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Abstract

At an initial time, an individual forms a belief about a future random
outcome. As time passes, the individual may obtain, privately or subjectively,
further information, until the outcome is eventually revealed. How can a protocol
be devised that induces the individual, as a strict best response, to reveal at
the outset his prior assessment of both the final outcome and the information
flows he anticipates and, subsequently, what information he privately receives?
The protocol can provide the individual with payoffs that depend only on
the outcome realization and his reports. We develop a general framework to
design such protocols, and apply it to construct simple elicitation mechanisms
for common dynamic environments. The framework is robust: we show that
strategyproof protocols exist for any number of periods and large outcome sets.
For these more general settings, we build a family of strategyproof protocols
based on a hierarchy of choice menus, and show that any strategyproof protocol
can be approximated by a protocol of this family.
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1 Introduction

Imagine an experimenter (she) who believes her subject (he) conforms to the
Bayesian model of uncertainty: the subject has probabilistic beliefs over some set of
uncertain outcomes, and uses Bayes’ rule to update when new information is available.
However, the experimenter recognizes that the subject may condition on information
which is either subjectively perceived, or privately observable. This information may
not be easily modeled by the experimenter as part of her representation of a state
space, and it is not directly observed by the experimenter. How can we design an
elicitation device to understand how these beliefs evolve?

Probabilistic beliefs are commonly measured by experimenters. The classical tool
for doing so is a scoring rule. This device offers a menu of state-contingent payoffs to
a subject. The menu is chosen so that the subject’s optimal choice uniquely reveals
their subjective belief about states of the world. Scoring rules apply in situations in
which the state of the world is eventually observed by the experimenter.

Here, instead, the subject is involved in a dynamic experiment in which private
information resolves gradually over time. The experimenter wants to understand the
subject’s perception on how this information is to be revealed. She also wants to
know, after the information is revealed, what he learned. To fix ideas, consider a
simple experiment to test overconfidence, motivated by Moore and Healy (2008).1 A
subject is to take a pass-fail test. There are three time periods of interest. In period
0, the subject has not yet taken the test, and forms a prior belief about the likelihood
he will pass the test. In period 1, the subject has been given the test, and forms an
updated, posterior belief about whether he passed the test. In period 2, the test is
graded and the subject is told the outcome.

Of course, prior and posterior beliefs are expected to differ when the subject gains
new information by taking the test. So, in the initial period, the subject anticipates
that he will update his probability assessment, and forms a belief about his own
posteriors. This belief reflects what he anticipates learning about his own performance
by taking the test. We refer to it as a second-order belief, to distinguish it from
the first-order beliefs that are probability assessments on test outcomes. Suppose
the experimenter has interest in such a belief and, in period 0, asks the subject to
report a distribution over the posteriors he may have. She then asks the subject, in
period 1, to report his believed likelihood that he passed the test. This paper is about
understanding how the experimenter can induce the subject to report both beliefs
truthfully, as a strict best response, when payoffs to the subject can only depend on
the reports and the outcome of the test.

We stress that the subject’s distribution over the posteriors gives substantially
more information than the reduced prior likelihood of passing the test, and so allows to
answer a host of new questions, in the same way as the dynamic experiment of Moore

1We are grateful to Paul J. Healy and Matt Jackson for bringing to our attention the connection
to this stream of the literature.
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and Healy enables a nuanced differentiation between notions of overconfidence that
static experiments cannot capture. For instance, Moore and Healy distinguish between
overconfidence as the overestimation of one’s performance—in our example, when the
posterior tends to be larger than the average test outcome—and overconfidence as the
excessive precision of one’s belief—in our example, when the prior is miscalibrated
with respect to test outcomes, with the subject reporting extreme priors too often.
However, the subject may well display low levels of “precision overconfidence,” having
a well-calibrated moderate prior, while at the same time holding the strong belief that
he will be able to guess his score after taking the test. This notion of confidence cannot
be measured through the elicitation of the prior and posterior beliefs. It is rooted
in the subject’s second-order beliefs. Of course, once we know how to elicit these
beliefs, we can also ask if participants properly anticipate how much they will learn
from the test. We can ask if they have a bias (e.g., they may believe they will learn
their successes more than their failures). We can measure subjective overconfidence,
by finding the quantile of the posterior in the reported prior distribution. As Moore
and Healy, we can ask related questions across subjects, for instance, if participants
anticipate the test to be more informative about their own performance than about
the performance of others. And so forth.

Our point is not to provide an exhaustive list of data to be analyzed, or of
experiments to be conducted. Rather, our goal is to operationalize the acquisition
of such data. The current state of the art is to offer a standard scoring rule in both
periods, to elicit first the prior and then the posterior probabilities of passing the
test. The prior assessment reflects, via the law of iterated expectations, the subject’s
period-0 mean posterior, but that is the only statistic one gets on the distribution
of posteriors. Scoring rules elicit these probability assessments because they concern
whether the subject passes the test, an event directly observable by the experimenter.
In contrast, the salient feature of our example is that the experimenter is unable to
observe how difficult the test is to a subject. Consequently, scoring rules do not elicit
the subject’s initial distribution over his posteriors.

In Section 2, we lay down the foundation for our approach, and explain how the
elicitation of second-order beliefs can be done in the simple context of the above
experiment. It is based on revealed preference. To illustrate, consider two possible
menus of outcome-contingent payoffs, from which the subject is permitted to choose
in period 0. One menu gives the subject 6$ for sure, independently of the outcome
of the test. The other menu offers a choice, in period 1, between two options: the
first is 10$ in the event of failure and 0$ otherwise, and the second gives 10$ in the
event of passing and 0$ otherwise. Consider two risk-neutral subjects, who, in period
0, both believe that they will pass the test with probability .5, but hold different
second-order beliefs: subject A believes that he will not learn anything from taking
the test, while subject B believes that he will learn perfectly. Subject A would take
the 6$ for sure, because his expected payout with the other menu is 5$. Subject B,
on the other hand, would prefer to leave his options open by choosing the other menu.
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As we show, this phenomenon is general. Any subjects with differing beliefs can be
behaviorally distinguished via a choice between some pair of menus. Thus, if the
experimenter could elicit a subject’s choice from sufficiently many pairs of menus, she
could in principle back out the second-order beliefs.

In Section 3, we leverage this methodology to design simple, practical elicitation
protocols for special dynamic environments. Our purpose is eliciting dynamic informa-
tion or high-order beliefs. Our mechanisms can be intuitively grasped as follows. The
elicitor selects a rich collection of elementary decision problems, carefully chosen so
that observing an individual’s choice behavior on every one of these problems permits
the identification of the individual’s belief. By appropriate randomization, the elicitor
can ask the individual to announce his beliefs and pay him as if he had to confront
every one of these decision problems. This makes truthful communication a strict best
response.

This indirect “revealed-preference” approach is simple and powerful. It is also
robust: it extends to essentially arbitrary dynamic environments. The challenge is that
we must rely only on the observed outcome to elicit as a strict best response potentially
complex subjective information (the high-order beliefs). To illustrate, suppose there is
a coin toss whose outcome is only revealed at some future date. An individual holds a
prior assessment on the outcome and is to observe, privately, new information at m
different dates, where each observation is the realization of some k-dimensional signal.
We want the individual to tell, as the outset, the full joint probability distribution
over the m signals and the outcome, and then reveal the signals he observes as he
receives them. As m and k grow large, the object to elicit includes a vast amount of
subjective information, yet to enforce truthfulness, the only objective information is a
single outcome that takes two possible values (heads or tails).

We elaborate and formalize the general theory in Section 4. We introduce a family
of protocols, where each protocol is identified with a probability distribution over
choice menus. We establish that these protocols induce truth telling as a strict best
response, and that any strategyproof mechanism can be approximated by a protocol
of the family.

In recent years, a large body of work has been devoted to the understanding how
people learn over time, how beliefs evolve, and how it affects their decisions. We
believe our paper develops a theoretical framework that can be useful to experimenters.
Specifically, it is relevant to experiments that meet three conditions: (i) the envi-
ronment is dynamic, (ii) the subject’s beliefs are of interest, and (iii) the signals
presented to him either are not controlled by the experimenter and unobservable to
her, or are open to interpretation. In the experiment of Moore and Healy, taking the
test generates the unobservable signal. Other common cases of unobservable signals
are social cues or cheap talk, as in the study of how prestage communication affects
the players’ beliefs about the opponent(s) cooperating in the Prisoner’s Dilemma or
playing a given equilibrium in coordination games (Cooper et al., 1992).

Many experimental designs fit these three conditions. A recent stream of the
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literature devotes special attention to the question of how people learn in repeated
games, as in Nyarko and Schotter (2002), Palfrey and Wang (2009), Hyndman et al.
(2012) or Danz et al. (2012). These studies elicit a player’s beliefs about the actions of
the other players using classical probability scoring rules. In those environments, the
actions taken by a player provide a signal to another player. The signal is observed by
the experimenter, but is open to interpretation. In games with incomplete information,
actions continue to provide signals, and beliefs involve both the actions and the
private information of the other players. Our framework can be used to estimate
how the players anticipate their belief to change, and how it affects their own play.
In doing so, it helps us refine our understanding of people’s learning process and its
interplay with observed decisions, and explain violations of equilibrium predictions.
For example, it is widely documented that, in games of imperfect information, our
ability to learn from strategies is limited—the textbook example being the winner’s
curse in common-value auctions. Tools such as the concept of Cursed Equilibrium
(Eyster and Rabin, 2005) have been introduced for the purpose of explaining these
facts. Knowing the higher-order beliefs can help us analyze them. In the instance
of common-value auctions, knowing these beliefs would enable the experimenter to
measure how much information a bidder expects to obtain from observing the bids of
their opponents. Even in simpler games, the relation between a player’s beliefs and his
actions poses interesting questions. Not only equilibrium play is often not observed,
but there is evidence of inconsistencies, a player’s belief revealing deeper strategic
thinking than his action, as Costa-Gomes and Weizsäcker (2008) demonstrates for
normal-form games using probability scoring rules. Being able to elicit beliefs of
second or higher order can help us understand how much of these effects can be linked
to the complexity of the dynamics.2 Some other works examine the evolution of
subject beliefs in response to signals and stimuli, as the study of information cascades
(Ziegelmeyer et al., 2010) or belief polarization (Fryer et al., 2018). In these instances,
the signals are controlled by the experimenter, but left open to interpretation. These
works track the change of first-order beliefs over time. With second-order beliefs, it
becomes possible to explain how much of what is observed is due to an error in how
the subject updates his belief (e.g., the subject overreacts to information), versus how
much is due to a misspecified cognitive model (e.g., the subject incorrectly believes
that future signals will carry significant information).

While we use belief elicitation in experiments as our leading example, probability
scoring rules have been applied to a large range of settings to induce honest or accurate
reports of information, both in economics and elsewhere.3 They are also a main tool

2A great deal of work investigates the question of why actual game play diverges from Nash
equilibrium play even for simple games. Tools like level-k and costly depth of reasoning have been
introduced for this purpose (starting with Stahl and Wilson, 1994, Nagel, 1995, and more recently
with Arad and Rubinstein, 2012 and Alaoui and Penta, 2016, among others). The study of how
beliefs are expected to evolve from the players’ viewpoint in games with a unique subgame perfect
equilibrium can help explain the mental process behind these experimental facts.

3For example, in contract theory (e.g., Thomson, 1979, Osband, 1989, or more recently Carroll,
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by which to evaluate, in theory as in practice, learning models, predictions and
forecasters.4 To the extent that our approach develops the foundation for the dynamic
analog of probability scoring rules, we believe that our theory can be applied for the
same purposes of elicitation and performance evaluation, but in dynamic environments,
in which forecasts arrive over time and what matters is not only the quality of those
forecasts, but also how fast uncertainty is anticipated to resolve.5

Related Literature

Foremost, our paper relates to the literature on scoring rules and belief/preference
elicitation. The literature on eliciting expert beliefs goes back to Brier (1950) and
Good (1952), who establish the first two proper probability scoring rules. McCarthy
(1956) and later Savage (1971) offer a general method to construct these scoring rules,
which has been extended and exploited extensively. The literature is vast and spans
several fields, it is impossible to do it justice (for a recent survey, see Gneiting and
Raftery, 2007). Importantly, the literature assumes a static setting. Our work departs
from the static benchmark, providing a general rule for making scoring rules that
apply to dynamic settings.

The experiment conducted by Manski and Neri (2013) demonstrates the practical
feasibility of eliciting probabilistic beliefs of one subject on the probabilistic beliefs on
the other. To do so, they use the Brier score to elicit the first-order beliefs of a subject
A, and a sum of Brier scores to elicit the beliefs of another subject B regarding subject
A’s first-order beliefs. These are also “second-order beliefs,” but there, the subject
forecasts the beliefs of someone else, whereas here, the subject forecasts his own future
beliefs. The distinction is crucial: subject B has no ability to manipulate the reports
of subject A, they are, from the viewpoint of subject B, states that the experimenter
can observe, so that standard probability scoring rules apply. In two elegant recent
works, Karni (2018a,b) uses a similar structure to elicit the second-order beliefs of the
same subject. Karni argues that this structure is useful when the subject’s behavior

2013), prediction markets (Ostrovsky, 2012), problems of strategic distinguishability (Bergemann
et al., 2017), the testing of forecasters (Stewart, 2011), or the literature rational inattention (Steiner
et al., 2017).

4The purpose of the first scoring rule by Brier was, in fact, to evaluate weather forecasts while
preventing the forecasters to “hedge” or “play the system,” in his own terms. With the abundance
of data and our enhanced computer ability to process it, this use is widespread today (see Gneiting
and Raftery, 2007). For example, in statistics and machine learning, the performance of algorithms
is often measured in terms of the average score computed from a scoring rule. For an application of
scoring rules to evaluate learning models in an economics context, see, for example, Feltovich (2000).

5Knowing the information structure—forming expectations on what information will arrive and
when it will arrive—as captured by high-order beliefs enables a decision maker to solve any sort of
dynamic problem. In contrast, probability assessments on payoff-relevant outcomes are only relevant
to static decisions, or degenerate dynamic problems. Of course, many real-world problems exhibit a
dynamic structure. This sort of problem is extensively studied in the literature on real options (e.g.,
Dixit and Pindyck, 1994).
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conforms to nonstandard decision models. In this case, however, the mechanism is
not incentive compatible, because the subject would manipulate his future reports.

The standard approach to build scoring rules, explained in Savage (1971), is to
take the subgradients of convex functions. This “direct” approach relates to the
“payoff equivalence” characterizations in mechanism design (see, in particular, Krishna
and Maenner, 2001). We take a different route. Our approach is inspired by an idea
developed in Allais (1953) and also attributed to W. Allen Wallis (see Savage, 1954)
in a revealed-preference context: to elicit an individual’s preference over a collection
of objects, one can ask the individual for his preference over the entire collection,
choose two objects at random, and then give the individual the object that is preferred
according to his announcement. Azrieli et al. (2018) show that the mechanisms that
are incentive compatible under minimal assumptions on the subject’s preference reduce
to randomized mechanisms of the form given by Allais.

