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Abstract

Clock auctions are weakly group strategy-proof, make bidding truthfully an obvi-

ously dominant strategy, and preserve trading agents’ privacy. They have proved useful

in practice but challenging to implement in a prior-free, asymptotically optimal way.

We characterize the Bayesian optimal clock auction (BOCA) and develop a prior-free

clock auction that maintains the structure of the BOCA and is asymptotically optimal.

To do this, we exploit a relationship between hazard rates and the spacings between

order statistics. Extensions permit price discrimination among heterogeneous groups,

minimum revenue thresholds, and quantity caps.
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1 Introduction

Clock auctions have a number of properties that make them attractive for practical purposes.

They are weakly group strategy-proof, preserve the privacy of trading agents, endow single-

unit traders with obviously dominant strategies, and limit the information that agents and

the designer must acquire prior to the auction.1 Privacy preservation protects traders from

hold-up by the designer and the designer from the (often political) risk of regret.2 By

endowing agents with dominant strategies, clock auctions exhibit equilibrium behavior that

does not depend on common knowledge or higher-order beliefs. Therefore, they satisfy the

robustness requirements emphasized by, for example, Bergemann and Morris (2012).3

However, clock auctions with optimally chosen reserve prices and stopping rules depend

on the fine details of the environment and so are subject to what has become known as

the Wilson critique (Wilson, 1987). Although there is a large economics and computer

science literature on asymptotically optimal, prior-free mechanisms, to date none of these

mechanisms is implementable as a clock auction. This creates a tension between prior-free,

asymptotically optimal mechanisms that are not clock implementable and prior-free clock

auctions that are not asymptotically optimal, seemingly leaving designers with the tough

choice between one or the other.4

The tension is easily understood. In general, whether it is optimal for an agent to trade

depends not only on his virtual type, but also on his ranking relative to agents on his side of

the market, which is determined using the bids of the other players on his side of the market.

This is the case in two-sided environments when the designer acts as an intermediary and

also in one-sided auctions when the designer has a capacity constraint or otherwise increasing

marginal costs. Even if the distribution that is used to gauge an agent’s own virtual type

does not depend on that agent’s report, using his report to determine other agents’ virtual

types and their rankings relative to his may indirectly introduce a means to manipulate the

1The notion of obviously dominant strategies is defined by Li (2017). Li also shows that clock auctions
have an equilibrium in obviously dominant strategies and that this implies weak group strategy-proofness.
The point about limited information acquisition by traders is due to Milgrom and Segal (2015).

2Lucking-Reiley (2000) discusses hold-up by dealers of collectable stamps using second-price auctions
and how truthful bidding was no longer a dominant strategy. Ex post regret was an issue following New
Zealand’s 1990 radio spectrum auction, which used a direct mechanism that revealed to the public the
amount of money left on the table (McMillan, 1994; Milgrom, 2004).

3To the extent that clock auctions raise concerns, those relate to combinatorial clock auctions (see Levin
and Skrzypacz, 2016) and so are not relevant here.

4Revenue extraction is often an important and sometimes the only design objective. For the pivotal role
revenue considerations played in the U.S. Congress’ decision to legislate the FCC to use auctions to allocate
radio spectrum licenses, see for example Loertscher et al. (2015). Similarly, the question how much revenue
the U.S. government should extract from the “incentive auction” was the subject of at times controversial
debates. Even in economic theory, revenue plays an important role: The impossibility results of Vickrey
(1961) and Myerson and Satterthwaite (1983) and their generalizations arise because the designer faces the
constraint that revenue must not be negative.
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mechanism.5

In this paper, we show how to reconcile prior-free clock auctions and asymptotic opti-

mality. We exploit the insight that Myerson’s theoretical construct of virtual types is tightly

connected to the order statistics for nontrading agents’ types and the spacings (distances)

between them. In clock auctions, the spacings between nontrading agents’ types are observ-

able and, as we show, can be used to estimate the virtual types associated with the marginal

active buyer and seller if agents on each side of the market draw their types from identi-

cal distributions. Because the estimates use only the reports of agents who do not trade,

the privacy of the agents who trade is preserved. What is more, privacy preservation for

trading agents guarantees incentive compatibility because, for example, buyers with higher

values cannot influence the estimates and hence the ranks of lower valuing buyers, condi-

tional on being active. Under the regularity assumption that virtual types are monotone, no

knowledge of the inframarginal virtual types is required to determine the Bayesian optimal

allocation.6

As we show, our prior-free clock auction is optimal in the sense that in the absence of

estimation error it replicates the Bayesian optimal clock auction, which we characterize, and

that the effects of estimation error vanish in the limit, so that the mechanism is asymp-

totically optimal. Although existing prior-free mechanisms are optimal absent estimation

error for special cases such as constant marginal costs, our paper is the first to develop a

mechanism that is optimal absent estimation error for a general setting and to formalize and

apply this optimality criterion. Furthermore, our prior-free mechanism has a clock imple-

mentation whose structure is essentially uniquely pinned down by the requirement that it

be sequentially consistent in that, similar to Akbarpour and Li’s (2017) notion of credible

mechanisms, there is no commitment problem for the auctioneer in the dynamic implemen-

tation. Estimation details can be further pinned down using criteria such as minimizing the

mean square error of the estimator.

By extending our setup to have identifiable groups of buyers and groups of sellers, where

agents are homogenous within groups but heterogeneous across groups, we can allow for

price discrimination across groups, revenue thresholds, group-specific caps, and group-specific

5Goldberg et al. (2001) and Baliga and Vohra (2003) circumvent the problem by splitting the market into
two sub-markets and using the estimates from one sub-market to determine the mechanism to be applied
in the other. For the special case of constant marginal cost, Segal (2003) observes that one can use the
empirical distribution based on other agents’ reports without having to rely on estimates of the “empirical
density” to determine whether a given buyer should trade.

6The inframarginal agents when there are k traders are the k − 1 most efficient traders. Because clock
auctions allocate the quantity traded to the most efficient traders, Bayesian optimality with finitely many
agents cannot be implemented via a clock auction when virtual types are not monotone because optimality
in that setting requires ironing (and hence an inefficient allocation with positive probability). Nevertheless,
as we show, prior-free clock implementation of the Bayesian optimal mechanism is possible asymptotically
even when virtual types are not monotone, provided price posting is Bayesian optimal in the large and there
is a unique local maximum under price posting.
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favoritism.

This paper contributes to the literature on clock auctions. Beginning with Milgrom

and Weber (1982), with subsequent contributions by McAfee (1992), Kagel (1995), Lopomo

(1998, 2000), Ausubel (2004, 2006), Milgrom and Segal (2015), and Li (2017), this literature

has identified advantages of dynamic implementation over direct mechanisms in a variety

of setups.7 In particular, our paper builds on the properties of clock auctions identified by

Milgrom and Segal (2015) and design features first introduced by McAfee (1992).

Motivated by Wilson (1987) and the literature on robust mechanism design in the tradi-

tion of Bergemann and Morris (2005, 2009, 2012),8 we develop prior-free clock auctions that

are Bayesian optimal absent estimation error and asymptotically optimal and thus lie at the

intersection of robust and Bayesian mechanism design in the tradition of Myerson (1981),

both for one-sided setups and for two-sided exchanges such as Myerson and Satterthwaite

(1983), Gresik and Satterthwaite (1989), and Williams (1999). For a two-sided setting with

multi-unit traders, Loertscher and Mezzetti (2016) develop a prior-free incentive-compatible

clock auction in which the role for estimation is to gauge market demand and supply for the

purpose of allocating efficiently without running a deficit.9

In the literature on asymptotically optimal, prior-free mechanisms, the two most im-

portant precursors to the current paper are Segal (2003) and Baliga and Vohra (2003).10

Segal derives an asymptotically Bayesian optimal mechanism for one-sided setups when the

designer is uncertain about the distribution of types but has a prior belief regarding the

distribution. Baliga and Vohra (2003) construct dominant strategy prior-free mechanisms

for one-sided and two-sided setups and show that in the limit with infinitely many traders,

these mechanisms generate the same revenue as the Bayesian optimal mechanisms. Baliga

and Vohra divide agents on each side of the market randomly into two groups and use reports

from one group to estimate the virtual type functions for the other group.

Dominant strategy prior-free mechanisms have also received attention in the computer

7Although both the English auction and the second-price auction make bidding truthfully a dominant
strategy, in laboratory settings subjects are consistently more likely to play their dominant strategy in
English auctions than in second-price auctions (Kagel, 1995), suggesting that the open format of the English
auction facilitates discovery of the dominant strategies.

8Hagerty and Rogerson (1987) provide an additional, related motivation for detail-free mechanisms:
Environments are often subject to shocks while institutions that govern trade are longer-term in nature and
must therefore be robust with respect to the details of changing environments.

9Because efficiency is a distribution-free concept, statistical properties in the setting of Loertscher and
Mezzetti (2016) only matter for convergence, which allows them to depart from the independence assumption.

10There is also a vast literature on estimation in auctions using kernel density estimators; see Athey and
Haile (2007) and Guerre et al. (2000) and the references therein. This literature is related because objects of
interest here and there are the distributions from which bidders draw their types. Our k-th nearest neighbor
estimator is a kernel density estimator based on the uniform kernel. In clock auctions, the estimates of
interest are at the bound of the observed data, i.e., at a single point. For estimating densities at a single
point, there appears to be no advantage of kernel estimates over nearest neighbor estimates (Silverman,
1986, pp. 20 and 97).
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science literature. That literature analyzes mechanisms that use reports from a sample of

agents to infer the distribution of types for other agents, referred to as random-sampling

mechanisms.11 Whereas the analysis of this type of mechanism in Baliga and Vohra (2003)

focuses on profit maximization for the designer, the literature on Algorithmic Game Theory

focuses on whether the mechanisms have good worst-case performance relative to benchmarks

based on prior-free mechanisms that approximate Bayesian optimality but are not incentive

compatible.12 For example, Goldberg et al. (2001) and Dhangwatnotai et al. (2015) focus

on the worst-case performance one-sided auctions for a good with unlimited supply, while

Deshmukh et al. (2002) consider two-sided mechanisms.13 None of these random-sampling

mechanisms can be implemented as a clock auction.

This paper also relates to the large literature on micro-foundations for Walrasian equilib-

rium, whose modern guise goes back to Arrow (1959), Vickrey (1961), and Hurwicz (1973).

How can a market maker infer the data necessary to clear the market without violating

agents’ incentive and participation constraints at no cost to himself? The short answer is

that he cannot. However, one way of interpreting the results in McAfee (1992), Rustichini

et al. (1994), Cripps and Swinkels (2006), and Satterthwaite et al. (2015) is that there are

practical mechanisms that approximate full efficiency quickly as the economy grows. We

show that the market maker’s objective can be maximized, asymptotically, even if the objec-

tive is to maximize revenue or a convex combination of revenue and social surplus, without

any prior knowledge or assumptions about distributions beyond mild regularity conditions

and independence.

The remainder of this paper is structured as follows. Section 2 describes the setup and

the relevant notions of optimality, including Bayesian optimality and prior-free optimality.

Section 3 shows that in a two-sided setup, the Bayesian optimal mechanism is not clock im-

plementable and derives the Bayesian optimal clock auction. Section 4 shows by construction

that a prior-free clock auction exists that is prior-free optimal. In addition, we show that

the structure of the prior-free optimal clock auction is pinned down by a notion of sequential

consistency, and we provide criteria for determining the details of the required estimators.

Section 5 contains extensions, and Section 6 concludes.

2 Setup

In this section, we define Bayesian, Bayesian optimal, and prior-free mechanisms, and we

introduce a notion of optimality for prior-free mechanisms. We then specialize to the trade

11These mechanisms are referred to as “random sampling mechanisms” in, e.g., Goldberg et al. (2001)
and Goldberg et al. (2006), but as “adaptive mechanisms” in Baliga and Vohra (2003).

12Devanur et al. (2015) provide a formal definition of “approximate” in this sense.
13Dütting et al. (2017) analyze two-sided mechanisms that can be implemented as clock auctions, but do

not consider estimation.
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settings that are the focus of this paper. For these settings, we describe the Bayesian optimal

mechanisms along with the associated regularity requirements.

2.1 Bayesian and Bayesian optimal mechanisms

With little overhead cost in terms of notation, the following concepts can be introduced and

discussed with a fair degree of generality. Let Θi be agent i’s type space and Θ = ×i∈IΘi,

where I is the set of agents, and let µ be a probability measure over Θ. A direct mechanism

collects reports θ and as a function of these reports determines individual quantities and

transfers 〈qi(θ, µ), ti(θ, µ)〉 (we focus on deterministic mechanisms, which is without loss of

generality under regularity assumptions imposed later). A direct mechanism is incentive

compatible of some kind (e.g., Bayesian, dominant strategy or ex post) if for all i and all

θi ∈ Θi, reporting truthfully constitutes an equilibrium of this kind. It is individually rational

if the participation constraint of that kind is satisfied for all agents.

We say that a direct mechanism is Bayesian if there exist two priors µ and µ′ with µ 6= µ′

and some θ ∈ Θ such that

〈qi(θ, µ), ti(θ, µ)〉 6= 〈qi(θ, µ
′), ti(θ, µ

′)〉.

Observe that whether a mechanism is Bayesian is independent of the nature of incentive

compatibility.

We say that an incentive compatible and individually rational Bayesian mechanism

〈q∗i (θ, µ), t
∗
i (θ, µ)〉 is Bayesian optimal (or optimal) with respect to prior µ if for all θ ∈ Θ,

〈q∗i (θ, µ), t
∗
i (θ, µ)〉 ∈ arg max

〈qi,ti〉
E

θ̃|µ[W (θ̃, 〈qi, ti〉)], (1)

where the maximization is subject to incentive compatibility and individual rationality con-

straints (and possibly additional constraints) and E
θ̃|µ[W (θ̃, 〈qi, ti〉)] denotes the expectation

of the designer’s objective W , which depends on the realized type profile and the mecha-

nism, with the expectation being taken with respect to the random variable θ̃ with measure

µ. When we refer to the Bayesian optimal mechanism without specifying the beliefs, we

mean the Bayesian optimal mechanism with respect to correct beliefs. Bayesian optimality

is particularly useful as a benchmark when it is known what this optimum is. This is the

case in our setup with single-dimensional types, which we introduce below.

Because ex post efficiency is a distribution-free concept, we adhere to the convention of

distinguishing between Bayesian optimal and efficient mechanisms. For example, Myerson

(1981) derives optimal auctions whereas the Vickrey auction with a reserve equal to the

seller’s cost is an efficient auction.
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2.2 Prior-free and prior-free optimal mechanisms

We say that a mechanism 〈qi, ti〉 is prior free if it is not Bayesian. That is, if for all priors

µ and µ′ and all θ ∈ Θ,

〈qi(θ, µ), ti(θ, µ)〉 = 〈qi(θ, µ
′), ti(θ, µ

′)〉,

in which case we can simply write the mechanism as 〈qi(θ), ti(θ)〉. Of course, a prior-free

mechanism is detail free insofar as it does not depend on such things as the distributions

from which agents draw their types.14

We say that a prior-free (and incentive-compatible and individually rational) mechanism

〈qi(θ), ti(θ)〉 is Bayesian optimal absent estimation error (BOAEE) if there exists a belief

µ
θ
that is “estimated,” as indicated by its dependence on the reports θ, such that for all

θ ∈ Θ,

〈qi(θ), ti(θ)〉 = 〈q∗i (θ, µθ), t
∗
i (θ, µθ)〉.

