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Abstract

We study inference in an instrumental variables model with heterogeneous treatment effects
and possibly many instruments and/or covariates. In this case two-step estimators such as the
two-stage least squares (TSLS) or versions of the jackknife instrumental variables (JIV) estimator
estimate a particular weighted average of the local average treatment effects. The weights in these
estimands depend on the first-stage coefficients, and either the sample or population variability of
the covariates and instruments, depending on whether they are treated as fixed (conditioned upon)
or random. We give new asymptotic variance formulas for the TSLS and JIV estimators, and pro-
pose consistent estimators of these variances. The heterogeneity of the treatment effects generally
increases the asymptotic variance. Moreover, when the treatment effects are heterogeneous, the
conditional asymptotic variance is smaller than the unconditional one. Our results are also useful
when the treatment effects are constant, because they provide the asymptotic distribution and valid

standard errors for the estimators that are robust to the presence of many covariates.
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1 Introduction

Empirical researchers are typically careful to interpret instrumental variables (IV) regressions as esti-
mating a weighted average of local average treatment effects (LATES), i.e., treatment effects specific to
the individuals whose treatment status is affected by the instrument, see Imbens and Angrist (1994) and
Heckman and Vytlacil (1999). When it comes to inference, however, they revert to standard errors that
assume homogeneity of treatment effects, which are in general invalid in the LATE framework: they are
generally too small relative to the actual sampling variability of the estimator. Oftentimes, inference
is further complicated by the fact that the number of instruments is relatively large, and that one may
also need to include a large number of control variables in order to ensure the instruments’ validity.

This paper considers the problem of inference in the LATE framework, with a particular focus on
the case of many instruments and/or covariates. We make three main contributions.

First, the paper points out the difference between conditional (on the realizations of instruments
and covariates) and unconditional inference in the LATE framework. When the treatment effects are
homogeneous, the two approaches to inference are indistinguishable from the practical point of view:
they suggest identical formulas for the standard errors. The paper shows that this is no longer the
case when the treatment effects are heterogeneous. The standard errors for the conditional inference
are smaller than for the unconditional one. The reason is that the unconditional inference additionally
accounts for the sampling variability of the conditional estimand.

Second, the paper studies the conditional and unconditional estimands of the TsLs and jackknife IV
estimators. In particular, the paper investigates when can the conditional and unconditional estimands
be guaranteed to be convex combinations of individual LATEs. One interesting result is that in the
presence of many covariates, the unconditional estimand of the TsLs generally differs from the estimand
given by Imbens and Angrist (1994), although the estimand is similar and generally is still a convex
combination of individual LATEs.

Third, the paper derives the asymptotic distribution and provides valid standard errors for these
estimators. Our large sample theory allows for both the number of instruments and the number of
covariates to increase with the sample size, while also allowing for the heterogeneity of the treatment
effects. Thus, for example, the paper provides what appears to be the first valid inference approach in
the settings such as Aizer and Doyle (2015) or Angrist and Krueger (1991) with many instruments.!

As a by-product, the paper provides new asymptotic theory results that can be useful for analysing
estimators and inference procedures in the presence of high-dimensional observables and possible treat-

ment effect heterogeneity.

When the treatment effects are homogeneous, the IV model is defined by a moment condition that
equals zero when the parameter 8 on the endogenous variable corresponds to the average treatment

effect. On the other hand, when the treatment effects are heterogeneous, so that different pairs of in-

!The only previously available results on the distribution of the Tsrs-like estimators in the LATE framework were obtained
for the unconditional inference on the TsLs estimator with a finite number of instruments and covariates, see Imbens and
Angrist (1994).



struments identify different LATESs, the IV model is misspecified in that there exists no single parameter
that satisfies the moment condition. Valid inference in this case therefore requires a proper definition
of the estimand of interest.

We define the unconditional estimand as the appropriate probability limit of the estimator. When
the number of instruments and covariates is finite, Imbens and Angrist (1994) show that the uncondi-
tional TsLs estimand is given by a weighted average of LATEs, with the weights reflecting the strength
(variability) of the instrument pair that defines the LATE. Kolesar (2013) shows that the unconditional
estimand for other two-step estimators such as several versions of the jackknife IV estimator is the
same, but that the unconditional estimands of minimum distance estimators such as the limited infor-
mation maximum likelihood estimator is different, and cannot in general be guaranteed to lie inside
the convex hull of the LATEs.

Another possibility is to define the estimand as the quantity obtained if the reduced-form errors
were set to zero, which we refer to as the conditional estimand since the estimand conditions on the
realized values of the instruments and covariates. We show that the conditional estimand of TsLs and
jackknife estimators can also be interpreted as a weighted average of LATEs, but the weights now de-
pend on the sample, rather than population variability of the instruments. As a result, it is difficult to
guarantee that the weights are positive in a given sample, and so far we have only been able to guaran-
tee that the weights are positive in finite samples when the covariates comprise only indicator variables.
When the design is balanced in a certain precise sense and the number of instruments is of a smaller
order than the sample size, the weights can be shown to be positive with probability approaching one
for a wide range of settings.

As a consequence of the distinction between the conditional S¢ and unconditional Sy estimands for
an estimator /3, we show that the conditional (on the instruments and covariates) asymptotic variance
of 3 is smaller than its unconditional asymptotic variance. The unconditional asymptotic variance
is larger because it needs to take into account the variability of the conditional estimand due to the
variability in the weights of the LATEs. More precisely, the unconditional asymptotic variance (the
asymptotic variance of 3 — fy) is given by the sum of the conditional asymptotic variance (the asymp-
totic variance of 3 — Bc), and the asymptotic variance of the conditional estimand (asymptotic variance
of Bc — Puy). When the treatment effects are homogeneous, all LATEs are the same, and the variabil-
ity of the weights due to the sampling variation in the instruments and covariates does not enter the
asymptotic distribution. In this case, the two estimands coincide and the (unconditional) variance of
B¢ is zero. Otherwise, however, the distinction matters. That the distinction between the conditional
and unconditional estimands can lead to the conditional asymptotic variance being lower than the un-
conditional one has been previously noted by Abadie et al. (2014) in the context of misspecified linear
regression. It is worth noting that in our problem both the conditional and unconditional estimands
can be of interest for causal inference.

We show that the conditional asymptotic variance can be decomposed into a sum of three terms.

The first term corresponds to the usual heteroskedasticity-robust asymptotic variance expression under



homogeneous treatment effects and standard asymptotics found in econometrics textbooks. The second
term accounts for the variability of the treatment effect between individuals and equals zero when the
treatment effects are homogeneous. It is in general positive, so that the standard errors are generally
larger when the treatment effects are heterogeneous. The third term accounts for the presence of many
instruments, and disappears when the number of instruments K grows more slowly than the strength
of the instruments as measured by 7, a version of the concentration parameter defined below.

The literature on inference for the two-step estimators in the presence of heterogeneous treatment
effects is limited. Imbens and Angrist (1994) derive the (unconditional) asymptotic distribution of the
TSLS estimator with finite number of instruments and covariates.? Formally, the problem can also be
seen as inference in a misspecified IV/GMM model. The first to provide standard errors in this model
were Maasoumi and Phillips (1982) for homoskedastic errors, and Hall and Inoue (2003) for general
GMM estimators, see also Lee (2017). Carneiro et al. (2011) consider inference on the marginal treatment
and policy effect estimators, but these are substantively and statistically different estimators from the
two-step estimators considered in this paper. Kitagawa (2015) and Evdokimov and Lee (2013) develop
tests of instrument validity when the treatment effects can be heterogeneous.

Our asymptotic analysis builds on the many instruments and many weak instruments literature due
to Kunitomo (1980), Morimune (1983), Bekker (1994) and Chao and Swanson (2005). Our distributional
results, in particular, build on those in Newey and Windmeijer (2009) and Chao et al. (2012). This
literature is focused on the case in which the treatment effects are homogeneous, so that the IV moment
condition holds, the number of covariates L is fixed, but the number of instruments X may grow with
the sample size n. In contrast, we allow for the treatment effects to be heterogeneous, and the number
of covariates to grow with the sample size. This is important in practice, since, as we argue in Section 2
below, in many empirical settings in which the number of instruments is large, the number of covariates
is typically also large. Although an increasing number of covariates L has been previously considered
in Anatolyev (2013) and Kolesar et al. (2015), these papers assume that the reduced-form errors are
homoskedastic, which is unlikely when the treatment effects are heterogeneous, and impossible when
the treatment is binary.

Consistency of the estimators of the asymptotic variance proposed in the many instruments liter-
ature typically relies on the fact that the number of parameters in the IV moment condition is fixed,
and that, under homogeneous treatment effects, they can be estimated at the same rate as the rate of
convergence of B This allows one to estimate the error in the IV moment condition, usually referred
to as the “structural error” ¢; at a fast enough rate so that replacing the estimated structural error in
the asymptotic variance formula with €; does not matter in large samples. When the treatment effects
are heterogeneous and/or the number of covariates L grows with the sample size, this is no longer the
case, and naive plug-in estimators of the asymptotic variance are asymptotically biased upward. The
feasible standard error formulas that we propose jackknifes the naive plug-in estimator to remove this

bias.

’Note that the heteroskedasticity-robust standard errors cannot account for the heterogeneity of treatment effects.



Although our asymptotic theory applies to a large class of two-step estimators, we focus on several
specific estimators. In particular, we consider a version of the jackknife estimator proposed in Acker-
berg and Devereux (2009), called 1j1vEl, as well as a related estimator 1j1vE2, which differs from 1j1vE1
in that it does not rescale the first-stage predictor after removing the influence of own observation. This
difference is similar to the difference between the jIvel estimator studied in Phillips and Hale (1977),
Blomquist and Dahlberg (1999), and Angrist et al. (1999), and the j1vE2 estimator of Angrist et al. (1999).
Ackerberg and Devereux (2009) have shown, however, using bias expansions similar to those in Nagar
(1959), that these two estimators are biased when the number of covariates is large, just as the TsLs
estimator is biased when the number of instruments is large. See also Davidson and MacKinnon (2006)
and other papers in the same issue. We also consider UJIVE estimator introduced in Kolesar (2013). Our
consistency theorems show that a similar conclusion obtains under the many instrument asymptotic
sequence that we consider. No inference procedures were previously available for the estimators robust
to the presence of many covariates, and our paper fills this gap.

A potential criticism of our results is that, since the definition of the estimands depends on the
estimator, the particular weighting of the local average treatment effects that it implies may not be
policy-relevant. In the settings with a fixed number of strong instruments, a viable option is to report
the LATEs separately and leave it up to the reader to choose their preferred weighting. Alternatively,
one can use the marginal treatment effects framework of Heckman and Vytlacil (1999, 2005) to derive
weights that are more policy-relevant, and build a confidence interval for an estimand that uses such
weighting. However, Evdokimov and Lee (2013) point out that the valid confidence intervals for the
weighted averages of LATEs with weights that do not shrink to zero for irrelevant instruments (e.g.,
equal- or census-weighted average of LATEs, smallest or largest LATE), generally are trivial (—oo, 00),
unless some additional restrictions (e.g., bounds on the support of the outcome variable) are introduced
into the model. The presence of a single unidentified LATE implies that such weighted average is also
unidentified. In practice, in many empirical settings, such as in Section 2 below, in which the instru-
ments correspond to group indicators, the identification strength or group size at least for some instru-
ments may be too small to accurately estimate every individual LATE. Then, any weighting scheme that
ex ante puts a positive weight on a particular LATE will lead to uninformative inference if that particular
LATE turns out to be very imprecisely estimated. Therefore, in such cases, one may have to choose a
less ambitious goal of providing a confidence interval for some weighted average of LATEs that puts
small (zero) weight on the LATEs corresponding to the weak (irrelevant) instruments, such as the TsLs
and J1v estimators. Importantly, our asymptotic theory results consider a broad class of estimators, and
can be used to derive the asymptotic properties of other estimators besides those explicitly considered
in the paper.

Whether or not a data-driven weighting of the LATEs is policy relevant, the TsLs and j1v estima-
tors are routinely reported in empirical studies. It is important to accompany such estimates with an
accurate measure of their variability, which our standard errors provide.

The remainder of this paper is organized as follows. Section 2 motivates and explains our analysis



and results in the empirically important simple special case in which the instruments and covariates
correspond to group indicators. Section 3 sets up the general model and notation. Section 4 discusses
the causal interpretation of the conditional and unconditional estimands. Section 5 presents our large-

sample theory. Proofs are relegated to the Appendix.

2 Example: dummies as instruments

This section illustrates the main issues in a simplified setup. We are interested in the effect of a bi-
nary treatment variable X; on an outcome Y;, where ¢ = 1,...,n indexes individuals. The vector of
exogenous covariates W; has dimension L, and consists of group dummies: W; , = I{G; = ¢} is the
indicator that individual 7 belongs to group ¢, where G; € {1, ..., L} denotes the group that the indi-
vidual belongs to. For each individual, we have available an instrument .S; that takes on M + 1 possible
values in each group. We label the possible values in group £ by s, . . . , Sgar. The vector of instruments
Z; has dimension K = M L and consists of indicators for the possible values, Z; ¢, = 1{S; = 54, },
with the indicator for the value sy in each group omitted: Z; = (Z; 11,..., Ziim, Zi21, - - -, Zi,LM)-

This setup arises in many empirical applications. For example, in the returns to schooling study
of Angrist and Krueger (1991), G; corresponds to state of birth and the instruments are interactions
between quarter of birth and state of birth, so that S; = sy, if an individual is born in state £ and quarter
m — 1. Aizer and Doyle (2015), who study the effects of juvenile incarceration on adult recidivism, use
the fact that conditional on a juvenile’s neighborhood G}, the judge assigned to their case is effectively
random: here S; = sy, if an individual is from neighborhood ¢ and is assigned the mth judge out
of M + 1 possible judges overseeing that neighborhood’s cases (for simplicity, in this example we
assume that number of judges is the same in each neighborhood). Similarly, Dobbie and Song (2015)
use random assignment of bankruptcy filings to judges within each bankruptcy office to study the effect
of Chapter 13 bankruptcy protection on subsequent outcomes. Silver (2016), who is interested in the
effects of a physician’s work pace on patient outcomes, uses the fact that by virtue of quasi-random
assignment to work shifts, conditional on physician fixed effects GG;, a physician’s peer group 5; is
effectively randomly assigned.

The first-stage regression is given by

M
Xi =YY" Zitmmom + > Wiethe + i, (1)

L L
f=1 m=1 /=1

where, by definition of regression, E[n; | G;,S;] = 0. The reduced-form outcome equation is given by

M L
> Zigmmym + Y I{Gi =Gy + G, (2)

1 m=1 /=1

L
Y, =
(=

where, again by definition of regression, E[¢; | G;, Si] = 0.



We assume that within each group, 5; is as good as randomly assigned and only affects the outcome
through their effect on the treatment. We also assume that the instrument has a monotone effect on the
treatment, so that P(X;(spm) > Xi(Sem) | Gi = £) equals either zero or one for all pairs m, m’ and all
¢, where X;(s) denotes the potential treatment when an individual is assigned S; = s. This assumption
implies that 7, corresponds to the fraction of “compliers”, the subset of individuals in group ¢ who
change their treatment status when their instrument changes from sy to sgy,. As shown in Imbens
and Angrist (1994) these assumptions further imply that the ratio 7y ¢y, /¢y, can the interpreted as an
average treatment effect for this subset of the population, 34,0, also called a local average treatment

effect (LATE), defined as
Bemm: = E[Yi(1) = Yi(0) | Xi(sem) # Xi(semr), Gi = £].

Here Y;(x) denotes the potential outcome corresponding to treatment status x. If individuals do not
select into treatment based on expected gains from treatment, then all LATEs are the same and equal
the average treatment effect, S,y = ATE := E[Y;(1) — Y;(0)] for all £ and all pairs m,m/, and the
regressions (1)—(2) reduce to the standard IV model, which assumes that 7y ¢,,, = ATE -7¢y,,. Our goal,
however, is to explicitly allow for the possibility that the LATEs may vary.

The two-stage least squares estimator can be obtained by first “projecting out” the effect of the
exogenous regressors W; by constructing the residuals Y;, X; and Z; from the regression of Y, X;
and Z; on W;. One then constructs a single instrument ETSLS,i as the predictor from the first stage
regression of Xl on ZZ The two-stage least squares estimator BTSLS is obtained as the IV estimator in

the regression of Y¥; on X; that uses Rrgs; as a single instrument:

n B ..
Zi:l RTSLs,iY;'

/BTSLS = = I
Z?:l RTSLs,iXi

(3)
Because the exogenous covariates are group dummies, projecting out their effect is equivalent to sub-
tracting group means from each variable: ; = Y; — n&} > i G=Gi Y;, where ng, is the number of
individuals in group Gj, and similarly for Xz and ZZ The predicted value ETSLS,Z- is then given by the
difference between the sample mean of X; for individuals in group G; with instrument value equal to

S;, and the overall sample mean of X; in group G:

~ 1 .. 1 . 1 1
RTSLS,i:T Z Xj_T Z Xj - ni Z Xj_T va (4)
j: ;=5 't Gy=G, Si j. 5= Gi j. G=G;

where ng, is the number of individuals with instrument value equal to S;.

One can think of the first-stage predictor as estimating the signal R; = 2%21 (Zi.cim—1Gm /NG TGm:
we have R\Tsm,i = R, if the first-stage errors 1); are identically zero. The strength of the signal measures
how fast the variance of BTSLS shrinks with the sample size: we show in Section 5 below that it is of the

order 1/¥,, where i\, = > 1", R? is a version of the concentration parameter. When the instruments



are strong, 7, grows as fast as the sample size n, but it may grow more slowly if the instruments are
weaker. We require that #*,, — co as n — oo, ruling out the Staiger and Stock (1997) weak instrument
asymptotics under which ¥, is bounded.