In the static benchmark of the literature, several works relate indirectly to the
Allais idea. In their seminal work, Becker, DeGroot, and Marschak (1964) introduce,
as an alternative to the Brier score, a method for eliciting an expert’s belief via
a second-price auction with a random reserve price. Matheson and Winkler (1976)
propose a scoring rule to elicit the distribution function of real-valued random variables.
Schervish (1989) proposes a characterization of strictly proper scoring rules for binary
outcomes as integrals with positive weights, this type of characterization is also central
in scoring rules for distribution properties (Lambert, 2018). Although these works
are independent of each other, they have in common that they can be interpreted as
implicit applications of the Allais idea, either by randomization, or by a mechanism
that is equivalent to introducing a randomization.6 One contribution of our work is
thus the formalization of the connection to the Allais idea, and the illustration of its
effectiveness beyond the static benchmark.

Another strand of literature compares reports across individuals to obtain honest
opinions on subjective matters, by assuming a form of consensus among the individuals
(e.g., Prelec, 2004 or Miller et al., 2005). This consensus allows to discard observable
outcomes. In mechanism design, the Crémer-McLean mechanism (Crémer and McLean,
1988) is a classical example of such a construct. In contrast, in this paper we elicit
information individually, but rely on the observability of the final outcome.

Finally, our work connects to dynamic models of the decision theory literature, in
particular the works of Dillenberger et al. (2014) and Lu (2016). In those works, the
decision maker observes an interim subjective signal, or acts as if she observed such a
signal. This paper helps construct the instruments that elicit beliefs in those models as
a one-choice experiment. For example, the protocols of our motivating example below
elicit beliefs in the decision model of Dillenberger et al., and in more complex decision

6Other elicitation mechanisms, such as the mechanism of Roth and Malouf (1979), or the
mechanism of Grether (1981) and Karni (2009), introduce randomization. The purpose of this
randomization is different: these mechanisms reward individuals with lottery tickets to create an
incentive compatibility in absence of risk neutrality.

7



models, our general result of Section 4 can help demonstrate identification. Note
that in most protocols of this paper, all payoffs occur after all uncertainty is resolved.
Under risk neutrality and without discounting, redistributing the payoffs over multiple
time periods is possible, sometimes allowing for some simplification, but in general,
allowing for payoffs in interim periods requires to account for time-related preferences
such as intertemporal substitution, thus adding other dimensions to preferences which
can complicate the task of elicitation (this is relevant for the models of Kreps and
Porteus (1978), and, more recently, Krishna and Sadowski (2014)).

2 A Simple Example

In this section, we explore a simple example to illustrate the theory of this paper.
Throughout, the elicitor is an experimenter who wants to elicit beliefs from her subject
regarding a random event. For concreteness, we work with the experiment presented
in the Introduction, though the application to other domains is straightforward. The
outcome of interest is whether the subject passes or fails the test. The goal is to elicit,
in period 1, the subject’s probability assessments on the outcome, and, in period 0,
the subject’s initial belief over these probability assessments.

2.1 The Case of Restricted Beliefs

As a first step, consider a restricted information structure: the experimenter
hypothesizes that, after taking the test, the subject either fully learns whether he
passed or failed, or learns nothing new. Thus, in period 0 (the initial period), the
subject is asked to report an element p ∈ [0, 1], reflecting an initial probability
assessment that he will pass the test, together with a probability α ∈ [0, 1] that he
will learn whether he passed after having taken the test (with probability 1 − α of
learning nothing new). Under the experimenter’s assumption, these two numbers
describe fully the subject’s distribution over his posterior beliefs. Then, the subject
takes the test and, in period 1 (the interim period), is asked to report how likely he
believes to have passed the test, an element q ∈ [0, 1]. Finally, in period 2 (the final
period), the subject is told whether he passed or failed the test. In Figure 1 we draw
the probability tree associated to the subject’s belief in period 0. The leaves of the
tree correspond to the possible beliefs the subject may form in period 1, regarding
whether or not he passed the test, while the branches indicate the ex-ante likelihood
attributed to these beliefs in period 0.

The experimenter delivers a payoff as a function of the reported probabilities α,
p and q, when x is the outcome that realizes; by convention, x = 1 if the subject
passes the test, and x = 0 if he fails. Following the literature, the experimenter must
motivate the subject with strict incentives: the subject must be willing to respond
truthfully, and the truth must be the unique best response. To simplify matters even
further, let us suppose the subject is risk neutral.
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Figure 1: Probability tree if the subject anticipates to learn all or nothing.

To elicit the prior and posterior probabilities of passing the test, one can sequentially
use probability scoring rules, such as a quadratic scoring rule giving the subject payoffs
1 − (p − x)2 and 1 − (q − x)2 for respective assessments p and q (Selten, 1998). It
is then a strict best response for the subject to act truthfully at each stage. On the
other hand, probability scoring rules do not elicit the probability that the subject
assigns to learning fully.

Instead, the elicitation of α relies on the following idea. Suppose the experimenter
were to use the above-mentioned quadratic scoring rules. As can be easily checked,
a subject who believes they are more likely to learn fully also expects to earn more
from the elicitation of his posterior. Indeed, the second score yields as expected payoff
1− p(1− p) to the subject who learns nothing, and 1 to the subject who learns fully.
This fact makes it possible to discriminate between the subjects who are more likely
to learn fully and those who are not.

For example, the experimenter could fix a baseline payoff B ∈ (0, 1) and, before
administering the test, offer the subject the following choice: in the interim period, he
can be paid according to the quadratic score, or he can choose to forgo this elicitation
payment and instead get compensated with payoff B. Initially, the subject expects to
earn 1− (1−α)p(1−p) from the quadratic score, so should decide to use the quadratic
score only if α is above some threshold, and otherwise leave with B. Observing the
subject’s choice enables the experimenter to infer information about the probability
of learning fully. By repeating this procedure on the same subject infinitely many
times while increasing B smoothly from 0 to 1, the experimenter could, in principle,
collect enough data points to infer exactly α. Doing so would be impractical, but the
same effect can be achieved through randomization and delegation: after the subject
communicates his belief, the experimenter draws B at random and chooses between
the scoring rule and payoff B on behalf of the subject. The subject strictly prefers
to respond honestly as long as a wrong choice is costly with nonzero probability—as
when B is uniformly distributed.

This shows how to elicit α. We can elicit all of α, p and q with a small modification:
keep the first quadratic scoring rule to get p and postpone the experimenter’s actions
to the final period, so that in the interim period, the subject is still unsure whether he
is being paid as a function of his posterior assessment, inducing a strict best response
for q. The overall protocol is summarized below.
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Protocol (I) In the initial period, the subject is asked to estimate the likelihood α
that he will learn fully, along with the prior probability p that he will pass the test. In
the interim period, the subject is asked to assess the posterior probability q that he
passed the test. In the final period, the test outcome is revealed, and the experimenter
draws B ∈ [0, 1] uniformly at random. If 1− (1− α)p(1− p) < B, then the subject is
paid 1 +B − (p− x)2. Otherwise, the subject is paid 2− (p− x)2 − (q − x)2.

This construction highlights the key idea of this paper. To elicit an individual’s
(dynamic) beliefs, we divide the elicitation task into many small parts. We consider a
collection of basic decision problems—in this instance, whether to take B or go with
the payoffs of a quadratic scoring rule. The collection is designed so that observing the
individual’s choices from each of the decision problems uncovers the beliefs entirely. But
taken separately, each decision problem only reveals a small piece of the individual’s
beliefs. To elicit these beliefs as a single decision, we combine all the simple problems
by suitably randomizing.

As in Allais (1953), randomization is a natural device in this context. However, it
is not a necessity. We can design a nonrandom elicitation scheme if, as opposed to
drawing one decision problem from a set, we give the subject an infinitesimal fraction
of every decision problem from that set. Here, it can be done by computing the
average payoffs. For example, averaging the payoffs of Protocol (I) over B yields the
nonrandom payoff:

π(α, p, q, x) = 1− (p− x)2 +

∫ 1−(1−α)p(1−p)

0

(1− (x− q)2) dB +

∫ 1

1−(1−α)p(1−p)
B dB.

Applying this method on other probability scoring rules, it is possible to obtain simple
closed-form formulas, such as

π(α, p, q, x) = 2(1 + p) (α + p− αp) (2qx− q2)− (α + p− αp)2 (x+ p2
)
, (1)

which represents a scoring rule for the elicitation of α, p and q. Straightforward
calculations confirm that, when confronted with this scoring rule, the subject strictly
best responds by reporting honestly in period 0, and, having made reports in period 0,
strictly best responds by reporting honestly in period 1 (independently of the period-0
reports).

In this instance, and in several others that we examine below, we find that
randomization makes it possible to have intuitive and relatively simple elicitation
schemes. The absence of randomization can be preferred when the payoff, or score, is
used for the purpose of evaluating a learning model (as opposed to the elicitation of a
subject’s beliefs) as in Feltovich (2000). In this context, the complexity of the scoring
rule is irrelevant, while the absence of exogenous noise avoids the need of a variance
reduction procedure.
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2.2 Unrestricted Beliefs

We now depart from the simplifying assumption that the subject fully learns the
outcome after taking the test. The subject continues to hold a posterior belief, in the
interim period, about whether he passed. In the initial period, the subject forms a
belief about this posterior, now captured by a distribution function over [0, 1] that we
refer to as second-order belief. The protocols of Section 2.1 do not enable us to elicit
such a belief, because the class of decision problems employed in the construction is
too coarse. Rather than randomize over quadratic scoring rules, we use a richer set of
simpler decision problems.

Protocol (II) In the initial period, the subject is asked to announce his second-order
belief F . The experimenter then draws two numbers A and B independently and
uniformly from [0, 1]. If

A ≥ EF [max(B,P )],

then the protocol stops and the subject gets the payoff A. Otherwise, in the interim
period, the subject chooses between getting the fixed payoff B and getting the payoff 1
conditional on him passing the test (and nothing otherwise).

Proposition 1 In Protocol (II), the subject announces his second-order belief as a
strict best response.

Of course, payoffs can be shifted and scaled as the experimenter sees fit. The
term EF [max(B,P )] denotes the expected value of max(B,P ) when P is distributed
according to F . Throughout let ϕ(B,F ) denote this expected value, as a function of
B and F . Straightforward calculations yield

ϕ(B,F ) = 1−
∫ 1

B

F (p) dp.

The intuition behind Proposition 1 is simple. Observe that EF [max(B,P )] is
the expected payoff of a subject who is to be given the choice in the interim period.
Therefore, the experimenter makes the decision that is the best for the subject (given
the information the subject provides) and truthful reporting is, at least, a weak best
response.

In this protocol, the “simple decision problems” are whether to stop the experiment
to get an immediate payoff or continue to the next stage. There are as many decision
problems as there are values of A and B. If F is the true second-order belief, but the
subject communicates F̃ 6= F instead, then we argue that there are many values of
the parameters A and B, thus many simple decision problems—sufficiently many so
that, on aggregate, these values generate a positive mass—such that the experimenter
who acts on behalf of someone with second-order belief F̃ makes the wrong choice,
either stopping the protocol while the subject would have been better off continuing,
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or conversely. The subject, who is unaware of which decision problem will be selected
for him, is at risk of losing some payoff when he deviates from the truth. He can only
guarantee himself the maximum payoff with probability 1 when he tells the truth.
Proof of Proposition 1. Let F be the subject’s second-order belief, and F̃ be the
subject’s announcement. We have

EF̃ [max(B,P )] =

∫ 1

0

max(B, p) dF̃ (p)

=

∫ B

0

A dF̃ (p) +

∫ 1

B

p dF̃ (p)

= BF̃ (B) +
(

1−BF̃ (B)
)
−
∫ 1

B

F̃ (p) dp

= 1−
∫ 1

B

F̃ (p) dp.

Therefore, the expected payoff of the subject is∫ 1

0

∫ 1

ϕ(B,F̃ )

A dA dB+

∫ 1

0

∫ ϕ(B,F̃ )

0

EF [max(B,P )] dA dB

=

∫ 1

0

1

2

(
1− ϕ(B, F̃ )2

)
dB +

∫ 1

0

ϕ(B, F̃ )ϕ(B,F ) dB

=

∫ 1

0

(
1

2

(
1− ϕ(B, F̃ )2

)
+ ϕ(B, F̃ )ϕ(B,F )

)
dB.

This expression is maximized if and only if, for almost all B, ϕ(B, F̃ ) = ϕ(B,F ). As
ϕ is continuous in its first argument, the expression is maximized if and only if for all
B, ϕ(B, F̃ ) = ϕ(B,F ). Naturally, if F 6= F̃ then by the right-continuity of cumulative

distribution functions, for some B,
∫ 1

B
F (p) dp 6=

∫ 1

B
F̃ (p) dp and so ϕ(B, F̃ ) 6= ϕ(B,F ).

Hence, the expected payoff of the subject is maximized if and only if he reports F .
Rather that provide a general discussion, we conclude this section with several

observations.

Complexity of the protocol

The second-order beliefs in this example are the distributions of a random vari-
able taking values in [0, 1]. In principle, they can be complex, but in practice the
experimenter, who has control of the communication device, need not account for all
possible distributions. For example, the subject may be asked to choose a density
shape among a suggested sample, move sliders to control the shape of the density
function (Moore and Healy, 2008), or be asked to provide the probabilities of finitely
many ranges of posteriors (Manski and Neri, 2013). Beyond the experimental context,

12



distributions are often parameterized, for example, a forecaster may be asked for the
mean and variance of a truncated Gaussian, or may give a discrete probability tree,
i.e., a distribution with finite support.

When the ability to report precisely one’s belief is limited by the technology, the
subject may be unable to reach the theoretically optimal payoff.7 However, the loss
incurred is small. It is bounded by the squared error between the announced belief F̃
and the true belief F : if, for every p, |F (p)− F̃ (p)| < ε, then the subject’s expected
payoff is at least the optimal payoff he would obtain by reporting F minus ε2/2.8

Note that the protocols of this section are “direct.” The alternatives are the
“indirect” elicitation protocols, in which the subject makes choices, and these choices
inform the experimenter on the subject’s beliefs. One benefit of direct protocols is
that they do not require the subject to confront difficult choices: as long as the subject
agrees with the incentive-compatible nature of the protocol, he only needs to supply
his information, without making any computation on his own.

Relation with the BDM mechanism

Protocol (II) can be viewed as a dynamic extension of the BDM mechanism (Becker,
DeGroot, and Marschak, 1964). In the usual version, the subject bids for an object
in a second-price auction with a random reserve price. This bid reveals the subject’s
willingness to pay for the object. In the context of probability elicitation, the object
is an Arrow-Debreu security.