That is, a prior-free mechanism is BOAEE if for all possible reports θ, it coincides with the

Bayesian optimal mechanism for a designer with prior µ
θ
.15

Because BOAEE does not require the belief estimates to converge to the truth, the

BOAEE property is most compelling when it is satisfied by a prior-free mechanism whose

estimates do converge and whose estimator satisfies criteria such as minimizing mean square

error. Loosely, we say that a prior-free mechanism is asymptotically optimal if, as the

numbers of agents go to infinity (through the replication of an initial set of buyers and

sellers), the expected value of the ratio of the objective under the mechanism to the objective

under the Bayesian optimal mechanism with correct beliefs converges in probability to one.

Formally, in the tradition of Gresik and Satterthwaite (1989), we derive asymptotic results

assuming independent private values by considering η-fold replicas of the economy. An η-fold

replica has set of agents equal to the union of η instances of set I with the corresponding type

space Θ for each replica, and beliefs defined over a single replica of the type space. We say

that an incentive compatible, individually rational, prior-free mechanism 〈qi(θ; η), ti(θ; η)〉

defined for an η-fold replica is asymptotically optimal if

plimη→∞Eθ|µ∗

[
W (θ, 〈qi(θ; η), ti(θ; η)〉)

W (θ, 〈q∗i (θ, µ
∗; η), t∗i (θ, µ

∗; η)〉)

]
= 1,

where 〈q∗i (θ, µ
∗; η), t∗i (θ, µ

∗; η)〉 is the Bayesian optimal mechanism for the η-fold replica with

14The converse, interestingly, is not true. The first-price auction is generally considered detail free.
For example, its rules make no references to distributions. Yet, it is not prior free because the Bayes-Nash
equilibrium allocation varies with distributions. In particular, it is ex post efficient if and only if distributions
are symmetric.

15Defined directly, 〈qi(θ), ti(θ)〉 ∈ argmax〈qi,ti〉 Eθ̃|µ
θ

[W (θ̃, 〈qi, ti〉)], subject to incentive compatibility
and individual rationality constraints.
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respect to the correct beliefs and “plim” stands for convergence in probability.

We combine BOAEE and asymptotic optimality to define our notion of optimality for

prior-free mechanisms. We say that a prior-free mechanism is prior-free optimal if it is

BOAEE and asymptotically optimal.

2.3 Our trade settings

While the above concepts apply generally, our focus in this paper is on a narrower set of

trading problems. In particular, we study settings in which the demand side is characterized

by a vector of marginal valuations v of dimension n and the supply side by a vector of

marginal costs c of dimension m. Letting v(k) and c[k] denote, respectively, the k-th highest

and k-th lowest elements of v and c, the efficient quantity traded is the largest integer k such

that v(k) ≥ c[k], which is well defined using the conventions that v(0) ≡ ∞, v(n+1) ≡ −∞,

c[0] ≡ −∞, and c[m+1] ≡ ∞. All trade occurs via a monopoly market maker, who is a

risk-neutral designer without private information.

To account for private information, we assume that agents on at least one side of the

market are privately informed about their types. Thus, we focus on setups with one-sided

private information pertaining to buyers, one-sided private information pertaining to sellers,

and two-sided private information.

We assume that all buyers draw their types from the same distribution and that all

sellers draw their types from the same distribution, although buyer and seller distributions

can differ. In the online appendix we extend our results allow for heterogeneity of buyers

and heterogeneity among sellers.16

When considering prior-free mechanisms, we assume that each agent with private infor-

mation is privately informed about his type, but the types and distributions from which

they are drawn are unknown to the mechanism designer and to the agents. Keeping fixed

the mechanism, equilibrium behavior would not be affected if the agents knew the distri-

butions because the mechanism endows them with dominant strategies; however, depending

on assumptions about the informational structure, alternative mechanisms, such as those

developed by Crémer and McLean (1985, 1988) could be optimal.17 We assume that the

designer only knows that buyers and sellers draw their types independently from the same

distributions and that the Bayesian design problem satisfies certain other conditions that we

16Specifically, in the extension we assume that buyers can be placed into groups, where all buyers within
a group draw their values from the same distribution, and that sellers can be placed into groups, where all
sellers within a group draw their costs from the same distribution. But we allow heterogeneity across groups.
This extension allows for price discrimination across groups as well as the straightforward implementation
of revenue thresholds, group-specific caps, and group-specific favoritism.

17However, Crémer-McLean mechanisms are not prior-free mechanisms as defined here. While the allo-
cation rule of the full-surplus extracting mechanism is ex post efficient and thus independent of the prior,
the ex post transfers vary with distributions.
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spell out below. For clock implementation, we assume that the designer knows upper and

lower bounds for the types (not necessarily tight ones), which allows the designer to start the

clock auction at prices that guarantee that all agents are active irrespective of their types.

For prior-free mechanisms, dominant strategy incentive compatibility seems like the nat-

ural notion of incentive compatibility. Moreover, it is without loss of generality when there

is no restriction on the set of admissible priors.18 Individual rationality is most naturally

required to be satisfied ex post.19 These are therefore the notions we focus on going forward.

2.4 Benchmark Bayesian optimal mechanisms

We now describe the Bayesian optimal mechanisms for the informational setups that we

consider as well as regularity assumptions. The Bayesian optimal mechanisms do not require

knowledge of the virtual types of the inframarginal traders to determine the quantity traded

or the payments in the dominant strategy implementation. For the prior-free setting, this

implies that the virtual types of the inframarginal types need not be estimated. As will be

seen shortly, this opens the scope for clock implementation.

Bayesian optimality with one-sided private information pertaining to buyers

For the setup with one-sided private information pertaining to buyers, c[1], ..., c[m] defines the

commonly known marginal cost curve of the designer, and there are n buyers who have unit

demands and draw their valuations independently from the continuously differentiable dis-

tribution function F with support [v, v] and positive density f everywhere on the support.20

In the above notation, the type space is Θ = [v, v]n, with correct beliefs defined with respect

to F . A buyer’s payoff is equal to his value minus the price he pays if he trades and zero

otherwise. It is well known that under the assumptions that v ≤ c[1] < v and that the virtual

valuation function

Φ(v) ≡ v −
1− F (v)

f(v)

18To see this, recall first from Bergemann and Morris (2005) that for private values environments like ours
dominant strategy implementation is equivalent to ex post implementation. Therefore, Bayesian incentive
compatibility is the only alternative notion of incentive compatibility. For the purpose of reaching a contra-
diction, assume then that a mechanism satisfies Bayesian incentive compatibility but fails to be dominant
strategy incentive compatible. Because the mechanism is prior-free, it must be Bayesian incentive compatible
for any admissible prior, including priors with mass one at the type profile(s) for which the mechanism fails
to satisfy dominant strategy incentive compatibility. But for such priors, Bayesian incentive compatibility
reduces to dominant strategy incentive compatibility, which is the desired contradiction.

19In Bayesian mechanism design settings with private values, there is an equivalence between the Bayesian
and dominant strategy notions of incentive compatibility and of interim and ex post individual rationality;
see, for example, Manelli and Vincent (2010) and the generalization by Gershkov et al. (2013).

20We assume continuously differentiable distributions instead of merely continuous distributions because
our asymptotic results rely on the continuity of the inverses of the virtual type functions, which is guaranteed
if the densities are continuous.

8



is increasing, the solution to the designer’s profit maximization problem, which is subject

to buyers’ incentive compatibility and individual rationality constraints, has an allocation

rule that trades the quantity given by the largest index q such that Φ(v(q)) ≥ c[q].
21 All

buyers with a value of at least v(q) trade and, in the dominant strategy implementation, pay

the price pB = max{v(q+1),Φ
−1(c[q])}. This is a standard sales auction with a reserve that

depends on the quantity traded.

Bayesian optimality with one-sided private information pertaining to sellers

Analogously, for one-sided private information pertaining to sellers, we assume that sellers

have unit capacities and draw their privately known costs independently from a continuously

differentiable distribution G with support [c, c] and positive density g on the support. A

seller’s payoff is equal to the payment she receives minus her cost if she trades and zero

otherwise. If the designer’s marginal values v(1), v(2), .., v(n) are commonly known, c ≥ v(1) >

c, and the virtual cost function

Γ(c) ≡ c +
G(c)

g(c)

is increasing, then this is a standard procurement auction in which the optimal quantity

traded is the largest index q such that v(q) ≥ Γ(c[q]).
22 All sellers with costs not larger than

c[q] trade and, in the dominant strategy implementation, are paid pS = min{c[q+1],Γ
−1(v(q))}.

Bayesian optimality with two-sided private information

For two-sided private information, we let the set of (privately informed) agents be I = N ∪M,

where N is the set of buyers with unit demands, whose cardinality is n, andM with cardinality

m is the set of sellers with unit capacities. As above, buyers and sellers have quasi-linear

payoffs and outside options of value zero. Our problem is most interesting when, under the

optimal Bayesian mechanism, full trade is sometimes but not always optimal, with full trade

meaning that the quantity traded is min{n,m}. A simple condition that guarantees this for

the setting with two-sided private information is

c ≥ v > c ≥ v. (2)

21After accounting for incentive compatibility and individual rationality constraints in a direct mechanism,
the designer’s problem is to choose a feasible allocation rule to maximize E

v|F,...,F [
∑n

i=1 Φ(vi)qi(v, c) −∑m
j=1 cjqj(v, c)], where qi is the probability that buyer i receives a unit and qj is probability that the j-th

unit is produced, with feasibility meaning that
∑n

i=1 qi(v, c) ≤
∑m

j=1 qj(v, c).
22To see this, apply standard arguments to conclude that, after accounting for incentive compatibility

and individual rationality constraints, the designer’s problem in a direct mechanism is to choose a feasible
allocation rule to maximize E

c|G,...,G[
∑n

i=1 viqi(v, c) −
∑m

j=1 Γ(cj)qj(v, c)].
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We refer to condition (2) and its one-sided analogues, v ≤ c[1] < v and c ≥ v(1) > c, as

no-full trade conditions, and throughout the paper we assume that the relevant no-full trade

condition holds. Under this condition, assuming that Φ and Γ are increasing functions, the

Bayesian optimal mechanism in the two-sided setting is characterized by the allocation rule

that given (v, c) trades the quantity q that is the largest index such that Φ(v(q)) ≥ Γ(c[q]).
23

As in the one-sided setups, the number q is unique almost surely because ties among agents’

types are a probability zero event. Buyers with values no less than v(q) trade and sellers with

costs not larger than c[q] trade. In the dominant strategy implementation, trading buyers pay

pB = max{v(q+1),Φ
−1(Γ(c[q]))} and trading sellers are paid pS = min{c[q+1],Γ

−1(Φ(v(q)))}.

Regularity assumptions

Setups with monotonically increasing virtual type functions correspond to what Myerson

(1981) refers to as the regular case. Thus, we say that the regularity condition is satisfied

if the virtual type functions are monotonically increasing. Monotonicity of the virtual type

functions ensures that point-by-point maximization permits incentive compatibility because

it implies that more efficient types—buyers with higher values, sellers with lower costs—are

more likely to trade. If, for a two-sided setting, Φ is not monotone in the neighborhood

of some v′ with Φ(v′) > c and/or Γ is not monotone in the neighborhood of some c′ with

Γ(c′) < v,24 then the Bayesian optimal mechanism differs from the one described above. For

finite numbers of buyers and sellers, there is ironing and random rationing with positive

probability.

However, for asymptotic optimality, the regularity condition can be relaxed considerably.

To illustrate, suppose a two-sided setup and confine attention, temporarily, to posted-price

mechanisms. A necessary condition for the posted prices pB and pS to be profit maximizing

in the large among all prices (p̂B, p̂S) ∈ [v, v]× [c, c] is that they satisfy

Φ(pB) = Γ(pS) and n(1− F (pB)) = mG(pS). (3)

If the solution to (3) is unique and if price posting is the Bayesian optimal mechanism

in the large (both of which are the case when the regularity condition is satisfied), then

the mechanisms described above converge to the Bayesian optimal mechanisms even when

they are not Bayesian optimal in the small.25 For example, Figure 1 illustrates a case in

which, in the large with equal numbers of buyers and sellers, the Bayesian optimum is

23 In a direct incentive compatible and individual rational mechanism, standard arguments
imply that the designer’s problem reduces to choosing a feasible allocation rule to maximize
E

v,c|F,...,F,G,...,G[
∑n

i=1 Φ(vi)qi(v, c) −
∑m

j=1 Γ(cj)qj(v, c)].
24When private information pertains only to buyers, respectively sellers, the conditions have to be replaced

by Φ(v′) > c[1] and Γ(c′) < v(1).
25When private information only pertains to buyers, respectively sellers, the optimal posted prices are

obtained from (3) by replacing Γ and Φ by the identity function.
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implemented with posted prices pB and pS such that share q∗ of buyers and sellers trade,

i.e., pB = F−1(1 − q∗) and pS = G−1(q∗). However, in the small, because of ironing,

random rationing occurs with positive probability and the mechanisms described above are

not Bayesian optimal.

q*
q

Φ F-1 1-q))

ironed portion of Φ(F-1(1-q))

Γ(G-1(q))

Figure 1: Illustration of a setup with unique posted prices that are Bayesian optimal in the
large, but where ironing may be required in the small.

If the example of Figure 1 were adjusted so that the virtual cost function intersected the

ironed portion of the virtual value function, then the Bayesian optimal mechanism in the

large would no longer be a price posting mechanism because some share of agents would

have to be rationed.

Our discussions and results below pertaining to Bayesian optimal mechanisms in the

small and to BOAEE mechanisms assume that the regularity condition is satisfied. Results

concerning asymptotic optimality hold under the weaker condition that there is a unique

pair of prices satisfying (3) and that price posting is the Bayesian optimal mechanism in the

large.

The tight connection between the Bayesian optimality of price posting in the large and

the asymptotic optimality of our clock auction is not surprising; afterall, a clock auction

generates prices that trading agents take as given and that are, in that sense, posted to

them. The requirement that the prices pB and pS satisfying (3) be unique relates to the fact

that, as we shall see, our clock auction stops at the first pB and pS such that (3) holds.

