;h)]|2 < bn/an}.

This is the approach used in Santos (2011) for his two-step setting. Appendix C shows the equivalence
between Tikhonov-type estimators and minimum norm-type estimators, in the sense that there exists
An such that iLn = iLn, and more importantly, we provide bounds for such A, in terms of b, /ay,.
This result is of independent interest. We prefer our implementation, since we only need one tunning
parameter rather than two, and data driven methods to choose this parameter are available; see Section
3.3. We could combine this equivalence result with the uniform consistency result in Santos (2011) to
show consistency of B , but this would require compactness of the parameter space H with respect the
supremum norm. Alternatively, the general Lo—consistency result for h,, in Chen and Pouzo (2012)
can be used to establish the consistency of our TSIV estimator under more general conditions on the

parameter space, as the following result shows.

Proposition 3.1 Let Assumptions 1-8 and A1-A8 in Appendiz A hold. Then, B is consistent for (.



3.2 Second-Step Estimation and Inference

The moments that define the IV estimand are
E(Y — X'8)ho(2)] = 0.

These moments are not locally robust in the sense of Chernozhukov, Escanciano, Ichimura, Newey and
Robins (2018), meaning that the derivative of the moments with respect to hg is in general not zero,
and hence the first step will have an impact in the asymptotic distribution of the TSIV. Chernozhukov,
Escanciano, Ichimura, Newey and Robins (2018) derive locally robust moments for linear functionals
of structural functions defined by conditional moment restrictions, which include the OLIVA as special

case. The locally robust moments are given by
m(W,8,h,9) = (Y = X'B)(Z) — (9(X) — X'B)(h(Z) — X).

These moments are also doubly robust in the sense of Scharfstein, Rotnitzky and Robins (1999) and
Robins, Rotnitzky and van der Laan (2000). However, the double robustness here holds even when
first-steps are not identified, since for any h satisfying E[B(Z)‘ X] = X a.s. and any § satisfying
ElY —g(X)| Z] =0 as., and for all h and g,

E[m(W,8,h,5)] =0 and E[m(W, 8, h,g)] = 0. (10)

That is, the moments continue to hold if one first step component is in the identified set and the
identified set is not singleton. Estimators based on doubly robust moments have several advantages
in terms of bias and mean squared error finite-sample performance, as illustrated in the context of
treatment effects by Bang and Robins (2005) and Firpo and Rothe (2016).

Doubly robust moments can be also used to derive parametric inference for § that is robust to
misspecification of g or h. That is, if g9 and hs are parametric specifications of g and h, respectively,
we only need either gy or hs to be correctly specified for consistent estimation of 8 with the doubly
robust moments. For example, if Y and X are binary we could specify gg and the propensity score as
parametric Probit models, and estimate § as the solution of the doubly robust moments with plugged in
parametric estimates of gg and hs(2) = a+vpy(2), § = (a,~,n')'. More generally, we can use standard
GMM inference for any parametric estimates based on doubly robust moments. Since parametric
inference is standard, we leave the details to the reader, and rather focus on the more complicated
semiparametric case.

In the semiparametric two-step setting the locally robust or doubly robust moment leads to

B = Eh(Z)X' | ENZ)Y] - E[MZ)X|E[(9(X) — X'B)(h(Z) — X)]
= frv — b,

which suggests the debiased TSIV estimator



~

where b = By, [h (Zi) X7 En[(in(X:) — X'B) (hn(Z;) — Xi)] and §n(-) denotes a PSMD estimator of go
given by

() = GRBY ™ (), (11)
with Gy, = Eu[p(Z)Y], p(2) = E[p¥(X)| 2], Blg(X)| Z = 2] = ¢ ()(QQ) ™ Y1, ' (Z)g(X0),
Q = [¢"(Z1),....,a""(Z,)], Pan = E,[p"(X)p®(X)'], and By, = E,[p(2)p(Z)'] + A\uPoy. For ease of
presentation, we use the same penalization parameter A, for hy, and Jn, although it is possible to use
two different parameters in the theory. Similarly, although we do not make it explicit in the notation,
we will use different tuning parameters K, and J, for estimating hy, or Jn, see Section 3.3 for issues of
implementation.

The following result establishes the asymptotic normality of . Tts proof relies on new Lo—rates of
convergence for h, and §, under partial identification of h and g. Santos (2011) obtained related rates
but for a weak norm, which are not enough for our asymptotic normality. Although we focus on PSMD,
h, — hOH = 0p(n_1/4)

and ||gn — go|| = op(n~/*) under some entropy conditions for the parameter spaces. This genericity of

the asymptotic normality proof applies to any first step estimators satisfying ’

the proof holds true by virtue of the double robustness of moments. These conditions can be further
weakened to a simple rate condition (without entropy conditions) by means of sample splitting, as

shown in Chernozhukov, Escanciano, Ichimura, Newey and Robins (2018).
Theorem 3.2 Let Assumptions 1-8 above and Assumptions A1-A5 in the Appendix A hold. Then,

V(B = B) —+a N(0,V),

where V = E[XX'| 7 E[ss'|E[XX']7! and s = ho(Z)U —go(X) (ho(Z) — X). Furthermore, a consistent
estimator for V is given by

V = E [ X X! B [80i8. B[ X X171, (12)

where

and U =Y — X'.

Remark 3.1 When h is identified, and A, is set to zero, the TSIV becomes asymptotically first order
equivalent to 8, and hence asymptotically doubly robust. This follows from Escanciano and Song (2010),
whose results imply that under these conditions /nb = op(1) (note g need not be identified).

Theorem 3.2 can be then used to construct confidence regions for 8 and testing hypotheses about

0 following standard procedures.

3.3 Implementation

For implementation one has to choose the basis {p®"(X), ¢/#(Z)} and the tuning parameters { Ky, J5,, A }.
The theory for estimating ho requires that K, > J, (for Ay, to be invertible). In the simulations we

10



study rules of the form K, = cJ, for several values of ¢ such as 2 or 3. In practice, we recommend
choosing first J,, then set K,, = 2.J,, and choose \,, by Generalized Cross-validation (cf. Wahba (1990)),
An = argminysg GCV, (), as follows. Note that

8= (DLAYQ'X) T DLATIQY, (13)

where X = [X1,..., X, and Y = [V1,...,¥;,)'. Similarly, define Ly = X (D, A;'Q'X) ™" D, A'Q,
Yy = LY = (YM,...,}A/M)’ and vy = tr(Ly). Then, the Generalized Cross-validation criteria for
estimating B is
. 2
I~ Yi—Yy
GCV,(\) = — — ] .
() n?}(l(m\/n)
We then propose the following algorithm for implementation:

Step 1. Choose {p*"(X),q’"(Z)} (e.g. B-splines or power series). Set J,, to small value (e.g. 4), set
K, = 2J, and compute \,, = argminy~o GCV,(\). Compute h, following (9).

Step 2. Switch the values of J,, and K,, (so now J,, = 2K,,) and compute §, as in (11).

Step 3. Compute 3 as in (13) and b = E, [ (Z) X)) En[(9n () — B'X:) (hn(Z5) — X3)].
Step 4. Compute 3 = 3 —b and V = Ep[h(Z:) X/ Ep[80i8. | Bn Xihn (Z:)]) 71

In practice, we recommend to carry out sensitivity analysis with respect to {K,, Jn, An} in the
implementation above. Extensive simulations in Appendix D show that our methods are not sensitive

to the tuning parameters {K,, J,, \n}.>

3.4 Overlapping components and Discrete Variables

Suppose now that there are exogenous variables included in the structural equation g. This means
X and Z have common components. Specifically, define X = (X1,X5) and Z = (Z1,Z3) where
X1 = Z; denote the overlapping components of X and Z, with dimension p; = ¢;. This is a very
common situation in applications, where exogenous controls are often used. In this setting a solution

of E[h(Z)| X] = X a.s. has the form h(Z) = (Z],h5(Z))’, where
E[ho(2)| X] = X3 aus.
Following the arguments above, we obtain an estimator given by h, = (Z1, iL’Qn)’ , where
hon() = D3, A3 47 (), (14)

and Do, := E,[¢(X)X}]. This setting also covers the case of an intercept with no other common
components, where X7 = Z; = 1 and ¢; = 1. The asymptotic normality for 3 continues to hold, with
no changes in the asymptotic distribution, due to the fact that the theory is the same with estimated
h than for known A (thanks to the double robustness).

