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Abstract

We model household choice of schools under the Boston mechanism (BM) and
develop a new method, applicable to a broad class of mechanisms, to fully solve the
choice problem even if it is infeasible via the traditional method. We estimate the
joint distribution of household preferences and sophistication types using adminis-
trative data from Barcelona. Counterfactual policy analyses show that a change
from BM to the Deferred Acceptance mechanism would decrease average welfare
by 1,020 euros, while a change to the top trading cycles mechanism would increase

average welfare by 460 euros.
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1 Introduction

Designed to broaden households’” access to schools beyond their neighborhoods, public
school choice systems have been increasingly adopted in many countries.! The quality of
schools to which students are assigned can have significant long-term effects for individual
families as well as important implications on efficiency and equity for a society.? How to
assign students to schools is of key interest among policy makers and researchers.

One important debate centers around the popular Boston mechanism (BM), which
is vulnerable to manipulation (Abdulkadiroglu and Sénmez (2003)). Some cities, includ-
ing Boston, have replaced BM with less manipulable mechanisms such as the student-
proposing deferred acceptance mechanism (DA) (Gale and Shapley (1962)).> However,
the efficiency and equity comparison between BM and its alternatives remains an open
question.

To answer this question, one needs to quantify two essential but unobservable fac-
tors underlying households’ choices, which is what we do in this paper. The first factor
is household preferences, indispensable for comparing welfare across mechanisms even if
household choices were observed under each. Moreover, as choices are often not observed
under counterfactual scenarios, one needs to predict how households would behave. The
knowledge of household preferences alone is not enough for this purpose. Although BM
gives incentives for households to act strategically, there may exist non-strategic house-
holds that simply rank schools according to their true preferences.* A switch from BM
to DA, for example, will induce behavioral changes only among strategic households.
The knowledge about the distribution of household types (strategic or non-strategic) thus
becomes a second essential factor.

We develop a model of school choices under BM by households who differ in both their

preferences for schools and their strategic types. Non-strategic households fill out applica-

!Some papers explore changes in families’ school choice sets to study how school choice affect students’
achievement, e.g., Abdulkadiroglu et al. (2010), Deming et al. (2014), Hastings et al (2009), Lavy (2010),
Mehta (2013) and Walters (2013). Other studies focus on how the competition induced by school choices
affects school performance, e.g., Hoxby (2003) and Rothstein (2006).

2See Heckman and Mosso (2014) for a comprehensive review of the literature on human development
and social mobility.

3See Abdulkadiroglu et al. (2005) for the Boston reform; and Pathak and Sénmez (2013) for switches
in other cities to less-manipulable mechanisms.

4There is direct evidence that both strategic and non-strategic households exist. For example, Ab-
dulkadiroglu et al. (2006) show that some households in Boston obviously failed to strategize. Calsamiglia
and Giiell (2014) prove that some households obviously behave strategically.



tion forms according to their true preferences. Strategic households take admissions risks
into account to maximize their expected payoffs. A household’s expected payoff depends
on how it selects and ranks schools on its application list. The standard way to solve this
problem selects the best permutation out of the set of schools. This method is applicable
only when the choice set is small because the dimensionality grows exponentially with the
number of schools. We utilize two unexploited properties of most allocation mechanisms,
and show that the full optimization problem can be effectively solved via backward induc-
tion even when the household faces a large choice set. This solution method is applicable
to a wide range of mechanisms, covering most mechanisms studied in the literature.

We apply our model to a rich administrative data set from Barcelona, where a BM sys-
tem has been used to allocate students across over 300 public schools. Between 2006 and
2007, there was a drastic change in the official definition of school zones that significantly
altered the set of schools a family had priorities for. We estimate our model using the
2006 pre-reform data via simulated maximum likelihood, and conduct an out-of-sample
validation using the 2007 post-reform data. The model matches the data in both years.

In counterfactual policy experiments, we assess the performance of two truth-revealing
alternatives to BM: DA and the top trading cycles mechanism (TTC).> An average house-
hold would lose by an amount equivalent to 1,020 euros in a BM-to-DA change and benefit
by 460 euros in a BM-to-TTC change. There would be both winners and losers in either
case, leading to a wide dispersion of welfare changes. The cross-household standard de-
viation of welfare changes is 7,180 euros in the former and 9,630 euros in the latter. A
BM-to-DA change is more likely to benefit those who live in higher-school-quality zones,
hence enlarging the cross-zone inequality. In a BM-to-TTC change, the quality of the
school zone a household lives in does not impact its chance to win or to lose. While TTC
enables 59% of households whose favorite schools are out of their zones to attend such
schools, this fraction is only 47% under BM and 42% under DA.