Generalized designer objective

The scope of the analysis can be further generalized by assuming that the designer wants to

maximize a Ramsey objective, that is, a weighted sum of expected profit and social surplus,26

26Social surplus is defined to be the sum of trading buyers’ values minus the sum of trading sellers’ costs.
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with weight α ∈ [0, 1] on expected revenue, subject to incentive compatibility and individual

rationality. The Bayesian optimal mechanism is then characterized by the same allocation

rules as derived above for the case of profit maximization, except that one has to replace the

virtual value and virtual cost functions by, respectively, the relevant weighted virtual type

function Φα(v) and Γα(c) defined as

Φα(v) ≡ αΦ(v) + (1− α)v = v − α
1− F (v)

f(v)
and Γα(c) ≡ αΓ(c) + (1− α)c = c+ α

G(c)

g(c)
.

By construction, for α = 0 the weighted virtual types correspond to true types, so that α = 0

is equivalent to ex post efficiency, and for α = 1, we have Φ(v) = Φ1(v) and Γ(c) = Γ1(c), so

that α = 1 corresponds to profit maximization.27 The payments in the dominant strategy

implementation are accordingly defined by replacing the virtual type functions Φ and Γ (and

their inverses) by Φα and Γα (and their inverses) in the formulas above.

Beyond generality, allowing the designer to have a Ramsey objective also highlights the

need for estimation because, as soon as α > 0, the optimal mechanism depends on distribu-

tional details.

3 Bayesian optimal clock auctions

In this section we define clock auctions, discuss some of their key characteristics, and derive

the Bayesian optimal clock auction.

3.1 Definition of a clock auction

In a clock auction, active buyers and sellers choose whether to exit as the buyer clock price

increases and the seller clock price decreases, but agents who exit remain inactive thereafter.

When the auction ends, active agents trade, with active buyers paying the buyer clock price

and active sellers receiving the seller clock price.

To formally define a clock auction for our setup, we adapt the definition of a clock auction

in Milgrom and Segal (2015) to accommodate (without requiring) a two-sided setting.28 In

27As noted by Bulow and Roberts (1989), when α = 1, the virtual values and virtual costs can be
interpreted, respectively, as a buyer’s marginal revenue and a seller’s marginal cost, treating the (change in
the) probability of trade as the (marginal change in) quantity. For α ∈ (0, 1), the weighted virtual values
and costs are convex combinations of the true and the virtual types, with weight α attached to the virtual
types. If the social shadow cost of taxation, which is a measure of the distortion associated with raising
revenue through taxes, is known to be some λ ≥ 0, then α can be chosen to implement the socially optimal
allocation by choosing α = λ/(1 + λ) (see, e.g., Norman (2004) or Loertscher et al. (2015)).

28Milgrom and Segal (2015) define a (descending) clock auction for the one-sided setup. Their specification
differs from ours in that it has individual-specific clocks and proceeds in discrete periods in which prices
from a finite set are offered to the agents. Their clock auction is defined in terms of a price mapping from
histories that are sequences of nested sets of active agents, where the price weakly decreases as agents exit
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particular, to account for two sides, one needs to ensure that the numbers of active buyers

and of active sellers are the same at the time the procedure ends.

In our setup, a clock auction is a rule for determining state transitions for a state space

Ω, where the state ω keeps track of: the number of active buyers and sellers, the exit

prices of the nonactive buyers and sellers, the current buyer clock price, the current seller

clock price, and whether the auction has ended. State transitions are governed by three

functions: a buyer function φ : Ω → R, which is increasing in the buyer clock price, a seller

function γ : Ω → R, which is increasing in the seller clock price, and a target function

τ : Ω → R, which satisfies τ (ω) ∈ [φ(ω), γ(ω)] whenever φ(ω) < γ(ω). Because these three

functions determine the state transitions, they also determine when the clock auction ends.

As mentioned above, once the auction ends, the remaining active buyers buy at the buyer

clock price, and the remaining active sellers sell at the seller clock price. Because a clock

auction is defined by the functions φ, γ, and τ , we denote a clock auction by Cφ,γ,τ . We

provide the full definition of a clock auction for the two-sided setup (and the adaptation for

a one-sided setup) in Appendix A.

In a clock auction, if there are unequal numbers of active buyers and sellers, then the

clock price on the long side is advanced until exits on that side of the market equalize the

number of active buyers and sellers. Once there are equal numbers of active buyers and

sellers, the buyer and seller functions are evaluated at the current state. The auction ends if

the state ω is such that the value of the buyer function is greater than or equal to the value

of the seller function, that is, φ(ω) ≥ γ(ω). If not, then the target function comes into play.

The value of the target function τ(ω), which when φ(ω) < γ(ω) is weakly between the

values of the buyer and seller functions, becomes a target for the buyer and seller functions

to achieve. Specifically, the buyer clock price is increased so as to increase the value of the

buyer function towards τ (ω), holding fixed the components of the state other than the buyer

clock price, and the seller clock price is decreased so as to decrease the value of the seller

function towards τ (ω), holding fixed the components of the state other than the seller clock

price.

If the target is reached on both the buyer side and the seller side with no exits (indicating

that the value of the buyer function would have exceeded the value of the seller function

following the next pair of exits), then the auction ends. Otherwise the auction continues,

moving the clock price on the long side to equalize the numbers of active buyers and sellers,

updating the state, and reevaluating the buyer and seller functions and the target function.

By construction, the clock auction ends, either with trade or because all agents have exited.

As an example, McAfee’s (1992) asymptotically efficient clock auction fits within our

definition of a clock auction.29 It corresponds to Cφ,γ,τ where, given a state ω with equal

the active set.
29In McAfee’s (1992) auction, the buyer clock price increases and seller clock price decreases, inducing

exits by buyers and sellers. If there are unequal numbers of active buyers and sellers, then the clock price
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numbers of buyers and sellers and clock prices pB and pS, the buyer and seller functions are

essentially identity functions, with φ(ω) = pB and γ(ω) = pS, and the target function gives

the midpoint between the two clock prices, τ(ω) = pB+pS

2
.

We assume that each buyer observes at least the buyer clock price and each seller observes

at least the seller clock price. Agents’ strategies are mappings from observed histories to exit

decisions. The truthful strategy of a buyer is to exit if and only if the buyer clock price is

greater than or equal to his value, and the truthful strategy of a seller is to exit if and only

if the seller clock price is less than or equal to her cost. Playing these truthful strategies is

dominant strategy incentive compatible.

3.2 Key properties of clock auctions

Clock auctions are well suited for practical implementation, and uniquely so on some dimen-

sions.

In our environment with unit demands and unit supplies, Li (2017) shows that clock

auctions, and only clock auctions, have obviously dominant strategies : the maximum pay-

off obtained by deviating from a dominant strategy at given price is never more than the

minimum payoff obtained by sticking to the dominant strategy. Specifically, if a buyer exits

before the buyer clock price reaches his value, his payoff is zero, and if a buyer remains active

after the buyer clock price reaches his value, his payoff is bounded above by zero; however,

under truthful bidding his payoff is bounded below by zero.

Given this property, it follows that clock auctions have dominant strategies (obviously)

and are weakly group strategy-proof : for every profile of types, every subset of agents, and

every deviant strategy profile for these agents, at least one agent in the subset has a weakly

higher payoff from exiting when the clock price reaches the agent’s type than from the deviant

strategy profile.30 In addition, a clock auction is envy free in the sense that in equilibrium

no agent prefers the allocation and price of another agent to his own.31

on the long side is advanced in order to induce exit(s) and equalize the number of active buyers and seller.
Following an exit that leaves equal numbers of active buyers and sellers, the auction ends if the last buyer
exit occurred at a buyer clock price of pB that is greater than or equal to the seller clock price pS at which
the last seller exited. Active agents then trade at their clock prices. (Thus, McAfee’s stopping rule asks
whether pB ≥ pS rather than comparing functions of pB and pS as in our auction.) If pB < pS , then the
auction continues by setting a target, where in McAfee (1992), the target takes the form of a target price

that both the buyer and seller clock prices move towards, defined as pB+pS

2 . The buyer price is increased
towards the target and the seller price is decreased towards the target. If the target is reached for both
buyers and sellers with no exits, then the auction ends and active agents trade at the (common) clock price.
Otherwise, the auction continues.

30On weak group strategy-proofness in a one-sided clock auction, see Li (2017) and Milgrom and Segal
(2015). On the connection between individual and group strategy-proofness, see Barberà, Berga, and Moreno
(2014). Dütting et al. (2017) show weak group strategy-proofness holds for a “lookback composition” of
buyers and sellers that are ranked according to their types, which is a special case of the clock auctions
considered here in that it has no target prices.

31This property is not unique to the clock auction implementation. The dominant strategy implementa-
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These properties imply that clock auctions are robust with respect to the fine details of the

environment and that, in the absence of transfers, collusion among a subset of agents cannot

be strictly profitable for all of the colluding agents. Further, because endowing agents with

dominant strategies and having agents recognize their dominant strategies are two distinct

things in practice, the value of having obviously dominant strategies is a powerful argument

for the use of clock auctions and for focusing on direct mechanisms that can be implemented

via clock auctions. Indeed, this underlies the view expressed by Dasgupta and Maskin (2000)

that the development of appropriate dynamic counterparts to Vickrey auctions is a leading

topic for further research.

3.3 Implementation of Bayesian mechanisms by clock auction

As we have described, clock auctions possess a number of desirable properties. Thus, it is of

interest when the Bayesian optimal mechanism can be implemented by a clock auction.

Proposition 1 Assuming the regularity condition holds, in the setup with one-sided pri-

vate information, the Bayesian optimal mechanism can be implemented by a clock auction;

however, in the setup with two-sided private information, it cannot.

Proposition 1 summarizes the implication of the results of Milgrom and Segal (2015) for

our setting.32 In one-sided settings, the Bayesian optimal mechanism can be defined based

only on the information held by the designer and information gleaned from nontrading agents,

and thus has a clock implementation.33 In contrast, in two-sided settings, the Bayesian

optimal mechanism relies on the private information of some trading agents—information

that is not available in clock auctions because they preserve the privacy of trading agents.

Thus, in two-sided settings, clock auctions do not always allow for the optimal quantity to

be traded and so are with some loss of generality.

Given Proposition 1, in order to use the Bayesian optimal clock auction (BOCA) as a

benchmark for a prior-free clock auction in a two-sided setting, we must first identify what

the BOCA is in a two-sided setting. To do so, we temporarily stipulate that the designer

knows F and G, and so knows the weighted virtual value function Φα and the weighted

virtual cost function Γα, but is restricted to using a clock auction.

tions of the Bayesian optimal mechanisms derived above are also envy free.
32For settings like ours, Proposition 6 in Milgrom and Segal (2015) shows that clock implementation

implies that agents are substitutes, while their Proposition 7 shows that clock implementation is possible
when agents are substitutes. Our Proposition 1 then follows once one notices that, with private information
pertaining to only one side of the market, the privately informed agents are substitutes to each other,
whereas when private information pertains to both sides, buyers and sellers are complements—the problem
is assignment representable, as described by Delacrétaz et al. (2018), and so the complementarity of buyers
and sellers follows from Shapley (1962).

33For example, with private information only on the buyer side, the Bayesian optimal mechanism is
implemented by the clock auction Cφ,γ,τ where, given a state ω with buyer clock price pB and nA active
buyers, φ(ω) ≡ Φα(pB), γ(ω) ≡ c[nA+1], and τ (ω) ≡ c[nA].
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If the j-th highest valuing buyer and j-th lowest cost seller exit at a buyer clock price

of pB = v(j) and a seller clock price of pS = c[j], then Bayesian optimality requires that the

auction end if and only if Φα(p
B) ≥ Γα(p

S). Thus, given a state ω with current buyer and

seller clock prices pB and pS, the BOCA must use a buyer function of φ(ω) = Φα(p
B) and a

seller function of γ(ω) = Γα(p
S). The more subtle issue is how to set the target function.

If Φα(v(j)) < Γα(c[j]) and Φα(v(j−1)) ≥ Γα(c[j−1]), then Bayesian optimality requires that

the j − 1 highest-valuing buyers and lowest-cost seller trade. However, for the two-sided

setup, the privacy preservation inherent in a clock auction prevents this from always being

achieved.34 Given the constraint of privacy preservation for trading agents, the constrained

optimum when it is observed that Φα(v(j)) < Γα(c[j]) is to set target prices that maximize

the probability that there are j − 1 trades conditional on Φα(v(j−1)) ≥ Γα(c[j−1]). Thus,

assuming that the regularity condition holds, in the two-sided setup, the BOCA is the clock

auction Cφ,γ,τ such that for any state ω with j−1 active buyers and sellers and current buyer

and seller clock prices of pB and pS (equal to v(j) and c[j] under truthful bidding), the buyer

and seller functions satisfy

φ(ω) = Φα(p
B) and γ(ω) = Γα(p

S), (4)

and if Φα(p
B) < Γα(p

S), the target function maximizes the probability that the quantity

traded is j − 1 conditional on Φα(v(j−1)) ≥ Γα(c[j−1]), where the probability is taken with

respect to random variables v(j−1) and c[j−1] given the observed values of pB = v(j) and

pS = c[j], i.e.,

τ(ω) ∈ argmaxPr
τ∈[Φα(pB),Γα(pS)]

(
Γα(c[j−1])) ≤ τ ≤ Φα(v(j−1)) | v(j) = pB, c[j] = pS,Γα(c[j−1]) ≤ Φα(v(j−1))

)
. (5)

In other words, the BOCA uses the weighted virtual type functions as the buyer and seller

functions and has a target function of the form described in (5).

As shown in the following proposition, under certain distributional assumptions we can

further characterize the BOCA target function.

Proposition 2 Assuming the regularity condition holds, if f/(1 − F ) is increasing and

concave and g/G is decreasing and concave, then in the two-sided setup, the BOCA target

function is τ (ω) = min
{
Γα(p

S),max
{
Φα(p

B), δ∗
}}

, where δ∗ satisfies

f(Φ−1
α (δ∗))

1− F (Φ−1
α (δ∗))

1

Φ′
α(Φ

−1
α (δ∗))

=
g(Γ−1

α (δ∗))

G(Γ−1
α (δ∗))

1

Γ′
α(Γ

−1
α (δ∗))

. (6)

Proof. See Appendix B.

34In the online appendix, we describe “quasi-clock auctions” that implement the Bayesian optimal mech-
anism in a two-sided setup without violating privacy preservation for any trading agents other than the
marginal pair.
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For example, under the conditions of Proposition 2, when α = 0, then (6) reduces to
f(δ∗)

1−F (δ∗)
= g(δ∗)

G(δ∗)
, which is to say that δ∗ simply equalizes the hazard rates, which are assumed

monotone. For any α ∈ [0, 1], if F and G are uniform on [0, 1], then δ∗ = 1/2. This means

that, in this example, whenever there are equal numbers of active buyers and sellers and

the clock prices pB and pS are such that Φα(p
B) < Γα(p

S), then the BOCA simply increases

the buyer clock price towards Φ−1
α (1/2) (or holds the buyer clock price fixed if it is already

above this level) and decreases the seller clock price towards Γ−1
α (1/2) (or holds the seller

clock price fixed if it is already below this level). If both clocks obtain their respective target

prices with no exits, then the auction ends.