2Matlab and R code to implement our TSIV is available at the first author’s website.
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When 7 is discrete, the theory above is applicable but we do not need J,, diverging to infinity. In
that case, the linear sieve H,, is saturated and ¢”(Z) could be a saturated basis for it. For example, if
Z takes J discrete values, {21,..., 27}, we can take g;(z) = 1(z = z;). Similarly, if X is discrete we do
not need K,, — 0o, and we can choose p¥ as a saturated basis. For example, if X = (1, X5) with X
binary (a treatment indicator), we can take K, = 2, p1(x) = 1, pa(x) = 2, h(z) = a + vp(z), where
the propensity score (and then «,~) can be estimated by sieves, and go(z) = By + S1x2 = f'z. The

formulas for the asymptotic variance of § are the same for discrete or continuous variables.

4 A Robust Hausman Test

Applied researchers are concerned about the presence of endogeneity, and have traditionally used tools
such as the Hausman (1978)’s exogeneity test for its measurement. This test, however, is uninformative
under misspecification; see Lochner and Moretti (2015). The reason for this lack of robustness is that in
these cases OLS and IV estimate different objects under exogeneity, with the estimand of IV depending
on the instrument itself. As an important by-product of our analysis, we robustify the classic Hausman
test of exogeneity against nonparametric misspecification of the linear regression model.

The classical Hausman test of exogeneity (cf. Hausman (1978)) compares OLS with IV. If we use
the TSIV as the IV estimator, we obtain a robust version of the classical Hausman test, robust to the
misspecification of the linear model. For implementation purposes it is convenient to use a regression-
based test (see Wooldridge (2015), pg. 481). We illustrate the idea in the case of one potentially
endogenous variable X and several exogenous variables X7, with X; including an intercept.

In the model

Y = B1X1 + BXo+ U, E[UR(Z)] =0,

the variable X5 is exogenous if Cov(Xq,U) = 0. If we write the first-stage as
X9 = O/le + OéQhQ(Z) +V,

then exogeneity of Xy is equivalent to Cov(V,U) = 0. This in turn is equivalent to p = 0 in the least
squares regression

U=pV+E£

A simple way to run a test for p = 0 is to consider the augmented regression
Y =p8X+pV+¢,

estimated by OLS and use a standard ¢ — test for p = 0.

Since V' is unobservable, we first need to obtain residuals from a regression of the endogenous
variable X5 on X7 and BQH(Z ), say V. Then, run the regression of Y on X and V. The new Hausman
test is a standard two-sided t-test for the coefficient of V, or its Wald version in the multivariate
endogenous case. Denote the t-test statistic by t,,. The benefit of this regression approach is that under
some regularity conditions given in Appendix A no correction is necessary in the OLS standard errors
because V is estimated. Denote S = (X, V).
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Assumption 4: The matrix E[SS’] is finite and non-singular.

Theorem 4.1 Let Assumptions 1-4 above and Assumptions A1-A6 in the Appendix A hold. Then,
under the the null of exogeneity of Xo,

tn —>d N(O, 1).

5 Monte Carlo

This section studies the finite sample performance of the proposed methods. Consider the following
Data Generating Process (DGP):

_\P :
Y = Z]:l HJ (X) + & X 0 1 v
Z = m(D)7 ~ N ) )
D 0 v 1
e=pV+G
where H;(z) is the j — th Hermite polynomial, with the first four given by Hy(z) = 1, Hi(z) = z,
Hy(x) = 2% — 1 and H3(z) = 23 — 3z; V = X — E[X| Z], ( is a standard normal, drawn independently

of X and D, and m is a monotone function given below. The DGP is indexed by p and the function

m. To generate V note
E[X|Z] = BIE[X|D]| Z] = vE[D| Z] = ym™(Z),

where m ™1 is the inverse of m. Thus, by construction Z is exogenous, E[e| Z] = 0, while X is endogenous
because Ele| X] = pX, with p = p.(1 — +2).

The structural function g is given by

g(x) =>_ Hj(X),

J=1

and is therefore linear for p = 1, but nonlinear for p > 1. It follows from the orthogonality of Hermite
polynomials that the true value for OLIVA is g = 1.
Note also that the OLIVA is regularly identified, because h(Z) = m~1(Z) /v solves

E[h(Z2)|X] = X.
We consider three different DGPs, corresponding to different values of p and functional forms for m:
DGP1: p=1 and m(D) = D (linear; m~1(Z) = 2);
DGP2: p =2 and m(D) = D? (nonlinear; m~1(Z) = Z/3);

DGP3: p =3 and m(D) = exp(D)/(1 + exp(D)) (nonlinear; m~1(Z) = log(Z) — log(1 — Z));
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Several values for the parameters (v, p) will be considered: v € {0.4,0.8} and p € {0,0.3,0.9}. We
will compare the TSIV with OLS and standard IV (using instrument Z). For DGP1, h(Z) = vy 1Z
and hence the standard IV estimator with instrument Z is a consistent estimator for the OLIVA. The
standard IV then can be seen as an oracle (infeasible version of our TSIV) under DGP1, where h is
known rather than estimated. This allows us to see the effect of estimating hg on inferences. For DGP2
and DGP3, IV is expected not to be consistent for the OLIVA. The number of Monte Carlo replications
is 5000. The sample sizes considered are n = 100, 500 and 1000.

Tables 1-3 report the Bias and MSE for OLS, IV and the TSIV for DGP1-DGP3, respectively.
Our estimator is implemented with B-splines, following the GCV described in (3.3) with J, = 6 and
K, = 2J,. Remarkably, for DGP1 in Table 1 our TSIV implemented with GCV performs comparably
or even better than IV (which does not estimate h and uses the true h). Thus, our estimator seems
to have an oracle property, performing as well as the method that uses the correct specification of the
model. As expected, OLS is best under exogeneity, but it leads to large biases under endogeneity. For
the nonlinear models DGP2 and DGP3, IV deteriorates because the linear model is misspecified. Our
TSIV performs well, with a MSE that converges to zero as n increases. The level of endogeneity does

not seem to have a strong impact on the performance of the TSIV estimator.

Table 1: Bias and MSE for DGP 1.

P n BIAS.OLS BIASIV BIAS TSIV MSE.OLS MSEIV MSE_ TSIV
0.0 04 100 -0.0021 -0.0019 0.0010 0.0109 0.0829 0.0554
500 0.0017 0.0025 0.0020 0.0021 0.0127 0.0105

1000 -0.0001 0.0018 0.0020 0.0010 0.0067 0.0054

0.8 100 -0.0030  -0.0040 -0.0040 0.0102 0.0163 0.0159
500 0.0001 -0.0004 -0.0004 0.0019 0.0030 0.0030

1000 0.0019 0.0025 0.0026 0.0010 0.0016 0.0016

0.3 04 100 0.2950  -0.0101 0.0841 0.0968 0.0908 0.0729
500 0.2993 0.0026 0.0347 0.0915 0.0145 0.0168

1000 0.3006 -0.0003 0.0189 0.0914 0.0071 0.0080

0.8 100 0.2956 -0.0107 0.0061 0.0987 0.0207 0.0216
500 0.2991 0.0009 0.0038 0.0918 0.0039 0.0039

1000 0.2987  -0.0023 -0.0012 0.0904 0.0019 0.0019

0.9 04 100 0.8993 -0.0827 0.1753 0.8213 0.1990 0.1569
500 0.9028 -0.0145 0.0421 0.8173 0.0295 0.0296

1000 0.8998 -0.0066 0.0231 0.8108 0.0130 0.0140

0.8 100 0.8965 -0.0186 0.0287 0.8270 0.0573 0.0571
500 0.8980  -0.0036 0.0030 0.8114 0.0108 0.0109

1000 0.8993 0.0031 0.0058 0.8111 0.0049 0.0050
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Table 2: Bias and MSE for DGP 2.