We contribute to the literature on the design of centralized choice systems initiated
by Balinski and Sénmez (1999) for college admissions, and Abdulkadiroglu and Stnmez
(2003) for public school choices, the latter leading to debates on BM. Some suggest that
BM creates an equity problem as non-strategic parents may be disadvantaged by strategic
ones (e.g., Pathak and Sonmez (2008)). Using Boston data under BM, Abdulkadiroglu et
al. (2006) find that households that obviously failed to strategize were disproportionally

unassigned. Calsamiglia and Miralles (2014) show that under certain conditions, the only

STTC was introduced by Shapley and Scarf (1974) and adapted by Abdulkadiroglu and Sonmez (2003).



equilibrium under BM is the one in which families apply for and are assigned to in-zone
schools. Chen and Stnmez (2006) and Ergin and Sénmez (2006) show that DA is more
efficient than BM in complete information environments. Abdulkadiroglu et al. (2011),
Featherstone and Niederle (2011), and Miralles (2008) provide examples where BM is
more efficient than DA.S

Empirical studies that quantify the differences between alternative mechanisms have
been sparse.” He (2014) estimates an equilibrium model under BM. Under certain assump-
tions, he estimates household preferences without specifying the distribution of household
sophistication types. This approach imposes fewer presumptions on the data, but restricts
the model’s ability to compare across mechanisms. Developed independently at roughly
the same time as our paper are Hwang (2015) and Agarwal and Somaini (2016). Hwang
(2015) set-identifies household preferences assuming certain simple rules on behavior. As-
suming all households are strategic, Agarwal and Somaini (2016) interpret a household’s
submitted report as a choice of a probability distribution over assignments, which natu-
rally corresponds to choosing the best permutation of schools.® As in our paper, they also
exploit the observed assignment outcomes and estimate household preferences without
having to solve for the equilibrium. They show that a class of mechanisms can be consis-
tently estimated and establish conditions under which preferences are non-parametrically
identified. In the application, they estimate a parametric model using data from Cam-
bridge, where each household can rank up to 3 programs out of 13. The authors propose
an estimation method based on Gibbs sampling, in which one initiates the procedure by
solving for the best permutation for each household, but avoids having to compute the
likelihood that a report is optimal during the estimation.

Our paper complements well the three papers mentioned above. We develop a so-
lution method applicable to a wide range of choice mechanisms, which efficiently solves
household problems that are unmanageable via the standard method. This new solution
method can significantly expand the scope of empirical research on choice mechanisms.
We show evidence suggesting the coexistence of strategic and non-strategic households,
and estimate both household preferences and the distribution of strategic types in a para-

metric model. The rich variations in our data allow us to form a more comprehensive

6Some recent studies challenge the robustness of the results from Abdulkadiroglu et al. (2011), e.g.,
Troyan (2012), Akyol (2014) and Lu (2015).

"With a different focus, Abdulkadiroglu et al. (2014) show the benefits of centralizing school choice
procedures.

8In an extension, they allow for the existence of both strategic and non-strategic households.



view of the alternative mechanisms in terms of not only the overall household welfare but
also cross-neighborhood inequality. Moreover, we are able to validate our model using
data after a sharp reform, which we view as a positive message for empirical research that
compares different mechanisms via structural models and counterfactual analyses.

Researchers have used out-of-sample fits for model validation, exploiting random social
experiments (Wise (1985), Lise et al. (2005), Todd and Wolpin (2006)), lab experiments
(Bajari and Hortacsu (2005)), or regime shifts (McFadden and Talvitie (1977), Pathak and
Shi (2014)).° Some studies, including our paper, deliberately hold out data for validation
purposes, e.g., Lumsdaine et al. (1992), Keane and Moffitt (1998) and Keane and Wolpin
(2007).

The next section describes the background. Section 3 describes the model. Section 4
explains our estimation and identification strategy. Section 5 describes the data. Section
6 presents the estimation results. Section 7 conducts counterfactual experiments, followed

by the conclusion. The appendix contains further details and additional tables.

