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Many social norms are categorical: they are sensitive to category
membership instead of underlying continuous variables. For in-
stance, the norm against chemical weapons sanctions sovereigns
based on the type of weapon used irrespective of the number of civil-
ians killed. While standard game theory models show that nearly any
norm can be sustained in equilibria (1), it is unclear why categorical
norms are so prevalent. We explain the prevalence of categorical
norms by incorporating an insight from the game theory literature
on global games (2): small perceptual errors impede coordination on
the basis of continuous variables. Witnesses to a transgression re-
ceive a noisy signal of the magnitude (the number of civilians killed)
or type of transgression (whether chemical weapons were used), and
then choose whether to sanction the transgression. Payoffs to sanc-
tioning are modeled using a coordination game, which captures the
fundamental feature of norm enforcement: each witness only wants
to act if she expect others will act, too. We show that there is no
equilibrium where sanctions are conditioned on the magnitude of
the transgression, but there are equilibria where sanctions are con-
ditioned on the type of transgression. We consider various model
extensions, prove a general theorem, and investigate evolutionary
dynamics. We discuss various additional applications, including hu-
man rights, inefficient altruism, institutionalized racism, territorial
disputes, revolutions, and collusion.
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Many norms depend on categorical variables even though
the underlying variable we care about is in fact con-

tinuous. For instance, we have norms against the usage of
chemical and biological weapons, even though these norms
are presumably intended to reduce wanton death or misery.
Why do we not simply have a norm against excessive civilian
casualties or needlessly painful deaths? Likewise, human rights
are applied to all human beings, regardless of their degree of
sentience or intelligence. A particularly clever chimp might be
smarter than a young child, or feel more pain than an adult
in a coma. Why do we not apply rights proportionately to
the intelligence of the individual or their ability to feel pain?
Less admirable norms also often share this puzzling feature:
the Jim Crow South’s norm that African Americans should
give up their seat to Caucasians did not require that anyone
with darker skin tone had to give up their seat to someone
with lighter skin tone. Rather, race was defined categorically,
based on the infamous ‘one drop’ rule.

Standard models used to explain the evolution and main-
tenance of norms have a hard time explaining this puzzling
but ubiquitous feature. Such models typically share the char-
acteristic that arbitrary norms can be sustained, provided
norm violators are sanctioned and those who do not sanction
when expected are themselves sanctioned (1). Why, of all the
arbitrary norms that can be sustained in equilibria, would we
so frequently find ourselves at categorical norms? Categorical

norms are even more puzzling once we incorporate cultural
group selection (3) or deliberative agents who select among
norms (4) which typically select socially optimal norms. Cate-
gorical norms are, necessarily, less efficient than the threshold
norms, which would allow one to, say, use chemical weapons
only when they are more effective or humane than conventional
ones, as Franklin Roosevelt’s military advisors argued was the
case in Iwo Jima (5).

We explain the absence of threshold norms as follows. Con-
sider a norm which dictates that any government that kills
more than say 1% of its civilians ought to be sanctioned. Sup-
pose that two countries, say France and the U.S., each assess
how many civilians have been killed in Syria, then decide
whether they wish to impose sanctions on President Assad.
The countries make this decision without first discussing, per-
haps because such discussions are hampered by conflicts of
interests. Moreover, suppose that neither country wishes to
impose sanctions if they are the only one doing so, or if they
are the only ones who think that sanctions are warranted, as
is often the case (1, 6). For this norm to be upheld, the U.S.
needs to be willing to impose sanctions if and only if her best
estimate is that more than 1% of Syrians have been killed.
However, there will be estimates quite close to 1% at which
the U.S. will want to deviate. At such estimates, the U.S.
believes France is roughly 50% likely to impose sanctions. If
the U.S.’s risk tolerance for sanctioning when France does not
sanction is higher than 50%, the U.S. will prefer to deviate
and avoid sanctioning even for estimates slightly higher than
1%. If the U.S.’s risk tolerance is lower than 50%, the U.S. will
deviate and sanction even for estimates slightly lower than
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1%. Either way, there is an incentive to deviate, making such
a norm unstable.

In contrast, if the norm is to sanction any government
that uses chemical weapons, then this can be sustainable.
Consider a norm which dictates that any government that
uses chemical weapons ought to be sanctioned. Suppose the
two countries send surveyors to collect chemical residues and
either does or does not detect residue, perhaps with some error
rate. And suppose, again, that the U.S. wishes to sanction
if and only if she thinks it is sufficiently likely that France
will sanction. What happens when the U.S. detects chemical
residues? So long as France is abiding by the norm and comes
to a similar assessment, and the U.S. is sufficiently risk tolerant,
the U.S. will strictly prefer to sanction. And, had the U.S.
not discovered any traces of chemical weapons, the U.S. would
think it likely France had not discovered any traces either,
so strictly prefer to not sanction. Hence, the norm is self-
enforcing. The crucial difference between categorical norms
and threshold norms is that, for categorical norms, one cannot
receive a signal that yields posterior beliefs (that the other will
punish) which approach 50%. Whereas for threshold norms,
signals close to the threshold yield beliefs that approach 50%.

We first present a stylized model that formalizes the above
logic. We then consider various extensions to show that our
main result is robust, and to gain a deeper sense of what the
result depends on. We also model and simulate the evolution-
ary dynamics of threshold norms in order to more clearly show
that threshold norms are not sustainable, and fully ‘unravel’.
We present a general theorem which indicates exact conditions
on the distribution of signals and payoffs under which thresh-
old norms can be sustained. Finally, we discuss additional
applications and relate our results to the existing literature.
In so doing, we contribute to a growing literature that uses
insights from game theory to explain puzzling aspects of our
beliefs and preferences (7–10), which, itself, is part of an im-
portant literature that offers functional, evolutionary based
accounts to otherwise puzzling social behaviors (6, 11–19).

We begin with a stylized model of a threshold norm
(Fig. 1a). First, a transgression occurs. It has a randomly
distributed magnitude; for now, we assume the magnitude is
distributed uniformly. There are two witnesses to the transgres-
sion. Each receives a noisy signal of the magnitude, uniformly
distributed about the true magnitude with noise ε > 0. Then,
each witness decides whether to sanction. The payoffs to
sanctioning depend on whether the other witness sanctions.
In particular, each witness gets a if she sanctions when the
other also sanctions, c < a if she sanctions when the other
does not sanction, d if she does sanction when the other is not
sanctioning, and b < d if she does not sanction when the other
is sanctioning (Fig. 1c). Note that, for now, the payoffs to
sanctioning are presumed to not depend on the magnitude of
the transgression. The parameter p = (d−b)/(a−c+d−b) will
prove useful. Its interpretation is: if one player sanctions with
probability greater than p, then the other prefers to sanction.

We solve such models by identifying their Bayesian Nash
equilibria (BNE). BNE is a standard extension of Nash’s
equilibrium to probabilistic settings. Players are assumed
to maximize expected payoffs, and form beliefs according to
Bayes’ Rule.

Suppose that each player sanctions whenever they receive
a signal of s̄ or higher. Such a norm is only an equilibrium

(a) Signal structure for a continuous transgression 

(b) Signal structure for a categorical transgression
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Fig. 1. Stylized models of norms

for the non-generic case where p = 0.5. If p > 0.5, then
any witness who receives a signal above s̄ but sufficiently
close to s̄, is better off ‘playing it safe’ and deviating to not
sanctioning (Fig. 2a). If p < 0.5, then anyone who receives a
signal below s̄ but sufficiently close to s̄ benefits from deviating
to sanctioning. (See S.I. for all proofs.) For example, suppose
that a = 4, b = 0, c = 2, and d = 4, which implies p = 0.6̄7. A
player who gets a signal si = s̄ gets 0.5 · 4 + 0.5 · 0 = 2 if she
sanctions and 0.5 · 2 + 0.5 · 4 = 3 if she does not sanction, and
thus prefers not to sanction. We will soon show that, even
though players benefit from deviating only in a small range,
this results in a ‘slippery slope’ and we will never observe a
threshold norm.
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Fig. 2. Nash Equilibrium Analyses of Threshold Norms and Categorical Norms

We model categorical norms similarly (Fig. 1b), except that,
now, the transgression is H = 1 with probability q and 0 with
probability 1 − q, and witnesses’ signal is incorrect, S = 1 −H,
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with probability ε and correct, S = H, with probability 1 − ε.
In contrast to threshold norms, now there is a Bayesian Nash
equilibrium where sanctions depend on the signal received,
provided the error in the signal is sufficiently small (Fig. 2b).
This is because when a player receives a signal S = 1, she is
better off sanctioning so long as she believes the other was
sufficiently likely to also receive a signal of 1. And, when a
player receives a signal S = 0, she is better off not sanctioning
so long as as she believes the other was sufficiently unlikely
to receive a signal of 1. For example, for q = 0.2, ε = 0.05, if
one player gets signal of 1, she believes the other got the same
signal with probability 0.79, and will be best off sanctioning
so long as p < 0.79.

Note that a threshold norm cannot be supported by treating
the continuous signal as discrete, I.e. by ignoring the value
of the signal and focusing on whether it was above or below
the threshold. This is because witnesses still have access to
the more-informative continuous signal, and would deviate
from the threshold strategy when their signal is close to the
threshold.

We next investigate to what extent these results generalize.
First, it should be noted that if signals are observed without
noise, or if the payoffs to sanctioning depend on the magnitude
of the transgression but not on what each expects others to
do, then threshold norms can be sustained in equilibrium.
For example, suppose that after observing a noisy signal of
a transgression, a witness decides whether to partner with
the transgressor. If the witness prefers not to match with
a transgressor who is more likely to select higher magnitude
transgressions, the witness can–and will prefer to–partner with
the transgressor if and only if her signal of the transgression
was below a certain threshold (Fig. S1). Similarly, threshold
norms are possible if witnesses can commit in advance to taking
an action. Thus, coordination is key to obtaining our result.
We note that many games have a coordination component,
such as repeated games that are often used to model norm
enforcement (20, 21).

Next, we consider alternative distributions of signals, as
well as different payoffs for sanctioning. We generally find
that our main result holds. Even when there exist equilibria
where players condition their behavior on their signal, the
thresholds depend on the particulars of the signal and the
witnesses’ payoffs. If one wanted another threshold, say one
determined by the social cost of the transgression, it would
not be an equilibrium. Moreover, any threshold equilibria that
do exist are unstable–they unravel under standard learning or
evolutionary processes.