P n BIAS.OLS BIASIV BIAS. TSIV MSEOLS MSEIV MSE.TSIV
0.0 04 100 0.0131 -0.0030 -0.0037 0.1009 0.6321 0.2226
500 0.0083 0.0216 0.0126 0.0213 0.1319 0.0479

1000 0.0021 0.0005 0.0034 0.0115 0.0764 0.0228

0.8 100 -0.0012 0.0001 -0.0001 0.0990 0.4559 0.1286
500 0.0015 0.0056 0.0032 0.0211 0.1261 0.0275

1000 0.0019 0.0084 0.0030 0.0113 0.0689 0.0154

0.3 04 100 0.2932 -0.0472 0.0605 0.1859 0.6167 0.2342
500 0.2874  -0.0325 0.0302 0.1023 0.1417 0.0594

1000 0.3008 -0.0135 0.0402 0.1013 0.0778 0.0331

0.8 100 0.3064 0.0083 0.0318 0.1987 0.4554 0.1400
500 0.3020 0.0078 0.0208 0.1114 0.1226 0.0289

1000 0.3046 0.0076 0.0248 0.1040 0.0647 0.0168

0.9 04 100 0.9053 -0.1359 0.2155 0.9270 1.0165 0.3615
500 0.8968 -0.0093 0.0794 0.8260 0.1619 0.0914

1000 0.8974  -0.0122 0.0493 0.8159 0.0817 0.0449

0.8 100 0.9095 -0.0117 0.0491 0.9425 0.5482 0.1921
500 0.8969 -0.0013 0.0226 0.8290 0.1405 0.0435

1000 0.8981 -0.0021 0.0271 0.8185 0.0753 0.0220

Table 3: Bias and MSE for DGP 3.

P n BIAS.OLS BIASIV BIAS.TSIV MSE_OLS MSE_IV  MSE_TSIV
0.0 04 100 -0.0570  -1.5268 -0.0717 0.5023 381.7332 0.6817
500 -0.0021 -0.5039 -0.0346 0.1000 155.9296 0.1326

1000 -0.0014  -0.0365 -0.0378 0.0550 0.6179 0.0681

0.8 100 -0.0418 -0.4112 -0.1106 0.4795 2.6703 0.4935
500 -0.0096 -0.2270 -0.0411 0.1072 0.4192 0.1084

1000 -0.0113 -0.2150 -0.0330 0.0527 0.2452 0.0543

0.3 04 100 0.2899 -5.4825 0.0227 0.6475 28179.2626 0.8182
500 0.2882 -0.1335 0.0060 0.1878 1.5707 0.1571

1000 0.2887  -0.0822 0.0199 0.1351 0.6518 0.0926

0.8 100 0.2693 -0.3815 -0.0857 0.5906 11.1463 0.5498
500 0.3062 -0.1985 -0.0249 0.2061 0.4885 0.1221

1000 0.2951 -0.2166 -0.0246 0.1395 0.2512 0.0570

0.9 04 100 0.8470 1.4445 0.1675 1.1993  1772.3946 0.8970
500 0.8888 -0.3336 0.0449 0.9098 4.8599 0.2103

1000 0.8914  -0.1313 0.0158 0.8473 0.8558 0.0982

0.8 100 0.8341 -0.5724 -0.0917 1.1833 4.3735 0.6045
500 0.8749 -0.2933 -0.0566 0.8668 0.6084 0.1301

1000 0.8863 -0.2466 -0.0401 0.8380 0.2861 0.0681

Unreported simulations with other DGPs confirm the overall good performance of the proposed
TSIV under different scenarios, including cases where h and g are not identified. The sensitivity of the

estimator to different choices of tuning parameters, J,,, K, and )\ is presented in Tables 6-8. In each
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cell, the top element is for n = 100 and the bottom element is for n = 1000. From these results, we see
that the TSIV estimator is not sensitive to the choice of these parameters, within the wide ranges for
which we have experimented. This is consistent with the regular identification, which means that the
estimator should be robust to local perturbations of the tuning parameters.

We now turn to the Hausman test. Practitioners often use the Hausman test to empirically evaluate
the presence of endogeneity. As mentioned above, the standard Hausman test is not robust to misspefi-
cation of the linear model, because in that case OLS and IV estimate different parameters (Lochner
and Moretti (2015)). We confirm this by simulating data from DGP1-DGP3 and reporting rejection
frequencies for the standard Hausman test for 4 € {0.4,0.8} under the null hypothesis of p = 0. Table
4 contains the results. For DGP1, the rejection frequencies are close to the nominal level of 5% across
the different sample sizes, confirming the validity of the test under correct specification. However, for
DGP2 and DGP3 we observe large size distortions, as large as 82.2%. This shows that the standard

Hausman test is unreliable under misspecification of the linear model.

Table 4: Empirical Size of standard Hausman Test.

v n DGP1 DGP2 DGP3
04 100 0070 0.109 0.046
500 0.046  0.064 0.053
1000  0.064 0.072  0.059
08 100 0.067 0223 0.094
500 0.065 0.134  0.524
1000 0.060 0.105  0.872

Table 5: Empirical Size and Power of robust Hausman Test.

p v 1n DGPl DGP2 DGP3
00 04 100 0.055 0.037 0.013
500  0.035 0.018  0.008

1000 0.038  0.007  0.016

0.8 100 0.059 0.015 0.013
500 0.050 0.004 0.003

1000 0.052  0.003  0.002

03 04 100 0.176 0.062 0.041
500 0.649 0.153  0.107

1000 0915 0.290  0.222

0.8 100 0929 0.324 0519
500 1.000 0.710  0.993

1000 1.000 0.793  1.000

09 04 100 0.785 0.336 0.249
500 0.999 0.877  0.825

1000 0.999  0.974  0.985

0.8 100 0.993 0.923 0.991
500  1.000 0.934  1.000

1000 1.000 0.919  1.000
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Table 5 reports rejection probabilities for the proposed robust Hausman test. In contrast to previous
results based on the standard IV, we observe that the empirical size is now controlled, with a type-I error
that is smaller for nonlinear models than for the linear model. We also report rejection probabilities
under the alternative. We observe an empirical power that increases with the sample size and the level
endogeneity, suggesting consistency for the proposed Hausman test.

Overall, these simulations confirm the robustness of the proposed methods to mispecification of
the linear IV model and their adaptive behaviour when correct specification holds. Furthermore, the
TSIV estimator seems to be not too sensitive to the choice of tuning parameters. Finally, the proposed
Hausman test is indeed robust to the misspecification of the linear model, which makes it a reliable
tool for economic applications. These finite sample robustness results confirm the claims made for the

TSIV estimator as a nonparametric analog to OLS under endogeneity.

6 Appendix A: Notation, Assumptions and Preliminary Results

6.1 Notation

Define the kernel subspace N' = {f € La(X) : T*f = 0} of the operator T*f(z) := E[f(X)| Z = z].
Let Ts(z) := E[s(Z)| X = x| denote the adjoint operator of T* and let R(T) := {f € Lo(X) :
ds € Ly(Z),Ts = f} its range. For a subspace V, VL, V and Py denote, respectively, its orthogonal
complement, its closure and its orthogonal projection operator. Let ® denote Kronecker product and
let I, denote the identity matrix of order p.