What we show is that to elicit second-order beliefs, we can use two auctions, one
embedded into the another. In the main auction, the subject formulates a bid for the
right to participate in the secondary auction. If the bid is greater than or equal to a
reserve price A, the subject pays A and obtains this right. Otherwise, the subject pays
nothing and gets nothing. Then, if the subject won the main auction, the secondary
auction takes place. The subject formulates a bid for the Arrow-Debreu security that
pays off x. If the bid is greater than or equal to a reserve price B, the subject pays B
and gets the security. Otherwise, the subject pays nothing and gets nothing. For given
values of A and B, this auction mechanism is equivalent to Protocol (II): the payoffs
are identical up to an addition of the amounts A and B. Hence, collecting bidding
data (in the main auction only) for many uniformly distributed pairs A,B in the unit
square makes it possible to learn exactly the subject’s second-order belief. While the
BDM mechanism can elicit the subject’s probability assessment with a single bid,
many bids are needed to learn the second-order beliefs: the subject’s willingness to
pay in the first auction depends on B. In applications, the experimenter could present
the subject with a series of main auctions in which B is increases gradually from 0 to

7Depending on the technological limitation, one may be able to reach the theoretically optimal
payoff in a modified protocol that uses coarser randomization.

8 If |F−F̃ | < ε, then |ϕ(B, F̃ )−ϕ(B,F )| ≤
∫ 1

B
|F−F̃ | < ε. The difference in expected payoffs from

reporting the exact belief F to the approximate belief F̃ is then − 1
2

∫ 1

0
(ϕ(B, F̃ )−ϕ(B,F ))2 dB ≥ − ε2

2 .
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1, and for each auction, demand the subject’s bid. Once all the bids are received, the
experimenter applies one of these auctions at random, also setting the reserve price A
at random.

Eliciting the prior and posterior beliefs

Protocol (II) elicits second-order beliefs only. The prior is not elicited directly,
but is included as part of the second-order belief, because it is equal to the mean
posterior. The posterior can be elicited in the same protocol if instead all the decisions
are made by the experimenter on behalf of the subject. In the interim period the
subject would then be asked to send a probability assessment, as opposed to making
a binary choice. In this case, it is important that the values of A and B are only
drawn or revealed after the subject has communicated his information, to ensure that
optimal announcements remain strict. We use this approach in the general framework
of Section 4.

About the subgradient methods

The method ordinarily applied in the design of probability scoring rules exploits
the fact that the scoring rules that induce truthful reports are the subgradients of the
convex functions in the domain of beliefs, a consequence of the incentive-compatibility
condition (Savage, 1971). For instance, to elicit the subject’s perceived likelihood
of passing the test, one can start from any smooth convex function V on [0, 1], and
obtain the scoring rule s(p, x) = V (p) + (x− p)V ′(p). The quadratic scoring rule used
in this section corresponds to V (p) = 1− p(1− p).

While broadly applicable to the elicitation of first-order beliefs, this “direct”
approach presents two major technical hurdles with higher-order beliefs. First, the
domain of these higher-order beliefs is too large for subgradients to be calculated
explicitly. Second, being a subgradient of a convex function is no longer a sufficient
condition for incentive compatibility. For instance, for the case of second-order beliefs
of this section, payoffs must be convex subgradients of convex functions on the
space of distributions—an object difficult to describe or conceptualize. The indirect
revealed-preference approach of this paper enables us to effectively circumvent these
difficulties.

On the impossibility of eliciting dynamic beliefs by combining standard elicitation
mechanisms

Suppose that, instead of the subject reporting, in period 0, the distribution over
the posteriors he anticipates to have in period 1, we ask the subject to report the
distribution of the posteriors of another subject passing the test.

This situation poses no particular theoretical challenge: we can elicit the posterior
using a quadratic scoring rule, and we can elicit the distribution of posteriors using
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another standard scoring rule designed for distributions of random variables (such as
the score in Matheson and Winkler (1976)) taking the elicited posterior as observed
state. This mechanism is natural and preserves incentives because, from the viewpoint
of both subjects, the realized value of the variable the experimenter asks to forecast is
exogenous.

One may be tempted to continue to apply this mechanism even when the two
subjects are, in fact, the same, as in this paper. As it turns out however, the incentive
compatibility property ceases to hold. For example, the subject who is honest in
the initial period will want to manipulate his probability estimate in the interim
period. The intuition is that, when the subject reports truthfully in both periods and
contemplates a small deviation in the interim period, the effect of that deviation is
of second-order in the quadratic scoring rule (since he was maximizing that score by
being truthful) but is generally of first-order in the Matheson-Winkler score.

As we show in Appendix A, this result is quite general. The elicitation of high-order
beliefs always requires the interaction of the various reported information at different
times through the payoffs.

Equivalent scoring rule formulation

As in Section 2.1, the analog of probability scoring rules for the case of second-order
beliefs can be easily constructed for the purpose of evaluating learning models.

To keep matters simple, we continue to use the language of elicitation. Suppose the
subject first announces a second-order belief F in period 0, a probability assessment
p in period 1, while x continues to be the outcome. The goal is to design a payoff
π(F, p, x) such that it is uniquely optimal to report one’s second-order belief F in the
initial period, and then it is uniquely optimal to report one’s first-order belief p in the
interim period (even after misreporting initially). When those two conditions are met,
let us say that π is strategyproof.

To construct this payoff, we can compute what the subject earns averaged over
the draws of A and B in Protocol (II), assuming that both choices in the initial and
interim periods are made by the experimenter on the subject’s behalf. This average
payoff is equal to∫ 1

0

∫ 1

ϕ(B,F )

A dA dB +

∫ p

0

∫ ϕ(B,F )

0

x dA dB +

∫ 1

p

∫ ϕ(B,F )

0

B dA dB,

which reduces to∫ 1

0

F (B)ϕ(B,F )B dB +

∫ p

0

xϕ(B,F ) dB +

∫ 1

p

Bϕ(B,F ) dB. (2)

The payoff just defined—let us write it π(F, p, x)—is an analog of the quadratic scoring
rule for second-order beliefs. This payoff function is strategyproof.
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The argument is simple. In the initial period, the expected payoff to the subject
is identical to the expected payoff in Protocol (II), and hence the subject’s unique
best response in this period is to report truthfully. Then, no matter the second-order
belief F announced, in the interim period the subject who believes to pass the test
with probability p announces p̃ so as to maximize the residual expected payoff∫ p̃

0

pϕ(B,F ) dB +

∫ 1

p̃

Bϕ(B,F ) dB. (3)

As ϕ(B,F ) is strictly positive (except possibly for B = 0), (3) is strictly increasing
for p̃ ≤ p and strictly decreasing for p̃ ≥ p, and so maximized exactly when p̃ = p: it
is strictly optimal to report truthfully in period 1.

Unlike the original protocol, payments can be spread out over time, which simplifies
the mechanism. First, the subject reports second-order belief F , and is immediately
paid the amount

∫ 1

0
F (B)ϕ(B,F )B dB. Then, in the interim period, the subject

reports probability assessment p, and is immediately paid the amount
∫ 1

p
Bϕ(B,F ) dB.

Finally, after the event outcome realizes, the subject is paid
∫ p

0
xϕ(B,F ) dB.

Behind the seemingly complex formulation of this two-stage quadratic scoring rule
lies a simpler intuition. The logic is as follows. Let us rewrite (2) slightly differently as

π(F, p, x) =
1

2
+

∫ 1

0

(
max(p,B)− 1

2
ϕ(B,F )

)
ϕ(B,F ) dB +

∫ p

0

(x− p)ϕ(B,F ) dB.

(4)
Ignoring the irrelevant constant 1/2, let us interpret the first component of (4). Recall
that ϕ(B,F ) is the average value of the subject’s interim payoff for second-order belief
F . If the realization of the random interim payoff, max(B,P ), is publicly known, the
term (

max(p,B)− 1

2
ϕ(B,F )

)
ϕ(B,F ) (5)

is a quadratic scoring rule that elicits the subject’s assessment of the mean interim
payoff.9 The elicitation is indirect, because the subject does not report explicitly
an assessment of this mean, instead he reports second-order belief F from which an
implicit assessment can be derived. Integrating over the range of possible values for
B, as in (4), ensures that this assessment is elicited for every B.

Let us now interpret the second component of (4). The term∫ p

0

(x− p)ϕ(B,F ) dB (6)

9Up to a factor, the quadratic scoring rule for estimations of the mean of a random variable
takes the form s(m, y) = −my + y2/2 + h(y), where h is arbitrary, y is the realization of the random
variable, and m is the mean estimate.
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is a probability scoring rule that elicits the likelihood of the event. It is known as a
“Schervish” score with weight function B 7→ ϕ(B,F ) (Schervish, 1989).

An important feature is that the probability scoring rule (6) is not fixed: it varies
with the subject’s announced second-order belief of the initial period. This dependence
is required because the realization of max(B,P ) is only privately observed, and thus
the subject may be tempted to manipulate his report to increase the payoff that comes
from the first component of (4), as explained in our previous remark. The adaptive
weight ϕ(B,F ) in (6) ensures that the benefits of misreporting the first-order belief in
the quadratic scoring rule (5) never exceed the cost collected through scoring rule (6).

3 Protocols for Restricted Environments

In this section we apply the general principle illustrated in Section 2 to specific
instances of dynamic environments. In every instance, there are finitely many time
periods. The elicitor (e.g., an experimenter) has interest in the outcome of a random
variable or random event that materializes publicly in the final period. An individual
(e.g., the subject) holds beliefs on the distribution of outcomes in the initial period.
Those beliefs may evolve over time, through one or more interim period(s), due to
information that either is subjectively perceived or interpreted, or is privately observed
by the individual.

We examine several cases of special but salient types of information structures. In
each case, we show that simple protocols enable the elicitor to obtain, as a strict best
response, the individual’s relevant dynamic beliefs, or equivalently, the individual’s
private subjective information structure. We assume risk neutrality. Extending the
protocols to expected utility maximizers is straightforward.10

3.1 Multiple Outcomes

Here, as in Section 2, there is a single interim period at which the individual is
able to collect new information. The outcome is now a discrete random variable X
taking values in the finite set {1, . . . , n}. The individual’s interim belief is captured
by a vector P = (P1, . . . , Pn) where Pk denotes the assessed probability of X = k.
In the initial period, the individual holds a belief about P . This is a second-order
belief, represented by a multidimensional distribution function. It is worth noting that,
perhaps surprisingly, going from two to more than two outcomes makes the elicitation
of second-order beliefs substantially more difficult, unlike the case of first-order beliefs.
With first-order beliefs, we can always sum n quadratic scores for binary events to elicit

10It suffices to apply the following change to the protocols: shift/scale the payoffs (say, in dollars)
to take values in the normalized interval [0, 1], and then, instead of paying the subject $y, pay the
subject $1 (or any fixed amount) with probability y, and pay nothing otherwise (or any smaller
fixed amount). Standard in the experimental literature, the idea of using “probability currency” to
overcome the problem of risk aversion is discussed in Savage (1971) who attributes it to Smith (1961).
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the probabilities for each of the n outcomes, whereas we cannot iterate Protocol (II)
to extract second-order beliefs. Instead, we develop the following protocol.

Protocol (III) In the initial period, the individual is asked to announce his second-
order belief F . The elicitor then draws two numbers A and B, and n numbers c1, . . . , cn
independently and uniformly from [0, 1]. Let Ci = ci/(c1 + · · ·+ cn). If

A ≥ EF [max(B,C1P1 + · · ·+ CnPn)],

then the protocol stops and the individual gets the payoff A. Otherwise, in the interim
period, the individual is offered a choice between getting the fixed payoff B, or getting
a contingent the payoff of 1 if X = I (and nothing otherwise), where I ∈ {1, . . . , n} is
drawn randomly in the final period, with Pr[I = i] = Ci.

The term EF [max(B,C1P1+· · ·+CnPn)] denotes the expected value of max (B,
∑

iCiPi)
when (P1, . . . , Pn) is distributed according to F . The dimension of the class of “simple
decision problems,” in the terms of Section 2, must be proportional to the size of the
outcome set. This is because the domain of the second-order beliefs has dimension
n− 1.

Proposition 2 In Protocol (III), the individual announces his second-order belief as
a strict best response.

Proof. Let F be the individual’s second-order belief, and F̃ be the individual’s
announcement. For C = (C1, . . . , Cn), let ψ(C) be the distribution function of the
random variable

∑
iCiPi when (P1, . . . , Pn) is distributed according to the true second-

order belief F , and similarly let ψ̃(C) be the distribution function of the random
variable

∑
iCiPi when (P1, . . . , Pn) is distributed according to the announced second-

order belief F̃ . As the proof of Proposition 1 demonstrates, the expected payoff of the
individual is∫ (

1

2

(
1− ϕ(B, ψ̃(C))2

)
+ ϕ(B, ψ̃(C))ϕ(B,ψ(C))

)
dB dC,

which is maximized if and only if, for almost all tuples (B,C) = (B,C1, . . . , Cn),

ϕ(B, ψ̃(C)) = ϕ(B,ψ(C)). By a continuity argument, this condition is equivalent to

the condition that for all tuples (B,C), ϕ(B, ψ̃(C)) = ϕ(B,ψ(C)), which in turn is

equivalent to the condition that for all C, ψ̃(C)) = ψ(C), as shown in the proof of
Proposition 1. By the Cramér-Wold Theorem, the distribution of a finite-dimensional
random vector is uniquely determined by the distributions of its one-dimensional
projections, and therefore, the condition that for all C, ψ̃(C)) = ψ(C) is equivalent to

the condition that F̃ = F . Hence, the individual maximizes his expected payoff if,
and only if, he announces the true second-order belief.
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3.2 Information Arriving at a Random Time

We now turn to an environment with more than one interim period. The individual’s
belief on the final outcome is still refined only once. However, this time of refinement
is random and is neither controlled nor observed by the elicitor.

Section 3.1 deals with multiple outcomes, so for simplicity, we assume the final
outcome is binary. Time periods are indexed t = 0, 1, . . . , T . At t = 0, the individual
possesses a probability that the event materializes (a prior belief). At some future
time τ ∈ {1, . . . , T − 1}, he refines his initial assessment after observing a private or
subjective signal, updating his prior to a posterior belief.

In the initial period, the individual’s “dynamic belief” is captured by (i) a belief
about how much he anticipates to learn, which we describe via a second-order belief
F over the range [0, 1] of possible posterior assessments, and (ii) a belief about
when he anticipates to learn, described by a distribution over the possible dates
{1, . . . , T − 1}. We assume F is nondegenerate, i.e., that F does not put full mass on
the initial assessment (if it did, it would mean that the individual never refines his
prior). Consider the following protocol.