2 Background

2.1 The Public School System in Barcelona

The public school system consists of over 300 public or semi-public schools. Public schools
are fully financed by the government and free to attend. The operation of public schools
follows government rules. All public schools are largely homogenous in teacher assignment,
infrastructure, curricula, and funding per pupil. Semi-public schools are run privately,
have more autonomy, and are allowed to charge service fees. On average, of the total
funding for semi-public schools, 63% is from the government, 34% from service fees, and
3% from private sources. All public and semi-public schools are subject to the same
national limit on class size; and have to unconditionally accept and only accept students
assigned to them via the centralized procedure. Outside of the system, there are private
schools, accounting for only 4% of all schools in Barcelona. Private schools receive no
public funding, are subject to few restrictions and do not participate in the centralized

school choice program.*’

9See Keane, Todd and Wolpin (2011) for a comprehensive review.

0For this reason, information on private schools is very limited. Given the lack of information and
the small fraction of schools they account for, we treat private schools as part of the (exogenous) outside
option.



2.2 School Choice within the Public School System

Families get into the public school system via a centralized procedure, in which almost

! Every April, participating families with a child who turns 3

12

all families participate.
in that calendar year submit a ranked list of up to 10 schools.”* Assignment is via a
Boston mechanism. The result is made public between April and May; and enrollment
happens in September. If a school is over-demanded, applicants are prioritized according
to government rules. Applicants can get priority points for the presence of a sibling in the
same school (40 points), in-zone schools (30 points), and some family/child characteristics
(e.g., disability (10 points)). Ties in total priority scores are broken through a fair lottery.
Transferring to a different school within the public system is feasible only if the receiv-
ing school has a free seat, which is nearly impossible for popular schools. In preschool-
to-primary-school transitions, a student has the priority to stay in the same school she
enrolled for preschool. Moreover, students are given priorities to specific secondary schools

based on their primary schools.

2.3 The 2007 Re-Definition of Zones

Before 2007, Barcelona was divided into fixed zones. Families had 30 priority points for
every in-zone school and 0 for out-of-zone schools, regardless of distance.'® In 2007, a
family’s school zone was redefined as the smallest area around its residence that covered
the closest 3 public and 3 semi-public schools.'* The reform was announced abruptly on
March 27th, 2007; families were informed via mail by March 30th and had to submit their
lists by April 20th.

3 Model

3.1 Primitives

There are J (public, semi-public) schools distributed across various zones in the city.

There is a continuum of households of measure 1 (we use the words household, applicant,

1Tn 2007, over 95% of families with a 3-year old child in Barcelona participated.

12 Applications after the deadline can only be considered after all on-time applicants have been assigned.

13Before 2007, a family had priorities for a set of public schools defined by its public-school zone, and a
set of semi-public schools defined by its semi-public-school zone. Throughout the paper, in-zone schools
refer to the union of these two sets.

Y There were over 5,300 zones under this new definition (Calsamiglia and Giiell (2014)).



student and parent interchangeably). Each household submits an ordered list of schools.
Then a centralized procedure assigns students according to their applications, school
capacity and a priority structure.!> One can choose either the school one is assigned to
or the outside option.

Each school j has a location [;, a vector w; of observable characteristics, and a charac-
teristic ¢; observable to households but not the researcher.'® No school can accommodate
all students, but each student is guaranteed a seat in the system.

Household ¢ has characteristics x;, a location [;, idiosyncratic tastes for schools ¢; =
{ei;};, and a type T € {0,1} (non-strategic or strategic). Households know their tastes
and types, which are unobservable to the researcher. The vector ¢; is independent of
(74,1;) and follows an i.i.d. distribution F. (¢).!” The fraction of strategic households
varies with household characteristics and locations, A (z;,1;) . Conditional on observables,

the two types differ only in their behaviors, specified later.

Remark 1 We do not take a stand on why some houscholds are (non)strategic. This
would be critical if a policy change may affect the fraction of strategic households. It’s less
concerning for us because we aim at investigating the impact of replacing BM with some
truth-revealing mechanisms, under which all households will rank schools according to their
true preferences. Once we recover household preferences and the (current) distribution of
types, we can compare the current regime with truth-revealing alternatives without the need

to know how household types are determined.

