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Abstract

I study a regression model in which one covariate is an unknown function of a latent
driver of link formation in a network. Rather than specify and fit a parametric network
formation model, I introduce a new method based on matching pairs of agents with
similar columns of the squared adjacency matrix, the ijth entry of which contains
the number of other agents linked to both agents i and j. The intuition behind this
approach is that for a large class of network formation models the columns of this matrix
characterize all of the identifiable information about individual linking behavior. In
the paper, I first describe the model and formalize this intuition. I then introduce
estimators for the parameters of the regression model and characterize their large
sample properties.

1 Introduction

Most economic outcomes are not determined in isolation. Rather agents are influenced by the

behaviors and characteristics of other agents. For example, a high school student’s academic

performance might depend on the attitudes and expectations of that student’s friends and

family (see generally Akerlof and Kranton 2002, Austen-Smith and Fryer Jr 2005, Marianne

2011, Sacerdote 2011).

Incorporating this social influence into the right-hand side of an economic model may

be desirable when the researcher wants to understand its impact on the agents’ outcomes
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or when it confounds the impact of another explanatory variable such as the causal effect

of some nonrandomized treatment. For instance in the above example, the researcher may

want to learn the causal effect of a tutoring program on academic performance in which

program enrollment and counterfactual academic performance are both partially determined

by family expectations. However, in many cases the relevant social influence is not observed

by the researcher and so it cannot simply be included as a covariate in the model. That is in

the above example, the researcher does not have access to data on the family expectations

that confound the causal effect of the tutoring program and thus cannot control for this

variable using conventional methods.

One solution to this problem is to collect social network data and presume that the

unknown social influence is revealed by agent linking behavior in the network (see generally

Jackson 2008; 2014, Blume, Brock, Durlauf, and Ioannides 2010, Boucher and Fortin 2015,

Chandrasekhar 2015, Graham 2015, de Paula 2016, Kranton 2017). For instance in the

above example, the researcher might observe pairs of students who identify as friends and

believe that students with similar reported friendships have similar family expectations. It

is not immediately clear, however, how one might actually use network data to account for

unobserved social influence in practice, since the total number of ways in which agents can

be linked in a network is typically large relative to the sample size.

The main contribution of this paper is to demonstrate one way in which network data can

be used as a substitute for this sort of unobserved heterogeneity in the context of a partially

linear regression model. The paper consists of three steps: first, I specify a joint regression

and network formation model; second, I establish sufficient conditions for the parameters of

the regression model to be identified; third, I provide estimators for these parameters and

characterize their large sample properties.

In the first step, described further in Section 2.1, I specify a model in which latent

social characteristics determine both the social influence in the regression and links in the

network. The model draws upon previous work by Goldsmith-Pinkham and Imbens (2013),

Chan (2014), Hsieh and Lee (2014), Johnsson and Moon (2015), and Arduini, Patacchini, and

Rainone (2015). However, these authors rely on relatively strong functional form assumptions

on the network formation model that when wrong may lead to invalid inferences about the
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parameters of the regression model. My method does not require such assumptions.

An assumption I do require is that the network links are conditionally independent given

the agents’ social characteristics. This assumption is not uncommon in the network formation

literature (see Bickel and Chen 2009, Graham 2017, as well as the above literature). But when

taken as a literal description of the agents’ incentives to form links, the model does preclude

behavior thought to characterize many economic networks (c.f. Sheng 2012, Chandrasekhar

and Jackson 2014, Leung 2015, Menzel 2015, Ridder and Sheng 2015, Badev 2017, Mele 2017).

In particular, under the random utility interpretation for this model outlined by Candelaria

(2016), the utility two agents receive from forming a link cannot explicitly depend on the

existence of links between other agents in the sample.

In Section 2.3, I propose an alternative interpretation of the model that does not imply

such strong behavioral assumptions about the network formation process. This interpreta-

tion views the model not as a literal description of agent behavior, but as a reduced form

characterization of the within-equilibrium distribution of network links generated by some

economic game, not specified by the researcher. A similar representation argument under-

lies the estimation strategy of Menzel (2015). However, my interpretation also relies on

the additional argument that, for the purposes of identifying and estimating the parameters

of a regression model, conflating the true network formation process with its reduced form

approximation is, in many cases, without loss of generality. A formal presentation of this

argument, its limitations, and an example can be found in Section 2.3.

In the second step, described further in Sections 2.2 and 3.2, I provide sufficient condi-

tions for the parameters of the regression model to be identified without strong functional

form restrictions on the network formation model. The idea behind these conditions is that

in a regression model in which the outcome depends on observed explanatory variables and

an unobserved social influence term, the model is identified if agents with similar social char-

acteristics have similar social influences but different explanatory variables. An innovation

of this paper is the use of network distance, a novel measure of similarity between agents’

social characteristics, to formalize these conditions make them straightforward to apply in

practice.

To illustrate the use of these conditions, I study the identification of network peer effects
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in a variation on the linear-in-menas model of Bramoullé, Djebbari, and Fortin (2009) and

demonstrate that, in the setting of this paper, the network peer effects are not generally

identified in the presence of unknown social influence. Similar results have been found in

the related group peer effects literature (for instance, Manski 1993, Graham and Hahn 2005,

Graham 2008) in which a group peer effect is not generally distinguishable from unobserved

heterogeneity at the group level. More details about this example can be found at the end

of Section 2.2.

In the third step, also described further in Section 2.2, I propose estimators for the

parameters of the regression model based on matching pairs of agents with similar columns

of the squared adjacency matrix. The adjacency matrix of a network is a matrix with the

number of rows and columns equal to the number of agents. It contains a 1 in the ijth entry

if agents i and j are linked and a 0 otherwise. The squared adjacency matrix refers to the

matrix square of the adjacency matrix and agent i’s column of the squared adjacency matrix

is the ith column of this matrix.

The rationale for this procedure follows from a new result in this paper that, under

mild regularity conditions on the network formation model, agents with similar columns of

the squared adjacency matrix necessarily have similar social characteristics, as measured

by network distance. The logic is related to recent arguments from the link prediction

literature (in particular Bickel, Chen, and Levina 2011, Rohe, Chatterjee, and Yu 2011,

Zhang, Levina, and Zhu 2015), though to my knowledge the main result and its application

to the identification and estimation of the parameters of a regression model are original. A

formal statement of this result can be found in Section 3.3.1.

The estimators are simple to compute and, under certain regularity conditions, are con-

sistent and asymptotically normal. In particular, the estimators can be approximated by

ratios of nondegenerate U-statistics, so that their large sample distributions can be derived

analytically using arguments from Serfling (2009) (see also Powell, Stock, and Stoker 1989,

Ahn and Powell 1993) and approximated using random sampling methods such as the boot-

strap of Efron (1979) (see also Bickel and Freedman 1981, Bhattacharyya and Bickel 2015,

Menzel 2017). Details about the large sample properties of these estimators can be found in

Sections 3.3 and 3.4.
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This analysis, however, is complicated by the fact that the matching variable is a vector

of dimension equal to the sample size. As a result, constructions commonly used in the

literature to characterize the rate of convergence and limiting distribution of the estimators,

such as the density function of the matching variable, are not well defined in my setting. To

resolve this problem, I appeal to arguments from the literature on functional nonparametrics

(for instance, Ferraty, Mas, and Vieu 2007, Hong and Linton 2016), in which this density

function is replaced with a more general notion of a small ball probability. This construction

can then be characterized using tools from the literature on dense graph limits (see generally

Lovász 2012). The dimension of the matching variable also complicates correcting the bias

of the slope parameter of the regression model, for which I propose a slight variation on the

jackknife method of Honoré and Powell (1997). Details can be found in Section 3.3.3.

Section 4 contains simulation evidence from three Monte Carlo experiments and Section 5

concludes by discussing how the method of this paper might be extended to various nonlinear

and nonparametric regression models, or to allow for weighted networks, directed networks,

or networks with exogenous link covariates. I leave the formal study of these extensions to

future work.

2 Model and Estimators

Section 2.1 provides an overview of the model. Section 2.2 provides an overview of the main

identification conditions and proposed estimators. Section 2.3 contains a discussion about

two behavioral interpretations of the model.

2.1 Model

Let i be an arbitrary agent from a large population. Associated with agent i is an outcome

yi ∈ R, a vector of observed explanatory variables xi ∈ Rk for some positive integer k, and an

unobserved index of social characteristics wi ∈ [0, 1]. The three are related by the following

regression model

yi = xiβ + λ(wi) + εi (1)
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in which β ∈ Rk is an unknown slope parameter, λ is an unknown Lebesgue measurable

function, and εi is an idiosyncratic error with E[εi|xi, wi] = 0. I emphasize that the semilinear

structure of (1) is used to simplify the exposition of the paper; it is possible to extend the

logic of this paper to various nonlinear and nonparametric regression models (see Section 5).

The parameters of interest are β and agent i’s social influence term λ(wi). In this paper,

the social influence function λ : [0, 1] → R is not a parameter of interest because it is not

separately identified from wi. It is thus without loss to normalize the marginal distribution

of wi to be standard uniform. Apart from this normalization, the two main identification

conditions given in Section 2.2, and various regularity conditions given in Section 3, the joint

distribution of xi and wi is left unrestricted. In fact, under these conditions β and λ(wi)

may be identified even if one of the random variables is a deterministic function of the other

(see the discussion after Theorem 1 in Section 3.2 for more details).

I assume the researcher draws a random sample of n agents from the population. The

agents in this sample are described by the sequence of independent and identically distributed

random variables {yi, xi, wi}ni=1, although the researcher only observes {yi, xi}ni=1 as data. In

order to identify and estimate β and λ(wi), the researcher also observes D, an n×n stochastic

binary adjacency matrix corresponding to an unlabeled, unweighted, and undirected random

network between the n agents. The existence of a link between agents i and j is determined

by the following model

Dij = 1{ηij ≤ f(wi, wj)}1{i 6= j} (2)

in which f is an unknown symmetric Lebesgue measurable function and {ηij}ni,j=1 is a sym-

metric matrix of unobserved scalar disturbances with independent upper diagonal entries

that are mutually independent of {xi, wi, εi}ni=1. In this paper, the marginal distribution of

ηij is not separately identified from f and so is also normalized to be standard uniform.

Network formation is represented by
(
n
2

)
conditionally independent Bernoulli trials in

which the probability that agents i and j link is proportional to f(wi, wj). Examples of (2) in

the network formation literature include Holland and Leinhardt (1981), Duijn, Snijders, and

Zijlstra (2004), Krivitsky, Handcock, Raftery, and Hoff (2009), Chatterjee, Diaconis, and Sly
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(2011), McCormick and Zheng (2012), Dzemski (2014), Graham (2017), Candelaria (2016),

Toth (2017) and Nadler (2016). Many of these authors also consider directed networks,

weighted networks, or include exogenous link covariates in the right hand side of (2). Such

extensions are also possible in my setting but not pursued in this paper.

One way to interpret (2) is as a literal description of how a researcher might use a

subjective survey question to elicit information about a nonrandom relationship between

two agents. For instance, the researcher might survey a random sample of agents about

whether or not they identify as friends with Dij = 1 if agents i and j report a friendship,

f(wi, wj) the frequency of positive social interactions between them, and ηij an error that

allows for heterogeneity in i and j’s subjective interpretation of whether or not the nature

of their interactions qualifies as a friendship. This interpretation of the network formation

model is not behavioral, in the sense that it takes the social interactions as deterministic

and attributes all of the randomness in D to either sampling or measurement error. In

Section 2.3, I provide two alternative interpretations of the model that are behavioral, in

that they consider the randomness in D to be the result of agents’ stochastic preferences

over particular configurations of network links.

The following three examples illustrate applications of the model to the literature.

Example 1 (Network Peer Effects): Let yi be student GPA, xi be a vector of student

covariates (age, grade, gender, etc.), and Dij = 1 if students i and j are friends and 0

otherwise. One extension of the Manski (1993) linear-in-means peer effects model to the

network setting is

yi = xiβ + E[xj|Dij = 1, wi]ρ1 + E[yj|Dij = 1, wi]ρ2 + ρ3(wi) + εi

Dij = 1{ηij ≤ f(wi, wj)}1{i 6= j}

in which wi measures student i’s social ability, E[xj|Dij = 1, wi] denotes the expected

covariates of agent i’s friends given his social ability, E[yj|Dij = 1, wi] denotes the expected

GPA of agent i’s friends given his social ability, and ρ3(wi) is the direct effect of social

ability on GPA (students with more social ability may have higher family expectations

about GPA). Social influence corresponds to the inside three terms on the right hand side
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of the regression model: λ(wi) = E[xj|Dij = 1, wi]ρ1 + E[yj|Dij = 1, wi]ρ2 + ρ3(wi).

Identification problems stemming from the fact that all three terms are functions of wi is

discussed in Section 2.2. Bramoullé, Djebbari, and Fortin (2009) consider a similar model

with ρ3(wi) = 0 and Goldsmith-Pinkham and Imbens (2013), Chan (2014), Hsieh and Lee

(2014), Johnsson and Moon (2015), and Arduini, Patacchini, and Rainone (2015) consider

related models with additional functional form restrictions on ρ3 or f .

In Example 1, the use of the expected peer outcomes E[yj|Dij = 1, wi] instead of their

sample analogs
∑

j yjDij/
∑

j Dij reflects a particular interpretation about the model and

sampling procedure: the peer groups that determine agent behavior are not related to the

random sample drawn by the researcher. In contrast, the literature generally assumes that

the researcher has sampled all of the other agents whose outcomes and characteristics influ-

ence agent i’s outcome.

Example 2 (Information Diffusion): Banerjee, Chandrasekhar, Duflo, and Jackson

(2013) model household participation in a microfinance program in which information

about the program diffuses over a social network. The authors control for household-level

heterogeneity in program information by specifying and simulating a joint model of

information diffusion and program participation. To simplify the example, I suppose that

the authors have access to a continuous measure of program participation (extending my

method to nonlinear models is straightforward, but left to future work) and propose the

alternative

yi = xiβ + λ(wi) + εi

Dij = 1{ηij ≤ f(wi, wj)}1{i 6= j}

in which i indexes participating households, yi is a continuous measure of participation

(amount of money borrowed), xi is a vector of observed household characteristics (caste,

religion, wealth, etc.), Dij = 1 if households i and j report a social connection, and wi are

characteristics that influence social network formation (e.g. villager gregariousness). The

social influence term, λ(wi), gives the direct effect of villager gregariousness on program
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participation (more gregarious villagers might all else equal learn more about the program

and thus may be willing to borrow more money).

Example 3 (Research Productivity): Ductor, Fafchamps, Goyal, and van der Leij

(2014) study a model of research productivity in which a researcher’s current publication

quality depends on past quality, researcher covariates, and a vector of network statistics

derived from a coauthorship network (in which two researchers are linked if they have

previously been coauthors) including agent degree, eigenvector centrality, etc. The authors

experiment with several different models of productivity, including various combinations of

network statistics. An alternative treats the unknown combination of network statistics as

unobserved social influence

yi = xiβ + λ(wi) + εi

Dij = 1{ηij ≤ f(wi, wj)}1{i 6= j}

in which wi indexes researcher i’s participation in various academic communities (for

instance, fields of study, physical locations, etc.) and the social influence term λ(wi) is the

direct effect of interacting with a particular collection of communities (as indexed by wi) on

research productivity. The idea that a vector of network statistics can be represented by a

function of the agent’s latent social characteristics is explained in more detail in Section 2.3.

2.2 Main Identification Conditions and Estimators

This section motivates the main identification conditions and estimators for β and λ(wi),

deferring formal results to Section 3. I first focus on the identification and estimation of

β and treat λ and f as nuisance functions. If the social characteristics were observed, (1)

corresponds to the partially linear regression of Engle, Granger, Rice, and Weiss (1986)

and the identification and estimation of β is well understood (see Chamberlain 1986, Powell

1987, Newey 1988, Robinson 1988, Ritov and Bickel 1990). If the social characteristics were

unobserved but identified by the distribution of D (that is, wi 6= w′i implies
∫
τ∈A f(wi, τ)dτ 6=∫

τ∈A f(w′i, τ)dτ for some A ⊆ [0, 1] with nonzero Lebesgue measure), one might extend these
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methods by replacing the social characteristics with empirical analogs as in Ahn and Powell

(1993), Ahn (1997), and Hahn and Ridder (2013). This is the approach taken by Arduini,

Patacchini, and Rainone (2015) and Johnsson and Moon (2015).

