
Inference in Instrumental Variables Analysis with

Heterogeneous Treatment E�ects
∗

Kirill S. Evdokimov
†

Princeton University

Michal Kolesár
‡

Princeton University

January 25, 2018

Please click here for the latest version

Abstract

We study inference in an instrumental variables model with heterogeneous treatment e�ects

and possibly many instruments and/or covariates. In this case two-step estimators such as the

two-stage least squares (TSLS) or versions of the jackknife instrumental variables (JIV) estimator

estimate a particular weighted average of the local average treatment e�ects. The weights in these

estimands depend on the �rst-stage coe�cients, and either the sample or population variability of

the covariates and instruments, depending on whether they are treated as �xed (conditioned upon)

or random. We give new asymptotic variance formulas for the TSLS and JIV estimators, and pro-

pose consistent estimators of these variances. The heterogeneity of the treatment e�ects generally

increases the asymptotic variance. Moreover, when the treatment e�ects are heterogeneous, the

conditional asymptotic variance is smaller than the unconditional one. Our results are also useful

when the treatment e�ects are constant, because they provide the asymptotic distribution and valid

standard errors for the estimators that are robust to the presence of many covariates.
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1 Introduction

Empirical researchers are typically careful to interpret instrumental variables (IV) regressions as esti-

mating a weighted average of local average treatment e�ects (lates), i.e., treatment e�ects speci�c to

the individuals whose treatment status is a�ected by the instrument, see Imbens and Angrist (1994) and

Heckman and Vytlacil (1999). When it comes to inference, however, they revert to standard errors that

assume homogeneity of treatment e�ects, which are in general invalid in the late framework: they are

generally too small relative to the actual sampling variability of the estimator. Oftentimes, inference

is further complicated by the fact that the number of instruments is relatively large, and that one may

also need to include a large number of control variables in order to ensure the instruments’ validity.

This paper considers the problem of inference in the late framework, with a particular focus on

the case of many instruments and/or covariates. We make three main contributions.

First, the paper points out the di�erence between conditional (on the realizations of instruments

and covariates) and unconditional inference in the late framework. When the treatment e�ects are

homogeneous, the two approaches to inference are indistinguishable from the practical point of view:

they suggest identical formulas for the standard errors. The paper shows that this is no longer the

case when the treatment e�ects are heterogeneous. The standard errors for the conditional inference

are smaller than for the unconditional one. The reason is that the unconditional inference additionally

accounts for the sampling variability of the conditional estimand.

Second, the paper studies the conditional and unconditional estimands of the tsls and jackknife IV

estimators. In particular, the paper investigates when can the conditional and unconditional estimands

be guaranteed to be convex combinations of individual lates. One interesting result is that in the

presence of many covariates, the unconditional estimand of the tsls generally di�ers from the estimand

given by Imbens and Angrist (1994), although the estimand is similar and generally is still a convex

combination of individual lates.

Third, the paper derives the asymptotic distribution and provides valid standard errors for these

estimators. Our large sample theory allows for both the number of instruments and the number of

covariates to increase with the sample size, while also allowing for the heterogeneity of the treatment

e�ects. Thus, for example, the paper provides what appears to be the �rst valid inference approach in

the settings such as Aizer and Doyle (2015) or Angrist and Krueger (1991) with many instruments.
1

As a by-product, the paper provides new asymptotic theory results that can be useful for analysing

estimators and inference procedures in the presence of high-dimensional observables and possible treat-

ment e�ect heterogeneity.

When the treatment e�ects are homogeneous, the IV model is de�ned by a moment condition that

equals zero when the parameter β on the endogenous variable corresponds to the average treatment

e�ect. On the other hand, when the treatment e�ects are heterogeneous, so that di�erent pairs of in-

1

The only previously available results on the distribution of the tsls-like estimators in the late framework were obtained

for the unconditional inference on the tsls estimator with a �nite number of instruments and covariates, see Imbens and

Angrist (1994).
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struments identify di�erent lates, the IV model is misspeci�ed in that there exists no single parameter

that satis�es the moment condition. Valid inference in this case therefore requires a proper de�nition

of the estimand of interest.

We de�ne the unconditional estimand as the appropriate probability limit of the estimator. When

the number of instruments and covariates is �nite, Imbens and Angrist (1994) show that the uncondi-

tional tsls estimand is given by a weighted average of lates, with the weights re�ecting the strength

(variability) of the instrument pair that de�nes the late. Kolesár (2013) shows that the unconditional

estimand for other two-step estimators such as several versions of the jackknife IV estimator is the

same, but that the unconditional estimands of minimum distance estimators such as the limited infor-

mation maximum likelihood estimator is di�erent, and cannot in general be guaranteed to lie inside

the convex hull of the lates.

Another possibility is to de�ne the estimand as the quantity obtained if the reduced-form errors

were set to zero, which we refer to as the conditional estimand since the estimand conditions on the

realized values of the instruments and covariates. We show that the conditional estimand of tsls and

jackknife estimators can also be interpreted as a weighted average of lates, but the weights now de-

pend on the sample, rather than population variability of the instruments. As a result, it is di�cult to

guarantee that the weights are positive in a given sample, and so far we have only been able to guaran-

tee that the weights are positive in �nite samples when the covariates comprise only indicator variables.

When the design is balanced in a certain precise sense and the number of instruments is of a smaller

order than the sample size, the weights can be shown to be positive with probability approaching one

for a wide range of settings.

As a consequence of the distinction between the conditional βC and unconditional βU estimands for

an estimator β̂, we show that the conditional (on the instruments and covariates) asymptotic variance

of β̂ is smaller than its unconditional asymptotic variance. The unconditional asymptotic variance

is larger because it needs to take into account the variability of the conditional estimand due to the

variability in the weights of the lates. More precisely, the unconditional asymptotic variance (the

asymptotic variance of β̂−βU) is given by the sum of the conditional asymptotic variance (the asymp-

totic variance of β̂−βC), and the asymptotic variance of the conditional estimand (asymptotic variance

of βC − βU). When the treatment e�ects are homogeneous, all lates are the same, and the variabil-

ity of the weights due to the sampling variation in the instruments and covariates does not enter the

asymptotic distribution. In this case, the two estimands coincide and the (unconditional) variance of

βC is zero. Otherwise, however, the distinction matters. That the distinction between the conditional

and unconditional estimands can lead to the conditional asymptotic variance being lower than the un-

conditional one has been previously noted by Abadie et al. (2014) in the context of misspeci�ed linear

regression. It is worth noting that in our problem both the conditional and unconditional estimands

can be of interest for causal inference.

We show that the conditional asymptotic variance can be decomposed into a sum of three terms.

The �rst term corresponds to the usual heteroskedasticity-robust asymptotic variance expression under
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homogeneous treatment e�ects and standard asymptotics found in econometrics textbooks. The second

term accounts for the variability of the treatment e�ect between individuals and equals zero when the

treatment e�ects are homogeneous. It is in general positive, so that the standard errors are generally

larger when the treatment e�ects are heterogeneous. The third term accounts for the presence of many

instruments, and disappears when the number of instruments K grows more slowly than the strength

of the instruments as measured by r̈n, a version of the concentration parameter de�ned below.

The literature on inference for the two-step estimators in the presence of heterogeneous treatment

e�ects is limited. Imbens and Angrist (1994) derive the (unconditional) asymptotic distribution of the

tsls estimator with �nite number of instruments and covariates.
2

Formally, the problem can also be

seen as inference in a misspeci�ed IV/GMM model. The �rst to provide standard errors in this model

were Maasoumi and Phillips (1982) for homoskedastic errors, and Hall and Inoue (2003) for general

GMM estimators, see also Lee (2017). Carneiro et al. (2011) consider inference on the marginal treatment

and policy e�ect estimators, but these are substantively and statistically di�erent estimators from the

two-step estimators considered in this paper. Kitagawa (2015) and Evdokimov and Lee (2013) develop

tests of instrument validity when the treatment e�ects can be heterogeneous.

Our asymptotic analysis builds on the many instruments and many weak instruments literature due

to Kunitomo (1980), Morimune (1983), Bekker (1994) and Chao and Swanson (2005). Our distributional

results, in particular, build on those in Newey and Windmeijer (2009) and Chao et al. (2012). This

literature is focused on the case in which the treatment e�ects are homogeneous, so that the IV moment

condition holds, the number of covariates L is �xed, but the number of instruments K may grow with

the sample size n. In contrast, we allow for the treatment e�ects to be heterogeneous, and the number

of covariates to grow with the sample size. This is important in practice, since, as we argue in Section 2

below, in many empirical settings in which the number of instruments is large, the number of covariates

is typically also large. Although an increasing number of covariates L has been previously considered

in Anatolyev (2013) and Kolesár et al. (2015), these papers assume that the reduced-form errors are

homoskedastic, which is unlikely when the treatment e�ects are heterogeneous, and impossible when

the treatment is binary.

Consistency of the estimators of the asymptotic variance proposed in the many instruments liter-

ature typically relies on the fact that the number of parameters in the IV moment condition is �xed,

and that, under homogeneous treatment e�ects, they can be estimated at the same rate as the rate of

convergence of β̂. This allows one to estimate the error in the IV moment condition, usually referred

to as the “structural error” εi at a fast enough rate so that replacing the estimated structural error in

the asymptotic variance formula with εi does not matter in large samples. When the treatment e�ects

are heterogeneous and/or the number of covariates L grows with the sample size, this is no longer the

case, and naïve plug-in estimators of the asymptotic variance are asymptotically biased upward. The

feasible standard error formulas that we propose jackknifes the naïve plug-in estimator to remove this

bias.

2

Note that the heteroskedasticity-robust standard errors cannot account for the heterogeneity of treatment e�ects.
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Although our asymptotic theory applies to a large class of two-step estimators, we focus on several

speci�c estimators. In particular, we consider a version of the jackknife estimator proposed in Acker-

berg and Devereux (2009), called ijive1, as well as a related estimator ijive2, which di�ers from ijive1

in that it does not rescale the �rst-stage predictor after removing the in�uence of own observation. This

di�erence is similar to the di�erence between the jive1 estimator studied in Phillips and Hale (1977),

Blomquist and Dahlberg (1999), and Angrist et al. (1999), and the jive2 estimator of Angrist et al. (1999).

Ackerberg and Devereux (2009) have shown, however, using bias expansions similar to those in Nagar

(1959), that these two estimators are biased when the number of covariates is large, just as the tsls

estimator is biased when the number of instruments is large. See also Davidson and MacKinnon (2006)

and other papers in the same issue. We also consider ujive estimator introduced in Kolesár (2013). Our

consistency theorems show that a similar conclusion obtains under the many instrument asymptotic

sequence that we consider. No inference procedures were previously available for the estimators robust

to the presence of many covariates, and our paper �lls this gap.

A potential criticism of our results is that, since the de�nition of the estimands depends on the

estimator, the particular weighting of the local average treatment e�ects that it implies may not be

policy-relevant. In the settings with a �xed number of strong instruments, a viable option is to report

the lates separately and leave it up to the reader to choose their preferred weighting. Alternatively,

one can use the marginal treatment e�ects framework of Heckman and Vytlacil (1999, 2005) to derive

weights that are more policy-relevant, and build a con�dence interval for an estimand that uses such

weighting. However, Evdokimov and Lee (2013) point out that the valid con�dence intervals for the

weighted averages of lates with weights that do not shrink to zero for irrelevant instruments (e.g.,

equal- or census-weighted average of lates, smallest or largest late), generally are trivial (−∞,∞),

unless some additional restrictions (e.g., bounds on the support of the outcome variable) are introduced

into the model. The presence of a single unidenti�ed late implies that such weighted average is also

unidenti�ed. In practice, in many empirical settings, such as in Section 2 below, in which the instru-

ments correspond to group indicators, the identi�cation strength or group size at least for some instru-

ments may be too small to accurately estimate every individual late. Then, any weighting scheme that

ex ante puts a positive weight on a particular late will lead to uninformative inference if that particular

late turns out to be very imprecisely estimated. Therefore, in such cases, one may have to choose a

less ambitious goal of providing a con�dence interval for some weighted average of lates that puts

small (zero) weight on the lates corresponding to the weak (irrelevant) instruments, such as the tsls

and jiv estimators. Importantly, our asymptotic theory results consider a broad class of estimators, and

can be used to derive the asymptotic properties of other estimators besides those explicitly considered

in the paper.

Whether or not a data-driven weighting of the lates is policy relevant, the tsls and jiv estima-

tors are routinely reported in empirical studies. It is important to accompany such estimates with an

accurate measure of their variability, which our standard errors provide.

The remainder of this paper is organized as follows. Section 2 motivates and explains our analysis
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and results in the empirically important simple special case in which the instruments and covariates

correspond to group indicators. Section 3 sets up the general model and notation. Section 4 discusses

the causal interpretation of the conditional and unconditional estimands. Section 5 presents our large-

sample theory. Proofs are relegated to the Appendix.

2 Example: dummies as instruments

This section illustrates the main issues in a simpli�ed setup. We are interested in the e�ect of a bi-

nary treatment variable Xi on an outcome Yi, where i = 1, . . . , n indexes individuals. The vector of

exogenous covariates Wi has dimension L, and consists of group dummies: Wi,` = I {Gi = `} is the

indicator that individual i belongs to group `, where Gi ∈ {1, . . . , L} denotes the group that the indi-

vidual belongs to. For each individual, we have available an instrument Si that takes onM+1 possible

values in each group. We label the possible values in group ` by s`0, . . . , s`M . The vector of instruments

Zi has dimension K = ML and consists of indicators for the possible values, Zi,`m = I {Si = s`m},
with the indicator for the value s`0 in each group omitted: Zi = (Zi,11, . . . , Zi,1M , Zi,21, . . . , Zi,LM ).

This setup arises in many empirical applications. For example, in the returns to schooling study

of Angrist and Krueger (1991), Gi corresponds to state of birth and the instruments are interactions

between quarter of birth and state of birth, so thatSi = s`m if an individual is born in state ` and quarter

m− 1. Aizer and Doyle (2015), who study the e�ects of juvenile incarceration on adult recidivism, use

the fact that conditional on a juvenile’s neighborhood Gi, the judge assigned to their case is e�ectively

random: here Si = s`m if an individual is from neighborhood ` and is assigned the mth judge out

of M + 1 possible judges overseeing that neighborhood’s cases (for simplicity, in this example we

assume that number of judges is the same in each neighborhood). Similarly, Dobbie and Song (2015)

use random assignment of bankruptcy �lings to judges within each bankruptcy o�ce to study the e�ect

of Chapter 13 bankruptcy protection on subsequent outcomes. Silver (2016), who is interested in the

e�ects of a physician’s work pace on patient outcomes, uses the fact that by virtue of quasi-random

assignment to work shifts, conditional on physician �xed e�ects Gi, a physician’s peer group Si is

e�ectively randomly assigned.

The �rst-stage regression is given by

Xi =
L∑
`=1

M∑
m=1

Zi,`mπ`m +
L∑
`=1

Wi,`ψ` + ηi, (1)

where, by de�nition of regression, E[ηi | Gi, Si] = 0. The reduced-form outcome equation is given by

Yi =

L∑
`=1

M∑
m=1

Zi,`mπY,`m +

L∑
`=1

I {Gi = `}ψY,` + ζi, (2)

where, again by de�nition of regression, E[ζi | Gi, Si] = 0.
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We assume that within each group, Si is as good as randomly assigned and only a�ects the outcome

through their e�ect on the treatment. We also assume that the instrument has a monotone e�ect on the

treatment, so that P (Xi(s`m) > Xi(s`m′) | Gi = `) equals either zero or one for all pairsm,m′ and all

`, whereXi(s) denotes the potential treatment when an individual is assigned Si = s. This assumption

implies that π`m corresponds to the fraction of “compliers”, the subset of individuals in group ` who

change their treatment status when their instrument changes from s`0 to s`m. As shown in Imbens

and Angrist (1994) these assumptions further imply that the ratio πY,`m/π`m can the interpreted as an

average treatment e�ect for this subset of the population, β`m0, also called a local average treatment

e�ect (late), de�ned as

β`mm′ := E[Yi(1)− Yi(0) | Xi(s`m) 6= Xi(s`m′), Gi = `].

Here Yi(x) denotes the potential outcome corresponding to treatment status x. If individuals do not

select into treatment based on expected gains from treatment, then all lates are the same and equal

the average treatment e�ect, β`mm′ = ATE := E[Yi(1) − Yi(0)] for all ` and all pairs m,m′, and the

regressions (1)–(2) reduce to the standard IV model, which assumes that πY,`m = ATE ·π`m. Our goal,

however, is to explicitly allow for the possibility that the lates may vary.