Protocol (IV) In the initial period, the individual announces a distribution F over
posterior assessments, together with a distribution G over the times at which he antici-
pates updating his prior belief. The elicitor then draws numbers A and B independently
and uniformly from [0, 1]. In addition, she draws a time tc from {1, . . . , T − 1}, uni-
formly and independently. Let p = EF [P ] be the individual’s prior assessment of the
chance that the event occurs,11 and construct the following distribution function H
over event probabilities:

H(p) =

{
G(tc)F (p) + (1−G(tc)) if p ≥ p,

G(tc)F (p) if p < p.

If
A ≥ EH [max(B,P )],

then the individual gets the payoff A and the protocol stops. Otherwise, in period tc,
the individual is offered the choice between getting the fixed payoff B, or getting the
contingent payoff of 1 if the event occurs (and nothing otherwise).

We focus on the initial beliefs: to elicit the posterior, the elicitor could just ask for a
revised probability assessment in each time period, offering a quadratic scoring rule.

In this mechanism, the value EH [max(B,P )] equals the individual’s expected
payoff when the protocol does not immediately stop. The individual who understands
this fact also understands that he cannot gain at manipulating his reports.

11This assessment can be deducted from the belief reported, or can be reported separately.
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Proposition 3 In Protocol (IV), it is strictly optimal for the individual to honestly
announce both his second-order belief and his belief about when he will receive his
private signal.

Proof. Let F be the individual’s second-order belief, and G the believed distribution
on the time of information arrival. Let F̃ and G̃ be the individual’s announcements of
these two beliefs, respectively. For every t = 1, . . . , T − 1, let

H̃t(p) =

{
G̃(t)F̃ (p) + (1−G(tc)) if p ≥ EF̃ [P ],

G̃(t)F̃ (p) if p < EF̃ [P ],

and let

Ht(p) =

{
G(t)F (p) + (1−G(t)) if p ≥ EF [P ],

G(t)F (p) if p < EF [P ].

If we fixed the time tc, the protocol would reduce to Protocol (II), and the distribution
Htc would be elicited as a strict best response. Here, however, the time tc can be
any time period with positive probability, and so by Proposition 1, the individual’s
expected payoff is maximized if and only if, for every t, H̃t = Ht, condition which,
in turn, is equivalent to the condition that F̃ = F and G̃ = G. (This equivalence

is immediate, noting that if, for all t, H̃t = Ht, then as G̃(T − 1) = G(T − 1) = 1,

so F̃ = F , which then implies G̃ = G.) Overall, the individual’s expected payoff is

maximized if and only if both F̃ = F and G̃ = G.

3.3 Gaussian Information Structures

We now turn to the common case of multivariate Gaussian distributions. In this
class of dynamic environments, information is jointly normal. While beliefs can get
significantly richer when new information arrives gradually over multiple time periods,
in a Gaussian world, particularly simple protocols can be obtained.

The setup is as follows. There are T + 1 time periods t = 0, . . . , T . The outcome
of interest is a random variable X revealed in the final period. In every interim period
t = 1, . . . , T − 1, the individual privately observes a random signal Yt, taking values in
Rkt (kt ≥ 1). The joint vector of signals and outcomes, denoted V = (Y1; . . . ;YT−1;X),
is assumed to be multivariate normal. We call these information structures Gaussian.
We further assume that, for all Gaussian information structures considered here,
Var[X] ≤ σ2

MAX for some commonly known value σ2
MAX. We can dispense with this

assumption, but it renders the protocol especially simple.
The objective is to elicit, at the outset, the information structure itself, and then

to elicit the signals that the individual privately observes.12 Eliciting information

12Compared to the other environments, the question is posed in somewhat different terms. In
the other environments, the object elicited is a high-order belief, whereas here, it is an information
structure. For our purposes, the two are equivalent.
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structures with strict incentives is impossible without imposing stringent constraints,
because signals can be relabeled, irrelevant information can be added, and so forth.
Rather than impose constraints, the goal is to have the individual communicate
his information structure as a strict best response up to an equivalence class. Two
information structures are equivalent if they induce the same high-order beliefs.

Protocol (V) In the initial period, the individual is asked to report the joint dis-
tribution over signals and outcomes, characterized by the mean vector of V and its
variance-covariance matrix. Then, in every interim period t ∈ {1, . . . , T − 1}, the
individual is asked to announce the realization yt of Yt. Finally, in the final period,
the elicitor observes outcome X = x, draws a time t ∈ {0, . . . , T − 1} and a value
A ∈ [0, σ2

MAX] at random, independently, and uniformly. If A < Var[X | y1, . . . , yt]
then the individual gets the fixed payoff K −A, otherwise the individual gets the payoff

K − (x− E [X | y1, . . . , yt])
2 ,

where K is an arbitrary constant, and variances and expectations are with respect to
the joint distribution initially reported.

The protocol is “strategyproof” in following sense.

Proposition 4 In Protocol (V), it is strictly optimal for the individual to report
truthfully in the initial period, up to an equivalence. If the individual has responded
truthfully up to period t − 1, then it is also a strict best response for him to report
truthfully again in period t, up to an equivalence.

Before we turn to the proof of Proposition 4, it is useful to consider an alternative
mechanism in which the individual announces directly his high-order beliefs. With
Gaussian information structures, high-order beliefs are determined by relatively few
parameters, independently of the dimension of the signals and of the complexity of
the variance-covariance matrix. This observation contributes to the simplicity of the
protocols. Specifically, the kth order belief in period T − k is characterized by the
mean outcome in period T − k, E[X | y1, . . . , yt], and the successive conditional vari-
ances Var[X | y1, . . . , yT−k], . . . ,Var[X | y1, . . . , yT−1]. Importantly, these conditional
variances are independent of the history of realizations.13

13 This fact owes to the Gaussian structure. At t = T − 1, the first-order belief is a Gaussian
distribution over X, therefore determined by its mean µT−1 = E[X | y1, . . . , yT−1] and variance
ΣT−1 = Var[X | y1, . . . , yT−1]. At t = T − 2, the individual perceives the value of µT−1 as
random, but not the value of ΣT−1, a consequence of the Gaussian assumption. Therefore, the
second-order belief is given by the value of ΣT−1, and by the (normal) distribution over µT−1,
characterized by its mean µT−2 = E[µT−1 | y1, . . . , yT−2] = E[X | y1, . . . , yT−2] and variance
ΣT−2 = Var[µT−1 | y1, . . . , yT−2] = Var[X | y1, . . . , yT−2] − Var[X | y1, . . . , yT−1]. Similarly, at
t = T −3, the third-order belief is characterized by a Gaussian distribution over the next-period mean
outcome, µT−2, with mean E[X | y1, . . . , yT−3] and variance Var[µT−2 | y1, . . . , yT−3] = Var[X |
y1, . . . , yT−3] − Var[X | y1, . . . , yT−2], and by the values of the future variances ΣT−2 and ΣT−1,
which are nonrandom, and so forth.
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The following protocol, in which the individual communicates beliefs directly, does
not require randomization.

Protocol (VI) In the initial period, the individual is asked to announce the con-
ditional variances σ2

k = Var[X | y1, . . . , yk] for every k ≥ 0. Then, in every period
t = 0, . . . , T − 1, the individual is asked to announce his best estimate of the mean
outcome, µt = E[X | y1, . . . , yt]. In the final period, outcome x realizes and the
individual gets the payoff

K +
T−1∑
t=0

[(
σ2
t − σ2

MAX

)2
(µt − x)2 − 1

2
σ4
t

]
,

where K is an arbitrary additive constant.

Recall that scoring rules, like the protocols of this paper, apply more broadly as
measures of forecast accuracy, by taking the empirical average of the scores or payoffs
obtained. To the extent that many learning models use a linear-normal framework, we
believe that the “dynamic scoring rule” that Protocol (VI) describes could be relevant
to these models.

While Protocols (V) and (VI) may appear different, they deliver, on average, the
same payoffs up to a scaling factor. Indeed, starting from Protocol (V), suppose
the elicitor has drawn t and A. Let σ2

t be the estimate of Var[X | y1, . . . , yt] and
µt the estimate of E[X | y1, . . . , yt], both computed according to what has been
communicated. If σ2

t ≥ A then the individual gets K − A, and if σ2
t > A, the

individual gets K − (µt − x)2. Hence, on average over the random draws of t and A,
the individual gets

K − 1

T

T−1∑
t=0

[∫ σ2
t

0

A dA+

∫ σ2
MAX

σ2
t

(µt − x)2 dA

]

= K +
1

T

T−1∑
t=0

[(
σ2
t − σ2

MAX

)2
(µt − x)2 − 1

2
σ4
t

]
.

Hence, the randomization of Protocol (V) is simply being factored in the payoffs of
Protocol (VI).

Proposition 5 In Protocol (VI), the individual reports truthfully as a strict best
response in every time period, independently of the history of reports.

Because truthfulness of the latter protocol implies truthfulness of the former, proving
Proposition 4 reduces to proving Proposition 5. First, no matter the announcements
σ2

0, . . . , σ
2
T−1, it is strictly optimal for the individual to report truthfully his best

estimate of the mean outcome, because fixing the σ2
t ’s, the individual faces a weighted
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sum of quadratic losses. Then, if the individual reports the mean outcome truthfully,
the expected value of the quadratic loss (µt −X)2, in period t, is Var[X | y1, . . . , yt].
Hence, the individual chooses the announcements σ0, . . . , σT−1 in the initial period so
as to maximize

K +
T−1∑
t=0

[(
σ2
t − σ2

MAX

)2
Var[X | y1, . . . , yt]−

1

2
σ4
t

]
,

where we recall that Var[X | y1, . . . , yt] is only a function of t. It is readily seen that
the unique optimal announcements are σ2

t = Var[X | y1, . . . , yt].

3.4 Two Interim Periods

We conclude with the case of two interim periods, without assuming Gaussian
information. This setting adds one period to the baseline setup of Section 2.

There are now four time periods: the initial period (t = 0), two interim periods
(t = 1, 2), and the final period (t = 3). The outcome of interest concerns an event
described by the indicator variable X, revealed at t = 3. At t = 0, the individual
forms an first probabilistic appraisal about the event. In the next two interim periods,
the individual receives information that may change his assessment. The information
is modeled by signals S1 and S2 respectively, taking finitely many values. In the
initial period, the individual holds a belief about the joint distribution on the triple
(S1, S2, X), which defines the individual’s information structure. Signal S2 contains
information on random outcome X only, while signal S1 may be informative on both
X and signal S2.

The individual who has observed both signals makes a final probability assessment
of the event. Similarly, the individual who has observed S1 forms a belief on his future
probability assessment (a second-order belief), and the individual who has not yet
observed any signal holds a belief on the second-order belief he anticipates to have
the next period (a third-order belief). Of course, at both times t = 0, 1 the individual
can also appreciate the event likelihood, and, at t = 0, the distributions over the
probabilistic beliefs he anticipates having, but these beliefs are redundant. Because
there are finitely many signals, a second-order belief F can be described as a collection
of pairs (f, p), where f is the likelihood of obtaining final assessment p. A third-order
belief µ can also be described as a collection of pairs (q, F ), where q is the likelihood of
having second-order belief F in the next period. The goal is to elicit the individual’s
information structure, or equivalently, the individual’s third-order beliefs.

Probability trees offer a plain graphical representation. Figure 2 gives an example
when S1 and S2 are binary. The overall tree depicts the individual’s belief at t = 0.
The two subtrees express the possible second-order beliefs the individual may have
at t = 1, with their probability shown on the branches. For instance, with the belief
represented the right subtree, the individual’s probability assessment of the event is
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.5

.9
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.7

I am uninformed about the event, and will remain
uninformed next period. I am unsure how much I
will eventually learn, but I will know next period.

I will be slightly more in-
formed next period.

I will be much more informed
next period.

Figure 2: Example of a probability tree representing a third-order belief.

.5× .1 + .5× .9 = .5, and the assessment will be revised to .9 or .1 in the next period:
the individual anticipates being able to predict the outcome 90% of the time. In this
example, the first signal is uninformative on the event itself, because the probabilistic
appraisal remains 50%, but it indicates how informative the second signal will be.

The following protocol is an immediate extension of Protocol (II) of Section 2.

Protocol (VII) In the initial period, the individual is asked to announce his third-
order belief µ. The elicitor then draws the numbers A,B and C uniformly and
independently from [0, 1], and computes

π =
∑

(q,F )∈µ

qmax

B, ∑
(f,p)∈F

f max(C, p)

 .

If A ≥ π, the protocol stops and the individual gets the payoff A. Otherwise, in the
first interim period, the individual is offered the choice either to stop and get the payoff
B, or to continue. If the individual continues, then in the second interim period, the
individual is offered the choice between getting the payoff C or getting the contingent
payoff of 1 if the event occurs (and nothing otherwise).

The value of π corresponds to the expected payoff the individual would make
if given the choice in the first interim period. So, as for the other protocols, the
individual is always at least weakly better off announcing his true belief. However, in
spite of the analogy with the baseline Protocol (II), this protocol generally fails to
elicit third-order beliefs. Elicitation fails, for example, for beliefs as simple as those
depicted in the probability trees of Figure 3.
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Figure 3: Two probability trees not elicited by Protocol (VII).
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Proposition 6 Protocol (VII) does not elicit third-order beliefs as a strict best re-
sponse.

The proof of Proposition 6 is in Appendix B.
The reason behind this lack of incentives is that the class of decision problems the

protocol randomizes upon is not rich enough to differentiate between the elements of
the comparatively larger set of possible third-order beliefs. To elicit beliefs successfully,
we can either restrict the set of possible beliefs, or enrich the class of decision problems.
We examine both possibilities.

Let us start with the first by considering the following restriction: the beliefs
must be so that, for any tuple of second-order beliefs (F1, . . . , Fn), there exists some
probability threshold x such that if i 6= j then EFi [max(x, P )] 6= EFj [max(x, P )], or

equivalently
∫ 1

x
Fi 6=

∫ 1

x
Fj. When this condition is satisfied, we say that second-order

beliefs are restricted.14 For example, second-order beliefs are restricted when they can
be ordered by second-order stochastic dominance, meaning that the possible signals of
the first interim period are informative to different degrees.

Proposition 7 If second-order beliefs are restricted, then Protocol (VII) elicits the
individual’s third-order belief as a strict best response.

The proof of Proposition 7 is in Appendix B.
We now examine the alternative possibility. We abstain from restricting beliefs

but enrich the class of “simple decision problems.”

Protocol (VIII) In the initial period, the individual is asked to report his third-order
belief µ. The elicitor then draws two numbers A,B uniformly and independently from
[0, 1]. In addition, she draws N numbers C1, . . . , Cn and N other numbers d1, . . . , dn
uniformly and independently from [0, 1]. Let Di = di/(d1 + · · · + dN). The elicitor
then computes

π =
∑

(q,F )∈µ

qmax

B, ∑
(f,p)∈F
1≤i≤N

Dif max(Ci, p)

 .