4 Optimality for prior-free clock auctions

We now show the existence of a prior-free clock auction that is prior-free optimal. The

requirement of BOAEE for a prior-free optimal clock auction identifies the mappings that

need to be estimated, namely the buyer function, seller function, and target function. The

requirement of asymptotic optimality places constraints on how that estimation is done. In

addition, we show that the structure of the prior-free optimal clock auction is pinned down

by a notion of sequential consistency, which we define below. Within that structure, we

provide criteria for selecting the estimators to be used.

The exposition focuses on the case of two-sided private information. We discuss the

adjustments required for the case of one-sided private information following Lemma 5.

Implications of BOAEE and asymptotic optimality

In order to have a prior-free clock auction that is prior-free optimal, it must be BOAEE for

a clock auction and asymptotically optimal. In order to have BOAEE for a clock auction,

we require prior-free estimates of the virtual type functions Φα(·) and Γα(·) and the target

virtual type that, for j ∈ {2, ...,min{m,n} + 1}, depend only on v(j) ≡ (v(j), ..., v(n)) and

c[j] ≡ (c[j], ..., c[m]) because these are the only data that would be available in a clock auction.

However, in our setup this requirement is not actually a restriction, as shown in the following

lemma.35

Lemma 1 For any dominant strategy incentive compatible, ex post individually rational,

and envy-free direct mechanism, there exists an evaluation function family {ej}
min{n,m}+1
j=0

35Goldberg et al. (2001) provide a similar result to Lemma 1 for the case of one-sided auctions for a good
with unlimited supply in their Lemma 9.1 (for the proof see Lemma 9.2 in Goldberg et al. (2000)). Fiat
et al. (2002) claim that the result of Goldberg et al. (2001), which applies to deterministic auctions, also
applies to random auctions through a straightforward generalization. We focus on deterministic auctions,
which is without loss of generality under assumptions of regularity.
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such that for given (v, c), the number of trades is the highest index k ∈ {0, 1, ...,min{n,m}}

satisfying, in the case of two-sided private information, ek(v(k), c[k];v(k+1), c[k+1]) ≥ 0, and

in the case of one-sided private information pertaining to buyers eBk (v(k);v(k+1), c) ≥ 0 and

sellers eSk (c[k];v, c[k+1]) ≥ 0, where payments are threshold payments.

Proof. See Appendix B.

Lemma 1 provides a characterization of the data on which the estimated virtual type

functions can depend, subject to incentive compatibility, individual rationality, and envy

freeness. It tells us that for estimating whether the k-th best trader should trade, it is

without loss of generality to use only data from traders who are less efficient. These data

are exactly the information one can elicit from agents who exit in a clock auction. Thus,

although Proposition 1 shows that in two-sided settings clock auctions are a restriction

relative to Bayesian optimal mechanisms, for the purposes of estimation, clock auctions are

not restrictive. Clock auctions are without loss of generality for implementing prior-free

mechanisms that are BOAEE.

Now consider the task of finding consistent estimators of the weighted virtual type func-

tions. The following lemma, which relates the expected inverse hazard rates to expected

spacings, with the expectations being taken with respect to the true distributions, tells us

that the task of finding consistent estimators for the weighted virtual type functions boils

down to finding consistent estimators of the spacings between order statistics for the buyers’

values and for the sellers’ costs.

Lemma 2 jEv|F,...,F [v(j) − v(j+1)] = Ev|F,...,F

[
1−F (v(j))

f(v(j))

]
and jEc|G,...,G[c[j+1] − c[j]] = Ec|G,...,G[

G(c[j])

g(c[j])

]
.

Proof. See Appendix B.

Lemma 2 suggests that the weighted virtual value function, evaluated at the j-th highest

value, Φα(v(j)) = v(j)−α
1−F (v(j))

f(v(j))
, can be estimated by v(j)−αjσv

j , where σ
v
j is an estimate of

the expected spacing between v(j) and v(j+1). Similarly, it suggests that the weighted virtual

cost function, evaluated at the j-th lowest cost, Γα(c[j]) = c[j]+α
G(c[j])

g(c[j])
, can be estimated by

c[j] + αjσc
j, where σc

j is an estimate of the expected spacing between c[j+1] and c[j].

Pursuing this idea, we establish the prior-free optimality of the prior-free clock auction

Cφ,γ,τ defined as follows: For any state ω with buyer clock price pB, seller clock price pS, and

an equal number j− 1 of active buyers and sellers (which implies that the values v(j), ..., v(n)

and costs c[j], ..., c[m] are known from the exit prices of the inactive buyers and sellers and

so can be used for estimation), we first define the buyer and seller functions and then define
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the target function. The buyer and seller functions are

φ(ω) = pB − χα,jσ
v
j and γ(ω) = pS + χα,jσ

c
j , (7)

where χα,j is a nonnegative coefficient and σv
j and σc

j are spacing estimators. For reasons

that will be clear when we discuss our consistency requirement, for j ∈ {1, ...,min {m,n}},

we let

χα,j ≡ max {0, α(j − 2)− (1− α)} . (8)

It follows that χα,j is nonnegative (ensuring that the mechanism is deficit free) and has

the property that plimi→∞ χα,i/i = α (so that χα,j has the asymptotic properties of αj).

To achieve consistent estimators of the expected spacing between values v(j−1) and v(j) and

between the costs c[j] and c[j−1], derived based on values v(j), ..., v(n) and costs c[j], ..., c[m], we

use the average of rn and rm spacings for nearby worse types. Specifically, given exit prices

for buyers of v̂(n), ..., v̂(j) and exit prices for sellers of ĉ[m], ..., ĉ[j] (equal to the corresponding

true values and costs under agents’ dominant strategies), we let

σv
j ≡

{
v̂(j)−v̂(j+min{rn,n−j})

min{rn,n−j}
, if j < n

1
n+1

, otherwise
and σc

j ≡

{
ĉ[j+min{rm,m−j}]−ĉ[j]

min{rm,m−j}
, if j < m

1
m+1

, otherwise,
(9)

where rj satisfies

lim
j→∞

rj = ∞ and lim
j→∞

rj
j

= 0. (10)

With the assumptions of continuity and that agents play their dominant strategies, (10)

ensures consistent estimation of the spacings. In particular, letting ⌊x⌉ denote x rounded to

the nearest integer, then given ρ ∈ (0, 1), (10) ensures that σv
⌊ρn⌉ converges in probability to

Ev[v(⌊ρn⌉) − v(⌊ρn⌉+1)] as n grows large and σc
⌊ρm⌉ to Ec[c[⌊ρm⌉+1] − c[⌊ρm⌉]] as m grows large.

(We discuss and illustrate the rate of convergence in the online appendix.)

It remains to specify a target function. For the purposes of asymptotic optimality, the

target function is irrelevant because the specification of a target only affects the number of

trades by at most one and so does not affect the asymptotic properties of the mechanism.

A suitable choice for the target estimator can be defined analogously to that of the BOCA.

For a state ω with j − 1 active buyers and sellers, we estimate τ (ω) ∈ [φ(ω), γ(ω)] that

maximizes the probability of j−1 trades when there should be j−1 trades, i.e., maximizes the

probability that v(j−1) − χα,j−1σ
v
j−1 ≥ τ (ω) ≥ c[j−1] + χα,j−1σ

c
j−1 when v(j−1) − χα,j−1σ

v
j−1 ≥

c[j−1] + χα,j−1σ
c
j−1, under some assumptions on the distribution of v(j−1) and c[j−1]. For
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example, one could use the following target estimator:36

τ(ω) = min

{
γ(ω), max

{
φ(ω),

φ(ω) + γ(ω)

2
+
(
1−

α

2

) (
σv
j − σc

j

)}}
. (11)

According to (23), the target virtual type is the midpoint between φ(ω) and γ(ω) plus

(1 − α/2)(σv
j − σc

j). The second term moves the target upward (closer to γ(ω)) if σv
j > σc

j

to account for the expectation that an exit on the seller side is more likely than on the

buyer side for equal movements in the virtual types. Conversely, the adjustment is made in

the opposite direction if σv
j < σc

j . The adjustment is greater the lower is α, reflecting the

increased value of avoiding an exit when the weight on efficiency is larger. As mentioned

above, McAfee (1992) uses the midpoint between the standing clock prices as the target,

which corresponds to the midpoint between v(j) and c[j].

We can now prove the following result.

Proposition 3 Assuming the regularity condition holds, the prior-free clock auction defined

by (19)–(23) is prior-free optimal.

The result that our prior-free clock auction is BOAEE follows because its structure mir-

rors that of the BOCA. To prove the asymptotic optimality portion of Proposition 3 (which

technically only requires the uniqueness of the prices satisfying (3) and the Bayesian opti-

mality of price posting in the large), we begin by showing in Lemma 3 that uniform bounds

exist for the variance, denoted V [·], of χα,jσ
v
j and χα,jσ

c
j away from the boundary. Next,

Lemma 4 shows that the difference between the theoretical and prior-free virtual types is

uniformly convergent in probability to zero away from the boundary. Lemmas 3 and 4 con-

sider the buyer and seller sides of the market separately and so simply consider limits as m

and n go to infinity. Lemma 5 then combines the two sides of the market, considering η-fold

replicas.37 Lemma 5 uses the preceding lemmas to show that fixing m and n and considering

η-fold replicas of the economy, as η goes to infinity, the share of agents who trade in a clock

auction based on estimated virtual values Φ̃α(j) ≡ v(j) − χα,jσ
v
j and estimated virtual costs

Γ̃α(j) ≡ c[j] + χα,jσ
c
j approaches the share in the optimal mechanism. Intuitively, if Φ̃α and

Γ̃α stay close to Φα and Γα, then the first intersection point of Φ̃α and Γ̃α cannot be far from

the (unique) intersection of Φα and Γα. Proposition 3 then follows from the fact that in both

the optimal mechanism and the prior-free clock auction, it is the highest-valuing buyers and

lowest-cost sellers who trade, and that in both cases the payments are in an interval bounded

36This estimator maximizes the probability that v(j−1) − χα,j−1σ
v
j−1 ≥ τ (ω) ≥ c[j−1] + χα,j−1σ

c
j−1 when

using σv
j as an estimate of σv

j−1, and σc
j for σc

j−1, and assuming that v(j−1) is distributed uniformly between
v(j) and v(j) + 2σv

j and similarly for c[j−1] between c[j] − 2σc
j and c[j].

37If we did not let both the supply and demand side grow proportionally, asymptotic optimality would be
rather trivial. For example, with private information only on the buyers’ side and a fixed supply of k units
(with ck < v), the Vickrey auction would be asymptotically optimal.
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by the trading agent with the worst type and the nontrading agent with the best type and

so differ by at most one spacing.

Lemma 3 Given ρ ∈ (0, 1), there exist uv(ρ, n) and uc(ρ,m) that are increasing in ρ and

converge to zero as n and m increase to infinity such that for all n and m sufficiently large

and all ρ ∈ [0, ρ], V
[
χα,⌊ρn⌉σ

v
⌊ρn⌉

]
≤ uv(ρ, n) and V

[
χα,⌊ρm⌉σ

c
⌊ρm⌉

]
≤ uc(ρ,m).

Proof. See Appendix B.

Given Lemma 3, we can prove uniform convergence in probability of the theoretical and

smoothed virtual types.

Lemma 4 Given ρ ∈ (0, 1), the difference between the theoretical and smoothed virtual values

Φα(v(⌊ρn⌉))−Φ̃α(⌊ρn⌉) on (v − ρ(v − v), v) is uniformly convergent in probability to zero, and

the difference between the theoretical and smoothed virtual costs Γα(c[⌊ρm⌉]) − Γ̃α(⌊ρm⌉) on

(c, c+ ρ(c− c)) is uniformly convergent in probability to zero.

Proof. See Appendix B.

Given Lemma 4, we can now show that the number of trades in the prior-free clock

auction approaches that in the optimal mechanism.

Lemma 5 Assuming the uniqueness of the prices satisfying (3) and the Bayesian optimality

of price posting in the large, given m and n and considering η-fold replicas of the economy,

as η goes to infinity, the share of agents who trade in the prior-free clock auction defined by

(19)–(23) converges in probability to the share in the optimal mechanism.

Proof. See Appendix B.

The adaptation of Proposition 3 to the case of one-sided private information is straight-

forward. In that case, the virtual type need not be estimated on the side of the market

without private information, and the target virtual type need not be estimated at all. For

example, with private information only on the buyer side, if the state ω has j − 1 active

buyers, then γ(ω) in the analysis above would be replaced simply by c[j], and τ (ω) would

be replaced by c[j−1].

Sequential consistency

As shown in Proposition 3, the prior-free clock auction defined in (19)–(23) is prior-free

optimal. As we now show, it also satisfies an additional property, which we define in this

section and which relates to the sequential consistency of a dynamic mechanism. To de-

fine sequential consistency, we now assume that the designer delegates the operation of a
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dynamic mechanism to a decision maker, such as an auctioneer. We consider whether the

auctioneer’s following the protocol defined by the mechanism is credible in the sense of max-

imizing the auctioneer’s expected payoff. This is similar to the credibility notion developed

independently by Akbarpour and Li (2017). Sequential consistency differs from their defini-

tion of a credible extensive form game plus strategy profile by specifying how the auctioneer

forms expectations. It addresses the commitment problem faced by an auctioneer regarding

when to stop a clock auction, assuming that the auctioneer can commit to running a clock

auction.38

Suppose that, at time t, a prior-free clock auction generates an estimate µ̂t observable

to the auctioneer of a distribution over a vector of payoff-relevant types θ. Let A be the set

of actions available to the auctioneer and let u(a, θ) be the auctioneer’s payoff when taking

action a and the types are θ. We say that a plan of action (a mapping from histories into A)

that prescribes the action at after a history that generates estimate µ̂t over θ is sequentially

consistent with respect to estimate µ̂t of θ if at ∈ argmaxa∈A Eθ|µ̂t
[u(a, θ)]. That is, the

prescribed action at maximizes the auctioneer’s expected payoff when his expectation is

taken using the estimate µ̂t generated by the mechanism.

To apply this notion to the auctioneer’s decision whether to stop a clock auction, let

Ωj be the set of clock auction states that follow a buyer or seller exit that results in j − 1

active buyers and j−1 active sellers. We assume that agents follow their obviously dominant

strategies of bidding truthfully so that the observed exits recorded by the states in Ωj reveal

v(j) and c[j]. Assume that the auctioneer’s payoff is −∞ if the clock auction ends with a

deficit and is otherwise equal to, or perfectly aligned with, the designer’s objective that puts

weight α on revenue. We assume that the auctioneer’s action set is such that following an

exit that results in equal numbers of active buyers and sellers, the auctioneer can choose

whether to end the auction or continue (with commitment to then end the auction should

the target prices be achieved without exits).