The two-stage least squares estimator can be obtained by �rst “projecting out” the e�ect of the

exogenous regressors Wi by constructing the residuals Ÿi, Ẍi and Z̈i from the regression of Yi, Xi

and Zi on Wi. One then constructs a single instrument R̂tsls,i as the predictor from the �rst stage

regression of Ẍi on Z̈i. The two-stage least squares estimator β̂tsls is obtained as the IV estimator in

the regression of Ÿi on Ẍi that uses R̂tsls,i as a single instrument:

β̂tsls =

∑n
i=1 R̂tsls,iŸi∑n
i=1 R̂tsls,iẌi

. (3)

Because the exogenous covariates are group dummies, projecting out their e�ect is equivalent to sub-

tracting group means from each variable: Ÿi = Yi − n−1
Gi

∑
j : Gj=Gi

Yi, where nGi is the number of

individuals in group Gi, and similarly for Ẍi and Z̈i. The predicted value R̂tsls,i is then given by the

di�erence between the sample mean of Ẍi for individuals in group Gi with instrument value equal to

Si, and the overall sample mean of Ẍi in group Gi:

R̂tsls,i =
1

nSi

∑
j : Sj=Si

Ẍj −
1

nGi

∑
j : Gj=Gi

Ẍj =
1

nSi

∑
j : Sj=Si

Xj −
1

nGi

∑
j : Gj=Gi

Xj , (4)

where nSi is the number of individuals with instrument value equal to Si.

One can think of the �rst-stage predictor as estimating the signal R̈i =
∑M

m=1(Zi,Gim−nGim/nGi)πGim:

we have R̂tsls,i = R̈i if the �rst-stage errors ηi are identically zero. The strength of the signal measures

how fast the variance of β̂tsls shrinks with the sample size: we show in Section 5 below that it is of the

order 1/r̈n, where r̈n =
∑n

i=1 R̈
2
i is a version of the concentration parameter. When the instruments
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are strong, r̈n grows as fast as the sample size n, but it may grow more slowly if the instruments are

weaker. We require that r̈n →∞ as n→∞, ruling out the Staiger and Stock (1997) weak instrument

asymptotics under which r̈n is bounded.

We now consider the estimands. Assume, without loss of generality, that the instruments are or-

dered so that changing the instrument from s`m to s`,m+1 (weakly) increases the treatment probability.

Then π`m ≥ π`,m−1 for allm and `, where we de�ne π`0 := 0. If the reduced-form errors ηi and ζi were

zero, then it follows from Lemma 4.1 below that the tsls estimator would equal a weighted average of

lates,

βC =
L∑
`=1

M∑
m=1

ω̂`m∑L
`′=1

∑M
m′=1 ω̂`′m′

β`m,m−1, (5)

where the weights ω̂`m are all positive and given by

ω̂`m =
n`
n

(π`m − π`,m−1)
M∑
k=m

n`k
n`

(
π`k −

M∑
m′=1

n`m′

n`
π`m′

)
.

We call βC conditional estimand, because it conditions on the realizations of the instruments and co-

variates (we keep this dependence implicit in the notation). Furthermore, under standard asymptotics

which holdK,L, and the coe�cients π and πY �xed as n→∞, β̂tsls converges to a weighted average

of lates

βU =
L∑
`=1

M∑
m=1

ω`m∑L
`′=1

∑M
m′=1 ω`′m′

β`m,m−1,

where the weights ω`m replace the sample fractions n`/n and n`m/n` in (5) with population probabil-

ities p` = P (Gi = `) and ps`m = P (Si = s`m | Gi = `), so ω`s = p`(π`m−π`,m−1)
∑M

k=m ps`k(π`k−∑M
m′=1 ps`m′π`m′). We refer to βU as the unconditional estimand. If the lates are all equal to the

ATE, the weighting does not matter, and both βU and βC collapse to the ATE. Furthermore, the usual

standard error formula can be used to construct asymptotically valid con�dence intervals (CIs). Other-

wise, however, βU 6= βC, and one has to choose whether one wants to report CIs for βC or CIs for βU.

It follows from our results in Section 5 below that the usual standard error formula does not deliver

valid CIs for either estimand, and that the CIs for the unconditional estimand will always be wider: the

asymptotic variance of β̂tsls−βU can be written as the sum of the sampling variance of β̂tsls−βC and

the variance of the conditional estimand, βC − βU.

A further problem complicating inference is that, as has been documented in the many instruments

literature, the tsls estimator is biased (even when the treatment e�ects are homogeneous), with the

bias increasing with the number of instruments K . To see this, note that under regularity conditions,

we can approximate β̂tsls by taking expectation of the numerator and denominator conditional on all

instruments Z = (Z1, . . . , Zn)′ and all covariates W = (W1, . . . ,Wn)′:

β̂tsls =

∑n
i=1E[R̂tsls,iŸi | Z,W ]∑n
i=1E[R̂tsls,iẌi | Z,W ]

+ oP (1).
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To evaluate this expression, decompose the �rst-stage predictor into a signal and a noise component:

R̂tsls,i = R̈i+( 1
nSi

∑
j : Sj=Si

ηj− 1
nGi

∑
j : Gj=Gi

ηj). Using the identities

∑n
i=1E[XiR̈i | Z,W ] = r̈n,

βC =
∑n

i=1E[R̈iYi | Z,W ]/r̈n, and

∑n
i=1 R̂tsls,iŸi =

∑n
i=1 R̂tsls,iYi, it follows that

β̂tsls = βC +

∑L
`=1

∑M
m=0 σην,`m(1− n`m/n`)

r̈n +
∑L

`=1

∑M
m=0 σ

2
η,`m(1− n`m/n`)

+ oP (1), (6)

where σην,`m = E[ηi(ζi − ηiβC) | Si = s`m, Gi = `] measures the conditional covariance between

ηi and νi = ζi − ηiβC, and σ2
η,`m = E[η2

i | Si = s`m, Gi = `]. The second summand corresponds

to the tsls bias: it can be seen that in general, it is of the order

∑L
`=1

∑M
m=0(1 − n`m/n`)/r̈n =

LM/r̈n = K/r̈n. The bias can thus be substantial if the number of instruments K is large relative to

the concentration parameter r̈n. Standard asymptotics, which assume that K is �xed, fail to capture

this bias. In our asymptotics, we follow the many weak instruments literature and allow K to grow

with the sample size. These asymptotics capture the fact that, in order for the bias to be asymptotically

negligible relative to the standard deviation (which is of the order r̈
−1/2
n ), we need K2/r̈n to converge

to zero, which is not an attractive assumption in most of the empirical applications discussed above.

The tsls bias arises because the predictor R̂tsls,i for observation i is constructed using its own

observation, causing Yi and Xi to be correlated with the noise component of R̂tsls,i. To deal with this

problem we use a jackknifed version of the tsls estimator proposed by Ackerberg and Devereux (2009),

called the improved jackknife IV estimator: we remove the contribution of Ẍi from the �rst-stage pre-

dictor R̂tsls,i, which, as can be seen from equation (4), is given by DiẌi, with Di = (1/nSi − 1/nGi),

and rescale the weights on the remaining observations:

β̂ijive1 =

∑n
i=1 R̂ijive1,iŸi∑n
i=1 R̂ijive1,iẌi

, R̂ijive1,i = (1−Di)
−1 (R̂tsls,i −DiẌi

)
.

We also study a similar estimator that does not use the rescaling (1 − Di)
−1

(which we call ijive2).

Importantly, ijive1 di�ers from the original jackknife IV estimator (jive1) of Phillips and Hale (1977)

(see also Angrist et al., 1999), which implements the jackknife correction �rst and then partials out the

e�ect of the exogenous covariates (in contrast to ijive1, which partials out the e�ect of the exogenous

covariates �rst). This leads to the estimator that uses, as a �rst-stage predictor, the sample average

of Xj among observations j in group Gi and the same value of the instrument as observation i, with

observation i excluded:

β̂jive1 =

∑n
i=1 R̂jive1,iŸi∑n
i=1 R̂jive1,iẌi

, R̂jive1,i =
1

nSi − 1

∑
j : j 6=i,Sj=Si

Xj .

Finally, we also study a version of the jackknife IV estimator proposed in Kolesár (2013), called ujive,
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which is given by

β̂ujive =

∑n
i=1 R̂ujive,iYi∑n
i=1 R̂ujive,iXi

, R̂ujive,i =
1

nGi − 1

∑
j 6=i : Gj=Gi

Xj −
1

nGi − 1

∑
j 6=i : Gj=Gi

Xj .

The �rst-stage predictor R̂ujive,i is similar to the �rst-stage predictor of jive1, except it also partials out

the e�ect of the exogenous covariates by subtracting o� the sample average ofXj among observations

j in groupGi, with observation i excluded. Because it never uses the treatment status of observation i,

the error in this �rst-stage prediction will be uncorrelated with Yi andXi. Furthermore, it only partials

out the e�ect of covariates in the �rst stage, but not the second stage (by replacing Ÿi and Ẍi with Yi

and Xi). This ensures that the own-observation bias is not reintroduced in the second stage.

Using arguments similar to the derivation of (6), one can show that

β̂ijive1 = βC +

∑L
`=1

∑M
m=0 σην,`mb`m

r̈n +
∑L

`=1

∑M
m=0 σ

2
η,`mb`m

+ oP (1), b`m =
(1− n`m/n`)/n`
1− 1/n`m − 1/n`

,

β̂jive1 = βC −
∑L

`=1

∑M
m=0 σην,`mn`m/n`

r̈n −
∑L

`=1

∑M
m=0 σ

2
η,`mn`m/n`

+ oP (1),

and

β̂ujive = β̃C + oP (1),

where β̃C is the same estimand as βC, except that the weights ω̂`m are multiplied by n`/(n` − 1).

Therefore, if the conditional covariances σην,`m all have the same sign, the sign of the bias of jive1 is the

opposite of that of ijive1 and tsls. It can be seen that the jive1 bias is of the order

∑L
`=1

∑M
m=0

n`m
n`r̈n

=

L/r̈n. Therefore, for the bias to be asymptotically negligible relative to the standard deviation of β̂jive1,

we need L2/r̈n to converge to zero. This is guaranteed under the many instrument asymptotics of

Bekker (1994) and Chao et al. (2012), which treats L as �xed. Our theory permits L to increase with

the sample size, which allows us to better capture the behavior of jive1 in the empirical applications

discussed above, in which the number of covariates is tied to the number of instruments.

In comparison, the bias of ijive1 is of the order

∑L
`=1

∑M
m=0 b`m. If we assume that in large sam-

ples we have at least two observations for each possible value of s`m, then the denominator of b`m

is bounded, and the bias can be seen to be of the order r̈−1
n

∑L
`=1M/n`. Since n` =

∑M
m=0 n`m ≥

(M + 1) minm n`m, it follows that the bias is bounded by M/(M + 1) · r̈−1
n L/minm n`m. If the de-

sign is very unbalanced, so that the number of people assigned instrument s`m for some s and m can

be thought of as �xed, then we would need L2/r̈n to converge to zero to make sure that the bias is

asymptotically negligible, which is the same rate as for jive1. Under a balanced design, however, when

a comparable number of individuals are assigned each instrument value, so that 1/minm n`m is pro-

portional to (M + 1)L/n, and the bias is negligible if
K2L2

n2r̈n
converges to zero, which is a much weaker

10



requirement than that for jive1 or tsls.

The unconditional estimand is the limit of the conditional estimand, but we need to be careful about

de�ning this limit. It turns out that when the number of covariates and/or instruments is relatively

large, the estimands of ijive1, ijive2, and ujive can be asymptotically di�erent, and can di�er from the

estimand in Imbens and Angrist (1994).

Consider the above example with M = 1. In this case the expressions simplify and we can express

the conditional estimands as

βG
C

=
L∑
l=1

ω̂Gl∑L
l=1 ω̂

G
l

βl,

where βl is the late that corresponds to the binary instrument in group l.

ω̂ijive1

l ≡ nls
2
R̈|l = ω̂tsls

l = ω̂jive1

l ,

ω̂ijive2

l ≡ nls
2
R̈|l

(
1− κ̂R̈|l/nl

)
,

ω̂ujive

l ≡ nls
2
R̈|l ·

nl
nl − 1

,

where s2
R̈|l = 1

nl

∑
i : Gi=l

R̈2
il is a sample variance estimator for the individuals in group l, κ̂R̈|l ≡

1
nl

∑
i : Gi=l

R̈4
il

/
s4
R̈|l is the kurtosis estimator. We can also write s2

R̈|l = π2
l s

2
Z̈|l, where s2

Z̈|l ≡
1
nl

∑
i : Gi=l

Z̈2
il.

Correspondingly, the unconditional estimands turn out to be

βGU =
L∑
l=1

ωGl∑L
`=1 ω

G
`

βl,

with

ωijive1

l = (npl − 1)σ2
R̃|l = ωtsls

l = ωjive1

l ,

ωijive2

l =
(
npl − 1− κ

R̃|l

)
σ2
R̃|l,

ωujive

l = nplσ
2
R̃|l,

where κ
R̃|l is the population kurtosis of R̃ in group l.

We show that the di�erence between these weights in general cannot be ignored. When the number

of groups L &
√
n, the seemingly negligible di�erence between the weights can accumulate and lead

to asymptotically non-negligible di�erence in estimands.

When the treatment e�ects are heterogeneous, the three estimators correspond to di�erent esti-

mands, and the choice of the estimator a�ects not only the statistical properties such as bias, but also

the interpretation of the corresponding estimand. We discuss this in more general settings below. Here,

we note that the weights for all three estimators are non-negative. The appeal of the �rst estimand is

that it is a “natural” tsls estimand. The ijive1 estimator allows unbiased estimation of this estimand

11



in the presence of many instruments and covariates. On the other hand, if we formally write down the

estimand from Imbens and Angrist (1994), it coincides with the estimand of ujive:

βU,IA94 =
L∑
l=1

plσ
2
R̃|l∑L

`=1 plσ
2
R̃|l

βl.

As we will see, this property of ujive holds generally. Finally, the estimand of ijive2 does not seem to

have any particular appeal, hence we do not study it in detail below.

Inference

For inference on the conditional estimand βC, we show in Theorem 5.5 below that under the rate con-

ditions on the rate of growth of K and L above, and if (K + L)/n→ 0, one can consistently estimate

the asymptotic variance of the discussed estimators by

V̂cond =
J(Ẍ, Ẍ, σ̂2

ν)(∑n
i=1 R̂ijive1,iẌi

)2 +
J(Ÿ − Ẍβ̂ijive1, Ÿ − Ẍβ̂ijive1, σ̂

2
η) + 2J(Ÿ − Ẍβ̂ijive1, Ẍ, σ̂νη)(∑n

i=1 R̂ijive1,iẌi

)2
+

∑
i 6=j [(HZ̈)2

ij σ̂
2
η,j σ̂

2
ν,i + (HZ̈)ij(HZ̈)jiσ̂νη,iσ̂νη,j ](∑n
i=1 R̂ijive1,iẌi

)2
where HZ̈ = Z̈(Z̈ ′Z̈)−1Z̈ ′ is the projection matrix of the instruments with the covariates partialled

out,

J(A,B,C) =
∑
i 6=j 6=k

AiBjCk(HZ̈)ik(HZ̈)jk,

and σ̂2
ν , σ̂2

η , and σ̂νη are estimators of E[(ζi − ηiβC)2 | Zi,Wi], E[(ζi − ηiβC)2 | Zi,Wi], and E[(ζi −
ηiβC)2 | Zi,Wi] based on the reduced-form residuals. J(·, ·, ·) is a jackknife estimator of the variance

components: removing the terms for which i = j is necessary to ensure that the variance estimator

remains asymptotically unbiased even as the number of instruments and covariates increases with the

sample size. The variance estimator has three components: the �rst component estimates the “usual”

asymptotic variance formula that obtains under homogeneous treatment e�ects and standard asymp-

totics, the second term accounts for treatment e�ect heterogeneity, and the third term accounts for the

presence of many instruments. For unconditional inference, a consistent estimator of the asymptotic

variance has an additional component that re�ects the variability of the weights in the conditional

estimand when the instruments and covariates are resampled:

V̂uncond = V̂cond +
J(Ÿ − Ẍβ̂, Ÿ − Ẍβ̂, R̂2

tsls
)(∑n

i=1 R̂ijive1,iẌi

)2 .
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3 General model and estimators

3.1 Reduced form and notation

There is a sample of individuals i = 1, . . . , n. For each individual i, we observe a vector of exogenous

variables Wi with dimension L, and a vector of instruments Zi with dimension K . Associated with

every possible value z of the instrument is a scalar potential treatment Xi(z). We denote the observed

treatment byXi = Xi(Zi). Associated with every value x of the treatment is a scalar potential outcome

Yi(x). We denote the observed outcome by Yi = Yi(Xi). Thus, for each individual we observe the tuple

(Yi, Xi, Zi,Wi).