First, consider what happens if we replace the continuous
variable with a discrete variable that is equally likely to take
on one of many (n) values. The larger n gets, the closer p
needs to be to 50% in order to allow for an equilibrium that
depends on the signal (Fig. 3a). Thus, for larger values of n,
the range of coordination games over which such equilibria
exist gets smaller and approaches measure 0 (Fig. 3b). That is,
even though harm is discrete, once it can take on sufficiently
many possible values, the results approximate what happens
when harm is continuous. The intuition is as follows: for an
equilibrium to exist where players sanction if they get a signal
above a certain value, then whenever player i gets a signal
closest to this value, but above it, i must believe that −i has
gotten a signal above this threshold with probability > p. For

example, for n = 10 and an error of ε = 1, this belief will be
.6̄7. And, when i get a signal close to the threshold but below,
she must believe −i has probability < p of having received a
signal above the threshold. For n = 10, ε = 1 this belief will be
.3̄3. And hence such an equilibrium exists for p between .3̄3
and .6̄7. However, the larger n is, the closer these two beliefs
will be, closing the gap of permissible values of p, with both
approaching .5. For instance, for n = 20, ε = 2, these values
are .4 and .6, so only p within [.4, .6] will work.
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Next, instead of assuming that harm is uniformly dis-
tributed, we assume that it is normally distributed. Now,
a player who gets a signal that is higher than the mean harm
level will think it is more likely that the other player got a
signal below hers–how much depends on her signal and the
variance of h. If the variance of h is relatively large, then
the likelihood the other player got a signal below hers will
be relatively close to 50%. In this case, there still will be no
threshold equilibrium. If the variance of h is relatively small,
then, for signals far from the mean of h, the likelihood the
other player got a signal below hers can diverge meaningfully
from 50%. In such cases, it can be possible for a threshold
norm to be an equilibrium. However, there will be only one,
highly specific threshold that can be sustained in equilibrium,
and that threshold will depend on p and the variance of h, and
not on what is socially optimal (Fig. SI4). We will, momen-
tarily, use evolutionary dynamics to show that this threshold
is not stable (Fig. 4e).

We now consider what happens if the continuous variable
directly influences the payoffs to sanctioning. In particular,
we consider the case where the payoffs are as before but we
add an additional benefit to sanctioning that is an increasing
function of the magnitude of the transgression. Now p depends
on the magnitude of the transgression, and if the dependency
is sufficiently strong, then, as with normally distributed harm,
it is possible to support a single threshold norm in equilib-
rium. But, once again, the threshold will be determined by
the strength of this dependency, and not all socially relevant
considerations.

Next, we provide a more general characterization of which
thresholds can be equilibria, given any continuously differ-
entiable distributions of signals and harm. We restrict our
attention to cases where there are two players and payoffs are
independent of harm. We find that a threshold norm can be an
equilibrium if and only if p falls between the witness’s posterior
probability that the others’ signal is below the threshold when
her own signal approaches the threshold from below, and the
witness’s posterior probability that the others’ signal is above
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the threshold when her own signal approaches the threshold
from above.

In reality norms may not be at equilibrium. What would
happen if a norm starts off at a threshold and then adjusts
according to an evolutionary process? We ran computer simu-
lations that model such an evolutionary process (see methods
section and S.I. for details). Strategies update each period
according to the payoffs they earned the previous period, with
more successful strategies growing in frequencies. A small
fraction are randomly assigned different thresholds to mimic
experimentation. We find that the average threshold in the
population steadily moves up if p < .5, and down if p > .5,
until eventually everyone either always sanctions or never
sanctions. Fig. 4a illustrates a single representative run of
our simulations, for the first model we presented (uniformly
distributed harm), with p > .5. Fig. 4b illustrates the average
outcomes from many such runs. Figs. 4c and 4d present a
single representative simulation for the variation of the model
with N = 10 discrete levels of harm. In Fig. 4c, p is inside
the range for which a threshold norm is supported, and thus,
the threshold norm is stable. Whereas, in Fig. 4d, p is outside
this range, and thus the threshold norm is unstable. Fig. 4e
presents a single representative simulation for the variation of
the model with normally distributed harm. These simulations
consistently confirm our equilibria analysis. This is to be
expected since our equilibria analysis is actually based on a
solution concept that requires fewer assumptions than Nash:
iterative elimination of strictly dominated strategies (see S.I.).
And, this, more permissive solution concept has the property
that evolutionary processes will always eventually converge
to those strategies that satisfy iterative elimination of strictly
dominated strategies (in contrast to Nash equilibria, to which
evolutionary processes do not always converge).

(a) Threshold norm, single run (b) Threshold norm, many runs

(c) n=10 discrete values of harm, stable (d) n=10 discrete values of harm, unstable

(e) Normally distributed harm

Fig. 4. Evolutionary Dynamics of Norms

Finally we consider a couple of additional model extensions
which make the model more realistic, which are presented in
more detail in the S.I.. First, we extend our model to take
into account the fact that norms are often enforced by large
groups of potential sanctioners, not just two, and again obtain

comparable results. Second, we recognize that sanctions can
themselves vary in magnitude, perhaps with each witness’s
payoffs depending on the difference between how much she
sanctioned and how much others sanctioned. Therefore, we
extend the sanctioning decision to permit variation in mag-
nitude of sanctions and show that this, too, does not permit
threshold norms, provided players’s payoffs do not happen to
have a particular, non-generic structure.

We now discuss some applications. Why do we apply
human rights on the basis of membership in the species Homo
Sapiens? Why not, instead, assign rights on the basis of
intelligence or sentience, which might, for example, lead a
chimpanzee to have more rights than a comatose human?
The philosopher Peter Singer refers to this as a bias, which
he terms speciesism (22), and equates to other biases like
racism. However, if human rights are enforced by coordinated
sanctions, say by the coordinated activity of revolutionaries,
or of foreign governments, it makes sense why human rights
depend on the categorical variable of species membership and
not the continuous variable of intelligence or sentience: that
is the only way to make the norm sustainable.

Likewise, one might wonder why rights are viewed as abso-
lute, immune to tradeoffs and off limits to cost-benefit calcula-
tions. Again, this makes sense if we understand that violation
of rights, say by using torture, is a categorical transgression,
and hence is a sustainable norm. For contrast, consider a more
utilitarian norm which, say, allows for torture when it prevents
more suffering than is inflicted. Such a norm is not sustainable
because it depends on the continuous variable: the amount of
suffering inflicted by the torture and the amount of suffering
prevented by the discovery of the hypothetical ticking bomb.

We have strong norms against discriminating against well
defined categorical groups like women or African Americans.
Of course, many people are discriminated against for other
reasons, such as being old (23), unattractive (24, 25), over-
weight (26), or short (27). Why are there not equally strong
norms against such discrimination? On the flip side, there
also has never been institutionalized discrimination against
older, less attractive, heavier, or shorter individuals in the
same way there has been against women or African Ameri-
cans. We would explain this distinction as follows: in their
own private decisions, people are able to discriminate on the
basis of continuous variables like age, attractiveness, weight,
and height, but such discrimination cannot be enforced–or
prevented–based on coordinated sactions. In contrast, it is
possible to enforce or prevent discrimination against groups
that are categorically defined, like women or those with ‘one
drop’ of African blood.

One consequence of this relates to measures of subcon-
scious discrimination, which persists, but is perhaps hidden
in the presence of countervailing norms. An example of such
a measure is the Implicit Association Task (IAT) (28). Since
subconscious discrimination does not require coordination, we
expect measures like the IAT to be less influenced by categori-
cal distinctions than measures of overt discrimination, which
is intended for others to see and reward, and which we expect
to display categorical distinctions.

Another puzzling behavior that may have to do with cat-
egorical norms: people donate a lot of time and money to
charity (29), but are less-than-careful about ensuring these
charities are effective: most donors report that they do not
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even check a charity’s effectiveness before donating (30) and
highly ineffective charities persist (31). One possible reason
for this is that efficacy is a continuous variable, but the act
of giving is categorical. This makes it possible to have norms
that promote charitable giving while making it hard to sus-
tain norms that promote effective giving. We expect people
to consider effectiveness more with kin than with friends or
strangers, since altruism towards kin is sometimes not driven
by norm enforcement, reputations, or reciprocity, but rather
by kin selection, for which coordination is not relevant.

One more phenomenon that may relate to categorical norms:
what kind of events trigger revolutions and protests? Consider
the American Revolution. One turning point was the Boston
Tea Party, a protest launched not after a gradual tax hike,
but after categorically new tax–the Tea Tax–was imposed. In-
terestingly, this tax was imposed concurrently with other tax
reductions which led to an overall lower tax rate (32). Clearly
the actual tax rate (continuous) did not foment the revolu-
tion; instead it was the addition of a new tax (categorical).
Likewise, the Arab Spring–a series of political revolutions in
North Africa–was launched by the public self immolation of
the Tunisian street vendor Mohamed Bouazizi, not, directly
at least, the increasing poverty, abuse, or corruption in the
Tunisian government that led Bouazizi to act. Our model
suggests that protests and revolutions, which must be coordi-
nated, can be triggered by categorical events like an all-new
tax category or public immolation, but not by changes in
continuous conditions like increased tax or poverty rates.

A final example of a categorical norm: small disputes often
lead to escalated conflicts. Examples include the Falkland
Islands War, Operation Paul Bunyan, and the constant risk
of war over disputed islands in the South China Sea. In each,
the contested resource which led to, or risks conflict is of
trivial value. Why do countries not ignore tiny infractions,
instead of risking wars that are much more costly than the
resources under dispute? Intuitively, we think this is because
any country that does not defend its borders and its resources
will be up for the taking, but why do we not presume countries
will defend their valuable resources, while not risking war over
insignificant ones? We believe the answer again lies in the fact
that norms that disavow stealing are sustainable, but norms
that disavow stealing of valuable resources are not, because
the former norm is categorical while the latter is continuous.

We now use the model to elucidate when our norms or
judgments will be more categorical, and when they will be
more continuous.

First, we expect norms and judgments to be more con-
tinuous when norms are not enforced communally through
coordinated sanctions and rewards, but rather agents can act
unilaterally. One setting in which we act more unilaterally
is when we evaluate partners, as elucidated in our model of
partner choice (Fig. 1c). So, individuals can consider height
and earnings when dating, and even employ thresholds like,
‘I only date others who are taller than I am.’ By the same
logic, we expect that our judgments will be more continuous
when we are judging character and not deciding sanctions.
For instance, we expect our avoidance behaviors and fear re-
sponses to vary continuously with moral transgressions, even
if our anger and outrage depend more on categorical distinc-
tions. Another setting in which we act more unilaterally is
in the enforcement of domestic laws. Most modern states

grant enforcement authority to agencies, judges, police, etc.
While there is some check on these agents by the masses (as
evidenced by the recent ‘black lives matter’ protests against
police departments that were perceived as too-readily shooting
young black constituents), they do, largely, act unilaterally. So,
civil penalties can be conditioned on harm, and the Environ-
mental Protection Agency can–and does–sue companies whose
emissions result in pollution levels above a threshold (33). As
previously discussed, we also expect norms and judgments to
be more continuous for kin-based altruism.

Second, we expect norms to be more continuous when
parties do not have private information, or, they are able
to credibly commit to communicating all private information.
France and the U.S. could enforce a threshold norm conditioned
on the number of civilian casualties if they could commit to
convening at the U.N. and jointly reviewing all estimates
of the number of civilian casualties. Similarly, it can be a
norm for Harvard’s students to wear flip flops only when the
temperature on the large digital thermometer overlooking
Harvard Square is 95 or greater.