We consider whether given ω ∈ Ωj , the plan by the auctioneer to stop the auction if and

only if φ(ω) ≥ γ(ω) is sequentially consistent with respect to beliefs generated by σv
j and σc

j

that v(j−1) = v(j)+σv
j and c[j−1] = c[j]−σc

j . For this to hold, at each state ω ∈ Ωj in the clock

auction with clock prices pB and pS, it must be that φ(ω) ≥ γ(ω) if and only if (i) pB ≥ pS

(to ensure no deficit) and (ii) Ev(j−1)−v(j)|σ
v
j

[
Φα(v(j−1)) | v(j)

]
≥ Ec[j]−c[j−1]|σ

c
j

[
Γα(c[j−1]) | c[j]

]
.

We can show that the prior-free clock auction defined in (19)–(23) satisfies this condition.

To see this, note that we can write (ii) as

v(j) + σv
j − αEv(j−1)−v(j)|σ

v
j

[
1− F (v(j−1))

f(v(j−1))
| v(j)

]
≥ c[j] − σc

j + αEc[j]−c[j−1]|σ
c
j

[
G(c[j−1])

g(c[j−1])
| c[j]

]
,

38McAdams and Schwarz (2007) analyze a setup in which not even that level of commitment is possible,
finding a role for delay costs, reputation, and intermediaries.

22



which using Lemma 2, we can rewrite as

v(j) + σv
j − α(j − 1)σv

j ≥ c[j] − σc
j + α(j − 1)σc

j

or, rearranging, as

v(j) − (α(j − 2)− (1− α))σv
j ≥ c[j] + (α(j − 2)− (1− α))σc

j. (12)

Because we are considering a state in which the clock prices are defined by exits, pB = v(j)

and pS = c[j]. Thus, both pB ≥ pS and (12) hold if and only if

pB − χα,jσ
v
j ≥ pS + χα,jσ

c
j , (13)

where χα,j is defined in (20). Because (13) is the criterion for ending the auction in the

prior-free optimal clock auction defined by (19)–(23), the auctioneer’s incentives are aligned

with the auction protocol, and so sequential consistency is satisfied. Thus, we have the

following proposition:

Proposition 4 Assuming the regularity condition holds, the stopping rule for the auctioneer

in the prior-free optimal clock auction defined in (19)–(23) is sequentially consistent with

respect to the beliefs generated by the spacing estimators σv and σc. Furthermore, it is the

unique such clock auction up to the definition of the spacing estimators σv and σc and the

target function.

To illustrate, consider a two-sided setting with α = 1. When j − 1 buyers and sellers

remain active in the clock auction and the estimated spacings are σv
j and σc

j , then the

estimated increase in revenue from continuing until there is an additional exit on both sides

is the additional revenue of σv
j + σc

j from the remaining j − 2 trading pairs, less the revenue

v(j) − c[j] from the one lost trade:

(j − 2)(σv
j + σc

j)− (v(j) − c[j]).

The estimated loss in social surplus from continuing is the estimated surplus from the lost

trade, v(j) − c[j] + σv
j + σc

j . A confidence interval for the estimated term σv
j + σc

j can be

constructed using a bootstrap approach (see, e.g., Silverman, 1986, Chapter 6.4).39 This

is illustrated in Figure 2 for an example with 20 buyers and 20 sellers.40 Panel (a) shows

39Given v(j), generate a bootstrap sample by taking a uniform random selection of n− j + 1 elements of
v(j) with replacement and adjusting those with error terms drawn from the uniform kernel and calibrating
to the mean and variance of v(j). This bootstrap sample then implies a bootstrap value for the spacing
estimator. Repeating this procedure allows one to construct a bootstrap confidence interval.

40As an alternative, for certain choices of rn and rm, asymptotic normality results can be used to derive
confidence bounds by noting the equivalence between our estimator and the hazard rate estimator based on
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the estimated 95% confidence bands for the estimated virtual types assuming α = 1, given

the data available following the exit of the j-th highest valuing buyer and j-th, and panel

(b) shows the corresponding confidence bands for the estimated increase in revenue from

continuing the auction.

5 10 15

index j

-2

-1

1

2

3

(a) Estimated virtual types with CIs

5 10 15

index j

-1

1

2

3

4

5

(b) Estimated revenue changes with CIs

Figure 2: Panel (a): Bootstrap 95% confidence bounds for estimated virtual types with
α = 1 given v(j) and c[j]. Panel (b): Bootstrap 95% confidence bounds for the increase in
revenue from continuing the clock auction until an additional buyer and seller exit following
the exit of the jth highest valuing buyer and lowest valuing seller. Results assume n = 20
and rn = n4/5, with values and costs drawn from the uniform distribution on [0,1].

As can be seen from Figure 2(a), the estimated virtual value function first exceeds the

estimated virtual cost function following the exit of the 6-th highest-value buyer and 6-th

lowest-cost seller (at index j = 6). Thus, according to the rules of our prior-free optimal

clock auction (setting aside the target function for purposes of the illustration), the auction

would end following this exit. Turning to Figure 2(b), following the exit of the 7-th highest-

value buyer and 7-th lowest-cost seller (at index j = 7), the expected revenue change from

continuing the auction remains positive, but following the exit of the 6-th best agents, the

expected change is negative. Thus, the auctioneer’s dynamic incentive is to continue the

auction until after the exit of the 6-th best agents and then to end the auction, consistent

with the protocol defined by the mechanism.

Criteria for selecting the estimator

Although as a matter of statistics there is some flexibility in fixing the precise details of the

estimators used in a prior-free optimal clock auction, given Lemma 2, sequential consistency

the empirical cdf and nearest neighbor density estimator (see footnote 41). On the asymptotic normality
of the empirical cdf, see van der Vaart (1998, p. 165). As shown by Moore and Yackel (1977, Theorem
2), the nearest neighbor density estimator is asymptotically normal when rn = n2/3 and f has bounded
first derivative. Thus, attaining asymptotic normality requires faster convergence of rn

n to zero than with

rn = n4/5, which as described below is required (up to proportionality) for minimizing mean square error.
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requires that the virtual type estimators be based on expected spacings between types. That

suggests the use of spacing estimators, such as σv and σc, that are from the class of nearest

neighbor estimators, which are estimators based on the average of nearby spacings.41 Nearest

neighbor estimators have bias and variance that go to zero with n and m when rj satisfies

(10), and their mean square error is minimized when rj is proportional to j4/5.42 Thus,

the nearest neighbor estimators that attain the minimum mean square error are essentially

unique in that they are uniquely defined up to proportionality constants.

We summarize with the following proposition.

Proposition 5 Assuming the regularity condition holds, the prior-free clock auction defined

in (19)–(23), with rj ∝ j4/5, is the unique prior-free optimal clock auction that is sequentially

consistent and uses a virtual type estimator that achieves the minimum mean square error

among nearest neighbor estimators, up to proportionality and the definition of the target

estimator.

5 Extensions

Thus far, we have focused on a designer whose objective is the weighted sum of revenue and

social surplus. However, our design is flexible enough to incorporate a variety of alternative

objectives and additional constraints. In particular, we can incorporate any constraint that

can be stated in terms of adjustments to the functions defining a clock auction. Here we

briefly comment on how a designer facing heterogenous groups of agents can implement caps

on the number of units that a particular group can buy or sell, impose minimal revenue

requirements in order for trade by a group to occur, or favor certain groups over others.

41Following Silverman (1986, Chapter 2.5), the estimator jσv
j of

1−F (v(j))

f(v(j))
can be derived from the empirical

cdf and a “nearest neighbor” density estimator, which coincides with the kernel density estimator based on
the uniform kernel and bandwidth given data v(j) of h(v(j)) = rnσ

v
j , and similarly for the estimator jσc

j of
G(c[j])

g(c[j])
. More specifically, given kernel k̄(x), for −1 < x < 1, with bandwidth h̄(x), the unbounded kernel

density estimator given data x is κx(y) ≡
1

h̄(x)|x|

∑|x|
i=1 k̄

(
y−x(i)

h̄(x)

)
. The kernel density estimator given data

x and upper bound maxi xi is calculated by reflecting the data across the upper bound and then truncating
the resulting density, i.e., using

κub
x
(y) ≡ 2κ(x(dim x),...,x(2),x(1),x(1),2x(1)−x(2),...,2x(1)−x(dim x))(y),

for y ≤ maxi xi. If we use the uniform kernel k̄(x) ≡ 1
210<|x|≤1 with bandwidth h̄(x) ≡ x(1) − x(1+rn), which

implies h̄(v(j)) = rnσ
v
j , the kernel density estimate for f at v(j) given data v(j) is f̄(v(j)) ≡

n−j+1
n+1 κub

v(j)
(v(j)) =

1
n+1

1
σv
j
, and so the estimated inverse hazard rate is

(
1− n−j+1

n+1

)
/f̄(v(j)) = jσv

j .

42An rj-nearest neighbor estimator has mean square error of order
(

rj
j

)4
+ 1

rj
, which is minimized when

rj is proportional to j4/5 (Silverman, 1986, Chapters 3 and 5.2.2), in which case the approximate value of
the mean integrated square error tends to zero at the rate j−4/5 (Silverman, 1986, Chapter 3.7.2). For an
illustration of the rate convergence, see the online appendix.
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For the purposes of this section, we assume that agents have characteristics that are

observable to the designer, so that the designer can a priori place subsets of agents into

groups of symmetric agents while allowing for asymmetries across different groups. For

example, traders of carbon emission permits might be identifiable as either power plants,

cement manufacturers, or other manufacturers, with traders within a group being symmetric,

but with the possibility of asymmetries across groups.

In the online appendix, we show how our analysis and clock auction generalize to such

settings. As described in the online appendix, we refer to a clock auction that accommodates

differences across groups as a discriminatory clock auction. It differs from a nondiscrimina-

tory clock auction in that, loosely speaking, there are separate but coordinated clocks for

each buyer and seller group.

Group-specific quantity caps

A designer or regulator may want to cap the number of units that a subset of buyers acquires.

More generally, constraints of this kind can be described by a partition matroid as in Dütting

et al. (2017), which allows the feasible trading set to be defined by a maximum number of

agents from each of different buyer groups and seller groups. Such constraints can be imposed

within a discriminatory clock auction by treating that subset of buyers for which there is a

cap as a group and starting the procedure by advancing the clock price for that group until

the number of active agents in the group is reduced to the number eligible to trade. This

is implemented by defining the discriminatory clock auction mappings so that the stopping

rule cannot be satisfied until the cap for the group is met.

Revenue constraints

A discriminatory clock auction can also accommodate the requirement that members of some

buyer group b̂ contribute payments of at least R in order for any members of that group to

trade. This is accomplished by setting the estimated virtual value for group b̂ buyers equal

to minus infinity as long as that group’s clock price times the number of active buyers in the

group remains below R.

Favoring groups of agents

A discriminatory clock auction is also flexible enough to allow the designer to favor a par-

ticular subset of agents over others.43 This can be accomplished using a discriminatory

clock auction that assigns favored and non-favored agents to separate groups, evaluates non-

favored agents using virtual types that incorporate the designer’s unconstrained weight α

43For example, in the case of U.S. federal acquisitions, the “Buy American Act” specifies favoritism for
domestic bidders and domestic small business bidders. (U.S. Federal Acquisition Regulation, FAR 25.105(b))
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on revenue, and evaluates favored agents using virtual types with weight αf on revenue.

Favoritism then simply means αf < α.

6 Conclusions

We develop a prior-free clock auction that is Bayesian optimal absent estimation error and

asymptotically optimal. As a clock auction, it endows agents with obviously dominant

strategies to bid truthfully and preserves the privacy of trading agents. Methodologically,

we exploit the connection between the empirical measure of spacings between order statistics

and the theoretical construct of virtual types.

Many features of the mechanisms we develop, such as Bayesian optimality absent estima-

tion error and the flexibility to accommodate various constraints and to pursue a combination

of revenue and surplus goals, may prove useful in various setups and applications. While our

setup is general in that it accommodates situations in which private information pertains

to one or both sides of the market, in many markets traders decide endogenously whether

they act as buyers or as sellers. Extending the methodology of the present paper to account

for the endogeneity of traders’ positions—buy, sell, or hold—seems a promising avenue for

future research.

The prior-free mechanism design approach raises the somewhat philosophical question

as to why a designer who is not endowed with a prior should be interested in asymptotic

Bayesian optimality in the first place. A possible answer to this question is that asymptotic

optimality provides a reassuring evaluation and consistency criterion. Asked how well his

mechanism performs, a designer employing an asymptotically optimal mechanism facing

many traders may find it reassuring to know that he would not have chosen any other

mechanism at the outset had he then known the distributions that he has inferred now.

In that sense, asymptotic optimality, like privacy preservation, protects the designer from

regret.
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A Appendix: Definition of a two-sided clock auction

The formal definition of a two-sided clock auction is given below. Following the definition,

we comment on the adaptation required for a one-sided setup.

Clock auction Cφ,γ,τ is defined as follows: For t ∈ {0, 1, ...}, the state of a clock auction

is ωt = (zt,ω
B
t ,ω

S
t ) where zt ∈ {0, 1} specifies whether the clock auction has ended (zt = 1)

or not (zt = 0), and ωB
t = (NA,xB, pB) and ωS

t = (MA,xS, pS) are buyer and seller states.

The components of the buyer state are: the set of active buyers N
A ⊆ N with cardinality

nA, the vector of exit prices for non-active buyers xB ∈ Rn−nA

, and the buyer clock price

pB ∈ R. The seller state has an analogous structure. Let Ω be the set of all possible states.

The clock auction starts in state ω0 ≡ (0,ωB
0 ,ω

S
0 ), where ωB

0 = (N, ∅, p) and ωS
0 =

(M, ∅, p) with p < v and p > c, so that initially all agents are active. The clock auction

continues until a state is reached that has a first component equal to 1, at which point the

active buyers and sellers trade, with the active buyers paying the buyer clock price and the

active sellers receiving the seller clock price.

We require that φ : Ω → R is increasing in pB, that γ : Ω → R is increasing in pS,

and that τ : Ω → R satisfies τ (ωt) ∈ [φ(ωt), γ(ωt)] whenever φ(ωt) ≤ γ(ωt). Define

target buyer price TB(ωt) to be the buyer clock price such that φ(ω′
t) is equal to τ(ωt),

where ω′
t = (zt, (N

A,xB, TB(ωt)),ω
S
t ), i.e., ω′

t is equal to ωt but with the buyer clock

price pB replaced by the target buyer price TB(ωt). Similarly define target seller price

T S(ωt) to be the value for the seller clock price that equates γ(ω′′
t ) with τ (ωt), where

ω′′
t = (zt,ω

B
t , (M

A,xS, T S(ωt))).