Let Ri = E[Xi | Zi,Wi] and RY,i = E[Yi | Zi,Wi] denote the reduced-form conditional expecta-

tions. We assume that these conditional expectations are linear in the instruments and covariates, so

that we can write the �rst-stage regression as

Xi = Ri + ηi, Ri = Z ′iπ +W ′iψ, E[ηi | Zi,Wi] = 0, (7)

and the reduced-form outcome regression as

Yi = RY,i + ζi, RY,i = Z ′iπY +W ′iψY , E[ζi | Zi,Wi] = 0. (8)

In order to ensure that controlling for the covariates linearly is as good as conditioning on them, we

also assume that the conditional expectation of Zi is linear in Wi,

E[Zi |Wi] = ΓWi. (9)

This assumption is not necessarily restrictive since the setup allows forZi to be constructed by interact-

ing an original instrument with the covariates. It also holds trivially in models in which the covariates

are discrete and saturated, so that Wi consists of dummy variables, as in Section 2. If the instrument is

randomly assigned, Wi only needs to include the constant.

Let Y,X,R, andRY denote the vectors with ith element equal to Yi, Xi, Ri, andRY,i, respectively,

and let Z and W denote matrices with the ith row given by Z ′i and W ′i , respectively. We denote the

right-hand side variables collectively by Qi ≡ (Z ′i,W
′
i )
′
, and let Q denote the corresponding matrix.

For a pair of random variablesAi, Bi that are mean zero conditional onQ, we use the notation σAB,i =

E[AiBi | Q] to denote their conditional covariance, and σ2
A,i = E[A2

i | Q] to denote the conditional

variance. For any random vectors Ai, Bi, let ΣAB ≡ E [AiB
′
i] and Σ̂AB ≡ n−1

∑n
i=1AiB

′
i. Let

λmin(M) and λmax(M) denote the smallest and largest eigenvalues of a matrix M .

Since we will allow for triangular array asymptotics in which the distribution of the random vari-

ables may change with the sample size, the random variables as well as the regression coe�cients

π, ψ, πY , ψY , and Γ are all indexed by n. To prevent notational clutter, we keep this dependence im-

plicit.
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For any matrix A, let HA = A(A′A)−1A denote the projection (hat) matrix, and for any matrix

B, let B̈ = B − HWB denote the residuals after “partialling out” the e�ect of the covariates W . We

denote the population analog by B̃i = Bi − E[Bi | Wi]. Thus, for instance R̈i = Z̈ ′iπ, and R̃i = Z̃ ′iπ,

where Z̈i = Zi − Z ′W (W ′W )−1Wi, and Z̃i = Zi − ΓWi.

3.2 Estimators and estimands

The two-stage least squares estimator can be written as

β̂tsls =
Ÿ ′R̂tsls

Ẍ ′R̂tsls

, R̂tsls = HZ̈Ẍ.

Here R̂tsls is the �rst-stage predictor of Ẍ based on a linear regression of Ẍ on Z̈ , and can be thought

of as an estimator of R̈ = Z̈π. As explained in Section 2, this estimator does not perform well when

the strength of the instruments, as measured by a version of the concentration parameter

r̈n =

n∑
i=1

R̈2
i =

n∑
i=1

(Z̈ ′iπ)2,

relative to their numberK is small. The second estimator that we consider is the jive1 estimator studied

in Phillips and Hale (1977), Angrist et al. (1999), and Blomquist and Dahlberg (1999), given by

β̂jive1 =
Ÿ ′R̂jive1

Ẍ ′R̂jive1

, R̂jive1,i =
(HQX)i − (HQ)iiXi

1− (HQ)ii
.

As we argued in Section 2, and as we will show formally below, when the number of covariates L is

large, the jive1 estimator does not perform well. The related estimator jive2, proposed by Angrist et al.

(1999), can be shown to behave similarly. The third estimator that we study is the ijive1 estimator

proposed by Ackerberg and Devereux (2009) that partials out the e�ect of the covariates �rst before

implementing the jackknife correction,

β̂ijive1 =
Ÿ ′R̂ijive1

Ẍ ′R̂ijive1

, R̂ijive1,i =
(HZ̈Ẍ)i − (HZ̈)iiẌi

1− (HZ̈)ii
.

As we will show below, this way of implementing the jackknife correction yields better performance

in settings with many covariates. Fourth, we study the related estimator that does not rescale the �rst

stage predictor after removing the contribution of the own observation. We refer to this estimator as

ijive2, and it is de�ned as

β̂ijive2 =
Ÿ ′R̂ijive2

Ẍ ′R̂ijive2

, R̂ijive2,i = (HZ̈Ẍ)i − (HZ̈)iiẌi.
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Finally, we study a version of the jackknife IV estimator proposed in Kolesár (2013), which only partials

out the e�ect of the covariates when constructing the �rst-stage predictor, and does not partial out their

e�ect on the treatment X or outcome Y ,

β̂ujive =
Y ′R̂ujive

X ′R̂ujive

, R̂ujive,i =
(HQX)i − (HQ)iiXi

1− (HQ)ii
− (HWX)i − (HW )iiXi

1− (HW )ii
.

Let

βU,IA94 =
E
[
R̃Y iR̃i

]
E
[
R̃2
i

]
denote the probability limit of β̂tsls under standard asymptotics, as in Imbens and Angrist (1994). We

show that the unconditional estimands of the estimators we consider are given by

βU,tsls = βU,jive1 = βU,ijive1 =
E
[
R̃Y iR̃i

(
1− 1

nW
′
iΣ
−1
WWWi

)]
E
[
R̃2
i

(
1− 1

nW
′
iΣ
−1
WWWi

)] , (10)

βU,ujive = βU,IA94. (11)

We de�ne the conditional estimand of an estimator β̂ as the quantity that would obtain if the

reduced-form errors ηi and ζi were zero for all i. For tsls, jive1, and ijive1, this leads to the same

estimand, given by

βC,tsls = βC,jive1 = βC,ijive1 =
1
n

∑n
i=1 π

′
Y Z̈iZ̈

′
iπ

1
n

∑n
i=1 π

′Z̈iZ̈ ′iπ
=

1
n

∑n
i=1 R̈Y iR̈i

1
n

∑n
i=1 R̈

2
i

,

so that, relative to βU,IA94, the population expectation is replaced by a sample average, and the popu-

lation errors Z̃i are replaced by sample residuals Z̈i. For ijive2, the conditional estimand is di�erent,

due to the lack of rescaling:

βC,ijive2 =
1
n

∑n
i=1 π

′
Y Z̈i(1− (HZ̈)ii)Z̈

′
iπ

1
n

∑n
i=1 π

′Z̈i(1− (HZ̈)ii)Z̈ ′iπ
.

Finally, for ujive, the estimand is given by

βC,ujive =
1
n

∑n
i=1 π

′
Y Z̈i(1− (HW )ii)

−1Z̈ ′iπ
1
n

∑n
i=1 π

′Z̈i(1− (HW )ii)−1Z̈ ′iπ
.

The conditional estimand is implicitly indexed by n. Similarly, under the triangular array asymp-

totics that we consider in this paper, the unconditional estimand also depends on n.

Our aim is to provide valid standard errors for the estimators considered. Making the dependence

on n explicit and letting Pn denote the probability measure at sample size n, for an estimator β̂n with

conditional and unconditional estimands βC,n and βU,n, we provide standard errors ŝeC,n and ŝeU,n,
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such that, under suitable restrictions on Pn, for a given con�dence level 1− α,

lim
n
Pn(|β̂n − βU,n| ≤ z1−α/2ŝeU,n) = 1− α,

and

lim
n
Pn(|β̂n − βC,n| ≤ z1−α/2ŝeC,n) = 1− α,

where zβ denotes the β quantile of a standard normal distribution. Before presenting our asymptotic

theory, we �rst discuss causal interpretation of the estimands in the next section.

4 Causal interpretation of estimands

4.1 Conditional estimand

For clarity of exposition, in this section only, we assume that the treatment Xi is binary, and that the

instruments Zi are discrete. The results can be extended to multivalued and continuous treatments by

applying the results in Angrist and Imbens (1995) and Angrist et al. (2000), and to continuous instru-

ments by embedding the analysis in the marginal treatment e�ects framework of Heckman and Vytlacil

(1999, 2005).

We split the covariates into two groups,Wi = (Vi, Ti), withTi possibly absent andVi corresponding

to a vector of LV group dummies, Vig = I {Gi = g}, g = 1, . . . , LV , and

∑LV
g=1 Vig = 1. If LV =

1, then the group dummies are absent, and Vi corresponds to the intercept. To further simplify the

analysis, we assume that the support of the distribution of Zi conditional on Wi depends only on Gi.

Let Zg = {zg0 , . . . , z
g
Jg
} denote the support of Zi conditional on Gi = g. We assume without loss of

generality that the support is ordered so that (zgk−z
g
j )′π ≥ 0 whenever k ≥ j. Here Ti are unrestricted

controls that enter the model linearly, such as demographic controls. The setup covers cases discussed

in Section 2, in which the support of the instrument, such as a judge assignment or an indicator for

being born in a particular state in a particular quarter, depends on the group Vi that an individual i

belongs to, a neighborhood or a state indicator.

We assume that the instruments are valid in the sense that they are independent of the potential

outcomes and potential treatments conditional on the covariates. We also assume that the monotonicity

assumption of Imbens and Angrist (1994) holds:

Assumption 1 (late model).

(i) (Independence) {Yi(x), Xi(z)}x∈{0,1},z∈ZGi ⊥⊥ Zi | Gi, Ti;

(ii) (Monotonicity) For all g and all z, z′ ∈ Zg , either P (Xi(z) ≥ Xi(z
′) | Ti, Gi = g) = 1 a.s., or

P (Xi(z) ≥ Xi(z
′) | Ti, Gi = g) = 0 a.s.

For k > j, de�ne

α(zgk, z
g
j ) =

(zgk − z
g
j )′πY

(zgk − z
g
j )′π

,
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with the convention that α(zgk, z
g
j ) = 0 if (zgk − z

g
j )′π = 0. For any zgj , z

g
k ∈ Zg with k > j, it follows

from Assumption 1 and the results in Imbens and Angrist (1994) that α(zgk, z
g
j ) corresponds to a local

average treatment e�ect,

E[Yi(1)− Yi(0) | Xi(z
g
j ) > Xi(z

g
k), Gi = g, Ti] = α(zgk, z

g
j ).

Due to the linearity assumption on the reduced form given by Equation (9), the covariates do not a�ect

the lates directly, only through the support Zg , which determines for which pairs of instruments z

and z′ the quantity α(z, z′) corresponds to a late.

Lemma 4.1. Consider the reduced form given in equations (7)–(9), and suppose that Assumption 1 holds.

Then

(i)

βC,tsls = βC,jive1 = βC,ijive1 =

LV∑
g=1

Jg∑
j=1

ω̂gjα(zgj , z
g
j−1)∑LV

m=1

∑Jg
k=1 ω̂mk

,

where

ω̂gj = π′(zgj − z
g
j−1)

1

n

n∑
i=1

I {Gi = g} I
{
Zi ≥ zgj

}
R̈i. (12)

For ijive2, the same conclusion holds with R̈i in the de�nition of ω̂gj in the equation (12) replaced

by (1− (HZ̈)ii)R̈i + e′iHW diag(HZ̈)R̈.

(ii) If the only covariates are group dummies, then R̈i = Ri−n−1
Gi

∑n
j=1 I {Gj = Gi}Rj , where nGi =∑n

j=1 I {Gj = Gi}, and the weights ω̂gj in equation (12) are positive. Furthermore, in this case the

conclusion in Part (i) also holds for ujive, with the weights ω̂gj replaced by
nGi
nGi−1 ω̂gj .

The weights for di�erent lates by the conditional estimand are sample analogs of the unconditional

weights given below. Unfortunately, we have been unable to give a general condition on the covariates

Ti that guarantee positive weights.

4.2 Unconditional Estimand

The estimand given in Imbens and Angrist (1994) and the tsls estimand have a similar structure of a

weighted average of lates, but the weights can di�er in the presence of many covariates:

βU,tsls =
E
[
R̃Y iR̃i

(
1− 1

nW
′
iΣ
−1
WWWi

)]
E
[
R̃2
i

(
1− 1

nW
′
iΣ
−1
WWWi

)] , βU,IA94 =
E
[
R̃Y iR̃i

]
E
[
R̃2
i

] .

Denote σ2
R̃

(w) ≡ E
[
R̃2
i |Wi = w

]
, and for all w with σ2

R̃
(w) > 0 let

βW (w) ≡
E
[
R̃Y iR̃i|Wi = w

]
E
[
R̃2
i |Wi = w

] ,
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denote the late(or the weighted average of lates) conditional on covariates, which is interpreted as

in Imbens and Angrist (1994). Set βW (w) = 0 for w with σ2
R̃

(w) = 0. Then E
[
R̃Y iR̃i|Wi = w

]
=

βW (w)σ2
R̃

(w), and we can write

βU,IA94 =

∫
βW (w)

σ2
R̃

(w)∫
σ2
R̃

(w) dFW (w)
dFW (w) .

The estimator and the estimand put more weight on the w that have higher variance of the instrument

σ2
R̃

(w) and higher density (probability mass function) of W at w. The tsls estimand can be written as

βU,tsls =

∫
βW (w)

υ2 (w)∫
υ2 (w) dFW (w)

, where υ2 (w) ≡ σ2
R̃

(w)
(

1− 1

n
w′Σ−1

WWw
)
.

When the covariates have bounded support, λmax (ΣWW ) /λmin (ΣWW ) ≤ C (balanced design),

and L = o (n), the weights of the tsls (ijive1) estimand are non-negative, because supw∈Support(W )

w′Σ−1
WWw = o (n).

The term
1
nW

′
iΣ
−1
WWWi in the unconditional estimand of tsls appears because, instead of using

the population variance σ2
R̃

(w) of R̃i as the weight, the tsls estimator uses the variance of the sample

projection residual R̈i, which is approximated by υ2 (w).

5 Large sample theory

The weakest condition on the strength of identi�cation and the number of instruments and covariates

we consider is

Assumption 2. The error terms (νi, ηi) are independent across i, conditionally on Q, and

(i) (K + L)/n < C for some C < 1.

(ii) As n→∞, r̈n →∞ and

∑n
i=1 R̈

2
Y,i/r̈n is bounded a.s.

(iii) K/r̈2
n
a.s.→ 0.

Part (i) rules out the case in which the number of instruments and covariates is larger than the

sample size. Part (ii) prevents Staiger and Stock (1997)-type asymptotics by requiring r̈n to diverge to∞
(we will show below that r̈n determines the rate of convergence). Assuming that elements of En[R̈2

Y,i]

are of the same order essentially requires that the lates are bounded, which holds automatically if the

treatment e�ects are constant. This condition can be replaced by the assumption that

∑n
i=1 R̈

2
∆,i/r̈n is

bounded a.s., where R̈∆ = R̈Y − R̈βC. However, since βC depends on the estimator, this assumption

is somewhat awkward. Part (iii) of the assumption is needed in order to ensure that the conditional

variance of each estimator vanishes with the sample size.

18



To control the asymptotic bias of the estimators, and to construct standard errors that consistently

estimate the asymptotic standard deviation of the estimators, we will need to further restrict the rate

conditions on K and L, as explained further below.

Assumption 3.

(i) E[ηi | Q] = 0 and E[ζi | Q] = 0, E[ν2
i + η2

i | Q] is bounded, and |corr(ζi, ηi | Q)| is bounded

away from one. Furthermore, σ2
ζ,i is bounded away from zero.

(ii) E[ν4
i + η4

i | Q] is bounded.

Part (i) will be needed for consistency, and to make sure that the asymptotic covariance matrix is

not degenerate. Part (ii) is needed for asymptotic normality, and also to derive the probability limits of

inconsistent estimators.

The following assumption is used to establish the unconditional asymptotic results. Let r̃n =

nE[R̃2
i ] denote the population analog of r̈n.

Assumption 4. The observed data (Yi, Xi, Zi,Wi) is i.i.d., and

(i) (K + L) log(K + L)/n→ 0.

(ii) r̃n →∞ and E
[
R̃

2(1+δ)
Y,i + R̃

2(1+δ)
i

]
/E
[
R̃2
i

]1+δ
is bounded.

(iii) K/r̃2
n → 0.

(iv) λmax(E[QiQ
′
i])/λmin(E[QiQ

′
i]) is bounded.

(v) (Simple Su�cient Condition) ‖Qi‖2/E[‖Qi‖2] is bounded.

Parts (i)–(iii) are population analogs of Assumption 2(i)-(iii). Part (iv) is a balanced design assump-

tion. Part (v) is used for the analysis of large-dimensional random matrices in the de�nitions of the

estimators. It in particular allows for the covariates and/or instruments to be spline functions of some

underlying low-dimensional variables. This condition can be relaxed. Assumption 4 in particular en-

sures that the conditional assumptions made above and below are satis�ed w.p.a.1 unconditionally.