Our model helps clarify the costs and benefits of categorical
norms. Since threshold norms more closely track the underly-
ing variable of interest, there is a concrete benefit to having
unilateral enforcement and open communication. However,
to the extent that communication is hampered by incentives
or logistical problems, and to the extent that unilateral en-
forcement is limited by conflicts of interest, or checks and
balances, threshold norms will nevertheless remain untenable.
Moreover, even in settings where continuous norms can be
sustained, the psychology that has been learned or evolved
from settings where they cannot can spillover and influence
our moral intuitions.

For instance, when President Obama was considering declar-
ing war against Assad after Assad used chemical weapons,
many commentators criticized Obama for enforcing the norm
against chemical weapons after Obama had done little to
prevent Assad from killing roughly 100,000 civilians. This crit-
icism misses the key logic that we believe motivated Obama:
the norm against chemical weapons is sustainable while a
norm against wantonly killing civilians is harder to sustain,
and while a norm against chemical weapons may be a poor
proxy for minimizing civilian casualties, it is still a proxy that
does to some extent limit the number of civilian deaths. Hence,
there is some benefit to maintaining this norm. Another telling
anecdote: in his book ‘Nuclear Weapons and Foreign Policy’
(34), Henry Kissinger advocated for “limited nuclear war," a
position he later retracted out of concerns that such war would
spiral out of control (35).

One might proffer that we have categorical norms not be-
cause of coordinated sanctions, but because it is easier to
notice and/or communicate categorical transgressions, or to
encode categorical norms. While categorical distinctions are
in fact easier to notice, communicate, and encode, and this
no doubt plays some role in promoting categorical norms, it
seems unlikely to explain the entire phenomenon. In par-
ticular, it cannot explain why categorical norms persist in
situations where stakes are high and parties are highly de-
liberative, as was the case in Iwo Jima or in Syria. Or, in
situations in which our emotional response is unresponsive
to argument; we challenge the reader to attempt to convince
friends that one should grant more rights to especially smart
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chimpanzees than to especially incapable people. Moreover,
our model uniquely predicts the comparative static that we
will emphasize categorical distinctions more when norms are
socially enforced.

We will conclude with a discussion of some related litera-
tures. The classical game theory literature on repeated games
typically focuses on achievable payoffs, and minimal require-
ments on the signal structure to achieve cooperation (21), but
not on explaining the features of equilibria, and, in particular,
the inefficiencies of existing norms. Likewise, the literatures
on cooperation (11) and norm enforcement (3) focus on the
ability to support cooperation through reciprocity, or a variety
of norms through higher order sanctions, respectively. But, as
far as we know, they do not attempt to explain constraints on
cooperation and the norms that can be enforced, such as the
inability to condition cooperation and norms on continuous
variables.

In developing our model, we borrowed heavily from the lit-
erature on global games (2). In such games, payoffs depend on
a continuous variable. If players observe this variable without
noise, then, for some range in this variable, there are multiple
equilibria. However, if players observe the continuous variable
with arbitrarily small amounts of noise, then there is only a
single, threshold equilibrium. These results have been used
to explain currency attacks and bank runs, and to draw into
question multiplicity of equilibria in such contexts. We adjust
that framework to focus on state independent payoffs, and the
contrast between continuous and categorical variables. Instead
of reducing multiplicity of equilibria to a single threshold equi-
librium, we ask when will there exist a threshold equilibria,
and use this result to explain the prevalence of categorical
norms.

Another potentially related literature is in Industrial Orga-
nization. Therein, researchers have investigated when collusion
can be maintained among oligopolies (36, 37). That literature
focuses on the need for observability of defections, or the diffi-
culty of enforcing agreements when there are many players. It
does not focus on the variables oligopolies can collude on. We
contribute to that literature by arguing that whenever there is
noisy private information about critical continuous variables,
like each producer’s costs or output, it is easier for colluders
to sustain norms that are categorical in nature, like ‘only sell
through De Beers’, and harder to sustain norms that depend
on continuous variables, like ‘make sure prices are marked up
at least 20% above costs’.

Our model also has implications for moral realism and
group selection. To the extent that there are not alternative
explanations for categorical norms, this paper provides fur-
ther evidence (6–19) that incentives–as characterized by Nash
equilibria–act as a constraint on our sense of morality, and
that morality cannot be solely explained by logic or group
level benefits. This raises into question the general approach
of analytic moral philosophy, which attempts to explain our
sense of morality without recourse to incentives and Nash,
but based on logic alone (4, 38), as well as, group selection
models that attempt to explain our morality on the basis
of group-level benefits alone, without considering individual
incentive compatibility constraints (39, 40). More generally,
it highlights the role of incentives in shaping our preferences
and ideologies, and the added value of using game theory to
explore the constraints that incentives will impose upon our

norms and moral intuitions.
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Figure Legends.

Fig. 1: Stylized Models of Norms. A: We begin with a stylized model
of a threshold norm. First, a transgression occurs. It has a ran-
domly distributed magnitude; for now, we assume the magnitude is
distributed uniformly, H ∼ U [hL, hH ]. There are two observers to
the transgression. Each receives a noisy signal of the magnitude,
uniformly distributed about the true magnitude, Si ∼ U [h−ε, h+ε]
where ε > 0.

B: We model categorical norms similarly, except that, now, the
transgression is H = 1 with probability q, and 0 with probability
1 − q, and observers’ signal is incorrect, Si = 1 −h, with probability
ε and correct, Si = h, with probability 1 − ε.

C: In either case, after the observers receive their signals, each
observer decides whether to sanction, P , or not, N . The payoffs
to sanctioning depend on whether the other observer sanctions. In
particular, each observer gets a if she sanctions when the other also
sanctions, c < a if she sanctions when the other does not sanction, d
if she does sanctions when the other is not sanctioning, and b < d if
she does not sanction when the other is sanctioning. The parameter
p = (d− b)/(a− c+ d− b) will prove useful. Its interpretation is:
if one observer sanctions with probability greater than p, then the
other prefers to sanction.

Fig. 2: Nash Equilibrium Analyses of Threshold Norms, Categorical
Norms, and Partner Choice. A: We show that a threshold norm
cannot be a Bayesian Nash equilibrium when harm is continuous
by presuming observers play according to a threshold norm with
some threshold s̄ and showing a beneficial deviation. (1) Suppose
that each observer punishes whenever they receive a signal of s̄ or
higher. We represent this strategy for observer 2 by a line shaded
blue to the left of s̄ and red to its right. (2) Below it, we represent
observer 1’s belief that observer 2 is punishing, for any signal, s1.
(3) Finally, we represent observer 1’s best response, which deviates
from the proposed threshold norm for signals just above s̄. Why?
For p > .5, when observer 1 receives signals above s̄ but sufficiently
close to s̄, her belief that observer 2 is punishing is below the dotted
line representing p. Therefore, she is better off ‘playing it safe’ and
deviating to not punishing.

B: In contrast to threshold norms, now there is a Bayesian
Nash equilibrium where punishment depends on the signal received,
provided the error in the signal is not too large. (1) Suppose observer
2 punishes if and and only if her signal is s2 = 1. We represent this
strategy by a red dot at 1 and a blue dot at 0. (2) Below it, we
represent observer 1’s belief that observer 2 is punishing, for s1 = 0
and 1, when q = .2 and ε = .05. (3) Finally, we again represent
observer 1’s best response. When she receives a signal s1 = 1, she
is better off punishing since she believes observer 2 was sufficiently
likely (relative to p) to also receive a signal of 1. And, when a
observer receives a signal s1 = 0, she is better off not punishing
since observer 2 is sufficiently unlikely to receive a signal of 1.

Fig. 3: Transgression is Uniformly Distributed Over n Discrete Val-
ues. We next consider cases in between the purely categorical and
purely continuous case in Fig. 1 in order to demonstrate that the
result does not depend on signals being purely continuous, but
rather just having many possible realizations.

(1) Now, there is a range of values of p for which a threshold
norm can be supported in equilibrium. The bounds of the range
are determined by the observers’ beliefs just above and below the
proposed threshold. For an equilibrium to exist where observers
punish if they get a signal above a certain value, then whenever
observer 1 gets a signal closest to this value, but above it, 1 must

believe that 2 has gotten a signal above this threshold with prob-
ability > p, and similarly for observer 2. For example, for n = 10
and an error of ε = .3, this belief will be .6̄7. And, when i get a
signal close to the threshold but below, she must believe −i has
probability < p of having received a signal above the threshold. For
n = 10, ε = .3, this belief will be .3̄3. And, hence, a threshold norm
is an equilibrium for p between .3̄3 and .6̄7. (2) However, the larger
n is, the smaller this range will be. For instance, for n = 20, ε = 2,
only p within [.4, .6] will work. As n grows, this range will converge
to a single point at p = .5.

Fig. 4: Evolutionary Dynamics of Threshold Norms. A: We ran com-
puter simulations that model the evolutionary dynamics of thresh-
old norms. We limit the strategy to ‘always punish’, ‘punish iff
Si > 1/9’, ‘punish iff Si > 2/9’, . . . , ‘punish iff Si > 8/9’, ‘never
punish’, and represent these strategies on a spectrum between red
(always punish) and blue (never punish). At the beginning of the
simulation, everyone in the population is assigned to punish if and
only if their signal is greater than 1/9. Strategies update each period
according to the payoffs they earned the previous period, with more
successful strategies growing in frequencies. A small fraction are
randomly assigned different thresholds to mimic experimentation.
Here, we show the results of a single, representative run of our
simulations of the base model (with uniformly distributed harm)
and p > .5. We present the frequencies of all the strategies, the
strategy with the greatest payoff, and the average strategy. The
average threshold in the population steadily moves up (becomes
‘blue-er’) until eventually everyone never punishes. This happens
because the strategy with the highest payoff is always ‘blue-er’ than
the average strategy.

B: Average frequencies of each strategy over 500 simulations
for the base model, with the same parameter values as in Fig. 5a.
We see that the single run of our simulations presented in Fig. 5a
was indeed representative: the average threshold in the population
always steadily moves up until eventually everyone never punishes.

C: We now show results of a single simulation for the model with
n = 10 discrete possible values of harm, and p = .67, which is inside
the range of values for which a threshold norm can be supported.
We present the frequencies of all the strategies, the strategy with
the greatest payoff, and the average strategy. For these values of n
and p, there exists a threshold norm. When the population starts
out with everyone playing according to a threshold norm, it stays
there (because the strategy with the highest payoff is always the
average strategy).

D: We now show results of a single, representative simulation for
the model with n = 10 discrete possible values of harm, and p = .8,
which is outside the range of values for which a threshold norm can
be supported. We present the frequencies of all the strategies, the
strategy with the greatest payoff, and the average strategy. For these
values of n and p, there does not exist a continuos norm. Again, we
start the population with everyone playing according to a threshold
norm. Now, the threshold in the population steadily moves up
(becomes ‘blue-er’) until eventually everyone never punishes.