However, in this paper I do not assume that the social characteristics are either observed

or identified by the distribution of D. Instead, I propose to identify and estimate β by

matching pairs of agents with similar network types (an object I define below). This idea is

motivated by the following two observations.

The first observation is that β is identified if λ(wi) depends on wi only through the

network type f(wi, ·) : [0, 1]→ [0, 1] and if there is excess variation in the distribution of xi

not explained by f(wi, ·). I will explain what I mean by these conditions first, and then the

logic behind them. The network type f(u, ·) gives the conditional probability that an agent

with social characteristics u links with agents of every other social characteristic in [0, 1].

To compare two agents’ network types, I use network distance, which is defined to be the

following pseudometric on the space of social characteristics

d(u, v) = ||f (u, ·)− f (v, ·) ||2 =

(∫
(f (u, τ)− f (v, τ))2 dτ

)1/2

In words, d(u, v) is the integrated squared difference in the network types of agents with social

characteristics u and v. The main identification conditions are then that β is identified if

E[(xi − xj)
′(λ(wi) − λ(wj))|d(wi, wj) = 0] = 0 and E[(xi − xj)

′(xi − xj)|d(wi, wj) = 0] is

positive definite. A formal definition of these conditional expectations is provided at the end

of Section 3.1.

The logic behind the first identification condition is that under (2), f(wi, ·) describes the

totality of information that the distribution of D contains about wi. That is, if d(wi, wj) = 0

then there is no feature of the network that can distinguish between wi and wj. Agents i

and j will have the same probability of being connected in any particular configuration of

links, and thus will have the same distribution of degrees, eigenvector centralities, average

peer characteristics, and any other agent-specific statistic of D (see Theorem B in Section

2.3). If E[(xi − xj)′(λ(wi) − λ(wj))|d(wi, wj) = 0] 6= 0, then matching agents with similar

network types will not control for all of the unobserved heterogeneity in (1), but under (2)
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there is no further information in the distribution of D that can identify it. Additionally,

when wi is identified by the distribution of D, d(wi, wj) = 0 implies |wi − wj| = 0, so that

E[(xi − xj)′(λ(wi) − λ(wj))|d(wi, wj) = 0] = 0 holds by definition. As a consequence, this

first identification condition is more general than that imposed by the literature cited in

Section 2.1.

The logic behind the second identification condition is that if E[(xi−xj)′(xi−xj)|d(wi, wj) =

0] is not positive definite, then there is a dimension of the covariate space such that all of

the variation in yi can be explained by wi regardless of β. Thus β is not identified, because

any value of β along this dimension is consistent with the data. An example of a model that

fails this condition is the network peer effects model of Example 1, which I discuss below.

The second observation is that the average squared difference in the ith and jth columns

of the squared adjacency matrix (D×D) can be used to bound d(wi, wj). The logic has two

steps. First, there exists another pseudometric δ on the space of social characteristics such

that d(wi, wj) can be bounded in terms of δ(wi, wj). Second, δ(wi, wj) can be consistently

estimated by the root average squared difference in the ith and jth columns of the squared

adjacency matrix

δ̂ij =

 1

n

n∑
t=1

(
1

n

n∑
s=1

Dts(Dis −Djs)

)2
1/2

(3)

Here, the codegree
∑n

s=1DtsDis gives the number of other agents that are linked to both

agents i and t, {
∑n

s=1DtsDis}nt=1 is the collection of codegrees between agent i and the

other agents in the sample, and δ̂ij gives the root average squared difference in i’s and j’s

collection of codegrees. Similar relationships between configurations of network moments

and the distribution of links are also used by Bickel, Chen, and Levina (2011), Lovász and

Szegedy (2010), Rohe, Chatterjee, and Yu (2011), and Zhang, Levina, and Zhu (2015), but

to different ends.

The two observations indicate that when the ith and jth columns of the squared adjacency

matrix are similar and the identification conditions for β hold then (yi − yj) and (xi −

xj)β + (εi − εj) are approximately equal. Under additional regularity conditions, β is then
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consistently estimated by the pairwise difference estimator

β̂ =

(
n−1∑
i=1

n∑
j=i+1

(xi − xj)′(xi − xj)K

(
δ̂2ij
hn

))−1(n−1∑
i=1

n∑
j=i+1

(xi − xj)′(yi − yj)K

(
δ̂2ij
hn

))
(4)

in which K is a kernel density function and hn a bandwidth parameter depending on the

sample size.

This estimator for β can be used to construct an estimator for λ(wi) when the first main

identification condition is strengthened to E
[
(λ(wi)− λ(wj))

2 |d(wi, wj) = 0
]

= 0. That is, if

two agents have the same distribution of network links they have the same unobserved social

influences. Under this assumption, consistency of β̂, and additional regularity conditions,

λ(wi) is consistently estimated by the following nonparametric regression of the residuals

(yi − xiβ̂) on wi using differences in the columns of the squared adjacency matrix δ̂ij.

λ̂(wi) =

(
n∑
t=1

K

(
δ̂2it
hn

))−1( n∑
t=1

(
yt − xtβ̂

)
K

(
δ̂2it
hn

))
(5)

This logic might also be used to estimate other network effects. For instance, another

extension of the Manski (1993) linear-in-means peer effects model to the network setting is

yi = xiβ +E[xi|wi]ρ1 +E[yi|wi]ρ2 + ρ3(wi) + εi, in which E[xi|wi] is the expected covariates

of agent i given his social characteristics. This model differs from that in Example 1 in

that agents react to their expected characteristics rather than the expected characteristics of

their friends. While the two models are identical in Manski’s setting, when linking behavior

is heterophilic, they have different implications. When ρ3(·) = 0, one might use {δ̂ij}i 6=j to

estimate E[xi|wi] and E[yi|wi], and then estimate ρ1 and ρ2 by regressing λ̂(wi) on Ê[xi|wi]

and Ê[yi|wi].

I now discuss the identification of β and λ(wi) in the context of Example 1.

Example 1 (Network Peer Effects): In the network peer effects model

yi = xiβ + E[xj|Dij = 1, wi]ρ1 + E[yj|Dij = 1, wi]ρ2 + ρ3(wi) + εi

Dij = 1{ηij ≤ f(wi, wj)}1{i 6= j}
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the parameter β is identified if the two main identification conditions hold. For example, β

is identified if a student’s expected number of network links (
∫
f(wi, τ)dτ) is a monotonic

function of social ability, but students with some fixed social ability do not all have the

same covariates. The parameters ρ1 and ρ2 are not separately identified from the function

ρ3, since E[xj|Dij = 1, wi] = E[xjDij|wi]/E[Dij|wi] is a function of wi. In fact, the model

violates the second identification condition because

E[xj|Dij = 1, wi] =

∫
E[xj|wj = w]f(wi, w)dw/

∫
f(wi, w)dw

is a smooth functional of f(wi, ·) (so long as infu∈[0,1]
∫
f(u,w)dw > 0). Identifying ρ1 and

ρ2 in this model requires additional assumptions.

2.3 Discussion

This section discusses two motivations for the proposed model and main identification con-

ditions. The first motivation is due to Goldsmith-Pinkham and Imbens (2013) and Jackson

(2014), who view wi as literally corresponding to an exogenous social attribute, such as so-

cioeconomic status or social ability. Agent i’s incentive to form links and his social influence

in the regression model are both determined by wi. For instance, a student’s socioeconomic

status might determine both his friendships and his parent’s expectations about academic

performance. Under this interpretation, the network is relevant because it allows the re-

searcher to identify the agents’ social characteristics (up to the equivalence class defined by

d) and incorporate them into the regression model.

That the unobserved social characteristics can be learned from the columns of the squared

adjacency matrix supposes that the true network formation model is of the form given in

(2). A key implication of this model is that Dij and Dkl are independent conditional on

{wi, wj, wk, wl}. This assumption is also made by the literature cited in Section 2.1. However,

when f(wi, wj)− ηij is interpreted as the utility agents i and j receive from forming a link,

the assumption is often thought to be unrealistic because it does not allow for endogenous

link formation, a phenomena in which the utility agents i and j receive from forming a link

depends on the existence of other links in the sample Sheng (2012), Leung (2014; 2015),
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Ridder and Sheng (2015), Menzel (2015), Mele (2017) and Mele and Zhu (2017) all consider

network formation models in which some linking behavior is endogenous.

If the network formation model exhibits endogenous link formation, then under this

first motivation the columns of the squared adjacency matrix do not necessarily reveal any

meaningful information about the underlying social charateristics, and the methodology of

this paper is potentially invalid. Recent work by Hsieh and Lee (2014), Griffith (2016) and

Badev (2017) consider parametric models of social interaction and network formation that,

among other things, explicitly account for endogenous link formation. The extent to which

the parametric structure in their models can be relaxed as in (2) is to my knowledge an open

question.

In the second motivation, the social characteristics do not literally correspond to exoge-

nous agent attributes. Instead, (2) is a reduced form description of the equilibrium distri-

bution of network links implied by some unspecified structural network formation game on

a population that is large relative to the sample size. Linking behavior in this game may be

endogenous. This interpretation relies on two main results that I summarize first and then

explain below.

The first result is that many network formation models from the economics literature gen-

erate a distribution of network links that can be described by (2), for some choice of linking

function f and collection of social characteristics {wi}ni=1. The second result (original to this

paper) is that many network statistics from the economics literature can be approximated

by functionals of the network types implied by this reduced form approximation. When

the network formation game occurs on a population that is large relative to the size of the

sample observed by the researcher, any regression model in which the outcome depends on

a vector of observed covariates and an unknown combination of population network statis-

tics (satisfying certain regularity conditions) is closely approximated by (1), for some social

influence function λ satisfying the first main identification condition of Section 2.2. I first

explain the results below, describe the interpretation in more detail, and then illustrate the

argument using the Example 3 from Section 2.1.

The first result is that if the network formation model is jointly exchangeable then the

equilibrium distribution of network links is described by (2) for some choice of f and {wi}ni=1.
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In this paper, a network formation model on n agents is characterized by the joint distribution

of the elements of the associated random n × n adjacency matrix {Dij}i 6=j, and is jointly

exchangeable if for any automorphism π on {1, ..., n}, {Dij}i 6=j and {Dπ(i)π(j)}i 6=j are equal

in distribution. Intuitively, joint exchangeability imposes that the distribution of network

links does not depend on how the agents are indexed. Almost all of the network formation

models cited in this paper are jointly exchangeable.

The following theorem is generally attributed to Hoover (1979), Aldous (1981) and

Kallenberg (1989), although this particular version is Corollary III.6 to Theorem III.2 of

Orbanz and Roy (2015)

Theorem A: The network formation model characterized by {Dij}i 6=j is jointly

exchangeable if and only if there exist iid uniform random variables w, {wi}ni=1 and {ηij}i 6=j
that are mutually independent of each other and a measurable function f such that

Dij =d 1{ηij < f(w,wi, wj)} (6)

The theorem is similar in spirit to arguments made by Leung (2015), Menzel (2015), Rid-

der and Sheng (2015), Mele and Zhu (2017), who broadly view (6) as either a limiting game

associated with a model with endogenous link formation or as a reduced form description of

the within-equilibrium distribution of links between agents (the random variable w, which

indexes variation at the population level, captures variation due to equilibrium selection).

Conditional on w, (6) is equivalent to (2), and the arguments of this paper can be applied.

In what follows, I refer to the function f(w, ·, ·) as the reduced form linking function and

f(w,wi, ·) as agent i’s reduced form network type.

The second result is that even if (6) does not literally describe the structural network

formation game that generated the observed network links, the main identification conditions

of this paper may still be satisfied if the social influence in the regression model can be

described by a combination of agent-specific network statistics as formalized below. A similar

class of regression models is studied by Chandrasekhar and Lewis (2011) (and includes the

three main examples from Section 2.1).

Let λ(D, i) denote an arbitrary agent-specific network statistic, that is a real-valued func-
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tion of an adjacency matrix D and an agent index i from some network on m agents, satisfy-

ing two assumptions. The first assumption is about symmetry: for any automorphism π on

{1, ...,m} such that π(i) = i, λ(D, i) = λ({Dπ(s),π(t)}s 6=t, i). In words, the assumption says

that the network statistic for agent i does not depend on how the other agents are indexed.

The second assumption is about bounded deviations: for any two m×m adjacency matrixes

D and D′, |λ(D, i)− λ(D′, j)| = Op

(
1
m

∑
t6=i,j |Dit −D′jt|+ 1

m2

∑
s,t 6=i,j |Dst −D′st|

)
. This

assumption states that altering one of agent i’s links in the network only changes the statis-

tic for agent i by a factor of O
(

1
m

)
while altering any other link only changes it by O

(
1
m2

)
.

Many network statistics from the economics literature satisfy these conditions, including

average degree, eigenvector centrality, and average peer characteristics.

Theorem B: Suppose λ(D, i) satisfies the above symmetry and bounded deviations

assumptions. Further suppose (6) holds. Then

|λ(D, i)− λ(D, j)| ≤ C||f(w,wi, ·)− f(w,wj, ·)||2 +Op

(
m−1/2

)
for some C depending on f and w.

The proof of Theorem B can be found in the Appendix. The choice of 1/m in the bounded

deviations condition is arbitrary, affecting only the rate of convergence on the right hand

side of the conclusion.

Theorems A and B motivate a class of models for which the conditional independence

assumption does not restrict agent behavior in the network formation process. The model is

defined on a large population of size m. On this population, agents make linking decisions

according to some jointly exchangeable network formation game, represented by (6). Agent

outcomes in the regression model are a linear function of the observed covariates and a

collection of unknown population network statistics defined on an equilibrium of the game

and satisfying the hypothesis of Theorem B. The researcher then draws a random sample

of agents of size n, where n is small relative to m. The relationship between the outcome,

covariates, and network statistics is then described by (1), for some choice of social influence

function λ, up to a negligible error. It also satisfies the first main identification assumption

of Section 2.2 (in which network distance is now defined using the reduced form network
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types d(w,wi, wj) := ||f(w,wi, ·)− f(w,wj, ·)||2).

I now apply this second interpretation to Example 3.

Example 3 (Research Productivity): Consider a variation on Example 3 from Section

2.1 in which yi, the productivity of researcher i, is explained by the model

yi = xiβ + λ(D?, i) + εi

in which researcher i belongs to a large population of size m, D? is an m×m binary

adjacency matrix corresponding to a random network on that population (where two

researchers are linked if they interact professionally), and λ(D?, i) is the direct effect of the

collection of professional interactions on agent i’s research quality. Suppose D? and

λ(D?, i) satisfy the hypothesis of Theorems A and B and the two main identification

assumptions. For example, the professional interactions matrix D? might correspond to an

equilibrium of some unspecified economic game and λ(D?, i) is the equilibrium quantity of

connections researcher i has with key researchers in the m-sized population. The data then

consists of, for a random sample of size n drawn from this population, the outcomes,

covariates, and professional links connecting these researchers. Following the above

arguments, the joint distribution of the data can be described by the model

yi = xiβ + λ(w,wi) +Op

(
m−1/2

)
+ εi

Dij = 1{ηij ≤ f(w,wi, wj)}1{i 6= j}

in which λ(w,wi) is a Lipschitz continuous functional of f(w,wi, ·) as per Theorem B and

f is the reduced form linking function implied by Theorem A. When m is large relative to

n (that is m/n→∞), the approximation error in the regression model does not affect the

identification and estimation of β or λ(wi), and the methodology of this paper can be

applied.
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3 Identification and Large Sample Results

This section formalizes the discussion about identification and estimation from Section 2.2.

Section 3.1 introduces notation, Section 3.2 discusses the identification of β and λ(wi), and

Sections 3.3 and 3.4 characterize the large sample properties of β̂ and λ̂(wi) respectively.

3.1 Terminology and Notation

I define agent i’s network type to be the projection of the link function f onto his or her

social characteristics: fwi(·) := f(wi, ·) : [0, 1] → [0, 1]. In words, it is the collection of

probabilities that agent i links to agents with each social characteristic in [0, 1]. I consider

network types to be elements of L2([0, 1]), the usual inner product space of square integrable

functions on the unit interval. The previously defined pseudometric d(wi, wj) = ||fwi−fwj ||2
is the usual L2 metric on the space of network types.