5.1 Consistency

To state the consistency results for the conditional estimand, note that each estimator that we consider

can be written as β̂G =
∑

i,j YiGijXj/
∑

i,j XiGijXj for some matrix G. In particular,

Gtsls = HZ̈ , (13a)

Gijive1 = (I −HW )(I − diag(HZ̈))−1(HZ̈ − diag(HZ̈))(I −HW ), (13b)

Gijive2 = HZ̈ − (I −HW ) diag(HZ̈)(I −HW ), (13c)

Gjive1 = (I −HW )(I − diag(HQ))−1(HQ − diag(HQ)), (13d)

Gujive = (I − diag(HQ))−1(HQ − diag(HQ))− (I − diag(HW ))−1(HW − diag(HW )). (13e)

19



Under Assumptions 2 and 3, appropriately scaled sums in the numerator and denominator of β̂G, will

converge to their conditional expectations, so that β̂G − E[Y ′GX|Q]
E[X′GX|Q] = oP (1). We can write this as

β̂G − βC,G − bias(β̂G)
p→ 0, (14)

where

bias(β̂G) =

∑
iGiiσν,η,i∑

iRi(GR)i +
∑

iGiiσ
2
η,i

(15)

is the conditional asymptotic bias of the estimator. Here νi = ζi − ηiβC,G, and βC,G = R′YGR/R
′GR

is the conditional estimand. The diagonal elements Gii of the matrix G exactly capture the bias that

arises because the �rst-stage predictor of the treatment for individual i puts weight Gii on the individ-

ual’s observed treatment, accounting for the e�ect of partialling out the exogenous covariates. For the

estimators we consider, En[Ri(GR)i] = r̈n/n, so that bias(β̂G) = O(
∑

i|Gii|/r̈n). We will therefore

need to control the diagonal elements of Gii to ensure that there is no bias. Since for ujive Gii = 0, its

bias is zero.

Theorem 5.1. Suppose Assumption 2 and Assumption 3 (i) hold.

1. If K/r̈n → 0, then β̂tsls = βC,tsls + oP (1), where βC,tsls =
R̈′
Y R̈

R̈′R̈
. If K/r̈n is bounded and

Assumption 3 (ii) holds, then β̂tsls = βC,tsls + bias(β̂tsls) + oP (1).

2. Suppose that for some C < 1, maxi(HQ)ii ≤ C . If L/r̈n → 0, then β̂jive1 = βC,tsls + oP (1).

If instead L/r̈n is bounded, Assumption 3 (ii) holds, and bias(β̂jive1) is bounded, then β̂jive1 =

βC,tsls + bias(β̂jive1) + oP (1).

3. Suppose that for some C < 1, maxi(HZ̈)ii ≤ C . If Lmaxi(HZ̈)ii/r̈n → 0, then β̂ijive1 = βC,tsls +

oP (1). If insteadLmaxi(HZ̈)ii/r̈n is bounded, Assumption 3 (ii) holds, and bias(β̂ijive1) is bounded,

then β̂ijive1 = βC,tsls + bias(β̂ijive1) + oP (1).

4. Suppose that for someC < 1, maxi(HZ̈)ii ≤ C . IfLmaxi(HZ̈)ii/r̈n → 0, then β̂ijive2 = βC,ijive2+

oP (1), where βC,ijive2 =
R̈′(I−DZ̈)R̈Y

R̈′(I−DZ̈)R̈
. If instead Lmaxi(HZ̈)ii/r̈n is bounded, Assumption 3 (ii)

holds, and bias(β̂ijive2) is bounded, then β̂ijive2 = βC,ijive2 + bias(β̂ijive2) + oP (1).

5. Suppose that for some C < 1, maxi(HZ̈)ii ≤ C , that maxi(HW )ii → 0 a.s., maxi(|Ri|+ |RY,i|)
is bounded a.s., and that L/r̈n is bounded. Then β̂ujive = βC,ujive + oP (1).

The rate conditions given in the theorem control the bias of each estimator. For the jackknife

estimators, Gii may be negative, so that the denominator, scaled by n, in equation (15) may converge

to zero even as R′GR → ∞, so that the bias would grow unbounded. In order to prevent this, the

theorem assumes directly that the bias is bounded. In general, the proof of the theorem shows that

the bias of tsls is of the order K/r̈n, that of jive1 is of the order L/r̈n, while the bias of ijive1 and

ijive2 is of the order Lmaxi(HZ̈)ii/r̈n. The term maxi(HZ̈)ii measures the balance of the design: if
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the design is balanced, so that maxi(HZ̈)ii is proportional to K/n, then the bias of ijive1 and ijive2

remains negligible under a much weaker condition on the rate of growth of L as that of jive1. For the

asymptotic normality results and inference, we will therefore concentrate on tsls, ijive1, and ujive for

brevity.

Theorem 5.2. Suppose Assumption 3 (i) and Assumption 4 hold. Then r̈n/r̃n
p→ 1, βC,G = βU,G + oP (1),

β̂ = βU,G + oP (1), and βU,G = βU,IA94 + oP (1), under the following conditions:

Estimator Conditions

tsls K/r̃n → 0

jive1 L/r̃n → 0

ijive1 LK/(r̃nn)→ 0

ujive L/r̃2
n → 0

The theorem establishes that the conditional estimand converges to the unconditional one, and that

the conditional regularity assumptions made by Theorem 5.1 hold with probability approaching one,

and hence the estimators are consistent unconditionally.

5.2 Asymptotic normality

For the asymptotic normality, we will need to ensure no single observation has too much in�uence on

the strength of identi�cation:

Assumption 5.

∑
i R̈

4
i /r̈

2
n
a.s.→ 0 and

∑
i R̈

4
Y,i/r̈

2
n
a.s.→ 0.

This assumption is equivalent to Assumption 5 in Chao et al. (2012). It is needed to verify the

Lindeberg condition in showing asymptotic normality of the estimators.

To state the asymptotic normality results, given a particular conditional or unconditional estimand

β, let R̈∆ = R̈Y − R̈β, and let νi = ζi − ηiβ. Under constant treatment e�ects, R̈∆ = 0, and νi can be

interpreted as the structural error.

Theorem 5.3. Suppose that Assumptions 2, 3 and 5 hold.

1. IfK2/r̈n → 0, then (VC
r̈n

)−1/2

(β̂tsls − βC,tsls)
d→ N (0, 1),

where

VC =
1

r̈n

∑
i

[R̈2
i σ

2
ν,i + σ2

η,iR̈∆,i(βC,tsls)
2 + 2σνη,iR̈iR̈∆,i].

2. Suppose further that Lmaxi(HZ̈)ii/
√
r̈n

a.s.→ 0, maxi(HZ̈)ii
a.s.→ 0, and thatK/r̈n is bounded, and

let

VMW =
1

r̈n

∑
i 6=j

[(HZ̈)2
ijσ

2
η,jσ

2
ν,i + (HZ̈)ij(HZ̈)jiσνη,iσνη,j ].
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Then (VC + VMW

r̈n

)−1/2

(β̂ijive1 − βC,tsls)
d→ N (0, 1).

If insteadK/r̈n →∞, then the above holds with HZ̈ in the de�nition of VMW replaced by Gijive1.

3. Suppose that (L + K)/r̈n is bounded, maxi(HQ)ii → 0, and maxi(|Ri| + |RY,i|) is bounded a.s.

Then (VC + VMW

r̈n

)−1/2

(β̂ujive − βC,ujive)
d→ N (0, 1).

Before discussing this result, it is useful to state the corresponding unconditional inference result.

Assumption 6.

(i) E
[
R̃4
Y i + R̃4

i

∣∣Wi

]1/2
/E
[
R̃2
i

]
≤ C a.s., and E

[
{(R̃2

Y i + R̃2
i )R̃

2
i }1+δ

]
/E
[
R̃2
i

]1+δ
≤ C for

some C > 0.

(ii) L4 log2 L = o (n3), and λψ,n = o (n3), where λψ,n ≡ E
[
(ψ′iψj)

4]
, ψi ≡ Σ

−1/2
WWWi.

Theorem 5.4. Suppose Assumptions 3, 4, and 6(i) hold. Then, under the additional restrictions listed

below, (ΩC + ΩE + ΩMW

r̃n

)−1/2

(β̂G − βU,G)
d→ N (0, 1),

where

ΩC =
1

E[R̃2
i ]
E[(R̃iνi + R̃∆,iηi)

2],

ΩE =
1

E[R̃2
i ]
E[R̃2

i R̃
2
∆,i],

ΩMW =
1

r̃n
tr
(
E[ν2

i Z̃iΣ
−1

Z̃Z̃
Z̃ ′i]E[η2

i Z̃iΣ
−1

Z̃Z̃
Z̃ ′i] + E[νiηiZ̃iΣ

−1

Z̃Z̃
Z̃ ′i]

2
)
.

These results hold under the following assumptions:

1. For β̂tsls, ifK/r̃n → 0 and Assumption 6(ii) holds, with βU,tsls de�ned in equation (10).

2. For β̂ijive1, if K/r̃n is bounded and Assumption 6(ii) holds, with βU,ijive1 = βU,tsls de�ned in equa-

tion (10).

3. For β̂ujive, if (K + L) /r̃n and |Ri|+ |RY i| are bounded, with βU,ujive de�ned in equation (11).

Let us �rst discuss the form of the asymptotic variance. The terms ΩC, ΩMW, and ΩE are population

analogs of VC, VMW, and VE. The term ΩMW corresponds to the contribution to the asymptotic variance

coming from many instruments. Under homoskedasticity, it simpli�es to K/r̃n · (σ2
ησ

2
ν + σ2

νη). It

has the same form whether or not there is treatment e�ect heterogeneity, except that νi cannot in

general be interpreted as the structural error. When the number of instruments grows slowly enough
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so thatK/r̈n → 0, this term is negligible relative to VC. This happens, in particular, under the standard

asymptotics that hold the distribution of the data �xed as n → ∞. For tsls the condition K/r̈n → 0

is needed for consistency, so that the many instrument term is always of smaller order. If K/r̈n →∞
then in general the many instruments term VMW dominates, the rate convergence is slower than 1/r̈

1/2
n ,

and the asymptotic variances of di�erent estimators may di�er. On the other hand, ifK/r̈n is bounded,

the asymptotic variance for ijive1 and ujive is the same.

The term ΩE accounts for the variability of the conditional estimand βC. As a part of the proof

of the theorem, we show that r̃
1/2
n (βC − βU)

d→ N (0,ΩE). Theorem 5.4 e�ectively shows that this

result also obtains under the many instrument asymptotics, and that, in addition, the term βC − βU is

asymptotically independent of the term β̂ − βC.

The term VC corresponds to the asymptotic variance of R̈iνi + R̈∆,iηi. The �rst term of VC,∑
i R̈

2
i σ

2
ν,i, accounts for the variance of R̈iνi, and corresponds to the standard asymptotic variance

for tsls: it is the only term present under the standard asymptotics and the assumption that the treat-

ment e�ects are constant. The term R̈∆,iηi corresponds to the uncertainty due to the treatment e�ects

being di�erent for di�erent individuals. Typically, this uncertainty increases the asymptotic variance,

i.e., typically VC ≥
∑

i R̈
2
i σ

2
ν,i. Let us make a few remarks about the regularity and rate conditions:

Remark 1. The conditions K2/r̈n → 0 for tsls and L2 maxi(HZ̈)ii/
√
r̈n

a.s.→ 0 for ijive1 estimators

in Theorem 5.3 ensure that the conditional bias of the estimator is negligible relative to its standard

deviation. If these conditions are relaxed to K2/r̈n and L2 maxi(HZ̈)ii/
√
r̈n being bounded, then it

follows from the proof of the theorem that the estimators will remain asymptotically normal, but one

needs to subtract from β̂ the conditional bias in addition to the conditional estimand, since the bias is

no longer asymptotically negligible (see also Lemma D.5 in the appendix). However, it is unclear how

to do inference in this case as it is unclear how one could properly center the con�dence intervals.

Remark 2. Note that the estimands of tsls and ijive1 di�er from βU,IA94, while βU,ujive = βU,IA94. The

di�erence between the estimands is potentially non-negligible when

√
r̃nE

[
R̃Y iR̃i

1
nW

′
iΣ
−1
WWWi

]
'

1
n2 r̃

3/2
n L 6→ 0. When the instruments are strong, the condition is L/

√
n 6→ 0.

Remark 3. As a part of the proof of Theorem 5.4 we show that (VC + VMW)/(ΩC + ΩMW)
p→ 1.

Remark 4. Assumption 6 (ii) is used to derive the unconditional distribution of ijive1 in Theorem 5.4.

We can view E
[
(ψ′iψj)

4]/E [‖ψi‖2]4 ' λψ,n /L4
as a measure of orthogonality of the independent

random vectors ψi and ψj . Random vectors in high-dimensional spaces tend to be nearly orthogonal,

and the rate at which E
[
(ψ′iψj)

4]
grows with L re�ects the dependence structure of the components

of the vector ψi. For example, λψ,n ' L2
when the components ψil are independent across l, E [ψil] =

0, and E
[
|ψil|4

]
≤ C . When Wi are (appropriately rescaled) draws from Multinomial(p1, . . . , pL),

satisfying the balance condition maxl≤L pl /minl≤L pl ≤ C <∞, we have λψ,n ' L3.

Remark 5. If ‖ψi‖ ≤ ζ0 (L) for a nonrandom function ζ0 (L), then E
[
(ψ′iψj)

4] . min{ζ0 (L)4 L,

ζ0 (L)2E[‖ψi‖4]}. An important case is Wi ≡ ϕL (Wi) for some low-dimensional observed variables

Wi, whose e�ect we are modelling nonparametrically, and ϕL (·) is a vector of some basis functions
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scaled to satisfy Assumption 4. For example, ζ0 (L) ≤ C
√
L for splines whenW has compact support,

and hence E
[
(ψ′iψj)

4] . L3
.

Remark 6. The condition maxi(HZ̈)ii
a.s.→ 0 in Theorem 5.3 is a balance condition on the design. It

requires that K/n → 0. It follows from the proof of the theorem that the condition may be replaced

by weaker regularity conditions that, in particular, allow K to grow as fast as n. In that case, one also

needs to replace R̈i by (GR)i and R̈∆,i by (G′R∆)i in the expression for VC, and replace HZ̈ by G

in the expression of VMW. A su�cient weaker regularity condition is that L is constant, and that the

treatment e�ects are homogeneous, in which case the result is similar to that for jive1 in Chao et al.

(2012). Since we require the balance condition maxi(HZ̈)ii
a.s.→ 0 in order to construct a consistent

standard error estimator, we impose it already in Theorem 5.3 as it allows us to state the results in a

more uni�ed way.

5.3 Inference

To de�ne the standard error estimator that we consider, let η̂ = X −HQX and ζ̂ = Y −HQY denote

residuals from the reduced-form regressions. We use plug-in estimators of σν , σνη , and σ2
η to estimate

the variance components VC, VE, and VMW:

σ̂2
ν,i = (ζ̂i − η̂iβ̂)2, σ̂νη,i = (ζ̂i − η̂iβ̂)η̂i, σ̂2

η,i = η̂2
i .

Rather than using a plug-in estimator for R̈i, and R̈∆,i in the expression for VC and VE, we use the

following jackknife estimators

V̂C =
1

r̂n,ijive1

(
J(Ẍ, Ẍ, σ̂2

ν) + J(Ÿ − Ẍβ̂, Ÿ − Ẍβ̂, σ̂2
η) + 2J(Ÿ − Ẍβ̂, Ẍ, σ̂νη)

)
,

and

V̂E =
1

r̂n,ijive1

J(Ÿ − Ẍβ̂, Ÿ − Ẍβ̂, R̂2
tsls

),

where r̂n,ijive1 =
∑

i ẌiR̂ijive1,i and

J(A,B,C) =
∑
i 6=j 6=k

AiBjCk(HZ̈)ik(HZ̈)jk.

The “jackkni�ng” in the de�nition of J removes the asymptotic bias of the estimators. Here r̂n,ijive1 is

an estimator of r̈n. For VMW , we use the estimator

V̂MW =
1

r̂n,ijive1

∑
i 6=j

[(HZ̈)2
ij σ̂

2
η,j σ̂

2
ν,i + (HZ̈)ij(HZ̈)jiσ̂νη,iσ̂νη,j ].
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The standard errors for the conditional and unconditional estimands are given by

ŝeC,n =

√
(V̂C + V̂MW)

/
r̂n,ijive1,

ŝeU,n =

√
(V̂C + V̂MW + V̂E)

/
r̂n,ijive1.

To show the consistency of ŝeC,n, we strengthen Assumption 5 to

Assumption 7. maxi|R̈i|+ maxi|R̈Y,i| are bounded a.s.