For t ∈ {0, 1, ...}, if ωB
t = (NA,xB,pB), ωS

t = (MA,xS, pS), and zt = 0, state ωt+1 is

determined as follows:

If nA = mA: If nA = 0 or φ(ωt) ≥ γ(ωt), then ωt+1 = (1,ωB
t ,ω

S
t ). Otherwise, proceed

as follows (the choice of which clock price to adjust first is arbitrary; clock prices can also be

adjusted simultaneously): Increase the buyer clock price from pB until either a buyer i exits at

clock price p̂B, in which case ωB
t+1 = (NA\{i}, (xB, p̂B), p̂B), or the buyer clock price reaches

TB(ωt) with no exit, in which case ωB
t+1 = (NA,xB, TB(ωt)). Decrease the seller clock price

from pS until either a seller j exits at p̂S, in which case ωS
t+1 = (MA\{j}, (xS, p̂S), p̂S), or

the seller clock price reaches T S(ωt) with no exit, in which case ωS
t+1 = (MA,xS, T S(ωt)).

If both target prices are reached with no exits, then zt+1 = 1; otherwise zt+1 = 0.

If nA > mA, increase the buyer clock price from pB until either a buyer i exits at p̂B, in

which case ωB
t+1 = (NA\{i}, (xB, p̂B), p̂B), ωS

t+1 = ωS
t , and zt+1 = 0, or the buyer clock price

reaches p, in which case ωB
t+1 = (N̂A,xB, p), where N̂

A consists of mA randomly selected

elements of NA, ωS
t+1 = ωS

t , and zt+1 = 1.

If nA < mA, decrease the seller clock price from pS until a seller j exits at p̂S, in which

case ωB
t+1 = ωB

t , ω
S
t+1 = (MA\{j}, (xS, p̂S), p̂S), and zt+1 = 0, or the seller clock price reaches
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p, in which case ωS
t+1 = (M̂A,xS, p), where M̂

A consists of nA randomly selected elements of

M
A, ωB

t+1 = ωB
t , and zt+1 = 1.

The above definition of a clock auction for the two-sided setup is easily adapted to

the case of one-sided private information on the buyer side by, essentially, eliminating the

seller clock and the seller state. To be precise, for state ωt with nA active buyers, let

τ(ωt) ≡ c[nA] and define the corresponding target buyer price TB(ωt) as above. Given zt = 0

and ωB
t = (NA,xB,pB) with nA > 0, ωt+1 is determined as follows: If φ(ωt) ≥ c[nA+1], then

ωt+1 = (1,ωB
t ,ω

S
t ). Otherwise, increase the buyer clock price until either a buyer i exits at

clock price p̂B, in which case ωB
t+1 = (NA\{i}, (xB, p̂B), p̂B) and zt+1 = 0, or the buyer clock

price reaches TB(ωt) with no exit, in which case ωB
t+1 = (NA,xB, TB(ωt)) and zt+1 = 1.

Symmetric adjustments are made for the case of one-sided information on the seller side.

B Appendix: Proofs

Proof of Proposition 2. The data available to the designer with j−1 buyers and j−1 sellers

active in a clock auction are v(j) and c[j]. Given v(j), c[j], and Φα(v(j)) < Γα(c[j]) for some

j ∈ {2, ...,min {m,n}+ 1} , maximizing the probability that, if Φα(v(j−1)) ≥ Γα(c[j−1]), the

quantity traded is j−1 boils down to choosing the target virtual type δj ∈ [Φα(v(j)),Γα(c[j])]

that maximizes the probability that Γα(c[j−1]) ≤ δj ≤ Φα(v(j−1)). This probability is given

by

P (δ) ≡
(
1− F(j−1)

(
Φ−1

α (δ)
))

G[j−1]

(
Γ−1
α (δ)

)
=

(
(1− F (Φ−1

α (δ)))G (Γ−1
α (δ))

(1− F (v(j)))G(c[j])

)j−1

,

where the equality follows because 1−F(j−1)(v) =
(

1−F (v)
1−F (v(j))

)j−1

for v > v(j) and G[j−1](c) =
(

G(c)
G(c[j])

)j−1

for c < c[j]. Let δ
∗ ∈ argmaxδ∈[c,v] P (δ). If P (δ) is quasiconcave,44 δ∗ is given by

the first-order condition

P ′(δ∗) = P (δ∗)(j − 1)

[
−

f(Φ−1
α (δ∗))

1− F (Φ−1
α (δ∗))

1

Φ′
α(Φ

−1
α (δ∗))

+
g(Γ−1

α (δ∗))

G(Γ−1
α (δ∗))

1

Γ′
α(Γ

−1
α (δ∗))

]
= 0,

which completes the proof. �

Proof of Lemma 1. The proof focuses on the two-sided setup, the logic for the one-sided

settings following along similar lines. Envy freeness and ex post individual rationality imply

44A sufficient condition for quasiconcavity is that the hazard rate λF = f/(1−F ) is increasing and concave
and the hazard rate λG = g/G decreasing and concave. To see this, notice that P ′ = P (j − 1)[−λ3

F /(λ
2
F +

αλ′
F ) + λ3

G/(λ
2
G + αλ′

G)]. The sign of P ′′ at δ such that P ′(δ) = 0 is the same as that of the derivative of
[−λ3

F /(λ
2
F + αλ′

F ) + λ3
G/(λ

2
G + αλ′

G)], which is negative under the stated conditions.
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that when there are k trades, it is the k highest valuing buyers and lowest cost sellers who

trade and that trading buyers pay the same pBk ∈ [v(k+1), v(k)] and trading sellers receive the

same pSk ∈ [c[k], c[k+1]]. Dominant strategy incentive compatibility implies it must be possible

to determine whether k agents trade irrespective of the types v(k−1) and c[k−1], giving rise to

the existence of the evaluation functions. Further, dominant strategy incentive compatibility

implies that pBk and pSk are the worst types that a agent could report and still trade, i.e.,

threshold payments. Because these worst types must be the same for all trading agents, they

cannot depend on the types of trading agents on the same side of the market. �

Proof of Lemma 2. Take the case of costs. The proof for values is analogous. For j ∈

{1, ..., m− 1}, the density of the j-th lowest order statistic out of m draws from distribution

G is m!
(j−1)!(m−j)!

Gj−1(x)(1−G(x))m−jg(x). It then follows that

Ec

[
G(c[j])

g(c[j])

]
=

∫ c

c

G(x)

g(x)

m!

(j − 1)!(m− j)!
Gj−1(x)(1−G(x))m−jg(x)dx

=

∫ c

c

m!

(j − 1)!(m− j)!
Gj(x)(1−G(x))m−jdx

= (m− j)

∫ c

c

m!

(j − 1)!(m− j)!
xGj(x)(1−G(x))m−j−1g(x)dx

−j

∫ c

c

m!

(j − 1)!(m− j)!
xGj−1(x)(1−G(x))m−jg(x)dx

= j

∫ c

c

m!

j!(m− j − 1)!
xGj(x)(1−G(x))m−j−1g(x)dx

−j

∫ c

c

m!

(j − 1)!(m− j)!
xGj−1(x)(1−G(x))m−jg(x)dx

= jEc[c[j+1] − c[j]],

where the first equality uses the definition of the expectation, the second rearranges, the

third uses integration by parts, the fourth rearranges, and the fifth again uses the definition

of the expectation. �

Proof of Lemma 3. We show the result for costs. The result for values follows analogously.

In this proof, where we use notation such as ρm as an index, e.g., c[ρm], we mean that ρm

is rounded to the nearest integer. Recall that χα,j ≡ max {0, α(j − 2)− (1− α)}. Because

χ0,ρm = 0, the result holds for α = 0, so assume α > 0. Because ρ < 1, we are away

from the boundary and can focus on σc
ρm =

c[ρm+rm]−c[ρm]

rm
(σc

ρm is defined differently close

to the boundary, i.e., for ρm > m − rm). To show that V (χα,ρmσ
c
ρm) goes to zero with

m, it is sufficient (given assumptions of continuity on a bounded support) to show that

30



χ2
α,ρmV

[
G(c[ρm+rm])−G(c[ρm])

rm

]
goes to zero, and because the cdf of an order statistic is itself

a uniform order statistic, it is sufficient to show that χ2
α,ρmV

[
u[ρm+rm]−u[ρm]

rm

]
goes to zero,

where u[i] is the i-th order statistic out of m draws from U [0, 1].

Results for uniform order statistics imply that V
[
u[i]

]
= i(m+1−i)

(m+1)2(m+2)
and Cov

[
u[i]u[j]

]
=

i(m+1−j)
(m+1)2(m+2)

, so for i < j, we have

V

(
u[i+rm] − u[i]

rm

)
=

1

r2m
V
(
u[i+rm] − u[i]

)
=

1

r2m

(
V (u[i+rm]) + V (u[i]

)
− 2Cov

(
u[i]u[i+rm]

)

=
m+ 1− rm

(m+ 1)2(m+ 2)rm
.

It follows that χ2
α,ρmV

[
u[ρm+rm]−u[ρm]

rm

]
= χ2

α,ρm
m+1−rm

(m+1)2(m+2)rm
, which is non-decreasing in ρ.

Taking the limit of the above expression, we have limm→∞ χ2
α,ρm

m+1−rm
(m+1)2(m+2)rm

= limm→∞
χ2
α,ρm

m2
1
rm

=

0, where the first equality uses limm→∞
rm
m

= 0 and the second equality uses limm→∞ rm = ∞

and the fact that χα,ρm is of order m. This gives us the existence of a uniform bound. �

Proof of Lemma 4. Again, we show the result for virtual costs, with the result for virtual

values following analogously. Also as above, where we use ρm as an index, we mean that ρm

is rounded to the nearest integer. Two auxiliary results will be useful. First, one can show

that for ρ ∈ (0, 1),

lim
m→∞

ρmEc

[
c[ρm+1] − c[ρm] −

c[ρm+rm] − c[ρm]

rm

]
= 0. (14)

To see this, note that given ρ ∈ (0, 1) andm sufficiently large, ρm+rm ≤ m, so the expression
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in (14) is well defined. We can then write the expression inside the limit in (14) as

ρmEc

[
c[ρm+1] − c[ρm] −

c[ρm+rm] − c[ρm]

rm

]

= ρmEc

[
c[ρm+1] − c[ρm] −

rm∑

i=1

c[ρm+i] − c[ρm+i−1]

rm

]

= ρmEc

[
1

ρm

G(c[ρm])

g(c[ρm])
−

rm∑

i=1

1

(ρm+ i− 1)rm

G(c[ρm+i−1])

g(c[ρm+i−1])

]

= ρmEu

[
1

ρm

u[ρm]

g(G−1(u[ρm]))
−

rm∑

i=1

1

(ρm+ i− 1)rm

u[ρm+i−1]

g(G−1(u[ρm+i−1]))

]

= Eu

[
u[ρm]

g(G−1(u[ρm]))
−

rm∑

i=1

ρm
rm

ρm+ i− 1

u[ρm+i−1]

g(G−1(u[ρm+i−1]))

]

=
ρm
m+1

g(G−1( ρm
m+1

))
−

rm∑

i=1

ρm
rm

ρm+ i− 1

ρm+i−1
m+1

g(G−1(ρm+i−1
m+1

))
,

where the first equality writes c[ρm+rm]− c[ρm] as the sum of rm spacings, the second equality

uses Lemma 2, the third equality uses the fact that a cdf evaluated at an order statistic is

itself a uniform order statistic, with u[j] denoting the j-th order statistic out of m draws from

U [0, 1], the fourth equality rearranges, and the fifth equality uses Eu

[
u[j]

]
= j

m+1
. Taking

the limit of the above expression as m goes to infinity, we get

lim
m→∞

ρmEc

[
c[ρm+1] − c[ρm] −

c[ρm+rm] − c[ρm]

rm

]

= lim
m→∞

ρm
m+1

g(G−1( ρm
m+1

))
−

rm∑

i=1

ρm
rm

ρm+ i− 1

ρm+i−1
m+1

g(G−1(ρm+i−1
m+1

))

=
ρ

g(G−1(ρ))
−

ρ

g(G−1(ρ))
lim

m→∞

rm∑

i=1

ρm
rm

ρm+ i− 1
= 0,

where the final equality follows from the fact that limm→∞

∑rm
i=1

ρm
rm

ρm+i−1
= 1. (To see this,

note that
∑rm

i=1

ρm
rm

ρm+i−1
≤ 1 and that

∑rm
i=1

ρm
rm

ρm+i−1
≥ ρ

ρ+ rm
m

− 1
m

→m→∞ 1, where the limit uses

limm→∞
rm
m

= 0 and limm→∞
1
m

= 0.)

Second, given ρ ∈ (0, 1),

lim
m→∞

sup
ρ∈[0,ρ]

Vc

[
G(c[ρm])

g(c[ρm])

]
= 0. (15)

To see this, let Uj be the distribution of the j-th lowest order statistic out of m draws from

U [0, 1]. Using the fact that the cdf of an order statistic is a uniform order statistic with the
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notation above, we have

Vc

[
G(c[ρm])

g(c[ρm])

]
= Vu

[
u[ρm]

g(G−1(u[ρm]))

]
= Eu

[(
u[ρm]

g(G−1(u[ρm]))

)2
]
−

(
ρm
m+1

g(G−1( ρm
m+1))

)2

=
∫ 1

0

(
x

g(G−1(x))

)2
dUρm(x)−

(
ρm
m+1

g(G−1( ρm
m+1))

)2

.

Taking the limit, we have

limm→∞ Vc

[
G(c[ρm])

g(c[ρm])

]
= limm→∞

∫ 1

0

(
x

g(G−1(x))

)2
dUρm(x)−

(
ρ

g(G−1(ρ))

)2
= 0,

where the final equality follows because ( x
g(G−1(x))

)2 is bounded on [0, 1] and, in the limit as

m goes to infinity, Uρm places point mass on ρ.

Using these two auxiliary results along with Lemma 2, we now proceed with the proof of

Lemma 4. Denote the difference between theoretical and smoothed virtual costs as

Yj ≡ Γα(c[j])− Γ̃α(j) = α
G(c[j])

g(c[j])
− χα,jσ

c
j .

For j away from the boundary, σc
j =

c[j+rm]−c[j]
rm

, so Yj = α
G(c[j])

g(c[j])
− χα,j

c[j+rm]−c[j]
rm

and

Ec [Yj] = αEc

[
G(c[j])

g(c[j])

]
− χα,jEc

[
c[j+rm]−c[j]

rm

]

= αjEc[c[j+1] − c[j]]− χα,jEc

[
c[j+rm]−c[j]

rm

]
,

where the final equality uses Lemma 2.

Given ρ ∈ (0, 1), for all ρ ∈ (0, ρ), there exists m sufficiently large such that for allm > m,

ρm + rm ≤ m (implying that the expression above is well defined and σc
ρm =

c[ρm+rm]−c[ρm]

rm
)

and χα,ρm = α(ρm− 2)− (1− α). It follows that

Ec [Yρm] = αρmEc[c[ρm+1] − c[ρm]]− (α(ρm− 2)− (1− α))Ec

[
c[ρm+rm]−c[ρm]

rm

]

= αρmEc

[
c[ρm+1] − c[ρm] −

c[ρm+rm]−c[ρm]

rm

]
+ (1 + α)Ec

[
c[ρm+rm]−c[ρm]

rm

]
.