E: Finally, we show results of a single, representative simulation
for the model with normally distributed harm. For the parameter
values chosen, there is a single threshold norm at ‘punish iff Si >
−1.83’. We present the frequencies of all the strategies, the strategy
with the greatest payoff, and the average strategy. We start the
population with everyone playing according to this threshold norm.
As this simulation illustrates, the threshold norm is not stable:
the threshold in the population moves up (becomes ‘blue-er’) until
eventually everyone never punishes.
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Figure 1: The Sanctioning Game

A Base Model

For convenience, we repeat the exposition of the model presented in the manuscript. We suppose

there are two witnesses to a transgression who each simultaneously choose whether to ‘sanction’,

S, or ‘not sanction’, N, a norm violation. For simplicity, we assume that sanctioning is optimal if

and only if you expect others to sanction. That is, we assume players play the Sanctioning Game

(Fig. 1) –a special case of the symmetric Coordination Game, which is the simplest game in which

whether a player is best off sanctioning a transgression depends not just on whether she believes a

transgression has occurred, but on whether she believes others believe a transgression has occurred.

In the Sanctioning Game, a player receives a if both choose S, b if she chooses S and the other

chooses N, c if she chooses N and the other chooses S, and d if both choose N, where a > c and

d > b. The game’s pure equilibria are (S,S) and (N,N): if both players are playing S, neither

can benefit from deviating, and similarly for N. The parameter p = (d − b)/(a − c + d − b) will

prove useful. Its interpretation is: if one player plays S with probability greater than p, then the

other prefers to play S. As is sometimes the convention for symmetric games, we omit the column

player’s payoffs from the figure.

A.1 No Threshold Norm Can Be Sustained as a Bayesian Nash Equilibrium

We model a continuous transgression as follows: we presume that the harm from the transgression,

H, varies continuously according to a random variable with known distribution. For simplicity, we

presume this distribution is uniform over some range, H ∼ U [hl, hh], where h is a realization of H.
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We then presume that each witness obtains a signal of the harm, Si|H. For simplicity, we again

presume the signal is uniform within a small range, ε around the true harm, Si ∼ U [H − ε,H + ε],

where si is a realization of Si. We will consider how our results generalize to other distributions for

H and Si|H in Section B.2. Also, for now, we assume the payoffs of sanctioning are independent of

H (e.g., the material costs of sanctioning a country does not depend on the magnitude of its human

rights violations); we will generalize to the case where the payoffs depend on H in Section B.4.

In the manuscript, we claimed that there is no Bayesian Nash equilibrium where the players

condition their sanctioning decision on (their signal of) the magnitude of the harm, regardless of

how small the error is in observing the harm level. We formalize this claim in Thm. 1. Technically,

we show that there cannot exist a norm in which players sanction whenever their signal of the harm

is above some threshold (we call this a threshold norm). As one might notice, the claim is true so

long as the threshold is not ‘too near’ (within 2ε) of hl or hh. So long as the noise, ε, is small, we

interpret any threshold within this distance of the endpoints as being observationally equivalent or

qualitatively similar to the norm ‘always sanction’ and ‘never sanction’.

We begin by defining a threshold strategy and a threshold norm.

Definition 1. We say player i is playing a threshold strategy σs̄i with a threshold at s̄ ∈ [hl, hh] if

and only if ∀si ∈ [hl − ε, hh + ε], σs̄i (si) = S if and only if si > s̄. We say that players are playing

a threshold norm at s̄ if and only if for every player i, σi = σs̄i .

To aid with proving Thm. 1, Lemma 2, and with the generation of some of our figures, we

first calculate the following posterior probability: for any signal Si, what is the likelihood that

the other’s signal is below some threshold, S−i < s? The result of this calculation is presented in

Lemma 1. Note that these calculations are not essential for the proofs.

Lemma 1. For any s ∈ [hl + 2ε, hh − 2ε]

Pr (S−i < s|Si) =


0 for s < Si − 2ε
(s−Si)2+4ε(s−Si)

8ε2
+ 1/2 for Si − 2ε < s < Si

−(s−Si)2+4ε(s−Si)
8ε2

+ 1/2 for Si < s < Si + 2ε

1 for Si + 2ε < s

Proof. First, it will be convenient to define ui = Si −H and z = Si − s.
Then, after some simplification, we see that, Pr (S−i < s|Si) = Pr (u1 − u2 < z). Since u1 ∼

−u1, Pr (u1 − u2 < z) = Pr (u1 + u2 < z).

Next, we determine the P.D.F. of u1 + u2. As a sum of two uniform distributions, the P.D.F.

is the convolution of two uniform density functions, where the density function of the uniform

distribution is:

f(ui) =

{
1
2ε for ui ∈ [−ε, ε]
0 otherwise
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For −2ε < 4z < 0:

fu1+u2(z) =

∫ ∞
−∞

fu(z − y)fu(y)dy

=

∫ ε

−ε
fu(z − y)

1

2ε
dy

=

∫ z+ε

−ε

1

4ε2
dy

=
z + 2ε

4ε2

Next, we calculate the C.D.F.:

Pr (u1 + u2 < z) =

∫ z

−∞
fu1+u2(z)

=

∫ z

−2ε

x+ 2ε

4ε2
dx

=
1/2z2 + 2εz

4ε2
− 1/2(2ε)2 − 4ε2

4ε2

=
z2 + 4εz

8ε2
+ 1/2

Thus, Pr (S−i < s|Si) = (s−Si)2+4ε(s−Si)
8ε2

+ 1/2 for −2ε < z < 0.

Similarly, for 0 < z < 2ε we find that Pr (S−i < s|Si) = −(s−Si)2+4ε(s−Si)
8ε2

+ 1/2.

Now we are prepared to prove the claim in the manuscript.

Theorem 1. For any s̄ ∈ [hl + 2ε, hh − 2ε], if ε > 0 and p 6= 1
2 , the threshold norm at s̄ is not a

Bayesian Nash Equilibrium.

Proof. First, suppose that p > 1/2. We begin by using the distribution in Lemma 1 to find the

signal, spi = s̄−2ε+ 2ε
√

2p such that Pr (S−i > s̄|spi ) = p. Notice spi exists for any ε > 0, p > 0 and

any s̄ ∈ [hl + 2ε, hh − 2ε]. Also, since p > 1/2, −2ε+ 2ε
√

2p > 0, so spi > s̄. And, the distribution

in Lemma 1 is strictly increasing in si, so for any si < spi , Pr (S−i > s̄|si) < p.

Now suppose player i receives a signal just above the threshold. In particular, si ∈ [s̄, spi ). The

strategy pair under consideration prescribes that player i play S. But, Pr (S−i > s̄|Si) < p, so

player i benefits from deviating to N.

A similar argument holds when p < 1/2: player i benefits from deviating for any si ∈ (s̄− 2ε+

2ε
√

2p, s̄], since in this region, Pr (S−i < s̄|Si) < 1− p.

In the manuscript, we claimed, “. . . our equilibria analysis is actually based on a solution concept

that requires fewer assumptions than Nash: iterated elimination of strictly dominated strategies (see

SI). And this weaker solution concept has the property, unlike Nash, that evolutionary processes

will eventually converge to those strategies that satisfy iterative elimination of strictly dominated
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strategies ().” We now argue that the only strategy profile that survives iterated elimination of

dominated strategies is never sanction when p > 1/2, and always sanction when p < 1/2.

Lemma 2. If p > 1/2, the only threshold norm which survives iterated elimination of strictly

dominated strategies is at hh − ε. If p < 1/2, it is the threshold norm at hl + ε.

Proof. Let p > 1/2.

The best response to the threshold strategy σs̄−i is σ
s̄+2ε

√
2p−2ε

i , since at this threshold strategy, i

plays S if and only if Pr(S−i > s̄) ≥ p. (To see that the best response to a threshold strategy must be

another threshold strategy, first note that probability the other player sanctions is weakly increasing

in one’s own signal, Si. Then, for a given signal s, if EU(N) > EU(S), then Pr(S−i > s̄|Si = s) < p,

and any best response must involve N when Si <= s. A similar argument can be made for when

EU(N) < EU(S). These arguments together imply that if N is strictly optimal for a given signal,

then it is also strictly optimal for any smaller signal.)

This implies that the strategies σs̄i |s̄ ∈ [hl + ε, hl + ε+ (2ε
√

2p− 2ε)) are strictly dominated and

can be eliminated. By the same logic, we next eliminate strategies σs̄i |s̄ ∈ [hl+ε+(2ε
√

2p−2ε), hl+

ε+ 2(2ε
√

2p− 2ε)). Etc. Notice that we are eliminating a range of constant size each time. Hence,

we can repeat this until we are left with a subset of {σs̄i |s̄ ∈ [hh − ε− (2ε
√

2p− 2ε), hh − ε]}. σhh−εi

strictly dominates all remaining strategies: even if player −i is playing according to the threshold

strategy at hh − ε− (2ε
√

2p− 2ε), which maximizes the likelihood that −i sanctions, then player i

prefers not to sanction anywhere in [hh − ε− (2ε
√

2p− 2ε), hh − ε].
When p < 1/2, the argument is symmetric. The best response to the threshold strategy σs̄−i is

now σ
s̄−(2ε

√
2p−2ε)

i , since at this threshold strategy, i plays S if and only if Pr(S−i > s̄) ≥ p. This

time, it’s the strategies σs̄i |s̄ ∈ (hh− ε− (2ε
√

2p− 2ε), hh− ε] that can first be eliminated. We next

eliminate strategies σs̄i |s̄ ∈ (hh − ε − 2(2ε
√

2p − 2ε), hh − ε − (2ε
√

2p − 2ε)]. Etc. We repeat until

we are left with a subset of {σs̄i |s̄ ∈ [hl + ε, hl + ε + (2ε
√

2p − 2ε)]}. σhl+εi strictly dominates all

remaining strategies.

A.2 A Categorical Norm Can Be Sustained as a Bayesian Nash Equilibrium

We model a categorical transgression as a binary random variable, H, where the transgression

occurs (H = 1) with probability q. We allow for the possibility that the witnesses observe the

transgression with some error, ε. That is, Si = H with probability ε and Si = 1 − H with

probability 1− ε.
We claimed that, so long as the amount of noise, ε, isn’t too large, there is a Bayesian Nash

equilibrium where players condition their sanctioning on their signal of whether the transgression

occurred. In Thm. 2, we show this.

Theorem 2. When q 6= 1/2, p 6= 1/2, and ε < 1/2, the strategy pair in which player i plays S if

and only if Si = 1 is a Bayesian Nash equilibrium if and only if:

ε ≤ min

(
1 + p(1− 2q)−

√
p2(2q − 1)2 − 2p+ 1

2
,
p+ 2q(1− p)−

√
4q2(p− 1)2 − 4q(p− 1)2 + p2

2

)
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Proof. First, we present the eight possible states of the world, and their priors:

1. No transgression, neither detected a transgression, (1− q)(1− ε)2

2. No transgression, only witness 1 detected a transgression, (1− q)ε(1− ε)

3. No transgression, only witness 2 detected a transgression, (1− q)ε(1− ε)

4. No transgression, both witnesses detected a transgression, (1− q)ε2

5. Transgression, neither detected a transgression, (1− q)ε2

6. Transgression, only witness 1 detected a transgression, (1− q)ε(1− ε)

7. Transgression, only witness 2 detected a transgression, (1− q)ε(1− ε)

8. Transgression, both witnesses detected a transgression, (1− q)(1− ε)2

We’ll refer to these states and their prior probabilities in the proof.