This assumption is similar to Assumption 6 in Chao et al. (2012).

Theorem 5.5. Suppose that Assumptions 2, 3 and 7 hold. Suppose further that maxi(HQ)ii
a.s.→ 0, and

that (K + L)/r̈n is bounded a.s. Then,

ŝe2
C,n = (VC + VMW)/r̈n + oP (1/r̈n).

The additional balance condition maxi(HQ)ii
a.s.→ 0 that we impose is essential in proving the

theorem. It implies that (K + L)/n → 0, and ensures that bias induced by estimating the variance of

the reduced-form errors is asymptotically negligible. Cattaneo et al. (2016) show that a similar balance

condition is needed for the Eicker-Huber-White standard errors to be consistent in linear regression.

When the treatment e�ects are homogeneous and when the number of covariates L is �xed, one can

estimate the terms σν and σνη at a faster rate, and this condition is not needed. Cattaneo et al. (2016)

also suggest an alternative estimator that does not require this condition. It is unclear however whether

one can adapt their estimator to the current setting since the variance expression contains products of

second moments of the reduced-form errors, rather than just second moments.

Relative to the asymptotic normality result, we need also to rule out the case in which K or L may

grow faster than the concentration parameter. This is su�cient to ensure that the error in estimating

the standard errors is negligible.

Assumption 8. |R̃i|+ |R̃Y,i| are bounded.

Theorem 5.6. Suppose the conditions of Theorem 5.4 and Assumption 8 hold . Then,

ŝe2
U,n = (ΩC + ΩMW + ΩE)/r̃n + oP (1/r̃n).

For unconditional inference, the balance condition maxi(HQ)ii → 0 holds in large samples under

the i.i.d. sampling and the rate conditions imposed by Assumption 6, and therefore does not need to be

made explicit.
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Appendices
The appendix is organized as follows. Appendix A contains general results and bounds for the es-

timators considered in the paper used throughout the rest of the appendix. Appendix B proves the

Lemma in Section 4. Appendices C and E prove the conditional and unconditional results in Section 5,

respectively. Appendices D and F contain auxiliary results used in Appendices C and E.

Below, w.p.a.1 stands for “with probability approaching 1 as n → ∞”. We write a ≺ b if there

exists a constant C such that a ≤ b. We write a �a.s. b or a ≺w.p.a.1 b if a ≺ b almost surely or w.p.a.1.

Let ‖a‖2 or simply ‖a‖ denote the Euclidean (`2) norm of a vector, and let ‖A‖F denote the Frobenius

norm of a matrix, and ‖A‖2 or ‖A‖λ the spectral norm.

Appendix A Properties of estimators considered

It will be useful to collect some properties of the estimators that we consider, which we will use through-

out the proof. The estimators we consider in this paper have the general form

β̂G =

∑
i,j YiGijXj∑
i,j XiGijXj

, (16)

with the matrix G for di�erent estimators given in equation (13). Observe that

Gtsls(RY , R) = Gjive1(RY , R) = Gijive1(RY , R) = (R̈Y , R̈),

Gijive2(RY , R) = (I −DZ̈ +HWDZ̈)(R̈Y , R̈),

Gujive(RY , R) = (I −DW )−1(R̈Y , R̈).

(17)

We now collect several useful bounds. First, we bound the norms ‖GR‖, ‖G′R‖, ‖GR∆‖, and

‖G′R∆‖. Using the triangle inequality, and the fact that for any projection matrix P and a vector a,

‖Pa‖2 ≤ ‖a‖2, and 0 ≤ Pii ≤ 1, we obtain the bounds

‖GtslsR‖2 = ‖Gjive1R‖2 = ‖Gijive1R‖2 ≤ r̈1/2
n ,

‖Gijive2R‖2 ≤ 2r̈1/2
n ,

‖GujiveR‖2 ≤ max
i

(1− (HW )ii)
−1r̈1/2

n ,

‖GtslsRY ‖2 = ‖Gjive1RY ‖2 = ‖Gijive1RY ‖2 ≤ ‖R̈Y ‖2,

‖Gijive2RY ‖2 ≤ 2‖R̈Y ‖2,

‖GujiveRY ‖2 ≤ max
i

(1− (HW )ii)
−1‖R̈Y ‖2.

(18)

Furthermore,

G′
tsls

(RY , R) = (R̈, R̈Y )
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Gijive2(RY , R) = (I −DZ̈ +HWDZ̈)(R̈Y , R̈)

G′
ijive1

(RY , R) = (R̈Y , R̈)− (I −HQ)DZ̈(I −DZ̈)−1(R̈Y , R̈),

G′
jive1

(RY , R) = (HQ −DQ)(I −DQ)−1(R̈Y , R̈)

G′
ujive

(RY , R) = (R̈Y , R̈) +
[
(I −HW )DW (I −DW )−1 − (I −HQ)DQ(I −DQ)−1

]
(RY , R).

By similar arguments as above,

‖G′
tsls

R‖2 ≤ r̈1/2
n , G′

tsls
RY 2 ≤ ‖RY ‖2,

‖G′
ijive2

R‖2 ≤ 2r̈1/2
n , G′

ijive2
RY 2

≤ 2‖RY ‖2,

‖G′
jive1

R‖2 ≤ 2 max
i

(1−HQ)−1
ii r̈

1/2
n , ‖G′

jive1
RY ‖2 ≤ 2 max

i
(1−HQ)−1

ii ‖R̈Y ‖2,

‖G′
ijive1

R‖2 ≤ 2 max
i

(1−HZ̈)−1
ii r̈

1/2
n ‖G′

ijive1
RY ‖2 ≤ 2 max

i
(1−HZ̈)−1

ii ‖R̈Y ‖2,

‖G′
ujive

R‖2 ≤ 2 max
i

(HQ)
1/2
ii

1− (HQ)ii
max
i
|Ri|(L+K)1/2 + r̈1/2

n

‖G′
ujive

RY ‖2 ≤ 2 max
i

(HQ)
1/2
ii

1− (HQ)ii
max
i
|RY,i|(L+K)1/2 + ‖R̈Y ‖2

(19)

where the last two lines follow since

‖G′
ujive

R‖2 ≤ ‖R̈−GujiveR‖2 + ‖R̈‖2

≤ max
i

(HW )
1/2
ii

1− (HW )ii
‖D1/2

W R‖2 + max
i

(HQ)
1/2
ii

1− (HQ)ii
‖D1/2

Q R‖2 + ‖R̈‖2

≤ max
i

(HW )
1/2
ii

1− (HW )ii
max
i
|Ri|L1/2 + max

i

(HQ)
1/2
ii

1− (HQ)ii
max
i
|Ri|(L+K)1/2 + ‖R̈‖2

≤ 2 max
i

(HQ)
1/2
ii

1− (HQ)ii
max
i
|Ri|(L+K)1/2 + ‖R̈‖2.

Similar argument applies to the bound for ‖G′
ujive

RY ‖2.

Second, we bound the norm ‖G‖F . Using the triangle inequality, and the fact that for any projection

matrix P and matrix A, ‖PA‖F ≤ ‖A‖F ,

‖Gtsls‖F = K1/2

‖Gijive2‖F ≤ ‖HZ̈ −DZ̈‖F ≤ K
1/2

‖Gijive1‖F ≤ ‖(I −DZ̈)−1(HZ̈ −DZ̈)‖F ≤ max
i

(1− (HZ̈)ii)
−1K1/2

‖Gjive1‖F ≤ ‖(I −DQ)−1(HQ −DQ)‖F ≤ max
i

(1− (HQ)ii)
−1(K + L)1/2

‖Gujive‖F ≤ 2 max
i

(1− (HQ)ii)
−1(K + L)1/2

(20)

Third, we bound the sum

∑
i|Gii|. It follows by direct calculation that the diagonal elements Gii for
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di�erent estimators are given by

Gtsls,ii = (HZ̈)ii

Gijive2,ii = 2(HW )ii(HZ̈)ii −
n∑
j=1

(HW )2
ij(HZ̈)jj ,

Gijive1,ii = 2
(HW )ii(HZ̈)ii

1− (HZ̈)ii
−

n∑
j=1

(HW )2
ij(HZ̈)jj

1− (HZ̈)jj
− (HW (I −DZ̈)−1DZ̈HZ̈)ii,

(Gjive1)ii =
(HW )ii(HQ)ii

1− (HQ)ii
− (HW (I −DQ)−1HQ)ii

(Gujive)ii = 0.

We now bound the sum

∑
i|Gii|. Observe that by the Cauchy-Schwarz inequality, P is a projection

matrix, and A a square matrix,

∑
i|(PA)i| ≤ ‖P‖F ‖PA‖F . Using this observation along with the

triangle inequality, we obtain the bounds∑
i

|Gtsls,ii| = K,∑
i

|Gijive2,ii| ≤ 3
∑
i

(HW )ii(HZ̈)ii ≤ Lmax
i

(HZ̈)ii,

∑
i

|Gijive1,ii| ≤ 3
∑
i

(HW )ii
(HZ̈)ii

1− (HZ̈)ii
+ ‖HW ‖F ‖HW (I −DZ̈)−1DZ̈‖F

≤ 4Lmax
i

(HZ̈)ii

1− (HZ̈)ii
,∑

i

|(Gjive1)ii| ≤ 2Lmax
i

(1− (HW )ii)
−1,∑

i

|(Gujive)ii| = 0.

(21)

Finally, we bound the norm ‖G′G‖F . To this end, let M = (I − HW ). By triangle inequality and
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arguments as above,

‖G′
tsls

Gtsls‖F = ‖HZ̈‖F = K1/2,

‖G′
ijive2

Gijive2‖F = ‖HZ̈ −HZ̈DZ̈M −MDZ̈HZ̈ +MDZ̈MDZ̈M‖F
≤ 3‖HZ̈‖F + ‖MDZ̈‖F ≤ 4K1/2,

‖G′
ijive1

Gijive1‖F = ‖M(HZ̈ −DZ̈)(I −DZ̈)−1M(I −DZ̈)−1(HZ̈ −DZ̈)M‖F
≤ ‖(HZ̈ − 2DZ̈HZ̈ +D2

Z̈
)(I −DZ̈)−1M(I −DZ̈)−1‖F

≤ max
i

(1− (DZ̈)ii)
−2‖(HZ̈ − 2DZ̈HZ̈ +D2

Z̈
)‖F

≤ 4K1/2(max
i

(1− (HZ̈)ii)
−1)2,

‖G′
jive1

Gjive1‖F = ‖(HQ − 2DQHQ +D2
Q)(I −DQ)−1M(I −DQ)−1‖F

≤ max
i

(1− (HQ)ii)
−2‖(HQ − 2DQHQ +D2

Q)‖F

≤ 4
√
K + L(max

i
(1− (HQ)ii)

−1)2,

‖G′
ujive

Gujive‖F ≤ max
i

(1− (HQ)ii)
−2‖HQ − 2DQHQ +D2

Q‖F

max
i

(1− (HW )ii)
−2‖HW − 2DWHW +D2

W ‖F

max
i

(1− (HQ)ii)
−2‖HW −HQDW −DQHW +DWDQ‖F

≤ 12
√
K + Lmax

i
(1− (HQ)ii)

−2.

(22)

Appendix B Proof of Lemma 4.1

We prove the results for a general class of estimators of the form given in Equation (16). We assume

that (G(RY , R))i = (G(RY , R))j whenever zi = zj and wi = wj , which holds for all estimators

considered in the statement of the Lemma 4.1. Let Ai = (GR)i. Then we can write Ai = A(Zi, Vi, Ti).

Also, let ∆m(j) = (zmj − zmj−1)′π.

Using the de�nition of α(·, ·) and recursion, we have

π′Y z
m
k = π′Y z

m
0 +

k∑
j=1

α(zmj , z
m
j−1)∆m(j).
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Therefore, we can write the numerator of the conditional estimand, R′YGR, as

∑
i

RY,iAi = ψ′YW
′GR+

∑
g,t

Jg∑
k=0

n∑
i=1

I {Gi = g, Ti = t, Zi = zgk}π
′
Y z

g
kA(zgk, g, t)

= ψ′YW
′GR+

∑
g

π′Y z
g
0

∑
i

I {Gi = g}Ai

+

LV∑
g=1

Jg∑
k=1

k∑
j=1

α(zgj , z
g
j−1)∆g(j)

n∑
i=1

I {Gi = g, Zi = zgk}Ai

Changing the order of summation and rearranging then yields

∑
i

RY,iAi = ψ′YW
′GR+

LV∑
g=1

π′Y z
g
0

∑
i

I {Gi = g}Ai

+

LV∑
g=1

Jg∑
j=1

α(zgj , z
g
j−1)∆g(j)

Jg∑
k=j

n∑
i=1

I {Gi = g, Zi = zgk}Ai

= ψ′YW
′GR+

LV∑
g=1

π′Y z
g
0

∑
i

I {Gi = g}Ai

+

LV∑
g=1

Jg∑
j=1

α(zgj , z
g
j−1)∆g(j)

∑
i

I
{
Gi = g, Zi ≥ zgj

}
Ai.

By similar arguments, we can write the denominator as

∑
i

RiAi = ψ′W ′GR+

LV∑
g=1

π′zg0
∑
i

I {Gi = g}Ai +

LV∑
g=1

Jg∑
j=1

∆g(j)
∑
i

I
{
Gi = g, Zi ≥ zgj

}
Ai.

Note thatW ′GR = 0 implies

∑n
i=1 I {Gi = m}Ai = 0 for allm. This condition holds for all estimators

considered in the statement of Lemma 4.1, except ujive. Under this condition, the conditional estimand

equals ∑LV
g=1

∑Jg
j=1 ∆g(j) 1

n

∑
i I
{
Gi = g, Zi ≥ zgj

}
Aiα(zgj , z

g
j−1)∑LV

g=1

∑Jg
j=1 ∆g(j) 1

n

∑
i I
{
Gi = g, Zi ≥ zgj

}
Ai

. (23)

Since by equation (17)Ai = R̈i for tsls, jive1, and ijive1, andAi = (1−(HZ̈)ii)R̈i+e
′
iHW diag(HZ̈)R̈

for ijive2, Part (i) follows. The �rst statement in Part (ii) is immediate. It therefore remains to show the

result for ujive, for which Ai = (1 − (HW )ii)
−1R̈i, which, if the only covariates are group dummies

can be written as Ai =
nGi
nGi−1(Ri − n−1

Gi

∑n
j=1 I {Gj = Gi}Rj). This implies W ′GujiveR = 0, which

in turn implies (23), which yields the result.
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Appendix C Proofs of conditional results

This section proves Theorem 5.1, Theorem 5.3, and Theorem 5.5. We prove a.s. convergence results

below, but if the relevant assumptions are only assumed to hold w.p.a.1, the results and proofs below

will hold w.p.a.1.

C.1 Proof of Theorem 5.1

To prove the result, we apply Lemma D.4 to each estimator. Condition (i) of Lemma D.4 holds for all

estimators by Assumption 3 (i). Next, it follows from equation (18) and Assumption 2 (ii) that for all

estimators ‖GR‖2 and ‖GRY ‖2 are of the order r̈
1/2
n . Similarly, it follows from equation (19), Assump-

tion 2 (ii), and assumptions of the Theorem that ‖G′R‖2 and ‖G′RY ‖2 are also of the order r̈
1/2
n , and

of the order

√
L+K + r̈

1/2
n for ujive, so that condition (ii) of Lemma D.4 holds for all estimators.

Furthermore, it follows from equation (20), Assumption 2 (iii), and assumptions of the Theorem that

‖G‖F /r̈n
a.s.→ 0 for all estimators, so that condition (iii) of Lemma D.4 holds also. Now, for estimators

other than ijive2 and ujive, R′GR = R̈′R̈, and R′YGR = R̈′Y R̈. Condition (iv) of Lemma D.4 there-

fore holds for these estimators by Assumption 2 (ii) and the Cauchy-Schwarz inequality. For ijive2,

R′Gijive2R = R̈′(I − DZ̈)R̈, and R′YGijive2R = R̈′Y (I − DZ̈)R̈, so that Assumption 2 (ii) holds by

similar arguments and the fact that (HZ̈)ii ≤ C < 1 by assumption. For ujive, it follows from (17) that

|R′YGujiveR− R̈′Y R̈| = |RYDW (I −DW )−1R̈| ≤ max
i
|RY,i|max

i

(HW )
1/2
ii

1− (HW )ii

∑
i

|(HW )
1/2
ii R̈i|

≤ max
i
|RY,i|max

i

(HW )
1/2
ii

1− (HW )ii
L1/2r̈1/2

n ,

which is of the order o(r̈n) almost surely by assumption of the theorem. By analogous argument,

|R′YGujiveR− R̈′Y R̈| ≤ max
i
|Ri|max

i

(HW )
1/2
ii

1− (HW )ii
L1/2r̈1/2

n . (24)

Hence, by the preceding argument, Assumption 2 (ii) holds for ujive as well. Finally, condition (v) of

Lemma D.4 holds by the bounds in Equation (21). If the estimator is inconsistent, we also need to make

sure that r̈n/(r̈n +
∑

iGiiσ
2
η,i) is bounded for each estimator. SinceGii,tsls ≥ 0, this holds trivially for

tsls. For other estimators, it follows by the assumption that the bias is bounded.