Define the Sobolev norm |||, as follows. Define for any vector a of p integers the differential
operator 92 := 919 /92" ... 9z, where |a|; := Y7, a;. Let X denote a finite union of convex,
bounded subsets of R?, with non-empty interior. For any smooth function i : X C RP — R and some

n > 0, let n be the largest integer smaller than 7, and

02h(w) — O3h(a")]

—

:= max sup |0oh(z)| + max sup

h
H HOOJ? la|,<n zeXx lal;=n r#z! ’x

Let H denote the parameter space for h, and define the identified set Ho = {h € H : m(X,h) = 0 a.s.}.
The operator Th(z) := E[h(Z)| X = z] is estimated by

n

Thia) = BIW(Z)| X =] = 3 (o' (@)(P'P) " pR» (Xp) @ h(Z) )
=1

The operator T is considered as an operator from H, to G, C Lo(X), where G, is the linear span
of {p&n(-)}. Let E,[g(W)] denote the sample mean operator, i.e. En,w[g(W)] = n=1Y." g(W;), let
gl i’W = E,[lg(W)[%], and let (f, Dnw = n~tS" | f(Wi)g(W;) be the empirical Ly inner product.
We drop the dependence on W for simplicity of notation. Denote by T* the adjoint operator of T with
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respect to the empirical inner product. Simple algebra shows for p =1,
n , n
(Th.g) =n=' 3" h(Z)p" ' (X)(P'P)™ Y p" (X;)g(X;)
" i=1 j=1
= <h, T*g> :
n

so T*g = Py, F[g(X)| X =] = Py, Tg. A similar expression holds for p > 1.
With this operator notation, the first-step has the expression (where I denotes the identity operator)
o = (7 + A1) 17X, (15)

where X = E[X| X = ]. Similarly, define the Tikhonov approximation of hg
hy, = (T*T + A\, 1) ' T*X. (16)

With some abuse of notation, denote the operator norm by

T[] = sup [[Th]|.
heH,||h|<1
Let G C Ly(X) denote the parameter space for g. An envelop for G is a function G such that |g(x)| <
G(z) for all g € G. Given two functions [,u, a bracket [I,u] is the set of functions f € G such that
I < f <wu. An e-bracket with respect to ||-|| is a bracket [I,u] with ||l — u|| <e, ||I|| < co and |Ju|] < oo
(note that u and [ not need to be in G). The covering number with bracketing Ni)(¢,G,|-||) is the

minimal number of e-brackets with respect to ||| needed to cover G. Define the bracketing entropy

Jy(6.6. 1) / w%N1ngm

Similarly, we define Jj;(,H, ||-||). Finally, throughout C' denotes a positive constant that may change

from expression to expression.

6.2 Assumptions

The following assumptions are standard in the literature of sieve estimation; see, e.g., Newey (1997),
Chen (2007), Santos (2011), and Chen and Pouzo (2012).

Assumption A1l: (i) {Y;, X;, Z;}", is an iid sample, satisfying (1) with E[¢| Z] = 0 a.s and E[Y?] <
oo; (ii) X has a compact support; (iii) Z has a compact support; (iv) the densities of X and Z are

bounded and bounded away from zero.

Assumption A2: (i) The eigenvalues of E[p®"(X)p®(X)'] are bounded above and away from zero;
(i) maxj<p<k, ||lpkl| < C and {%p = 0( ), for &, = sup, [p"(2)|; (iii) there is m,,(h) such
that supey |[E[M(Z)| X =] — ()|l = O(K,*7); (iv) there is a finite constant C, such that
SUPpep, <1 1M(Z) — E[M(Z))| X]\ S Pn,p(Z7X) with E[|pnp(Z, X)?| X] < C.
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Assumption A3: (i) The eigenvalues of E[q’*(Z)q’"(Z)'] are bounded above and away from zero;
(ii) there is a sequence of closed subsets satisfying H; C H,;+1 € H, H is closed, bounded and convex,
ho € Ho, and there is a II,,(hg) € M, such that [T, (ko) — ho|| = o(1); (iii) suppeq, [|IRIZ — ]| =
op(1); (iv) Ay 4 0 and max{||IT,(ho) — thQ,cZ’T} = o(\,), where ¢, 7 = /K, /n+ K;°T; (v) Ay, is

non-singular.

Assumption Ad4: (i) hg € R((T*T)*"/?) and gy € R((TT*)*'?), o, ag > 0; (ii) maxi<j<y, [|gj]| < C
and & ;J, = o(n), for &, ; = sup, |¢" (2)]; (iii) supyeg || E[9(X)| Z = ] — 7, ,(9)a” ()|| = O(J *T") for
some 7q(0): () $uPyeg. 1< |9(X) — Ela(X)| Z]| < pog(Z.X) with Bllpng(Z X)P| 2] < C; (v)
AnCp = o(n_1/4), where ¢, = ¢, 7 + ¢cp 1+ and ¢, 7 = \/m + Jn “T"; (vi) By, is non-singular.

Assumption A5: (i) J (6,6, |I-]) < oo and J (6, H, |||) < oo for some § > 0, and G and H have
bounded envelopes; (i) P(h, € H) — 1 and P(j, € G) — 1.

Assumption A6: (i) E[U|Z] = 0; (i) v/rAZ™n?) = 5(1) and v/re, W=D = o(1); (iii) ho €
R(T*), E []X - ho(Z)]4‘ X] is bounded and Var[ho(Z)| X] is bounded and bounded away from zero;

and (iv) E [(hgn(Z) - hgo(Z))V] = Op(n=1/2).

For regression splines ¢, , = O(Ky), and hence A2(ii) requires K/n — 0, see Newey (1997). As-

sumptions A2(ili-iv) are satisfied if supj,cq [|Th|| < oo with ar = n,/q. Assumption A3(iii) holds

0,

under mild conditions if for example supy,cy, ||2|] <n£’. Assumption A4(i) is a regularity condition that
is well discussed in the literature, see e.g. Florens, Johannes and Van Bellegem (2011). A sufficient
condition for Assumption A5(i) is that for some ny, > ¢/2 and 1y > p/2 we have supyey |7l ,, < 00
and supgeg |19, < 00; see Theorems 2.7.11 and 2.7.1 in van der Vaart and Wellner (1996). The
bounded envelop assumption can be easily relaxed. Assumption A5(ii) is satisfied for sieve estimators.
Assumptions A6(i-iii) are standard. Assumption A6(iv) is a high-level condition. If Z is independent
of V' this assumption trivially holds. More general, primitive conditions for Assumption A6(iv) to hold
can be shown along the lines of the proof of E |(hon(Z) — hao(Z))hao(Z)| = Op(n~'/?) in Theorem

4.1.

6.3 Preliminary Results

In all the preliminary results Assumptions 1-3 in the text are assumed to hold.

Lemma A1l: Let Assumptions A1-A3 hold. Then, Hﬁn - hoH = op(1).

Proof of Lemma A1l: We proceed to verify the conditions of Theorem A.1 in Chen and Pouzo
(2012). Recall Hy = {h € H : m(X,h) = 0 a.s.}. By Assumption A3, H, is non-empty. The penalty
function P(h) = ||h||? is strictly convex and continuous and ||m(-; h)||? is convex and continuous. Their
Assumption 3.1(i) trivially holds since W = I,,. Their Assumption 3.1(iii) is A3(i-ii). Their Assumption

3.1(iv) follows from A3(ii) since
[l Mo (ho)II < [T (ho) — holl* = o(1).
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To verify their Assumption 3.2(c) we need to check
2 2| _
sup [[|All% = 18I°| = 0p(1) (17)
heHn

and
[T (o) 12 = ol | = o(1).