The proof proceeds as follows. We determine the conditions under which the threshold norm is

an equilibrium, we require the player’s best response is to sanction upon observing harm and to

not sanction upon observing no harm. This generates multiple conditions, some of which are not so

relevant either because they require that parameters take very precise values (p = 1/2 or q = 1/2)

or that the amount of noise be large (ε ≥ 1/2), so we rule these conditions out.

We start by checking the two deviations: not sanctioning when observing harm, and sanctioning

when observing no harm.

Suppose player i does not detect the transgression, si = 0. The strategy under consideration

prescribes that i play N. She will not benefit from deviating so long as ε(1−ε)
(1−q)(1−ε)2+qε2+ε(1−ε) ≤ p.

The left hand side of this equation is the conditional likelihood −i detected a transgression, given

that i did not detect a transgression. The numerator is the sum of the priors on states 3 and 7,

and the denominator is the sum of the priors on states 1, 3, 5, and 7. With some simplification, we

see that this condition holds whenever one of the following three conditions is true:

1. ε ≤ 1+p(1−2q)−
√
p2(2q−1)2−2p+1

2

2. ε ≥ 1+p(1−2q)+
√
p2(2q−1)2−2p+1

2

3.
1−2
√

(1−q)q
(2q−1)2

< p <
1+2
√

(1−q)q
(2q−1)2

Suppose player i detects the transgression, si = 1. The strategy under consideration prescribes

that i play S. She will not benefit from deviating so long as q(1−ε)2+(1−q)ε2
q(1−ε)2+(1−q)ε2+ε(1−ε) ≥ p. The left hand

side of this equation is the conditional likelihood −i detected a transgression, given that i detected

the transgression. The numerator is the sum of the priors on states 4 and 8. The denominator is

the sum of the priors on states 2, 4, 6, and 8. Similar to above, with some simplification, we see

that this condition holds whenever one of the following three conditions is true:
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4. ε ≤ p+2q(1−p)−
√

4q2(p−1)2−4q(p−1)2+p2

2

5. ε ≥ p+2q(1−p)+
√

4q2(p−1)2−4q(p−1)2+p2

2

6.
4q(q−1)−2

√
q(1−q)

(2q−1)2
< p <

4q(q−1)+2
√
q(1−q)

(2q−1)2

Now, we’ll show that some of these conditions are not relevant once we assume p 6= 1/2, q 6= 1/2,

and ε < 1/2.

We begin with condition 2. Suppose ε < 1/2. Condition 2 therefore implies 1/2 ≥ 1+p(1−2q)+
√
p2(2q−1)2−2p+1

2 .

We simplify and find that it can hold only if q ≥ 1/2.

Now consider condition 5. Again, suppose ε < 1/2. Condition 5 therefore implies 1/2 ≥
p+2q(1−p)+

√
4q2(p−1)2−4q(p−1)2+p2

2 . This can hold only if q ≤ 1/2. Thus, when ε < 1/2, condi-

tions 2 and 5 can only both hold if q = 1/2.

Lastly, we consider when the conditions 3 and 6 hold. We will show the two are mutually

exclusive when p 6= 1/2.

First, we show that the left hand side of condition 3 is less than or equal to 1/2 only if q = 1/2,

where it holds with equality. This implies when p < 1/2, equation 3 is violated.

1− 2
√

(1− q)q
(2q − 1)2

≤ 1/2

=⇒ (2q − 1)4 ≤ 0

=⇒ q = 1/2

Next, we show the right hand side of equation 6 is greater than or equal to 1/2 only if q = 1/2

where it holds with equality. This implies that when p > 1/2, equation 6 is violated.

1/2 ≤
4q(q − 1) + 2

√
q(1− q)

(2q − 1)2

=⇒ (2q − 1)4 ≤ 0

=⇒ q = 1/2

Then, the left hand side of condition 3 cannot be less than 1/2 and the right hand side of

condition 6 cannot be greater than 1/2. This implies that both conditions can be satisfied only if

p = 1/2 (and q = 1/2).

A.3 Partner Choice

Next, we present a simple setting where sanctioning is incentive compatible and does not involve

a coordination element, in which case, a threshold norm is possible. In this setting–a stylized

‘partner choice’ game–there is variation in the types of the perpetrators, where ‘good’ types have
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Figure 2: A Partner Choice Game

distributions of transgressions that tend to be less harmful, and these types of perpetrators make

more desirable ‘partners’. The game proceeds as follows (Fig. 2). (1) First, the type of the

perpetrator is determined: with probability q he is good, and with probability 1 − q he is bad.

(2) A transgression occurs, and its distribution is determined by the perpetrator’s type. If the

perpetrator is good, the harm is distributed according to the probability distribution function

fg(h); if the perpetrator is bad, the harm is distributed fb(h). Let Fi(h) represent the C.D.F. of

fi(h) for i = {b, g}. We assume these distributions are continuous and have support over [hl, hh].

(3) A single witness receives a noisy signal of the magnitude, uniformly distributed about the true

magnitude, S ∼ U [h − ε, h + ε] where ε > 0. (4) Then, the witness decides whether to accept, A,

or reject, R, the perpetrator as a partner. Her payoffs depend on the perpetrator’s type: if the

perpetrator is good and she accepts him, she gets e, whereas if she rejects him she gets g < e; if

the perpetrator is bad and she accepts him, she gets f , whereas if she rejects him she gets j > f .

We show that it is a Bayesian Nash equilibrium for the witness to play a threshold strategy, σs̄,

as defined in definition 1.

Lemma 3. Let fg, fb be continuous with support over [hl, hh], and (fb(S + ε)− fb(S − ε))(Fg(S +

ε)− Fg(S − ε)) > (Fb(S + ε)− Fb(S − ε))(fg(S + ε)− fg(S − ε)) for all S ∈ [hl, hh].

Also, let Pr(B|hl) ≤ j−g
j−g+e−f and Pr(B|hh) > j−g

j−g+e−f , where B represents the ‘bad’ type.

Then, there exists a threshold s̄ ∈ [hl, hh] such that, in equilibrium, the witness rejects if and only

if S > s̄. Moreover, this equilibrium is unique.

Proof. Consider the witness’s decision problem. As in the original setup (Section A.1), If the

perpetrator is bad with probability greater than j−g
j−g+e−f , the witness prefers to reject. If the

perpetrator is bad with lower probability the witness prefers to accept. (And, if with probability

equal to j−g
j−g+e−f , the witness is indifferent.)

Given a signal S ∈ [hl + ε, hh − ε], their posterior regarding the type of the perpetrator is
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Pr(B|S) = Fb(S+ε)−Fb(S−ε)
Fb(S+ε)−Fb(S−ε)+Fg(S+ε)−Fg(S−ε) , by Baye’s rule. This will also hold in the ‘edge’ cases.

When the signal is near the lower boundary, S ∈ [hl, hl+ε] Pr(B|S) = Fb(S+ε)−Fb(hl)
Fb(S+ε)−Fb(hl)+Fg(S+ε)−Fg(hl)

=
Fb(S+ε)−Fb(S−ε)

Fb(S+ε)−Fb(S−ε)+Fg(S+ε)−Fg(S−ε)), (both fg and fb are zero outside [hl, hh]). Similarly, in the ‘edge’

case where the signal is near the upper boundary, Pr(B|S) = Fb(S+ε)−Fb(S−ε)
Fb(S+ε)−Fb(S−ε)+Fg(S+ε)−Fg(S−ε)).

We wish to show that Pr(B|S) is increasing in S. We begin by taking the partial with respect

to S. When S ∈ [hl, hh], we find:

(fb(S + ε)− fb(S − ε))(F (S + ε)− F (S − ε))− (Fb(S + ε)− Fb(S − ε))(f(S + ε)− f(S − ε))
(F (S + ε)− F (S − ε))2

This simplifies to:

(fb(S + ε)− fb(S − ε))(Fg(S + ε)− Fg(S − ε)) > (Fb(S + ε)− Fb(S − ε))(fg(S + ε)− fg(S − ε))

We simplify and find that this is strictly positive if and only if:

(fb(S + ε)− fb(S − ε))(Fg(S + ε)− Fg(S − ε)) ≥ (Fb(S + ε)− Fb(S − ε)(fg(S + ε)− fg(S − ε))

Finally, suppose Pr(B|hl) ≤ j−g
j−g+e−f and Pr(B|hh) > j−g

j−g+e−f . Then, given that fb and fg

are both continuous, and Pr(B|hl) < j−g
j−g+e−f < Pr(B|hh), there exists a unique s̄ s.t. Pr(B|s̄) =

j−g
j−g+e−f by the Intermediate Value Theorem. Then, the witness’s optimal strategy is to reject if

and only if S > s̄.

In Theorem 3, we show that the condition in Lemma 3 is met–and thus a threshold strategy is

optimal–if the distributions fb and fg satisfy the monotone likelihood ratio property.

Theorem 3. Let fg, fb be continuous with support on [hl, hh] and
fg(h)
fb(h) is decreasing for h ∈ [hl, hh].

Also, let Pr(B|hl) ≤ j−g
j−g+e−f and Pr(B|hh) > j−g

j−g+e−f . Then, there exists s̄ ∈ [hl, hh] s.t. the

witness rejects if and only if S > s̄.

Proof. First, let S + ε ≥ x. Then, by the monotone likelihood ratio property (MLRP),
fg(S+ε)
fb(S+ε) ≤

fg(x)
fb(x) .

We perform the following algebra:

fg(S + ε)

fb(S + ε)
≤ fg(x)

fb(x)

fg(S + ε)fb(x) ≤ fg(x)fb(S + ε)∫ S+ε

S−ε
fg(S + ε)fb(x) ≤

∫ S+ε

S−ε
fg(x)fb(S + ε)

fg(S + ε)[Fb(S + ε)− Fb(S − ε)] ≥ fb(S + ε)[Fg(S + ε)− Fg(S − ε)] (1)

Next, we let S − ε ≤ x. Then, by the MLRP,
fg(S−ε)
fb(S−ε) ≥

fg(x)
fb(x) . We perform a similar algebraic
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transformation, and find:

fg(S − ε)[Fb(S + ε)− Fb(S − ε)] ≤ fb(S − ε)[Fg(S + ε)− Fg(S − ε)] (2)

Subtracting equation 2 from equation 1 gives the condition in Lemma 3:

(fg(S + ε)− fg(S − ε))(Fb(S + ε)− Fb(S − ε)) ≤ (fb(S+ε)− fb(S − ε))(Fg(S + ε)− Fg(S − ε))

Thus, by Lemma 3, there exists a threshold equilibrium.