If A ≥ π, the protocol stops and the individual gets the payoff A. Otherwise, in the
first interim period, the individual is offered the choice either to stop and get the payoff
B, or to continue. If the individual continues, then in the second interim period, the
elicitor selects C = CI , with I drawn independently at random with Pr[I = i] = Di.
The individual is then offered the choice between getting the payoff C or getting the
contingent payoff of 1 if the event occurs (and nothing otherwise).

14Of course, we already know that, for any two distinct and unrestricted second-order beliefs

F and F̃ , there always exists an x with
∫ 1

x
F 6=

∫ 1

x
F̃ . The restriction imposes that this inequality

extend beyond pairs of beliefs, to all tuples.
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Proposition 8 If third-order beliefs have support of size at most K and N = 2K2,
then Protocol (VIII) elicits the individual’s third-order belief as a strict best response.
Otherwise, if N is chosen randomly and Pr[N ≤ n] < 1 for every n, Protocol (VIII)
elicits the individual’s third-order belief as a strict best response, without restriction.

The proof of Proposition 8 is in Appendix B.

4 Multiperiod Environments

In this section, we consider the case of any number of time periods, and larger
outcome spaces. The Supplementary Appendix includes extensions for the more
general cases. Our purpose is threefold.

First, it is to demonstrate that, unlike the so-called subgradient methods, the
revealed-preference approach is robust. In particular, it applies broadly and beyond the
special cases investigated in the preceding sections: with a well-chosen, large-enough
class of “simple decision problems” and a suitable randomization over the class, we
can elicit dynamic beliefs of any order in essentially arbitrary dynamic environments.

Second, one can use the protocols of this section for the elicitation and evaluation of
dynamic beliefs or forecasts which do not conform to any of the instances investigated
in Section 3. The fact that the protocols of this section work with general dynamic
environments implies that they continue to elicit beliefs for any more specialized
environment that may be of interest: one does not have to utilize the full dynamics
to benefit from these protocols. In that sense, the most general protocols can be
interpreted as “universal protocols,” which can be used to extract more or less
refined information, depending on the application. While this use may seem excessive
for simple dynamics, we emphasize that if we can assert the existence a class of
decision problems that enables us to distinguish between different dynamic beliefs, in
many settings, identifying the class of the relevant decision problems for making this
distinction can be challenging, as Section 3.4 hints at.

Finally, we show that the family of protocols introduced can also approximate
arbitrarily closely the payoffs of any sufficiently regular protocol. We believe that this
near characterization can be convenient for the problem of selecting a protocol so as to
maximize a given objective, possibly subject to some constraints. While a full analysis
is beyond the scope of this paper, we illustrate this idea in simple principal-agent
problems in the Supplementary Appendix.

Time periods are indexed t = 0, . . . , T . Period 0 is referred to as the initial period,
period T the final period, and periods 1 to T − 1 are the interim periods. As in
the preceding section, a random outcome X materializes in the final period. The
random outcome takes values in a compact metrizable space X , which covers the
common cases [a, b]k and {1, . . . , n}. The individual privately or subjectively receives
information gradually at each period. The individual holds probabilistic beliefs about
this information, and the outcome. The goal is to elicit the high-order beliefs of the
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individual, which inform us about the individual’s beliefs about the outcome, and
also the individual’s beliefs about the beliefs he anticipates having. The individual
continues to be risk neutral and without discounting.

Let ∆1(X ) be the set of distributions over X , these are the set of first-order beliefs.
Recursively let ∆k+1(X ) = ∆(∆k(X )). The set ∆k(X ) is the set of the probability
trees of level k, i.e., the kth order beliefs. Endow each ∆k(X ) with the weak-∗ topology
and the usual Borel σ-algebra.15 In the sequel we use the symbols p and q to denote
probability trees of any level. In period t, the “dynamic belief” is a probability tree
of level T − t. To avoid confusion, we use the subscript notation pt to denote the
high-order belief relevant in period t, and the superscript notation p(k) to denote a
probability tree of level k.

The elicitation protocol describes the rules of interactions between the individual
and the elicitor. By a revelation principle argument, every protocol is payoff-equivalent
to a direct protocol, whereby the individual reveals directly his belief. That means that
in every period t, the elicitor asks the individual to announce his (T − t)th order belief.
The payoff rule Π of a direct elicitation protocol is the individual’s overall expected
payoff Π(p0, . . . , pT−1, x), as a function of the final outcome x and the successive
reports of high-order beliefs of the individuals pt in period t. We require that Π be
jointly measurable in its arguments, and we normalize payoffs to take values in [0, 1].

The objective is to produce a protocol that induces the individual, as a strict best
response, to communicate his dynamic beliefs truthfully in every period. Define an
individual strategy as a family of maps {f0, . . . , fT−1}, where ft(p0, . . . , pt) gives the
belief tree declared in period t as a function of the history of beliefs the individual
has experienced up to period t (such definition rules out randomized strategies and
dependence on other private information; it is, for our purpose, without loss). The
time-t expected payoff of the individual, under strategy f , is then

U(p0, . . . , pt; f) =

∫
Π(f0(p0), . . . , fT−1(p0, . . . , pT−1), x) dpT−1(x) . . . dpt(pt+1).

A strategy f is optimal for the history of beliefs p0, . . . , pt and a protocol with
payoff rule Π if the individual who follows strategy f after having the sequence of
beliefs p0, . . . , pt maximizes his payoff, no matter the strategy followed up to period t.
Formally, for every pair of strategies (g, h), where g = {h0, . . . , ht−1, ft, . . . , fT−1}, we
have

U(p0, . . . , pt; g) ≥ U(p0, . . . , pt;h).

Definition 1 A protocol is strategyproof if

• For all histories, an optimal strategy exists.

• For all histories (p0, . . . , pt), and all optimal strategies f , ft(p0, . . . , pt) = pt.

15The weak-∗ topology refers to the weakest topology for which, given any continuous function,
integration with respect to that function is a continuous linear functional.
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4.1 A Family of Randomized Protocols

Central to our protocols are three instruments: securities, menus of securities,
and menus of (sub)menus. A security is a continuous map S : X → [0, 1] (continuity
is irrelevant if the set of outcomes is discrete). It gives a payoff for every possible
realization of the random outcome. Menus of securities are collections of securities, and
menus of menus are collections of other menus. To distinguish between the different
types of menus, we call menu of order 1 a collection of securities, and menu of order
k a collection of menus of order k − 1. A menu of securities gives the obligation to its
owner to pick one (and only one) security from the menu, in (or before) period T − 1.
A menu of order k gives the obligation to its owner to pick one (and only one) submenu
among the collection it contains, in (or before) period T − k. Thus, an individual
endowed with a menu of order k in period T − k makes k choices at successive times
T − k, . . . , T − 1, to eventually end up with a single security. We work mostly with
finite menus. A menu is finite when it contains a finite number of securities or when
it contains a finite number of submenus, themselves being (recursively) finite. We
denote by Mk the collection of finite menus of order k.

The value of a menu to an individual depends on his dynamic beliefs, captured
by belief trees. Let us denote by πk(Mk, p

(k)) the expected value of the menu Mk of
order k in period T − k, to an individual who holds, as kth order belief, a probability
tree of level k, p(k). Recursively, we have

π1(M1, p
(1)) = max

S∈M1

∫
S(x) dp(1)(x), and, if k > 1,

πk(Mk, p
(k)) = max

mk−1∈Mk

∫
πk−1(mk−1, p

(k−1)) dp(k)(p(k−1)).

Our protocols randomize over large collections of menus.16 As a preliminary, the
elicitor who administers the protocol draws a finite menu MT of order T at random,
according to a probability distribution ξ. The menu is known only to the elicitor.
Then, in every period t = 0, . . . , T − 2, the elicitor asks the individual to reveal his
full dynamic belief at that time—a belief tree of level T − t. She then chooses the
submenu of MT−t that is best according to the individual’s announcement: she selects

16 To ensure the randomization device is well-defined, we endow the set of securities and the set of
all menus of a given order with the Borel σ-algebra, where the space of securities is given the usual
sup-norm topology, and every space of menus is given the Hausdorff metric topology.

The Hausdorff metric is a standard way to measure distances between sets. If d is a metric on X ,
the Hausdorff metric on every Mk is defined recursively by

d(M,M ′) = max

{
max
m∈M

min
m′∈M ′

d(m,m′), max
m′∈M ′

min
m∈M

d(m,m′)

}
for M,M ′ ∈Mk,

where m and m′ denote securities when k = 1. Because menus are finite sets at every level, the
σ-algebra of events does not depend on the particular metric on the space of securities, as long as it
generates the same topology (Theorem 3.91 of Aliprantis and Border, 2006).
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a submenu MT−t−1 ∈MT−t of highest expected value in period t,

MT−t−1 ∈ arg max
mT−t−1∈MT−t

∫
πT−t−1(mT−t−1, p

(T−t−1)) dp(T−t)(p(T−t−1)).

Finally, in the penultimate period T − 1, the individual communicates a posterior
distribution over X—a first-order belief. The elicitor then offers a security taken
from the last menu selected, M1, of highest expected value according to the declared
posterior.17 We refer to such protocols as randomized menu protocols. We stress that,
while these protocols are presented in their general form, with an arbitrary random-
ization device—and so do not have the convenient “closed form” expression of the
protocols of the previous sections—their implementation does not pose any particular
difficulty: for baseline randomization devices, the protocol’s random payoffs can be
computed efficiently via a simple algorithm. We give an example of implementation
in the Supplementary Appendix.

For a given randomized menu protocol with randomization device ξ, we let
Π(p0, . . . , pT−1, x;M) be the payoff to the individual who announces pt in period
t, when the realization of X is x, and if the elicitor draws menu M ∈ MT in the
initial period. Then, the payoff rule of the overall protocol is expressed as

Π(p0, . . . , pT−1, x; ξ) =

∫
Π(p0, . . . , pT−1, x;M) dξ(M). (7)

4.2 Existence

Our next result asserts that strict incentives are implemented by the protocols
of the class just described when the probability measure ξ is full support. Here, a
full-support distribution over menus of order k means that for every finite menu
M ∈Mk and every ε > 0, the probability of drawing a menu at most ε-close to M is
positive, with respect to the Hausdorff distance.

Theorem 1 If a randomized menu protocol randomizes according to a full-support
distribution, then it is strategyproof.

The proof is in Appendix C. The randomized menu protocols follow the general
approach illustrated in Section 2, in which the class of simple decision problems is the
class of finite choice menus.

17 At every stage, if there is more than one submenu or one security that is optimal for the individual,
the administrator selects a submenu uniformly at random among all optimal submenus. Selecting a
submenu uniformly at random guarantees the measurability of the payoff rule. Alternatively, the
individual could get an equal fraction of all optimal submenus, or he could get any optimal submenu
according to a measurable selection. In the proof of Lemma 3 in Appendix C, we show that such a
measurable selection is guaranteed to exist.
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The key challenge in the elicitation of dynamic beliefs in a multiperiod environment
is that the beliefs become naturally richer as the number of periods increases. This
creates two difficulties. The first one is to find the simple decision problems that
allow the distinction between two given beliefs. To overcome this issue, we operate on
the relatively large class of decision problems that are the menu choices. The second
difficulty is that we must randomize over the simple decision problems in a way that
preserves the incentives of the individual, making sure that enough mass is put on the
decision problems that matter for the separation of beliefs. Because we operate on a
large class of decision problems, it can be intricate to ensure that the randomization
is “proper.”

To illustrate, suppose we have a continuum of decision problems indexed by
d ∈ [0, 1], and some problem d0 turns out to be crucial to separate between some
beliefs. We would then want to put a positive weight on d0—so the uniform distribution,
for example, would not work. We would want to put a mass specifically on d0, but we
may not be able to identify d0. And if every problem d turned out to be crucial to
separate between beliefs—perhaps due to the richness or complexity of the beliefs—
then no randomization scheme would work. We surmount this issue by including only
finite menus (which also helps with the implementation) and by controlling the amount
of data required to encode the high-order beliefs (formally given by the σ-algebra of
possible events): we ensure that a (k + 1)th order belief is no more complex than kth

order belief, if k becomes large. Then, perhaps surprisingly, the class of finite menus
is sufficiently large to make it possible to recover the full hierarchy of beliefs.

Notice that, in the above protocols, the elicitor does not disclose her menu choices
to the individual, as if she did, the property of strict incentives would be lost. Of
course, this is not a limitation: the elicitor can first collect the sequence of all the
announcements of the individual, and only after the last announcement is received she
draws a menu and operates on it as in the original protocol. This is a less literal but
more natural interpretation of the above protocols, our example of implementation
in the Supplementary Appendix follows this alternative. In addition, if we are only
interested in the elicitation of the individual’s belief in the initial period, then there is
no loss in disclosing the menu randomly drawn and the subsequent menu choices once
the individual has communicated the initial belief.

4.3 Uniqueness

Here we describe the class of strategyproof protocols by the payoff functions they
induce. There are two results. The first one is an exact characterization. It is best
used as a test that checks whether a given protocol is strategyproof. Because the
proof is not constructive, it generally cannot be used for protocol design. The second
result addresses this shortcoming. It argues that the randomized menu protocols are
essentially unique: under regularity conditions, any protocol that is strategyproof is
approximately payoff-equivalent to some randomized menu protocol. Hence, there is
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no loss of generality in focusing on randomized menu protocols.
We first need to extend notation. Given a protocol with payoff rule Π, with a

slight abuse of notation we denote by Π(p0, . . . , pt) the value of the truthful individual
in period t, as a function of the individual announcements up to period t. These are
defined in a straightforward recursive fashion:

Π(p0, . . . , pT−1) =

∫
Π(p0, . . . , pT−1, x) dpT−1(x),

Π(p0, . . . , pt−1) =

∫
Π(p0, . . . , pt−1, pt) dpt−1(pt).

Having defined these value functions, the test to check if a protocol is strate-
gyproof is a classic subgradient test, which generalizes the common characterization
of probability scoring rules that originates with McCarthy (1956) and Savage (1971).

Proposition 9 Given a protocol with payoff rule Π, the protocol is strategyproof if
and only if the following conditions are satisfied:

1. For every t ≤ T − 1, and every p0, . . . , pt−1, the map Gt(pt) := Π(p0, . . . , pt) is
strictly convex, and the map st(pt, pt+1) := Π(p0, . . . , pt+1) is a subgradient of G
at point pt.

2. For every p0, . . . , pT−2, the map GT−1(pT−1) := Π(p0, . . . , pT−1) is strictly convex,
and the map sT−1(pT−1, x) := Π(p0, . . . , pT−1, x) is a subgradient of G at point
pT−1.

Next we present our main characterization result.