C.2 Proof of Theorem 5.3

To prove the result, we apply Lemma D.5 to each estimator. Condition (i) of Lemma D.5 holds for

each estimator by Assumption 3 (i)–(ii), Condition (ii) of Lemma D.5 follows since by equation (21) and

assumption of the theorem,

∑
i|Gii|/r̈

1/2
n

a.s.→ 0 for all estimators. We have ‖GtslsR‖22 = ‖Gjive1R‖22 =
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r̈n. Since Gijive2R = R̈− (I −HW )DZ̈R̈, we have, by the triangle inequality

‖Gijive2R‖2 ≥ ‖R̈‖ − ‖(I −HW )DZ̈R̈‖2 ≥ ‖R̈‖ − ‖DZ̈R̈‖2 ≥ (1−max
i

(HZ̈)ii)r̈
1/2
n .

For ujive,

‖GujiveR‖22 =
∑
i

(1−HW )−2
ii R̈

2
i ≥

∑
i

R̈2
i = r̈n.

Thus, condition (iii) of Lemma D.5 holds for all estimators. Next, note that for tsls and ijive1GR = R̈,

so that

∑
i(GR)4

i /r̈
2
n =

∑
i R̈

4
i /r̈

2
n
a.s.→ 0 by Assumption 5. For ijive2,

Gijive2R = (I − (I −HW )DZ̈)R̈.

Since for a projection matrixP , ‖Pa‖2 ≤ ‖a‖, we obtain the bound ‖Gijive2R−R̈‖2 ≤ maxi(HZ̈)iir̈
1/2
n .

Consequently, by Loève’s cr-inequality, and the `p-norm inequality ‖a‖4 ≤ ‖a‖2,

∑
i(Gijive2R)4

i /r̈
2
n ≤

8
∑

i R̈
4
i /r̈

2
n + 8‖Gijive2R − R̈‖42/r̈2

n
a.s.→ 0. For ujive, observe that

∑
i(GujiveR)4

i /r̈
2
n ≤ maxi(1 −

(HW )ii)
−4
∑

i R̈
4
i /r̈

2
n
a.s.→ 0 by Assumption 5 and assumption of the theorem. SinceGijive2 andGtsls are

symmetric, the same argument, together with Assumption 2 (ii), implies that

∑
i(G
′
tsls

R∆)4
i /r̈

2
n
a.s.→ 0,

and

∑
i(G
′
ijive2

R∆)4
i /r̈

2
n
a.s.→ 0. For ijive1,

G′
ijive1

R∆ = R̈∆ − (I −HW −HZ̈)DZ̈(I −DZ̈)−1R̈∆,

so that ‖G′
ijive1

R∆ − R̈∆‖2 ≤ maxi(HZ̈)ii/(1− (HZ̈)ii)‖R̈∆‖2. Thus, by the previous arguments, we

have

∑
i(G
′
ijive1

R∆)4
i /r̈

2
n ≤ 8

∑
i R̈

4
∆,i/r̈

2
n+8‖G′

ijive2
R∆−R̈∆‖42/r̈2

n
a.s.→ 0. For ujive, using arguments

as in (19),

‖G′
ujive

R‖4/r̈n ≤ ‖R̈‖4/r̈1/2
n + ‖G′

ujive
R− R̈‖4/r̈1/2

n ≤ oa.s.(1) + ‖G′
ujive

R− R̈‖2/r̈1/2
n

≤ oa.s.(1) + 2 max
i

(HQ)
1/2
ii

(1−HQ)ii
max
i
|Ri|(L+K)1/2/r̈1/2

n .

which converges to zero almost surely by the assumption of the theorem. Condition (iv) of Lemma D.5

therefore holds for all estimators. Finally, condition (v) of Lemma D.5 follows from equation (22) and

Assumption 2 (iii). Therefore, for all estimators, equation (31) holds. To complete the proof, it remains

to show that for ijive1 ijive2, and ujive, the variance expression ṼG/(R′GR)2
given in equation (32),

is asymptotically equivalent to

VC + VMW,G

r̈n
, VMW,G =

1

r̈n

∑
i 6=j

[G2
ijσ

2
η,jσ

2
ν,i +GijGjiσνη,iσνη,j ],

and that if K/r̈n is bounded, we can also replace VMW,G in the display above by VMW, in the sense that

(VC + VMW,G)/r̈n · (R′GR)2/ṼG
p→ 1, and, in the latter case, (VC + VMW)/r̈n · (R′GR)2/ṼG

p→ 1.

Since ṼG/r̈n is bounded away from zero by proof of Lemma D.5, this is equivalent to showing that:
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(R′GR)/r̈n
p→ 1; and ṼG/r̈n − (VC + VMW,G) = oP (1), or, if K/r̈n is bounded ṼG/r̈n − (VC +

VMW) = oP (1). The �rst condition holds trivially for ijive1. For ijive2, it follows from the fact that

|R′Gijive2R− r̈n|/r̈n = R̈′DZ̈R̈/r̈n ≤ maxi(HZ̈)ii
a.s.→ 0. For ujive, it follows from (24).

Since the terms σ2
ν,i, σ

2
η,i, and σνη,i are bounded, the second condition holds if we can show that for

ijive1, ijive2, and ujive, ‖R̈ −GR‖2/r̈1/2
n

p→ 0, ‖R̈∆ −G′R∆‖2/r̈1/2
n

p→ 0, and, if K/r̈n is bounded,∑
i 6=j((HZ̈)ij −Gij)2/r̈n = oP (1). The �rst two convergence results have been shown to hold earlier

in this proof, so it remains to verify that

∑
i 6=j((HZ̈)ij − Gij)2/r̈n = oP (1). Letting M = I − HW ,

for ijive1, the left-hand side can be bounded by

‖HZ̈ −Gijive1‖2F /r̈n = ‖M(I −DZ̈)−1DZ̈HZ̈ −M(I −DZ̈)−1DZ̈M‖
2/r̈n

≤ 4‖(I −DZ̈)−1DZ̈‖
2
F /r̈n ≤ 4 max

i

(HZ̈)ii

(1− (HZ̈)ii)2

K

r̈n
,

which converges to zero by assumption. For ijive2, the left-hand side is bounded by

‖G−HZ̈‖
2
F /r̈n = ‖(I −HW )DZ̈(I −HW )‖2F /r̈n ≤ ‖DZ̈‖

2
F /r̈n ≤ max

i
(HZ̈)ii

K

r̈n

a.s.→ 0.

For ujive,

‖HZ̈ −Gujive‖2F /r̈n = ‖(I −DQ)−1DQ(I −HQ) + (I −DW )−1DW (I −HW )‖2F /r̈n

≤ 2

r̈n
‖(I −DQ)−1DQ‖2F +

2

r̈n
‖(I −DW )−1DW ‖2F

≤ max
i

(HQ)ii
(1− (HQ)ii)2

(K + L)

r̈n
+ max

i

(HW )ii
(1− (HW )ii)2

L

r̈n

a.s.→ 0,

which completes the proof.

C.3 Proof of Theorem 5.5

Put M = I −HQ, and δ = β̂ − βC, and Ÿ∆ = Ÿ − Ẍβ. Then

σ̂2
ν,i = ((Mν)i + (Mη)iδ)

2, σ̂νη,i = ((Mν)i + (Mη)iδ)(Mη)i, σ̂2
η,i = (Mη)2

i ,

and Ÿ − Ẍβ̂ = Ÿ∆ + Ẍδ. Since J is linear in its arguments, it follows by plugging in these expressions

into the de�nition of V̂C that that variance estimator can be decomposed as we can therefore decompose

elements of the variance estimator as

V̂C = r̂−1
n

{
J(Ẍ, Ẍ, (Mν)� (Mν)) + J(Ÿ∆, Ÿ∆, (Mη)� (Mη)) + J(Ÿ∆, Ẍ, (Mν)� (Mη))

+ 3δ
(
δJ(Ẍ, Ẍ, (Mη)� (Mη)) + J(Ẍ, Ẍ, (Mν)� (Mη)) + J(Ÿ∆, Ẍ, (Mη)� (Mη))

)}
,

where � denotes element-wise (Hadamard) product.
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By Theorem 5.1 and Lemma D.10 below, applied to each term, since δ = oP (1),

V̂C = r̈nVC + oP (r̈n).

Similarly, letting S(a, b) = r̂−1
n

∑
i 6=j(HZ̈)2

ijajbi, we can write

V̂MW = S(σ̂2
η, σ̂

2
ν) + S(σ̂2

ηη, σ̂
2
ην)

= S((Mν)� (Mν), (Mη)� (Mη)) + S((Mν)� (Mη), (Mν)� (Mη))

+ 4δS((Mν)� (Mη), (Mη)� (Mη)) + 2δ2S((Mη)� (Mη), (Mη)� (Mη)).

By Lemma D.11 below, applied to each term,

V̂MW = r̈nVMW + oP (r̈n).

Appendix D Auxiliary results

D.1 Auxiliary results for quadratic forms

For the results in this subsection, let

Q = u′t+ s′v +
∑
i 6=j

Pijuivj ,

where, conditional on on some set of variables Zn, the matrix P ∈ Rn×n and vectors s, t are non-

random, and the elements (ui, vi) of vectors u, v are mean zero, and independent across i. Let EZn

denote the expectation conditional on Zn. We will prove a law of large numbers and a central limit

theorem for Q.

Lemma D.1. Suppose that conditional on Zn, the second moments of (ui, vi) are bounded a.s. Suppose

further that ‖t‖2 + ‖s‖2 + ‖P‖F
a.s.→ 0. Then Q = oP (1).

Proof. Since EZn [Q] = 0, its variance is given by

var(Q | Zn) =
∑
i

EZn [uiti + visi]
2 +

∑
i 6=j

(
P 2
ijEZn [u2

i v
2
j ] + PijPjiEZn [uivivjuj ]

)
.

Since the second moments are bounded, it follows that

var(Q | Zn) �a.s. ‖t‖22 + ‖s‖22 +
∑
i 6=j

P 2
ij ≤ ‖t‖22 + ‖s‖22 + ‖P‖2F .

Since the right-hand side converges to zero almost surely by assumption, the result follows by Markov

inequality and dominated convergence theorem.
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Lemma D.2. Suppose that, conditional on Zn, the fourth moments of (ui, vi) are bounded a.s. Suppose

further that:

1. var(Q | Zn)−1/2
is bounded a.s.

2.

∑n
i=1 t

4
i +

∑n
i=1 s

4
i
a.s.→ 0

3. ‖PLP ′L‖F + ‖P ′UPU‖F
a.s.→ 0, where PL is a lower-triangular matrix with elements PL,ij =

PijI {i > j} and PU is an upper-triangular matrix with elements PU,ij = PijI {i < j}.

Then

var(Q | Zn)−1/2Q
d→ N (0, 1).

Proof. Let B = var(Q | Zn)−1/2
. Then we can write BQ =

∑n
i=1Byi, where

yi = uiti + visi + ui

i−1∑
j=1

Pijvj + vi

i−1∑
j=1

Pjiuj = uiti + visi + ui(PLv)i + vi(P
′
Uu)i.

Conditional on Zn, Byi is a martingale di�erence array with respect to the �ltration Fin = σ(u1, v1,

. . . , ui−1, vi−1). SinceB is bounded by assumption, by the martingale central limit theorem, if for some

ε > 0,

n∑
i=1

EZn [|yi|2+ε]
a.s.→ 0, (25)

and if the conditional variance converges to one, P (|
∑n

i=1E[B2y2
i | Fi,n,Zn] − 1| > η | Zn)

a.s.→ 0

for any η, then conditional on Zn,

∑n
i=1Byi converges in distribution to N (0, 1), and the result will

follow by the dominated convergence theorem.

By Loève’s cr-inequality, if

n∑
i=1

EZn [u4
i ]t

4
i +

n∑
i=1

EZn [v4
i ]s

4
i
a.s.→ 0, (26)

and if
n∑
i=1

EZnu
4
i (PLv)4

i +

n∑
i=1

EZnv
4
i (P

′
Uu)4

i
a.s.→ 0, (27)

then (25) holds with ε = 2. Now, equation (26) follows from condition 2. To verify equation (27), note

that the �rst sum can be bounded as

n∑
i=1

EZnu
4
i (PLv)4

i =
n∑
i=1

EZn [u4
i ]EZn [(PLv)4

i ] �a.s.

n∑
i=1

EZn [(PLv)4
i ]

=
n∑
i=1

n∑
j=1

P 4
L,ijEZn [v4

j ] + 3
n∑
i=1

∑
j 6=k

P 2
L,ijP

2
L,ikEZn [v2

j ]EZn [v2
k] �a.s.

∑
i,j,k

P 2
L,ijP

2
L,ik.
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Now, ∑
i,j,k

P 2
L,ijP

2
L,ik =

n∑
i=1

(PLP
′
L)2
ii ≤

n∑
i=1

n∑
j=1

(PLP
′
L)2
ij = ‖PLP ′L‖2F .

By a symmetric argument, the second sum in (27) is of the order ‖P ′UPU‖2F , so that (27) holds by

condition 3.

It remains to show convergence of the conditional variance. Let Wi = uiti + visi, and let Xi =

ui(PLv)i + vi(P
′
Uui). Since var(BQ | Zn) = B2

∑n
i=1EZn [W 2

i ] +B2
∑n

i=1EZn [X2
i ] = 1, and since

EZn [W 2
i ] = E[W 2

i | Zn,Fin], we have

n∑
i=1

E[B2y2
i | Fin,Zn]− 1 =

n∑
i=1

B2
(
E[X2

i | Fin,Zn]− E[X2
i | Zn]

)
+ 2B2

n∑
i=1

E[WiXi | Fin,Zn].

(28)

We show that both of the terms on the right-hand side converge to zero. The second sum can be written

as

B2
n∑
i=1

E[WiXi | Fin,Zn] = B2
n∑
i=1

(PLv)iEZn [Wiui]+B2
n∑
i=1

(P ′Uu)iEZn [Wivi] = δ′uPLv+δ′vP
′
Uu,

where δu,i = B2EZn [Wiui] andB2δv,i = EZn [Wivi]. Now, by Cauchy-Schwarz inequality and bound-

edness of second moments of vi,

EZn [(δ′uPLv)2] �a.s. δ
′
uPLP

′
Lδu ≤ ‖δu‖22‖PLP ′L‖2 ≤ ‖δu‖22‖PLP ′L‖F �a.s. ‖PLP ′L‖F

where the last inequality follows because by Cauchy-Schwarz inequality, δ2
u,i ≤ B4EZn [W 2

i ]EZn [u2
i ],

so that ‖δu‖22 �a.s. B
2
∑

iEZn [W 2
i ] ≤ var(BQ) ≤ 1. By similar arguments, EZn [(δvP

′
Uu)2] �a.s.

‖P ′UPU‖F . Thus, by condition 3 and Markov inequality, the second term in (28) a.s. converges to zero

conditionally on Zn. The �rst term in (28) can be decomposed as

n∑
i=1

σ2
u,i[(PLv)2

i − EZn(PLv)2
i ] +

n∑
i=1

σ2
v,i[(P

′
Uu)2

i − EZn(P ′Uv)2
i ]

+ 2

n∑
i=1

σvu,i[(PLv)i(P
′
Uu)i − EZn(PLv)i(P

′
Uu)i].

Let Du denote a diagonal matrix with elements Du,ii = σ2
u,i, and let T = P ′LDuPL. Then the �rst sum

in the preceding display equals v′Tv − EZn [v′Tv]. The variance of this term can be bounded as

var(v′Tv | Zn) =
∑
i

T 2
ii

(
EZn [v4

i ]− 3EZn [v2
i ]

2
)

+
∑
i

∑
j

(T 2
ij + TijTji)EZn [v2

i v
2
j ]

�a.s.

∑
i

∑
j

T 2
ij = ‖P ′LDuPL‖2F �a.s. ‖PLP ′L‖2F .
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By similar arguments, the conditional variance of the second sum is of the order ‖P ′UPU‖2F and the

conditional variance of the third term is of the order ‖PLP ′L‖2F + ‖P ′UPU‖2F . Thus, by condition 3 and

Markov inequality, the �rst term in (28) a.s. converges to zero conditionally on Zn, which concludes

the proof.

The following result generalizes Lemma B.2 in Chao et al. (2012), and is used to verify condition 3

of Lemma D.2.