B Robustness and Extensions

B.1 N Discrete Values

In the manuscript, we stated, “. . . consider what happens if we replace the continuous variable with

a discrete variable that is equally likely to take on one of many (n) values. We find that the larger

n gets the closer p needs to be to 50% in order to allow for an equilibrium that depends on the

signal (Fig. 2).” To demonstrate this, we solve the model presented in Section A.2, except:

• Instead of assuming that H is binary, we assume that H is uniformly distributed over the

domain {1, . . . , n} (technically, H ∼ F (h) = bhc
n ), where h ∈ {1, . . . , n} is the realization of

H.

• We assume players’ signals are uniformly distributed over the domain
{
H − bnk c, H − b

n
k c+ 1, . . . ,H + bnk c

}
(technically, F (h) =

bhc−(H−bnk c)+1

2bn
k
c+1 ), where k ∈ {1, . . . , n} represents the amount of noise.

Theorem 4. The threshold norm σs̄ is a Bayesian Nash equilibrium if and only if
bn
k
c+1

2bn
k
c+1 > p, for

s̄ ∈ {1 + 2bnk c, . . . , n− 2bnk c}.

Proof. For a given h, there are 2bnk c+ 1 possible signals, each of which is chosen with probability
1

2bn
k
c+1 . The posterior probability of −i’s signal given i’s signal is #{x, y ∈ {bnk c, . . . , 2b

n
k c}|x+y =

Si + a}:

Pr{S−i = Si + a} =



0 for a < −2bnk c

2bn
k
c+1+a

(2bn
k
c+1)2

for −2bnk c ≤ a ≤ 0

2bn
k
c+1−a

(2bn
k
c+1)2

for 0 < a ≤ 2bnk c

0 for 2bnk c < a

Suppose p > 1/2 and consider what happens when a player receives signal just above the

threshold, Si = s̄ + 1. We use the posterior to calculate the likelihood the other’s signal is also

above the threshold, and therefore expected to play S:
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Pr{S−i > s̄|si = s̄+ 1} =

2bn
k
c+1∑

i=1

i

(2bn
k
c+ 1)2

=
bn
k
c+ 1

2bn
k
c+ 1

A threshold equilibrium exists if and only if
bn
k
c+ 1

2bn
k
c+ 1

≥ p.

Next, let p < 1/2. Suppose player i receives a signal at the threshold. We calculate the

probability that the opposing player receives a signal above the threshold:

Pr{S−i > Si|si = s̄} =

2bn
k
c∑

i=1

i

(2bn
k
c+ 1)2

=
bn
k
c

2bn
k
c+ 1

A threshold equilibrium exists if and only if
bn
k
c

2bn
k
c+ 1

≤ p, since player i would not benefit by

deviating to S.

This argument is illustrated in Fig. 3. First, suppose n = 10, Si ∼ U [h − 1, h + 1], and s̄ = 4.

For this to be a Nash equilibrium, when player i gets a signal of 5, she must believe player −i got

a signal of at least 5 with at least probability p, which happens if p > 1/3. And, when player i gets

a signal of 4, she must believe −i got a signal of 4 or below with probability 1− p, which happens

if p < 2/3. Thus, the threshold equilibrium exists for sanctioning games with payoffs such that p

is within a moderate range of 1
2 , namely p ∈ [1

3 ,
2
3 ].

Now, suppose the number of states is expanded and the amount of noise in the signals remains

proportionately the same: n = 100, Si ∼ U [h− 10, h+ 10], and s̄ = 49. Then, the range of values

of p around 1
2 that permit the threshold equilibrium shrinks to p ∈ [10

21 ,
11
21 ].

Notice that the range in which the threshold equilibrium exists approaches p =
{

1
2

}
as n→∞.
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Figure 3: Transgressions With More Than Two Possible Values
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B.2 General Result for Any Signal Distributions

The following result holds for any continuously differentiable distribution on the harm, H, and the

witnesses’ signals, Si.

Theorem 5. A threshold norm σs̄ is a Bayesian Nash equilibrium if and only if

lim
Si→s̄−

Pr{S−i ≤ s̄|Si} ≤ p ≤ lim
Si→s̄+

Pr{S−i ≤ s̄|Si}

Proof. σs̄ is a Bayesian Nash equilibrium if and only if for all received signals Si such that σ(Si) = S,

Pr{S−i ≥ s̄|Si} ≥ p, and for all received signals Si such that σ(Si) = N, Pr{S−i ≥ s̄|Si} ≤ p.
Since for all s̄ ∈ [hl + 2ε, hh − 2ε] and all 〈H,S1, S2〉 ∈ Ω, ∂Pr{S−i≥s̄|Si}∂Si

≥ 0, then for all Si ≤
s̄, P r{S−i ≤ s̄|Si} ≥ lim

Si→s̄−
Pr{S−i ≤ s̄|Si} and for all Si ≥ s̄, Pr{S−i ≤ s̄|Si} ≤ lim

Si→s̄+
Pr{S−i ≤

s̄|Si}.
Since a threshold strategy σ(Si) = S if and only if Si > s̄.

lim
Si→s̄−

Pr{S−i ≤ s̄|Si} ≤ p ≤ lim
Si→s̄+

Pr{S−i ≤ s̄|Si}

B.3 Other Specific Distributions of Harm

Next, we consider some alternative distributions on H. First, let H be distributed as follows. There

exists an atom at hl, where Pr(h = hl) = a. For any other value h ∈ (hl, hh], the remaining 1− a
probability is uniformly distributed over the interval (hl, hh]. As before si ∼ U [h − ε, h + ε]. We

show that there is at most one, non-generic threshold equilibrium.

Lemma 4. For any (p, a, hl), there only exists at most one threshold norm which is an equilibrium.

Proof. We begin by solving for the posterior probability that H = h given i’s signal: First, for

si ∈ (hl + ε, hh − ε): Pr{H < h|si} =


0 h < si − ε
h+ε−si

2ε hl < h < si + ε

1 si + ε < h

For si ∈ [hl, hl + ε]:

Pr{H < h|si} =


0 h < hl

a

a+
(1−a)(si+ε−hl)

hh−hl

+
(1−a)(si+ε−hl)

hh−hl

a+
(1−a)(si+ε−hl)

hh−hl

· h−hl
si+ε−hl si − ε < h < si + ε

1 si + ε < h

To ease notation, we let Pl represent the probability h = hl, given h ∈ [hl, hl + ε], Pl =
a

a+
(1−a)(si+ε−hl)

hh−hl

.

Next, we can solve for the likelihood the other’s signal is less than some threshold, given one

own’s signal, Pr{S−i < s̄|Si = si}.
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First, for si ∈ (hl + ε, hh − ε], the probability is the same as in section A.

Next, for si ∈ [hl, hl + ε]:

We first calculate the PDF: f(z) =

{
0 z < −2ε
Pl
2ε + (1− Pl) z+ε−hl+si2ε(si−hl+ε) −ε+ hl − si < z < 0

Then the corresponding CDF:

F (z) =

 0 z < −2ε

Pl(z−(−ε+hl−si))
2ε + (1− Pl)

z2−(hl−si−ε)
2

2
+(z−hl+si+ε)(ε−hl+si)

2ε(si−hl+ε) −2ε < z < 0

In particular, for z = 0, si ∈ [hl, hl + ε]:

Pr{s−i < si|si} = (si+ε−hl)(1+Pl)
4ε

Notice, the derivative of this with respect to si is 1− P 2
l . Then, this function is monotonically

increasing in si from 1+Pl
4 at hl to 1+Pl

2 at hl + ε, where there is a discontinuity (for a > 0). For

(hl + ε, hh − ε] the function is exactly equal to half.

Begin by considering threshold norms σs̄|s̄ ∈ (hl + ε, hh). Since, in this range, Pr{S−i < s̄|Si =

si} = 1/2, no threshold norm is a Bayesian Nash equilibrium by the same logic we employed in

Thm. 1.

Next, we consider threshold norms σs̄|s̄ ∈ [hl, hl + ε).

Let 1+Pl
4 < p < 1+Pl

2 . If Pr{S−i < hl|Si = hl} > p and Pr{S−i < hl + ε|Si = hl + ε} < p,

by the Intermediate Value Theorem and Thm. 5, there is exactly one threshold norm that is a

Bayesian Nash equilibrium. Otherwise, by Thm. 5, no threshold norm can be a Bayesian Nash

equilibrium.

Corollary 1. The threshold norm at s̄ = (1+Pl)(si+ε−hl)
4ε is the unique Bayesian Nash Equilibrium

if and only if 1+Pl
4 < p < 1+Pl

2 . Otherwise, no threshold norm is a Bayesian Nash equilibrium.

Proof. This follows directly from Lemma 4 and Theorem 5. The probability of player −i sanctioning

given signal si = s̄ is given by (1+Pl)(si+ε−hl)
4ε . Therefore, (1+Pl)(si+ε−hl)

4ε = p is a requirement for a

Nash equilibrium.

Recall, in the manuscript, we claimed, “We could instead replace the uniform distributions with

normal distributions and we would find that provided the variance in the noise is not too large,

there will not be an equilibria where the threshold depends on the state. The reason for this is

that in normal distributions, the probability that the other player has a signal below yours will

not be precisely 50%, but will depend on your signal, albeit it will still remain close to 50% if

the noise is not too large. Thus, for small noise, there still won’t be a threshold equilibria except

for a tiny range of coordination games, where that range again will approach measure 0 as the

level of noise approaches 0. Even if, however, the noise level is sufficiently large that there is an

equilibria where sanctioning occurs above a certain signal, only a very specific threshold will be

possible–the threshold at which my posterior that you got a signal above that threshold, given

that I got a signal at that threshold, is precisely p. Thus, the threshold will be determined by p

and the variance of the two distributions, not what’s socially optimal (see figure 3b and SI).” To

substantiate these claims, we let H be normally distributed, H ∼ N [0, 1], and let the noise also be
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normally distributed, Si ∼ N [h, σ2].

Theorem 6. If harm is distributed H ∼ N [0, 1] and each player receives a signal Si = h+εi, where

εi ∼ N [0, σ2] there exists at most one threshold norm at s̄, where s̄ is such that Pr

z > s̄− S1
σ2+1√

(σ2+1)2−1

σ2+1

 =

p where z ∼ N [0, 1].

Proof. We begin by calculating the mean and variance of S2 given S1. Witnesses’ signals are

distributed according to the multivariate normal distribution S =
[
S1
S2

]
. The mean matrix is

given by µ = [ 0
0 ]. The covariance matrix is given by Σ =

[
σ2+1 1

1 σ2+1

]
. We note that µS2|S1

= µ2 +

Σ21Σ−1
11 (S1−µ1) which, upon simplifies to µS2|S1

= S1
1+σ2 . We similarly calculate ΣS2|S1

= (σ2+1)2−1
σ2+1

.

Finally, since the conditional distribution of a multivariate normal distribution is also normal [1],

S2|S1 is distributed N [ S1
σ2+1

, (σ2+1)2−1
σ2+1

].

By Theorem 5, there exists a threshold equilibrium σs̄ if and only if Pr(S2 > s̄|S1 = s̄) = p. We

calculate Pr(S2 > s̄|S1 = s̄) = Pr

z > s̄− S1
σ2+1√

(σ2+1)2−1

σ2+1

. Thus we conclude there exists a threshold

equilibrium σs̄ if and only if Pr

z > s̄− S1
σ2+1√

(σ2+1)2−1

σ2+1

 = p where z ∼ N [0, 1].