Theorem 2 Consider a strategyproof protocol whose payoff rule Π(p0, . . . , pT−1, x) is
jointly continuous. Then, for every ε > 0, there exists a strategyproof randomized
menu protocol whose payoff rule Π′(p0, . . . , pT−1, x) satisfies

|Π(p0, . . . , pT−1, x)− Π′(p0, . . . , pT−1, x)| < ε

for all p0, . . . , pT−1, x.

The proofs of Theorem 2 and Proposition 9 are in Appendix C.18

18The result is not an exact characterization because randomized menu protocols work with finite
menus, so the proof relies on the approximation of a general payoff rule by the payoff rules induced
by finite menus. A strategyproof protocol could, in principle, use complex hierarchies of menus with
a large continuum of choices, which one may not be able to replicate by randomizing over finite
menus only, as far as we know.
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5 Conclusion

We have considered a dynamic analogue of the probability scoring rules. To induce
truthful announcements, we develop a new constructive approach, based on randomly
selecting among a sufficiently large number of simple dynamic decision problems, and
operating as if we were asking the individual whose information is being elicited to
solve all these problems at the same time. This approach applies quite broadly. It
enables us to derive simple protocols for a range of common instances of dynamic
environments, and it is robust to general dynamic environments.

We have set ourselves up for the most difficult version of the problem: the elicitor
sees nothing along the way. If she can observe some of the information that the
individual observes, it only makes it easier for her to solve the incentive problem.
For example, let us consider a simple case in which there are two possible outcomes,
and an intermediate signal realization which is observable both to the individual and
to the elicitor. The elicitor can simply use a classical scoring rule to elicit the joint
beliefs of the individual over the outcome and signal realization. Upon observing
the signal realization, the elicitor can then form her own updated belief; and in
particular, the joint belief of the individual can be used to construct a second-order
belief. Intermediate cases in which the elicitor can observe some of the information
which the individual can observe can be similarly studied; the point is the individual
does not need to condition her payoff on the information which is observable in the
interim: she can use the framework developed in this paper to condition her payoff
only on the observed outcome and still fully retain strict incentive compatibility.

It is worth pointing out that the method we provide is not unique to the elicitation
of probabilities. In different contexts, it could be employed to elicit distributions of
linear characteristics. For example, consider an environment in which workers are
parameterized by a scalar θ ∈ [0, 1] (a cost of effort, say). The utility of a worker
of type θ from working x hours and receiving compensation T is uθ(x, T ) = T − θx.
Constructing a payoff rule or contract (x(θ), T (θ))θ which allows a firm to completely
elicit θ is a standard problem, very similar to the problem of constructing proper scoring
rules. Now, suppose the firm wants to elicit the distribution of worker types in the
economy. The firm negotiates with a union that knows the distribution, µ ∈ ∆([0, 1]).
The union evaluates contracts by a utilitarian criterion, so that the utility of incentive
compatible contract (x(θ), T (θ))θ is given by∫

[0,1]

T (θ)− θx(θ)dµ(θ).

Our results imply that the firm can, in principle, completely elicit the distribution
of worker types by offering the union to choose from a carefully designed menu of
contracts.
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Appendices

A Stage-Separated Protocols

The purpose of this appendix is to show that eliciting a first-order belief via
some method that uses the final outcome as observable information, and, separately,
eliciting the second-order belief via a method that uses the elicited first-order belief as
observable information, does not induce truthful responses.

We focus on the three-period case (the impossibility result extends directly to
any number of periods), and we borrow notation and terminology from Section 3.1.
The random variable X takes values in X = {1, . . . , n}, n ≥ 2. The elicitor asks
the individual to disclose his second-order belief F ∈ ∆(∆(X )) in the initial period,
his first-order belief p ∈ ∆(X ) in the interim period, and finally, when the random
variable materializes to value x, she rewards the individual with a payoff equal to
Π(F, p, x) (on average, if the protocol is randomized).

We ask if we can choose a strategyproof payoff rule Π (following the definition
of strategyproofness in Section 4) of the form Π(F, p, x) = Π1(F, p) + Π2(p, x); that
is, we separate stages, the individual gets a first payoff after announcing the second-
and first-order beliefs, and a second payoff after the random variable realizes that
depends only on the reported first-order belief and the realization. When the payoff
rule of a protocol satisfies this condition, we say it is stage separated. Stage-separated
protocols have a natural interpretation: they use the publicly observed outcome of
X to elicit the posterior p through Π2, and then, using p, they attempt to elicit the
prior F via Π1. For example, Π1 and Π2 could be the payoffs of classic probability
elicitation methods, such as the quadratic score or the BDM mechanism for Π2, and
the Matheson-Winkler elicitation method (Matheson and Winkler, 1976) for Π1.

Proposition 10 If a protocol is stage separated, then the protocol is not strategyproof.

To understand the intuition behind this result, suppose that the protocol satisfies
some smoothness conditions and that, absent a first stage, the protocol would induce
the individual to report truthfully his first-order belief. Let us focus on the individual’s
decision in the interim period. Assume that the individual has reported his true second-
order belief F , that his true first-order belief is p, but that he reports p+ ∆p. The
expected payoff difference due to his deviation is

Π1(F, p+ ∆p)− Π1(F, p) + Π2(p+ ∆p, p)− Π2(p, p),

where Π2(p̃, p) designates the individual’s expected payoff in the interim period when
he reports p̃ while his true belief is p. Because Π2(p̃, p) is maximized when p̃ = p, we
expect the second term Π2(p+ ∆p, p)− Π2(p, p) to be of order at most ‖∆p‖2, under
smoothness conditions. However, unless Π2(F, p̃) is constant in p̃, we also expect the
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first term Π1(F, p+ ∆p)−Π1(F, p) to be of order ‖∆p‖, for at least some instances
of p. Thus, there are situations in which the gains realized from the first stage when
deviating from the truth in the interim period exceed the losses incurred in the second
stage: the protocol is not strategyproof. The formal proof follows.
Proof of Proposition 10. Consider a stage-separated protocol. For every declared
second-order belief F̃ , let gF̃ (p̃, x) be the total payoff (or average total payoff, if the
protocol is randomized) to the individual as a function of the announced first-order
belief p̃ and realization x:

gF̃ (p̃, x) = Π1(F̃ , p̃) + Π2(p̃, x).

Suppose that gF̃ (p, p) > gF̃ (p̃, p) for every p̃ 6= p, where gF̃ (p̃, p) is the individual’s total
expected payoff given his realized posterior belief p—this inequality would be required
of any strategyproof protocol. Let gF̃ be the map on ∆(X ) defined by gF̃ (p) = gF̃ (p, p).
Note that gF̃ is convex, so the preceding inequality can be interpreted saying that the

map x 7→ Π1(F̃ , p̃) + Π2(p̃, x) is a subgradient of gF̃ at point p̃. Because the domain
of gF̃ is the simplex, the map x 7→ Π2(p̃, x) is also a subgradient. Thus the convex
functions gF̃ share the same subgradients. In particular, for every p′, p′′ ∈ ∆(X ),

gF̃ (p′′)− gF̃ (p′) =

∫ 1

0

(p′′ − p′) · Π2(αp′′ + (1− α)p′, ·) dα

where p · q is the dot product between p and q on the simplex ∆(X ) interpreted as a

subset of Rn. Thus for all F, F̃ , we get that gF − gF̃ is constant: in the initial period,

the individual is best off reporting any F̃ that maximizes gF̃ (p̃), for an arbitrary p̃,
independently of his true second-order belief. This fact means that the protocol is not
strategyproof.

It can be seen that the payoff rule of the mechanism suggested in Karni (2018a,b)
is the sum of a Matheson-Winkler score and a quadratic scoring rule. Therefore, one
reading of his work is that, by increasing the magnitude of the payoffs in the second
stage comparatively to the payoffs of the first stage, one can get the individual to
make reports increasing closer to his true belief for various decision models, which is
consistent with the intuition above.

B Proofs of Section 3

B.1 Proof of Proposition 6

Let µ and µ̃ be the two probability trees of Figure 3:

µ =

{(
1

2
, F1

)
,

(
1

2
, F2

)}
and µ̃ =

{(
1

2
, F̃1

)
,

(
1

2
, F̃2

)}
,
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with

F1 =

{(
1

4
, 0

)
,

(
1

2
,
1

3

)
,

(
1

4
, 1

)}
,

F2 =

{(
1

2
, 0

)
,

(
1

2
,
2

3

)}
,

and

F̃1 =

{(
1

2
, 0

)
,

(
1

4
,
1

3

)
,

(
1

4
, 1

)}
,

F̃2 =

{(
1

4
, 0

)
,

(
1

4
,
1

3

)
,

(
1

2
,
2

3

)}
.

For any second-order belief F , let Π(F ;C) be the expected payoff of the individual
at t = 1 when the choice is to continue. Simple calculations yield

Π(F1;C) =

{
5
12

+ 1
4
C if 0 ≤ C ≤ 1

3
1
4

+ 3
4
C if 1

3
≤ C ≤ 1

, Π(F2;C) =

{
1
3

+ 1
2
C if 0 ≤ C ≤ 2

3

C if 2
3
≤ C ≤ 1

,

and

Π(F̃1;C) =

{
1
3

+ 1
2
C if 0 ≤ C ≤ 1

3
1
4

+ 3
4
C if 1

3
≤ C ≤ 1

, Π(F̃2;C) =


5
12

+ 1
4
C if 0 ≤ C ≤ 1

3
1
3

+ 1
2
C if 1

3
≤ C ≤ 2

3

C if 2
3
≤ C ≤ 1

.

Similarly, let Π(µ;B,C) be the expected payoff at t = 0 of an individual with
third-order belief µ assuming the protocol continues at least to the next period. Let
Π(µ̃;B,C) be the expected payoff for third-order belief µ̃.

If 0 ≤ C ≤ 1/3, then Π(F1;C) = Π(F̃2;C) and Π(F2;C) = Π(F̃1;C). So, for all B,

Π(µ;B,C) =
1

2
max(B,Π(F1;C)) +

1

2
max(B,Π(F2;C))

=
1

2
max(B,Π(F̃2;C)) +

1

2
max(B,Π(F̃1;C))

= Π(µ̃;B,C).

Similarly, if 1/3 ≤ C ≤ 1, then Π(F1;C) = Π(F̃1;C) and Π(F2;C) = Π(F̃2;C). So,
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for all B,

Π(µ;B,C) =
1

2
max(B,Π(F1;C)) +

1

2
max(B,Π(F2;C))

=
1

2
max(B,Π(F̃1;C)) +

1

2
max(B,Π(F̃2;C))

= Π(µ̃;B,C).

Altogether, for all B,C, Π(µ;B,C) = Π(µ̃;B,C) and the decision of the elicitor, at
t = 1, is the same whether the announced third-order belief is µ or µ̃, independently of
the draw of A,B,C. Hence, announcing µ̃ when one’s true belief is µ (and conversely)
is still a best response.

B.2 Proof of Proposition 7

We have already argued that truthful announcements are a weak best response,
at least. We show that the best response is strict. As for Proposition 6, Π(µ;B,C)
denotes the expected payoff of an individual, at t = 0, whose third-order belief is µ,
and who is about to face the choice in the first interim period:

Π(µ;B,C) =
∑

(q,F )∈µ

qmax

B, ∑
(f,p)∈F

f max(C, p)

 .

Let µ and µ̃ be distinct third-order beliefs whose supports lie within the restricted class
considered. If there exist B,C such that Π(µ;B,C) 6= Π(µ̃;B,C) then, by continuity
of Π(µ;B,C) in B and C, there exists a positive mass of triples (A,B,C) such that

min (Π(µ;B,C),Π(µ̃;B,C)) < A < max (Π(µ;B,C),Π(µ̃;B,C)) ,

so that an individual whose belief is µ and who announces µ̃ gets a strictly suboptimal
payoff with positive probability on the random triple (A,B,C)—and so gets a strictly
suboptimal payoff overall.

The proof then reduces to demonstrating the existence of B and C such that
Π(µ;B,C) 6= Π(µ̃;B,C). It is convenient to assume that µ and µ̃ share the same
probability trees that characterize the second-order beliefs. To do so we write

µ = {(qi, Fi)}1≤i≤n and µ̃ = {(q̃i, Fi)}1≤i≤n

with Fi 6= Fj if i 6= j and possibly qi = 0 or q̃i = 0.
Let C be such that the n payoffs Π(F1;C), . . . ,Π(Fn;C) can be totally ordered,

for example, Π(F1;C) < · · · < Π(Fn;C). It is then easily verified that the linear span
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of the set of vectors of Rn

{(max(B,Π(F1;C)), . . . ,max(B,Π(Fn;C))) | B ∈ [0, 1])} (8)

is Rn (for instance, by varying B gradually on its range, one can progressively construct
the vectors (0, . . . , 0, 1), (0, . . . , 0, 1, 1), and so forth, to make a basis). As µ 6= µ̃,
(q1, . . . , qn) 6= (q̃1, . . . , q̃n), and the set of vectors (8) has full rank, there exists B such
that ∑

i

qi max(B,Π(Fi;C)) 6=
∑
i

q̃i max(B,Π(Fi;C)),

and hence Π(µ;B,C) 6= Π(µ̃;B,C).

B.3 Proof of Proposition 8

Let Π(F ;C,D) be the expected payoff of an individual in the first interim period,
with second-order belief F and who chooses to continue, and for the parameters
C = (C1, . . . , CN) and D = (D1, . . . , DN). Let µ and µ̃ be distinct third-order beliefs
and suppose that the support of each of these third-order beliefs has size at most K.
Let F = {F1, . . . , Fn} be the union of the two supports.

The key argument in Proposition 7 relies on the fact that for some draws of the
elicitor, any two second-order beliefs in F yield different expected payoffs of the
continuing individual in the first interim period. In that proposition, the fact is simply
assumed, by having restricted second-order beliefs. In this proposition, we show the
fact holds in the modified protocol. The same argument then continues to apply.

Let qi be the probability, according to µ, of obtaining belief Fi in the first interim
period, and let q̃i be the analog for µ̃. As argued in the proof of Proposition 1, for
every i 6= j, there exists αij ∈ [0, 1] such that EFi [max(αij, P )] 6= EFj [max(αij, P )].
The remainder of the proof requires the following result.

Lemma 1 Let C ⊂ Rn be finite. If, for all i 6= j, there exists X ∈ C such that
Xi 6= Xj, then there exists a convex combination Y of the vectors of C such that for
all i 6= j, Yi 6= Yj.

Proof. Let us start with an arbitrary Y ∈ C and apply the following iterative
procedure. For any pair i 6= j such that Yi = Yj , we transform Y into αX + (1− α)Y ,
where X is a vector of C such that Xi 6= Xj and α ∈ (0, 1). The transformed Y
satisfies Yi 6= Yj, and if α is chosen small enough, then all pairs of different elements
under the original vector Y remain pairs of different elements under the transformed
vector Y . We iterate this process while there is any remaining pair i 6= j with Yi = Yj .
As there are only finitely many pairs, the procedure terminates and generates a vector
whose elements are pairwise different.