I also define two constructions from network theory: (average) agent degrees and (aver-

age) agent-pair codegrees. The degree of agent i is (n− 1)−1
∑

t6=iDit, the fraction of other

agents linked to agent i. Under (2), that (n − 1)−1
∑

t6=iDit →a.s.

∫
fwi(τ)dτ follows from

the usual strong law of large numbers. Similarly, for i 6= j the codegree of agent pair (i, j)

is (n − 2)−1
∑

t6=i,j DitDjt, the fraction of other agents linked to both agent i and agent j.

Again, under (2), (n − 2)−1
∑

t6=i,j DitDjt →a.s.

∫
fwi(τ)fwj(τ)dτ = 〈fwi , fwj〉L2 . For refer-

ence, I denote this codegree by p̂ij and its almost sure limit with p(wi, wj) or pij. I emphasize

that p(wi, wi) refers to the limiting codegree of two distinct agents with social characteristics

equal to wi and not to the limiting degree of agent i. That is, p(wi, wi) :=
∫
fwi(τ)2dτ =

||fwi ||22 6=
∫
fwi(τ)dτ .

The function p also defines a link function in which p(wi, wj) gives the probability that

agents i and j have a link in common, as opposed to f(wi, wj), which gives the probability

that they are directly linked themselves. To distinguish p from f I refer to it as the codegree

link function (associated with f), and the function pwi(·) := p(wi, ·) : [0, 1]→ [0, 1] as agent

i’s codegree type, also taken to be an element of L2([0, 1]). I refer to the pseudometric on
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[0, 1] induced by L2-differences in codegree types with δ, so that

δ(u, v) = ||p(u, ·)− p(v, ·)||2 =

(∫ (∫
f(τ, s) (f(u, s)− f(v, s)) ds

)2

dτ

)1/2

for any pair of social characteristics u and v.

I also use two different conditional expectations defined over events on the network types.

Let Zi and Zij be arbitrary random matrices indexed at the agent and agent-pair level

respectively. Then for any positive real x, E[Zij| ||fwi − fwj ||2 = x] refers to

lim
h→0

E[Zij| (wi, wj) ∈ {(u, v) : x ≤ ||fu − fv||2 ≤ x+ h}]

and for any f in L2 ([0, 1]), E [Zi|fwi = f ] refers to

lim
h→0

E [Zi| wi ∈ {w : ||fw − f ||2 ≤ h}]

Though fwi is a random function, these conditional expectations implicitly refer to the

measure induced by the random variable wi. Conditional expectations with respect to the

codegree types are defined in the same way.

3.2 Identification

This section restates the two main identification conditions from Section 2.2 that are sufficient

for β and λ(wi) to be identified by L2 differences in the agent network types. That the

network types are identified by the distribution of D follows from Lemmas 1 and 2 in Section

3.3.

Assumption 1: The random sequence {xi, εi, wi}ni=1 is independent and identically

distributed with entries mutually independent of {ηij}ni,j=1, a symmetric random array with

independent and identically distributed entries above the diagonal. The outcomes {yi}ni=1

and D are given by equations (1) and (2) respectively. The variables xi and εi have finite

eigth moments, wi and ηij have standard uniform marginals, and E [εi|xi, wi] = 0.
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Assumption 1 restates the model discussed in Section 2.1 and is included as a reference.

Since the marginal distributions of wi and ηij are not seperately identified from f , the

assumption of standard uniform marginals is without loss (see Bickel and Chen 2009).

Assumption 2: The covariance matrix Γ0 := E
[
(xi − xj)′ (xi − xj) | ||fwi − fwj ||2 = 0

]
is

positive definite.

Assumption 2 is a full rank condition that states that there is independent variation in

each of the regressors not explained by the network types. This assumption may be unreal-

istic when the regressors include agent-specific network statistics as discussed in Example 1

of Section 2.2 (see also Theorem B of Section 2.3).

Assumption 3: The social influence function λ satisfies

E
[
(λ(wi)− λ(wj))

2 | ||fwi − fwj ||2 = 0
]

= 0.

Assumption 3 states that agents with similar network types have similar social influences,

as motivated in Section 2.2. The parameter β is also identified under the weaker orthogonality

condition E
[
(xi − xj)′ (λ(wi)− λ(wj)) | ||fwi − fwj ||2 = 0

]
= 0.

Theorem 1: Suppose Assumptions 1-3 hold. Then β is the unique minimizer of

E
[
((yi − yj)− (xi − xj)b)2 | ||fwi − fwj ||2 = 0

]
over b ∈ Rk and λ(wi) = E [(yi − xiβ) | fwi ].

The proof of Theorem 1 follows from standard arguments. Assumptions 1-3 do not rule

out cases where either xi or wi is a deterministic function of the other variable. For example,

if xi = wi, the assumptions may still be satisfied if |{w ∈ [0, 1] : d(w,wi) = 0}| > 0 for

almost every wi. That is, more than one value of social characteristics is associated with

any particular network type. The implication is that it is generally acceptable to include

observed drivers of link formation in the right hand side of the regression model, so long

as these variables cannot be perfectly predicted (in the mean-squared sense) by the agents’

network types.
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3.3 Large Sample Properties of β̂

Section 3.3.1 provides sufficient conditions for β̂ to be consistent for β. Section 3.3.2 provides

sufficient conditions for its limiting distribution to be normal. Accurate inference may require

a bias correction and Section 3.3.3 provides sufficient conditions such that a variation on the

jackknife method of Honoré and Powell (1997) can be used for this purpose. Section 3.3.4

provides two consistent estimators for the asymptotic variance.

3.3.1 Consistency

I suppose the bandwidth sequence and kernel density function used in (4) satisfy the following

conditions.

Assumption 4: The bandwidth sequence satisfies hn → 0, n1−γh2n →∞ for some γ > 0,

and nrn →∞ for rn = E
[
K
(
||pwi−pwj ||2

hn

)]
as n→∞. K is supported, bounded, and

differentiable on [0, 1], strictly positive and smooth on [0, 1), and bounded away from 0 on

[0, .5].

The restrictions on the kernel density function are satisfied by a type-II kernel density

function (examples include the Epanechnikov, Biweight, and Bartlett kernels). The first

two restrictions on the bandwidth sequence are also standard. The third, that nrn → ∞,

ensures that the number of matches used to estimate β̂ increases with n. If pwi was a d-

dimensional random vector with compact support and a strictly positive density function,

P (||pwi − pwj ||2 ≤ hn) would be on the order of hdn. The number of agent-pairs with similar

codegree types would then be on the order of nhdn, which increases with n if n1−γhdn → ∞.

Since pwi is infinite dimensional, P (||pwi − pwj ||2 ≤ hn) cannot necessarily be approximated

by a polynomial of hn of known order and so the third condition is required. One can verify

it in practice (in the same sense that one can choose a sequence of bandwidths that satisfies

the first two conditions) by computing the empirical analog of rn and choosing hn such that

this statistic is large relative to 1/n. The framework of this paper also allows for hn to be

chosen in a data-dependent way, for example by cross-validation in the sense of Hall (1984),

Stone (1984) and Hardle and Marron (1985) (see Nolan and Pollard 1987; 1988), however I

leave the formal study of such an estimator to future work.
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If the collection of network differences between agents {||fwi − fwj ||2}i 6=j were observed

and used to construct the matches in β̂, the arguments for consistency would be similar to

those of Ahn and Powell (1993), though with alterations to accommodate the dimensionality

of fwi . That the estimator is still consistent when ||fwi−fwj ||2 is replaced by δ̂ij follows from

two arguments. First, {δ̂ij}i 6=j converges uniformly to {||pwi − pwj ||2}i 6=j over all agent-pairs.

Second, agent-pairs similar with respect to the codegree distance are also similar with respect

to the network distance. These results are the following Lemmas 1 and 2 respectively.

Lemma 1: Suppose Assumptions 1 and 4 hold. Then

max
i 6=j

∣∣∣δ̂ij − ||pwi − pwj ||2∣∣∣ = op
(
n−γ/4hn

)
in which γ refers to the exponent from Assumption 4.

Lemma 1 demonstrates that the collection of
(
n
2

)
empirical codegree distances converges

uniformly to their population analogs at a rate slightly slower than n−1/2. The proof involves

repeated applications of Bernstein’s Inequality and the union bound over the
(
n
2

)
distinct

empirical codegrees that make up {δ̂ij}i 6=j.

Lemma 2: Suppose Assumption 1 holds. Then for every ε > 0 there exists a δ > 0 such

that with probability at least 1− ε2/4

||pwi − pwj ||2 ≤ δ =⇒ ||fwi − fwj ||2 ≤ ε

Lemma 2 is the main justification for the codegree matching procedure. The result is

somewhat unexpected since ||pwi−pwj ||2 ≤ ||fwi−fwj ||2 is almost an immediate consequence

of Jensen’s inequality. That is,

||pwi − pwj ||22 =

∫ (∫
f(t, s) (f(wi, s)− f(wj, s)) ds

)2

dt

≤
∫ (∫

(f(t, s) (f(wi, s)− f(wj, s)))
2 ds

)
dt

≤
∫

(f(wi, s)− f(wj, s))
2 ds = ||fwi − fwj ||22
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where the first inequality is due to Jensen and the second due to the fact that f is bounded

between 0 and 1. Lemma 2 is related to Theorem 13.27 of Lovász (2012), the logic of which

demonstrates that ||pwi−pwj ||2 = 0 implies ||fwi−fwj ||2 = 0 when f is continuous. Its proof

is sketched below.

||pwi − pwj ||22 = 0 =⇒
∫ (∫

f(τ, s) (f(wi, s)− f(wj, s)) ds

)2

dτ = 0

=⇒
∫
f(τ, s) (f(wi, s)− f(wj, s)) ds = 0 for every τ

=⇒
∫
f(wi, s) (f(wi, s)− f(wj, s)) ds = 0 and

∫
f(wj, s) (f(wi, s)− f(wj, s)) ds = 0

=⇒
∫

(f(wi, s)− f(wj, s))
2 ds = 0 =⇒ ||fwi − fwj ||22 = 0

The intuition is that if agents i and j have identical codegree types, then the difference in

their network types (fwi − fwj) must be uncorrelated with each other network type in the

population, as indexed by τ . In particular, the difference is uncorrelated with fwi and fwj ,

the network types of agents i and j. However, this can only be the case if fwi and fwj are

perfectly correlated.

Lovász’s theorem demonstrates that agent-pairs with identical codegree types also have

identical network types. However, consistency of β̂ requires a stronger result, that agent-pairs

with similar but not necessarily equivalent codegree types have similar network types. This

is the statement of Lemma 2. Unfortunately the above proof cannot simply be extended

by replacing each occurance of 0 with some function of a small ε > 0, because the third

implication relies on
∫
f(τ, s) (f(wi, s)− f(wj, s)) ds = 0 for exactly all τ , which is not

guaranteed by the condition ||pwi − pwj ||22 ≤ ε for any ε > 0. Still, the proof of Lemma 2

demonstrates that the two notions of distance are similar in enough places that matching

agents with similar codegree types is sufficient to partial out λ(wi) in the regression model

(1) and consistently estimate β under Assumptions 1-4.

Theorem 2: Suppose Assumptions 1-4 hold. Then
(
β̂ − β

)
→p 0 as n→∞.

The proof of Theorem 2 is a direct consequence of Lemmas 1 and 2 and the continuous

mapping theorem.

23



3.3.2 Asymptotic Normality

I provide two asymptotic normality results. The first concerns the case when the distribution

of fwi has finite support in that P (||fwi − fwj ||2 = 0) = P (||pwi − pwj ||2 = 0) > 0 and there

exists an ε > 0 such that P (0 < ||fwi − fwj ||2 < ε) = P (0 < ||pwi − pwj ||2 < ε) = 0.

This assumption is satisfied by the stochastic blockmodel of Holland, Laskey, and Leinhardt

(1983) (see also Bickel, Choi, Chang, and Zhang 2013).

Theorem 3: Suppose Assumptions 1-4 hold and fwi has finite support. Then as n→∞

V
−1/2
3,n

(
β̂ − β

)
→d N (0, Ik)

where V3,n = Γ−10 Ω0Γ
−1
0 × s/n, Γ0 is as defined in Assumption 3, Ik is the k × k identity

matrix, and

s = P (||pi − pj||2 = 0, ||pi − pk||2 = 0)/P (||pi − pj||2 = 0)2

Ω0 = E [(xi − xj)′(xi − xk)(ui − uj)(ui − uk)| ||pi − pj||2 = 0, ||pi − pk||2 = 0]

with ui = λ(wi) + εi.

Theorem 3 is included in this paper for three reasons. First, it adds to a literature noting

that some of the adverse effects of unobserved heterogeneity might be mitigated when the

support of this variation is finite (see Hahn and Moon 2010, Bonhomme and Manresa 2015).

Second, the assumption of discrete heterogeneity is not uncommon in empirical work (for

instance Schmutte 2014). Third, it provides an easy to interpret condition such that β̂

converges to β at the
√
n-rate.

The second result concerns the more general case when the support of fwi is not neces-

sarily finite. It requires additional structure on the linking function f and the bandwidth

sequence hn given in Assumptions 5 and 6 respectively.

Assumption 5: There exists an integer K and a partition of [0, 1) into K equally spaced,

adjacent, and non-intersecting intervals ∪Kt=1[x
1
t , x

2
t ) such that for any t ∈ {1, ..., K} and
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almost every x, y ∈ [x1t , x
2
t ) and s ∈ [0, 1], |f(x, s)− f(y, s)| ≤ C5|x− y|α, for some C5 ≥ 0

and α > 0.

Assumption 5 supposes that the space of social characteristics can be partitioned into

K segments such that on each partition segment the link function f is almost everywhere

Hölder continuous of order α. The partition allows for discrete jumps of the link function

and so includes the discrete heterogeneity models from Theorem 3 as a special case. The

restriction that the partition is uniformly sized is without loss.

Assumption 6: The bandwidth sequence hn = C7 × n−ρ for ρ ∈
(

α
4+8α

, α
2+4α

)
and some

C7 > 0. K is supported, bounded, and differentiable on [0, 1], strictly positive and smooth

on [0, 1), and bounded away from 0 on [0, .5].

The assumptions on the kernel density function in Assumption 6 are the same as in

Assumption 4. However, the rate of convergence of the bandwidth sequence now depends

on the exponent from Assumption 5. When α = 1 this bandwidth choice is approximately

on the order of magnitude used by Ahn and Powell (1993). In this paper, α is a parameter

to be chosen by the researcher. All of the network formation models cited in Section 2.1

essentially assume α = 1.

The second asymptotic normality proof uses Assumption 5 to strengthen Lemma 2 in

the following way.

Lemma 3: Suppose Assumptions 1 and 5 hold. Then for almost every (wi, wj) pair

||pwi − pwj ||2 ≤ ||fwi − fwj ||2 ≤ 32 C
1

2+4α

6

(
||pwi − pwj ||2

) α
1+2α

so long as ||pwi − pwj ||2 <
√

8C6K
−α, where C5 and α are the constants from Assumption 5.

Theorem 4: Suppose Assumptions 1-3 and 5-6 hold. Then as n→∞

V
−1/2
4,n

(
β̂ − βhn

)
→d N (0, Ik)
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where V4,n = Γ−10 ΩnΓ−10 /n, Γ0 is as defined in Assumption 3, rn is as defined in Assumption

4, Ik is the k × k identity matrix, and

βhn = β + (Γ0)
−1E

[
(xi − xj)′(λ(wi)− λ(wj))K

(
||pi − pj||2

hn

)]
/ (2rn)

Ωn =
4

r2n
E

[
∆i1j1∆

′
i1j2
K

(
δ2i1j1
hn

)
K

(
δ2i2j2
hn

)]
+

1

r2nh
2
n

E

[
∆i1j1∆

′
i2j2
K ′
(
δ2i1j1
hn

)
K ′
(
δ2i2j2
hn

)(
Fi1j1t1s11s12 − δ2i1j1

) (
Fi2j2t1s21s22 − δ2i2j2

)]
+

4

r2nh
2
n

E

[
∆i1j1∆

′
i2j2
K ′
(
δ2i1j1
hn

)
K ′
(
δ2i2j2
hn

)(
Fi1j1t1s11s12 − δ2i1j1

) (
Fi2j2t2s11s22 − δ2i2j2

)]

with ∆ij = (xi − xj)′(ui − uj), ui = λ(wi) + εi, δij = δ(wi, wj) = ||pwi − pwj ||2, and

Fijts1s2 = f(wt, ws1)f(wt, ws2) (f(wi, ws1)− f(wj, ws1)) (f(wi, ws2)− f(wj, ws2)).