Lemma D.3. Let P = Pn be a sequence of random square matrices such that tr(P ′PP ′P )
a.s.→ 0. Then

‖LL′‖2F + ‖UU ′‖2F
a.s.→ 0, where (L)ij = PijI {i > j} and (U)ij = PijI {j > i}.

Proof. Note �rst that

∑
i,j,k P

2
ijP

2
ik =

∑
i(PP

′)2
ii ≤

∑
i,j(PP

′)2
ij = tr(PP ′PP ′), and

∑
i,j,k P

2
jiP

2
ki =∑

i(P
′P )2

ii ≤
∑

i,j(P
′P )2

ij = tr(PP ′PP ′). Similarly,

∑
i,j P

4
ij ≤

∑
i,j,k P

2
ijP

2
ik ≤ tr(PP ′PP ′).

Using these observations, we get the bound

‖LL′‖2F + ‖UU ′‖2F − 4
∑

i<j<k<`

(PikPi`PjkPj` + PkiP`iPkjP`j)

=
∑
i<j

P 4
ij + 2

∑
i<j<k

(P 2
ijP

2
ik + P 2

ikP
2
jk) +

∑
i<j

P 4
ji + 2

∑
i<j<k

(P 2
jiP

2
ki + P 2

kiP
2
kj)

≤ 6 tr(P ′PP ′P )
a.s.→ 0. (29)

It therefore su�ces to show that

∑
i<j<k<`(PikPi`PjkPj` + PkiP`iPkjP`j)

a.s.→ 0. To that end, let

D = diag(P ), and observe �rst that by triangle inequality, we have,

‖(P −D)′(P −D)‖F ≤ ‖P ′P‖F + ‖D2‖F + 2‖DP‖F
a.s.→ 0, (30)

since ‖D2‖2F =
∑

i P
4
ii ≤

∑
i(PP

′)2
ii
a.s.→ 0, and ‖DP‖2F =

∑
i

∑
j P

2
ijP

2
ii ≤

∑
i

∑
j P

2
ij

∑
k P

2
ik =∑

i(PP
′)2
ii
a.s.→ 0. On the other hand, expanding the left-hand side and using the same argument as

in (29) yields

‖(P −D)′(P −D)‖2F − 4Sn

=
∑
i<j

(P 4
ji + P 4

ij) + 2
∑
i<j<k

(
P 2
kiP

2
kj + P 2

kiP
2
ji + P 2

ikP
2
jk + P 2

ikP
2
ij + P 2

jiP
2
jk + P 2

ijP
2
kj

) a.s.→ 0,

where Sn =
∑

i<j<k<`(PjiPkiPk`Pj`+PjiP`iPjkP`k+PkiP`iPkjP`j+PijPikP`kP`j+PijPi`PkjPk`+

PikPi`PjkPj`). Combining this with (30) yields that Sn = O(Gn).

Let εi denote random random variables that, conditional on P , are independent, and have mean

zero and unit variance. De�ne

∆2 =
∑
i<j<k

(PijPikεjεk + PijPjkεiεk) ∆̃2 =
∑
i<j<k

(PjiPkiεjεk + PijPjkεiεk)
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∆3 =
∑
i<j<k

PikPjkεiεj ∆̃3 =
∑
i<j<k

PkiPkjεiεj

and let ∆1 = ∆2 + ∆3 and ∆̃1 = ∆̃2 + ∆̃3. Observe that

E[∆2
3 | P ] = 2

∑
i<j<k<`

PikPjkPi`Pj` +
∑
i<j<k

P 2
ikP

2
jk

E[∆̃2
3 | P ] = 2

∑
i<j<k<`

PkiPkjP`iP`j +
∑
i<j<k

P 2
kiP

2
kj

E[∆2
2 + ∆̃2

2 | P ] =
∑
i<j<k

(P 2
ijP

2
ik + P 2

ijP
2
jk) +

∑
i<j<k

(P 2
jiP

2
ki + P 2

jiP
2
kj) + 2Sn

E[∆2
1 + ∆̃2

1 | P ] = ‖(P −D)′(P −D)‖2F −
∑
i<j

(P 4
ij + P 4

ji)
a.s.→ 0.

Hence, E[∆2
3 +∆̃2

3]−2
∑

i<j<k<`(PikPjkPi`Pj`+PkiPkjP`iP`j)
a.s.→ 0. On the other hand, by Loève’s

cr-inequality,

E[∆2
3 + ∆̃2

3] ≤ 2E[∆2
1 + ∆2

2 + ∆̃2
1 + ∆̃2

2] �a.s. 2Sn
a.s.→ 0,

so that 2
∑

i<j<k<`(PikPjkPi`Pj` + PkiPkjP`iP`j)
a.s.→ 0, which proves the result.

D.2 High-level theorems for conditional inference

Lemma D.4. Consider an estimator β̂G. Suppose that

(i) Conditional on Q, the reduced-form errors ζi and ηi are mean zero, independent across i, and with

bounded second moments.

(ii) (‖GR‖2 + ‖G′R‖2 + ‖GRY ‖2 + ‖G′RY ‖2)/r̈n
a.s.→ 0.

(iii) ‖G‖F /r̈n
a.s.→ 0.

(iv) r̈n/R
′GR and R′YGR/r̈n are bounded a.s.

(v)

∑
i|Gii|/r̈n

a.s.→ 0

Then β̂G
p→ βG. Furthermore, if condition (v) is replacedwith the assumption that

∑
i|Gii|/r̈n, r̈n/(R′GR+∑

iGiiσ
2
η,i), and E[ζ4

i + η4
i | Qi] are all bounded a.s., then β̂G = βG + biasG +oP (1), where

biasG =

∑
iGiiσν(βG)η,i

R′GR+
∑

iGiiσ
2
η,i

.

Proof. By Lemma D.1 with Zn = (Q1, . . . , Qn), and P = G/r̈n

Y ′(G/r̈n)X = R′YGR/r̈n +
n∑
i=1

Giiζiηi/r̈n + oP (1),
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X ′(G/r̈n)X = R′GR/r̈n +
n∑
i=1

Giiη
2
i /r̈n + oP (1).

If condition (v) holds, then by Markov inequality, for any ε > 0, P (|
∑

iGiiζiηi/r̈n| > ε | Q) ≤∑
i|Gii|E[|ζiηi| | Q]/εr̈n �a.s.

∑
i|Gii|/εr̈n

a.s.→ 0, so that by the dominated convergence theo-

rem,

∑
iGiiζiηi/r̈n

p→ 0. By similar arguments,

∑
iGiiη

2
i /r̈n

p→ 0. Thus, Condition (iv), β̂G =

(R′YGR/r̈n + oP (1))/(R′GR/r̈n + oP (1)) = βG(1 + oP (1)) + oP (1) = βG + oP (1).

Otherwise, since var(
∑

iGiiη
2
i /r̈n | Q) �a.s.

∑
iG

2
ii/r̈

2
n ≤ ‖G‖2F /r̈2

n
a.s.→ 0, it follows by Markov

inequality and dominated convergence theorem that

∑
iGiiη

2
i =

∑
iGiiσ

2
η,i + oP (1). By similar

arguments

∑
iGiiηiζi =

∑
iGiiσζη,i + oP (1), and the result follows by the same argument as above.

Lemma D.5. Consider an estimator of the form β̂G. Suppose that Conditions (i)–(iv) of Lemma D.4 hold,

and that

(i) E[ν4
i + η4

i | Q] is bounded, |corr(νi, ηi | Q)| is bounded away from one, and σ2
ν,i is bounded away

from zero

(ii)

∑
i|Gii|/r̈

1/2
n is bounded a.s. and

∑
iG

2
ii/r̈n

a.s.→ 0

(iii) r̈n/‖GR‖2 is bounded a.s.

(iv)

∑
i(GR)4

i /r̈
2
n
a.s.→ 0 and

∑
i(G
′R∆)4

i /r̈
2
n
a.s.→ 0

(v) ‖G′G‖F /r̈n
a.s.→ 0.

Then

β̂G − βG − biasG√
ṼG/R′GR

d→ N (0, 1), (31)

where

ṼG =
∑
i

[(G′R)2
iσ

2
ν,i + σ2

η,i(G
′R∆)2

i + 2σνη,i(G
′R)i(G

′R∆)i] +
∑
i 6=j

[G2
ijσ

2
η,jσ

2
ν,i +GijGjiσνη,iσνη,j ].

(32)

Condition (ii) ensures that

√
r̈n biasG is bounded. Conditions (i) and (iii) ensure that ṼG/r̈n is

bounded away from zero.

Proof of Lemma D.5. It follows from Lemma D.4 that X ′GX/R′GR = 1 + oP (r̈n). It follows from

condition (ii) that

∑
iGiiσηi = oP (r̈n). Therefore,

R′GR

r̈
1/2
n

(
β̂G − βG − biasG

)
=

(R∆ + ν)′GX/
√
r̈n

X ′GX/R′GR
−
∑

iGiiσν(βG)η,i/
√
r̈n

1 +
∑

iGiiσ
2
η,i/R

′GR
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= (R∆ + ν)′GX/
√
r̈n (1 + oP (1))−

∑
i

Giiσν(βG)η,i/
√
r̈n(1 + oP (1)).

Furthermore, if follows from condition (ii), Markov inequality, and dominated convergence theorem

that

∑
i νiηiGii/r̈

1/2
n =

∑
iGiiσνη,i/r̈

1/2
n + oP (1). Thus,

β̂G − βG − biasG

Ṽ1/2
G /R′GR

=
(R′∆Gη + ν ′GR+

∑
i 6=j νiηjGij)/

√
r̈n√

ṼG/r̈n
(1 + oP (1))+

∑
i σην,iGii/

√
r̈n√

ṼG/r̈n
·oP (1).

(33)

Since

∑
i σην,iGii/

√
r̈n is bounded by condition (ii), to verify the claim, it su�ces to show that the �rst

term converges to a standard normal random variable, and that r̈n/ṼG is bounded a.s. To that end,

write ṼG as

ṼG =
∑
i

var((G′R)iνi + (G′R∆)iηi | Q) +
1

2

∑
i 6=j

E[(Gijνiηj +Gjiνjηi)
2 | Q]

≥
∑
i

var((G′R)iνi + (G′R∆)iηi | Q)

≥
∑
i

(1− |corr((G′R)iνi, (G
′R∆)iηi | Q)|)(G′R)2

iσ
2
ν,i,

where the last line uses the fact that for any two random variables A and B,

var(A+B) ≥ var(A) + var(B)− 2 var(A)1/2 var(B)1/2|corr(A,B)|

≥ var(A) + var(B)− (var(A) + var(B))|corr(A,B)| ≥ var(A)(1− |corr(A,B)|).

Since corr(νi, ηi | Q) is bounded away from 1 and σ2
ν,i is bounded away from zero a.s., it follows that,

a.s,

r̈n/ṼG �a.s. O(r̈n/
∑
i

(G′R)2
i ) = O(1).

by Condition (iii). It remains to show that the �rst term in (33) converges to a standard normal random

variable. To this end, we apply Lemma D.2 with P = G/
√
r̈n, and t = GR and s = G′R∆. Condition 1

of Lemma D.2 holds since ṼG/r̈1/2
n is bounded away from zero. Condition 2 of Lemma D.2 holds by

Condition (iv). Finally, condition 3 holds by Lemma D.3.

D.3 Lemmata for proving consistency of standard errors

First we introduce some notation that is used throughout the section. Let ε1, ε2, ε3, ε4 ∈ Rn denote

random vectors such that, conditional on Q = (Z,W ), (ε1i, ε2i, ε3i, ε4i) are mean zero with bounded

fourth moments, and the vectors {(ε1i, ε2i, ε3i, ε4i)}ni=1 are independent across i. Let σab,i = E[εaiεbi |
Q], σabc,i = E[εaiεbiεci | Q], and σabcd,i = E[εaiεbiεciεdi | Q]. Also, putDab = diag(σab), and similarly

for Dabc and Dabcd, let N = I −HW and M = I −HQ, and write EQ[·] as a shorthand for E[· | Q].
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Throughout the subsection, we use the inequality

(
∑k

i=1 ak)
2 ≤ k

∑k
i=1 a

2
k. (34)

Lemma D.6. Let {dijk}ni,j,k=1 be a sequence that is non-random conditional on Q. Then

∑
i 6=j 6=k

dijkε1iε2jε3kε4k = OP

(√∑
i,j,k

d2
ijk +

∑
i,j

(∑
k

dijkσ34k

)2
)
.

Proof. We will show that

A := EQ

( ∑
i 6=j 6=k

dijkε1iε2jε3kε4k

)2

�a.s.

∑
i,j,k

d2
ijk +

∑
i,j

(∑
k

dijkσ34k

)2

.

The result will then follow by Markov inequality and dominated convergence theorem. Evaluating the

expectation yields

A =
∑

i 6=j 6=k 6=`
[dijkdij`σ11iσ22jσ34kσ34` + dijkdji`σ12iσ12jσ34kσ34`]

+
∑
i 6=j 6=k

dijk [dijkσ11iσ22jσ3344k + dikjσ11iσ234jσ234k + djikσ12iσ12jσ3344k]

+
∑
i 6=j 6=k

dijk [dkijσ12iσ234jσ134k + djkiσ134iσ12jσ234k + dkjiσ134iσ22jσ134k]

�a.s.

∑
i 6=j 6=k 6=`

dijkdij`σ11iσ22jσ34kσ34` +
∑

i 6=j 6=k 6=`
dijkdji`σ12iσ12jσ34kσ34` +

∑
i,j,k

d2
ijk.

Let cijk = I {i 6= j 6= k} dijk. The second term can then be bounded as

∑
i 6=j 6=k 6=`

dijkdji`σ12iσ12jσ34kσ34`

=
∑
i,j

σ12iσ12j

(∑
k

cijkσ34k

)(∑
`

cji`σ34`

)
−
∑
i 6=j 6=k

cijkcjikσ12iσ12jσ34kσ34k

�a.s.

∑
i,j

(∑
k

cijkσ34k

)2

+
∑
i,j,k

d2
ijk ≤

∑
i,j

( ∑
k : k 6=i,j

dijkσ34k

)2

+
∑
i,j,k

d2
ijk.

Since by (34),

∑
i,j

( ∑
k : k 6=i,j

dijkσ34k

)2

≤ 3
∑
i,j

(∑
k

dijkσ34k

)2

+ 3
∑
i,j

(dijjσ34j)
2 + 3

∑
i,j

(dijiσ34i)
2
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�a.s.

∑
i,j

(∑
k

dijkσ34k

)2

+
∑
i,j,k

d2
ijk,

it follows that

∑
i 6=j 6=k 6=`

dijkdji`σ12iσ12jσ34kσ34` �a.s.

∑
i,j

(∑
k

dijkσ34k

)2

+
∑
i,j,k

d2
ijk.

By a symmetric argument,

∑
i 6=j 6=k 6=`

dijkdij`σ11iσ22jσ34kσ34` �a.s.

∑
i,j

(∑
k

dijkσ34k

)2

+
∑
i,j,k

d2
ijk,

which proves the result.

Lemma D.7. Let {dij}ni,j=1 be a sequence that is non-random conditional on Q. Then

∑
i 6=j

dijε1iε2jε3j = OP

(√∑
i,j

d2
ij +

∑
i

(∑
j

dijσ23j

)2
)
.

Proof. To prove the claim, we will show thatEQ(
∑

i 6=j dijε1iε2jε3j)
2 �a.s.

∑
i,j d

2
ij+
∑

i

(∑
j dijσ23j

)2
.

The claim will then follow by Markov inequality and dominated convergence theorem. This expecta-

tion can be decomposed as

EQ
(∑

j 6=i dijε1iε2jε3j
)2

=
∑
i 6=j

(σ123jdijdjiσ123i + d2
ijσ2233jσ11i) +

∑
i 6=j 6=k

dikdijσ23kσ23jσ11i

�a.s.

∑
i,j

d2
ij +

∑
i 6=j 6=k

dikdijσ23kσ23jσ11i.

Let cij = I {i 6= j} dij . The second term can then be decomposed as

∑
i 6=j 6=k

dikdijσ23kσ23jσ11i =
∑
i,j,k

cikcijσ23kσ23jσ11i −
∑
i,j

c2
ijσ

2
23jσ11i

=
∑
i

σ11i

(∑
j

cijσ23j

)2
−
∑
i,j

c2
ijσ

2
23jσ11i �a.s.

∑
i

(∑
j

cijσ23j

)2
+
∑
i,j

d2
ij .

The claim of the Lemma then follows from applying the inequality (34) to get the bound

∑
i

(∑
j

cijσ23j

)2
≤ 2

∑
i

(∑
j

dijσ23j

)2
+ 2

∑
i

d2
iiσ

2
23i �a.s.