We normalize the ex-ante value of the outside option to 0, so that a household’s
evaluation of each school is relative to its outside option. Let d;; be the distance between
household ¢ and school j, and d; = {d;; }j . Household 7’s utility from attending school j
is given by,!®

wij = U (wj, x4, dij, G§) + €5

15Gince almost all families participate in the application procedure in reality, we assume that the cost
of application is zero and that all families participate. This is in contrast with the case of the costly
college application, e.g., Fu (2014).

16We assume that households have full information about schools. Qur data do not allow us to separate
preferences from information frictions. Some examples using experiments to study how information affects
schooling choices include Hastings and Weinstein (2008) and Jensen (2010).

1"Each component of ¢; follows N (O, 062) .

18 A likelihood ratio test does not favor a more complex model with zone characteristics added to the
utility function. Following the literature on choice mechanisms, we abstract from peer effects and social
interactions (see Epple and Romano (2011) and Blume et. al (2011) for reviews). The major complication
is the multiple equilibria problem arising from peer effects and social interactions, even under DA or TTC.



Between application and enrollment (about 6 months), the value of the outside option is
subject to a shock n; ~ 7.2.d. N(O,ag), e.g., a wage shock that changes one’s ability to
pay for the private school. A household knows the distribution of 7; before application,
and observes 7; afterwards. With n;, applying for schools in the public system provides
an option value for households. These shocks also rationalize the data fact that some

households opted out despite being assigned to their first choices.

3.2 Priority and Assignment

Priority Scores: Let z; be the zone that contains location [, [ (li € zlj) indicate whether
i lives in school j’s zone, and sib;; € {0, 1} indicate whether i has some sibling enrolled

in j.' Household i’s priority score for school j (s;;) is given by
Sij = x?a + b1 (ll < le) + ngibij, (1)

where a is the vector of points based on demographics. Implied by (1) , multiple households
may tie in their priority scores. If a school is over-demanded, households are ranked
first by their scores, tied households are ranked by random lottery numbers drawn after
applications are submitted. As a special feature in Barcelona and the rest of Spain, a
student’s priority score of her first choice carries over for all schools on her application.?’
We take this feature into account in our analyses. Ex ante, it is not clear how much the
contrast between BM and other mechanisms would depend on the presence of this special
priority feature; readers should take this into account when interpreting our empirical
results. However, it is reassuring, as we show later, that our findings are qualitatively in
line with studies using data from other countries with standard priority structures.

The BM Procedure: Schools are gradually filled up over R < J rounds, where R
is the maximum length of an application list.
Round 1: For each school, consider only the students who have listed it as their first
choice and assign seats to them one at a time following their priority scores from high to
low (with random numbers as tie-breakers) until there is either no seat left or no student
left who has listed it as her first choice.

Round r € {2,3, ..., R}: Only the 7" choices of the students not previously assigned are

19 Characteristics z; consists of demographics 2 and the vector {sib;; }3.]:0.
20For example, if a student lists an in-zone sibling school as her first choice, she carries 2%a + by + by
for all the other schools she listed.



considered. For each unfilled-up school, assign the remaining seats to these students one
at a time following their priority scores and tie-breaking lottery numbers until there is
either no seat left or no student left who has listed it as her r** choice.

The procedure terminates after any step r < R when every student is assigned, or if
the only students who remain unassigned listed no more than r choices. A student who
remains unassigned after the procedure ends can propose a leftover school and be assigned
to it.

Admissions probabilities to each school j can be characterized by a triplet (7;,5;, cut;) ,
where 7; is the round at which j is filled up (¥; > R if j is a leftover school), §; is the
priority score for which lottery numbers are used to break ties for j’s slots, cut; is the cut-
off of the lottery number for admission to j. School j will admit any r*-round applicant
before 7;, any Féh—round applicant with s;; > 5;, and any Fg-h—round applicant with score
5; and random lottery higher than cut;; and it will reject any other applicant. Once the
random lottery numbers are drawn, admissions are fully determined. When making its
application decision, a household knows S; = {sij}j but not its random number, which
makes admissions uncertain in many school-round cases. The assignment procedure im-
plies that the admissions probability is (weakly) decreasing in s;; in each round, and is
(weakly) decreasing over rounds for all scores. In particular, the admissions probability
to a school in Round r + 1 for the highest priority score is (weakly) lower than that for

the lowest score in Round 7.