The statement of Theorem 4 warrants two remarks. First, the variance is not necesarily

on the order of the inverse of the sample size. This is because the variance of the kernel

r−2n E
[
K
(
||pi−pj ||2

hn

)
K
(
||pi−pk||2

hn

)]
can potentially diverge with n. Even when this variance

diverges, Assumptions 5, 6, and Lemma 3 ensure that the rate of convergence for V4,n is

on the order of at least n−1/2. One can remove this term from the variance (that is, set

K
(
||pi−pj ||2

hn

)
= rn) by choosing a variable bandwidth in which each agent belongs to the

same number of matches, though the strategy also generally inflates the bias of the estimator

relative to β̂.

The variance is also inflated relative to the infeasible pairwise difference regression using

the unknown codegree distances {δ(wi, wj)}i 6=j, due to the variability of the estimated code-

gree diferences {δ̂ij}i 6=j around their probability limits. A previous version of this paper gave

conditions such that these components of the variance are asymptotically small. However,

the current statement of Theorem 4 is more general and potentially allows for more accurate

inferences. In Section 3.3.4, I provide two consistent estimators for V4,n.

The second remark is that the asymptotic distribution of β̂ is not centered at β, but

at the pseudo-truth βhn . Though βhn converges to β, the rate of convergence can be slow

depending on the size of α and the conditional expectation function E[(xi − xj)
′(λ(wi) −

λ(wj))| ||fwi − fwj ||2 = hn]. This problem is common with matching estimators (see also
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Abadie and Imbens 2006; 2012), although the problem is exacerbated here by the relatively

weak relationship between the codegree and network distances given by Lemma 3. Accurate

inferences about β using Theorem 4 will generally require a bias correction.

3.3.3 Bias Correction

I propose a variation on the jackknife technique of Honoré and Powell (1997), which relies

on the following smoothness condition.

Assumption 7: The pseudo-truth function βh satisfies βh =
∑L

l=1Clh
l/θ +O

(
h(L+1)/θ

)
for

some positive integer L > 2θ(1 + 2α)/α− 1, k-dimensional constants C1, C2, ..., CL, θ > 0,

and h in a fixed open neighborhood to the right of 0.

Assumption 7 assumes that the pseudo-truth βhn can be well approximated by a series

of fractional polynomials. The assumption holds, for example, with θ = 1 if f and λ are

smooth functions and δ−1(wi, h) = {w ∈ [0, 1] : δ(wi, w) ≤ h} is equal to the union of a finite

(uniformly over i = 1, ..., n) number of disjoint intervals for almost every wi and all h in an

open interval to the right of 0. In other words, the measure of other social characteristics that

are δ-similar to wi (i.e. have codegree distance ≤ h) does not change drastically for h near

zero. Most of the network formation models cited in Section 2.1 satisfy these conditions for

α = θ = 1. In this case L may be chosen (depending on the choice of bandwidth sequence)

to be between 2 and 5.

The method produces a bias-corrected estimator β̄L. For an arbitrary sequence of distinct

positive numbers {c1, c2, ..., cL} with c1 = 1, β̄L is defined to be

β̄L =
L∑
l=1

alβ̂clhn (7)

in which β̂clhn refers to the pairwise difference estimator (4) with the choice of bandwidth
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cl × hn and the sequence{a1, a2, ...aL} solves


1 1 ... 1

1 c
2/θ
2 ... c

2/θ
L

...
...

. . .
...

1 c
L/θ
2 ... c

L/θ
L

×


a1

a2
...

aL

 =


1

0
...

0



Theorem 5: Suppose Assumptions 1-3 and 5-7 hold. Then as n→∞

V
−1/2
5,n

(
β̄L − β

)
→d N (0, Ik)

where V5,n =
∑L

l1=1

∑L
l2=1 al1al2Γ

−1
0 Ωn,l1l2Γ

−1
0 /n, Γ0 is as defined in Assumption 3,

rnl = E
[
K
(

δ2ij
clhn

)]
, Ik is the k × k identity matrix, and

Ωn,l1l2 =
4

rnl1rnl2
E

[
∆i1j1∆

′
i1j2
K

(
δ2i1j1
cl1hn

)
K

(
δ2i2j2
cl2hn

)]
+

1

rnl1cl1rnl2cl2h
2
n

E

[
∆i1j1∆

′
i2j2
K ′
(
δ2i1j1
cl1hn

)
K ′
(
δ2i2j2
cl2hn

)(
Fi1j1t1s11s12 − δ2i1j1

) (
Fi2j2t1s21s22 − δ2i2j2

)]
+

4

rnl1cl1rnl2cl2h
2
n

E

[
∆i1j1∆

′
i2j2
K ′
(
δ2i1j1
cl1hn

)
K ′
(
δ2i2j2
cl2hn

)(
Fi1j1t1s11s12 − δ2i1j1

) (
Fi2j2t2s11s22 − δ2i2j2

)]

with ∆ij = (xi − xj)′(ui − uj), ui = λ(wi) + εi, δij = δ(wi, wj) = ||pwi − pwj ||2, and

Fijts1s2 = f(wt, ws1)f(wt, ws2) (f(wi, ws1)− f(wj, ws1)) (f(wi, ws2)− f(wj, ws2)).

3.3.4 Variance Estimation

This section demonstrates that, under the various sets of assumptions provided above, the

asymptotic variances of β̂− βhn and β̄L− β can be consistently estimated at least two ways.

The first way is direct computation. Let ûi = yi − xiβ̂,

Γ̂h =

(
n

2

)−1 n−1∑
i=1

n∑
j=i+1

(xi − xj)′ (xi − xj)K

(
δ̂2ij
h

)
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and

Ω̂n,h1h2 =
1

n3

n∑
i=1

n∑
j1=1

n∑
j2=1

∆̂ij1∆̂
′
ij2
K

(
δ̂2ij1
h1

)
K

(
δ̂2ij2
h2

)

+
1

n5h1h2

n∑
i1=1

n∑
i2=1

n∑
j1=1

n∑
j2=1

n∑
t=1

∆̂i1j1∆̂i2j2K
′

(
δ̂2i1j1
h1

)
K ′

(
δ̂2i2j2
h2

)(
F̂i1j1t − δ̂2i1j1

)(
F̂i2j2t − δ̂2i2j2

)
+

4

n5h1h2

n∑
i1=1

n∑
i2=1

n∑
j1=1

n∑
j2=1

n∑
t=1

∆̂i1j1∆̂i2j2K
′

(
δ̂2i1j1
h1

)
K ′

(
δ̂2i2j2
h2

)(
F̂ ′i1j1t − δ̂

2
i1j1

)(
F̂ ′i2j2t − δ̂

2
i2j2

)

where hl = clhn, ∆̂ij = (xi−xj)′(ûi−ûj), F̂ijt = 1
n2

∑n
s1=1

∑n
s2=1Dts1Dts2 (Dis1 −Djs1) (Dis2 −Djs2),

and F̂ ′ijs1 = 1
n2

∑n
t=1

∑n
s2=1Dts1Dts2 (Dis1 −Djs1) (Dis2 −Djs2)

Theorem 6: Suppose Assumptions 1-4 hold. Then
(

Γ̂−1hn Ω̂n,hn,hnΓ̂−1hn − nV4,n
)
→p 0 and(∑L

l1=1

∑L
l2=1 al1al2Γ̂

−1
cl1hn

Ω̂n,cl1hn,cl2hn
Γ̂−1cl2hn

− nV5,n
)
→p 0 as n→∞.

A corollary to Theorem 6 is that Γ̂−1hn Ω̂hn,hnΓ̂−1hn also consistently estimates nV3,n under

the hypothesis of Theorem 3, although one can omit the last two summands when computing

Ω̂n,hnhn .

Another way to estimate the asymptotic variances uses the bootstrap. Let {{itr}nt=1}Rr=1

denote a sequence of R independent samples of agents of size n drawn from {1, ..., n} with

replacement. With this notation, itr denotes the original index of the agent in the tth index

of the rth sample. Let (ytr, xtr, wtr) denote the outcome, covariates, and social characteristics

of agent itr and Dr = {Dstr}s 6=t be the n× n adjacency matrix induced by the agents in the

rth sample in which Dstr = Disritr . Let {β̂r}Rr=1 and {β̄Lr}Rr=1 denote the estimators from

(4) and (7) constructed using {ytr, xtr}nt=1 and Dr.

Theorem 7: Suppose Assumptions 1-3 and 5-6 hold. Then

1
R

∑R
r=1

(
β̂r − β̂

)(
β̂r − β̂

)′
→p V4,n and 1

R

∑R
r=1

(
β̄Lr − β̄L

) (
β̄Lr − β̄L

)′ →p V5,n as

n,R→∞.

Consistency of the bootstrap variance estimators follows from the fact that under As-

sumptions 1-3 and 5-6, β̂ and β̄L (and thus β̂r and β̄Lr) are asymptotically averages of

functions of the iid sequence {yi, xi, wi}ni=1. Theorem 7 is then a consequence of Theorem

2.2 of Bickel and Freedman (1981).
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3.4 Large Sample Properties of λ̂(wi)

This section provides two results about the estimators for the social influence term λ(wi):

consistency and asymptotic normality. The two results mirror those Section 3.3.1 and Section

3.3.2 respectively and so only a limited discussion is provided here.

The first result is that Assumptions 1-4 are sufficient for {λ̂(wi)}ni=1, the collection of

estimators for the sampled agents to be consistent for their population analogs in the mean-

squared sense. This result is stated as Theorem 8.

Theorem 8: Suppose Assumptions 1-4 hold. Then E

[(
λ̂(wi)− λ(wi)

)2]
→p 0 as n→∞,

where the expectation is taken with respect to wi.

Theorem 8 follows almost immediately from Theorem 2 and Lemmas 1 and 2. It can

be strengthened to convergence in the sup norm sense under an analogous strengthening of

Assumption 3.

The second result is that, under an additional restriction on the choice of bandwidth

sequence, these conditions are also sufficient for {λ(wi)}i∈S, the collection of estimators

corresponding to a finite (i.e. fixed in n) set of agents S ⊂ {1, ..., n}, to be asymptotically

normal. This additional restriction is given by Assumption 8 and the result is stated as the

following Theorem 9.

Assumption 8: The bandwidth sequence hn satisfies nrn,i →∞ and bn,in/rn,i → 0 where

rn,i = E
[
K
(
||pwi−pwj ||2

hn

)
|wi
]
, r′n,i = E

[
λ(wj)K

(
||pwi−pwj ||2

hn

)
|wi
]
, and

bn,i =
(
λ(wi)rn,i − r′n,i

)2
for all i ∈ S.

The first condition nrn,i → ∞ states that the number of matches to agent i grows

with the sample size, and is analogous to the third bandwidth condition in Assumption 4.

The second condition bn,in/rn,i → 0 is an undersmoothing condition that assumes that the

bandwidth is chosen to be small enough so that the estimators are asymptotically unbiased.

These conditions can be approximated in practice using the empirical analogs of rn,i, r
′
n,i,

and λ(wi) (see also the discussion of Assumption 4 in Section 3.3.1). The setting of this

paper also potentially allows for hn to be chosen using a data dependent method such as

cross-validation, although I leave the formal study of such an estimator to future work.
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Theorem 9: Suppose Assumptions 1-4 and 8 hold. Let λ̂S = {λ̂(wi)}i∈S for some finite

collection of agents S. Then as n→∞

V
−1/2
8,n

(
λ̂S − λS

)
→d N

(
0, I|S|

)
where λS = {λ(wi)}i∈S, I|S| is the |S| × |S| identity matrix, V8,n = diag({V8,n,i}i∈S), and

V8,n,i =
n∑
t=1

((
utK

(
δit
hn

)
− r′n,i

)
−
r′n,i
rn,i

(
K

(
δit
hn

)
− rn,i

))2

/(nr2n,i)

One can estimate V8,n,i directly as in the first part of Section 3.3.4 using the empirical

analogs of ut, δit, rn,i and r′n,i, along the lines of Theorem 6, or by using the bootstrap, along

the lines of Theorem 7. Consistency of the resulting variance estimators follows from identical

arguments, and so is not demonstrated here. One can potentially extend the conclusion of

Theorem 9 to allow |S| to increase with n using arguments from Horowitz and Lee (2016) or

Chernozhukov, Chetverikov, and Kato (2017), although such an extension is not considered

in this paper.

4 Simulation Evidence

This section presents simulation evidence for three types of network formation models: a

stochastic blockmodel, a beta model, and a homophily model. For each of R simulations, I

draw a random sample of n observations {ξi, εi, ωi}ni=1 from a trivariate normal distribution

with mean 0 and variance-covariance given by the identity matrix, and a random symmetric

n× n matrix {ηij}ni,j=1 with independent and identically distributed upper diagonal entries

with standard uniform marginals. For each of the following link functions f , the adjacency

matrix D is formed by D = 1{ηij ≤ f (Φ(ωi),Φ(ωj))} where Φ is the cumulative distribution

function for the standard univariate normal distribution.
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The first design draws D from a stochastic blockmodel where

f1(u, v) =



1/3 if u ≤ 1/3 and v > 1/3

1/3 if 1/3 < u ≤ 2/3 and v ≤ 2/3

1/3 if u > 2/3 and (v > 2/3 or v ≤ 1/3)

0 otherwise

The linking function f1 generates network types with finite support as in the hypothesis of

Theorem 3. For this model, I take λ(ωi) = d3Φ(ωi)e, xi = ξi+λ(ωi), and yi = βxi+γλ(ωi)+εi.

The second and third designs draw D from the beta model and homophily model where

f2(u, v) =
exp(u+ v)

1 + exp(u+ v)
and f3(u, v) = 1− (u− v)2

For these models, λ(ωi) = ωi, xi = ξi + λ(ωi) and yi = βxi + γλ(ωi) + εi.

I use x and y to denote the stacked n-dimensional vector of observations {xi}ni=1 and

{yi}ni=1, and Z1 for the (n × 2) matrix {xi, λ(ωi)}ni=1. I also use ci to denote a vector of

network statistics for agent i based on D containing agent degree n−1
∑n

j=1Dij, eigenvector

centrality (the ith entry of the eigenvector of D associated with the largest eigenvalue in

absolute value), and average peer covariates
∑n

j=1Dijxj/
∑n

j=1Dij. Z2 denotes the stacked

vector {xi, ci}ni=1.

For each design, I evaluate the performance of six estimators. The benchmark is β̂1 =

(Z ′1Z1)
−1(Z ′1y), the infeasible OLS regression of y on x and λ(ωi). β̂2 = (x′x)−1(x′y) is the

näıve OLS regression of y on x. β̂3 = (Z ′2Z2)
−1(Z ′2y) is the OLS regression of y on x and

the vector of network controls c. β̂4 is the proposed pairwise difference estimator given in

(4) without bias correction, β̂5 is the bias corrected estimator (using L = 3), and β̂6 is

the pairwise difference estimator with an adaptive bandwidth but without bias correction

(specifically, the bandwidth depends on i and is chosen such that each agent is matched to

exactly n × hn other agents). The pairwise difference estimators all use the Epanechnikov

kernel K(u) = 3(1 − u2)1{u2 < 1}/4. Estimators β̂4 and β̂5 use the bandwidth sequence

n−1/9/10 and the estimator β̂6 uses the bandwidth sequence n−1/9/5. Since n1/9 is roughly

equal to 2 for the sample sizes considered in this section, the results are close to a constant
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bandwidth choice of hn = .05 and .1 respectively.

Tables 1-3 demonstrates the results for R = 1000, β = γ = 1 and for each n in

{50, 100, 200, 500, 800}. For each model, estimator and sample size, the first row gives the

mean, the second gives the mean absolute error of the simulated estimators around β, the

third gives the mean absolute error divided by that of β̂1, and the fourth gives the proportion

of the simulation draws that fall outside of a 0.95 confidence interval based on the asymp-

totic distributions derived Section 3. The relevant asymptotic variances are approximated

directly using Theorem 6.