The last equality follows because ‘HHn(hO)H2 — ||h0H2’ < C||I,(ho) — hol| = o(1). Condition (17) is
our Assumption A3(iii). Assumption 3.3 in Chen and Pouzo (2012) follows from their Lemma C.2 and
our Assumption A2. Assumption 3.4 in Chen and Pouzo (2012) is satisfied for the Ly norm. Finally,
Assumption A3(iv) completes the conditions of Theorem A.1l in Chen and Pouzo (2012), and hence
implies that Hﬁn — hoH =op(1). N

Lemma A2: Let Assumptions A1-A4 hold. Then, ||h, — th =op(n~ ) and ||§, — go| = op(n=1/*).

Proof of Lemma A2: For simplicity of exposition we consider the case p = ¢ = 1. The proof for

p>1or g >1 follows the same steps. By the triangle inequality, with hy,A defined in (16),

|

Under hg € ’R,((T*T)ah/z), Lemma A1(1) in Florens, Johannes and Van Bellegem (2011) yields

iLn — h)m + Hh)\n — ho” .

] <

[Br, — hol| = O(AmR(@n2)), (18)

. . -1
With some abuse of notation, denote Ay, = (T*T + )\nI) . Then, arguing as in Proposition 3.14 of
Carrasco, Florens and Renault (2006), it is shown that

hp — hy, = Ay, T*(X — Tho) + Ay, (T*T — T*T)(hy, — ho), (19)

and thus,

As in Carrasco, Florens and Renault (2006),

B R N [ R

HAM — 0p(\h).

Since T* is a bounded operator
|7 = Tha) | = 00 (%~ 7o)
= Op(cn1),

where recall ¢, 7 = K,/n + K, 2ar - and where the second equality follows from an application of
Theorem 1 in Newey (1997) with y = = — ho(z) there. Note that Assumption 3 and Assumption A2(iv)
imply that Var[y| X] is bounded (which is required in Assumption 1 in Newey (1997)). Also note
that the supremum bound in Assumption 3 in Newey (1997) can be replaced by our Ly—bound in
Assumption A2(iii) when the goal is to obtain Ly—rates.
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On the other hand,

frt- o] <on

)+or (|7 -7[) @
and

< 1P |7 =T + 1P, = T

—0p (HT—TH) + Op(enr). (22)

We now proceed to establish rates for HT - TH . As in Newey (1997), we can assume without loss of

generality that E[q’"(Z)q’"(Z)'] is the identity matrix. Then, by the triangle inequality,

HT—TH = sup HTh—ThH
heH,||h|<1
< s [ Th-mpp )|+ s B X = ] = map(B)p" )
heM,||h|<1 het,||h]<1
< sup |fpp(h) = mnp(h)]| + O(K,T),
heM,||h|<1
where .
fnp(h) = (P'P)"1> " pn(X)h(Zy).
i=1
Write

Tnp(h) — Tnp(h) = anlplgh/n + QQJPI(Gh — Py p(h))/n,
where e, = H — Gy, H = (h(Z1),...,h(Z,))', and G}, = (Th(X1),...,Th(X,))’. Similarly to the proof
of Theorem 1 in Newey (1997), it is shown that

sup HQQ_an'sh/an = Op(K,/n),
het,|[h]|<1

where we use Assumption A2(iv) to show that

sup E[shelh‘ X] < CIL,.
heH, ||h]|<1

That is,
2
sup F “Q;/QPlsh/n’ ‘X} = sup E[eP(P'P)"'Pe| X] /n
he,Ihl|<1 he,hl|<1

= sup E[tr{P(P'P)"'Peye,}| X] /n
heH,[|h[|<1

= sup tr{P(P'P)"'P'E[epe},| X]}/n
heM,||n||<1

< Ctr{P(P'P)"'P'}/n
< CK/n
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Similarly, by A2(iii)
sup HQ2 IP’ Gh—Pﬂnvp(h))/nH = Op(K,, 7).
het,||h|<1
Then, conclude HT — TH = Op(cn1), HT*T — T*TH = Op(cp), where ¢, = ¢y 7 + ¢ 1+, and by (20),
(21) and (22)

hp, — B

n

where the last equality follows from A4(v).
The proof of ||g, — go|| = op(n~/4) is the same and hence omitted. W

Lemma A3: Let H and G be classes of functions with a bounded envelope F and G, respectively, and

let & be a squared integrable random variable, then:

(D) N6, HoE l-lly) < Npy(Ce, 1 [|[l,)-
(i) Npj(e,H-G, [ -ll2) < Nj(Ce, M, |-lly) < Nij(Ce, G, [[-l2)-

(iii) Ny(e, H+G, [ lly) < Ny(Ce, 1, |I-lly) + Ny(Ce, G, I lly)-

Proof of Lemma A3: Follows from standard arguments in empirical processes theory, and hence is
omitted. A

7 Appendix B: Proofs of Main Results

Proof of Lemma 2.1: The n'/2-estimability of the OLIVA implies the n'/2-estimability of the vector-
valued functional

E[Xg(X)],

which in turn implies that of the functional
E[X;9(X)],

for each component X; of X (i.e. X = (Xy,...,X},)"). By Lemma 4.1 in Severini and Tripathi (2012),
the latter implies existence of h; € La(Z) such that

E[hj(Z)| X] = Xj a.s.
This implies Assumption 3 with h(Z) = (hi(Z), ..., hy(Z))". B
Proof of Proposition 2.2: We shall show that for any h(Z) € La(Z) such that

E[h(Z2)|X] =X as.
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the parameter 3 = E[h(Z)X'| "' E[h(Z)Y] is uniquely defined. First, it is straightforward to show that
for any such h, E[h(Z)X']"! = E[XX']7!. Second, we can substitute Y = go(X) + Pyg(X) + ¢, and
note that for all h, E[h(Z)Png(X)] = 0, so that

for all h satistying E[h(Z)| X] = X a.s. &

Proof of Proposition 2.3: We shall show that under the conditions of the proposition there exists a
h(Z) € Ly(Z) such that
E[h(Z2)] X] = X as.

Denote p = E[p(Z)]. For a binary X, and since 0 < p < 1, the last display is equivalent to the system
E[XhZ)) = p and E[(1 — X)h(Z)] = 0,

or

E[h(Z)] = p and E[p(Z)h(Z)] = p.

Each equation from the last display defines a hyperplane in h. Since p(Z) is not constant, the normal
vectors 1 and p(Z) are linearly independent (not proportional). Hence, the two hyperplanes have an
non-empty intersection, showing that there is at least one h satisfying F[h(Z)| X] = X a.s.

Moreover, by Theorem 2, pg. 65, in Luenberger (1997) the minimum norm solution is the linear
combination of 1 and p(Z) that satisfies the linear constraints, that is, ho(Z) = a + yp(Z) such that «
and ~y satisfy the 2 x 2 system

{ atyp=p
ap +VE[p*(2)] = p.
Note that this system has a unique solution, since the determinant of the coefficient matrix is Var(p(Z)) >

0. Then, the unique solution is given by

a | 1 p
v P EP(2)]
- p(1-p)
| P (1 - var<p<z>>)
p(1-p)
var(p(2))

Proof of Proposition 3.1: By Markov’s inequality and Lemma Al
1o 1o
~ > ha(Zi)Yi = — > " ho(Z)Yi + op(1),
i=1 i=1

and similarly,

1< - 1 <
N (ZNX =2 ho(Z) X! 1).
nZ; (Zi)X; nz; 0(Zi)X; +op(1)
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Then, conclude by the continuous mapping theorem. H
Proof of Theorem 3.2: Define the class of functions
F={fy,2,2) = h(z)y — g(x)(h(z) —2) : h € H,g € G}.
By several applications of Lemma A3 we conclude that
log Nij(€, F, |I-lly) < log Npj(Ce, H, ||-[ly) +log N1 (Ce, G, [[-l2)-

Assumption A5 and Theorem 2.5.6 in van der Vaart and Wellner (1996) then imply that F is a Donsker
class. By Lemma Al ‘ .