3.3 Household Problem

We start with the enrollment problem. After seeing the post-application shock 7; and the
assignment result, ¢ chooses between the school it is assigned to and the outside option.

The expected value of being assigned to school j is
v;; = By, max {u;;,m;}. (2)

If rejected by all schools on its list, ¢ can opt for a school that it prefers the most among
the leftover schools (i’s backup). The value (v;) of being assigned to its backup school is
given by

V0 = IMax {Uij }jeleftovers : (3)



3.3.1 Application: Non-Strategic Households

A non-strategic household lists schools according to its true preferences {v;; }j . Without
further assumptions, any list of length n (1 <n < R) that consists of the ordered top
n schools according to {v;;}; is consistent with non-strategic behavior, which makes the
prediction of allocation outcomes ambiguous. To avoid such a situation, we impose the
following weak requirement: suppose household ¢ ranks its backup school as its n}-th

favorite, then the length of ¢’s application list n; is such that
n; > min{n;, R}. (4)

That is, when there are still slots left on its application form, a non-strategic household
will list at least up to its backup school.?!
Let AY = {af,...,a% } be an application list for non-strategic (7' = 0) household 4,

where a? is the ID of the r'-listed school and n; satisfies (4). The elements in A? are

given by
) = argmas (v}, )
j
al = arg max {vilj # ar<r};, for 1 <r <min{nf, n,;}.

The r'-listed school is one’s r* favorite for the entire list if n; < n}, and for the first n}
schools if the n; > n}.?? Define A° (2, ¢;, ;) as the set of lists that satisfy (4) and (5) for
a non-strategic household with (z;,¢;,1;). If n* > R, the set A°(-) is a singleton, and the
length of the list n; = R. If n} < R, all lists in the set A° (-) are identical up to the first

n; elements and imply the same outcome.

3.3.2 Application: Strategic Households

Taking admissions probabilities as given, a strategic household maximizes its expected
payoff. This payoff depends on not only which schools are listed but also how they are

ordered.?® Therefore, the standard (direct) solution is to choose the best permutation of

21See the online appendix for further discussions about Condition (4).

22We do not require that schools listed after one’s backup school be ranked, which is a weaker assump-
tion than otherwise.

23We assume that strategic households are fully rational because it is a clear baseline. As a justification,
BM has been practiced in Barcelona for over 20 years and very familar to households. A more flexible
model would allow for partially-informed types, which is a straight-forward extension to our framework



schools. Formally, let P (J; R) be the set of all possible permutations of size 1 to R out
of elements in J, and |P (J; R)| be its size. The standard solution is given by

A Sia i) lia i) 6

AEHP}?};(R)W( S @il €1) ©)

where 7 (A, ) is the expected value of list A. Choosing the best permutation has been

feasible in previous studies because choice sets (J) were small in those studies. When J

is relatively big and R is beyond 1, P (J; R) soon becomes unmanageably large. In the
case of Barcelona, with J = 317 and R = 10, |P (J; R)| is over 8.9 x 10%%.

Remark 2 We have followed the literature in assuming that households take admissions
probabilities as given and believe that their own choices would not affect the equilibrium.
This is a non-trivial assumption. Although not ideal, it allows us to estimate household
preferences without having to solve for the equilibrium. Otherwise, the estimation pro-
cedure would be very burdensome if not infeasible without making some other restrictive
assumptions, due to the multiple equilibria problem embedded in BM. Because of this major
advantage, the price-taking assumption has been widely used in the literature, especially

when the market is large.?*

We develop a solution method to break the curse of dimensionality and fully solve the
strategic household’s problem. Notice that although we use data from Barcelona with a
particular mechanism and priority structure, our solution method is general and applica-
ble to a broad class of mechanisms, referred to as the class under consideration from now
on.? Some examples in this class include BM, constrained and unconstrained DA, first
preference first, Chinese parallel, and variants or hybrids of the above.?® The solution
utilizes the following two unexploited properties that are intrinsic of these mechanisms.
(1) Sequentiality: Although the entire application list is submitted all at once, the
ranked schools on the list are considered sequentially in the procedure. During the as-
signment, the r**-listed school (a,) is relevant only if one is rejected by all previously listed
schools. Therefore, a, should be one’s best choice contingent on reaching that stage, im-

plying that the problem can be solved via backward induction.

but will impose great challenges for identification. We leave it for future work.