Table 1 contains results for the stochastic blockmodel. The näıve estimator β̂2 has a

large and stable positive bias that is not reduced as n is increased. The OLS estimator with

network controls β̂3 is not asymptotically well defined in this example because the network

statistics converge to constants. The results in Table 1 instead demonstrate a common “fix”

in the literature, which is to instead calculate (Z ′2Z2)
+(Z ′2y) where + refers to the Moore-

Penrose pseudo-inverse. The results for this estimator indicate that adding network controls

mitigates some of the bias in β1 (due to sampling variation in the number of agents in each

block), however the estimator is otherwise poorly behaved. Notice this bias returns when

the block sizes stabilize (in particular when n = 800).

The results for the pairwise difference estimators illustrate the content of Theorem 3,

that when the unobserved heterogeneity is discrete, the proposed estimator identifies pairs of

agents of the same type with high probability. As a result, the pairwise difference estimators

β̂4 and β̂6 behave similarly to the infeasible β̂2. For the stochastic blockmodel, Assumption 9

is not valid, and so the jackknife bias correction actually inflates both the bias and variance of

β̂4. Looking at the relative mean absolute error for this estimator, it is clear that the relative

performance of the error is deteriorating as n increases (though the bias and variance of this

estimator is still on the order of 1/
√
n).

Table 2 contains results for the beta model. Relative to the stochastic blockmodel, all

of the estimators for the beta model (except infeasible OLS) have large biases. This is

because the link function f2 is very flat, so that the variation in linking probabilities that

identifies the network positions is relatively small (Johnsson and Moon 2015, describe a

similar phenomenon in their simulations). One can show that the social characteristics are
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Table 1: Simulation Results, Stochastic Blockmodel

Infeasible Näıve OLS with Pairwise Bias Adaptive
OLS OLS Controls Difference Corrected Bandwidth

n β̂1 β̂2 β̂3 β̂4 β̂5 β̂6

50
bias 0.004 0.829 0.268 0.060 0.022 0.106

MAE 0.116 0.829 0.274 0.224 0.240 0.150
rMAE 1.000 7.147 2.362 1.931 2.069 1.293

size 0.057 0.063 0.072 0.115 0.123 0.067
100

bias 0.003 0.829 0.226 0.021 -0.022 0.019
MAE 0.083 0.829 0.229 0.089 0.094 0.084
rMAE 1.000 9.988 2.759 1.072 1.133 1.012

size 0.064 0.053 0.108 0.053 0.058 0.056
200

bias 0.001 0.823 0.180 0.004 -0.040 0.002
MAE 0.056 0.823 0.183 0.058 0.069 0.058
rMAE 1.000 14.696 3.268 1.036 1.232 1.036

size 0.049 0.044 0.215 0.045 0.064 0.058
500

bias 0.000 0.824 0.172 0.006 0.038 0.001
MAE 0.035 0.824 0.174 0.035 0.048 0.035
rMAE 1.000 23.543 4.971 1.000 1.371 1.000

size 0.033 0.061 0.777 0.037 0.047 0.044
800

bias 0.001 0.823 0.314 0.008 -0.036 0.000
MAE 0.029 0.823 0.314 0.029 0.043 0.029
rMAE 1.000 28.379 10.828 1.000 1.483 1.000

size 0.057 0.038 0.127 0.054 0.068 0.062

Table 1: This table contains simulation results for 1000 replications and a sample size of n =

50, 100, 200, 500, 800. Bias gives the mean estimator minus 1. MAE gives the mean absolute error of the

estimator around 1. rMAE gives the mean absolute error relative to the benchmark β̂1. Size gives the

proportion of draws that fall outside the asymptotic 0.95 confidence interval.
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Table 2: Simulation Results, Beta Model

Infeasible Näıve OLS with Pairwise Bias Adaptive
OLS OLS Controls Difference Corrected Bandwidth

n β̂1 β̂2 β̂3 β̂4 β̂5 β̂6

50
bias 0.000 0.496 0.462 0.379 0.335 0.365

MAE 0.119 0.496 0.463 0.381 0.341 0.366
rMAE 1.000 4.168 3.891 3.202 2.866 3.076

size 0.064 0.063 0.075 0.049 0.066 0.070
100

bias 0.006 0.501 0.462 0.336 0.269 0.298
MAE 0.082 0.501 0.462 0.336 0.270 0.299
rMAE 1.000 6.110 5.634 4.098 3.293 3.646

size 0.055 0.053 0.055 0.039 0.062 0.081
200

bias 0.002 0.501 0.444 0.290 0.200 0.231
MAE 0.058 0.501 0.444 0.290 0.200 0.231
rMAE 1.000 8.638 7.655 5.000 3.448 3.983

size 0.050 0.041 0.036 0.033 0.054 0.070
500

bias 0.003 0.499 0.403 0.246 0.136 0.151
MAE 0.036 0.499 0.403 0.246 0.136 0.151
rMAE 1.000 13.861 11.194 6.833 3.778 4.194

size 0.049 0.042 0.054 0.022 0.033 0.076
800

bias 0.000 0.500 0.385 0.237 0.122 0.122
MAE 0.028 0.500 0.385 0.237 0.122 0.122
rMAE 1.000 17.857 13.750 8.464 4.357 4.357

size 0.050 0.054 0.078 0.037 0.050 0.062

Table 2: This table contains simulation results for 1000 replications and a sample size of n =

50, 100, 200, 500, 800. Bias gives the mean estiamtor minus 1. MAE gives the mean absolute error of the

estimator around 1. rMAE gives the mean absolute error relative to the benchmark β̂1. Size gives the

proportion of draws that fall outside the asymptotic 0.95 confidence interval.
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identified by the distribution of D (they are consistently estimated by the order statistics of

the degree distribution), but the bound on the deviation of the social characteristics given

by the network metric is large: |u− v| ≤ 20× d(u, v).

Still, the proposed pairwise difference estimator offers a substantial improvement in per-

formance relative to both the näıve estimator β̂2 and the estimator with network controls

(which includes agent degree) β̂3. For example, when n = 100, β̂5 has approximately half

the bias and mean absolute error of β̂1 while β̂3 offers a reduction of less than ten percent.

When n = 800 the reduction in bias is over three times as large (75% relative to 23%).

Table 3 contains results for the homophily model. As in the case of the beta model,

one can show that the social characteristics are also identified in the homophily model (the

social characteristics are uniquely identified by the agents’ codegrees with any two randomly

drawn agents from the sample). Unlike the beta model, there is a relatively large amount

of information about the network positions in the linking probabilities so that all of the

estimators in Table 3 are much better behaved. In fact, for this model |u− v| ≤ d(u, v).

In this example, the OLS estimator with network controls actually performs comparably

to the uncorrected pairwise difference estimator β̂4. This is because the peer characteristics

variable
∑n

j=1Dijxj/
∑n

j=1Dij is a good approximation of wi when n is large. However,

the bias corrected estimator β̂5 outperforms both estimators over all of the sample sizes

considered.

5 Directions for Future Work

I highlight two directions for future work. The first direction is to relax the partially linear

structure of the regression model (1). With a little work, I suspect that the main ideas of this

paper also apply to nonlinear regression models in which other applications of the pairwise

differencing logic in (4) has been effective (see Honoré and Powell 1994; 1997, Hong and

Shum 2010, Aradillas-Lopez 2012), so long as the unobserved heterogeneity in the regression

model is continuous with respect to network distance in the sense of Assumption 2. For

example, one might consider the partially linear Logit model yi = 1{xβ + λ(wi) − εi > 0}

where the errors {εi}ni=1 are iid logistically distributed random variables and, along the lines
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Table 3: Simulation Results, Homophily Model

Infeasible Näıve OLS with Pairwise Bias Adaptive
OLS OLS Controls Difference Corrected Bandwidth

n β̂1 β̂2 β̂3 β̂4 β̂5 β̂6

50
bias 0.007 0.505 0.269 0.128 0.087 0.140

MAE 0.120 0.505 0.274 0.108 0.121 0.211
rMAE 1.000 4.208 2.283 0.900 1.008 1.758

size 0.068 0.051 0.063 0.062 0.068 0.132
100

bias 0.005 0.502 0.162 0.100 0.057 0.089
MAE 0.081 0.502 0.167 0.124 0.108 0.116
rMAE 1.000 6.198 2.062 1.531 1.333 1.432

size 0.049 0.059 0.061 0.053 0.066 0.083
200

bias 0.001 0.503 0.095 0.085 0.039 0.055
MAE 0.057 0.503 0.100 0.097 0.075 0.077
rMAE 1.000 8.825 1.754 1.702 1.316 1.351

size 0.054 0.059 0.054 0.050 0.057 0.069
500

bias 0.000 0.501 0.047 0.074 0.028 0.035
MAE 0.035 0.501 0.053 0.077 0.048 0.046
rMAE 1.000 14.314 1.514 2.200 1.371 1.314

size 0.043 0.059 0.039 0.045 0.058 0.051
800

bias 0.000 0.501 0.034 0.070 0.023 0.030
MAE 0.028 0.501 0.086 0.072 0.039 0.038
rMAE 1.000 17.893 3.071 2.571 1.392 1.357

size 0.039 0.040 0.041 0.038 0.050 0.047

Table 3: This table contains simulation results for 1000 replications and a sample size of n =

50, 100, 200, 500, 800. Bias gives the mean estiamtor minus 1. MAE gives the mean absolute error of the

estimator around 1. rMAE gives the mean absolute error relative to the benchmark β̂1. Size gives the

proportion of draws that fall outside the asymptotic 0.95 confidence interval.
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of Honoré and Powell (1997), estimate β by maximizing

−
∑
i 6=j

K

(
δ̂ij
hn

)
(yi ln(1 + exp((xj − xi)b) + yj ln(1 + exp((xi − xj)b))

over b ∈ Rk. This model could be used to study binary outcomes as in the program partici-

pation application in Example 2 of Section 2.1.

One might also consider the nonparametric regression model yi = m(xi, wi) + εi, and

estimate features of m along the lines of Theorems 8 and 9, by local averaging in the sense of

Nadaraya (1965) and Watson (1964), using the empirical codegree distance. Nonparametric

predictions of yi may be useful to the literature on contagion, in which one object of interest

is the conditional probability that agent i becomes infected conditional on that agent’s

observed characteristics and his social or economic connections to other agents.

The second direction for future work is to extend the network formation model (2) as to

allow for more general network structures. With a little work, I suspect that the main ideas

of this paper also apply to directed and weighted networks, where E [Dij|wi, wj] = f(wi, wj),

so long as f is square integrable. If linking behavior is still conditionally independent, the

main arguments in Section 2.3 are still valid and analogs of Lemmas 1 and 2 still hold.

One can also incorporate exogenous covariates into the right-hand side of the network

formation model, by redefining the agent network types. That is, one can consider the

model Dij = 1{ηij ≤ f(wi, wj, zij)}, where {zij}i 6=j is observed data. If zij has finite sup-

port, then one can assign each agent a network type for each element of that support, i.e.

{f(wi, ·, z)}z∈supp(zij). Extending this logic to the case where zij has continuous support is,

to my knowledge, nontrivial, and a topic I plan to explore in more detail in future work. As

mentioned in the discussion of Example 1 in Section 2.2, one potential use of exogenous link

covariates is to identify network peer effects in the presence of unobserved social influence.
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A Proofs of Lemmas and Theorems

This section contains proofs of the various Lemmas and Theorems from Section 3. Auxiliary

lemmas not formally stated in the paper are labelled Lemma A1, Lemma A2, et cetera.

A.1 Lemmas and Theorems from Section 2.3

Theorem B: Suppose λ(D, i) satisfies the symmetry and bounded deivations assumptions,

and that (6) holds. Then

|λ(D, i)− λ(D, j)| ≤ C||f(w,wi, ·)− f(w,wj, ·)||2 +Op

(
m−1/2

)
for some C depending on f and w.
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Proof of Theorem B First write

λ(D, i)− λ(D, j) = (λ(D, i)− λ(D, i− j)) + (λ(D, i− j)− λ(D, j − i))

+ (λ(D, j − i)− λ(D, j))

where λ(D, i− j) = λ(D′′, i) for D′′st = Dst1{s, t 6= j}. Intuitively, λ(D, i− j) is the

network statistic based on network D and agent i with all of agent j’s links removed.

The bounded deviations condition implies

(λ(D, i)− λ(D, i− j)) + (λ(D, j − i)− λ(D, j)) = Op

(
m−1

)
since agent j has at most one connection to agent i and m− 2 connections to other agents.

It remains to be shown that

(λ(D, i− j)− λ(D, j − i)) ≤ C||fwi − fwj ||2 +Op

(
m−1/2

)
where fwi is shorthand for the reduced form network type f(w,wi, ·).

To see this, write

(λ(D, i− j)− λ(D, j − i)) =
∑
τ 6=i,j

(λ(D, i− j, τ, 1)− λ(D, i− j, τ, 0)) (Diτ −Djτ )

=
∑
τ 6=i,j

(λ(D, i− j, τ, 1)− λ(D, i− j, τ, 0)) [(Diτ − fiτ ) + (fjτ −Djτ ) + (fiτ − fjτ )]

where fiτ = f(w,wi, wτ ), λ(D, i− j, τ, p) = λ(D′′′(p), i) and

D′′′st(p) = Dst1{s, t 6= i, j}+Dit1{i = s and t > τ}

+Djt1{i = s and t < τ}+ p1{i = s and t = τ}

Intuitively, λ(D, i− j, τ, p) is the network statistic on network D for agent i with the link
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between i and τ replaced with p and if t < τ the link between i and t is replaced with Djt.

I consider the three summands in the square brackets of the second line seperately. The

second summand

∑
τ 6=i,j

(λ(D, i− j, τ, 1)− λ(D, i− j, τ, 0)) (fjτ −Djτ )

is a martingale with respect to the filtration

Fτ = σ (w, {Dst : s, t 6= j or s = j, t ≤ τ} ∪ {wt : t ∈ N}), and so the summand is

Op

(
m−1/2

)
by Azuma’s inequality since

|(λ(D, i− j, τ, 1)− λ(D, i− j, τ, 0)) (fjτ −Djτ )| = Op (m−1) by the bounded deviations

condition.

The first summand can be rewritten as

∑
τ ′ 6=i′,j′

(λ(D, j′ − i′, τ ′, 0)− λ(D, j′ − i′, τ ′, 1)) (Di′τ ′ − fi′τ ′)

where τ ′ = m+ 1− τ , i′ = m+ 1− i, and j′ = m+ 1− j. This sum is also a martingale

with respect to the filtration Fτ ′ = σ (w, {Dst : s, t 6= i′ or s = i′, t ≤ τ ′} ∪ {wt : t ∈ N}) and

so is also Op

(
m−1/2

)
by Azuma’s inequality.

Altogether,

λ(D, i)− λ(D, j) =
∑
τ 6=i,j

(λ(D, i− j, τ, 1)− λ(D, i− j, τ, 0)) (fiτ − fjτ ) +Op

(
m−1/2

)
≤
√∑

τ 6=i,j

(λ(D, i− j, τ, 1)− λ(D, i− j, τ, 0))2 ×
∑
τ 6=i,j

(fiτ − fjτ )2 +Op

(
m−1/2

)
≤ C ×

√
1

m

∑
τ 6=i,j

(fiτ − fjτ )2 +Op

(
m−1/2

)

where C = 2× plimm→∞

√
m
∑

τ 6=i,j (λ(D, i− j, τ, 1)− λ(D, i− j, τ, 0))2 <∞, the first
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inequality due to Cauchy-Schwarz, and the second due to the bounded deviations

condition. The final term is equal to C||fwi − fwj ||2 +Op

(
m−1/2

)
by Markov’s inequality,

which completes the proof. �

A.2 Lemmas and Theorems in Section 3.2

Theorem 1: Suppose Assumptions 1-3 hold. Then β is the unique minimizer of

E
[
((yi − yj)− (xi − xj)b)2 | ||fwi − fwj ||2 = 0

]
over b ∈ Rk and λ(wi) = E [(yi − xiβ) | fwi ].