We now consider the estimands. Assume, without loss of generality, that the instruments are or-
dered so that changing the instrument from s, to s ,,+1 (Weakly) increases the treatment probability.
Then 74y, > 74 y,—1 for all m and ¢, where we define 7y := 0. If the reduced-form errors 7; and (; were
zero, then it follows from Lemma 4.1 below that the TsLs estimator would equal a weighted average of

LATES,

o gLl ‘Ijém
5C = Z Z B@m,mfla (5)

L M -
/=1 m=1 ZZ’:l Zm/:1 Werm!

where the weights @y, are all positive and given by

M M
Ly ek N
Wem = 7(7T£m - W@,mfl) § Tk — § Tom! | -

k=m m/=1

We call ¢ conditional estimand, because it conditions on the realizations of the instruments and co-
variates (we keep this dependence implicit in the notation). Furthermore, under standard asymptotics
which hold K, L, and the coefficients 7 and 7y fixed as n — oo, BTSLS converges to a weighted average

of LATEs

L M
BU = Z Z “em 5€m,m—1a

=1 m=1 25:1 er\r/{’:l Werm!

where the weights wy,, replace the sample fractions ny/n and ng,, /ng in (5) with population probabil-
ities py = P(G; = {) and ps,,, = P(S; = s¢m | Gi =€), s0 wes = pe(Tem — Tom—1) Zg/lzmpwk (e —
2%21 s, Tem'). We refer to By as the unconditional estimand. If the LATEs are all equal to the
ATE, the weighting does not matter, and both Sy and ¢ collapse to the ATE. Furthermore, the usual
standard error formula can be used to construct asymptotically valid confidence intervals (Cls). Other-
wise, however, Sy # (¢, and one has to choose whether one wants to report CIs for 3¢ or Cls for Fy.
It follows from our results in Section 5 below that the usual standard error formula does not deliver
valid CIs for either estimand, and that the CIs for the unconditional estimand will always be wider: the
asymptotic variance of BTSLS — Pu can be written as the sum of the sampling variance of BTSLS — B¢ and
the variance of the conditional estimand, 8¢ — fu.

A further problem complicating inference is that, as has been documented in the many instruments
literature, the TsLs estimator is biased (even when the treatment effects are homogeneous), with the
bias increasing with the number of instruments K. To see this, note that under regularity conditions,
we can approximate Bros by taking expectation of the numerator and denominator conditional on all
instruments Z = (Z1, ..., Zy) and all covariates W = (W7y,...,W,,)"

IB — Z?:l E{ETSLs,iE | Z, W] 4
TSLS — n = -~
Zi:l E[RTSLs,iXi ’ Z, W]

op(1).



To evaluate this expression, decompose the first-stage predictor into a signal and a noise component:
Rrgisi = Rl—l—(%sz Zj: S;=S; nj—n%:i Zj: Gy=Gi n;). Using the identities > " | E[XZRl | Z, W] = iy,
Be =i EIRY; | Z,W]/in,and > | RygisiYi = > 1y Rusis,iYi, it follows that

L M
Brss = fc + —2t=t Zeme Tntmd ~Memfne) gy (6)

. L M
P+ 22021 2om=0 Ug,em(l — N /1)

where oy, 0m = E[0i(G — nibc) | Si = Sem,Gi = (] measures the conditional covariance between
n; and v; = § — n;Bc, and U?Mm = E[nf | Si = Sem,Gi = {]. The second summand corresponds
to the TsLs bias: it can be seen that in general, it is of the order 5, 2%20(1 — Ny /M) [T =
LM/#, = K/#,. The bias can thus be substantial if the number of instruments K is large relative to
the concentration parameter 7. Standard asymptotics, which assume that K is fixed, fail to capture
this bias. In our asymptotics, we follow the many weak instruments literature and allow K to grow
with the sample size. These asymptotics capture the fact that, in order for the bias to be asymptotically
negligible relative to the standard deviation (which is of the order 7, 1 2), we need K2 /i, to converge
to zero, which is not an attractive assumption in most of the empirical applications discussed above.
The Tsis bias arises because the predictor ]?ZTSLSJ- for observation ¢ is constructed using its own
observation, causing Y; and X; to be correlated with the noise component of ETSLSJ-. To deal with this
problem we use a jackknifed version of the TsLs estimator proposed by Ackerberg and Devereux (2009),
called the improved jackknife IV estimator: we remove the contribution of X; from the first-stage pre-
dictor ]/%TSLSJ, which, as can be seen from equation (4), is given by D; X;, with D; = (1/ns, — 1/ng;),

and rescale the weights on the remaining observations:

n A ..
Zizl RIJIVEl,iYi

w2 m
Zizl RIJIVEl,iXi

. ~ 1A .
BUIVE] = ; RUIVEl,i = (1 - Dz) (RTSLs,i - DzXz) .
We also study a similar estimator that does not use the rescaling (1 — D;)~! (which we call 1j1vE2).
Importantly, 1j1vE1 differs from the original jackknife IV estimator (ivel) of Phillips and Hale (1977)
(see also Angrist et al., 1999), which implements the jackknife correction first and then partials out the
effect of the exogenous covariates (in contrast to 1JIvel, which partials out the effect of the exogenous
covariates first). This leads to the estimator that uses, as a first-stage predictor, the sample average
of X; among observations j in group G; and the same value of the instrument as observation 7, with
observation ¢ excluded:

n A N

1 Ryve,iYs ~ 1
Zl—l JIvEl,e L9 Z Xj-

R]IVE 1,2

/BJIVEl = n_ D I = —
Zi:l RJIVEl,iXi ns; 1

j: j#i,55=5;

Finally, we also study a version of the jackknife IV estimator proposed in Kolesar (2013), called UjIVE,



which is given by

A Z?:l RUJIVE,Z'Yz‘ -~ 1 1
ﬁUJIVE == n = ’ RUJIVE,i == ﬁ Z Xj - m Z Xj.
Zl:l RU]IVE,iX’i Gl ‘7752 Gj:GZ Gz j?él G]:G7,

The first-stage predictor EUJIVE,i is similar to the first-stage predictor of j1vE1, except it also partials out
the effect of the exogenous covariates by subtracting off the sample average of X; among observations
J in group G, with observation ¢ excluded. Because it never uses the treatment status of observation 1,
the error in this first-stage prediction will be uncorrelated with Y; and X;. Furthermore, it only partials
out the effect of covariates in the first stage, but not the second stage (by replacing Y; and X; with Y;
and X;). This ensures that the own-observation bias is not reintroduced in the second stage.

Using arguments similar to the derivation of (6), one can show that

BIJIVEI = fBc + — Ef:l;%zg/lgnu,émbﬁm
T'n + 2621 Zm:() U%,émbém
ZZL:I Z%zo T bm M [ T
in = 3271 Lo T2 gt [Tt

(1 — ngm/ne) /0
1 bm - )
For() T = 1 g — 1y

BJIVEl = /BC - + Op(l),

and

/BUJIVE = /BC + OP(1)7

where 5C is the same estimand as (¢, except that the weights @wy,, are multiplied by n,/(n;, — 1).

Therefore, if the conditional covariances o, s, all have the same sign, the sign of the bias of j1vEl is the
M Nom

m=0 nyty,

opposite of that of 1j1vE1 and Tsts. It can be seen that the jIvE1 bias is of the order >1¢_; 37
L/, Therefore, for the bias to be asymptotically negligible relative to the standard deviation of BJIVEI:
we need L?/#, to converge to zero. This is guaranteed under the many instrument asymptotics of
Bekker (1994) and Chao et al. (2012), which treats L as fixed. Our theory permits L to increase with
the sample size, which allows us to better capture the behavior of j1vEl in the empirical applications
discussed above, in which the number of covariates is tied to the number of instruments.

In comparison, the bias of 1j1vEl is of the order ZEL:1 Z%:O bem. If we assume that in large sam-
ples we have at least two observations for each possible value of sy, then the denominator of by,
is bounded, and the bias can be seen to be of the order 7,1 317, M/ny. Since ng = SN ng,, >
(M + 1) min,, 1y, it follows that the bias is bounded by M /(M + 1) - ¥, L/ min,, ng,. If the de-
sign is very unbalanced, so that the number of people assigned instrument sy,,, for some s and m can
be thought of as fixed, then we would need L?/#, to converge to zero to make sure that the bias is
asymptotically negligible, which is the same rate as for Jivel. Under a balanced design, however, when
a comparable number of individuals are assigned each instrument value, so that 1/ min,, ng,, is pro-

portional to (M + 1) L/n, and the bias is negligible if 522 7.{;2 converges to zero, which is a much weaker

10



requirement than that for jivel or TsLs.

The unconditional estimand is the limit of the conditional estimand, but we need to be careful about
defining this limit. It turns out that when the number of covariates and/or instruments is relatively
large, the estimands of 1JIvE1, JIVE2, and UJIVE can be asymptotically different, and can differ from the
estimand in Imbens and Angrist (1994).

Consider the above example with M = 1. In this case the expressions simplify and we can express

the conditional estimands as

L ~G
G _ Wy
BE = —=b
=1 221=1%]

where (; is the LATE that corresponds to the binary instrument in group .

~ IJIVE]L A ~ JIVEL
@) = sy, = of =™,

Rl
~AIVE2 2 -
@, = sk, (1 /ﬁR‘l/nl) ,

. ny
oM = sy, ——,
Rl py—1

2 _ 1 52 - . . e e . ~.
where s By = i Ge= R is a sample variance estimator for the individuals in group [, & B =

2 _

2.2 2 =1 /2
R|l_7r where 53, = Zi;Gi:lZﬂ'

1 4 4 . . . .
n > i ai— I Shy 18 the kurtosis estimator. We can also write s [Sh =

Correspondingly, the unconditional estimands turn out to be

L G

88 =3 — g,

L G
1= 21w
with
IJIVEl 2 __  .TSLs __ , JIVEl
w, —(npl—l)aﬁu—wl =w

IJIVEZ

~ 2
w; = <npl—1—f£R|l> OB
2

= npogy,,

where k Rl is the population kurtosis of Rin group /.

We show that the difference between these weights in general cannot be ignored. When the number
of groups L = +/n, the seemingly negligible difference between the weights can accumulate and lead
to asymptotically non-negligible difference in estimands.

When the treatment effects are heterogeneous, the three estimators correspond to different esti-
mands, and the choice of the estimator affects not only the statistical properties such as bias, but also
the interpretation of the corresponding estimand. We discuss this in more general settings below. Here,
we note that the weights for all three estimators are non-negative. The appeal of the first estimand is

that it is a “natural” TsLs estimand. The 1j1vEl estimator allows unbiased estimation of this estimand
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in the presence of many instruments and covariates. On the other hand, if we formally write down the

estimand from Imbens and Angrist (1994), it coincides with the estimand of UjIVE:

L PlUI%U
P i TR

L 2
=1 ZZ:l plo‘é‘l

As we will see, this property of UjIvE holds generally. Finally, the estimand of 1j1vE2 does not seem to

have any particular appeal, hence we do not study it in detail below.

Inference

For inference on the conditional estimand Sc, we show in Theorem 5.5 below that under the rate con-
ditions on the rate of growth of K and L above, and if (K + L)/n — 0, one can consistently estimate

the asymptotic variance of the discussed estimators by

]/} J(X,X,é',%) + J(Y_XBUIVEMY_XEUIVEh&%)+2J(Y_XBIJIVE17X7&V77)
cond = .9 PN RN
(Zizl RIJIVEl,iXi)

(Z?:l RIJIVEl,iXi)
N Zi;&j[(HZ)?j&rQ;,j&g,i + (Hz)ij(Hz)ji0un,iGun.;]
~ 2
(Z?:l RIJIVEI,iXi)

where H,; = Z (Z’ Z )*12’ is the projection matrix of the instruments with the covariates partialled
out,
J(A,B,C) = Y AiB;Cp(Hy)ir(Hyz)jk,
i#j#k
and 62, &%, and &, are estimators of E[(¢; — ni8c)? | Zi, Wi, E[(& — niBe)? | Zi, Wi, and E[(¢ —
niBc)? | Z;, W;] based on the reduced-form residuals. J(-, -, -) is a jackknife estimator of the variance
components: removing the terms for which ¢ = j is necessary to ensure that the variance estimator
remains asymptotically unbiased even as the number of instruments and covariates increases with the
sample size. The variance estimator has three components: the first component estimates the “usual”
asymptotic variance formula that obtains under homogeneous treatment effects and standard asymp-
totics, the second term accounts for treatment effect heterogeneity, and the third term accounts for the
presence of many instruments. For unconditional inference, a consistent estimator of the asymptotic
variance has an additional component that reflects the variability of the weights in the conditional
estimand when the instruments and covariates are resampled:
Poncns = P + L= XY = X5 )
(> Ruwve1,iX;)
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3 General model and estimators

3.1 Reduced form and notation

There is a sample of individuals ¢ = 1, ..., n. For each individual ¢, we observe a vector of exogenous
variables W; with dimension L, and a vector of instruments Z; with dimension K. Associated with
every possible value z of the instrument is a scalar potential treatment X;(z). We denote the observed
treatment by X; = X;(Z;). Associated with every value x of the treatment is a scalar potential outcome
Y;(x). We denote the observed outcome by Y; = Y;(X;). Thus, for each individual we observe the tuple
(Y;, X3, Zi, W5).

Let R; = E[X; | Z;,W;] and Ry; = E|Y; | Z;, W;] denote the reduced-form conditional expecta-
tions. We assume that these conditional expectations are linear in the instruments and covariates, so

that we can write the first-stage regression as
Xi = R; + i, R; = Zm + W[4, En; | Z;,W;] =0, (7)
and the reduced-form outcome regression as
Y; = Ry, + G, Ry,; = Zimy + Wiy, E[G | Zi,W;] = 0. (8)

In order to ensure that controlling for the covariates linearly is as good as conditioning on them, we

also assume that the conditional expectation of Z; is linear in W,
E[Z; | W] =TW,. 9)

This assumption is not necessarily restrictive since the setup allows for Z; to be constructed by interact-
ing an original instrument with the covariates. It also holds trivially in models in which the covariates
are discrete and saturated, so that W; consists of dummy variables, as in Section 2. If the instrument is
randomly assigned, W; only needs to include the constant.

LetY, X, R, and Ry denote the vectors with ith element equal to Y;, X;, I?;, and Ry, respectively,
and let Z and W denote matrices with the ith row given by Z; and W}, respectively. We denote the
right-hand side variables collectively by Q; = (Z/,W/)’, and let ) denote the corresponding matrix.
For a pair of random variables A;, B; that are mean zero conditional on (), we use the notation o2 ; =
E[A;B; | Q] to denote their conditional covariance, and 012471- = E[A? | Q] to denote the conditional
variance. For any random vectors A;, B;, let Y45 = E[A;B]] and S = nl S, A;Bl. Let
Amin (M) and A\pax (M) denote the smallest and largest eigenvalues of a matrix M.

Since we will allow for triangular array asymptotics in which the distribution of the random vari-
ables may change with the sample size, the random variables as well as the regression coefficients
m, Y, Ty, Yy, and I are all indexed by n. To prevent notational clutter, we keep this dependence im-

plicit.
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For any matrix A, let H4 = A(A’A)~! A denote the projection (hat) matrix, and for any matrix
B, let B = B — Hyy B denote the residuals after “partialling out” the effect of the covariates 1V. We
denote the population analog by B; = B; — E[B; | W;]. Thus, for instance R, = Zéﬂ', and R; = Z{m
where Z; = Z; — Z/W/(W'W)~'W;, and Z; = Z; — TW;.

3.2 Estimators and estimands

The two-stage least squares estimator can be written as

N
A Y RTSLS
-

ﬁTSLS = = 3 ETSLS - HZX
X/RTSLS

Here }A%TSLS is the first-stage predictor of X based on a linear regression of X on Z, and can be thought
of as an estimator of R = Zm. As explained in Section 2, this estimator does not perform well when

the strength of the instruments, as measured by a version of the concentration parameter

n

o= 308 = 3 (2,
i=1

i=1

relative to their number K is small. The second estimator that we consider is the JIvE1 estimator studied
in Phillips and Hale (1977), Angrist et al. (1999), and Blomquist and Dahlberg (1999), given by

5 . }.}IEJIVEl 3 . (HQX)z - (HQ)qu
1= =—=—, 140 =
JIVE X’Rﬂvm JIVEL,: 1— (HQ)zz

As we argued in Section 2, and as we will show formally below, when the number of covariates L is
large, the Jj1vE1 estimator does not perform well. The related estimator jIve2, proposed by Angrist et al.
(1999), can be shown to behave similarly. The third estimator that we study is the 1jIvEl estimator
proposed by Ackerberg and Devereux (2009) that partials out the effect of the covariates first before

implementing the jackknife correction,

B o YIEIJIVEl E - (HZX)l - (Hz)an
UIVEl — 5~ JIVEL,e —
' RI]IVEI ! ' 1- (Hz)m

As we will show below, this way of implementing the jackknife correction yields better performance
in settings with many covariates. Fourth, we study the related estimator that does not rescale the first
stage predictor after removing the contribution of the own observation. We refer to this estimator as
IJIVEZ2, and it is defined as

. VR, _ ) )
JIVE2

IVE2 — TR 5 RIJIVEZ,i = (HZX)z - (Hz)szz
X RIJIVEZ
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Finally, we study a version of the jackknife IV estimator proposed in Kolesar (2013), which only partials
out the effect of the covariates when constructing the first-stage predictor, and does not partial out their

effect on the treatment X or outcome Y,

S Y/ Ropye j——— (HoX)i — (Hg)uXi (HwX)i — (Hw)iXi
UJIVE X/RUJIVE I UJIVE,? 1 o (H-Q)ZZ 1 - (HW)ZZ
Let o
3 _ E[RyiR]
U,JA94 E [E?]

denote the probability limit of BTSLS under standard asymptotics, as in Imbens and Angrist (1994). We

show that the unconditional estimands of the estimators we consider are given by
E [RyiB (1= WS W)
B[R (1= 5W/ Sy Wi)]

5U,UJIVE = BU,IA94- (11)

/BU,TSLS = 6U,JIVE1 - 5U,I]IVE1 - y (10)

We define the conditional estimand of an estimator 3 as the quantity that would obtain if the
reduced-form errors 7; and (; were zero for all . For TsLs, JIvEl, and 1j1vE1, this leads to the same

estimand, given by

1 n ! 7 o7l 1 n '
B = Bormst = Bermem = w2 Ty ZiZim 3 g Ryl
,TSLS — JIVEL — JUIVEL — 77 n 15 o1 - 1 n 52 )
n Y T2 Zim n > i I

so that, relative to Byjas4, the population expectation is replaced by a sample average, and the popu-
lation errors Z; are replaced by sample residuals Z;. For 1j1ve2, the conditional estimand is different,

due to the lack of rescaling:

LS e Zi(1— (Hy)i)Zim
IS wZi(1 = (Hy)u)Zim

/BCJJIVEZ =

Finally, for ujIve, the estimand is given by

LS w Zi(1— (Hw)i) Y2
IS mZi(1 = (Hw)u) 2w

BC,UJIVE =

The conditional estimand is implicitly indexed by n. Similarly, under the triangular array asymp-
totics that we consider in this paper, the unconditional estimand also depends on n.