24Gee, for example, Abdulkadiroglu et al. (2011), Hatfield et al. (2014), Azevedo and Hatfield (2015),
Azevedo and Leshno (2015), Agarwal and Somaini (2016), and Kojima (2015).

25 Agarwal and Somaini (2016) study the same class of mechanisms.

26For example, the Cambridge mechanism, serial dictatorship and the procedure used in London for
secondary school assignment since 2005.
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(2) Reducible History: Being rejected by previously listed schools may carry infor-
mation about one’s probability of being assigned to a,, but the information can be fully
summarized by objects much simpler than the list (ay,...a,_1). Therefore, the problem
involves a state space with a dimension much lower than |P (J; R)|.2" In particular, as
we show in the online appendix, with some differences in specifics, mechanisms in the
class under consideration has the following feature. After being rejected by (a1, ...a,_1),
1 will be admitted to a, if a, still has seats and if 7 is ranked high enough among those
being considered. The latter is fully determined by ¢’s priority and random lottery num-
ber for a,. Among the two factors, i’s priority for a, is determined by pre-determined
characteristics, and, in some instances, the rank position of the school on i’s list (i.e., 7);

but it is independent of the other schools on the list.2®

One’s lottery number is drawn
after the application, unknown to the applicant when making her decisions. In the case
where a household has a single lottery number across all tie-breaking cases, correlation
arises between the probabilities of being admitted to the listed schools: being rejected by
a; due to losing the lottery for a; reveals that one’s lottery number is below cut,,, being
rejected again by as due to losing the lottery for as reveals that one’s lottery number
is below min {cut,,, cut,,}, and so on. However, other than this, (ay,...a,_1) bears no
information that is payoff relevant for one’s decision on a,. Therefore, the dimensionality
can be reduced considerably. Consider an example where one can list up to 3 schools out
of 12, under a standard BM. Suppose the numbers of schools filled up in Rounds 1 to 3
are (5,4,3). The dimensionality is |P (12;3)] = 1,464 in the direct solution, while it is
bounded from the above by 150 in our solution.

Given sequentiality, we will explain how to derive a strategic household’s optimal ap-
plications list A} = {a}, ...ajp} via backward induction in general. Then, we will use BM
as an example to show the evolution of the state variables involved in the induction, utiliz-
ing the property of reducible history. The online appendix proves that this method fully
solves the problem, formally describes the dimensionality involved in the solution, and
explains applications of this method to other mechanisms in the class under consideration.

Readers not interested in the details can skip to the next section.

2TThe dimensionality of the direct solution is the same as that of a backward induction where all details
of the list (a1, ..., a,—1) bear information relevant for a,., which is not the case. That is, the direct method
makes the problem unnecessarily complicated.

280ne exception is the BM in Barcelona and Spain in general, where priorities for all listed schools are
determined by the priority for the school ranked first. This makes the case in Spain more complicated
than regular cases, which can nevertheless be solved efficiently using our method.

11



Solution via Backward Induction Let f! = F;(aq,...a,_1) be the information rele-
vant for Round r that is contained in the history of ¢ being rejected by (ay, ...a,_1). Let
P} (Si|F}) be the probability of being admitted to j for a household with scores S; and j as
its 7" choice. The contents of F!" and the determination of pj (+) vary across mechanisms
and depend on the detailed specification of priorities and the usage of lottery numbers
in ranking applicants. However, in the class of mechanisms under consideration, given
(Si,a:i, l;, €, FZR) , ar shall solve:

v (Sz',xmlm% Fﬁ) = mgx {pf (Sz‘Ff) Vij + (1 —pf (Si|FzR)) Uz‘o} .

In general, given V"1 (S;, 2;, i, €;, -) and the state variables (S;, x;, l;, €;, F7) , with VE+L (1)

V0, the continuation value for ¢ at Round r < R is given by

v (SZ, Xy, li, €;, FZ) = meajg {p; (SAF:) Vij + (1 — p; (SZ|F:))VT+1 (Si,l‘i, li, €, F:—H)} .
J
(7)

The process continues until » = 1, where a; solves:
Vl (Sz; Xy, li, €, le) = Imax {pjl(SZ‘Fll)U” + (1 —p} (SAF%)) V2 (S“ i, li, €, F?)} .
j

The backward induction process above constructs an optimal list (ay, ..., ar) .