Proof of Theorem 1: Let dij shorthand ||fwi − fwj ||2 and ui = yi − xiβ. The second

claim follows from E [ε|xi, wi] = 0 and Assumption 3 since

E [ui|fwi ] = E [λ(wi)|fwi ] + E [E [εi|xi, wi] |fwi ] = λ(wi)

The first claim follows from

E
[
((yi − yj)− (xi − xj)b)2 |dij = 0

]
= E

[
((xi − xj)(β − b) + (ui − uj))2 |dij = 0

]
= (β − b)′E[(xi − xj)′(xi − xj)|dij = 0](β − b) + E[(ui − uj)2|dij = 0]

− 2(β − b)′E[(xi − xj)′(ui − uj)|dij = 0]

in which first summand is uniquely minimized at b = β by Assumption 2, the second

summand does not depend on b, and the third summand is equal to 0 by Assumption 3

(since E [ε|xi, wi] = 0).

A.3 Lemmas and Theorems in Section 3.3.1

Lemma 1: Suppose Assumptions 1 and 4 hold. Then

max
(i 6=j)

∣∣∣δ̂2ij − ||pwi − pwj ||22∣∣∣ = op
(
n−γ/4hn

)
Proof of Lemma 1: Let h′n = n−γ/4hn, pwiwj =

∫
fwi(τ)fwj(τ)dτ ,

p̂wiwj = (n− 2)−1
∑

t6=i,j DitDjt, ||p̂wi − pwi ||22,n,j = (n− 2)−1
∑

s 6=i,j (p̂wiws − pwiws)
2, and
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||pwi − pwj ||22,n = (n− 2)−1
∑

s 6=i,j (pwiws − pwiws)
2. Then for any fixed ε > 0,

P

(
max
i 6=j

h′−1n

∣∣∣δ̂2ij − ||pwi − pwj ||22∣∣∣ > ε

)
= P

(
max
i 6=j

h′−1n

∣∣∣δ̂2ij − ||pwi − pwj ||22,n + ||pwi − pwj ||22,n − ||pwi − pwj ||22
∣∣∣ > ε

)
≤ P

(
max
i 6=j

h′−1n

∣∣∣δ̂2ij − ||pwi − pwj ||22,n∣∣∣ > ε/2

)
+ P

(
max
i 6=j

h′−1n

∣∣||pwi − pwj ||22,n − ||pwi − pwj ||22∣∣ > ε/2

)
= P

(
max
i 6=j

h′−1n

∣∣∣δ̂ij − ||pwi − pwj ||22,n∣∣∣ > ε/2

)
≤ P

(
max
i 6=j

h′−1n

∣∣∣∣∣(n− 2)−1
∑
s 6=i,j

(
(p̂wiws − p̂wjws)− (pwiws − pwjws)

)∣∣∣∣∣ > ε/8

)

≤ 2P

(
max
i 6=j

h′−1n (n− 2)−1
∑
s 6=i,j

|p̂wiws − pwiws| > ε/16

)
= o(1)

in which P
(
maxi 6=j h

′−1
n

∣∣||pwi − pwj ||22,n − ||pwi − pwj ||22∣∣ > ε/2
)

= o(1) in the second

equality and P
(

maxi 6=j h
′−1
n (n− 2)−1

∑
s 6=i,j |p̂wiws − pwiws| > ε/16

)
= o(1) in the final

equality are demonstrated below, the first inequality is due to the triangle inequality, the

second inequality is due to the fact that |pwi + p̂wi | ≤ 2 for every wi ∈ [0, 1], and the final

inequality is due to the triangle and Jensen’s inequality.

The second result, that P
(

maxi 6=j h
′−1
n (n− 2)−1

∑
s 6=i,j |p̂wiws − pwiws| > ε/16

)
= o(1)

follows from the fact that maxi 6=j h
′−1
n |p̂wiwj − pwiwj | →p 0 by Bernstein’s inequality and the

union bound. Specifically, the former implies that for any ε > 0

P
(
h′−1n |p̂wiwj − pwiwj | > ε

)
= P

(
h′−1n

∣∣∣∣∣(n− 2)−1
∑
t6=i,j

(
DitDjt − pwiwj

)∣∣∣∣∣ > ε

)

≤ 2 exp

(
−(n− 2)(h′nε)

2

2 + 2h′nε/3

)
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and the latter gives

P

(
max
i 6=j

h′−1n |p̂wiwj − pwiwj | > ε

)
≤ 2n(n− 1) exp

(
−(n− 2)(h′nε)

2

2 + 2h′nε/3

)

which is o(1) since n1−γh′2n →∞ for some γ > 0.

The first result, that P
(
maxi 6=j h

′−1
n

∣∣||pwi − pwj ||22,n − ||pwi − pwj ||22∣∣ > ε/2
)

= o(1), also

follows from Bernstein’s inequality since

P
(
h′−1n

∣∣||pwi − pwj ||22,n − ||pwi − pwj ||22∣∣ > ε
)

= P

(
h′−1n

∣∣∣∣∣(n− 2)−1
∑
s 6=i,j

(
pwiws − pwjws

)2 − ∫ (pwi(s)− pwj(s))2 ds
∣∣∣∣∣ > ε

)

≤ 2 exp

(
−(n− 2)h′nε

2 + 2
√
h′nε/3

)

which is o(1) since nh′n →∞. This completes the proof. �

Lemma 2: Suppose Assumption 1 holds. Then for every ε > 0 there exists a δ > 0 such

that with probability at least 1− ε2/4

||pwi − pwj ||2 ≤ δ =⇒ ||fwi − fwj ||2 ≤ ε

Proof of Lemma 2: I first note that since f is Lebesgue measurable, Lusin’s theorem

(Dudley (2002), Theorem 7.5.2) implies that it is almost everywhere equivalent to a

uniformly continuous function. That is, for any η′ > 0, there exists a closed subset A of

[0, 1]2 with measure at least 1− η′ such that f is uniformly continuous when restricted to A.

It follows that for any η > 0 there must also exist, a closed subset B of [0, 1] with measure

of at least 1− η such that for any b ∈ B, there exists another closed subset C(b) of [0, 1]

with measure of at least 1− η, such that for any c ∈ C(b), f is uniformly continuous when

restricted to the set A′ = {(b, c) ∈ [0, 1]2 : b ∈ B, c ∈ C(b)}.
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Second, I show that for all ε′ > 0 there exists a δ(ε′, η) > 0 such that ||pwi − pwj ||2 ≤ δ(ε′, η)

implies |
∫
fwi(s)(fwi(s)− fwj(s))ds| < ε′ with probability at least 1− ε′/4, so long as

η ≤ ε′/16 .

Specifically, I prove the contrapositive. Suppose |
∫
fwi(s)(fwi(s)− fwj(s))ds| ≥ ε′. Then by

the negative triangle inequality |
∫
fτ (s)(fwi(s)− fwj(s))ds| > ε′/2 for any τ ∈ [0, 1] chosen

such that |
∫

(fτ (s)− fwi(s))(fwi(s)− fwj(s))ds| < ε′/4. Since ||fwi − fwj ||2 ≤ 1 for every

(wi, wj) pair, it follows by Cauchy-Schwartz that ||fwi − fτ ||2 ≤ ε′/4 implies

|
∫
fτ (s)(fwi(s)− fwj(s))ds| > ε′/2.

Since f is uniformly continuous when restricted to A′, there exists a universal ω(ε′, η) > 0

such that |τ − wi| < ω(ε′, η) implies that ||fτ − fwi ||2 < ε′/8 + 2η so long as wi, τ ∈ B.

Taking η ≤ ε′/16 gives |τ − wi| < ω(ε′, η) implies that ||fτ − fwi ||2 < ε′/4 so long as

wi, τ ∈ B. It follows that choosing τ such that |τ − wi| < ω(ε′, η) implies

|
∫
fτ (s)(fwi(s)− fwj(s))ds| > ε′/2

It is without loss to further restrict ω(ε′, η) < ε′/16. Since wi is uniformly distributed on

[0, 1], the probability that wi is in the ε′/16 interior of B (that is, the interval

(wi − ε′/16, wi + ε′16) is contained in B) is greater than 1− η − 2ω(ε′, η) ≥ 1− ε′/4. This

implies that |
∫
fτ (s)(fwi(s)− fwj(s))ds| > ε′/2 on a subset of [0, 1] of measure at least

2ω(ε′, η) with probability at least 1− ε′/4.

Thus |
∫
fwi(s)(fwi(s)− fwj(s))ds| ≥ ε′ implies∫ (∫

fτ (s)(fwi(s)− fwj(s))ds
)2
dτ > (ε′/2)2 × 2ω(ε′, η) with probability at least 1− ε′/4.

Since the left hand side is just ||pi − pj||22, it follows that ||pi − pj||2 > (ε′/2)× (2ω(ε′, η))1/2

with probability at least 1− ε′/4, which proves this second part. Taking the contrapositive

yields ||pi − pj||2 ≤ δ(ε′, η) implies that |
∫
fwi(s)(fwi(s)− fwj(s))ds| < ε′ with probability

at least 1− ε′/4, where δ(ε′, η) = (ε′/2)× (2ω(ε′, η))1/2.
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To finish the proof, note that
∣∣∫ fwi(s)(fwi(s)− fwj(s))ds∣∣ < ε′ and∣∣∫ fwj(s)(fwi(s)− fwj(s))ds∣∣ < ε′ also imply that∣∣∫ (fwi(s)− fwj(s))(fwi(s)− fwj(s))ds

∣∣ < 2ε′ by the triangle inequality, so that

||pi − pj||2 ≤ (ε′/2)× (2ω(ε′, η))1/2 implies ||fwi − fwj ||2 <
√

2ε′ with probability at least

1− ε′/2. Thus ||pi − pj||2 ≤ δ(ε, η) implies ||fwi − fwj ||2 < ε with probability at least

1− ε2/4 as claimed, where δ(ε, η) = (ε2/4)× (2ω(ε2/2, η))
1/2

. �

The proof of Theorem 2 also relies on the auxiliary Lemma A1.

Lemma A1: Suppose Assumption 1 holds. Then for any ε > 0, P
(
||fwi − fwj ||2 ≤ ε

)
> 0.

Proof of Lemma A1: Following the first part of the proof of Lemma 2, Lusin’s theorem

implies that for any η > 0 there exists B, a closed subset of [0, 1] with measure of at least

1− η such that for any b ∈ B, there exists another closed subset C(b) of [0, 1] with measure

of at least 1− η, such that for any c ∈ C(b), f is uniformly continuous when restricted to

the set A′ = {(b, c) ∈ [0, 1]2 : b ∈ B, c ∈ C(b)}. That is, for all ε′ > 0 and u, v ∈ B there

exists a ω(ε′, η) > 0 such that |u− v| ≤ ω(ε′, η) implies that |f(u, t)− f(v, t)| ≤ ε′ for

t ∈ C(u) ∩ C(v), a set with Lebesgue measure at least 1− 2η.

So |u− v| ≤ ω(ε′, η) and u, v ∈ B imply that ||fu − fv||2 ≤ (ε′2(1− 2η) + 2η)
1/2 ≤ ε′ +

√
2η.

Since wi, wj are independent with standard uniform marginals, ||fwi − fwj ||2 ≤ ε′ +
√

2η

with probability at least (1− 2η)ω(ε′, η). Now just choose ε′ < ε/2 and η < ε′2/2 to get

P
(
||fwi − fwj ||2 ≤ ε

)
≥ (1− ε2/8)ω(ε/2, ε2/8) > 0. �

Lemma 2 and Lemma A1 imply that for any ε > 0, P
(
||pwi − pwj ||2 ≤ ε

)
> 0.

Theorem 2: Suppose Assumptions 1-5 hold. Then β̂ →p β.

Proof of Theorem 2: Let ui = yi − xiβ, δij = δ(wi, wj), rn = E
[
K
(
δ2ij
hn

)]
, and write

β̂ = β+

(
n−1∑
i=1

n∑
j=i+1

(xi − xj)′(xi − xj)K

(
δ̂2ij
hn

))−1(n−1∑
i=1

n∑
j=i+1

(xi − xj)′(ui − uj)K

(
δ̂2ij
hn

))
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I show
((
n
2

)
rn
)−1∑n−1

i=1

∑n
j=i+1(xi − xj)′(xi − xj)K

(
δ̂2ij
hn

)
→p 2Γ0. Similar arguments yield((

n
2

)
rn
)−1∑n−1

i=1

∑n
j=i+1(xi − xj)′(ui − uj)K

(
δ̂2ij
hn

)
→p 0, so that the claim follows from

Slutsky and the continuous mapping theorem. Since rn > 0 with probability one from

Lemma A1, both statistics are well-defined.

Let Dn =
((
n
2

)
rn
)−1∑

i

∑
j(xi − xj)′(xi − xj)K

(
δ̂2ij
hn

)
. By the mean value theorem

Dn =
((
n
2

)
rn
)−1∑

i

∑
j(xi − xj)′(xi − xj)

[
K
(
δ2ij
hn

)
+K ′

(
ιij
hn

)(
δ̂2ij−δ2ij
hn

)]
where {ιij}i 6=j is

the collection of intermediate values implied by that theorem. By Lemma 1

maxi 6=j
δ̂2ij−δ2ij
hn

= op
(
n−γ/4

)
and by Markov’s inequality K ′

(
ιij
hn

)
= op(rnn

γ/4), since

P
(
K ′
(
ιij
hn

)
≥ rnn

γ/4
)
≤ E[|K′(

ιij
hn

)|]
rnnγ/4

= O
(
n−γ/4

)
by choice of kernel density function. It

follows that Dn =
((
n
2

)
rn
)−1∑

i

∑
j(xi − xj)′(xi − xj)K

(
δ2ij
hn

)
+ op(1) since xi has finite

second moments and K ′(u) is bounded.

D′n :=
((
n
2

)
rn
)−1∑

i

∑
j(xi − xj)′(xi − xj)K

(
δ2ij
hn

)
is a second order U-statistic with kernel

depending on n, in the sense of Ahn and Powell (1993). In particular, their Lemma A.3

implies D′n = r−1n E
[
(xi − xj)′(xi − xj)K

(
δij
hn

)]
+ op(1) since nrn →∞. Measurability of f

and Assumption 4 further give

E

[
(xi − xj)′(xi − xj)K

(
δij
hn

)]
=

∫
E [(xi − xj)′(xi − xj)|δij = u]K

(
u

hn

)
dP (δij = u)du

=

∫
(Γ0 + op(1))K

(
u

hn

)
dP (δij = u)du = Γ0rn + op (rn)

in which dP (δij = u) denotes the Radon-Nikodym derivative of the measure P (δij ≤ u)

with respect to the Lebesgue measure on [0, 1]2,1 the second equality is due to

E [(xi − xj)′(xi − xj)|δij ≤ u] = Γ0 + op(1) by Lemma 2 and Assumptions 2 and 4. So

Dn = Γ0 + op(1).

1 That is, dP (δij = u) satisfies
∫
u∈A dP (δij = u)du = P (δij ∈ A) for any Lebesgue measurable subset of

[0, 1]2. Existence of this derivative follows from measurability of f , see Dudley (2002), Theorem 5.5.4.
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A nearly identical argument yields

Un =

((
n

2

)
rn

)−1 n−1∑
i=1

n∑
j=i+1

(xi − xj)′(ui − uj)K

(
δ̂ij
hn

)
= op(1)

since E [(xi − xj)′(ui − uj)|d(wi, wj) = hn] = op(1) by Assumptions 3 and 4.(
β̂ − β

)
= D−1n Un = op(1) follows from Slutsky’s theorem. �

A.4 Lemmas and Theorems in Section 3.3.2

The proof of Theorem 3 uses the discreteness of the network types to strengthen Lemma 1

to auxiliary Lemma A2.