Returning to the proof of Proposition 8, let X ij be the vector of Rn

X ij =
(

EF1 [max(αij, P )], . . . , EFn [max(αij, P )]
)
,
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and let C be the collection of the vectors X ij for every pair (i, j) with i < j. There
are at most 2K(2K − 1)/2 < 2K2 = N elements in C, and by Lemma 1, there exists
a vector Y written as convex combination of elements of C such that for every i 6= j,
Yi 6= Yj. Therefore, for some vectors C = (C1, . . . , CN) and D = (D1, . . . , DN), with
0 ≤ D` ≤ 1, and such that for every `, C` = αij for some i, j, element Yk of vector Y
is equal to

N∑
`=1

D` EFk [max(C`, P )] = Π(Fk;C,D).

Hence, there exists C and D such that, for all F, F̃ ∈ F , F 6= F̃ , Π(F ;C,D) 6=
Π(F̃ ;C,D): any two second-order beliefs in F yield different expected payoffs of the
continuing individual in the first interim period.

C Proofs of Section 4

C.1 Some Auxiliary Lemmas

We introduce some technical lemmas to show that the payoff rules and value
functions associated with menus satisfy some regularity conditions, such as continuity
and measurability. These are needed to enable the computation of expectations, and
to allow the use of approximation arguments in the proof of Theorem 1.

In the sequel, to simplify notation, let π0(S, x) be the payoff associated to a security
S when the outcome of X is x, let ∆0(X ) designate X , and let M0 be the set of
securities taking values in the normalized interval [0, 1], instances of such securities
will be denoted by S or M0.

Lemma 2 For every k ≥ 0, the value map (Mk, p
(k)) 7→ πk(Mk, p

(k)) for menu
Mk ∈ Mk and belief tree p(k) ∈ ∆k(X ), is jointly continuous. In addition, the step-
ahead value map (Mk, p

(k+1)) 7→
∫
πk(Mk, q) dp(k+1)(q), is also jointly continuous in

Mk ∈Mk and p(k+1) ∈ ∆k+1(X ).

Proof. The proof proceeds by induction.
Let f0(S, p(1)) =

∫
S dp(1) and for k ≥ 1 let fk(Mk, p

(k+1)) =
∫
πk(Mk, q) dp(k+1)(q).

Note that π0 is jointly continuous and f0 is also jointly continuous, because
securities have a compact domain and ∆1(X ) is endowed with the weak-∗ topology.
Also, S 7→ π0(S, ·) is continuous in the sup-norm topology.

We show that if fk is jointly continuous, and if Mk 7→ πk(Mk, ·) is continuous in the
sup-norm topology, then both πk+1 and fk+1 are jointly continuous, and in addition
Mk+1 7→ πk+1(Mk+1, ·) is continuous in the sup-norm topology.

Let hk+1 be the correspondence from Mk+1 ×∆k+1(X ) to Mk that is defined by
hk+1(Mk+1, p

(k+1)) = Mk+1. Because hk+1 has nonempty compact values and is contin-
uous when interpreted as a map from Mk+1 ×∆k+1(X ) to Mk+1, the correspondence

39



is continuous (Theorem 17.15 of Aliprantis and Border, 2006). Since fk is continuous,
we can then invoke Berge’s Maximum Theorem (see, for example, Theorem 17.31 of
Aliprantis and Border, 2006) to get that the map

(Mk+1, p
(k+1)) 7→ max

m∈hk+1(Mk+1,p(k+1))
fk(m, p

(k+1))

is continuous. This proves the joint continuity of πk+1. If, in addition, Mk+1 7→
πk+1(Mk+1, ·) is continuous in the sup-norm topology, then fk+1 is jointly continuous
(Corollary 15.7 of Aliprantis and Border, 2006).

What remains to be shown is the continuity of the maps Mk+1 7→ πk+1(Mk+1, ·).
Let Ck+1 be the space of continuous real functions on ∆k+1(X ) endowed with its

sup-norm. Let Kk+1(Mk+1) ⊂ Ck+1 be the convex hull of {πm;m ∈ Mk+1}, which,
being the finite union of points, is closed and bounded in Ck+1. Let C ′k+1 be the
norm dual of Ck+1, which consists of all norm-continuous linear functionals. Let
Uk+1 be the closed unit ball of Ck+1, and U ′k+1 ⊂ C ′k+1 be its polar, so that v ∈ U ′k+1

if |v(x)| ≤ 1 for all x ∈ Uk+1. For a given closed, bounded set C of Ck+1, let hC
defined by hC(v) = supx∈C v(x) denote its support function. Using the induction
hypothesis, we remark that the map Mk+1 7→ Kk+1(Mk+1) is continuous, if the set of
closed bounded subsets of Ck+1 is given the Hausdorff metric induced by the sup-norm
topology. Let us suppose that a sequence {M (i) ∈ Mk+1; i = 1, 2, . . . } converges
to some M∞ ∈ Mk+1. Then limi→∞ supu′∈U ′ |hKk+1(M(i))(u

′)− hKk+1(M∞)(u
′)| = 0 by

Lemma 7.58 of (Aliprantis and Border, 2006). By the Riesz-Radon representation
(Corollary 14.15 of Aliprantis and Border, 2006), every p(k+1) ∈ ∆k+1(X ) can be
identified with a member of U ′, so that πk+1(Mk+1, ·) can be viewed as the support
function of Kk+1(Mk+1) restricted to ∆k+1(X ). Thus,

lim
i→∞

sup
p(k+1)∈∆k+1(X )

|πk+1(M (i), p(k+1))− πk+1(M∞, p(k+1))| = 0,

which makes Mk+1 7→ πk+1(Mk+1, ·) continuous.
In the lemma below, we slightly generalize the notation introduced in Section 4.

For any k ≥ 1, and M a menu of order k, let Πk(p(k), . . . , p(1), x;M) denote the value
of such a menu when X = x, for a risk-neutral individual with no discounting and
who observes probability trees p(k) ∈ ∆k(X ), . . . , p(1) ∈ ∆1(X ) at the successive times
of exercise of M and its submenus.

Lemma 3 The map (p(T ), . . . , p(1), x,MT ) 7→ Π(T )(p(T ), . . . , p(1), x;MT ), where p(k) ∈
∆k(X ), MT ∈MT , and x ∈ X , is jointly measurable in the product σ-algebra.

Proof. As in Lemma 2, for every k we define the correspondence hk(Mk, p
(k)) = Mk,

and the function fk(Mk, p
(k+1)) =

∫
πk(Mk, q) dp(k+1)(q).

For every k, we note that hk is measurable (Theorem 18.10 of Aliprantis and Border,
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2006), that hk is a Carathéodory function, and that the space Mk is separable.19 We
can then apply the Measurable Selection Theorem (Theorem 18.19 of Aliprantis and
Border, 2006), and we get that the argmax correspondence

arg max
m∈hk+1(Mk+1,p(k+1))

∫
πk(m, q) dp(k+1)(q)

is measurable and admits a measurable selector. Moreover, by the Castaing Represen-
tation Theorem (Corollary 14.18 of Aliprantis and Border, 2006), we can enumerate
the elements of the argmax in a measurable way, in the sense that there exists a
sequence of measurable selectors {Φ(i)

k+1; i = 1, 2, . . . } such that

arg max
m∈hk+1(Mk+1,p(k+1))

fk(mk, p
(k+1)) = {Φ(i)

k+1(Mk+1, p
(k+1)); i = 1, 2, . . . }.

We observe that∣∣∣∣∣arg max
m∈Mk+1

∫
πk(m, q) dp(k+1)(q)

∣∣∣∣∣ = lim
j→∞

j∑
i=1

1∑j
`=1 1Φ

(i)
k+1(Mk+1,p(k+1))=Φ

(`)
k+1(Mk+1,p(k+1))

is measurable as a pointwise limit of real-valued measurable functions.
The remainder of the proof continues with a brief induction argument. Note that

Π0 defined by Π0(x;S) = S(x) is measurable. Suppose that Πk+1 is measurable. Then
Πk, which can be written

Πk+1(p(k+1), . . . , p(1), x;Mk+1) =

1∣∣∣arg maxm∈Mk+1

∫
πk(m, ·) dp(k+1)

∣∣∣ lim
j→∞

j∑
i=1

Πk(p(k), . . . , p(1), x; Φ
(i)
k+1(Mk+1, p

(k+1)))∑j
`=1 1Φ

(i)
k+1(Mk+1,p(k+1))=Φ

(`)
k+1(Mk+1,p(k+1))

.

becomes measurable. This concludes the proof.

C.2 Proof of Theorem 1

The proof consists of two parts. The first part deals with the separation of different
individuals at a given time when there are only two possible types. In the multiperiod
case, we use for “simple decision problems” the class of finite menus. Decisions then
consist in choosing an element from the menu at the initial period, then an element
from the chosen submenu at the next period, and so forth until the penultimate period

19First, note that the set of securities is a separable metric space, by Lemma 3.99 of Aliprantis
and Border (2006). Then the result follows as the set of finite sets of a separable metric space is
itself separable when endowed with the Hausdorff topology. In particular, the set of finite sets of a
countable dense subset is countable and dense in the Hausdorff topology.
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when the decision reduces to choosing among a set of securities from the submenu
chosen last. In the first part of the proof, we show that this class of decision problems
is rich enough to discriminate between any two individuals whose belief trees are of
two possible sorts. In the second part of the proof, we apply the Allais randomization
idea to discriminate between any two individuals whose belief trees are no longer
restricted.

C.2.1 Part 1: Discriminating Between Two Belief Trees

Let p(k) and q(k) be two different probability trees of level k, that represent the
dynamic beliefs of two individuals in period T − k. We refer to the individual with
(dynamic) belief p(k) as type p(k), and the individual with belief q(k) as type q(k).

In this first part, we show that there exists a menu Mpq
k of level k with two different

submenus Mp
k−1 and M q

k−1 such that if offered Mpq
k in period T − k, type p(k) is

strictly better off choosing submenu Mp
k−1 while type q(k) is strictly better off choosing

submenu M q
k−1.

To understand the proof, it is helpful to start from the penultimate period T −1, in
which case the belief trees have level k = 1 and simply represent outcome distributions.
The problem aforementioned reduces to choosing two securities Sp and Sq such that
type p(1) strictly prefers Sp and type q(1) strictly prefers Sq. It is easy to achieve
when observing that, because p(1) 6= q(1), at least one continuous map f : X → [0, 1]
exists that separates p(1) from q(1), in the sense that the expected payoff from f , when
interpreted as a security, is different for the two types:∫

f dp(1) 6=
∫
f dq(1).

It is immediate for the case of finite outcome spaces, and more generally holds for
metrizable spaces by Aleksandrov’s Theorem (Theorem 15.1 of Aliprantis and Border,
2006). Because X is compact, we can choose f to be bounded. For example, suppose∫
f dp(1) is greater than

∫
f dq(1). Then we can set Sp = f and Sq to be the average of∫

f dp(1) and
∫
f dq(1). A symmetric argument holds if

∫
f dp(1) is less than

∫
f dq(1).

For this argument to work, the key element is to have essentially complete flexibility
in the design of the security—which is also the individual’s value function at the next
and final period T .

Now consider the problem of separating individuals with with different belief trees
of some higher level, and so at some earlier time. To do so, for any k ≥ 1 and any
belief tree µ(k) of level k, with a slight abuse of notation, let πMk

(µ(k)) to be the value
of menu Mk ∈Mk in period T − k to any individual who holds belief tree µ(k) at that
time (that is, πMk

(µ(k)) = πk(Mk, µ
(k))).

Thus, for k > 1, we seek to design submenus Mp
k−1,M

q
k−1 such that type p(k)

strictly prefers Mp
k−1 and type q(k) strictly prefers M q

k−1. Note that the expected
payoff for any type µ who chooses submenu Mpq

k−1 in period T − k is the expectation
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of the value function in the next time period,∫
πMk−1

dµ.

If we can choose the value functions arbitrarily then the argument of the case k = 1
continues to apply. However with k > 1 the value functions can no longer be chosen
arbitrarily, for k = 2 they are the space of strictly convex functions over probability
distributions, and as k increases they become a increasingly smaller subset of strictly
convex functions whose domain is the growing space of belief trees of level k − 1.

Nevertheless, and perhaps surprisingly, the space of value functions is rich enough
so that the difference between two value functions can approximate arbitrarily closely
any continuous function on ∆k−1(X ). We can then apply a similar argument as for the
case k = 1 to prove type separation for k > 1. The proof relies on a duality between
the space of menus and the space of value functions, whereby the set of value functions
is shown to have the structure of a Boolean ring, which in turn enables the application
of a version of the Stone-Weierstrass Theorem for these algebraic structures. We state
and prove the result in the following lemma.

Lemma 4 For every k ∈ {1, . . . , T}, p(k), q(k) ∈ ∆k(X ) with p(k) 6= q(k), there exists
Mk−1 ∈Mk−1 (Mk−1 is a security if k = 1) such that∫

πMk−1
dp(k) 6=

∫
πMk−1

dq(k). (9)

Proof. The proof proceeds by induction. As shown above, Equation (9) is satisfied
for k = 1 and some security M0 = S. Now let us assume that the statement of the
lemma is valid for k, and show it is then valid for k + 1.

Step 1. We begin with two direct implications. First, there exist Mp
k−1 and M q

k−1,

both elements of Mk−1, such that when type p(k) is offered Mpq
k := {Mp

k−1,M
q
k−1} in

period T − k, he is strictly better off choosing Mp
k−1 while type q(k) is strictly better

off with M q
k−1. The construction is analogous to the case k = 1. If, for example,∫

πMk−1
dp(k) >

∫
πMk−1

dq(k),

we set Mp
k−1 = Mk−1 and M q

k−1 = 1
2

(∫
πMk−1

dp(k) +
∫
πMk−1

dq(k)
)
. Second, if Mp

k−1

and M q
k−1 are chosen as such, we note that the value of Mpq

k is different for the two

types: πMpq
k

(p(k)) 6= πMpq
k

(q(k)).

Step 2. Let Bk be the set of continuous and bounded real functions on ∆k(X ). We
endow Bt with the topology of uniform convergence. Also recall that every ∆k(X ) is
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equipped with the weak-∗ topology. If a space S is compact and metrizable, then ∆(S)
endowed with the weak-∗ topology is compact and metrizable, by the Banach-Alaoglu
Theorem and the Riesz-Radon Representation Theorem (for example, Theorem 15.11
of Aliprantis and Border, 2006). It follows that every ∆k(X ) is a compact metrizable
space.

Let Lk = {πMk
− πM ′k ,Mk,M

′
k ∈ Mk}. Note that Lk is a subset of Bk. We show

below that Lk is a boolean ring for the operations “plus” and “max”, in the sense
that (a) 0 ∈ Lk, and (b) if f, g ∈ Lk then f + g ∈ Lk and max{f, g} ∈ Lk.