Our aim is to provide valid standard errors for the estimators considered. Making the dependence
on n explicit and letting P, denote the probability measure at sample size n, for an estimator f3, with

conditional and unconditional estimands fc , and Sy ,, we provide standard errors Sec , and ey,
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such that, under suitable restrictions on F,, for a given confidence level 1 — a,
h%npnﬂﬁn - /BU,n‘ < Zlfa/QSAeU,n) =1-aq,

and

1i7rln Pn(‘Bn — Benl < Zl—oz/ZSAQC,n) =1-a,

where z3 denotes the 3 quantile of a standard normal distribution. Before presenting our asymptotic

theory, we first discuss causal interpretation of the estimands in the next section.

4 Causal interpretation of estimands

4.1 Conditional estimand

For clarity of exposition, in this section only, we assume that the treatment X; is binary, and that the
instruments Z; are discrete. The results can be extended to multivalued and continuous treatments by
applying the results in Angrist and Imbens (1995) and Angrist et al. (2000), and to continuous instru-
ments by embedding the analysis in the marginal treatment effects framework of Heckman and Vytlacil
(1999, 2005).

We split the covariates into two groups, W; = (V;, T;), with T; possibly absent and V; corresponding
to a vector of Ly group dummies, V;; = I{G; =g},¢9 = 1,...,Ly, and 25;/1 g = L If Ly =
1, then the group dummies are absent, and V; corresponds to the intercept. To further simplify the
analysis, we assume that the support of the distribution of Z; conditional on W; depends only on G;.
Let Z, = {z§,..., zﬂg} denote the support of Z; conditional on G; = g. We assume without loss of
generality that the support is ordered so that (2] — zjg )'m > 0 whenever k > j. Here T; are unrestricted
controls that enter the model linearly, such as demographic controls. The setup covers cases discussed
in Section 2, in which the support of the instrument, such as a judge assignment or an indicator for
being born in a particular state in a particular quarter, depends on the group V; that an individual ¢
belongs to, a neighborhood or a state indicator.

We assume that the instruments are valid in the sense that they are independent of the potential
outcomes and potential treatments conditional on the covariates. We also assume that the monotonicity

assumption of Imbens and Angrist (1994) holds:
Assumption 1 (LATE model).
(i) (Independence) {Y;(x), X;(2)} (01} 22, L Zi | Gin T

(i) (Monotonicity) For all g and all z, 2" € Z,4, either P(X;(z) > Xi(2") | T;,Gi = g) = 1 as., or
P(Xi(2) > Xi(¢) | T;, Gy = g) = O as.

For k > j, define
(2 — 2])'my
(2 —2])ym’

CV(Z]‘Z, Ziq) =
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with the convention that a(zk, 29) = 0if (2] — Jg),ﬂ' = 0. For any z?, z] € Z, with k > j, it follows
from Assumption 1 and the results in Imbens and Angrist (1994) that (], ng ) corresponds to a local
average treatment effect,

EYi(1) = Yi(0) | Xi(2]) > Xi(2}), Gi = 9, Ti] = a(z, 2).

Due to the linearity assumption on the reduced form given by Equation (9), the covariates do not affect
the LATEs directly, only through the support Z;, which determines for which pairs of instruments z

and 2’ the quantity «(z, 2’) corresponds to a LATE.

Lemma 4.1. Consider the reduced form given in equations (7)—(9), and suppose that Assumption 1 holds.
Then

(i)
Ly Jg
WgJO‘ 2 1)
/BC,TSLS:/BC,]IVEI:/BC,I]IVEI ZZ ] j )
g=1 j= 12 met k: 1 Wink
where

ng—ﬂ(z —z Z]I{G =g}1{Z; > 7 }R (12)

For 11vE2, the same conclusion holds with R; in the definition of Wy; in the equation (12) replaced
by (1 — (HZ)”)RZ + e;;HW diag(HZ)R.

(ii) If the only covariates are group dummies, then R; = R; —nazl > =1 1{Gj = G;} Rj, whereng, =
> i1 1{G; = G}, and the weights (og; in equation (12) are positive. Furthermore in this case the

conclusion in Part (i) also holds for ujIvEe, with the weights w,; replaced by 1“93

The weights for different LATEs by the conditional estimand are sample analogs of the unconditional
weights given below. Unfortunately, we have been unable to give a general condition on the covariates

T; that guarantee positive weights.

4.2 Unconditional Estimand

The estimand given in Imbens and Angrist (1994) and the TsLs estimand have a similar structure of a

weighted average of LATEs, but the weights can differ in the presence of many covariates:

E [Ry.ft (1 - LW/Shy W) £ [fy.ft]

BU,TSLS = E [E? (1 _ %W{Z‘;}W‘/Vi)] P ﬁU,IA94 — E [E?]

Denote 0}% (w)=F [§?|Wl = w, and for all w with 0% (w) > 0let

FE [EW}NMWZ == w]

/BW (w)E E[REWVZ:U)]
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denote the LATE(or the weighted average of LATEs) conditional on covariates, which is interpreted as
in Imbens and Angrist (1994). Set Sy (w) = 0 for w with U% (w) = 0. Then E [ﬁyzﬁzﬂ/m =w| =

Bw (w) U% (w), and we can write

o% (w)
Buiao = /BW (w) f a}% (j) dFy (w)

dFy (w) .

The estimator and the estimand put more weight on the w that have higher variance of the instrument

O’% (w) and higher density (probability mass function) of W at w. The TsLs estimand can be written as

v (w .
Buss = /BW (w) o (w)(dF)W )’ where v? (w) = 0% (w) (1 — lw ZW1WU)> .

n

When the covariates have bounded support, Amax (Xww) /Amin (Zww) < C (balanced design),
and L = o(n), the weights of the TsLs (1JIVE1l) estimand are non-negative, because sup,,c Support(W)
WS yw = o (n).

The term %Wi’ Eﬁ/lWWi in the unconditional estimand of TsLs appears because, instead of using
the population variance 0'% (w) of R; as the weight, the TsLs estimator uses the variance of the sample

projection residual R;, which is approximated by v? (w).

5 Large sample theory

The weakest condition on the strength of identification and the number of instruments and covariates

we consider is

Assumption 2. The error terms (14, 7);) are independent across i, conditionally on @), and
(i) (K+L)/n < C for some C < 1.
(i) Asn — oo, i, — ocoand Y i, R%},/Tn is bounded a.s.
(i) K/i#2 “3 0.

Part (i) rules out the case in which the number of instruments and covariates is larger than the
sample size. Part (ii) prevents Staiger and Stock (1997)-type asymptotics by requiring 7, to diverge to co
(we will show below that 7, determines the rate of convergence). Assuming that elements of E, [R%/z]
are of the same order essentially requires that the LATEs are bounded, which holds automatically if the
treatment effects are constant. This condition can be replaced by the assumption that ) ;" , R2Al [T is
bounded a.s., where RA = Ry — RBC However, since S¢ depends on the estimator, this assumption
is somewhat awkward. Part (iii) of the assumption is needed in order to ensure that the conditional

variance of each estimator vanishes with the sample size.
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To control the asymptotic bias of the estimators, and to construct standard errors that consistently
estimate the asymptotic standard deviation of the estimators, we will need to further restrict the rate

conditions on K and L, as explained further below.
Assumption 3.

(i) E[n | Q) =0and E[¢; | Q] = 0, E[v? + n? | Q] is bounded, and |corr((;,n; | Q)| is bounded

away from one. Furthermore, Ug ; is bounded away from zero.
(i) E[v}+ nt| Q] is bounded.

Part (i) will be needed for consistency, and to make sure that the asymptotic covariance matrix is
not degenerate. Part (ii) is needed for asymptotic normality, and also to derive the probability limits of
inconsistent estimators.

The following assumption is used to establish the unconditional asymptotic results. Let 7, =

nE[E?] denote the population analog of 7.
Assumption 4. The observed data (Y;, X;, Z;, W;) is i.i.d., and
@) (K + L)log(K + L)/n — 0.
(i) 7 — oo and B [ R 4 g20F ‘”} JE [R2]" is bounded.
(iii) K/72 — 0.
(V) Amax(E[QiQ!])/ Amin(E[Q:Q}]) is bounded.
(v) (Simple Sufficient Condition) ||Q;||?/E[||Q:||?] is bounded.

Parts (i)—(iii) are population analogs of Assumption 2(i)-(iii). Part (iv) is a balanced design assump-
tion. Part (v) is used for the analysis of large-dimensional random matrices in the definitions of the
estimators. It in particular allows for the covariates and/or instruments to be spline functions of some
underlying low-dimensional variables. This condition can be relaxed. Assumption 4 in particular en-

sures that the conditional assumptions made above and below are satisfied w.p.a.1 unconditionally.

5.1 Consistency

To state the consistency results for the conditional estimand, note that each estimator that we consider
can be written as g = > YiGi X/ 57, ; XiGi; X for some matrix . In particular,

Giros = Hy, (13a)
Guyver = (I — Hw)(I — diag(HZ))il(HZ — diag(Hz))(I — Hw), (13b)
Gywsz = H; — (I — Hy) diag(H ;)(I — Hw), (13¢)
Gyver = (I — Hw)(I — diag(Hg)) ™" (Hq — diag(Hg)), (13d)
Gopve = (I = diag(Hq)) ™' (Hg — diag(Hg)) — (I — diag(Hw)) ' (Hw — diag(Hw)).  (13¢)
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Under Assumptions 2 and 3, appropriately scaled sums in the numerator and denominator of B, will

~ !
converge to their conditional expectations, so that 3o — % = op(1). We can write this as

B — e, — bias(B) = 0, "
where 2 G
R Giioun.i
bi = e :
ias(fq) S Ri(GR), + Y, Gim?,,i (15)

is the conditional asymptotic bias of the estimator. Here v; = {; — n;6c ¢, and fc.¢ = R GR/R'GR
is the conditional estimand. The diagonal elements G;; of the matrix GG exactly capture the bias that
arises because the first-stage predictor of the treatment for individual ¢ puts weight G;; on the individ-
ual’s observed treatment, accounting for the effect of partialling out the exogenous covariates. For the
estimators we consider, E,[R;(GR),] = #,/n, so that bias(8g) = O(3;|Giil /#'n). We will therefore
need to control the diagonal elements of GG;; to ensure that there is no bias. Since for ujive G;; = 0, its

bias is zero.

Theorem 5.1. Suppose Assumption 2 and Assumption 3 (i) hold.

.. A RUR
1. IfK/Tn — 0, then BTSLS = BC,TSLS + OP(l): where BC,TSLS = R}’/R

Assumption 3 (ii) holds, then Bms = Bc,rsis + bias(ﬁATSLs) +op(1).

If K/, is bounded and

2. Suppose that for some C < 1, max;(Hg)y; < C. If L/#, — 0, then B]I‘/E] = Bersis + op(1).
If instead L/7, is bounded, Assumption 3 (ii) holds, and bias(B],VEI) is bounded, then B]IVEI =
5C,TSLS + biaS(B]IVEI) + OP(l)-

3. Suppose that for some C' < 1, max;(H )y < C. If Lmax;(H);; /7 — 0, then Bjﬂvm = Bc,rsis +
op(1). Ifinstead L max;(H ;);; /7, is bounded, Assumption 3 (ii) holds, andbias(BU,VE]) is bounded,
then BI]IVE] = BC,TSLS + bias(BI]]VE]) + OP(l)-

4. Suppose that for some C <”1, max; (HZ)” < C.IfLmax;(H )y /i, — 0, then BU,VEZ = Beyvez+
}2-5([;77%. If instead L max;(H );; /7', is bounded, Assumption 3 (ii)

holds, and bias(BU,VEg) is bounded, then BI]IVEZ = Beyvez + bias(BU,VEg) +op(1).

OP(l)’ where /BC,I]IVEZ =

5. Suppose that for some C' < 1, max;(H ;) < C, that max;(Hy ); — 0 a.s., max;(|R;| + [Ry,|)
is bounded a.s., and that L /7, is bounded. Then BU]IVE = Beyme +op(1).

The rate conditions given in the theorem control the bias of each estimator. For the jackknife
estimators, GG;; may be negative, so that the denominator, scaled by n, in equation (15) may converge
to zero even as R'GR — oo, so that the bias would grow unbounded. In order to prevent this, the
theorem assumes directly that the bias is bounded. In general, the proof of the theorem shows that
the bias of Tsts is of the order K/#,, that of jivel is of the order L /7, while the bias of 1j1vEl and

1JIvE2 is of the order L max;(H ;) /. The term max;(H ;);; measures the balance of the design: if
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the design is balanced, so that max;(H );; is proportional to K /n, then the bias of j1vEl and 1j1vE2
remains negligible under a much weaker condition on the rate of growth of L as that of jivel. For the
asymptotic normality results and inference, we will therefore concentrate on TsLs, 1J1vE1l, and UJIVE for

brevity.

Theorem 5.2. Suppose Assumption 3 (i) and Assumption 4 hold. Then i, /7y, 5 1, Beg = Buc+op(1),
B = Buc + op(1), and Buc = Buiass + op(1), under the following conditions:

Estimator Conditions
TSLS K/, — 0
JIVE] L/r, —0
IJIVE] LK/(f,n) — 0
UJIVE L/72 =0

The theorem establishes that the conditional estimand converges to the unconditional one, and that
the conditional regularity assumptions made by Theorem 5.1 hold with probability approaching one,

and hence the estimators are consistent unconditionally.

5.2 Asymptotic normality
For the asymptotic normality, we will need to ensure no single observation has too much influence on
the strength of identification:
Assumption 5. 3, R} /2 % 0and 3, RY, /72 % 0.

This assumption is equivalent to Assumption 5 in Chao et al. (2012). It is needed to verify the
Lindeberg condition in showing asymptotic normality of the estimators.

To state the asymptotic normality results, given a particular conditional or unconditional estimand

0, let éA = Ry — RB and let v; = (; — 1; 5. Under constant treatment effects, RA = 0, and v; can be

interpreted as the structural error.
Theorem 5.3. Suppose that Assumptions 2, 3 and 5 hold.

1. IfK? /¥, — 0, then

Vey V2 d
<TC) (/BTSLS - 5C,TSLS) — N(07 1)7
where .
Ve = i Z[RZZUZ@ + Ug,iRA,i(ﬂc,TSLs)Q + 20, i Ri R .

(2

2. Suppose further that L maxi(HZ)ii/\/iTn %0, max;(H ;)i %0, and that K /¥y, is bounded, and
let

1
Viw = = S (Hy) ok 08+ (Hy)i(Hy)jiounioum;)-
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Then <V oy )_1/2
¢t Vaw

2 d
7 (/BI]IVEI - /BC,TSLS) — N(O, 1).
If instead K /i, — oo, then the above holds with H ; in the definition of Vyw replaced by G jye;.

3. Suppose that (L + K) /7y, is bounded, max;(Hq); — 0, and max;(|R;| + |Ry,|) is bounded a.s.

Then (V Ly >1/2
¢+ Vaw

Tn

(BU]IVE - BC,U]IVE) i> N(O, 1)

Before discussing this result, it is useful to state the corresponding unconditional inference result.

Assumption 6.

() B [RL + B Wi JE[R2] < Cas, and E [{(R2, + B)R2}) /B[R] < C for

some C' > 0.
(i) L*log? L = o (n3),and Ay, = 0 (n?), where \y,,, = E [(%’;%’)4], v = E;Vlv/vzWz

Theorem 5.4. Suppose Assumptions 3, 4, and 6(i) hold. Then, under the additional restrictions listed

below,
—-1/2

(B — Buc) 4 N(0,1),

(Qc + Qf + QMW)

T'n
where

1 - -
Qc = —=-E[(Rwvi + Raim)?],
o= gl )

7

Q - = ~7:2§2i7
"

1 ~ ~ ~ ~ ~ ~
Qu = = tr (E[v?Z@;%ZﬂE[n?ZiE;ZZ;] + E[vmiziz;ZZéF) :
n

These results hold under the following assumptions:
1. For Bms, if K/, — 0 and Assumption 6(ii) holds, with By, 1s.s defined in equation (10).