Lemma A2: Suppose Assumption 4 holds and fwi has finite support. Then there exists an

ε > 0 such that maxi 6=j δ̂
2
ij × 1{δ̂2ij ≤ ε/2} = op(n

−1/2hn)

Proof of Lemma A2: The assumption that fwi has finite support implies there exists an

ε > 0 such that δ2ij1{δ2ij ≤ ε} = 0 and
(
pwiwt − pwjwt

)
× 1{δ2ij ≤ ε/2} = 0 both with

probability one. For such an ε, write

δ̂2ij1{δ̂2ij ≤ ε/2} = δ̂2ij

(
1{δ̂2ij ≤ ε/2} − 1{δ2ij ≤ ε/2}

)
+ δ̂2ij1{δ2ij ≤ ε/2}

First, maxi 6=j
√
nh−1n δ̂2ij1{δ2ij ≤ ε/2} = op(1) because

(
pwiwt − pwjwt

)
× 1{δ2ij ≤ ε/2} = 0,

Bernstein’s inequality, and the union bound imply

P

max
i,j,t

[
(n− 3)−1

∑
s 6=i,j,t

Dts(Dis −Djs)

]2
1{δ2ij ≤ ε/2} ≥ η

 ≤ 2n3 exp

(
−(n− 3)η

3

)

and averaging over t 6= i, j gives

P

(
max
i,j

√
nh−1n δ̂2ij1{δ2ij ≤ ε/2} ≥ η

)
≤ 2n3 exp

(
−(n− 3)ηhn

3
√
n

)
= o(1)
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Second, since δ2ij ∈ (ε/4, 3ε/4) is a probability zero event,

√
nh−1n |δ̂2ij

(
1{δ̂2ij ≤ ε/2} − 1{δ2ij ≤ ε/2}

)
| ≤ 2

√
nh−1n × 1{|δ̂2ij − δ2ij| > |ε/2− δ2ij|}

≤ 2
√
nh−1n 1{|δ̂2ij − δ2ij| > ε/4}

and so maxi 6=j
√
nh−1n |δ̂2ij

(
1{δ̂2ij ≤ ε/2} − 1{δ2ij ≤ ε/2}

)
| = op(1) by previous arguments. �

Theorem 3: Suppose Assumptions 1-4 hold and fwi has finite support. Then

V
−1/2
3,n

(
β̂ − β

)
→d N (0, Ik)

where V3 = Γ−10 Ω0Γ
−1
0 × s/n, Γ0 is as defined in Assumption 3, Ik is the k × k identity

matrix, and

s = P (||pi − pj||2 = 0, ||pi − pk||2 = 0)/P (||pi − pj||2 = 0)2

Ω0 = E [(xi − xj)′(xi − xk)(ui − uj)(ui − uk)| ||pi − pj||2 = 0, ||pi − pk||2 = 0]

Proof of Theorem 3: In the proof of Theorem 2, I demonstrate that Assumptions 1-5 are

sufficient for

1

m

∑
i

∑
j>i

(xi − xj)′(xi − xj)K

(
δ̂2ij
hn

)
→p 2Γ0E

[
K

(
δ2ij
hn

)]

where m = n(n− 1)/2 and δij = δ(wi, wj). Since the support of fwi is finite, E
[
K
(
δ2ij
hn

)]
= K(0)P (δij = 0) > 0 eventually.

As for the numerator, I follow the proof of Theorem 2 to write

Un =
1

m

∑
i

∑
j>i

∆ijK

(
δ̂2ij
hn

)
=

1

m

∑
i

∑
j>i

∆ij

[
K

(
δ2ij
hn

)
+K ′

(
ιij
hn

)(
δ̂2ij − δ2ij
hn

)
1{δ̂2ij ≤ hn}

]

where ιij is a mean value between δ2ij and δ̂2ij and ∆ij = (xi − xj)′ (ui − uj). I first show
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1
m

∑
i

∑
j>i ∆ijlK

′
(
ιij
hn

)(
δ̂2ij−δ2ij
hn

)
1{δ̂2ij ≤ hn} = op

(
n−1/2

)
where ∆ijl is the lth component

of ∆ij. By Cauchy-Schwartz

1

m

∣∣∣∣∣∑
i

∑
j>i

(
∆ijlK

′
(
ιij
hn

)(
δ̂2ij − δ2ij
hn

))∣∣∣∣∣
≤ K̄ ′

m

(∑
i

∑
j>i

∆2
ijl

)1/2

×

∑
i

∑
j>i

(
δ̂2ij − δ2ij
hn

)2

1{δ̂2ij ≤ hn}

1/2

where K̄ ′ = supu∈[0,1]K
′(u),

∑
i

∑
j>i ∆

2
ijl = Op(m) since xi and ui have finite fourth

moments, and maxi 6=j

(
δ̂2ij−δ2ij
hn

)
1{δ̂2ij ≤ hn} = op

(
n−1/2

)
by Lemma A2.

It follows from this result that

Un =
1

m

∑
i

∑
j>i

∆ijK

(
δ2ij
hn

)
+ op

(
n−1/2

)
The first summand is a second order U-statistic with symmetric L2-integrable kernel, so by

Lemma A.3 of Ahn and Powell (1993)

√
n (Un − U)→ N (0, V )

where U = E
[
∆ijK

(
δ2ij
hn

)]
and for Zi = (xi, εi, wi)

V = lim
h→0

4E

[
E

[
∆ijK

(
δ2ij
h

)
| Zi
]
E

[
∆′ijK

(
δ2ij
h

)
| Zi
]]

= lim
h→0

4E

[
∆ij∆

′
ikK

(
δ2ij
h

)
K

(
δ2ik
h

)]

Since fwi has finite support, E[δ2ij|δ2ij ≤ ε] = 0 for some ε > 0, and so

U = E [∆ijK (0) 1{δij = 0}] = 0 for n sufficiently large such that hn ≤ ε. Similarly

V = 4Ω0K(0)2P (δij = 0, δik = 0). So by Slutsky’s Theorem,

√
n
(
β̂ − β

)
→d N (0, V3)

where V3 = Γ−10 Ω0Γ
−1
0 × s as claimed. �
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Lemma 3: Suppose Assumptions 1 and 5 hold. Then for almost every (wi, wj) pair

||pwi − pwj ||2 ≤ ||fwi − fwj ||2 ≤ 32 C
1

2+4α

6

(
||pwi − pwj ||2

) α
1+2α

so long as ||pwi − pwj ||2 <
√

8C6K
−α.

Proof of Lemma 3: The first inequality is proven in the text and holds exactly for any

measurable f with ||f ||∞ ≤ 1 and every (wi, wj) pair. The proof of the second inequality

essentially mirrors the proof of Lemma 2, and so only a sketch is provded here. I first

demonstrate ||pwi − pwj ||2 ≤
(
4(4C6)

1/α
)−1

ε′
4α+2
α and

(
ε′

4C6

) 1
α
< K−1 imply

||fwi − fwj ||2 ≤
√

2ε′ with probability one.

Suppose
∣∣∫ fwi(s) (fwi(s)− fwj(s)) ds∣∣ > ε′. Then

∣∣∫ fτ (s) (fwi(s)− fwj(s)) ds∣∣ > ε′/2 for

τ ∈ [0, 1] so long as τ and wi are in the same block of the partition of [0, 1] and

C6|wi − τ |α < ε′/4. If
(

ε′

4C6

) 1
α
< K−1, then the measure of τ in [0, 1] that satisfies these

conditions is at least
(

ε′

4C6

) 1
α
. It follows that so long as

(
ε′

4C6

) 1
α
< K−1

∫ (∫
fτ (s)

(
fwi(s)− fwj(s)

)
ds

)2

dτ >

(
ε′

2

)2(
ε′

4C6

) 1
α

with probability one. The claim then follows from the last step in the proof of Lemma 2.

Now set ε =
√

2ε′. It follows that for almost every wi and wj, 2
2α+10
4α+2 C

1
4α+2

6 ||pi − pj||
2α

4α+2

2 = ε

implies that ||fwi − fwj ||2 ≤ ε, so long as ε <
√

8C6K
−α/2. The claim then follows by noting

that 2
2α+10
4α+2 is bounded below 32 when α > 0. �

The proof of Theorem 4 relies on the following strengthening of auxiliary Lemma A1 to

auxiliary Lemma A3.

Lemma A3: Suppose Assumptions 1 and 5 hold. Then P
(
||fwi − fwj ||2 ≤ ε

)
> C

−1/α
6 ε1/α,

so long as ε ≤ C6K
−α

58



Proof of Lemma A3: The proof of Lemma A3 mirrors that of Lemma A1 except

Assumption 6 allows us to replace ω(ε, η) with
(

ε
C6

)1/α
. So long as K ≤

(
ε
C6

)− 1
α

the

probability that wi and wj are in the same partition of [0, 1] and that |wi − wj| ≤
(

ε
C6

)1/α
is bounded from below by

(
ε
C6

)1/α
and the claim follows. �

Theorem 4: Suppose Assumptions 1-3 and 5-6 hold. Then

V
−1/2
4,n

(
β̂ − βhn

)
→d N (0, Ik)

where V4,n = Γ−10 ΩnΓ−10 /n, Γ0 is as defined in Assumption 3, rn is as defined in Assumption

5, Ik is the k × k identity matrix, and

βhn = β + (Γ0)
−1E

[
(xi − xj)′(λ(wi)− λ(wj))K

(
||pi − pj||2

hn

)]
/ (2rn)

Ωn =
4

r2n
E

[
∆i1j1∆

′
i1j2
K

(
δ2i1j1
hn

)
K

(
δ2i2j2
hn

)]
+

1

r2nh
2
n

E

[
∆i1j1∆

′
i2j2
K ′
(
δ2i1j1
hn

)
K ′
(
δ2i2j2
hn

)(
Fi1j1t1s11s12 − δ2i1j1

) (
Fi2j2t1s21s22 − δ2i2j2

)]
+

4

r2nh
2
n

E

[
∆i1j1∆

′
i2j2
K ′
(
δ2i1j1
hn

)
K ′
(
δ2i2j2
hn

)(
Fi1j1t1s11s12 − δ2i1j1

) (
Fi2j2t2s11s22 − δ2i2j2

)]

with ∆ij = (xi − xj)′(ui − uj), ui = λ(wi) + εi, δij = δ(wi, wj), and

Fijts1s2 = f(wt, ws1)f(wt, ws2) (f(wi, ws1)− f(wj, ws1)) (f(wi, ws2)− f(wj, ws2)).

Proof of Theorem 4: The proof of Theorem 2 demonstrates that Assumptions 1-3 and 6

are sufficient for the denominator to converge in probability to 2Γ0. As for the numerator,

Un =
1(
n
2

)
rn

∑
i

∑
j>i

∆ijK

(
δ̂2ij
hn

)

=
1(
n
2

)
rn

∑
i

∑
j>i

∆ij

K (δ2ij
hn

)
+K ′

(
δ2ij
hn

)(
δ̂2ij − δ2ij
h2n

)
+K ′′

(
ιij
h2n

)(
δ̂2ij − δ2ij
h2n

)2


where ιij is the intermediate value between δ̂2ij and δ2ij suggested by Taylor and the mean
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value theorem. First, I show that

1(
n
2

)
rn

∑
i

∑
j>i

∆ijK
′′
(
ιij
hn

)(
δ̂2ij − δ2ij
hn

)2

= op
(
n−1/2

)
Let sn = n−1/2h4nrn. Since δij ≤ C|wi − wj|α by the first part of Lemma 2 and Assumption

5, rn ≥ KC−1/αh
1/α
n for K = lim infh→0E

[
K
(
δij
h

)
|δij ≤ h

]
> 0 by Lemma A2. Since

n1/2−γh
4+1/α
n →∞ for some γ > 0 by Assumption 9, n1−γsn →∞, and so Lemma 1 implies

that supi 6=j

(
δ̂2ij−δ2ij√

s

)2

= op(1) or supi 6=j

(
δ̂2ij−δ2ij
h2n
√
rn

)2

= op
(
n−1/2

)
. It follows that

1(
n
2

)
rn

∑
i

∑
j>i

∆ijK
′′
(
ιij
hn

)(
δ̂2ij − δ2ij
hn

)2

≤ K̄ ′′(
n
2

)∑
i

∑
j>i

∆ij × op
(
n−1/2

)
where K̄ ′′ = supu∈[0,1]K

′′(u) and the last line is op
(
n−1/2

)
because xi and ui have finite

fourth moments. It follows from this first step that

Un =
1(
n
2

)
rn

∑
i

∑
j>i

∆ij

[
K

(
δ2ij
hn

)
+K ′

(
δ2ij
hn

)(
δ̂2ij − δ2ij
hn

)]
+ op

(
n−1/2

)

Second, I show that

Un =
1(

n
5

)2
rn

∑
i

∑
j>i

∑
t>j

∑
s1>t

∑
s2>s1

∆ij

[
K

(
δ2ij
hn

)
+

1

hn
K ′
(
δ2ij
hn

)(
Fijts1s2 − δ2ij

)]
+ op

(
n−1/2

)
where Fijts1s2 = fts1fts2(fis1 − fjs1)(fis2 − fjs2). Let

δ̃2ij =
(
n−j
3

)−1∑
t>j

∑
s1>t

∑
s2>s1

Fijts1s2 . Then

Un =
1(
n
2

)
rn

∑
i

∑
j>i

∆ij

[
K

(
δ2ij
hn

)
+K ′

(
δ2ij
hn

)(
δ̃2ij − δ2ij
hn

)]

+
1(
n
2

)
rn

∑
i

∑
j>i

∆ij

[
K ′
(
δ2ij
hn

)(
δ̂2ij − δ̃2ij
hn

)]
+ op

(
n−1/2

)
and the second summand is op(n

−1/2) by Chebyshev’s inequality, since it has mean zero
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and variance

1(
n
2

)2
n6r2nh

2
n

E

[∑
i1

∑
i2

∑
j1

∑
j2

∑
t1

∑
t2

∑
s11

∑
s12

∑
s21

∑
s22

∆i1j1∆
′
i2j2
K ′
(
δ2i1j1
hn

)
K ′
(
δ2i2j2
hn

)

× (Di1j1t1s11s12 − Fi1j1t1s11s12)× (Di2j2t2s21s22 − Fi2j2t2s21s22)

]

where Dijts1s2 = Dts1Dts2(Dis1 −Djs1)(Dis2 −Djs2). To see that this variance is o (n−1),

note that unless two elements from the set {i1, j1, t1, s11, s12} equal two in

{i2, j2, t2, s21, s22}, {ηt1s11 , ηt1s12 , ηi1s11 , ηj1s11 , ηi1s12 , ηj1s12} is independent of

{ηt2s21 , ηt2s22 , ηi2s21 , ηj2s21 , ηi2s22 , ηj2s22} and so

E

[
[Di1j1t1s11s12 − Fi1j1t1s11s12 ]× [Di2j2t2s21s22 − Fi2j2t2s21s22 ] |Zi1j1t1s11s12 , Zi2j2t2s21s22

]
= 0

where Zi = {xi, wi, νi} and Zijts1s2 = {Zi, Zj, Zt, Zs1 , Zs2}. Since K ′
(
δ2i1j1
h

)
is Op(rn),

nh4n →∞ implies that this variance is o (n−1) and so the second summand is op
(
n−1/2

)
.