The intuition behind this result is represented in Fig. 4. (1) When harm is normally distributed,

an observer who gets a signal that is higher than the mean harm level will think it is more likely

that the other observer got a signal below hers–exactly how much depends on her signal and the

variance of h–and vice versa for signals lower than the mean level (we have drawn the former case).

Critically, observer 1’s posterior is still not equal to p, so her best response involves deviating from

the threshold norm. (2) If the variance of h is relatively large, then the likelihood the other observer

got a signal below hers will be relatively close to 50%. In this case, there still will be no threshold

equilibrium. If the variance of h is relatively small (shown), then, for signals far from the mean of

h, the likelihood the other observer got a signal below hers can diverge meaningfully from 50%. In

such cases, it can be possible for a threshold norm to be an equilibrium. However, there will be

only one, highly specific threshold, s∗, that can be sustained in equilibrium, and that threshold will

depend on p and the variance of h, and not on what is socially optimal. Moreover, this equilibrium

is unstable.

B.4 State-Dependent Payoffs

In the manuscript, we wrote, “We now consider what happens if the continuous variable directly

influences the payoffs to sanctioning. In particular, we consider the case where the payoffs are as be-

fore but we add an additional benefit to sanctioning that is an increasing function of the magnitude

of the transgression. Now a(h) and b(h) both depend on the magnitude of the transgression, and

if the dependency is sufficiently strong, then, as with normally distributed harm, it is possible to
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Figure 4: Normally Distributed Transgression.

support a single continuous norm in equilibrium. But, once again, the threshold will be determined

by the strength of this dependency, and not all socially relevant considerations (Fig. 4).”

To show this, we solve the model presented in Section A.1, except we allow the cost of sanctioning

to depend on the size of the transgression. In particular, we make the payoff when a player sanctions

a monotonic and differentiable function of h: u1(S,S) = u2(S,S) = a(h) and u1(S,N) = u2(N,S) =

b(h). We assume, for all h ∈ [0, 1]: a′(h) > 0, b′(h) > 0, a(h) > b(h), b > 0, and a(h) > c, b(h) < d.

We will find it useful to define p(h) as the state-dependent analog of the risk-dominance, p:

p(h) =
d− b(h)

d− b(h) + a(h)− c

To prove that there is at most one uniquely defined equilibrium, we will show that p(h) is strictly

decreasing. By Theorem 5, a threshold norm is a threshold equilibrium only if the probability of

the other sanctioning is equal to p(h). Then, given the probability of the other sanctioning is equal

to 1/2 (for any interior h), there can be at most one threshold equilibrium where p(h) intersects

with 1/2.

We begin by showing that p(h) is decreasing in h.

Lemma 5. p′(h) < 0.

Proof. We begin by calculating p′(h):

p′(h) =
−b′(h)[d− b(h) + a(h)− c]− (d− b(h))(a′(h)− b′(h))

(d− b(h) + a(h)− c)2
(3)

The assumptions d− b(h) > 0 and a(h)− c > 0 imply d− b(h) + a(h)− c > 0. We then multiply

equation 3 by the denominator, (d − b(h) + a(h) − c)2, a strictly positive number. Therefore the

sign does not change. This yields:
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−b′(h)[d− b(h) + a(h)− c]− (d− b(h))(a′(h)− b′(h))

We can rearrange this to:

−[a′(h)(d− b(h)) + b′(h)(a(h)− c)]

The assumptions a′(h), b′(h) > 0 and d > b(h), a(h) > c, imply that the overall expression is

negative. Therefore p′(h) < 0.

Now we are ready to find conditions under which a threshold equilibrium exists.

Theorem 7. There exists s̄ ∈ [hl + ε, hh − ε] such that σs̄ is a threshold equilibrium if and only if

p(hl + ε) ≥ 1/2 and p(hh − ε) ≤ 1/2. Furthermore, such a s̄ must be unique.

Proof. Notice that the posterior Pr (S−i < s|si) is unchanged from Lemma 1, since the change in

payoffs doesn’t influence the posterior.

By the same logic as in Theorem 5, there exists a threshold equilibrium at s̄ if and only if

p(s̄) = 1/2.

Suppose p(hl + ε) ≥ 1/2 and p(hh − ε) ≤ 1/2. Then, by the Intermediate Value Theorem

and because p(h) is continuous (continuity is preserved by multiplication), there exists a single

s̄ ∈ [hl + ε, hh − ε] such that p(s̄) = 1/2. This s̄ is a threshold equilibrium.

Next, suppose p(hl+ε) < 1/2. As p(h) is strictly decreasing, there cannot exist s̄ ∈ (hl+ε, hh−ε]
such that p(s̄) = 1/2 > p(hl + ε). Therefore, there exists no threshold equilibrium. Similarly, if

p(hh − ε) > 1/2 there cannot exist a threshold equilibrium.

Lastly, we prove uniqueness. Let there exist s̄, s̄′ such that both σs̄, σs̄
′

are threshold equilibria.

Without loss of generality, let s̄ < s̄′. Then p(s̄) = p(s̄′) = 1/2. But p′(h) < 0 implies that

p(s̄) > p(s̄′), a contradiction. Therefore, there exists at most one threshold equilibrium.

B.5 More Than Two Witnesses

In the manuscript, we stated, “. . . we extend our model to take into account the fact that norms

are often enforced by large groups of potential sanctioners, and not just two, and again obtain

comparable results.”

We retain the setup in Section A, with the following modifications:

1. Instead of assuming there are two witnesses, we assume there are n witnesses.

2. Witnesses’ payoffs are: ui(S, nS) = a(nS) and ui(N, nS) = b(nS), where nS is the number of

witnesses who play S, a(nS) : {0, . . . , n} → R, and b(nS) : {0, . . . , n} → R. We assume a is

weakly increasing in nS and b is weakly decreasing in nS . Note that the identity of those who

sanction is irrelevant–only the number matters.
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First, suppose the harm is continuous and witnesses receive signals just as in Section A.1. We

show that there only exists a threshold norm when there is a non-generic relationship between

a(nS) and b(nS) that occurs with measure zero.

Theorem 8. If harm is uniformly distributed H ∼ [hl, hh] and each player receives an independent

uniformly distributed signal Si ∼ [H + ε,H − ε], then σs̄ is a threshold equilibrium if and only if:

n−1∑
nS=0

a(nS + 1) =
n−1∑
nS=0

b(nS)

Proof. As in Theorem 5, a threshold norm is an equilibrium if and only if, at Si = s̄, witnesses are

indifferent between sanctioning and not sanctioning.

To calculate witnesses’ payoffs at Si = s̄, we must calculate Pr(nS = k|Si = s̄) for any k. This

involves the following steps.

First, we calculate the probability generating function of nS when Si = s̄. In order to do

so, we consider the information of player i after observing signal Si = s̄. This player’s posterior

distribution of harm is uniform over [s̄−ε, s̄+ε]. Let the realization of H be h. Then, the probability

an arbitrary player −i sanctions is Pr(S−i > s̄|h) = h+ε−s̄
2ε and the number of (other) players which

sanction (nS) is nS ∼ Bin(n− 1, h+ε−s̄
2ε ).

Second, we can use these distributions–and the distribution of H given Si to find the distribution

of nS given a signal s̄. In particular, nS is distributed Bin(n − 1, X), where X is uniformly

distributed over [0, 1].

Third, using the above facts, we can now calculate the probability generating function of nS ,

which will yield the probability of a given number of players sanctioning.

E(znS ) = E[E(znS |U [0, 1])]

=

∫ 1

0
Pr(nS = k|h = u)fh(u)du

. . .

=
1

n
(1 + z + . . .+ zn−1)

Finally, using the probability function found above, we can calculate the probability of k players

sanctioning. Simply take the coefficient of zk, which is always 1
n .

We can now use this result to calculate witnesses’ payoffs at Si = s̄. The payoffs from sanctioning

is
∑n−1

nS=0 a(nS + 1). The payoffs from not sanctioning are
∑n−1

nS=0 b(nS). So, witnesses will only be

indifferent at Si = s̄ if:

n−1∑
nS=0

a(nS + 1) =

n−1∑
nS=0

b(nS)

This occurs only for a non-generic set of payoffs, and therefore this implies a continuous norm
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can only occur in rare circumstances.

Now, suppose harm is discrete and witnesses receive signals just as in Section A.2. Again, there

is a Bayesian Nash equilibrium in which players conditionally sanction so long as the amount of

noise, ε, is not too large.

Theorem 9. The strategy profile in which player i plays S if and only if Si = 1 is a Bayesian Nash

equilibrium if and only if:

n−1∑
k=0

a(k + 1)

(
n− 1

k

)[
q(1− ε)

q(1− ε) + (1− q)ε
εn−1−k(1− ε)k + (1− q(1− ε)

q(1− ε) + (1− q)ε
)εk(1− ε)n−1−k

]
≥

n−1∑
k=0

b(k)

(
n− 1

k

)[
q(1− ε)

q(1− ε) + (1− q)ε
εn−1−k(1− ε)k + (1− q(1− ε)

q(1− ε) + (1− q)ε
)εk(1− ε)n−1−k

]

and

n−1∑
k=0

b(k)

(
n− 1

k

)[
qε

qε+ (1− q)(1− ε)
εn−1−k(1− ε)k + (1− (1− q)(1− ε)

qε+ (1− q)(1− ε)
)εk(1− ε)n−1−k

]
≥

n−1∑
k=0

a(k + 1)

(
n

k

)[
qε

qε+ (1− q)(1− ε)
εn−1−k(1− ε)k + (1− (1− q)(1− ε)

qε+ (1− q)(1− ε)
)εk(1− ε)n−1−k

]

Proof. First, suppose a player receives Si = 1. Consider the probabilities with which they expect

other players to sanction. With probability q(1−ε)
q(1−ε)+(1−q)ε , harm was actually done, in which case

each other player has independent probability 1−ε with which they will sanction. With probability
(1−q)ε

q(1−ε)+(1−q)ε , harm was not done, in which case each player has independent probability ε with which

they will sanction. The probability with which k players sanction is
(
n−1
k

)
[ q(1−ε)
q(1−ε)+(1−q)εε

n−1−k(1−
ε)k + (1− q(1−ε)

q(1−ε)+(1−q)ε)ε
k(1− ε)n−1−k].

For a player to sanction given Si = 1, the payoff from sanctioning,
∑n−1

k=0 a(k+1)
(
n−1
k

)
[ q(1−ε)
q(1−ε)+(1−q)εε

n−1−k(1−
ε)k + (1 − q(1−ε)

q(1−ε)+(1−q)ε)ε
k(1 − ε)n−1−k], must be greater than the payoff from not sanctioning,∑n−1

k=0 b(k)
(
n−1
k

)
[ q(1−ε)
q(1−ε)+(1−q)εε

n−1−k(1− ε)k + (1− q(1−ε)
q(1−ε)+(1−q)ε)ε

k(1− ε)n−1−k].