2. For B,],VEI, if K /7y, is bounded and Assumption 6(ii) holds, with By e = Bu s defined in equa-
tion (10).

3. For BU],VE, if (K + L) /Ty, and |R;| + |Ry;| are bounded, with By defined in equation (11).

Let us first discuss the form of the asymptotic variance. The terms Q¢, Qyw, and (g are population
analogs of V¢, Vmw, and Vg. The term Qyw corresponds to the contribution to the asymptotic variance
coming from many instruments. Under homoskedasticity, it simplifies to K/, - (0207 + 07,). It
has the same form whether or not there is treatment effect heterogeneity, except that v; cannot in

general be interpreted as the structural error. When the number of instruments grows slowly enough
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so that K /i, — 0, this term is negligible relative to V. This happens, in particular, under the standard
asymptotics that hold the distribution of the data fixed as n — oo. For TsLs the condition K /i, — 0
is needed for consistency, so that the many instrument term is always of smaller order. If K/#,, — oo
then in general the many instruments term Vyw dominates, the rate convergence is slower than 1/ 7'"}1/ 2,
and the asymptotic variances of different estimators may differ. On the other hand, if K/, is bounded,
the asymptotic variance for 1j1vEl and UJIVE is the same.

The term (g accounts for the variability of the conditional estimand fc. As a part of the proof
of the theorem, we show that 7/ *(Bc — Bu) 4 N (0,9g). Theorem 5.4 effectively shows that this
result also obtains under the many instrument asymptotics, and that, in addition, the term Sc — Sy is
asymptotically independent of the term B — Be.

The term V¢ corresponds to the asymptotic variance of Riw + Rmm- The first term of Vg,
> R%oii, accounts for the variance of R;v;, and corresponds to the standard asymptotic variance
for TsLs: it is the only term present under the standard asymptotics and the assumption that the treat-
ment effects are constant. The term RA,mi corresponds to the uncertainty due to the treatment effects
being different for different individuals. Typically, this uncertainty increases the asymptotic variance,

ie., typically Vo > >, Rgag ;- Let us make a few remarks about the regularity and rate conditions:

Remark 1. The conditions K2 /7, — 0 for Tsts and L? max;(H);;/\/7, “3 0 for yIvel estimators
in Theorem 5.3 ensure that the conditional bias of the estimator is negligible relative to its standard
deviation. If these conditions are relaxed to K?/i, and L? max;(H);;/+/7n being bounded, then it
follows from the proof of the theorem that the estimators will remain asymptotically normal, but one
needs to subtract from B the conditional bias in addition to the conditional estimand, since the bias is
no longer asymptotically negligible (see also Lemma D.5 in the appendix). However, it is unclear how

to do inference in this case as it is unclear how one could properly center the confidence intervals.

Remark 2. Note that the estimands of TsLs and 1j1vE1 differ from Syjaos, While Suyve = Buiass. The
difference between the estimands is potentially non-negligible when /7, F¥ [EYiEi%W{Eﬁ/lWWi] ~

#773”/ ’L + 0. When the instruments are strong, the condition is L//n # 0.

Remark 3. As a part of the proof of Theorem 5.4 we show that (Ve + Vww)/(Qc + Qnw) = 1.

Remark 4. Assumption 6 (ii) is used to derive the unconditional distribution of 1j1vEl in Theorem 5.4.
We can view E [(1/1{@[)])4} /E [H@Z)Z||2] f o Ay.n /L as a measure of orthogonality of the independent
random vectors v; and v;. Random vectors in high-dimensional spaces tend to be nearly orthogonal,
and the rate at which £ [(1/1{@[)])4} grows with L reflects the dependence structure of the components
of the vector v;. For example, Ay, , ~ L? when the components 1);; are independent across [, F [¢;;] =
0, and [|@Z)il\4] < C. When W are (appropriately rescaled) draws from Multinomial(py, ..., pr),

satisfying the balance condition max;<y, p; /minj<y, p; < C < 0o, we have Ay, ,, =~ L3.

Remark 5. If ||| < (o (L) for a nonrandom function (o (L), then E [(wgwj)ﬂ < min{¢ (L)* L,

Co (L)? E[||¢i]|*]}. An important case is W; = ¢ (W) for some low-dimensional observed variables

W;, whose effect we are modelling nonparametrically, and ¢ (-) is a vector of some basis functions
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scaled to satisfy Assumption 4. For example, ( (L) < C'v/L for splines when W has compact support,
and hence F [(%%)4} < L3

Remark 6. The condition max;(H Z)“ 2% 0 in Theorem 5.3 is a balance condition on the design. It
requires that K /n — 0. It follows from the proof of the theorem that the condition may be replaced
by weaker regularity conditions that, in particular, allow K to grow as fast as n. In that case, one also
needs to replace R; by (GR); and R ; by (G'Ra); in the expression for V¢, and replace Hy; by G
in the expression of Vyyw. A sufficient weaker regularity condition is that L is constant, and that the
treatment effects are homogeneous, in which case the result is similar to that for jivel in Chao et al.
(2012). Since we require the balance condition max;(H Z)ZZ %20 in order to construct a consistent
standard error estimator, we impose it already in Theorem 5.3 as it allows us to state the results in a

more unified way.

5.3 Inference

To define the standard error estimator that we consider, let ) = X — Hp X and Q: =Y — HpY denote
residuals from the reduced-form regressions. We use plug-in estimators of 0,,, 0,5, and Ug to estimate

the variance components V¢, Vg, and Vyw:

~ ~

6-1%71' = (CZ - ﬁiﬁ)27 &V’r],i - (C’L - ﬁzﬂ)ﬁh A7271 = ﬁzz

Rather than using a plug-in estimator for R;, and RA,Z- in the expression for V¢ and Vg, we use the

following jackknife estimators

~ 1 .. .. oA e oA . oA e
Ve == (J(X,X,60)+J(Y = XB,Y — XB,62) +2J(Y — XB,X,6.)),
n,IJIVE]L
and .
Ve=——J(V - X3,V - X, R%,),
n,IJIVE]

where 7, rve1 = Zl XiRywve1,; and

J(A,B,C) = Y AiB;Cp(Hy)ir(Hyz) k-
i#j#k

The “jackknifing” in the definition of .J removes the asymptotic bias of the estimators. Here 7}, ;jve1 is

an estimator of 7,,. For V1, we use the estimator

~ 1 N N . .
Vuw = = > ((Hy)%60 5670+ (Hy)ig(Hy)jibun,ibu.j)-
T'n,1y1vEl it
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The standard errors for the conditional and unconditional estimands are given by

é\eC,n = \/(ﬁc + ]/}MW)/?TL,I]IVElv

g\eU,n = \/(i}C + 9MW + ]7E>/ ?TL,I]IVEI-

To show the consistency of sec ,,, we strengthen Assumption 5 to
Assumption 7. max;|R;| + max;| Ry ;| are bounded a.s.

This assumption is similar to Assumption 6 in Chao et al. (2012).

Theorem 5.5. Suppose that Assumptions 2, 3 and 7 hold. Suppose further that max;(Hq )i 20, and
that (K + L)/, is bounded a.s. Then,

SAeén = Ve + Vuw)/in +op(1/7y).

The additional balance condition max;(Hg)i %20 that we impose is essential in proving the
theorem. It implies that (K 4+ L)/n — 0, and ensures that bias induced by estimating the variance of
the reduced-form errors is asymptotically negligible. Cattaneo et al. (2016) show that a similar balance
condition is needed for the Eicker-Huber-White standard errors to be consistent in linear regression.
When the treatment effects are homogeneous and when the number of covariates L is fixed, one can
estimate the terms 0, and o, at a faster rate, and this condition is not needed. Cattaneo et al. (2016)
also suggest an alternative estimator that does not require this condition. It is unclear however whether
one can adapt their estimator to the current setting since the variance expression contains products of
second moments of the reduced-form errors, rather than just second moments.

Relative to the asymptotic normality result, we need also to rule out the case in which K or L may
grow faster than the concentration parameter. This is sufficient to ensure that the error in estimating

the standard errors is negligible.

Assumption 8. |R;| + |§Y1| are bounded.
Theorem 5.6. Suppose the conditions of Theorem 5.4 and Assumption 8 hold . Then,
§¢5n = (e + Quw + Qp) /7n + 0p(1/7).

For unconditional inference, the balance condition max;(Hq);; — 0 holds in large samples under
the i.i.d. sampling and the rate conditions imposed by Assumption 6, and therefore does not need to be

made explicit.
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Appendices

The appendix is organized as follows. Appendix A contains general results and bounds for the es-
timators considered in the paper used throughout the rest of the appendix. Appendix B proves the
Lemma in Section 4. Appendices C and E prove the conditional and unconditional results in Section 5,
respectively. Appendices D and F contain auxiliary results used in Appendices C and E.

Below, w.p.a.1 stands for “with probability approaching 1 as n — o0”. We write a < b if there
exists a constant C' such that a < b. We write a <, bor a <y p.q.1 bif a < balmost surely or w.p.a.1.
Let ||al|2 or simply ||a|| denote the Euclidean (¢2) norm of a vector, and let || A|| r denote the Frobenius

norm of a matrix, and || A||2 or || A]| the spectral norm.

Appendix A Properties of estimators considered

It will be useful to collect some properties of the estimators that we consider, which we will use through-

out the proof. The estimators we consider in this paper have the general form

s 2y YiGi X

G = , 16
> XiGij X 19

with the matrix G for different estimators given in equation (13). Observe that

GTSLS<RY7 R) - G]IVEI (RY7 R) - GUIVEI (RY7 R) - (Ry, R)7
Guwea(Ry,R) = (I = Dy + HwDy)(Ry, R), (17)

GUJIVE(RY7R) = (I - DW)_l(RYaR)'

G'R|, ||GRA
|G’ Ra||. Using the triangle inequality, and the fact that for any projection matrix P and a vector a,
||Pall2 < ||lal|2, and 0 < P;; < 1, we obtain the bounds

We now collect several useful bounds. First, we bound the norms |GR

, , , and

HGTSLSR||2 = ||GJIVE1R||2 = ||GUIVE1R”2 < 7';711/27
||GIJIVEZR”2 < 27.“.711/2»

HGU]IVER”2 < leax(l — (HW)ii)—lin-l/Q

n o
HGTSLSRYH2 = HG]IVEIRYH2 == HGUIVEIRYHQ S HRYH%
HGIJIVEZRYHQ < 2HRYH27
HGUJIVERYHQ < leaX(l - (HW>’L’L)_1HRYH2

Furthermore,

G,TSLS(RY> R) = (R’ RY)
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Gywiz(Ry, R) = (I — Dy + HwDy)(Ry, R)

Grywer (Ry, R) = (Ry, R) — (I — H)Dz(I — D) ' (Ry, R),

Gwer(Ry, R) = (Hg — Do)(I — Do) ™' (Ry, R)

Gle(Ry, R) = (Ry, R) + [(I = Hw)Dw(I — Dw)~' — (I = Hq)Do(I — Dq)~ '] (Ry, R).

By similar arguments as above,

”GTSLSRH2 < T1/2 G/TSLSRYZ < HRY||27
HGUIVEZ‘RH2 < 2T1/2 GIJIVEZRYQ B 2||RY||2’
G B2 < 2max(l - Hg); L2, |G ver By [l2 < 2max(1 — Hq);' IRy |l2,
HGUIVEIRHQ < Qm?X(l - HZ)iilrrlL/z ”GUIVEIRYH2 < Qmiax(l - HZ)i_ilHRYH% (19)
1/2
H
|Gy Rll2 < 2max % max|R;|(L + K)"/? + i/
A (HQ)” 7
1/2
H
Gl Ry 2 < 2 ~ Q8 o Ry (L 4 KOV 4+ oy
i 1 (HQ)u i

where the last two lines follow since

||GU]IVER||2 < HR - GUJIVERHZ =+ ||R”2

< maXMHDl/QRHQ + max%\wl/?mh + |1 Bl
- 41— (Hw)u w i (H )
(HW)V2 1/2 ( )1/2 1/2 >
< max ———"%— max|R;| L™/~ + maximaX|Ri|(L + K)/“ 4+ ||R||2
i 11— (Hw)u i (HQ)M i
7)1/
< 2m'ax%max|[{ |(L + K)1/2 + HR||2
T (HQ)'L'L T

Similar argument applies to the bound for |Gy, Ry |2

Second, we bound the norm ||G|| 7. Using the triangle inequality, and the fact that for any projection

HGTSLSHF - K1/2
|IGuwezllF < |Hy = Dyllp < KV
|G|l < |I(I = D)~ '(H; — Dy)l|r < mlchX(l - (HZ)Z-Z-)_IKI/2 (20)
|Gyvllr < [T = Do)~ (Hg — Do)l < max(1 — (Hg)is) ' (K + L)"/?

”GUJIVEHF < szax(l - (HQ)ii)_l(K + L)l/2

Third, we bound the sum ) ,|Gj;|. It follows by direct calculation that the diagonal elements G'; for
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different estimators are given by

GTSLs,ii - (Hz)u

n

GUIVE27ii = 2(HW)M(HZ)“ - Z(HW)ZZj(HZ)jj7
j=1
(Hw)i(Hz)ii  ~= (Hw)3(H)jj 1
Gy ,ii:2 - —(Hw(I — D D;Hj)ii,
JIVEL 1_(HZ)” j;l 1_(HZ)JJ ( W( Z) z Z>
(HW)u(HQ)u -
(GJIVEl)ii = THQ)M - (HW(I - DQ) lHQ)ii

(GUJIVE)Z'Z' =0.

We now bound the sum ) ;|G;;|. Observe that by the Cauchy-Schwarz inequality, P is a projection
matrix, and A a square matrix, ) ;|(PA);| < |[P| r||PA|Fr. Using this observation along with the

triangle inequality, we obtain the bounds

Z|GTSLS zz‘ - K7

Z’GUIVEZ zz‘ < 32 HW zz n < LmaX(HZ)iia

i
Z’GUIVEl zz‘ < 32 HW u ) ) + ||HW”F||HW(I Dy ) 1DZ||F
_ Z i
H
< 4Lmax@,
Z|(GJIVE1)ii| <2L m?X(l - (HW)ii)_l,

%

Z’(GUJIVE)Z‘Z“ =0.

i

(21)

Finally, we bound the norm ||G'G||p. To this end, let M = (I — Hy ). By triangle inequality and
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arguments as above,

|G Grsssll e = |H 3| = K2,
||Gi]IVE2GUIVE2||F = ”HZ - HZDZM - MDZHZ + MDZMDZMHF
< 3||Hyllp + |MDyllr < 4K'?,
”GipvaUIvaF = ”M(HZ - DZ)(I - DZ)ilM(I - DZ)il(HZ - DZ)M”F
<||(Hy; —2DzHy + D3)(I = Dy)'M(I — D)~ "|r
< max(1 — (D3)i) 2|(Hy — 2Dz H; + D3)||r
< 4K1/2(m?><(1 — (Hz)i) )%,
|G a1 G | P = [[(Hg — 2DgHq + D) (I — Do) ™' M (I — Do)~ '||r (22)
< mzfch(l — (HQ)u) *|(Hg — 2DoHq + D3l r
<4VK + L(max(1 - (Hg)ii) )3,
||G{J]IVEGUJIVE||F < m?X(l - (HQ)ii)_2||HQ —2DqgHqg + D%HF
max(1 — (Hw)ii)~*||Hw — 2Dw Hw + Diy||r
max(1 — (HQ)u) ?|lHw — HoDw — DoHw + DwDg|

< 12VK + Lmax(1 — (Hg)u) 2.
7

Appendix B Proof of Lemma 4.1

We prove the results for a general class of estimators of the form given in Equation (16). We assume
that (G(Ry, R)); = (G(Ry, R)); whenever z; = z; and w; = wj;, which holds for all estimators
considered in the statement of the Lemma 4.1. Let A; = (GR),. Then we can write A; = A(Z;,V;, T;).
Also, let A™(j) = (2" — 27" )'m.

Using the definition of «(+, ) and recursion, we have

k
myezft = e + Y alz 2k ) AT().
j=1

29



Therefore, we can write the numerator of the conditional estimand, RS,GR, as

ZRYzA vy W GR + ZZZH{G =g, T, =t,7Z; = 2]} my 2} A(z], g, t)

g,t k=0 1i=1
=Yy WGR+ > w2l Y T{Gi=g} A
g 7

k
Za / ZH{G =9,Zi =2} A

Changing the order of summation and rearranging then yields

Ly
> Ry A =y WGR+Y wh2f Z 1{G; = g} A
% g=1 i

Ly Jg
JrZZa(z]g,ng ZZH{G =9,Zi =2} A
g=1j=1 k=j i=1
Ly
=Yy WGR+ > w2l > 1{Gi=g} A
g=1 i
Ly Jg
g=1j=1 i
By similar arguments, we can write the denominator as
Ly Jg
> RiA ='W GR+Z7r’ng]I{G =gt A+ D D A T{Gi=g,Z > 2} As.
% g=1 j=1 7

Note that W/GR = Oimplies ) ;" ; I{G; = m} A; = 0for all m. This condition holds for all estimators
considered in the statement of Lemma 4.1, except ujtve. Under this condition, the conditional estimand

equals

J
25‘:/1Zji1 ( ZH{G_97Z>Z}AQ ]73 1)
25;/1 Zj:l 9(j EZz’H{Gizg’ZZ’ sz}Ai
Since by equation (17) A; = R, for TsLs, jivel, and ivel, and A; = (1—(H2)ii)Ri+€;HW diag(HZ)R

for 1j1vE2, Part (i) follows. The first statement in Part (ii) is immediate. It therefore remains to show the

(23)

result for uyIve, for which 4; = (1 — (H W)m)*llél, which, if the only covariates are group dummies
can be written as A; = nG_l (R; — ng! ¢ 2i—1 I{Gj = Gi} R;). This implies W'Gyyvp R = 0, which
in turn implies (23), which ylelds the result
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Appendix C Proofs of conditional results

This section proves Theorem 5.1, Theorem 5.3, and Theorem 5.5. We prove a.s. convergence results
below, but if the relevant assumptions are only assumed to hold w.p.a.1, the results and proofs below

will hold w.p.a.1.