Let

U ′n =
1(

n
5

)2
rn

∑
i

∑
j>i

∑
t>j

∑
s1>t

∑
s2>s1

∆ij

[
K

(
δ2ij
hn

)
+

1

hn
K ′
(
δ2ij
hn

)(
Fijts1s2 − δ2ij

)]
= Un + op

(
n−1/2

)
U ′n is a 5th order U-statistic which can be represented by the following iid sum (see for

instance Lemma 3.2 of Powell, Stock, and Stoker 1989)

Un = E[Un] +
2

nrn

n∑
τ=1

(
E

[
∆τjK

(
δ2τj
hn

)
|Zτ
]
− E[Un]

)
+

1

nrnhn

n∑
τ=1

E

[
∆ijK

′
(
δ2ij
hn

)(
Fijτs1s2 − δ2ij

)
|Zτ
]

+
2

nrnhn

n∑
τ=1

E

[
∆ijK

′
(
δ2ij
hn

)(
Fijtτs2 − δ2ij

)
|Zτ
]

+ op
(
n−1/2

)
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where E[Un] = r−1n E
[
∆ijK

(
δ2ij
hn

)]
and Zτ = {xτ , wτ , ντ}. In particular, Un can be

represented asymptotically by an iid sum of random variables, so by the Lindeberg Central

Limit Theorem

V ′′−1/2n (Un − E[Un])→d N (0, Ik)

where for a collection of ten distinct agents {i1, i2, j1, j2, t1, t2, s11, s12, s21s,22 }

V ′′n =
4

r2n
E

[
∆i1j1∆

′
i1j2
K

(
δ2i1j1
hn

)
K

(
δ2i2j2
hn

)]
+

1

r2nh
2
n

E

[
∆i1j1∆

′
i2j2
K ′
(
δ2i1j1
hn

)
K ′
(
δ2i2j2
hn

)(
Fi1j1t1s11s12 − δ2i1j1

) (
Fi2j2t1s21s22 − δ2i2j2

)]
+

4

r2nh
2
n

E

[
∆i1j1∆

′
i2j2
K ′
(
δ2i1j1
hn

)
K ′
(
δ2i2j2
hn

)(
Fi1j1t1s11s12 − δ2i1j1

) (
Fi2j2t2s11s22 − δ2i2j2

)]

since E[Un]→p 0 by Theorem 2. It follows from Slutsky’s Theorem that

V
−1/2
4,n

(
β̂ − β − (2Γ0)

−1E [Un]
)
→d N (0, Ik)

where E[Un] = E
[
∆ijK

(
δ2ij
hn

)]
as claimed. �

A.5 Theorems in Sections 3.3.3 and 3.3.4

Theorem 5: Suppose Assumptions 1-3 and 5-7 hold, and L > (2θ(1 + 2α))/α− 1. Then

V
−1/2
5,n

(
β̄L − β

)
→d N (0, Ik)
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where V5,n =
∑L

l1=1

∑L
l2=1 al1al2Γ

−1
0 Ωn,l1l2Γ

−1
0 /n, Γ0 is as defined in Assumption 3,

rnl = E
[
K
(

δ2ij
clhn

)]
, Ik is the k × k identity matrix, and

Ωn,l1l2 =
4

rnl1rnl2
E

[
∆i1j1∆

′
i1j2
K

(
δ2i1j1
cl1hn

)
K

(
δ2i2j2
cl2hn

)]
+

1

rnl1cl1rnl2cl2h
2
n

E

[
∆i1j1∆

′
i2j2
K ′
(
δ2i1j1
cl1hn

)
K ′
(
δ2i2j2
cl2hn

)(
Fi1j1t1s11s12 − δ2i1j1

) (
Fi2j2t1s21s22 − δ2i2j2

)]
+

4

rnl1cl1rnl2cl2h
2
n

E

[
∆i1j1∆

′
i2j2
K ′
(
δ2i1j1
cl1hn

)
K ′
(
δ2i2j2
cl2hn

)(
Fi1j1t1s11s12 − δ2i1j1

) (
Fi2j2t2s11s22 − δ2i2j2

)]

Proof of Theorem 5: Since β̄L =
∑L

l=1 alβ̂Clhn , a straightforward extension of the proof

of Theorem 4 (and the continuous mapping theorem) implies that

V
−1/2
5,n

(
β̄L − β̄L,hn

)
= V

−1/2
5,n

L∑
l=1

al

(
β̂Clhn − βClhn

)
→d N (0, Ik)

where β̄L,h =
∑L

l=1 alβClh is the pseudo-truth associated with βL, which can also be written

β̄L,h = β +
L∑

l1=1

L∑
l2=1

al1 (2Γ0)
−1Cl2 (cl1h)l2/θ + op

(
n−1/2

)
= β + (2Γ0)

−1
∑
l2

Cl2

[∑
l1

al1c
l2/θ
l1

]
hl2/θ + op

(
n−1/2

)
since

∑
l2
al2 = 1 by choice of {a1, ..., aL}. The second summand is 0 because, {a1, ..., aL}

also satisfies
[∑

l1
al1c

l2/θ
l1

]
= 0 for all l2 ∈ {1, ..., L} and the claim follows. �

Theorem 6: Suppose Assumptions 1-4 hold. Then
(

Γ̂−1hn Ω̂n,hn,hnΓ̂−1hn − nV4,n
)
→p 0 and(∑L

l1=1

∑L
l2=1 al1al2Γ̂

−1
cl1hn

Ω̂n,cl1hn,cl2hn
Γ̂−1cl2hn

− nV5,n
)
→p 0

Proof of Theorem 6: I prove the second claim, which includes the first as a special case.

The proof of Theorem 2 demonstrates that Assumptions 1-4 are sufficient for

r−1n,cΓ̂chn = 2Γ0 + op(1) for any c > 0 where δij = δ(wi, wj) and rn,c =
(
E
[
K
(
δij
chn

)])
. It

remains to be shown that (rn,c1rn,c2)
−1 Ω̂c1hn,c2hn converges to Ωnc1c2 for any c1, c2 > 0. I

consider the three terms that make up Ω̂c1hn,c2hn seperately.
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The first term is 1
n3rn,c1rn,c2

∑n
i=1

∑n
j1=1

∑n
j2=1 ∆̂ij1∆̂

′
ij2
K
(
δ̂ij1
h1

)
K
(
δ̂ij2
h2

)
, where

∆̂ij = (xi − xj)′(ûi − ûj) and ûi = yi − xiβ̂. Lemma 2 and Theorem 2 imply that

δ̂ij = δij + o(1) and ûi = ui + o(1) where ui = yi − xiβ, and so the term converges to

1
n3rn,c1rn,c2

∑n
i=1

∑n
j1=1

∑n
j2=1 ∆ij1∆

′
ij2
K
(
δij1
h1

)
K
(
δij2
h2

)
by the continuous mapping

theorem, which is a third order V-statistic in the sense of Ahn and Powell (1993), and thus

converges in probability to 1
rn,c1rn,c2

E
[
∆ij1∆

′
ij2
K
(
δij1
h1

)
K
(
δij2
h2

)]
.

The second term is

1

n5c1h1rn,c1c2h2rn,c2

n∑
i1=1

n∑
i2=1

n∑
j1=1

n∑
j2=1

n∑
t=1

∆̂i1j1∆̂i2j2K
′

(
δ̂2i1j1
c1h1

)
K ′

(
δ̂2i2j2
c2h2

)(
F̂i1j1t − δ̂2i1j1

)(
F̂i2j2t − δ̂2i2j2

)

where F̂ijt = 1
n2

∑n
s1=1

∑n
s2=1Dts1Dts2 (Dis1 −Djs1) (Dis2 −Djs2). By previous arguments

this converges to the fifth-order V-statistic

1

n5c1h1rn,c1c2h2rn,c2

n∑
i1=1

n∑
i2=1

n∑
j1=1

n∑
j2=1

n∑
t=1

∆i1j1∆i2j2K
′
(
δ2i1j1
c1h1

)
K ′
(
δ2i2j2
c2h2

)(
Fi1j1t − δ2i1j1

) (
Fi2j2t − δ2i2j2

)
where Fijt = E [Dts1Dts2 (Dis1 −Djs1) (Dis2 −Djs2) |wi, wj, wt] is the probability limit of

F̂ijt. The second term thus converges to

1

c1hnrn,c1c2h2rn,c2
E

[
∆i1j1∆i2j2K

′
(
δ2i1j1
c1h1

)
K ′
(
δ2i2j2
c2h2

)(
Fi1j1t − δ2i1j1

) (
Fi2j2t − δ2i2j2

)]

The third term is

4

n5h1h2

n∑
i1=1

n∑
i2=1

n∑
j1=1

n∑
j2=1

n∑
t=1

∆̂i1j1∆̂i2j2K
′

(
δ̂i1j1
h1

)
K ′

(
δ̂i2j2
h2

)(
F̂ ′i1j1t − δ̂

2
i1j1

)(
F̂ ′i2j2t − δ̂

2
i2j2

)

where F̂ ′ijs1 = 1
n2

∑n
t=1

∑n
s2=1Dts1Dts2 (Dis1 −Djs1) (Dis2 −Djs2). By previous arguments
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this converges to the fifth order V-statistic

4

n5h1h2

n∑
i1=1

n∑
i2=1

n∑
j1=1

n∑
j2=1

n∑
t=1

∆i1j1∆i2j2K
′
(
δi1j1
h1

)
K ′
(
δi2j2
h2

)(
F ′i1j1t − δ

2
i1j1

) (
F ′i2j2t − δ

2
i2j2

)
where F ′ijs1 = E [Dts1Dts2 (Dis1 −Djs1) (Dis2 −Djs2) |wi, wj, ws1 ] is the probability limit of

F̂ ′ijs1 . The third term thus converges to

1

c1hnrn,c1c2h2rn,c2
E

[
∆i1j1∆i2j2K

′
(
δi1j1
h1

)
K ′
(
δi2j2
h2

)(
F ′i1j1t − δ

2
i1j1

) (
F ′i2j2t − δ

2
i2j2

)]

The claim then follows from the continuous mapping theorem. �

Theorem 7: Suppose Assumptions 1-3 and 5-6 hold. Then

1
R

∑R
r=1

(
β̂r − β̂

)(
β̂r − β̂

)′
→p V4,n and 1

R

∑R
r=1

(
β̄Lr − β̄L

) (
β̄Lr − β̄L

)′ →p V5,n as

n,R→∞.

Proof of Theorem 7: The first claim essentially follows from the asymptotically linear

representation for β̂ given in the proof of Theorem 4 and by Theorem 2.2 of Bickel and

Freedman (1981). The second follows by identical arguments.

The proof of Theorem 4 indicates that under Assumptions 1-3 and 5-6

β̂ − βhn =
1

n

n∑
τ=1

(2Γ0)
−1 gn(Zτ ) + op

(
n−1/2

)
where Zτ = {Xτ , wτ , ετ} and

gn(Zτ ) = 2

(
E

[
∆τjK

(
δ2τj
hn

)
|Zτ
]
− E[Un]

)
+ E

[
∆ijK

′
(
δ2ij
hn

)(
Fijτs1s2 − δ2ij

)
|Zτ
]

+ 2E

[
∆ijK

′
(
δ2ij
hn

)(
Fijtτs2 − δ2ij

)
|Zτ
]

By definition of β̂r

β̂r − β̂ = (2Γ0)
−1

(
1

n

n∑
τ ′=1

gn(Zτ ′r)−
1

n

n∑
τ=1

gn(Zτ )

)
+ op

(
n−1/2

)
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in which Zτ ′r = Ziτ ′r . By Theorem 2.2 (a) of Bickel and Freedman (1981),

{
√
n
(
1
n

∑n
τ ′=1 gn(Zτ ′r)− 1

n

∑n
τ=1 gn(Zτ )

)
}Rr=1 is a conditionally independent (given

{Zτ}nτ=1) sequence with entries weakly convergent (as n→∞) to a k-dimensional normal

distribution with mean 0 and variance E [gn(Z1)gn(Z1)
′]. The sufficient condition for this

Theorem to hold is for E [||gn(Z1)||2] to be finite, which follows from Assumption 1 and the

choice of kernel density function in Assumption 4. Since σ({Zτ}nτ=1) is degenerate in the

n→∞ limit, the usual strong law of large numbers gives that R→∞ implies

1
R

∑R
r=1

(
β̂r − β̂

)(
β̂r − β̂

)′
converges in probability to E [g(Z1)g(Z1)

′] /n = V4,n so long as

E [||gn(Z1)||4] <∞. This last condition also follows from Assumptions 1 and 4, which

completes the proof. �

A.6 Theorems in Section 3.4

Theorem 7: Suppose Assumptions 1-4 hold. Then E

[(
λ̂(wi)− λ(wi)

)2]
→p 0, where the

expectation is taken with respect to wi.

Proof of Theorem 7 Let λi, λ̂i, and δit shorthand λ(wi), λ̂(wi), and δ(wi, wt)

respectively. Recall that λ̂i =
∑n

t=1

(
yt − xtβ̂

)
K
(
δ̂2it
hn

)
/
∑n

t=1K
(
δ̂2it
hn

)
. First consider the

denominator. Along the lines of the proof of Theorem 2, Lemma 1 and continuous

differentiability of K implies

max
i=1,...,n

∣∣∣∣∣ 1n
n∑
t=1

K

(
δ̂2it
hn

)
− 1

n

n∑
t=1

K

(
δ2it
hn

)∣∣∣∣∣ = op
(
n−γ/4hn

)
while Hoeffding and Boole’s inequality gives

max
i=1,...,n

∣∣∣∣∣ 1n
n∑
t=1

K

(
δ2it
hn

)
− E

[
K

(
δ2it
hn

)
|wi
]∣∣∣∣∣ = op

(√
log n

n

)

so by the triangle inequality and choice of bandwidth sequence

max
i=1,...,n

∣∣∣∣∣ 1n
n∑
t=1

K

(
δ̂2it
hn

)
− E

[
K

(
δ2it
hn

)
|wi
]∣∣∣∣∣ = op

(
n−γ/4hn

)
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Applying the same logic to the numerator yields

max
i=1,...,n

∣∣∣∣∣ 1n
n∑
t=1

(
yt − xtβ̂

)
K

(
δ̂2it
hn

)
− E

[(
yt − xtβ̂

)
K

(
δ2it
hn

)
|wi
]∣∣∣∣∣ = op

(
n−γ/4hn

)
Let k = infu∈[0,.5]K(u) with k > 0 by choice of kernel in Assumption 4. Then

E
[
K
(
δ2it
hn

)
|wi
]
> kP (δ2it ≤ hn/2|wi) > 0 with probability one by Lemma A1, so the

continuous mapping theorem implies

max
i=1,...,n

∣∣∣∣∣∣λ̂i −
E
[
λtK

(
δit
hn

)
|wi
]

E
[
K
(
δit
hn

)
|wi
] +

E
[
xtK

(
δit
hn

)
|wi
] (
β̂ − β

)
E
[
K
(
δit
hn

)
|wi
]

∣∣∣∣∣∣ = op
(
n−γ/4hn

)

Since xi has finite second moments,
E[xtK( δithn )|wi]
E[K( δithn )|wi]

is uniformly bounded with probability

one, and so maxi=1,...,n
E[xtK( δithn )|wi](β̂−β)

E[K( δithn )|wi]
= op(1) by Theorem 2. It follows that

E

[(
λ̂i − λi

)2]
= E


E

[
(λt − λi)K

(
δit
hn

)
|wi
]

E
[
K
(
δit
hn

)
|wi
]

2
+ op

(
n−γ/4hn

)

= E


∫ E [(λi − λt) |δit = u,wi]K

(
u
hn

)
dP (δit = u|wi)∫

K
(
u
hn

)
dP (δit = u|wi)

2
+ op

(
n−γ/4hn

)

in which dP (δit = u|wi) refers to the Radon-Nikodym derivative of the measure

P (δij ≤ u|wi) with respect to the Lebesgue measure on [0, 1] (see proof of Theorem 2 for

more details). The first term in the last line is op (1) by Assumption 3 and Lemma 2. �

Theorem 8: Suppose Assumptions 1-4 and 8 hold. Let λ̂S = {λ̂(wi)}i∈S for some finite

collection of agents S. Then

V
−1/2
8,n

(
λ̂S − λS

)
→d N

(
0, I|S|

)
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where λS = {λ(wi)}i∈S, V8,n = diag({V8,n,i}i∈S), and

V8,n,i =
n∑
t=1

((
utK

(
δit
hn

)
− r′n,i

)
−
r′n,i
rn,i

(
K

(
δit
hn

)
− rn,i

))2

/(nr2n,i)

Proof of Theorem 8 The proof of Theorem 8 closely follows that of Theorem 4, and so

only a sketch is provided here. Let λi, λ̂i, and δit shorthand λ(wi), λ̂(wi), and δ(wi, wt)

respectively. Then

(
λ̂irn,i − r′n,i

)
=

1

n

n∑
t=1

(
ûtK

(
δ̂it
hn

)
− r′n,i

)
−
r′n,i
rn,i

(
K

(
δ̂it
hn

)
− rn,i

)
+ remn,i

=
1

n

n∑
t=1

(
utK

(
δit
hn

)
− r′n,i

)
−
r′n,i
rn,i

(
K

(
δit
hn

)
− rn,i

)
+ op

(√
rn,i
n

)
+ remn,i

where rn,i = E
[
K
(
δit
hn

)
|wi
]
, r′n,i = E

[
utK

(
δit
hn

)
|wi
]
, and remi,n is an error that is

stochastically small (i.e. the remainder from a first order Taylor approximation). See the

proof of Theorem 3 for more details. The second line follows from the fact that |β̂ − β| and

maxi 6=j |δ̂ij − δij| are both op

(
(nrn,i)

−1/2
)

and the smoothness conditions on K given in

Assumption 8.

It follows from the Lindeberg Central Limit Theorem that
λ̂irn,i−r′n,i√

nV8,n,i
→d N (0, 1) where

V8,n,i = n−1
n∑
t=1

((
utK

(
δit
hn

)
− r′n,i

)
−
r′n,i
rn,i

(
K

(
δit
hn

)
− rn,i

))2

and since bn,in/rn,i →p 0 for all i ∈ S, λ̂i−λi√
nV8,n,i/r2n,i

→d N (0, 1). The claim then follows from

the fact that the entries of λ̂S are all asymptotically independent. �
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