‘ = op(1), and similarly by Lemma A2 ||g, — go|| = op(1). Then, by a
standard empirical processes argument, since P(iln € H) =1 and P(g, € G) = 1, and Assumption 3,
it holds that

n Z ha(Zi)Y: = gu(Xo) (h(Z) — X;) = \/15 ; ho(Zi)Yi — go(Xi)(ho(Zi) — Xi)
+ VnE([(hn(Z) — ho(Z2))(Y — go(X))]
— VAE[(Gn(X) = 90(X)) (ha(2) — ho(2))]

+op(1)
=[1+11+1II1+o0p(1),

where the expectations in the right hand side are with respect to (Y, X, Z), which is a copy of the
(Y;, Xi, Z;), independent of the original sample.
It is straightforward to prove that IT = op(1), since for all squared integrable h,

E[(Y = g0(X))W(Z)] = 0.

The rate conditions

i — hoH = op(n~"*) and ||gn — go|| = op(n~/*) of Lemma A2 imply by Cauchy-

Schwarz inequality

| 13n = g0ll = or(1).

yields

n -1 n
= (:L Z XiX;> (;ﬁ Z ha(Z))Y; — Gn(Xo) (hn(Z) — X;)

Thus, by the invariance principle above

\r( ) (ZXX) (\}HZ ()Y—gn(Xi)(l%n(Zi)—Xi))—x/ﬁﬁ

=E[X;x]]" (f Z 90(X3)(ho(Zi) — Xi)) —V/nB+op(1)

= E[X;X (IZ )+0p
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The asymptotic normality then follows from the last equality and the central limit theorem.
The consistency of V = En[hn(Z:)X!] ™ Ep[8ni&.] Enlhn(Z:) X1~ follows from ‘ Py — hOH = op(1),

ldn — goll = 0p(1) and the consistency of 5. B

Proof of Theorem 4.1: We first show that the OLS first-stage estimator & = (&}, &2)" of ap =
(o)), a2)" in the regression
Xy = Cklle + OéQiLQn(Z) +e,

satisfies v/n(& — ag) = Op(1). Note e = V — ag(han(Z) — hoo(Z)), and denote hy,(Z) = (X}, hon(Z))’
and ho(Z) = (X}, hoo(Z)). Then,

V(e — ag) = (B, [ﬁ;h;})‘l VB, [ine]
Lemma A2 and Markov’s inequality imply E,, [ﬁ;ﬁg] = E, [ho(Z)h((Z)] + op(1) = Op(1).
By Hﬁgn — hgoH = 0p(n_1/4), it holds
JiE, [ﬁn(Z)e} — VnE, [BH(Z)V} — aoy/nEn [ﬁn(Z)(ﬁzn(Z) - hzo(Z))]

= VB, ho(2)V) — asv/iEy [ho(2)(han(Z) — hao(2))] + VB [(hn(Z) = ho(Z))V] + 0p(1)

= A1 —agAlg + Az + Op(l).

The standard central limit theorem implies A; = Op(1).

An empirical processes argument shows
Ay = VnE [hO(Z)(iLQn(Z) . hgo(Z))} +op(1).
By A6(ii),
VIE [ho(Z)(hon(Z) = hao(2))| = VRE [ho(Z) (han(Z) = ha, (2))| + VRE [ho(Z) (ha,,(Z) = hao(Z)
= VR [ho(Z)(han(Z) = 1, (2))] + 0r (1),
While (19) and A6(ii) yield
Ay = /nE [ho(Z)AAnT*(X - :ﬁho)(Z)} +op(1)
= VnE [ho(2) Ay, T*(X = Tho)(2)] + 0p(1)
= VnE [o(2)(X = Tho)(Z)| + op(1),

where v(Z) = T Ay, ho(Z). By ho € R(T*), ho = T*y for some ¢ with [|¢|| < oo, then by Lemma
A1(A.4) in Florens, Johannes and Van Bellegem (2011)

ol < [IT AN, T[]l
< [l9]] < oo
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Then, by Theorem 3 in Newey (1997), Ay = Op(1). Similarly, an empirical processes argument and
A6(iv) show A3 = Op(1). Thus, combining the previous bounds we obtain /n(& — o) = Op(1).

We proceed now with second step estimator. Denote S = (X, V)" and 8 = (8, p)'. Let 6 denote the
OLS of Y on S. Since, since under the null p = 0, then

6= (En [SS"])_l E, Y]

where the last equality follows because
VIEy [(V = V)U| = Vialé = a0)' VB, [ho(2)U] + dov/n By |U(han(Z) = hao(2))
= Op(l) X Op(l) + Op(l) X Op(l),

with the term /nE, [U(ilQn(Z) - hgo(Z)):| being op(1) because of A6(i), and

\/ﬁEn [U(ibgn(Z) — h20(Z))j| = \/EE U(iLQH(Z) — hgo(Z)) + Op(l)

=op(1).

—

Thus, the standard asymptotic normality for the OLS estimator applies. H

8 Appendix C: Penalized and Minimum Norm Solutions

The following result shows that our PSMD estimator is equivalent to a minimum norm estimator. This

result is of independent interest. Define the optimization problem
min{||h[[7 : b € Ha, |[(X;h)[[7 < ba/and, (23)
for positive constants a, and b,. Define X = E[X]| X].

Lemma A1l: Assume that b,/a, | 0 and || X||2 > 0. Then, (7) is equivalent to (23), in the sense that
for large n, we can find a solution for (7) that also solves (23) for a certain choice of \,. Moreover,
A2 =0 (bp/ay) -

Proof of Lemma A1l: Let hy(-) = D!, A5 'q?(+) denote the solution to (7) corresponding to A > 0, see
(9). We shall show that there is \,, such that
17X o, )I[7 = bn/an

n

and that hy is a solution of (23).
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Note that (23) is a convex optimization problem, whose necessary and sufficient condition for a

solution il)\n is that
<]A”L)\n,il>\n - h> <0,
n

for all h € H,, with ||/m(X;h)||2 < by/ay (where (-, ), is the inner product corresponding to || - [|,).
Define the linear operator Kh = E[h(Z)| X] on H,, and let K* denote its adjoint (with respect to

(-,-),,)- The optimal solution satisfies the equation
)\nil)\n + K*Kil)\n = K*X
Then, for all h € H,, such that [|[Kh — X||, < by /an,

Anﬁnwﬁh—4§ < K%R%M,—X)h—ﬁh>

n n

(
< <fffun —X,f((h—fun)>n
< <K’iun —X,K’h—X>n - <K’EM — X,Khy, —X>n
< ||Kha, = X[nl|Kh = X0 = || KDy, — X|[2
< bp/an — bp/an

=0.

It remains to show that there exists a positive A, such that |[/i(X; hy, )||2 = bn/an and A, = O (b /ay) .
Existence follows from Bolzano’s Theorem, since A — |[i(X;hy)||2 is continuous, ||/ (X;hy)|2 —
bp/an — || X2 = bn/an >0 as X — oo and |[/i(X; hy)|[2 = bu/an = —bp/an < 0 as A — 0.

Define 7y, = X — Khy, , and note that K*ry, = A\,hy, and ||ry, [|2 = by/an. Then,

A b\ /2
. A
12l = (22) = 12l = Il

n

IN

1K, I

IN

1 - Lok
)\*HKK Tanln

n

1. b\ 1/2
&1 ()
)\n anp

< <bn>1/2 An + [IKI
" \a, X1

IN

or, equivalently

)

which shows A2 = O (b,/a,). B
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9 Appendix D: Tables for Simulations

Table 6: Sensitivity analysis of MSE(x1072) for DGP1.