Taking the limit, we have

lim
m→∞

Ec [Yρm] = lim
m→∞

αρmEc

[
c[ρm+1] − c[ρm] −

c[ρm+rm] − c[ρm]

rm

]
= 0,

where the first equality uses limm→∞ Ec

[
c[ρm+rm]−c[ρm]

rm

]
= 0 (the numerator is bounded by

c− c and rm goes to infinity with m) and the second equality uses (14).
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Turning to the variance of Yρm, we can write Vc [Yρm] as

Vc [Yρm] = α2Vc

[
G(c[ρm])

g(c[ρm])

]
+ Vc

[
χα,ρmσ

c
ρm

]
+ covariance term.

By (15), limm→∞ supρ∈[0,ρ] Vc

[
G(c[ρm])

g(c[ρm])

]
= 0. By Lemma 3, form sufficiently large, Vc[χα,ρmσ

c
ρm]

≤ uc(ρ,m) ≤ uc(ρ,m), where limm→∞ uc(ρ,m) = 0. Thus, limm→∞ supρ∈[0,ρ] Vc

[
χα,ρmσ

c
ρm

]
=

0. It follows then by the Cauchy-Schwarz inequality, that the limit of the covariance terms

is also zero. Thus,

lim
m→∞

sup
ρ∈[0,ρ]

Vc [Yρm] = 0. (16)

Using Markov’s Theorem, for all ε > 0,

lim
m→∞

Pr

(
sup
ρ∈[0,ρ]

|Yρm| ≥ ε

)
≤ lim

m→∞
sup
ρ∈[0,ρ]

Ec

[
Y 2
ρm

]

ε2
= lim

m→∞
sup
ρ∈[0,ρ]

Vc [Yρm]

ε2
= 0,

where the first equality uses limm→∞Ec [Yρm] = 0 and the second equality uses (16). This

establishes uniform convergence in probability to zero. �

Proof of Lemma 5. Fix m and n and consider η-fold replicas of the economy. By the

assumption of unique prices satisfying (3) and the Bayesian optimality of price posting, in

the limit as η goes to infinity, the optimal mechanism is a price posting mechanism such

that buyers are charged the price v∗ and trading sellers are paid c∗, with cutoff types v∗ and

c∗ defined by Φα(v
∗) = Γα(c

∗) and n(1 − F (v∗)) = mG(c∗). For α = 0, the result follows

from McAfee (1992), so consider the case with α > 0. Together with our assumption that

v ≤ c, this implies that v∗ ∈ (v, v) and c∗ ∈ (c, c). It follows that there exists ρ ∈ (0, 1)

sufficiently large such that v∗ ∈ (v − ρ(v − v), v) and c∗ ∈ (c, c + ρ(c− c)), which allows us

to use Lemma 4.

For ε > 0 sufficiently small, we define vε and cε to be the cutoff types if the virtual value

function were increased to Φα + ε and virtual cost function were reduced to Γα − ε, i.e.,

Φα(v
ε) + ε = Γα(c

ε) − ε and 1 − F (vε) = G(cε). We can define v−ε and c−ε analogously:

Φα(v
−ε) − ε = Γα(c

−ε) + ε and 1 − F (v−ε) = G(c−ε). Because Φα and Γα are continuous

functions on compact supports, and so uniformly continuous, it follows that

lim
ε→0

vε = v∗, lim
ε→0

v−ε = v∗, lim
ε→0

cε = c∗, and lim
ε→0

c−ε = c∗. (17)

This is illustrated in Figure 3 (note that values are decreasing and costs are increasing along

the horizontal axis).

By Lemma 4, for all ε > 0, limη→∞ Pr
(
supρ∈[0,ρ]

∣∣∣Γα(c[⌊ηρm⌉])− Γ̃α(⌊ηρm⌉)
∣∣∣ ≥ ε

)
= 0,
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Figure 3: Illustration of vε < v∗ < v−ε and c−ε < c∗ < cε and convergence to v∗ and c∗.

which says that in the limit, the probability that for any ρ ∈ [0, ρ], Γ̃α(⌊ηρm⌉) lies outside

of the interval [Γα(c[⌊ηρm⌉]) − ε,Γα(c[⌊ηρm⌉]) + ε] is zero, and similarly for Φ̃α(⌊ηρn⌉). Thus,

in the limit, the probability that the smoothed virtual types intersect at a value ṽηn,ηm and

cost c̃ηn,ηm not bounded by [vε, v−ε] and [c−ε, cε] is zero: for all ε ∈ (0, ε),

lim
η→∞

Pr
(
ṽηn,ηm /∈ [vε, v−ε]

)
= 0 and lim

η→∞
Pr
(
c̃ηn,ηm /∈ [c−ε, cε]

)
= 0.

Thus, using (17), for all ε > 0,

lim
η→∞

Pr (|c̃ηn,ηm − c∗| ≥ ε) = 0 and lim
η→∞

Pr (|v∗ − ṽηn,ηm| ≥ ε) = 0,

which completes the proof. �
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Online Appendix: Alternative clock auctions

In this appendix we describe two alternative clock auction formats and illustrate the rate of

convergence of the optimal prior-free clock auction. In Section 1, we describe discriminatory

clock auctions in a setting in which the designer can a priori place subsets of buyers and sub-

sets of sellers into groups of symmetric agents while allowing for asymmetries across different

groups. In Section 2, we describe quasi-clock auctions that implement the Bayesian optimal

mechanism in a two-sided setup without violating privacy preservation for any trading agents

other than the marginal pair. In Section 3, we discuss and illustrate rates of convergence.

1 Discriminatory clock auctions

Generalized Bayesian mechanism design setting

We now allow, without requiring, the possibility that agents have characteristics that are

observable to the designer, so that the designer can a priori place subsets of agents into groups

of symmetric agents while allowing for asymmetries across different groups. For example,

traders of carbon emission permits might be identifiable as either power plants, cement

manufacturers, or other manufacturers, with traders within a group being symmetric, but

with the possibility of asymmetries across groups.

Let N and M denote the sets of buyers and sellers with cardinalities n and m. Let Z
B

and Z
S be the sets of groups for buyers and sellers when private information pertains to

both sides of the market. (When only one side is privately informed, there is, of course, no

point distinguishing between groups on the side of the market without private information.)

We refer to the setup in which |ZB| = |ZS| = 1 studied thus far as the symmetric setup. Let

nb ≥ 1 be the number of buyers in buyer group b and let ms ≥ 1 be the number of sellers in

group s, where n =
∑

b∈ZB nb and m =
∑

s∈ZS ms. We assume that at least one buyer group

and at least one seller group has 2 or more members. The group membership of each buyer

and seller is common knowledge.

Each buyer in group b draws his value independently from the continuously differentiable

distribution F b with support [vb, vb] and positive density f b, and each seller in group s draws

her cost independently from the continuously differentiable distribution Gs with support

[cs, cs] and positive density gs. Each agent is privately informed about his type, but the

types and distributions from which they are drawn are unknown to the mechanism designer

and the agents. The designer only knows the group identity of each buyer and seller, that

agents in the same group draw their types from the same distribution, that group-specific

weighted virtual types given by

Φb
α(v) ≡ v − α

1− F b(v)

f b(v)
and Γs

α(c) ≡ c+ α
Gs(c)

gs(c)
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are increasing for each buyer and seller group and that the supports satisfy the no-full trade

condition

min
s∈ZS

{cs} ≥ max
b∈ZB

vb > min
s∈ZS

{cs} ≥ max
b∈ZB

{vb},

which generalizes condition (2) to the setup with heterogeneous groups.

Under the stipulated assumptions, the allocation rule for the Bayesian optimal mechanism

in the setup with two-sided private information can be described as follows: For a given

realization of values and costs (v, c), rank all weighted virtual values in decreasing and all

weighted virtual costs in increasing order, irrespective of group membership, and then have

all those buyers and sellers trade who would trade in a Walrasian market if weighted virtual

values and costs were true values and costs. That is, letting, for all i ∈ N in buyer group b

and all j ∈ M in seller group s, Vi ≡ Φb
α(vi) and Cj ≡ Γs

α(cj) and

V ≡ (V1, ..., Vn) and C ≡ (C1, ..., Cm),

the optimal quantity traded is given by the largest integer k satisfying V(k) ≥ C[k], where

we use the usual conventions of setting V(0) = ∞ = C[m+1] and C[0] = −∞ = V(n+1). In the

dominant strategy implementation, trading buyers in group b pay pbk and trading sellers in

group s receive psk, where

pbk = Φb−1

α

(
max{V(k+1), C[k]}

)
and psk = Γs−1

α

(
min{C[k+1], V(k)}

)
.

When private information pertains only to buyers, the optimal quantity is the largest

index k such that V(k) ≥ c[k]. In that case, in the dominant strategy implementation,

trading buyers in group b pay pbk = Φb−1

α

(
max{V(k+1), c[k]}

)
. Analogously, when private

information pertains only to sellers, the optimal quantity is the largest index k such that

v(k) ≥ C[k], and in the dominant strategy implementation, trading sellers in group s receive

psk = Γs−1

α

(
min{C[k+1], v(k)}

)
.

Discriminatory clock auction

In the generalization of the clock auction to the setup with heterogeneous groups of buyers

and sellers, there are separate, but synchronized, clock prices for each buyer group and

each seller group. Although buyers in different groups may pay different prices and sellers in

different groups may receive different prices, the mechanism remains envy free within groups.

A discriminatory clock auction defines state transitions for state space Ω̂, defined below,

based on buyer and seller functions φ̂ : Ω̂ → R and γ̂ : Ω̂ → R and target function

τ̂ : Ω̂ → R. Thus, we denote a discriminatory clock auction by Ĉφ̂,γ̂,τ̂ . At t ∈ {0, 1, ...}, the

state is ω̂t = (zt, ω̂
B
t , ω̂

S
t ), where zt ∈ {0, 1} specifies whether the clock auction has ended

(zt = 1) or not (zt = 0), ω̂B
t = ×b∈ZB ω̂b

t , and ω̂S
t = ×s∈ZS ω̂s

t , where ω̂b
t = (NAb

,xb, pb) and
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ω̂s
t = (MAs

,xs, ps) are group-specific buyer and seller states with components analogous to

the symmetric case. Let Ω̂ be the set of all possible states. We require that φ̂ is increasing

in each pb, that γ̂ is increasing in each ps, and that, as in the symmetric case, τ̂ (ω̂t) ∈

[φ̂(ω̂t), γ̂(ω̂t)] whenever φ̂(ω̂t) ≤ γ̂(ω̂t). The state is initialized as in the symmetric case.

For t ∈ {0, 1, ...}, if zt = 0, then ω̂t+1 is determined as follows:

If
∑

b∈ZB nAb

=
∑

s∈ZS mAs

: If
∑

b∈ZB nAb

= 0 or φ̂(ω̂t) ≥ γ̂(ω̂t), then ω̂t+1 = (1, ω̂B
t , ω̂

S
t ).

Otherwise, proceed as follows (the order in which clock prices on either side of the

market are moved is again immaterial): Increase the vector of buyer clock prices from

pB = (pb)b∈ZB by increasing the clock prices for the smallest number of buyer groups

possible so as to increase φ̂(ω̂t) until either there is an exit by a group b̂ buyer i

at clock price vector p̂B, in which case ω̂ b̂
t+1 = (NAb̂

\{i}, (xb, p̂b̂), p̂b̂) and for b 6= b̂,

ω̂b
t+1 = (NAb

,xb, p̂b), or the buyer clock prices reach with no exit p̃B such that φ̂ is

equal to τ̂ (ω̂t) when it is evaluated at the state ω̂t with pB replaced by p̃B, in which

case for all b, ω̂b
t+1 = (NAb

,xb, p̃b). In analogous fashion, decrease the vector of seller

clock prices and update the seller state. If both φ̂ and γ̂, evaluated at the adjusted

clock prices, reach the target τ̂ (ω̂t) with no exit, then zt+1 = 1; otherwise zt+1 = 0.

If
∑

b∈ZB nAb

>
∑

s∈ZS mAs

, increase only the buyer clock prices as above until there is

an exit or all buyer clock prices reach p > maxb∈ZB vb, and similarly for sellers if∑
b∈ZB nAb

<
∑

s∈ZS mAs

, with lower bound p < mins∈ZS cs. The states transition

analogously to the symmetric case.

When the auction ends, active buyers pay and active sellers receive their groups’ clock

prices.

Bayesian optimal discriminatory clock auction

In the one-sided setting, as in the symmetric case, clock auctions are without loss of generality

with regard to achieving Bayesian optimality. For example, when only buyers are privately

informed and n > m, the clock auction first increases the clock prices until there are only

m active buyers. Clock prices for the groups are increased so as to maintain the equality of

Φb
α(p

b) across the buyer groups that continue to have at least one active agent. If for all buyer

groups with at least one active buyer, the clock prices are greater than or equal to the reserve

prices Φb−1

α (c[m]), then the auction ends with each active buyer trading at his group’s clock

price. Otherwise, the clock auction continues by raising the clock prices for groups that have

active buyers in a coordinated fashion until the earlier of the two events—an additional buyer

exits or each group b’s clock price reaches its target Φb−1

α (c[m]). If the targets are reached,

active buyers trade at these prices. If an exit occurs, target prices update to Φb−1

α (c[m−1]),

and the process continues.
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In the two-sided setting, the targets must account for the uncertainty on both sides of

the market. Following the exit of the jb-th highest value buyer in each buyer group b and the

exit of the ̂s-th lowest cost seller in each seller group s, and letting j ≡ (×b∈ZBjb,×s∈ZS ̂s),

the probability that the remaining active buyers have virtual values greater than or equal to

δ and the remaining active sellers have virtual costs less than or equal to δ is

P̂j(δ) ≡
∏

b s.t. jb≥2

(
1− F b

(jb−1)

(
Φb−1

α (δ)
)) ∏

s s.t. ̂s≥2

Gs
[̂s−1]

(
Γs−1

α (δ)
)
.

Define δ̂j ∈ argmaxδ P̂j(δ). Under quasiconcavity,
45 it is sufficient that δ̂j satisfy

∑

b∈ZB
2

(jb − 1)
f b
(
Φb−1

α (δ̂j)
)

1− F b(Φb−1

α (δ̂j))

1

Φb′
α

(
Φb−1

α (δ̂j)
) =

∑

s∈ZS
2

(̂s − 1)
gs
(
Γs−1

α (δ̂j)
)

Gs(Γs−1

α (δ̂j))

1

Γs′
α

(
Γs−1

α (δ̂j)
) ,

where ZB
2 is the set of buyer groups with jb ≥ 2 and Φb

α(v
b
(jb)) < δ̂j and Z

S
2 is the set of seller

groups satisfying js ≥ 2 and Γs
α(c[̂s]) > δ̂j.

The following proposition characterizes the Bayesian optimal discriminatory clock auc-

tion (BODCA).