C.1 Proof of Theorem 5.1

To prove the result, we apply Lemma D.4 to each estimator. Condition (i) of Lemma D.4 holds for all
estimators by Assumption 3 (i). Next, it follows from equation (18) and Assumption 2 (ii) that for all
estimators ||GR||2 and |G Ry ||2 are of the order P2 Similarly, it follows from equation (19), Assump-

tion 2 (ii), and assumptions of the Theorem that |G’ R||2 and |G’ Ry ||2 are also of the order i/

,and
of the order /L + K + 7"711/ ? for UJIVE, so that condition (ii) of Lemma D.4 holds for all estimators.
Furthermore, it follows from equation (20), Assumption 2 (iii), and assumptions of the Theorem that
|G| /#n “3 0 for all estimators, so that condition (iii) of Lemma D.4 holds also. Now, for estimators
other than 1j1vE2 and ujve, R'GR = R'R, and R} GR = R}, R. Condition (iv) of Lemma D.4 there-
fore holds for these estimators by Assumption 2 (ii) and the Cauchy-Schwarz inequality. For 1j1vE2,
R'GyweeR = R(I - )R and Ry, Gy R = R! V(I — D)R so that Assumption 2 (ii) holds by

similar arguments and the fact that (H )ii < C < 1by assumption. For UJIVE, it follows from (17) that

1/2
Ry Gua R — By R = | Ry Dy (I = Dyw) ™' R| < max| Ry | max == ¢~ H - 2 IHw)i
g v W i

(HW)l/Q

L1/2; 1/2
(HW)ZZ

< max| Ry ;| max ;
(2 7
which is of the order o(#,) almost surely by assumption of the theorem. By analogous argument,

1/2
/ B (HW)n‘/ 1/2::1/2
|Ry Gy R — Ry R| < max|R;| max ———%—L"/°F/°. (24)
i i 1— (Hw)”
Hence, by the preceding argument, Assumption 2 (ii) holds for ujtve as well. Finally, condition (v) of
Lemma D.4 holds by the bounds in Equation (21). If the estimator is inconsistent, we also need to make
sure that 7, /(7 + Y, GiiU%,i) is bounded for each estimator. Since Gj; 1515 > 0, this holds trivially for

TsLS. For other estimators, it follows by the assumption that the bias is bounded.

C.2 Proof of Theorem 5.3

To prove the result, we apply Lemma D.5 to each estimator. Condition (i) of Lemma D.5 holds for
each estimator by Assumption 3 (i)—(ii), Condition (ii) of Lemma D.5 follows since by equation (21) and
assumption of the theorem, >, |Gi;| /7 11/2. 95 () for all estimators. We have |GrsisRI|3 = |Gywver B3 =
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. Since Gyype R = R-— (I — Hw)D ZR’ we have, by the triangle inequality
|GuywezRll2 > | Rl = [|(I = Hw)DzRll2 > ||B]| — | DR > (1 - mng(Hz)ii)f’}l/Q~

For UjIVE,
[GomaRI3 = 30 — Hw)2B2 > 3 02 = i
i

7
Thus, condition (iii) of Lemma D.5 holds for all estimators. Next, note that for TsLs and 1j1vel GR = R,
so that 3,(GR)}/i2 = 37, R} /2“5 0 by Assumption 5. For 7IVE2,

GI]IVEZR = (I - (I - HW)DZ)R

, we obtain the bound ”GUIVEZR—RHQ < maxi(HZ)nml/Q
Consequently, by Loéve’s ¢,-inequality, and the £,-norm inequality ||a||s < ||all2, >_;(Guws2 R)} /72 <
83, RY/i2 + 8||GiywezR — R||3/i2 “3 0. For uive, observe that 3_;(GumeR)4 /72 < max;(1 —

(Hw)i) 4, R?/i2 “% 0 by Assumption 5 and assumption of the theorem. Since Gz and GTSLS are

2as

symmetric, the same argument, together with Assumption 2 (ii), implies that >, (Gls R )} /72
and Zi(GgIVEZRA)?/?*% 2% 0. For yIvel,

G;]IVEIRA = RA - (I — Hy — HZ)DZ(I — DZ)_1RA7

so that |Gy Ra — Rall2 < max;(H ;) /(1 — (H)“)HRAHQ Thus, by the previous arguments, we
have Y (G Ra)i /i < 83 RA A 8|G v Ra — RA||3/72 3 0. For uyIvE, using arguments
as in (19),

G e Rlla/Fn < |RI|a/73/ + | Glye R = Blla/3/? < 00.5.(1) + |Gl R — Rl|2 /72

1/2
< 04.5.(1) + 2max (HQ)si

c mmaX’R|(L+K)1/2/T1/2
i —HQ)i i

which converges to zero almost surely by the assumption of the theorem. Condition (iv) of Lemma D.5
therefore holds for all estimators. Finally, condition (v) of Lemma D.5 follows from equation (22) and
Assumption 2 (iii). Therefore, for all estimators, equation (31) holds. To complete the proof, it remains
to show that for j1vel 1j1vE2, and UJIVE, the variance expression Vo /(R'GR)? given in equation (32),
is asymptotically equivalent to

Ve + Vuw.a 1
LT IMWGE -y, ==y
o ) MW.G = [

n .
i#£]

2
Gij Un JUV i T GijGjioun,ioun. ],

and that if K/, is bounded, we can also replace Vyw ¢ in the display above by Vyw, in the sense that

(Ve + Vuw,g)/fn - (R'GR)?/Vg % 1, and, in the latter case, (Ve + Vaw)/in - (RGR)?/Vg 5 1.

Since Vg /Ty is bounded away from zero by proof of Lemma D.5, this is equivalent to showing that:
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(R'GR) /i, % 1; and Vo /iy — Ve + Vaw.g) = op(1), or, if K/i, is bounded Vg /i, — (Ve +
Vmw) = op(1). The first condition holds trivially for 1jivel. For 1j1vEe2, it follows from the fact that
|R' Giyve2 R — | [T, = R’DZR/%H < max;(H )i 2% 0. For uyIvE, it follows from (24).

Since the terms o2 ;. o2 ., and oun,; are bounded, the second condition holds if we can show that for

v,00 7 n,
IJIVEL, JIVE2, and UJIVE, || R — GR||2/hl/2 L0, |Ra — G’RAHg/f,l/Q 20, and, if K/, is bounded,
2oz (Hz)ij — Gi;)? /in = op(1). The first two convergence results have been shown to hold earlier

in this proof, so it remains to verify that }_, . ((H)i; — Gij)?/in = op(1). Letting M = I — Hyy,

for 1j1vEL, the left-hand side can be bounded by

1H; = Guwsl|F/#n = |M(I = D) ™' DyHy = M(I — D)~' Dy M|? /it
<A(I=Dy) "Dy |2 < Amax — 2 =,

which converges to zero by assumption. For 1j1vE2, the left-hand side is bounded by

|G = Hyl[5/in = (I = Hw)D (I = Hw)|7/n < |DgllF/n < max(Hy)iz— = 0.

K a.s.
n

For UjIVE,

HHZ - GUJIVEH%/% = ”(I - DQ)ilDQ(I - HQ) + (I - DW)ilDW(I - HW)H%/Tn
2 _ 2 _
< 7-?”(—7— Dq) 'Doll3 + 7-7”(—7— Dw) ' Dw |3

(HQ)” (K+L) (HW)’L’L a.s.
< max - +max ————————-— 0,
i (1= (Hgi)* in i (1= (Hw)i)?in

which completes the proof.

C.3 Proof of Theorem 5.5

PutM:I—HQ,andézﬁA—ﬁc,andYA =Y — X8. Then
oy = (Mv); + (Mn);i0)?, Guvmi = (Mv)i + (Mn)i6)(Mn)s, nq = (Mn)3,

and Y — X3 = Ya + X4. Since J is linear in its arguments, it follows by plugging in these expressions
into the definition of V¢ that that variance estimator can be decomposed as we can therefore decompose

elements of the variance estimator as

Ve =i {J(X, X, (Mv) @ (Mv)) + J(Va, Va, (Mn) © (Mn)) + J(Ya, X, (Mv) © (Mn))
+ 30 (6J(X, X, (Mn) © (Mn)) + J(X, X, (Mv) ® (Mn)) + J(Ya, X, (Mn) ® (Mn))) },

where © denotes element-wise (Hadamard) product.
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By Theorem 5.1 and Lemma D.10 below, applied to each term, since 6 = op(1),
Ve = Ve + Op(i“'n).

Similarly, letting S(a,b) = 7,1 >, 2i(H Z)?jaj b;, we can write

VMW S( TI’ y)+S( 7]777 72111)
= S((Mv) © (Mv), (Mn) © (Mn)) + S(Mv) © (M), (Mv) © (Mn))
+405((Mv) © (M), (Mn) © (Mn)) + 262S((Mn) © (Mn), (Mn) © (Mn)).

By Lemma D.11 below, applied to each term,

Vuw = i Vuw + op(ip).

Appendix D Auxiliary results

D.1 Auxiliary results for quadratic forms
For the results in this subsection, let
Q=ut+sv+ Z Pyju,vj,
i#]

where, conditional on on some set of variables Z,,, the matrix P € R"*™ and vectors s,t are non-
random, and the elements (u;,v;) of vectors u, v are mean zero, and independent across i. Let Ez,
denote the expectation conditional on Z,,. We will prove a law of large numbers and a central limit

theorem for Q.

Lemma D.1. Suppose that conditional on Z,, the second moments of (u;,v;) are bounded a.s. Suppose
further that ||t||2 + ||s||l2 + || P|lz 3 0. Then Q = op(1).

Proof. Since Ez, [Q] = 0, its variance is given by

var Q ’ Z ZEZ uzt +Uz82 —|— Z P2E2 u v ]+ HijiEgn[uivivjuj]) .
i#£]

Since the second moments are bounded, it follows that

var(Q | Zn) Zas. 13 + IIsl13 + D P < 1¢I5+ I3+ 1 PI13-
i#j

Since the right-hand side converges to zero almost surely by assumption, the result follows by Markov

inequality and dominated convergence theorem. O
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Lemma D.2. Suppose that, conditional on Z,,, the fourth moments of (u;,v;) are bounded a.s. Suppose
further that:

1. var(Q | Z,)~Y? is bounded a.s.

a.s.
Zz 1 Z+Z’L 1 ;L
a.s.

3. ||PLPL||F + ||PPullr = O, where Pp is a lower-triangular matrix with elements Pp, ;; =
P;1{i > j} and Py is an upper-triangular matrix with elements Py ;; = Pi;1{i < j}.

Then
var(Q | Z,)"12Q & N(0,1).

Proof. Let B = var(Q | Z,,)~'/2. Then we can write BQ = Y., By;, where

i—1
yi = Uit + vi8; + uy Z Pijv; 4 v; Z Pjiu; = wit; + vis; + ui(PLv); + vi(Phu);.
Jj=1 Jj=1

Conditional on Z,,, By; is a martingale difference array with respect to the filtration F;,, = o(u, v1,
., Uj—1,v;—1). Since B is bounded by assumption, by the martingale central limit theorem, if for some
€>0,

> Bz, [yl %0, (25)
=1

and if the conditional variance converges to one, P(|>°1 | E[B*y? | Fin, Za] — 1| > | Z,) 230
for any 1), then conditional on Z,,, > _!" ;| By; converges in distribution to N(0, 1), and the result will
follow by the dominated convergence theorem.

By Loeéve’s c,-inequality, if

n n
> Bz [t + > Ez,[vf]s! 30, (26)
=1 =1
and if
n n
> Ezul(Ppo)f+ > Ezv}(Phu)f %30, (27)
i=1

=1
then (25) holds with € = 2. Now, equation (26) follows from condition 2. To verify equation (27), note

that the first sum can be bounded as

n
ZEZ PL’U ZEZ PLU) } Das. ZEZn[(PLU);l]
i=1
n
= Z Z le,szZn [U;'l] +3 Z Z Pg,ijpg,ikEZn [U?]Ezn (03] =as. Z Pg,ijpg,ik;'
i=1 j=1 i=1 j#k irjik
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Now,
Z Pg,ijpj%,z’k = Z(PLPD% < Z Z(PLPD% = HPLPH’%«“
1,5,k i=1 i=1 j=1

By a symmetric argument, the second sum in (27) is of the order ||P};Py||%, so that (27) holds by

condition 3.

It remains to show convergence of the conditional variance. Let W; = u;t; + v;s;, and let X; =
u;(Prv); + vi(Pu;). Since var(BQ | Z,) = B2 ! | Ez, [W2 + B> | Ez,[X?] = 1, and since
Ez, W2 = E[W? | 2, Fin), we have

> E[B*] | Fin,2n] - 1= 232 E[X? | Fin, 20] — EIX7 | 24]) +2B*>  EW;X; | Fin, Za).
: =1
(28)

We show that both of the terms on the right-hand side converge to zero. The second sum can be written

as

n n
B> E[W;X; | Fin, Zn) = B>> (PLv)iEz, [Wiu;] + B Z Plu);Ez, [Wiv;] = 6., P+ 06, Phu,
im1 i=1 i=1
where 6,,; = B?Ez, [W;u;] and B%j,; = Ez, [W;v;]. Now, by Cauchy-Schwarz inequality and bound-

edness of second moments of v;,
Ez,[(6, Prv)?] Zas. 0, PLPLOw < 16|31 PP ll2 < 16ull5| PLPLlIF Zas. [|1PLPL| P

where the last inequality follows because by Cauchy-Schwarz inequality, 67 ; < B*Ez, [W7|Ez, [uf],
so that [|6,]13 <as. B2Y., Ez,[W7] < var(BQ) < 1. By similar arguments, Ez, [(0,P/;u)?] =as.
| P{;Pv||#. Thus, by condition 3 and Markov inequality, the second term in (28) a.s. converges to zero

conditionally on Z,,. The first term in (28) can be decomposed as

n n
> ol (PLv); — Ez, (PLo)i] + > obi[(Phu)} — Ez, (Pjv)]]
=1 i=1

+2) " opuil(Prv)i(Pru)i — Bz, (Pro)i(Phu)).
=1

and let T' = P; D, Pr. Then the first sum
in the preceding display equals v'T'v — Ez, [v'Tv]. The variance of this term can be bounded as

Let D,, denote a diagonal matrix with elements D,, ;; = u i

var(v'Tv | Z,) Z (Ez,[vi] — 3Ez,[v;]?) + ZZ + T;Tji) Ez, [v} 2]

Zas. > T = | PLDuPL|[F =as HPLPLHF
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By similar arguments, the conditional variance of the second sum is of the order || P/, Py|/% and the
conditional variance of the third term is of the order || PP} ||% + || P/, Py||%. Thus, by condition 3 and
Markov inequality, the first term in (28) a.s. converges to zero conditionally on Z,, which concludes

the proof. O

The following result generalizes Lemma B.2 in Chao et al. (2012), and is used to verify condition 3

of Lemma D.2.

Lemma D.3. Let P = P, be a sequence of random square matrices such that tr(P' PP'P) “3 0. Then

2 a.s.

||LL,||%~ + ”UU,HF =0, where (L)Z] = PZ]]I {Z > j} and (U)z] = BJH {j > Z}

Proof. Note first that Zm-’k PZ%Pfk = Zi(PP')ZZi < ZLJ-(PP’)?J» =tr(PP'PP’),and Zi’j’k P]%-szi =

S (PP < 32 (P'P)}; = tx(PP'PP'). Similarly, Y-, . Pi < Y, .1 PAP; < tr(PP'PP').