Ko = 2J, Kn=3J,
J. p 4 0 000l 00l 01 02 03 06 0 000l 00l 01 02 03 06
4 0 04 1058 984 837 7.05 6385 662 654 893 867 7.65 6935 642 661 6.59
077  0.77 0.66 065 064 064 065 071 076 067 065 064 0.64 0.65
0.8 1.89 162 160 167 156 1.65 1.60 187 162 1.60 1.67 155 165 1.60
0.16 0.16 0.6 015 016 016 017 0.6 0.16 016 015 016 0.16 0.17
03 04 1125 1095 982 7.35 7.32 824 6.65 88 873 867 745 722 830 6.63
0.80 082 072 069 068 069 073 073 080 071 069 068 069 0.73
0.8 207 217 209 201 200 18 203 205 214 210 202 200 18 203
018 020 021 020 020 020 020 018 020 02l 020 020 020 020
0.9 04 1770 19.46 1545 13.49 12.37 12.04 12.33 1517 16.57 14.92 13.47 12.57 12.04 12.37
167 147 133 121 114 124 131 159 139 134 121 114 1.24 131
0.8 584 572 534 535 552 518 513 553 562 535 539 552 518 5.13
051 054 057 050 054 050 049 051 054 057 050 054 050 0.49
5 0 04 994 08 847 6.2 626 618 639 7.97 821 7.75 671 629 6.19 6.41
0.86 0.84 0.66 065 063 064 064 076 080 067 065 063 064 0.64
0.8 191 167 163 170 155 1.64 159 18 165 1.65 1.70 154 164 1.59
0.16 0.6 016 015 0.15 016 017 016 016 0.16 015 0.16 016 0.17
0.3 04 1194 10.82 1017 7.22 6.86 7.39 658 9.16 855 890 724 6.79 742  6.60
0.80 087 071 069 069 068 073 078 083 072 069 069 068 0.73
0.8 210 219 214 203 20l 18 202 205 213 212 202 200 18 2.02
019 020 021 020 020 020 020 018 020 021 020 020 020 0.20
0.9 04 1846 18.10 1573 12.94 1157 1210 12.01 1523 16.08 14.60 12.83 11.51 12.13 12.04
177 155 135 121 113 124 130 159 147 135 122 113 123 1.30
0.8 585 579 544 534 548 517 514 557 565 539 529 549 518 5.14
053 055 057 050 054 050 049 052 055 057 050 054 050 0.49
6 0 04 969 1005 821 627 620 567 602 7.84 7.94 726 632 622 565 6.04
0.92 085 067 064 063 063 064 080 080 068 065 063 063 0.64
08 196 1.78 170 1.69 1.55 162 1.58 191 1.66 1.63 168 1.54 162 1.58
0.16 0.16 0.6 015 015 016 017 0.16 016 016 015 015 0.16 0.17
03 04 11.08 1010 9.65 7.02 680 722 651 880 823 877 714 691 719 650
104 091 073 069 0.69 068 073 082 087 073 069 069 068 0.73
0.8 223 222 219 203 201 1.85 202 204 211 217 202 200 184 201
019 020 021 020 019 020 020 019 020 021 020 020 020 0.20
0.9 04 1937 1872 1526 12.61 11.74 12.03 12.69 14.26 14.86 13.95 1251 11.56 11.93 12.61
192 158 134 119 113 123 1.29 160 146 1.34 120 113 123 1.29
0.8 592 590 555 529 545 510 513 555 570 548 528 547 507 5.13
053 056 057 051 054 050 049 052 055 057 051 054 050 0.49
7 0 04 1071 860 7.32 586 588 543 556 7.95 7.71 6.88 593 592 546 5.61
0.95 085 0.68 065 063 063 063 082 08 069 065 063 063 0.63
0.8 207 1.74 168 169 1.54 163 1.58 192 166 1.64 168 154 162 158
0.16 0.16 0.6 015 015 016 017 0.6 016 016 015 015 0.16 0.17
03 04 1122 943 9.12 6.88 6.72 7.02 625 870 7.85 821 687 6.74 695 6.21
103 096 074 068 0.68 068 072 083 087 075 068 068 068 0.72
0.8 237 224 227 204 199 1.84 202 211 213 219 202 200 184 200
019 020 021 020 019 020 020 019 020 021 020 020 020 020
0.9 04 1978 18.28 1558 13.06 12.13 12.53 13.02 14.80 15.07 14.24 1295 12.12 1252 13.07
198 166 1.31 121 112 123 131 162 151 134 121 112 123 1.30
0.8 6.04 607 548 521 542 509 513 571 576 531 523 546 510 5.14
053 056 057 051 054 050 049 053 056 057 050 054 050 0.49
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Table 7: Sensitivity analysis of MSE(x10~2) for DGP2.

K, =2J, K, =37,
Jo p v 0 0001 00l 01 02 03 06 0 0001 00l 01 02 03 06
4 0 04 3649 3499 31.23 32.82 36.11 36.04 3873 33.99 3441 32.02 33.59 35.61 3598 38.43
349 313 332 48 526 530 615 3.66 3.38 355 486 522 524 6.11
0.8 13.80 1588 15.68 17.08 16.79 17.37 17.46 14.79 17.27 1649 18.05 17.41 17.91 17.74
225 222 245 258 268 295 287 242 237 263 278 281 3.06 293
0.3 04 4170 3496 3440 36.76 37.3%8 38.83 37.93 3948 31.79 34.65 37.43 37.12 3859 37.64
3.64 336 314 472 543 542 602 388 358 330 4.69 535 536 593
0.8 1521 16.66 1559 17.44 17.60 1877 20.40 16.19 17.29 16.70 18.43 18.17 19.27 20.63
250 241 233 257 268 293 316 262 258 250 277 283 3.06 3.22
0.9 04 5143 5695 41.81 43.76 41.78 48.76 4829 43.82 49.86 42.62 44.71 42.08 48.78 48.02
430 456 444 528 607 6.09 629 405 462 467 526 605 602 6.23
0.8 23.87 2237 2047 20.34 19.39 21.47 24.11 23.58 22.94 20.95 21.22 19.69 22.05 24.62
328 291 274 309 356 3.28 348 321 296 290 327 371 340 354
5 0 04 3280 3647 29.03 31.08 3271 3221 34.81 30.60 32.29 29.12 31.74 32.92 32.35 34.69
346 310 3.08 446 472 527 552 346 322 326 446 467 516 546
0.8 1260 1456 13.88 1541 1528 1586 15.66 13.05 1526 1450 1641 15.77 16.34 15.91
162 154 170 174 190 204 226 1.75 1.62 1.84 1.8 197 207 229
0.3 04 46.68 3280 3250 32.72 3227 36.03 35.73 43.05 32.18 33.01 33.73 32.99 35.84 35.78
377 319 294 431 476 524 577 349 342 314 428 470 519 5.9
0.8 13.90 1509 1425 16.12 1598 16.98 18.18 14.54 15.85 14.93 16.86 16.60 17.28 18.46
184 1.83 169 1.79 193 219 219 181 1.90 178 1.90 1.99 223 222
0.9 0.4 49.09 5426 38.87 38.62 38.08 44.49 4272 41.66 42.61 38.63 39.38 38.44 45.13 42.81
462 437 409 482 533 557 604 404 433 429 480 524 548 5097
0.8 21.56 20.61 18.54 18.11 18.29 20.63 22.32 21.22 20.74 18.80 18.96 18.62 21.05 22.91
254 237 226 230 256 257 264 242 229 232 238 265 265 267
6 0 04 5393 2047 2759 28.54 29.66 30.13 3274 33.06 27.94 29.22 29.64 30.07 30.51 33.01
334 299 292 419 452 477 521 301 324 317 414 447 469 512
0.8 12.60 14.28 13.17 15.08 14.98 1534 14.86 12.88 14.92 13.97 1590 1539 15.81 15.12
171 148 162 1.74 18 206 210 162 1.55 174 1.82 1890 211 212
0.3 0.4 40.03 29.34 20.99 30.17 29.78 33.68 33.86 35.84 27.83 31.29 31.79 30.68 33.82 34.03
3.62 314 267 405 460 470 521 347 311 283 400 457 467 5.14
0.8 13.62 14.06 13.98 1577 1540 1648 17.31 14.11 1452 14.67 16.34 1592 16.83 17.53
183 1.64 154 1.78 185 210 227 173 1.71 164 185 1.89 213 2.30
0.9 04 60.72 46.57 3546 36.41 3546 40.62 41.88 42.88 38.53 3539 37.34 36.13 41.08 42.29
439 433 384 462 521 524 561 387 420 405 464 514 519 553
0.8 2090 2027 17.87 17.85 17.71 10.02 21.84 20.17 20.08 18.06 18.60 18.12 10.42 22.26
241 222 194 219 259 245 250 227 212 198 224 264 249 254
7 0 04 11741 29.85 26.96 27.86 28.58 28.32 3152 33.51 28.10 27.72 29.50 29.26 28.74 31.74
3.25  3.05 279 405 424 462 509 338 3.09 3.05 4.05 422 456 5.01
0.8 1254 14.01 12.92 14.70 1449 14.82 1459 12.75 14.55 13.54 1536 14.91 1523 14.85
146 136 154 158 174 187 1.95 144 137 163 163 177 191 1.97
0.3 04 4341 29.13 30.90 29.18 29.03 32.56 33.17 31.83 28.27 31.45 30.96 29.74 33.54 33.57
343 290 2.67 390 414 446 516 3.35 3.02 284 3.84 408 442 510
0.8 1424 14.20 13.88 1525 1523 1598 16.62 14.43 14.31 14.37 1598 15.67 16.34 16.84
159 154 144 159 176 198 194 157 155 151 165 179 201 1.97
0.9 04 77.30 44.87 3452 34.60 34.92 38.92 4054 53.12 37.77 34.27 3577 35.30 39.87 40.83
478 418 384 428 485 506 535 395 421 396 430 483 501 530
0.8 2053 19.65 16.80 17.38 16.84 18.61 21.06 19.57 19.96 17.00 18.32 17.28 18.87 21.40
220 212 200 200 227 220 243 209 207 203 203 230 233 245
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Table 8: Sensitivity analysis of MSE(x10~2) for DGP3.