To do so, it is useful to endow recursively every set of menusM` with the following
operations:

• Minkowski addition: for any M,M ′ ∈M1, we define the menu M +M ′ ∈M1

by {S + S ′;S ∈ M,S ′ ∈ M ′}; if ` > 1 and M,M ′ ∈ M`, we define recursively
M +M ′ = {m+m′;m ∈M,m′ ∈M ′}.

• Scalar multiplication: for any α ≥ 0, and for any M ∈ M1, we define αM =
{αS;S ∈ M}; if ` > 1, and M ∈ M`, we define recursively αM = {αm;m ∈
M}.

Let 1 ∈ Mk be the (degenerate) menu that generate the constant payoff 1, and
0 ∈Mk be the (degenerate) menu that generate the constant payoff 0. The following
equalities hold for each µ ∈ ∆k(X ) and each M,M ′ ∈Mk, :

π0(µ) = 0,

π1(µ) = 1,

πM+M ′(µ) = πM(µ) + πM ′(µ),

παM(µ) = απM(µ) ∀α ≥ 0,

πM∪M ′(µ) = max{πM(µ), πM ′(µ)}.

Thus, 0 ∈ Lk. In addition, for each α ≥ 0,

α(πM − πM ′) = παM − παM ′ .

Finally, observe that, for M,M ′, N,N ′ menus of level k,

(πM − πM ′) + (πN − πN ′) = πM+N − πM ′+N ′

and

max{πM − πM ′ , πN − πN ′} = max{πM + πN ′ , πN + πM ′} − (πM ′ + πN ′) (10)

= π(πM+πN′ )∪(πN+πM′ )
− (πM ′ + πN ′). (11)

In summary, the following conditions are satisfied:

1. Lk is a boolean ring.
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2. Lk includes the constant function 1, since 1 = π1 − π0.

3. Lk is stable by scaling: αLk ⊆ Lk for any α ∈ R.20

4. ∆k(X ) is a compact Hausdorff space.

5. Lk separates points in the sense that if f(p) = f(q) for every f ∈ Lk then p = q.
It is a direct consequence of the second implication in Step 1 of the proof.

Therefore, we can apply the version of the Stone-Weirstrass Theorem for Boolean
rings described in Theorem 7.29 of Hewitt and Stromberg (1997), which implies that
Lk is dense in Bk in the topology of uniform convergence.

We end the proof by contradiction. If, for every Mk ∈Mk, it is the case that∫
πMk

dp(k+1) =

∫
πMk

dq(k+1)

then for every f ∈ Lk, ∫
f dp(k+1) =

∫
f dq(k+1)

and by application of the Stone-Weirstrass Theorem, the equality remains true for
every f ∈ Bk. That ∆k(X ) is metrizable implies p(k) = q(k) by Aleksandrov’s Theorem.
Thus, there exists a menu Mk of level k such that∫

πMk
dp(k+1) 6=

∫
πMk

dq(k+1),

which concludes the proof by induction.

C.2.2 Part 2: Randomization

In this second part, we show that a full-support randomization over finite menus
allows to distinguish between any two individuals whose belief trees differ at some
point in time, without restriction on the belief trees.

Formally, let us fix a full-support distribution ξ over the set of level-T menus MT .
Fix any two sequences of belief trees p = {p(T ), . . . , p(1)} and q = {q(T ), . . . , q(1)} with
p 6= q (recall the superscript (k) denotes a tree of level k). Proving Theorem 1 reduces
to proving the following statement: with positive probability relative to the menu MT

drawn at random according ξ, the individual who is given menu MT at the outset
and observes the unraveling sequence of belief trees p over time is strictly better off
making at least one decision different from all optimal decisions of the individual who
observes the sequence of belief trees q. We refer to the individual of observes p as
type p, and the individual of observes q as type q.

20By the boolean ring property αLk ⊆ Lk if α ≥ 0, and by definition of Lk, −Lk ⊆ Lk.
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Fix an arbitrary level k such that p(k) 6= q(k), and let M?
k = {Mp,?

k−1,M
q,?
k−1} be a

menu of level k that separates between the two belief trees p(k) and q(k), and whose
existence is shown in Part 1 of this proof. We abuse notation in that if k = 1, then
Mp,?

k−1 and M q,?
k−1 denote securities. Define the (degenerate) menu of level N , M?

N , which
includes only M?

k , i.e., either M?
N = M?

k if k = N , otherwise M?
N = {. . . {M?

k} . . . }.
For such a menu, there is no decision to be made until period T − k when the decision
maker must choose between either Mp

k or M q
k .

Because of the full support assumption, to prove the above statement, it is sufficient
to show that for any menu MT selected anywhere in small enough neighborhood of M?

T ,
type p := (p(T ), . . . , p(1)) is strictly better off choosing a different submenu/security
than type q := (q(T ), . . . , q(1)), for every optimal selection of type q.

By Step 1 and Lemma 4, there exists ε > 0 such that for any level-k menus Mk,M
′
k

with d(Mk,M
p,?
k ) < ε and d(M ′

k,M
q,?
k ) < ε, type p(k) would be strictly better off

choosing Mk over M ′
k at t = T −k, while type q(k) would be strictly better off choosing

M ′
k over Mk.
Consider any menu MT of level T such that d(MT ,M

?
T ) < ε. In this case, by a

direct induction argument, every one of the submenus, subsubmenus, etc. of MT of
level k − 1 (or securities if k = 1) is either ε-close to Mp,?

k−1 or, it is ε-close to M q,?
k−1;

moreover, the use of the Hausdorff distance also implies that in every submenu of
level k of MT , there is at least one submenu closest to Mp,?

k−1 and another submenu
closest to M q,?

k−1. Thus the decisions that are optimal for type p in period T − k are
strictly suboptimal for type q and inversely.

C.3 Proof of Proposition 9

Fix t ≤ T . When the individual participates in a strategyproof protocol, Gt(pt) can
be thought of as the time-t value, written as a function of the individual’s true time-t
belief pt. If we consider only one-step deviations from the truth in period t—in the
sense that the individual always tells the truth before and after period t, but possibly
not in period t—then the strict convexity of Gt becomes necessary and sufficient for a
strict best response. Additionally, it must be the case that the time-(t+ 1) value to
the individual (who is truthful from period t+ 1 onwards) is a subgradient of Gt.

The arguments are standard and thus omitted. We then observe that for a protocol
to be strategyproof, it is necessary and sufficient that it be robust to every one-time
deviation.

C.4 Proof of Theorem 2

The proof is decomposed in two steps. First, we approximate the payoff rule Π by
a payoff rule associated with a finite menu. Since finite menus only uncover beliefs
partially, in a second step we complement the payoff rule by a small fraction of a
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strategyproof protocol. The overall payoff rule can be implemented via a randomized
menu protocol.

The main difficulty lies in the construction of the finite menu. This menu is
obtained by sampling the original payoff rule, finitely many times in such a way that,
whenever a selection needs to be made from that finite menu or one its submenus, the
payoffs associated with that choice remain close to the payoffs of the original payoff
rule.

For any finite menu M of order T , let Π?(p0, . . . , pT−1, x;M) be the induced payoff
rule, and let Π?(p0, . . . , pT−1, x; ξ) be the payoff rule induced by the randomized menu
protocol that randomizes according to ξ. Let us slightly abuse notation and denote by

Πt(q0, . . . , qt; pt)

the maximum expected value, in period t, of the individual who faces payoff rule Π
and who reports q0, . . . , qt from period 0 to period k, but holds belief pt in period t.
Similarly,

Π?
t (q0, . . . , qt; pt;M)

is the maximum expected value of the individual endowed with the finite menu M
in the initial period instead. Let d(·, ·) denote a compatible metric on each space
∆k(X )—for example, the Lévy-Prokhorov metric.

Fix ε > 0. Because Π is continuous on ∆T (X )×· · ·×∆(X )×X , which is a compact
set, it is uniformly continuous. Thus, there exists δ0 > 0 such that if, for each i, pi is
δ0-close to p′i, i.e., d(pi, p

′
i) < δ0, then |Π(p0, . . . , pT−1, x) − Π(p′0, . . . , p

′
T−1, x)| < ε/2

for each x ∈ X .

Step 1(a). We show that there exists a finite subset Σ0 of ∆N(X ) such that, for
each p0, if

q∗0 ∈ arg max
q0∈Σ0

Π0(q0; p0),

then q∗0 is δ0-close to p0.
Let {Σ0,k}k be a sequence of finite subsets of ∆T (X ) such that Σ0,k converges to

∆T (X ) in the Hausdorff metric topology induced by the Lévy-Prokhorov metric. The
compactness of ∆T (X ) guarantees existence of such a sequence. We observe that
(q0, p0) 7→ Π0(q0; p0) is continuous—as can be seen immediately via induction, using
that every Πt is uniformly continuous. The correspondence (P , p0) � P , where P is
a compact subset of ∆T (X ) and p0 ∈ ∆T (X ) is also continuous (see Theorem 18.10
of Aliprantis and Border, 2006). Using Berge’s Maximum Theorem, we get that the
correspondence

(P , p0) � arg max
q0∈P

Π0(q0; p0)
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is upper hemicontinuous. Now suppose that for every k, there exists (qk0 , p
k
0) such that

qk0 ∈ arg max
q0∈Σ0,k

Π0(q0; pk0)

with d(qk0 , p
k
0) ≥ δ0. Because ∆T (X ) is compact, there exists a subsequence of in-

dexes, {σ(k)}k, such that p
σ(k)
0 converges to p∞0 for some p∞0 . Also, Σ0,σ(k) converges

to ∆T (X ), where the limit is with respect to the Hausdorff metric. Noting that
arg maxq0∈∆T (X ) Π0(q0; p0) = {p0}, by the upper hemicontinuity of the argmax corre-

spondence, we get that q
σ(k)
0 converges to p∞0 , thus contradicting that d(q

σ(k)
0 , p

σ(k)
0 ) ≥ δ0

for every k.

Step 1(b). Next we show that there exists k∗ such that for every finite menu M of
order T that satisfies

|Π?
0(q0; p0;M)− Π0(q0; p0)| < 1/k∗ ∀q0, p0,

then, for each p0, if
q∗0 ∈ arg max

q0∈Σ0

Π?
0(q0; p0;M)

then q∗0 is δ0-close to p0.
By contradiction, if the claim does not hold, then for every k there exists pk0, q

k
0 ,M

k

such that ∣∣Π?
0(q0; p0;Mk)− Π0(q0; p0)

∣∣ < 1/k ∀q0, p0,

while
qk0 ∈ arg max

q0∈Σ0

Π?
0(q0; pk0;Mk)

and d(qk0 , p
k
0) ≥ δ0. Using the compactness of ∆T (X ), we generate a subsequence of

indexes, {σ(k)}, such that p
σ(k)
0 converges to p∞0 and q

σ(k)
0 converges to q∞0 for some

p∞0 ∈ ∆T (X ) and some q∞0 ∈ Σ0.
Then, d(q∞0 , p

∞
0 ) ≥ δ0 and following Step 1(a), it implies that q∞0 is not a maximizer

of the map q0 ∈ Σ0 7→ Π0(q0; p
∞
0 ). Let q∗0 ∈ Σ0 be such a maximizer, then we

have Π0(q
∗
0; p∞0 ) > Π0(q

∞
0 ; p∞0 ), and by continuity, for large enough k’s, Π0(q

∗
0; pk0) >

Π0(q
∞
0 ; pk0), with both sides of the inequality bounded away from each other. Thus

any k large enough, Π?
0(q∗0; pk0;Mk) > Π?

0(q∞0 ; pk0;Mk). This inequality contradicts the
fact that for k large enough, q∞0 should also maximize q0 ∈ Σ0 7→ Π?

0(q0; pk0;Mk), since
Σ0 is finite.

Next, by uniform continuity we set δ > 0 such that, if for each i, pi is δ-close
to p′i, then |Π(p0, . . . , pT−1, x) − Π(p′0, . . . , p

′
T−1, x)| < 1/k∗ for each x ∈ X . Let

δ1 = min{δ0, δ}.
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Step 2. We now iterate Step 1 for every t = 1, . . . , T − 1. Let t ≥ 1 and δt > 0 be
given. Fix p0, . . . , pt−1 such that p0 ∈ Σ0, p1 ∈ Σp0

1 , p2 ∈ Σp0,p1
2 , and so forth, where

every set of the form Σ
p0,...,pt−1

t is a finite subset of ∆T−t(X ).
Analogously to Step 1(a), we define Σ

p0,...,pt−1

t as a finite subset of ∆T−t(X ) such
that, for every pt, if

q∗t ∈ arg max
qt∈Σ

p0,...,pt−1
t

Πt(p0, . . . , pt−1, qt; pt),

then q∗t is δt-close to pt.
Then, by a direct generalization of Step 1(b), there exists k∗ such that for every

finite menu M of order T that satisfies

|Π?
t (p0, . . . , pt−1, qt; pt;M)− Πt(p0, . . . , pt−1, qt; pt)| < 1/k∗ ∀pt, qt,

for every pt, if
q∗t ∈ arg max

qt∈Σ
p0,...,pt−1
t

Π?
t (p0, . . . , pt−1, qt; pt;M)

then q∗t is δt-close to pt.
Finally, we let δ to be such that if, for every i, q′i is δ-close to q′′i , then |Π(q0, . . . , qT−1, x)−

Π(q′0, . . . , q
′
T−1, x)| < 1/k∗ for every x. Let δt+1 = min{δ, δt}.

Step 3. We build a finite menu M∗
0 of order T by sampling the infinite menu

associated with Π as follows: for every p0, . . . , pT−2 where for every t, pt ∈ Σ
p0,...,pt−1

t ,
we define

M
p0,...,pT−2

T =
{

Π(p0, . . . , pt−1, qT−1, ·); qT−1 ∈ Σ
p0,...,pT−2

T−1

}
,

M
p0,...,pt−1

t =
{
M

p0,...,pt−1,qt
t+1 ; qt ∈ Σ

p0,...,pt−1

t

}
.

We let M∗
0 = {M q0

0 ; q0 ∈ Σ0}. Let ξ be the degenerate probability measure that
allocates full mass on M∗

0 . We note that we have, by Steps 1(a), 1(b), and Step 2,

|Π?(p0, . . . , pT−1, x; ξ)− Π(p0, . . . , pT−1, x)| < ε/2 ∀p0, . . . , pT−1, x

Step 4. This step concludes the proof. Let ξ′ be a probability measure over MT

with full support. Take ξ′′ = (1− ε/2)ξ+ (ε/2)ξ′. Then, Π?(p0, . . . , pT−1, x; ξ′′) defines
a strategyproof payoff rule, and

|Π?(p0, . . . , pT−1, x; ξ)− Π(p0, . . . , pT−1, x)| < ε ∀p0, . . . , pT−1, x.
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