Similarly, the probability k players sanction given Si = 0 is
(
n−1
k

)
[ qε
qε+(1−q)(1−ε)ε

n−1−k(1−ε)k+(1−
(1−q)(1−ε)

qε+(1−q)(1−ε))εk(1−ε)n−1−k]. The payoff from not sanctioning,
∑n−1

k=0 b(k)
(
n−1
k

)
[ qε
qε+(1−q)(1−ε)ε

n−1−k(1−
ε)k+(1− (1−q)(1−ε)

qε+(1−q)(1−ε))εk(1−ε)n−1−k], must be greater than the payoff from sanctioning,
∑n−1

k=0 a(k+

1)
(
n
k

)
[ qε
qε+(1−q)(1−ε)ε

n−1−k(1− ε)k + (1− (1−q)(1−ε)
qε+(1−q)(1−ε))εk(1− ε)n−1−k].

21



B.6 Continuous Sanctions

In the manuscript, we stated, “. . . we recognize that sanctions can itself vary in magnitude, perhaps

with each witness’s payoffs depending on the difference between how much she sanctioned and how

much others sanctioned. Therefore, we extend the sanctioning decision to permit variation in

magnitude of sanctioning and show that this, too, does not permit threshold norms, provided the

payoffs to differences in sanctioning don’t happen to have a particularly non-generic structure.”

We retain the setup in Section A, with the following modifications:

1. Instead of assuming the range of players’ strategy functions is binary, we assume it is [0, 1].

I.e. σi : [hl − ε, hh + ε] → [0, 1]. The strategy functions are also assumed to be weakly

increasing.

2. Witnesses’ payoffs are decreasing in the difference between their chosen level of sanction. I.e.

u1(σ1, σ2) = u2(σ1, σ2) is such that u′i(|σi−σ−i|) < 0, where ui is continuous and differentiable.

For example, payoffs might be, u′i = E(σ1(s1)− σ2(s2))2.

First, suppose harm is continuous and witnesses receive signals just as in section A. We show

that threshold strategies cannot be an equilibrium. There can be equilibria in which players sanction

more except in a unique, linear, case.

Theorem 10. Suppose for i = {1, 2}, σi(hl) = σ and σi(hh) = σ, and also σi is not constant almost

everywhere. Then there exists at most one Bayesian Nash equilibrium, where σi(si) = (σ−σ)si−σ
for i = {1, 2}.

Proof. We will begin by showing that in any Bayesian Nash equilibrium, σ1 = σ2. That is, the

strategy σi must be a best response to itself. This is due to the fact that i’s best response is an

averaging of σ−i weighted appropriately by the posterior. When noise is uniformly distributed, this

implies that both σis must be linear. Given two points, there exists only one line passing through

both, so there exists a single Bayesian Nash equilibrium.

First, we will show that, in any Bayesian Nash equilibrium, σ1 = σ2. Consider some arbi-

trary s ∈ [hl − ε, hh + ε]. Imagine player 1 observes this signal. Her payoff at this signal is∫
u1(σ1(s), σ2(s2))Pr(s2|s)ds2. We take the derivative and set it equal to zero and solve for the

best response: it is the weighted average of player 2’s sanctioning decisions, σ1(s) = E(σ2(s2)|s)
The same is true for player 2. The only way for this to be possible is for the two players to make

the same choice at s, I.e. σ1(s) = E(σ2(s2)|s) = E (E(σ1(s1)|s)|s) = E(σ1(s1)|s) = σ2(s).

Next we will show that when the noise is uniform, the resulting best response function is always

linear. We take the first order condition for player 1,
∫ ∂u1(σi(s1),σi(s2))

∂σi(s1) Pr(s2|s1)ds2 = 0. This

implies
∫
u′1(σi(s1), σi(s2))σ′i(s1)Pr(s2|s1)ds2 = 0. Because when player one receives signal s1, her

posterior probability of player 2 receiving a signal outside [s1−2ε, s1+2ε] is zero, we can rewrite this

integral as
∫ s1+2ε
s1−2ε u

′
1(σi(s1), σi(s2))σ′i(s1)Pr(s2|s1)ds2 = 0, which implies the following condition:

∫ s1

s1−2ε
u′1(σi(s1), σi(s2))σ′i(s1)Pr(s2|s1)ds2 = −

∫ s1+2ε

s1

u′1(σi(s1), σi(s2))σ′i(s1)Pr(s2|s1)ds2 (4)
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Since ui is defined as a function of the distance, or difference, between two values, ui(σi(s1), σi(s1+

x)) = ui(σi(s1), σi(s1 − x)). Similarly, given that the distribution of noise is symmetric, Pr(s1 −
x|s1) = Pr(s1 + x|s1). For condition 4 to hold, it must therefore be that σ′i(s1 − x) = σ′i(s1 + x)

for all x < 2ε, and for all s1. Then, σ′i is constant everywhere. I.e. σi is linear.

Lastly, if strategies are linear, and σi(hl) = σ and σi(hh) = σ, then there exists only a single

possible such line.

C Evolutionary Dynamics

The simulations in this manuscript were performed using DyPy, which is available at https:

//github.com/aaandrew152/dynamics_sim. The code for these simulations and all others in this

section is available for download at https://github.com/aaandrew152/CtsDisc.

C.1 Details of the Simulation Reported in Fig. 4 of the Manuscript

C.1.1 Fig. 4a: A single, representative simulation

We analyzed a single population of players playing the game described in Section A. The parameters

we employed were: N = 7, a = 4, b = 2, c = 0, and d = 4, so that p = 2/3. The strategy space was

restricted to the following ten strategies: always sanction, sanction if and only if si > 0/7, si > 1/7,

sanction if and only if si > 2/7, . . . , sanction if and only if si > 7/7, never sanction.

Each simulation proceeded as follows. First, we assigned all the players to the play the strategy

sanction if and only if si > 5/7. In each round:

1. Players receive the expected payoffs from playing against another player randomly selected

from the population with signals uniformly selected from [0, 1].

2. Strategies are re-assigned proportionally to payoffs, δi,t+1 = δi,t · eui,t where δi,t is the pro-

portion of the population playing strategy i in round t and ui,t is the expected payoff from

strategy i in round t.

3. Players are randomly selected with probability 0.05 to “mutate”. That is, if they are selected,

they are assigned a strategy randomly selected from the ten strategies.

At the end of each round, we recorded the frequency of and payoffs associated with each strategy.

Each simulation lasted for 190 rounds. In Fig. 4a, we present a single simulation such simulation.

C.1.2 Fig. 4b: Average frequencies of each strategy

In Fig. 4b, we ran the simulations described in Section C.1.1 500 times, and presented the average

frequency of the strategies in each period.

We also run the same simulations, but start by assigning all players to play the strategy sanction

if and only if si > 1/7, and let payoffs equal a = 4, b = 0, c = 2, and d = 4, so that p = 1/3. We

present the average frequency of the strategies in each period in Fig. 5.
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Figure 5: Average Frequency of Strategies, 500 simulations, p < 1/2

C.1.3 Fig. 4c: A single, representative simulation for the model with n = 10 discrete

possible values of harm, and p = .8

The simulations are identical to those described in Section C.1.1 except that harm can take 10

possible values, {1, 2, . . . , 10}, and the set of possible strategies is {Sanction if and only if Si > 0,

. . . , Sanction if and only if Si > 10}.

C.1.4 Fig. 4d: A single, representative simulation for the model with n = 10 discrete

possible values of harm, and p = .67

The simulations are identical to those described in Section C.1.3, except that p = .67.

C.1.5 Fig. 4e: A single, representative simulation for the model with normally dis-

tributed harm

The simulations are identical to those described in Section C.1.1 except that harm is distributed

H ∼ N [0, 1].

C.2 Additional Simulations

C.2.1 Arbitrary Assignment of Starting Strategies for Fig. 4a and 4b

We run the same simulations as in Fig. 4a and 4b of the manuscript, but, instead of starting the

entire population off at the same strategy, we start by assigning strategies randomly. Fig. 6a and

6b present a single run with p > 1/2 and p < 1/2, respectively. Fig. 6c and 6d present the average

frequency of the strategies in each period for p > 1/2 and p < 1/2, respectively.
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(a) Frequency of Strategies, Random Starting Point,
Single Run, p > 1/2

(b) Frequency of Strategies, Random Starting Point,
Single Run, p < 1/2

(c) Average Frequency of Strategies, 500 simulations,
Random Starting Point, p > 1/2

(d) Average Frequency of Strategies, 500 simulations,
Random Starting Point, p < 1/2

Figure 6: Arbitrary Assignment of Starting Strategies for Fig. 4a and 4b
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Figure 7: Average Frequency of Strategies, 100 Discrete Values

C.2.2 N Discrete Values

In Fig. 7 we present analogous simulations to those in Fig. 4d of the manuscript, with identical

parameters, except that we now let the domain of H be {1, 2, . . . , 100}. We start the entire popu-

lation at sanction if and only if N >= 10. The norm is no longer expected to be stable. Indeed, it

is not.

C.2.3 Uniform Distribution with an Atom at H = hl

In Fig. 8, we present the same simulations as those in Fig. 4a-b, but we now let harm be distributed

H ∼ F (h) = 1/5 + 4/5h. The strategy space includes the following 20 strategies: Sanction if and

only if Si > s̄ with s̄ ∈ {0, 0.06, . . . , 0.94, 1}. We start the population at sanction if and only if

Si > 0.12. We run the simulations for 5000 generations.

C.2.4 State-Dependent Payoffs

In Fig. 9, we present the same simulations as those in Fig. 4a-b, but we now let payoffs be a =

4(2h+ 1/2), b = 2(2h+ 1/2), c = 0, d = 5. The strategy space includes the following 20 strategies:

Sanction if and only if Si > s̄, with s̄ ∈ {0, 0.06, . . . , 0.94, 1}. We start the population at sanction

if and only if Si > 0.12. We run the simulations for 190 generations. We run the same simulations

for p = 1/3.
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(a) Frequency of Strategies, Starting at Sanction if and
only if S > 0.22, Single Run, p > 1/2

(b) Frequency of Strategies, Starting at Starting at
Sanction if and only if S > 0.78, Single Run, p < 1/2

(c) Average Frequency of Strategies, 500 simulations,
Starting at Sanction if and only if S > 0.22, p > 1/2

(d) Average Frequency of Strategies, 500 simulation,
Starting at Sanction if and only if S > 0.78, p < 1/2

Figure 8: Uniform Distribution with an Atom at H = hl
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(a) Frequency of Strategies, Starting at Sanction if and
only if S > 0.22, Single Run, p > 1/2

(b) Frequency of Strategies, Starting at Sanction if and
only if S > 0.78, Single Run, p < 1/2

(c) Average Frequency of Strategies, 500 simulations,
Starting at Starting at Sanction if and only if S > 0.22,
p > 1/2

(d) Average Frequency of Strategies, 500 simulation,
Starting at Starting at Sanction if and only if S > 0.78,
p < 1/2

Figure 9: State-Dependent Payoffs
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