Using these observations, we get the bound

ILL|% + UV |F —4 > (PaPiuPxPje + PeiPriPrj Prj)

i<j<k<t
=D Pi+2 ) (PPL+PLPA)+) Pu+2 Y (PiPh+PiPy)
1<j 1<j<k 1<j 1<j<k

< 6tr(P’PP'P) %3 0. (29)

It therefore suffices to show that Ei<j<k<z(PikPi€ijPj€ + Pyi Py Prj Prj) 2% 0. To that end, let

D = diag(P), and observe first that by triangle inequality, we have,

a.s

|(P — DY(P — D)l < IP'Pllr + Dl + 2| DP|lr 3 0, (30)

since HDZH% = Zz Pz% < Ei(PP/)zzi %30, and HDPH% = Z’L Zj R%PZZZ < Ez Zj Pz‘2j Zk Pi2k =

S°,(PP")% 3 0. On the other hand, expanding the left-hand side and using the same argument as
in (29) yields

(P = D)'(P — D)||% — 45k,
=D P+ P +2 Y (PEFS + PAP) + PPj + PAPS + PRFj + PSP) “3 0,
1<j <j<k
where Sp = ;i k< o(PjiPri oo Pjo+ Pji Poi Pji Po + Pri Pi Pioj Poj + Py Pig Po Poj + Py Pio Poj P+
Py, Py Pji, Pj). Combining this with (30) yields that S,, = O(G5,).
Let ¢; denote random random variables that, conditional on P, are independent, and have mean

zero and unit variance. Define

Ay = Z (PijPirejer, + Py Pjreier) Ay = Z (Pji Pyiejer, + Py Pjreier)
i<j<k i<j<k
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Az = Z P Pjreic; Az = Z Pyi Pyjeiej
i<j<k i<j<k

and let A; = Ay + Az and A; = Ay + As. Observe that

E[A}|Pl=2 ) PyPyPyPj+ » PP

i<j<k<€ i<j<k
E[A2| P =2 Z PyiPyi PuPy; + Z PP
i<j<k</t 1<j<k
EAS+ A3 | Pl = Y (PiPL+PiP)+ > (PiPL+ PP +2S,
i<j<k i<j<k
E[A}+ A} | Pl =|(P-D)(P-D)|% - > (P5+Pj) “So.
1<J

Hence, BIAS + Ag] -7 Zi<j<k<£(Pi Pj PiePjo+ Pyi P PoiPrj) %2 0. On the other hand, by Loéve’s
Cr-inequality,
E[A+ A3 < 2B[AT + A+ A2 + A3] =, 25, 30,

sothat 2 P, Pjj Py Py + PriPyj Pei Pyj) %20, which proves the result. d

i<j<h<e
D.2 High-level theorems for conditional inference
Lemma D.4. Consider an estimator f¢. Suppose that

(i) Conditional on (), the reduced-form errors (; and n; are mean zero, independent across i, and with

bounded second moments.
(ii) (IGRIl2 +|G'Rlj2 + [GRy ||z + |G'Ry||2) /i =% 0.
(iii) |G|l r/Fn 3 0.
(iv) i, /R'GR and Ry, GR /¥y, are bounded a.s.
(v) il Gl [ *3 0

Then S 2> Bg. Furthermore, if condition (v) is replaced with the assumption that 3 ;|Gii| /7n, 7'n/ (R’ GR+
> Giiofm), and E[¢} + 1} | Qi] are all bounded a.s., then S = Ba + biasg +op(1), where

> Giioy(Ben,i
R'GR + Zz Giiggm ’

biasg =
Proof. By Lemma D.1 with Z,, = (@Q1,...,Qy),and P = G/,

Y'(G/in) X = RyGR/¥p + Z GiiGini /T + op(1),
i=1
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n
X'(G/in)X = R'GR/in+ Y Gin? /i + op(1).
i=1

If condition (v) holds, then by Markov inequality, for any € > 0, P(|Y_, Gii(ini/in| > € | Q) <
SUIGHIENGn| | Ql/ein =Zas |Gl /€in 3 0, so that by the dominated convergence theo-
rem, » . GyGni/in 2. By similar arguments, ), Giin? [in P 0. Thus, Condition (iv), BG =
(RyGR/in 4+ 0p(1))/(R'GR/in + op(1)) = Ba(1+ op(1)) + op(1) = B + op(1).

Otherwise, since var(}_, Giin?/in | Q) =as. >; GZ/i2 < ||G||% /72 “3 0, it follows by Markov
inequality and dominated convergence theorem that >, G;in? = Y, Giio-??,i + op(1). By similar
arguments » . Gyi1;(; = Y _; Giio¢n,i + op(1), and the result follows by the same argument as above.

0

Lemma D.5. Consider an estimator of the form Be. Suppose that Conditions (i)—(iv) of Lemma D.4 hold,
and that

(i) E[v} +n} | Q] is bounded,

from zero

corr(v;,m; | Q)| is bounded away from one, and agﬂ- is bounded away

(ii) 21|Gm\/7“71/2 is bounded a.s. and ), G2 iy 220
(iii) 7, /||GR||? is bounded a.s.
(iv) S.(GR)H/i2 “3 0 and 3" ,(G'Ra)} /72 “% 0

W) ||G'G||r /i =3 0.

Then .
ba _N/BG —biasG 4y 1y, (31)
\VVa/R'GR
where

Vo =Y (G'R)}ol;+ 02 (G'Ra); +200mi(G'R)i(G'Ra)i] + Y [G02 ;02 + GijGiun ioum ;-
i i#]

(32)

Condition (ii) ensures that /7, biasg is bounded. Conditions (i) and (iii) ensure that 17@ [T is

bounded away from zero.
Proof of Lemma D.5. Tt follows from Lemma D.4 that X'GX/R'GR = 1 + op(#y). It follows from

condition (ii) that ) |, G0y, = op(¥y). Therefore,

@ (B - 5 — bias ) — (RA + V)/GX/\/TT’L _ ZZ Giia”(ﬁG)T),i/m
e e e G X'GX/R'GR 1+, Gao2,/RGR
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= (Ra + v/ GX//F (L4 0p(1) = 3 Gistu(agyni/V/FulL + 0p(1).

Furthermore, if follows from condition (ii), Markov inequality, and dominated convergence theorem
that ), yimGn’/i“}l/Q =>, Giia,,m/i“}l/Z + op(1). Thus,

3+ — B — i RA\Gn+V'GR+ Y, viniGij) /Vin O, Gii [\ T
/BG 5G blaSG _ ( A n Zz;ﬁ] 77] ])/\/7 (1+OP(1))+ZZUU’G /\/Fop(l)

17(1;/2/R/GR \/ )7(;/7'“'” A/ 170/7’71
(33)

Since ), 0y1,iGii / /Ty is bounded by condition (ii), to verify the claim, it suffices to show that the first

term converges to a standard normal random variable, and that 7,/ V¢ is bounded a.s. To that end,

write V¢ as

]70 _ Zvar((G'R)il/i + (G'Rp)imi | Q) + %ZEKGUVZ"I’U + Gjil/jni)2 | Q]
P i#]
> Zvar((G'R)iVi + (G'Ra)imi | Q)

> Z(l — leorr((G'R)ivi, (G'Ra)imi | Q(G'R)joy;,

(2

where the last line uses the fact that for any two random variables A and B,

var(A + B) > var(A) + var(B) — 2var(A)'/? var(B)Y?|corr(4, B)|
> var(A) + var(B) — (var(A) + var(B))|corr(A, B)| > var(A)(1 — |corr(A, B)|).

Since corr(v;,n; | Q) is bounded away from 1 and O'ii is bounded away from zero a.s., it follows that,

a.s,

P/ Vi <as 0(7‘*n/Z<G’R>?) =0(1).

by Condition (iii). It remains to show that the first term in (33) converges to a standard normal random
variable. To this end, we apply Lemma D.2 with P = G/+/7,, andt = GR and s = G’ Ra. Condition 1
of Lemma D.2 holds since V¢ / 7'“'}/ ? is bounded away from zero. Condition 2 of Lemma D.2 holds by
Condition (iv). Finally, condition 3 holds by Lemma D.3. O

D.3 Lemmata for proving consistency of standard errors

First we introduce some notation that is used throughout the section. Let €1, €2, €3,e4 € R™ denote
random vectors such that, conditional on Q = (Z, W), (€1;, €2, €3i, €4;) are mean zero with bounded
fourth moments, and the vectors { (€14, €2;, €31, €4;) };_; are independent across i. Let 04p; = El€qi€p; |
Q), Oabe,i = Eleai€vi€ci | Ql, and ogpeqi = Eleqi€piecicqi | Q). Also, put Dy = diag(oyp), and similarly
for Dgpe and Dgpeq, let N = I — Hyy and M = I — H, and write Eg|-] as a shorthand for E[- | Q].
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Throughout the subsection, we use the inequality

(CF )’ <kYE al (34)

Lemma D.6. Let {dl-jk}?j w—1 be a sequence that is non-random conditional on (). Then

> dijkcrieajespear = Op ( Dot (Zdij’f034’“>2> ’
ik

i#j#k .,k
Proof. We will show that
2 2
A:=Eq ( > dijk€1i€2j€3k€4k> Sas DAY (Z dz’jk:0'34k> :
i#j#k ik i; \ k

The result will then follow by Markov inequality and dominated convergence theorem. Evaluating the

expectation yields

A= g [dijkdije011i022j034k034¢ + ;10300120120 34k034¢]
ik

+ § dijk [dijro11i022j03344k + dikj011i02340234k + djik012i012j03344k]
ik

+ § dijk [drijo12i023450 134k + djkiO134i012j0234k + diji0134i0220134k]
ik

2
Sas. E d;ijkd;ije011i022j03450340 + E d;ijkd;i0012i012j0345 0340 + E dijg-
1#jFERAL i#jFERAL i,5,k

Let ¢;j1, = I {i # j # k} d;ji. The second term can then be bounded as

E d;ijrdji0012012§0341034¢

i£j#k#L
= 2012i012j (Z Cijk034k) (Z Cji£0'34£> - Z CijkCjik012i0125034k0 34k
%,J k 14 i#j#k
2 2
2 2
<as. (Z cijk034k> + Zdijk < Z ( Z dz’jk(734k> + Zdijk.
i,J k i,5,k 6,3 \k: k#i,j .5,k
Since by (34),

2 2
> ( > dz’jk0'34k> <3) (Z dijk0'34k> +3) (dijjosa)’ + 3 (dijiosai)”
ii \ & iy i

4, \k: k#i,j
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Z (Z d,]k034k> + > d,

i,J 1,5,k

it follows that

D dijrdjio012i012j03450340 Sas. Y (Z dijk0'34k> + Y d

i#j kAL ij \ k i.j.k

By a symmetric argument,

D dijrdij0011i022j03480340 Zas. Y (Z dijk034k> +Y i,

iFjFkAL ij N\ k irJ,k
which proves the result. O

Lemma D.7. Let {d;;}

ij—1 be a sequence that is non-random conditional on (). Then

3 dijerienjes; :0P< Zd +Z (Zdwaﬁj) >

i#]

2
Proof. To prove the claim, we will show that E¢ (Z#j dij€1i€2j€3j)2 <as. Z” d?j—l—zi ( Zj dij(fggj) .
The claim will then follow by Markov inequality and dominated convergence theorem. This expecta-

tion can be decomposed as

2
Eq (X4 dijerieajes;)” = Z(UIQdeijdjiUIQ?;i + d3;09233;0113) + Z dikdijo23K0235011
i ik

2
=as. g di; + g dixd;j023K0237011;-
6] i#j#k

Let ¢;; = I{i # j} di;. The second term can then be decomposed as

2 2
E dikdijo3K0235011i = E CikCijO23k023j011i — g Cij0235011i
i#jFk 1,5,k Y]

2
= E Ulli( 5 Cij023]) g 01]0'2330'111 Das. 5 ( E CZ]UQ3J> + E dzj
( J 2

7

The claim of the Lemma then follows from applying the inequality (34) to get the bound

S (Sewom) <23 (X don) + INIENDY (Y dijons;) + 32
7 7 % J % J ©,J
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Lemma D.8. For any projection matrices P and R,
Eq[(Pe1)i(Rez)i(Pe1)j(Rez);] < C\/PiiPjjRii Rjj,

where C' = Sup; 01122; + Sup; o11; sup; 022; + sup; 0%22».

Proof. Evaluating the expectation yields

E[(Per)i(Rez)i(Per)j(Rez);] = Z P PjrRir Rjk(01122k — 0118022k — 2079,
k

+ Z Py Py R Rjpo121012¢ + Z Py P RiyyRjpo111022¢ + Z Py Pj Ry Rjp0121012¢-
kel K kel

By Cauchy-Schwarz inequality,

1/2
> |PiwPjeRi Ryl < (Z Pi%Zﬁﬁ?e) =V PiiPjjRii Ry,

kL kL kL

and similarly Zk,f|PikijRi€ij| S w/PiinjRiiRjj and Zk,Z‘PikijRifRﬂ‘ S \/PiinjRiiRjj.
Thus,
Eq[(Pe1)i(Re)i(Pe1)j(Re2);] < AC\/ Py Pjj Rii Ry,

which proves the result. O

Lemma D.9. Let 1, o € R™ and H denote vectors and a projection matrix that are non-random condi-
tional on Q. Let M = I — H and 6345, = (M e3)(Mea), and suppose

(@) a3/ Nl all3/#ns Nialloos 12l cor and (K + L) /7 is bounded a.s.

a.s.

(ii) max; H;; — 0.
Then ) ;. pktok03ak = Y _j O3d4kfiki2k + 0p(Fn).

Proof. First we bound

var(y  Gaariartion | Q) = Y pakpiantinetize Y Mo My(033410 — 034,)
k el a

+ ) paktiariaepize Y MakMyeMaeMoe(03300 446 + 034a036)-  (35)
[ aztb

Since M2, =1{a =k} (1 — (2H)aqa) + H2,, it follows that the first term in (35) of the order

Z|H1kﬂ2kﬂl€u2€| Z Mnggz ja.s. Z /Hgk/Hg[ + Z /Hzg + Z M%kﬂ%k ja.s‘ Tn
k.t a k,l,a k0 k
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Now, Y-,y Map My Moy Myg03300445 = (M D33 M )pg(M DaaM)pe < (M D3zM)j, + (M DasM)Z,
Furthermore, note that, letting ar = p1x 02k,

Z apag(M D33 M)3, = Z azo3ay + Z anaeHiy (03, + 03a) + Z arag(HD33H)3,
k,l k0 k0

Sas. kau% + ) MY + IHDssH||F Zas. i + 2K,
)

Therefore, the second term in (35) is of the order 7. Thus, by Markov inequality and dominated con-

vergence theorem,

> pkponGsak — Y fktokosae = Y pikionEQ[Gsak — o3ak] + op (i)
k: k P

k i &
Sas. mlax szrn + OP(’I.“.n) = OP(’FTL)’

as claimed. 0

Lemma D.10. Let p1, o € R”™ denote vectors that are non-random conditional on ). Put G341, =

(Mes)i(Mey)y, and consider a variance estimator of the form

Q=J(u1+ (I —Hw)er,p2 + (I — Hy)ez, 634) (36)
such that

(i) >_;(Hy)jukos = pok and 3 (H ) jkpng = pk,
(i) 1213/ and s |13/ are bounded as.
(iii) max;(HgQ)ii 0.

(iv) ||1]|co and ||p2]|co are bounded a.s.

(v) (K + L)/, is bounded a.s.
Then Q= 3", Elesgear | Qlunpiar + op(in).

Proof. 1. To prove the Lemma, it will be convenient to decompose the right-hand side of (36). Write

2034143 Z Z Ak,

i i#k j jFiLk

44



where a;jx = (H)ix(H ) 1 (p1i + (Ne1);) (u2; + (Nez);). We can write

Z Z A5k = Z Qijk — Z Qkik — Z Qi — Z aikk + 2akkk

i i#k j: jFik
5 (37)

= pakpior + Y Tk,
=1

where

Tie=—> (Hy)hmitzi — 2(Hyz)er(1 = (Hy) ke bk tiok,

To = par (1 — (Hy)rw) (Hze2)r — (H ) (1 — 2(H z) k) (Nea)i]

T3 = par (1 — (H k) (Hzen)r — (Hz)re(1 — 2(H z) k) (New)x]

Ty = (Hze1)p(Hzea)r — (H)pe(New)r(Hzea)r — (H ) (Hzer)r(Nea)r
+2(Hy) i (Nen)(Nea)e — Y (Hy)j(Nea)i(Ney)

i

Tse = — Y (Hz)h(n1i(Nea)s + poi(New)s).

%

iy

Therefore, equation (36) can be written as

5 5
Q= Gamparion + »_(0sak — esnear) Y Ton+ Y eseear D Tok. (38)
! k =1 P =1

By Lemma D.9 with H = Hq, > ;. G3arftiklior = Yk O34kiikiok + op (). To prove the assertion of
the Lemma, we will show that the remaining terms are of order op (7).

2. Consider the second term in (38). It follows from the Cauchy-Schwarz inequality and the inequal-
ity (34) that

5
(Eq Z(Uzwc — €3k€4k Z Tp)? <5 Z EQ(834m — €3méam)” Z Z EQT,.
k =1 =1 k

We now show that the right-hand side is of the order o(#*2). By (34), (634 — €3€ar)? < 3€3, (Hoea)s +
3(Hges)iex, + 3(Hges)2(Hgea)?, so that by Lemma D.8,

> " Eq(63ar — eskear)? Zas. 2D (HQkk + > _(HQ)Rk Zas. K + L. (39)
k k k

Therefore, to prove the claim, we need to show for ¢ = 1,...,5, Zk EQTfk = o(#y). Using the
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inequality (34), and the assumptions of the Lemma yields

Z TPy <as. ) (Hp)h(Hz)5, + Z 2VbhTekar Zas max(H )i,
k igk

Eq ZTgk as. ZNIkEQ [(HZEZ)IC - (HZ)kk(NQ)i] as. m?X(HZ)iifnv
k

and, by a symmetric argument Eg >, T32k, =as. max;(H ;). To bound the term ), Tfk, first ob-
serve that by Lemma D.8,

2
2o (Z 2 (Nea); <Nel>> = 2 (Hy)i(Hy) i Eq(Nea)i(New)i(Nea); (Ney);
igik (40)
as. ()i (H )53 NiiNjj < max(H )i K.
1,5,k

By (40) and Lemma D.8,

EQY Ti =as Y [(Hy)iy + (Hy)dNew + (Hz)ie Niy) + max(Hy)ii K Zas max(Hy)ii K.
P !

Finally, to bound the term ), EQTgk, we first need a preliminary result. Let A denote the matrix with
elements A;; = (H ;)% pt1;. Then

2
Eq Z (Z 2ihii(Nea); ) = (A'N)}035 ) Zas IAN|F < [|A|F < i max(Hy)ii- (41)

1

By (41),

2 ..
ZTSk <2 ZEQ Hy)2mi(Nea))® + 23 Eq (3 (H )2 pai(Nex):)® =< mas; (H  )igion.