We show the contents of F} and the determination of pf (-), using as examples, the
standard BM and the BM used in Barcelona, the latter being a special and more compli-
cated case of the former.?”

Case 1) School-Specific Priorities and a Single Lottery Number (Standard
BM) When a household has a single lottery number across all tie-breaking cases, cor-
relation arises between admissions probabilities across rounds. Losing the lottery for a,
reveals that one’s lottery number is below cut,,. Therefore, the probability of being al-

located in Round r + 1 conditional on being rejected by a, is (weakly) lower than the

29The easiest case happens when applicants are given i.i.d. school-specific lottery numbers, under which
V" (,FF)=V"(-) and the constraint for (7) is

lifr <7, or (r=7; and s;; > 3;),

P} (Si\Fg):pf; (S;) = 1 —cut; if r =7; and s;; =3,
0 otherwise.
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unconditional probability. Let E: € [0,1] be the upper bound of one’s random number
conditional on one’s rejection history (521 = 1). All relevant information reduces to E:, ie.,

F7 =¢&,. Constraints for (7) are

(8)

. —-r . _ _
E’r‘+1 { min {Cutj,fz} 1f S’ij — Sj and r = T]"
Z- pr—

=T .
&, otherwise,

lif r <7 or (r =7, and s;; > 3;),
p; (SZE:) = max {0, &—g%t]} if r = Fj and Sij = gj, (9)

0 otherwise.

Condition (8) is the updating rule: E:H will decrease to min {cutj, E:} if 7 is in the tied
priority group and loses the lottery.>® The second equality in (9) follows the uniform
distribution with truncated support [0, E:} .

Case 2) Constant Priority and a Single Lottery Number (Barcelona) The pri-
ority score of one’s top-listed school carries over to future rounds. As a result, the contin-
uation values for r > 1 depend on the top-listed school (a1); and S; in (7) now becomes
a vector of identical elements, Si4,1 = [Siays .-+, Siay ). With s;,, 1 being the priority score
vector, the problem for 7 > 1 remains the same as in Case 1). For Round 1, one solves
the following problem

v (Si,zi,li,eif: _ 1) _

max {pj (sij1|1) vy + (1= pjl- (si;1]1)) V? (8@'17%, li, Ez,gf)} ; (10)

s.t. Conditions (8), (9).

That is, the choice in Round 1 governs the vector of priority scores.

Remark 3 Multiple lists may yield the same value. Let A' (z;,1;,¢;) be the set of optimal
lists for a strategic household. All lists in the optimal set, including the one derived by
backward induction, are identical up to the payoff-relevant part of the lists and imply the

same allocation outcome.®!

30Going to Round r + 1 means one must have been rejected in Round r.

31 For example, consider a list A! = {a%, wal, ...a},—i} , by the specification of {u;;} , each al is generically
unique if no school listed before it has a 100% admissions rate for the household. However, if for some
r < R, the admissions rate for the r*" listed school is one, then any list that shares the same first r

ordered elements is also optimal. See the online appendix for other cases.

13



4 Estimation

4.1 Further Empirical Specification

As described in detail in Appendix A1, the utility function takes the following form
U (U)j, Ty, dij> C]) = T1[ (Single parent) + 7o (Sibij— Sibio) - C (dU) (11)

3
+ Z (506 + 6leCj + U}jae) I (edui = e) .
e=1

In particular, 7 is added to ¢’s evaluation of j if a sibling is enrolled in j, subtracted from
i’s evaluation of all schools if a sibling is in the outside option (sibjy = 1). C(d;;) is a
distance cost function. The second line of (11) specifies the part of the utility that varies
across households with different education levels.

With potential correlation between school characteristics that are unobserved (;) and
observed (w;), estimates of o in (11) may be inconsistent. Yet, one can combine the

effects of (w;, (;) and rewrite the second line of (11) as

Z (0pe + 01ek; + w;pe) I (edu; =€) . (12)

e

The reduced-form parameters p and {ﬁj}j can be consistently estimated; and each of
them is some combination of structural parameters «, ¢ and (. For the goal of this paper,

it is sufficient to estimate p and {x;}, instead of o and (.*?

4.2 The Likelihood

Let parameter vector © = [©,,Or|, where O,, governs hous