K, =2J, Kn =37,
Jo p 4 0 000l 001 0.1 0.2 0.3 0.6 0 000l 001 0.1 0.2 0.3 0.6
4 0 04 8950 79.24 86.87 8535 89.05 93.34 107.17 90.67 82.94 89.85 87.03 89.82 9438 107.13
764 T80 T.65 997 982 973 1102 796 821 792 991 981 968 11.00
0.8 53.60 47.34 5140 48.01 53.19 54.75 49.33 5339 47.18 50.88 48.33 52.86 5443  49.25
500 496 473 525 527 564 580 504 504 480 527 530 564 582
0.3 04 8201 81.80 77.76 87.58 89.50 106.04 90.46 82.71 83.17 81.33 89.08 89.96 10542 90.14
768 817 88 952 11.00 10.64 1021 7.89 846 9.06 947 1094 10.56 10.19
0.8 55.98 51.81 5221 5212 56.89 5573 4928 5534 51.92 5210 5234 56.79 5543  48.96
580 585 538 547 611 614 609 58 592 546 552 613 618  6.09
0.9 0.4 9777 96.58 101.87 102.88 106.35 12248 126.38 102.13 98.56 104.74 104.85 107.05 122.36 124.53
9.99 899 952 1055 1178 12.66 12.69 993  9.09 976 1053 1172 12.61  12.65
0.8 64.62 6255 6626 6141 63.56 63.49 60.79 63.63 6249 65.04 60.96 6321 6292  60.36
6.17 603 679 714 744 718 760 624 608 688 716 746 718  7.61
5 0 04 8884 79.45 87.03 80.84 84.82 9425 10507 91.18 83.15 91.48 83.97 86.96 96.56 105.12
758  7.96 772 10.00  9.97 985 1145 816 820 7.94 991 994 979  11.41
0.8 53.51 4752 51.81 4851 53.95 5535 50.87 5370 46.67 52.31 48.97 5381 54.85  50.42
507 503 479 532 536 576 591 512 513 486 539 537 576 591
0.3 04 81.37 7498 7592 8146 87.46 103.16 92.33 85.74 79.16 79.95 85.07 88.91 10455 92.32
746 777 869 943  11.13 1078 1040 7.99 813 898 937 1106 10.71 10.36
0.8 55.68 51.65 5202 5198 57.78 56.88 50.81 5593 51.62 51.85 5242 57.58 56.71  50.72
586 595 544 558 624 621 626 591  6.03 553 562 625 624  6.26
0.9 04 9689 94.77 96.32 99.18 104.32 119.06 123.94 96.91 9500 97.44 10257 105.87 119.05 123.89
950 878 9.24 1047 11.90 1290 12.97 9.66 9.28  9.60  10.43 11.85 12.83 12.91
0.8 63.97 62.13 6543 6L15 63.98 63.78 GL76 63.33 62.07 64.64 60.71 64.02 63.28 61.24
6.20 615 686 728 757 731 775 636 621 699  7.29 758 731 777
6 0 04 8.06 7741 7112 79.02 81.58 90.28 102.63 86.40 80.97 81.00 81.98 84.73 92.78 103.54
769 776 775 991 997 984 1174 7.98 818 797 984 989 976  11.67
0.8 53.87 4698 51.86 4859 54.17 5523 5142 54.67 46.77 52.37 49.05 54.67 54.88 51.14
500 510 4.86 541 544 588 605 514 519 491 548 548 588  6.05
0.3 04 7692 7425 7531 80.21 86.00 99.48 87.68 83.40 79.15 80.89 83.99 88.55 103.190 87.78
767 790 848 937  11.09 1083 10.60 824 822 883 927 1097 1077 10.53
0.8 5546 51.27 51.85 5197 57.86 57.62 51.55 56.03 50.96 51.81 52.06 5813 57.56 51.55
590 605 551 568 634 633 641 595 6.09 562 572 633 635  6.39
0.9 04 9532 9426 92.09 98.61 99.25 11532 122.08 95.61 92.97 9575 100.82 100.28 115.61 123.20
942 898 9.19 1048 11.96 13.03 1320 9.69 9.5 949 1030 11.86 1291 13.11
0.8 63.90 61.49 6511 60.39 63.88 63.52 61.84 63.14 61.26 64.76 60.31 63.73 6342  61.50
6.39 625 7.0l 740 768 745 791 644 631 708  7.38 767 743 7.90
7 0 04 8462 7574 69.21 76.80 78.68 89.40 98.63 85.16 80.13 77.55 80.96 82.60 91.46 100.63
772 771 762 9.82 994 985 11.80 813 805 797 980 985 973  11.68
0.8 54.26 47.25 52.15 4855 5452 5530 51.60 54.84 46.79 5237  49.09 55.11  55.00 51.47
508 514 487 547 546 591 610 519 522 498 553 550 590  6.10
0.3 04 7210 7449 73.88 79.47 8555 100.92 85.44 78.83 7745 81.06 8228 87.01 103.07 85.78
786 770 840 933  11.04 1074 1062 803 8.09 878 926 1093 10.66 10.54
0.8 5532 51.55 51.33 5180 58.06 57.40 51.56 5542 50.94 51.98 52.07 5823 57.67 51.71
588 6.06 551 570 637 636 647 598 611 563 575 636 639  6.45
0.9 04 90.60 90.58 91.68 98.10 98.24 111.18 119.73 91.37 91.41 9291 101.61 100.15 113.37 121.70
9.62 917 897 1035 11.92 13.01 13.11 986 9.26 9.24 10.18 11.76 12.85 12.99
0.8 62.05 60.28 6522 59.96 63.60 6341 6221 6224 6052 6519 60.12 63.37 63.10 61.89
6.43 623 702 737 770 751 798 643 628 710 7.36  7.69 748  7.95
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