By Markov inequality and dominated convergence theorem, the second term in (38) is of the order
o(#).
3a. To finish the proof of the Lemma, it remains to show that the third term in (38) is of the order o(#,),

for which it suffices to show that

> esweaxTun = op(in), (42)
K

for ¢ =1,...,5. To show that (42) holds for ¢ = 1, note that by triangle inequality,

EqQ Y lesvearTix| =< 2 max(H ;)i Z|M1kﬂzk| + Z 2) el pok] < max(Hy)iifn.
k
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By Markov inequality, equation (42) therefore holds for £ = 1. To show (42) for ¢ = 2, write

Z esk€arLof = Z fik€oi€3pear + Z Jrr€oresrear
k ik k
where dij = dij + dij, dij = (1 — (Hz)j5)(Hy)ijo and dij = —p1;(Hy)j5(1 — 2(HZ)”)NJ.
Note that Z (d2 + d2 ) < 27, max;(H )y, and that Z.(Z~di]034j) +>, (Z dw034j) < s,
|H s |3 + HN/“H2 =as. Tn. Therefore, by Lemma D.7, the first term is of the order Op(rn/z) The

expectation of the second term can be bounded as

EQ\Z frr€oreskear| Zas. Z|fkk\ Z\MkH 2+ (H )ik (Hw e (1 = 2(H ) i) |
k ks

<as. Z((Hz)kk + (H )ik (Hw k) < mlaX(HQ)iiK-
p

so that by Markov inequality and dominated convergence theorem, ), fir€oresnear = op(¥n), s0
that (42) holds for ¢ = 2, and by a symmetric argument, for £ = 3 also.
3b. To show (42) for £ = 4, write ), espearTur, = ), ik d;jr€1i€25€3K€4%, Where

dije = 1{i # j} (Hz)ik(Hz) i — (Hz)ke(H ) i Nik — (H z) ke (H )i N
+ 2(H )i Naw Ny + [(H )% + (Hy) 5] (Hw)ig — Y (Hz) i (Hw )i (Hw )i

y4
We can therefore decompose this term as
§ €3k€ar Ty, = § dizi€1i€2i€3;€4; + § dzzgelz€2163]€4j
k i 1#]
+ E dijjeri€aj€3j€45 + E diji€1i€25€3i€4; + E dijreri€2j€3near. (43)
1#] 17 i#£j#k

We will show that all five terms in (43) are of the order op(7y,). Since

disi = 2(H )5 (Hw)7; — Z(HZ)%i(HW)%iv
¢

by triangle inequality,

EQl>_; disierieziesicai| Ras. D _;ldiii| <2 ;(H )zz(HW)u +22 Z( )%z(HW)t%z < max;(Hyw )i KK,

so that by Markov inequality, the first term in (43) is of the order op (7, ). Similarly, by triangle inequal-
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ity, and the inequality [2ab| < a? + b2,

> diij| =Y 12(Hy);5(Hy)i(Hw)ig — 2(H )3 (Hw )3 + 2(Hw )i (Hz)3 — > (Hz) 3 (Hw)g
i#£] i#j 14
< Z 2]+ QZ Hy)ii| (Hw)ii + > (Hz)%
l

< 2K max(H ;) + K max(Hyy )y + 4L max(H ;)
7 3 7
Therefore, by triangle inequality
EQl> iz diijerieiesjeas| Sas. D ildii| < 4 max;(Hg )i,

so that by Markov inequality, the second term in (43) is of the order op (7)) also. To bound the third

term in (43), decompose it as

> digieviesjesen; = Y (Hz)5(Hw )ijeriezjesses;
i#j 7
+ ) [2(H,)3 (Hw) 5 (Hw)is + (Hz)5(Hw)j5(H )i erieajesjea
i#j

=N (Hy)i(Hw)u(Hw )gjerieajesiea;.  (44)
i#j L

By triangle inequality
EQ|3 4 (H )3 (Hw )ijeriezjesjeas| Sas Do i |(H )3 (Hw)ij| < K max; ;(Hw )ij,

so that the first term in (44) is of the order op(7,). Next, note that for any vector a, and a projection

matrix P, by Cauchy-Schwarz inequality,

EQ|ZCL]P1,]€3]64]€1162_7| < Za 033445 * 20'223 Z PZ‘%Ulli Zas. ||CL||%HP||%~
i#j ] it iF£]

Applying this to two summands in the second term in (44), witha = 2(H ; )2- (Hw)jjand P = (Hw)ij,
anda = (H});;(Hw);jand P = (H ;);;, and combining the result with Markov inequality implies that
the second term in (43) is also of the order op (7). Finally, by Cauchy-Schwarz and triangle inequalities,

the expected value of the third term in (44) can be bounded as

ZZ Z] HW KZ(HW)€]61162j63]€4]
L ity

1/2 1/2
<y (z R N AT ST
J

it it
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1/2
oo D (Hw)y’ <Z<Hz>%j<Hw>a) < max(Hy);/"L.

¢ J

Thus, by Markov inequality, the third term in (44) is also of the order op(7,), which shows that the
third term in (43) is of the order op(#,). Since d;j; = dj; if i # j, the fourth term in (43) is of the
order op(7,) by a similar argument. Next, we show that the last term in (43) is of the order op (7). By

Lemma D.6,

Z d?jk61i62j€3k€4k = Op(\/zi,j,k: d?jk) + Z’L,] (Zk dijk034]€)2). (45)
itk

Note that by (34),

S & 2 (Hp) b (Hp) e + > (Hp) b (Hp) 3 Na + > (Hp) i NGNz + > (Hy) 5 (Hw)7,

7] k 47]’ k 47]’ k i7j7k 7] k
+ > (Hy) i (Hw)e(Hw ) oy (H )P (Hw )i (Hw g
2,7,k .f,m
< 32 o+ Z )i (Hw)ii+ > (Hy)3(H )2k (Hw ) me (Hw ) e
k.l,m
< dmax(HQ)iK + ) (Hy)f (Hy)ny < Smax(H)iiK.
k,l,m

To bound the term in equation (45), >_, ; (D dijk034k)2, write d;j, = 22 1 ;> where dzjk =
—I{i = j} (Hy)h, diy = (Hy)a(Hy)jw, a3y, = —(Hz)wn(Hg) juNik, diyy, = d3yy, diy = 2(H )3, -
NirNji, d”k = (H;)?.(Hw)ij, du d?zk, and dfjk = — > ,(Hz)2.(Hw)ei(Hw)s;. Note that for

any projection matrices P, R, and a vector a,

2
> (Z akPikRjk> = |Pdiag(a)R|% < ||diag(a)F = Za

i k
Hence,
> [ > diyosak)” + Z%km Zdzak"34’“ ] <Z<fa4z Hy)ji + A(H)E) s K.
7:7j
Furthermore,

Z Zdl]ka34]€ ‘< Z
Z Zdl]ka34k = Z dek = Z Z)l?j =K

tj
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SO drosun)? = osurosai(Hy) b (Hy) 5 (Hw) 5y Zas. Y (Hz) i (Hy)3(Hw),
i, k

k 6717] k7£7i7j
<K
YO dlosan)® =D (Hw)5 (O (Hy)hosa)® Zas > (Hw)5(Q_(Hz)3)? < K,
ij ok i k i k

and >, (> dzj 4034k)> =as. K by a similar argument. Thus, by (34),

Z Zdwk034k as. ZZ Zdzjk034k Sas. K,
]

a=1 4,j

so that by (45), the last term in (43) is of the order op(#,,) as claimed.
3c. To complete the proof, it remains to show that (42) holds for ¢/ = 5. We have

> eswearThr = — Y espean(Hz)hmi(Nea)i — Y eapear(Hz)imi(Nea)s
k ik i,k

We will show that the first term in the above display is of the order op(#,); the proof the the second
term is of the order op(i,) follows by a similar argument. To this end, letting A;, = (H )% p115, we

can write
> esnean(Hy)hmi(Nea)s = > (Ai — (Hw A)ii)esieaicai + Y (N A)ijeniesjea;. (46)
ik i i

The expected value of first term in (46) can be bounded as

EqQl> i (Aii — (HwA)ii)esieaieai| Zas. Y ;| Aul + D ;[ (HwA)il
=as. (HZ)Z + ||A||F||HWHF =as. Tn mZaX(Hz)m

%

Thus, by Markov inequality, the first term in (46) is of the order op (i, ). Note that | NA||% < || A% <.
K, and that || N Acs43 < ||Ao34]|3 <as. K, so that by Lemma D.7, the second term in (46) is also of

the order op(7,), so that (42) holds for ¢ = 5, which proves the result. O
Lemma D.11. Put 63y, = (Meg)k(M€4)k and 619, = (MGI)k(MGQ)k. Then, ifmaxi(HQ)ii — 0 and
(K+L)/in=0(1) as

Z(HZ)?ja'12,j&34,i = Z(Hz)?jE[G:stk | Q|Ele1rear | Q] + op(in). (47)
i#j i#£]

Proof. Decompose the left-hand side of (47) as

2 A A~
179125 4 1 — €31¢44 127 — €13€2¢ 3 1€4:1€15€275,
(Hz) $012,j034,i = [G34; — €3i€4i] T + [G12 €1i€2i]S; + ]63 €4;€15€94 (48)
i#] i Z#J
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where T; = >, ,;(Hy ) (Mer)j(Mez)j,and S; = 325 5, (Hy )1363364] The conditional variance
of the third term in (48) satisfies

var (Z(Hz)gje;%e@eljegj | Q)
i#]
Z zjvluk + Z Z]{;V2ij‘ + Z ]kV3mk

i#] i#jF#k i#jF#k
Sas. Z )i + Z 2+ Z 2k < 3Kmax(HZ) :
i#] i#jFk i#j#k

where

5 2 2
Viijk = 03344011225 + 012340012345 — 0340125 — 034i012j0345012,
Vaoijk = 03344i012j012k + 01234i012j034k — 034i012j034k012; — 034;012j034i012k

Vsijk = (034i01122j034k + 01234j034i0 12k — 0340120345012 — 034i012j034;012k) -

Therefore, by Markov inequality,

§ (Hy)jjesicaierjea; = Eg § 5 )7i€si€i€j€a; + op (i) E 0341012 (H 3)3; + 0p(n).
i#] i#] i#]

To prove the claim of the Lemma, it therefore suffices to show that the first and second terms in (48)

are of the order op(#,). To that end, note that by Cauchy-Schwarz inequality,
(EQl> (634 — esieai] Ti)? <) [034i — esieai]” - Y EQT (49)

If we can show that the right-hand side is of smaller order than 2, then it follows by Markov inequal-
ity that the first term in (48) is order the order op (7). It follows from equation (39) in the proof of
Lemma D.10 that Eg ), [634; — €3i64i]2 =as. K + L. By Lemma D.8,

D BQTP =) > (Hyp) Y (Hy)iEq(Mer);(Mea);(Me)p(Mes)y
i i g k: ki
Zas. ) (Hy)Y(Hy)j < K max(Hy)i,
vy ‘
so that the right-hand side of (49) is of the order o(#*) as claimed. By similar arguments,

Eql) (Hy)ijesies; Sil* < ZEQ52 ZEQ G12i — €1i€i] Zas (K + L)Y EQS}.
i#] P
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Since

BeSi=>_ > > (H 2ikBoesjeajesnear Zas. Y (Hz)ij(Hz)ix < K max(H )i,
i g jFik: k£ 1,5,k
it follows by Markov inequality that the second term in (48) is also of the order op (7). O

Appendix E Proofs of unconditional results

Let o = E [R2] and v; = 5,17 Wi,
Proof of Theorem 5.2: 1. First we show that the conditions of the theorem ensure that the conditions of

| < \/7 Since Z; = Z; — E [Z;|Wi,

Theorem 5.1 are satisfied w.p.a.1. By Assumption 4 (

Assumption 4 (i 55 = E [ZZ’]
are uniformly bounded from above and away from zero. Then, QQH \
A_IWH/\ + HXAJZZHA + ;Zv‘ \ < 1 by Lemma F.5 and Assumption 4 (i). Also, EZZ = %Z’Z =
L7/ (I - Hw)Z =355 — B, [Z;W!] £34 En [Z:W], s0
- . = 2 1
1222 = 8720, = 00 (1B [ZW] 1) = Op (1 (K + L) log(K + 1) (50)
which in particular implies that
12220, + 12551, < 5

Thus, max;<, Hj , S

S K/n, maxi<, Hw,i; S L/n, and max;<, Hg i S (K + L) /n wp.a.l.

2. Next, we show that for each of the estimators,

1 1 ~  ~
?—R’AGR = EE [RaiR;| + o0p (1). (52)
Equation (52) implies that 7, /7, = 1 4+ op (1), and that Scg = Buias + op (1).

(i) For TsLs, 1j1vEl, and jivel we have: RAE;TSLSR = R;‘R = 13:4 (I _QHW) R :NR/AR — ﬁ%ﬂwﬁ.
Note that Amax (S5hy) S 1 wpal, B[RaW] = 0, B ||RaWi]'] S E[RR]L < oL, and

@%Hwﬁl < E%HwﬁA + R'Hy R. For any A € {X,Y, A},

EPUREU S _ I L
= RuHwRa = By [RaW]] Syl Ba [WiRai] = O, <Q | B [RaiW] H2> -0, (g) =0, (1).

E[RA’L z]
E[R?]
(ii) For 1j1vE2, R, Gy R = Ry R — R%DZR. Since ‘R’ADZR‘ < maxj<p Hy ; (RQXRA + R’R) the

conclusion follows from the arguments for 1j1vel above.

Then equation (52) holds, since %ﬁ;‘ﬁ = + op (1) by Assumption 4 (ii) and the LLN.

(iii) For ujIvE, equation (52) follows from Lemma E.3, which shows that = R AGUJIVER = = R +
0p (1). Remember that E[((,n) Guuwen| W, Z] = 0, since G;; = 0. We have Fn (¢, m) UJIVERH =
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Op (|GopweR|) = (“ /2 ) = op (1), since | Gope R|| = || (I — Dw) 2 B|| = | (1 — Dw) 2 &'

Swpal |R’R‘1/2 1/2 Then, using part (i) we have — ||(C n) GuweR| = Op (%\/Fn—k %) =

op (1). Also, = [|(¢,n) G
(K+Lﬂﬂ:oﬁﬂ

This verifies Assumption 2 (ii) and (iii), that 7, /7 = 1 + op (1), and that Sc g — Pujass = op (1)

for all of the considered estimators. O

(1) by Lemma D.l and equations (20), since ||Guve|l p Swpat

Proof of Theorem 5.4:
1. First, we show that Assumption 5 holds. Indeed, by Lemma F.7, max;<y, ﬁl/ 2 ‘ R, — Ez‘ =op (1),

and hence, |En [Rﬂ —FE, [}Niﬂ | S max;<y, }RZ — ﬁz‘ x E, [1 + ‘élﬂ =0, (v/75,) by the LLN. Thus,
by Theorem 5.2 the conditions of Theorem 5.3 hold w.p.a.1. Let

Knp = (Vc + VMw)_1/2 , Oy = (QC + QMW)_I/2 .

By Lemma F.1, K,/ . Then, the conclusion follows from Lemma F.3 with A = B, Ben = Be,as
,BU = Bug, and O'% = QE. ]

Lemma E.1. Suppose R',GR = ﬁ%ﬁ + San+0p (F}/Q), where B [Sin] = 0(F), and V [Sa.n] =
o(ry), for A € {X,Y}. Suppose E [{ (E%l + ]?512) E?}IM] <FE [ZA%?] 1+5. Then, for any s € R and
c € R,
| [exp {isv/F (Bco — Bua) }| = e *%/%| = 0, and
P (\/ﬁ(ﬂC,G — Buc) < c) — P(N(0,9Qf) < ¢) — 0, where

E[Ryilt] + B[Synl/rn , _ B [(Rai = Buch)* K]
B[R]+ ElSxal /ra B[R] |

Buc =
Proof. Since Sa, = E [San] + 0p ( 1/2) ﬁg,ﬁ = O, (7n), and RR=7, + O, (7771/2>, we have

R R/Tn + E[Syn] /tn + 0p <rn 1/2)
Rmm+Ew“Vm+%Qﬁﬂ

= Buc — (Ry — 5U,GR) R/ry + E [Syn — BucSx.al /rn + 0p (77 /%)

Beg =

The conclusion of the Lemma now follows from

E [(EY - BU,GE)/ E/Tn +FE [SY,n - BU,GSX,TL] /Tn} = 07
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Lyapunov CLT, and

- 2~ ~ 9
. {?;1/2 (- BU)GE)IE] _ E [(Rm; S;?RZ) Rﬂ _ E |:(RY1' —EB[I;IE/;TRZ') R’L2:| (14 o(1)).

O]

E.1 Unconditional Expansions of Estimators
Lemma E.2. Suppose

(i) L*1log® L = o (n?).

(i) [|Wil| < CVL.

1/2
]

(iii) B[R}, + R2|W;] + B[Ry, + R} W;] '~ < CE[R?] as.

) E[{(R,+ B By s B[R]
v) )\w,n/n3 =o(1).
Then,
R{AGI]IVEIR - R{AGTSLSR - ﬁ;lﬁ + SA,n + Op (7771/2) > with SA,” =L [ﬁAlﬁl HwZHZ] :

Proof. 1. Write Ry GrsisR = R}, (I — Hw) R = RYy R — Rl DwR — R}, (Hw — Dy) R. We will
show that

Ry Dw R = E [Ry:R; |0:]]%] + o, (7/?), (53)

]Aég/ (HW — Dw) E =0p (7:;11/2) . (54)

2. We use Lemma D.1 to establish equation (54), taking Z, = W, P = ?;1/2 (Hw — Dw), u =

E [Ef] e Ry,v=FE [flf] e R, and s = t = 0. By the triangle inequality || Hy — Dwllp < 2VL,

soin 2Rl (Hy — Dyw)R =0, (, /E[R?] L/n) = 0, (1).