Proposition 6 The BODCA is the discriminatory clock auction Ĉφ̂,γ̂,τ̂ that satisfies, for any

state ω̂t with nAb

active buyers in each buyer group b and mAs

active sellers in each group s,

φ̂(ω̂t) = min
b∈ZB s.t. nAb≥1

Φb
α(v

b

(nAb+1)
)

and

γ̂(ω̂t) = max
s∈ZS s.t. mAs≥1

Γs
α(c

s
[mAs+1])

and

τ̂ (ω̂t) = min
{
γ̂(ω̂t),max

{
φ̂(ω̂t), δ̂(×

b∈ZB
(nAb+1),×

s∈ZS
(mAs+1))

}}
. (18)

Proof. Under the BODCA, given the numbers of active buyers and sellers in each group

j ≡ (j1, ..., jz
B

, ̂1, ..., ̂z
S

), the optimization problem is to choose δ to maximize

P̂ (δ) ≡
∏

b∈ẐB s.t. jb≥2

(
1− F b

(jb)(Φ
b−1

α (δ))
) ∏

s∈ẐS s.t. ̂s≥2

Gs
[̂s]

(
Γs−1

α (δ)
)
,

where F b
(jb)

and Gs
[̂s] are the distributions of the j

b-th highest value from buyer group b given

vb(jb+1) and the ̂s-th lowest cost from seller group s given cs[̂s+1]. The derivative of P̂ can be

45Like in the symmetric setting, sufficient conditions for quasiconcavity are that all hazard rates are
monotone (increasing for buyers and decreasing for sellers) and concave.
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written as

P̂ ′(δ) = P̂ (δ)

[
−
∑

b∈ẐB
2

fb

(jb)
(Φb−1

α (δ))

1−F b

(jb)
(Φb−1

α (δ))
Φb−1′

α (δ) +
∑

s∈ẐS
2

gs
[̂s]

(

Γs−1
α (δ)

)

Gs
[̂s](Γs−1

α (δ))
Γs−1′
α (δ)

]
.

The first-order condition can thus be written as

∑
b∈ẐB

2

fb

(jb)
(Φb−1

α (δ))

1−F b

(jb)
(Φb−1

α (δ))
Φb−1′

α (δ) =
∑

s∈ẐS
2

gs
[̂s]

(

Γs−1
α (δ)

)

Gs
[̂s](Γs−1

α (δ))
Γs−1′
α (δ).

Using 1 − F b
(j)(v) =

(
1−F b(v)

1−F b(vb
(j+1)

)

)j

for v > vb(k+1) and Gs
(j)(c) =

(
Gs(c)

Gs(cs
[j+1]

)

)j
for c < cs[j+1],

the result follows. �

BOAEE for discriminatory clock auctions

One way to interpret the Bayesian optimal mechanism with heterogenous groups is, again, in

terms of evaluation functions. For example, in the two-sided setting, the evaluation function

ek can be written as ek(v(k|Φ), c[k|Γ]; ·) = V(k) −C[k], where v(k|Φ) is the value associated with

the k-th highest (weighted) virtual value V(k) and c[k|Γ] is the cost associated with the k-th

lowest virtual cost C[k]. In a prior-free setting, the virtual types used for determining V(k)

and C[k] have to be estimated. In the presence of heterogenous groups and two-sided private

information, a BOAEE mechanism is dominant strategy incentive compatible if and only if

the evaluation functions used to determine the allocation are of the form

ek(v(k|Φ), c[k|Γ];v(k+1|Φ), c[k+1|Γ]),

where v(k+1|Φ) is the vector of values associated with the (estimated) k + 1-st highest and

smaller virtual values and c[k+1|Γ] is the vector of costs associated with the (estimated) k+1-

st lowest and larger virtual costs. Every trading buyer pays a price equal to the smallest

value that he could have reported without affecting the allocation, and every trading seller is

paid a price equal to the largest cost he could have reported without affecting the allocation.

It follows that, as in the symmetric setup, for one-sided settings clock auctions are without

loss of generality for BOAEE mechanisms. For two-sided settings estimation can be done

using clocks without loss of generality, but clock implementation may require sacrificing a

trade.

Prior-free optimal discriminatory clock auction

Focusing on the case of two-sided private information, we show how the prior-free optimal

clock auction can be generalized to account for differentiated groups of buyers and sellers.

The generalization for one-sided private information follows along similar lines.
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We define the prior-free discriminatory clock auction Ĉφ̂,γ̂,τ̂ that corresponds to the prior-

free optimal clock auction Cφ,γ,τ defined by (19)–(23). For each buyer group b and seller

group s, define σb
j and σs

j to be group-specific spacing estimates, analogous to the symmetric

setup. If ω̂t indicates, for each buyer group b, a clock price pb and number of active bidders

nAb

, and if ω̂t indicates, for each seller group s, a clock price ps and number of active bidders

mAs

, then let

φ̂(ω̂t) = min
b∈ZB s.t. nAb≥1

pb − χ
α,nAb+1

σb

nAb+1
and γ̂(ω̂t) = max

s∈ZS s.t. mAs≥1
ps + χα,mAs+1σ

s
mAs+1.

The target function corresponding to (23) is τ̂ (ω̂t) = min
{
γ̂(ω̂t),max

{
φ̂(ω̂t), δ̃

}}
, where

δ̃ satisfies

∑
b∈Z̃B

1

δ̃−

(

pb−χ
α,nAb

+1
σb

nAb
+1

)

−(2−α)σb

nAb
+1

=
∑

s∈Z̃S
1

(

ps+χ
α,mAs

+1
σs

mAs
+1

)

−δ̃−(2−α)σs

mAs
+1

,

where Z̃
B is the set of buyer groups with nAb

≥ 1 and pb − χα,nAb+1σ
b

nAb+1
< δ̃ (so that the

target function is only defined with respect to buyer groups that still have at least one active

buyer and whose estimated virtual types are currently below the target) and Z̃
S is the set

of seller groups satisfying mAs

≥ 1 and ps + χα,mAs+1σ
s
mAs+1

> δ̃.

Using the arguments in the proof of Proposition 3, one can show that the results on

asymptotic optimality extend to heterogeneous groups. This combined with arguments anal-

ogous to the case of symmetric buyers and symmetric sellers establishes the following result.

Proposition 7 In the setup with heterogeneous groups of buyers and sellers, there exists

a prior-free discriminatory clock auction that is prior-free optimal. Further, the prior-free

optimal discriminatory clock auction that is sequentially consistent and attains the mini-

mum mean square error among nearest neighbor estimators is unique up to the virtual target

estimator and proportionality constants on parameters of the virtual type estimators.

2 Quasi-clock auctions

An implication of Proposition 1 is that in two-sided settings the Bayesian optimal mechanism

does not permit a clock implementation. The reason for this is that the thresholds for trading

on either side of the market—for example, in the symmetric setting max{v(k+1),Φ
−1
α (Γα(c[k]))}

for buyers and min{c[k+1],Γ
−1
α (Φα(v(k)))} for sellers—depend on information that is provided

by an agent who optimally trades. A tradeoff thus arises in two-sided settings between the

desirable properties of clock auctions and the benefits of Bayesian optimality.

We now briefly discuss how one could augment a clock auction and implement the

Bayesian optimal mechanism without violating privacy preservation for any trading agents

other than the marginal pair, that is, other than the buyer with value v(k) and the seller with

45



cost c[k] when the optimal quantity traded is k. We refer to the augmented clock auction

as a quasi-clock auction. To save space, we restrict the discussion to the setting with sym-

metric buyers and symmetric sellers. The generalization to heterogeneous groups of buyers

and sellers is a straightforward extension. Just like the clock auction, a quasi-clock auction

consists of two clocks. It proceeds similarly to the clock auction.

Assuming each agent stays active until the clock price equals his type, when the number

of active agents on each side of the market is k − 1 and the buyer and seller clocks stop

at the prices pB = v(k) and pS = c[k], the buyers with values in the vector v(k+1) and the

sellers with costs in the vector c[k+1] become inactive as in the clock auction. However, in

contrast to the clock auction, the buyer and seller with types v(k) and c[k], who have just

exited, may still trade. In particular, they still trade if Φα(p
B) ≥ Γα(p

S), in which case the

trading buyers pay Φ−1
α (Γα(p

S)) and the trading sellers receive Γ−1
α (Φα(p

B)), rather than the

clock prices. If Φα(p
B) < Γα(p

S), then the quasi-clock auction proceeds until the earlier of

the two events: the target prices are reached or an additional agent exits.

In the quasi-clock auction, all agents are price-takers at all times. Consequently, just

like the clock auction, the quasi-clock auction endows agents with dominant strategies. It

also preserves the privacy of all but at most one trading agent on each side of the market.

However, by Li (2017, Theorem 3), it sacrifices the obviousness of the dominant strategies.

Because virtual types can be estimated analogously to the case of clock auctions, prior-free

quasi-clock auctions can also be constructed that are BOAEE, asymptotically optimal, and

sequentially consistent, and minimize mean square error among nearest neighbor estimators.

The alternative of a quasi-clock auction, which preserves the privacy of almost all trading

agents, raises the question as to why one is concerned about privacy preservation. If privacy

preservation is desired primarily to protect traders from hold-up by the designer as discussed,

e.g., by Lucking-Reiley (2000), then quasi-clock auctions arguably do as good a job as clock

auctions, provided buyers and sellers observe the clock prices on the other side of the market,

whence they can infer the prices they face. Also, although to a slightly lesser extent than clock

auctions, quasi-clock auctions protect the designer from criticism of “money left on the table”

because only the marginal traders’ values and costs are revealed. Because the difference

between the revealed types and prices will typically be “small,” quasi-clock auctions will

also not perform much worse than clock auctions if the motivation for privacy preservation

is post-auction hold-up, e.g., in the form of taxation. Therefore, if quasi-clock auctions do

not appear appealing for practical purposes, this may have less to do with their limited

ability to preserve privacy than with their failure to satisfy other desiderata such as the

obviousness of the dominant strategies and the weak group strategy-proofness this implies.46

46The findings of Satterthwaite and Williams (2002) that for uniform distributions the efficiency loss of
any incentive compatible, ex ante budget balanced mechanism is of the same order as the gains from trade
of the marginal pair suggest that departing from clock auctions to always execute this marginal trade may
not be worth the cost.
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3 Rates of convergence

In this section, we provide simulation results illustrating the performance of a prior-free opti-

mal clock auction in the small. As described in footnote 42, an rj-nearest neighbor estimator

has mean square error of order
(

rj
j

)4
+ 1

rj
, which is minimized when rj is proportional to j4/5

(Silverman, 1986, Chapters 3 and 5.2.2), in which case the approximate value of the mean

integrated square error tends to zero at the rate j−4/5 (Silverman, 1986, Chapter 3.7.2).

To illustrate performance in the small, we focus on a prior-free optimal clock auction that

is sequentially consistent (assuming the regularity condition holds) and uses a virtual type

estimator that achieves the minimum mean square error among nearest neighbor estimators

for a buyer placing weight α ∈ [0, 1] on revenue. Specifically, we analyze the prior-free

optimal clock auction defined as follows: For any state ω with buyer clock price pB, seller

clock price pS, and an equal number j − 1 of active buyers and sellers, the buyer and seller

functions are

φ(ω) = pB − χα,jσ
v
j and γ(ω) = pS + χα,jσ

c
j , (19)

where

χα,j ≡ max {0, α(j − 2)− (1− α)} . (20)

and

σv
j ≡

{
v̂(j)−v̂(j+min{rn,n−j})

min{rn,n−j}
, if j < n

1
n+1

, otherwise
and σc

j ≡

{
ĉ[j+min{rm,m−j}]−ĉ[j]

min{rm,m−j}
, if j < m

1
m+1

, otherwise,
(21)

where

rj = j4/5. (22)

To define the target function, we initialize the target at c, i.e., until the state ω reflects at

least one exit on each side of the market, let τ (ω) = c.47 Once there is at least one exit on

each side of the market, if the state shows an equal number j−1 of active buyers and sellers,

then we define the target function as

τ(ω) = min

{
γ(ω), max

{
φ(ω),

φ(ω) + γ(ω)

2
+
(
1−

α

2

) (
σv
j − σc

j

)}}
. (23)

As shown in Figure 4(a), this prior-free optimal clock auction achieves over 80% of optimal

expected revenue with only six buyer-seller pairs, and it achieves over 75% of optimal social

surplus even when there are as few as 2 buyers and 2 sellers. To illustrate results for small

markets with α away from the extremes, Figure 4(a) also shows the performance of our

47This initialization handicaps the mechanism because it means that there is no possibility that all buyers
and sellers could trade. For the comparisons provided here, it seems appropriate to eliminate the possibility
that an initial target, necessarily uninformed by any data from the mechanism, happens to permit full trade.
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prior-free optimal clock auction relative to the α-optimal mechanism for various intermediate

values of α. Generally speaking, the smaller is α, the smaller is the impact of estimation

error, and so the better is the performance of the prior-free optimal clock auction. However,

the mechanism’s use of the first buyer and seller exits for estimation is a greater disadvantage

relative to the α-optimal mechanism when n and α are small. Thus, for small numbers of

agents, the relative performance of the prior-free optimal clock auction can be better for

larger values of α. This is the case in Figure 4(a), where the line for α = 0 dips below the

lines for α = 1/4 and α = 1/2 when n is small.

(a) Two-sided: Prior-free performance relative to
the α-optimal mechanism
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(b) One-sided: Prior-free and zero-reserve perfor-
mance relative to the revenue optimal mechanism
for a designer with marginal cost 0 capacity 5, and
n buyers

Figure 4: Panel (a): Ratio of the expected weighted objective in the prior-free optimal
mechanism defined in (19)–(23) to the α-optimal mechanism for various weights α on revenue.
Panel (b): Ratio of the expected revenue in the one-sided prior-free optimal mechanism with
αB = 1 and αS = 0 to the expected revenue in the optimal mechanism. Also shown is the
ratio of the expected revenue in the one-sided m+1-st price procurement with no reserve to
the expected revenue in the optimal mechanism. Both comparisons assume a designer with
marginal cost zero and capacity of 5 units. Panels (a) and (b) are both based on Monte
Carlo simulation (5000 auctions) with values and costs drawn from the Uniform distribution
on [0, 1].

Our analysis encompasses the one-sided case by allowing separate values of α for buyers

and sellers and setting the value to zero for the side of the market with no private information.

For example, consider a one-sided setup with n potential buyers and a designer with constant

marginal cost of zero and capacity of m units.48 As shown in the example of Figure 4(b),

the prior-free optimal one-sided mechanism performs better than a “m+1-st” price auction

for sufficiently small n, but provides little or no advantage when n is large. In a one-sided

48If we drop the assumption v < c, this fits our setup by assuming that there are m sellers without private
information whose costs are “drawn” from the degenerate distribution G with support [c, c] with c = 0 = c.
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setup, knowledge of distributions is necessary to determine the optimal reserve price, but this

knowledge becomes less important as the number of buyers increases because the optimal

reserve price is less likely to be binding. Thus, in a one-sided setting, inferences about the

underlying distribution from bid data may be of limited value when there are many bidders.
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