3.Let p; = E [ Ry;R;| W;], then E [ Ry, DwR| W] = 3, piHw,;; and
V [RyDwR|W] =YV [RyiRi| Wi] Hiy,y;
< Z (B [R5 Wi] + B [RyiRi| Wi]*) Hi
< s{lup (B[R + Bl Wi =] + B[B+ R Wi =w]”) Y Hi

~52
SERHY  Hiyy,

1
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where the last equality follows by condition (iii). Condition (ii) and Lemma F.5 imply that w.p.a.1

ZH%WiS(maX WSy W>ZHW“<CL2/H

i<n N
Hence 7,1V [E;DW§| W|<E [E?] L?/n? =0 (1) and

E%Dwé = Z piHWﬂ‘i + 0p (?71/2) . (55)

4. Note that HW Hw, andlet S = 27— EW, be an approximate inverse of wa Then HZW — SH)\ <

b2 H = O, (Llog L/n), where the last equality follows by Lemma F.5. Then
1 - 1
Z piw,ii = ZPin,z‘z‘ = Z pﬂ/%z;}p% = Z pitih; + Ary — Aoy, (56)
where ) )
A= 2D o (S = S) i Aew =23 ot (1= Syu) v
Here
Al <1550 -5, Z il I1ill* = 15555 =S|I, (B [loil 1ill] + 0, (1)
Llog L
=0, (FEZ (B[R 1)), (57)

where the last equality holds because £ HEYZE ‘ 125 HQ] <FE []5%2] L by conditions (ii) and (iii). Thus,
by condition (i), /2 |A1n| = Op < [RQ] 12 ngich) =0, (1).
Next, let usj = p; [|[vi]]* + pj [19511* = (pi + ps) (¥15)*. Then

Ao = SO il — s (i9)* )
i g
B o (1l = 1)) + 25 Sy = 0, ( ) L3,

1<j 1<j

where the last equality makes use of conditions (ii) and (iii). For the U-statistic term we have E [u;;] = 0,

Blugghis] = E [pi 1al] + o5 iy 12 — w4 B [pussisf] 5 — p 1511
= B o1 [4]12] — ¥} [orsue] vy,
V fuy] = B[] < 4B [o7 (Il — fw)?) | = 48 52 (Il + wisy)*)
SER) (B[’ + B [wn)']) S B[R (L2 + hn)
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and

V [Elugl;)) < B[R 12

By the formula for the variance of a U-statistic we have

Vv

1 1 1 o
—~ Zw] S SV [Blugli]] + —V [uy] < B[R] (gﬂ + ﬁw,n) :

— n
1<J
Combining these we have
. L2 o L1 L4+ Apn)?
— 2 2 1/2) _ ~1/2 Y,n _ ~1/2
A =0, (BIR) = + B[R] -+ 102 =0, (n/ N RGO NCE
where the last equality follows by conditions (i) and (v).

5. Combining equations (55)-(58) we obtain

~ ~ 1 ~
By Dw R = 3 pilluil + 0, (7).

Here E, [p; ||1/11||2] = F [pi ||1/11H2} + O, (E [RZQ] L/\/n) = E [p; H%Hz} + o (77,11/2), and hence
equation (53) holds, which concludes the proof. O

Lemma E.3. Suppose 1/C' < Apin (E [¥it)]]) < Amax (E [¥i00)]) < C, |94 < CV'L, with Llog L =
o(n), W includes the constant, max;<, £ [E%Z + éﬂ W;] < Cry/n and E[R}, + R?] < C. Then

~\/

(Ry,R) GuweR = (Ry,R) R+ 0, (\/7).

Proof. By the invariance of the estimators to invertible linear transformations we can w.lo.g. take
W; = ;. The conditions of the Lemma imply that max;<, (Hw),, = Op(L/n) = o,(1), and
| En [WiW]]||, < C. 1t is sufficient to consider only Ry = Ry + Wéy:
RyGuweR =Ry (I - Dw) 'R
= Ry R+ RyDw (I — Dw) 'R+ 6,W' Dy (I — Dw) 'R
=T + Ty +T5.
Here,n~ /2 ||(Hw — Dw)||» = 0p (1), hence by Lemma D.1 with Z,, = W we have ﬁmﬁ; (Hw — Dw) R =

op (1), and hence
T :RQ/RZ E/y(I—Dw)E-f—Op (\/?n) .

Likewise, since n~1/2 | Dw (I - Dy) ! (Hy — DW)HF = 0p (1) we have
Ty = Ry Dy (I — Dw) " (I — Hw) R = Ry Dw (I — Dy)"" (I — Dw)) R + o, (\/?n)
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= Ry DwR + o, <\/F7n) .

Thus, Ty + Ty = Ry R+ 0, (V) -
Consider T3 = 63, W'Dy, (I — DW)_1 Hy R. Note that E [T3| W] =0and
E[T}| W] S r—”GQ/W’DW (I — D)™ Hy (I — DW)’l Dy Woy < %” {.W' Dy Hy Dy W 0y

feyw Dy WGk, W Dy Woy < 2 5 (140, (1) 65 (W' Dy W)? 0y

Here W Dy W < nmax;<, (Hw);; - En [W;W/], and ||0y|| < C since E [R};] < C. Then,

2
E[T3|W] £ %(Hop(n) <n max (Hy ), ) 0, E, [W:;W!]* 0y

~Y
i<n

< P40, (1) - (max (HW)“)Q.

Thus, T3 = o, (v/75) if max;<y, Hy,i; — 0, which completes the proof. ]

Appendix F Auxiliary proofs for unconditional results

LemmaF.1. Suppose Assumption 4 holds, E [Ef + Eii] S L E[n? 4+ v Qi) < C,and|corr (n;, vi]Q;)] <
C < 1. Then L .
Ve+V
(C,fMW> (Qc+ Quw) B 1,

where

9C — Z[RZQO-Z%Z —+ RQA'LO—?],Z + 2RiRAiO-V77,’L']7

i

Vuw = Z[(Hz)?jaguaw + (Hz)ij(Hz)jioumi0umy],

1#]
1~ -
Qc= EE[(RM + Raing)?),
1 ~ o~ ~
Quw = = tr (Evigig)) En} 9i9}) + Elvimigigi)®) . ¢ = E|Z:Z])* Z;.

Proof. First, consider ﬁc:

Tn

fVc - ZE [(Rivi + Raim:)?|Q)]

1 - . - o -
S Z[(R2 R?) op,; + (RA; — RA;) 07 + 2 (RiRai — RiRA) ougi)-

Tn
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Note that

|~ B = | ~HwR|" = 0 (oL)
|2+ B" = |21 — i) B|* = 4|| R ~ 3R Hw B = 40 +0p (o).

Then, for any bounded nonrandom q;, using the above bounds we have

B (B~ B i) < By [(Bs — R)"] B [(Bi+ R)' 2] < = BRI B [(Bit B = 0, ().

Ly - )= 0, (yf5) =ept)

Likewise, % > (RQAZ — Eiz) 072771' = 0p (1). Since 2 (RZRAZ — Eiﬁm) = (RZ + RAZ-)Q—(EZ' + EM)Q—
{R? - EZQ} +{R3,; - Rii}, by the same arguments we have %L S Ol RiRai — RiRaj] = op (1).
Thus, we have shown that %]7@ = % Yoy E[(Ezw + Emm)2|Qi] + o0, (1). Since V[E[(Elz/z +

Ijlm'mﬂ@i]] <FE [Eﬁ + Eiz] < 0® we have

3=

and hence

1 ~
—Ve=Qc+o0,(1).
T'n

Here 1 < Q¢ < 1. Then, by Lemma F.4

L (Ve + Taw) — (Qc + Q) = 0, (1).

Tn

We make use of the following simple lemma.

Lemma F.2. Suppose r.v. ¢, = E [|Ay|| 2, satisfies (i) ¢, — 0 wp.a.1, and (ii) {,, is uniformly bounded
by a constant. Then E [(,] — 0.

Proof. W.lo.g. 0 < (, < 1. Suppose E [(,] # 0,ie,3e > 0: E[(,] > ¢ for all large n. Together with
condition (ii) this implies that P [(,, > ¢] > ¢, which contradicts condition (i). O

Lemma F.3. Suppose k,, and ¢, are measurable w.r.t. Z,; oy, 0g, By are nonrandom, og and [y are

bounded, and, asn — oo,
(i) Forall s € R, E[exp {iskn(A — Bcn)}H Zn] — e /2 5 0 wpal
(ii) kn/an =14 0p(1) and a, — 0.

(iii) Forall s € R, E [exp {isay, (Ben — Bu)} — e—5295/2 _y .
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Then,

(1+ gg)‘m an (A — By) —a N (0,1).

Proof. Fixany s € R,andlet Az, (s) = |E [e iskin(A=fen)| 2, |-FE [eisa"(A_BCv"”Zn] |. Then Az, (s) =
|E [( is(kn—on)(A—Bc,n) _ 1) 1so¢n(A Be, n)’ Zn” < E Hels (1—an/kn)kn(A—Bcn) _ 1” Zn] = op (1) )

Since characteristic functions are bounded, we have
‘E [eisa”(A*’BCv")]Zn] - 37‘92/2‘ < min {2, ‘E [eis“"(A*BC’")\Zn] - 6782/2’ + Az, (s)} =min{2,0, (1)},
and hence F [eiso‘"(A_ﬁcv”)] —e=5*/2 = (1), so by (iii), E [elsan(d=F)] = [6_52/26150‘"(&37”_6@} +
o(1) = e " H9R)/2 1 5 (1). O
Lemma F.4. Suppose

(i) 3C : sup, B [nf + v} Qi = ] < C.

(ii) E[(mi,vi) |Qi] =0

(iii) 3C > 0:1/C < Apin (200Q) < Amax (2gg) < C.

() [[Soq — Zqell, = op (1)-

(v) K+ L =0 (ry).

Then

where

Vaw = > _(Hy)F 00 j00; + (Hy)ij(Hy) jioun.iom 5,
i

Viw = tr (E (9i9;v?] E [gigin?] + E [9@'92%‘%]2) 9 =% 1/2Z

Proof. 1. Consider

ZH azb]; and Vab2 = Z Z.ij bj’
i#£j ,J

for some bounded sequences a; and b;. First, by equation (50), H ,, = }zZz,EZZZl S HZ H <

w.p.a.l. Then )", H;u la;| S 532 Hy, = 7K wpal, and hence ‘]7,1(,,2 — ab‘ = ‘ZZ HZ’“,aib,-
Oy (£K) = 0p (7). Thus,

A 3=

WMW,z - lew‘ = 0p (Tn),

1/2Z

15

where, denoting g; = E
]N}MWZ Z Zzy 1/2 n] + O—V"MO—WLJ 2 Ztr Z Z Z/E Z Z/ ( I/Z 77] + UWL’LO—V"]J))
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" 0 11 ) . N . .o
=tr {3, En (Z;Z}o2}] 3% 5 En (Z;Z}0} 5]} + e {22 En (225005 X5 Bn [ZiZiow,] }
. . s 2
=tr {E" [gigzl-aii] By, [gﬂgj n]]} + tr{ (En [9iGiown.i]) } :
2. For a random variable &; with sup, E [£?| Q; = ¢] uniformly bounded, let yi¢; = E [£;]|Q;]. Then
—Ixir S —sup B[] Qi = g E[QiQ)] S EQiQi&] Ssup E (16| Qi = ¢ E[QiQ}) < I+,
q q

where the inequalities are in the matrix sense. Thus, | E [Q;Qi&]|, S 1, |E[QiQi&]ll » S VK + L,
and by Lemmas F.5 and F.6,

|En [ZiZipes) — E [Z:2]€) |7 < O0p (W) IE, [QiQipe] — E [QiQi&]ll  + 0p (VK + L)
<O, (N2 (K +L)+o0, VK+L) =0, VK+L). (59

' [ZlZZ’ M&i} H »=0p ( K+ L). Also, by Lemma F.6 and conditions (iii) and (iv),
15411, < € wpat. (60)
Then
1B [Gigipei] — E9:9i&lll p < S1.n + S2,n, where (61)
Sln:HE VE(Z716) 8 -2 B (2.2 WH

Som = Hz V2 (B, [2:Zpe) — [Zzg, WH

Note that || [g;g;&]ll, < 1
For symmetric K x K matrices A, A, S, the following inequality holds

N

Taking A= Ezlz/Q, A= Z;Z/Q, and S = F [zzﬁz] and applying the inequality to term 57, we
obtain that

HA’SA A’SAHF (2|4l +

Stn Swpar VE S5 - x| = (62)

where we use equation (60) and condition (iii).

Since ||AB||» < || A, | B|| p for any symmetric A, B. Using equations (59) and (60) we obtain

WH B [Z:Zine)) — E [Z:Z16]) || = 0p VK + L) (63)
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Together, equations (59), (61)-(63) imply
1 En [9:3i1es]) — B [9:9i&ll p = 0p (VK + L) (64)

3. For any conformable real matrices

tr {My My — MM} < ||y — M|, (| Mzl + |p) + 1M 2|l
Thus,
(te { (B [9:9i07.4]) (En [3;9507,5]) — E [9:9:v]] E [9:9i7] }|
< || Bn [3:8i02:) — E [9:9iv) | o (1B [9i9im?) || o + || Bn (359702 5] — E [gi9in?] || )
+ 1B [339505,5] = B [919007] || 5 1B [939iv] || (65)
and

tr {En {gigzl‘o-yn,i] -F [92’921/1'771]2}‘

~ A~ ~ A 2
< 2||Ey [9igi0vns) — E [gigivinl | || E lgigivinil | p + | En [9idi00n,:) — E [gigivin] |5 -

Since || £ [gigin? ]l < Elgigivilllp < Elgigivini]llp S VK, and K + L < 7, we have

1 =~ ~ 1
— (Vvwz — Vaw) = 0p (?

7"’I’L n

K(K—i—L)):op(l).

O]

Lemma F.5. Let A; € R™* B; € R™ be i.id. (for each n) vectors with m, and my, allowed to change
with n. Suppose for some C' and all n, Apax (E [A;A}]) < C and Apax (E [B;B}]) < C. Then

ISa5 = Sasl > = 0p (B[4 B2 /vn) (66)

If in addition (i) 3C : [|4;|| < C\/mq,

m =ma + mp then

Bi|| < C\/my for all n, and mlog(m)/n = o(1) for

|48 = Sas|, = Op(v/mlog(m)/n), (67)
[Sa5 —Sasl, = 0. (68)

Proof. Equation (66) is easily verified by a direct calculation. Equation (67) follows from Theorem 1.6
in Tropp (2012). O

Lemma F.6. Suppose &; and & are some scalar random variables, and
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(i) Po, =0 (1)
(ii) 3C >0 : l/C < Amin (EQQ) < Amax (EQQ) <C.
Then
|E. [Z:&] — E 3 | =0,(1)|En [Qzéz] E[Q; fz H + Op ) IIE [Qz&]”
where norm ||-|| ;; can be Frobenius or spectral norm.
Proof. We prove only the second statement, the proof of the first statement is analogous. Since Z; =
(IK, —é’Z) Q;, and ZZ’ = (Ix,—0") Q; write
|En [Z:21€) — E[Z:Z}&]| (69)

(Iie, ~0) B [QuQE] (I, ~0)' — (I, ~02)' BIQuQi&] (I, ~05) | < T+ Ty,

where

To= (1. ~0%) (Ba [QiQIE] - EIQiQUE)) (1, ~0%)'||
T, = H(IKa )E [Q’LQ éz] (IK7 ) - (IK7 ) [Q’LQ éz] (IK7 )/ N

Consider term T7. Since || AB|| 5 < || A|l) [|B|| 5 we have
T, < || [QuQE] ~ Bl v |11, ~0) 5

By the triangle inequality, H(IK, -0’ Dy < Mk, —0%) ||/\+HHZ —0z||, < @ +10z], +H92 - HZHA‘
Since Z! = W!0; + Z! with E (W; ZJ = 0 we have F [Z;Z]] = 0,E[W;W]|0; + E [Z Zﬂ >
H'ZEWWQ 7 > Amin (Sww) G’ZO 7, where the inequalities are in the matrix sense. From condition (ii)
it follows that Amax (E [Z;Z]]) < C and Amin (Eww) > C > 0, and hence the above implies that
10z, < C. Thus,
(T, ~03)l, < C, 70)

and hence by condition (i), 71 = O, (1) HEn [QZQ;&] - EQ:Qi&] HN )
Next, consider 75 in equation (69). For matrices A = (Ik, —é’Z)I, A = (Ig,—0,)", and S =
E[QiQ}&;] we have

= HA'SA A/SAHN (2 Al + )
= (2 H(IK7 _HIZ H)\ HZH ) HE Q’LQ fz]

QZH)\

Then, by condition (i) and equation (70), T> = o, (1) || E [Q:Q}&]|| 5» which concludes the proof. [
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Lemma F.7. Let A € {X,Y, A}, and suppose |W;|| < CVL, LlogL = o(n), and E [||VVZH2 Riz} <
CLo. Then
1 - ~ L
max = [Rai — Rail = Op ()=

Proof. From R — R = —Hyy R it follows that

ZHijéAj
J

< OVL |[Ephy Bn [WiRail || S (1 + 0, (1)) VI || Bn [WiRai]|| = Oy <Lff> :

max |Rai — Rai| = max = max (WIS En [Wikai |

and hence max;<y, ﬁ ‘RAi — EAi‘ =0, (%) =0, (1). O
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