∑
i

(∑
j

dijσ23j

)2
+
∑
i,j

d2
ij .
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Lemma D.8. For any projection matrices P and R,

EQ[(Pε1)i(Rε2)i(Pε1)j(Rε2)j ] ≤ C
√
PiiPjjRiiRjj ,

where C = supi σ1122i + supi σ11i supj σ22j + supi σ
2
12i.

Proof. Evaluating the expectation yields

EQ[(Pε1)i(Rε2)i(Pε1)j(Rε2)j ] =
∑
k

PikPjkRikRjk(σ1122k − σ11kσ22k − 2σ2
12k)

+
∑
k,`

PikPj`RikRj`σ12kσ12` +
∑
k,`

PikPjkRi`Rj`σ11kσ22` +
∑
k,`

PikPjkRi`Rj`σ12kσ12`.

By Cauchy-Schwarz inequality,

∑
k,`

|PikPj`RikRj`| ≤

(∑
k,`

P 2
ikP

2
j`

∑
k,`

R2
ikR

2
j`

)1/2

=
√
PiiPjjRiiRjj ,

and similarly

∑
k,`|PikPjkRi`Rj`| ≤

√
PiiPjjRiiRjj and

∑
k,`|PikPjkRi`Rj`| ≤

√
PiiPjjRiiRjj .

Thus,

EQ[(Pε1)i(Rε2)i(Pε1)j(Rε2)j ] ≤ 4C
√
PiiPjjRiiRjj ,

which proves the result.

Lemma D.9. Let µ1, µ2 ∈ Rn andH denote vectors and a projection matrix that are non-random condi-

tional on Q. LetM = I −H and σ̂34k = (Mε3)k(Mε4)k, and suppose

(i) ‖µ1‖22/r̈n, ‖µ1‖22/r̈n, ‖µ1‖∞, ‖µ2‖∞, and (K + L)/r̈n is bounded a.s.

(ii) maxiHii
a.s.→ 0.

Then

∑
k µ1kµ2kσ̂34k =

∑
k σ34kµ1kµ2k + oP (r̈n).

Proof. First we bound

var(
∑
k

σ̂34kµ1kµ2k | Q) =
∑
k,`

µ1kµ2kµ1`µ2`

∑
a

M2
akM

2
a`(σ3344a − σ2

34a)

+
∑
k,`

µ1kµ2kµ1`µ2`

∑
a6=b

MakMbkMa`Mb`(σ33aσ44b + σ34aσ34b). (35)

Since M2
ak = I {a = k} (1− (2H)aa) +H2

ak, it follows that the �rst term in (35) of the order∑
k,`

|µ1kµ2kµ1`µ2`|
∑
a

M2
akM

2
a` �a.s.

∑
k,`,a

H2
akH2

a` +
∑
k,`

H2
k` +

∑
k

µ2
1kµ

2
2k �a.s. r̈n.
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Now,

∑
a,bMakMbkMa`Mb`σ33aσ44b = (MD33M)k`(MD44M)k` ≤ (MD33M)2

k` + (MD44M)2
k`.

Furthermore, note that, letting ak = µ1kµ2k,

∑
k,`

aka`(MD33M)2
k` =

∑
k

a2
kσ

2
33k +

∑
k,`

aka`H2
k`(σ

2
33k + σ2

33`) +
∑
k,`

aka`(HD33H)2
k`

�a.s.

∑
k

µ2
1kµ

2
2k +

∑
k,`

H2
kl + ‖HD33H‖2F �a.s. r̈n + 2K.

Therefore, the second term in (35) is of the order r̈n. Thus, by Markov inequality and dominated con-

vergence theorem,

∑
k

µ1kµ2kσ̂34k −
∑
k

µ1kµ2kσ34k =
∑
k

µ1kµ2kEQ[σ̂34k − σ34k] + oP (r̈n)

=
∑
k

µ1kµ2k

∑
i

H2
ikσ34i − 2

∑
k

µ1kµ2kσ34kHkk + oP (r̈n)

�a.s. max
i
Hiir̈n + oP (r̈n) = oP (r̈n),

as claimed.

Lemma D.10. Let µ1, µ2 ∈ Rn denote vectors that are non-random conditional on Q. Put σ̂34k =

(Mε3)k(Mε4)k, and consider a variance estimator of the form

Ω̂ = J(µ1 + (I −HW )ε1, µ2 + (I −HW )ε2, σ̂34) (36)

such that

(i)

∑
j(HZ̈)jkµ2j = µ2k and

∑
j(HZ̈)jkµ1j = µ1k,

(ii) ‖µ1‖22/r̈n and ‖µ1‖22/r̈n are bounded a.s.

(iii) maxi(HQ)ii
a.s.→ 0.

(iv) ‖µ1‖∞ and ‖µ2‖∞ are bounded a.s.

(v) (K + L)/r̈n is bounded a.s.

Then Ω̂ =
∑

k E[ε3kε4k | Q]µ1kµ2k + oP (r̈n).

Proof. 1. To prove the Lemma, it will be convenient to decompose the right-hand side of (36). Write

Ω̂ =
∑
k

σ̂34k

∑
i : i 6=k

∑
j : j 6=i,k

aijk,
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where aijk = (HZ̈)ik(HZ̈)jk(µ1i + (Nε1)i)(µ2i + (Nε2)i). We can write∑
i : i 6=k

∑
j : j 6=i,k

aijk =
∑
i,j

aijk −
∑
j

akjk −
∑
i

aiik −
∑
i

aikk + 2akkk

= µ1kµ2k +

5∑
`=1

T`k,

(37)

where

T1k = −
∑
i

(HZ̈)2
ikµ1iµ2i − 2(HZ̈)kk(1− (HZ̈)kk)µ1kµ2k,

T2k = µ1k [(1− (HZ̈)kk)(HZ̈ε2)k − (HZ̈)kk(1− 2(HZ̈)kk)(Nε2)k] ,

T3k = µ2k [(1− (HZ̈)kk)(HZ̈ε1)k − (HZ̈)kk(1− 2(HZ̈)kk)(Nε1)k] ,

T4k = (HZ̈ε1)k(HZ̈ε2)k − (HZ̈)kk(Nε1)k(HZ̈ε2)k − (HZ̈)kk(HZ̈ε1)k(Nε2)k

+ 2(HZ̈)2
kk(Nε1)k(Nε2)k −

∑
i

(HZ̈)2
ik(Nε2)i(Nε1)i,

T5k = −
∑
i

(HZ̈)2
ik(µ1i(Nε2)i + µ2i(Nε1)i).

Therefore, equation (36) can be written as

Ω̂ =
∑
k

σ̂34kµ1kµ2k +
∑
k

(σ̂34k − ε3kε4k)
5∑
`=1

T`k +
∑
k

ε3kε4k

5∑
`=1

T`k. (38)

By Lemma D.9 with H = HQ,

∑
k σ̂34kµ1kµ2k =

∑
k σ34kµ1kµ2k + oP (r̈n). To prove the assertion of

the Lemma, we will show that the remaining terms are of order oP (r̈n).

2. Consider the second term in (38). It follows from the Cauchy-Schwarz inequality and the inequal-

ity (34) that

(EQ
∑
k

(σ̂34k − ε3kε4k)
5∑
`=1

T`k)
2 ≤ 5

∑
m

EQ(σ̂34m − ε3mε4m)2
5∑
`=1

∑
k

EQT
2
`k.

We now show that the right-hand side is of the order o(r̈2
n). By (34), (σ̂34k−ε3kε4k)2 ≤ 3ε23k(HQε4)2

k+

3(HQε3)2
kε

2
4k + 3(HQε3)2

k(HQε4)2
k, so that by Lemma D.8,∑

k

EQ(σ̂34k − ε3kε4k)2 �a.s. 2
∑
k

(HQ)kk +
∑
k

(HQ)2
kk �a.s. K + L. (39)

Therefore, to prove the claim, we need to show for ` = 1, . . . , 5,

∑
k EQT

2
1k = o(r̈n). Using the
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inequality (34), and the assumptions of the Lemma yields∑
k

T 2
1k �a.s.

∑
i,j,k

(HZ̈)2
ik(HZ̈)2

jk +
∑
k

(HZ̈)2
kkµ

2
1kµ

2
2k �a.s. max

i
(HZ̈)iir̈n,

EQ
∑
k

T 2
2k �a.s.

∑
k

µ2
1kEQ

[
(HZ̈ε2)2

k − (HZ̈)2
kk(Nε2)2

k

]
�a.s. max

i
(HZ̈)iir̈n,

and, by a symmetric argument EQ
∑

k T
2
3k �a.s. maxi(HZ̈)iir̈n. To bound the term

∑
k T

2
4k, �rst ob-

serve that by Lemma D.8,

∑
k

EQ

(∑
i

(HZ̈)2
ik(Nε2)i(Nε1)i

)2

=
∑
i,j,k

(HZ̈)2
ik(HZ̈)2

jkEQ(Nε2)i(Nε1)i(Nε2)j(Nε1)j

�a.s.

∑
i,j,k

(HZ̈)2
ik(HZ̈)2

jkNiiNjj ≤ max
i

(HZ̈)iiK.

(40)

By (40) and Lemma D.8,

EQ
∑
k

T 2
4k �a.s.

∑
k

[
(HZ̈)2

kk + (HZ̈)3
kkNkk + (HZ̈)4

kkN
2
kk

]
+ max

i
(HZ̈)iiK �a.s. max

i
(HZ̈)iiK.

Finally, to bound the term

∑
k EQT

2
5k, we �rst need a preliminary result. Let A denote the matrix with

elements Aik = (HZ̈)2
ikµ1i. Then

EQ
∑
k

(∑
i

(HZ̈)2
ikµ1i(Nε2)i

)2

=
∑
`

(A′N)2
k`σ

2
22,` �a.s. ‖A′N‖2F ≤ ‖A‖2F ≤ r̈n max

i
(HZ̈)ii. (41)

By (41),∑
k

T 2
5k ≤ 2

∑
k

EQ (
∑

i(HZ̈)2
ikµ1i(Nε2)i)

2
+ 2

∑
k EQ (

∑
i(HZ̈)2

ikµ2i(Nε1)i)
2 � maxi(HZ̈)iir̈n.

By Markov inequality and dominated convergence theorem, the second term in (38) is of the order

o(r̈n).

3a. To �nish the proof of the Lemma, it remains to show that the third term in (38) is of the order o(r̈n),

for which it su�ces to show that ∑
k

ε3kε4kT`k = oP (r̈n), (42)

for ` = 1, . . . , 5. To show that (42) holds for ` = 1, note that by triangle inequality,

EQ
∑
k

|ε3kε4kT1k| � 2 max
i

(HZ̈)ii
∑
i

|µ1kµ2k|+
∑
i,k

(HZ̈)2
ik|µ1kµ2k| � max

i
(HZ̈)iir̈n.
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By Markov inequality, equation (42) therefore holds for ` = 1. To show (42) for ` = 2, write∑
k

ε3kε4kT2k =
∑
i 6=k

fikε2iε3kε4k +
∑
k

fkkε2kε3kε4k

where dij = dij + d̃ij , dij = µ1j(1 − (HZ̈)jj)(HZ̈)ij , and d̃ij = −µ1j(HZ̈)jj(1 − 2(HZ̈)jj)Nij .

Note that

∑
i,j(d

2
ij + d̃2

ij) ≤ 2r̈n maxi(HZ̈)ii, and that

∑
i(
∑

j dijσ34j)
2 +

∑
i(
∑

j d̃ijσ34j)
2 �a.s.

‖HZ̈µ1‖22 + ‖Nµ1‖22 �a.s. r̈n. Therefore, by Lemma D.7, the �rst term is of the order OP (r̈
1/2
n ). The

expectation of the second term can be bounded as

EQ|
∑
k

fkkε2kε3kε4k| �a.s.

∑
k

|fkk| =
∑
k

|µ1k||(HZ̈)2
kk + (HZ̈)kk(HW )kk(1− 2(HZ̈)kk)|

�a.s.

∑
k

((HZ̈)2
kk + (HZ̈)kk(HW )kk) ≤ max

i
(HQ)iiK.

so that by Markov inequality and dominated convergence theorem,

∑
k fkkε2kε3kε4k = oP (r̈n), so

that (42) holds for ` = 2, and by a symmetric argument, for ` = 3 also.

3b. To show (42) for ` = 4, write

∑
k ε3kε4kT4k =

∑
i,j,k dijkε1iε2jε3kε4k, where

dijk = I {i 6= j} (HZ̈)ik(HZ̈)jk − (HZ̈)kk(HZ̈)jkNik − (HZ̈)kk(HZ̈)ikNjk

+ 2(HZ̈)2
kkNikNjk +

[
(HZ̈)2

ik + (HZ̈)2
jk

]
(HW )ij −

∑
`

(HZ̈)2
`k(HW )`i(HW )`j .

We can therefore decompose this term as

∑
k

ε3kε4kT4k =
∑
i

diiiε1iε2iε3iε4i +
∑
i 6=j

diijε1iε2iε3jε4j

+
∑
i 6=j

dijjε1iε2jε3jε4j +
∑
i 6=j

dijiε1iε2jε3iε4i +
∑
i 6=j 6=k

dijkε1iε2jε3kε4k. (43)

We will show that all �ve terms in (43) are of the order oP (r̈n). Since

diii = 2(HZ̈)2
ii(HW )2

ii −
∑
`

(HZ̈)2
`i(HW )2

`i,

by triangle inequality,

EQ|
∑

i diiiε1iε2iε3iε4i| �a.s.

∑
i|diii| ≤ 2

∑
i(HZ̈)2

ii(HW )2
ii +

∑
i,`(HZ̈)2

`i(HW )2
`i ≤ maxi(HW )iiK,

so that by Markov inequality, the �rst term in (43) is of the order oP (r̈n). Similarly, by triangle inequal-
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ity, and the inequality |2ab| ≤ a2 + b2,∑
i 6=j
|diij | =

∑
i 6=j
|2(HZ̈)jj(HZ̈)ij(HW )ij − 2(HZ̈)2

jj(HW )2
ij + 2(HW )ii(HZ̈)2

ij −
∑
`

(HZ̈)2
`j(HW )2

`i|

≤
∑
i,j

(HZ̈)jj
[
(HW )2

ij + (HZ̈)2
ij

]
+ 2

∑
i

[
(HZ̈)2

ii + (HZ̈)ii
]

(HW )ii +
∑
`

(HZ̈)2
``

≤ 2K max
i

(HZ̈)ii +K max
i

(HW )ii + 4Lmax
i

(HZ̈)ii

Therefore, by triangle inequality

EQ|
∑

i 6=j diijε1iε2iε3jε4j | �a.s.

∑
i 6=j |diij | ≤ 4r̈n maxi(HQ)ii,

so that by Markov inequality, the second term in (43) is of the order oP (r̈n) also. To bound the third

term in (43), decompose it as

∑
i 6=j

dijjε1iε2jε3jε4j =
∑
i 6=j

(HZ̈)2
ij(HW )ijε1iε2jε3jε4j

+
∑
i 6=j

[
2(HZ̈)2

jj(HW )jj(HW )ij + (HZ̈)jj(HW )jj(HZ̈)ij
]
ε1iε2jε3jε4j

−
∑
i 6=j

∑
`

(HZ̈)2
`j(HW )`i(HW )`jε1iε2jε3jε4j . (44)

By triangle inequality

EQ|
∑

i 6=j(HZ̈)2
ij(HW )ijε1iε2jε3jε4j | �a.s.

∑
i,j |(HZ̈)2

ij(HW )ij | ≤ K maxi,j(HW )ij ,

so that the �rst term in (44) is of the order oP (r̈n). Next, note that for any vector a, and a projection

matrix P , by Cauchy-Schwarz inequality,

EQ|
∑
i 6=j

ajPijε3jε4jε1iε2j |2 ≤
∑
j

a2
jσ3344j ·

∑
j

σ22j

∑
i : i 6=j

P 2
ijσ11i �a.s. ‖a‖22‖P‖2F .

Applying this to two summands in the second term in (44), with a = 2(HZ̈)2
jj(HW )jj andP = (HW )ij ,

and a = (HZ̈)jj(HW )jj andP = (HZ̈)ij , and combining the result with Markov inequality implies that

the second term in (43) is also of the order oP (r̈n). Finally, by Cauchy-Schwarz and triangle inequalities,

the expected value of the third term in (44) can be bounded as

EQ

∣∣∣∣∣∑
`

∑
i 6=j

(HZ̈)2
`j(HW )`i(HW )`jε1iε2jε3jε4j

∣∣∣∣∣
≤
∑
`

(∑
j

(HW )2
`jσ3344j

)1/2(∑
j

σ22j(HZ̈)4
`j

∑
i : i 6=j

(HW )2
`iσ11i

)1/2
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�a.s.

∑
`

(HW )
1/2
``

(∑
j

(HZ̈)2
`j(HW )``

)1/2

≤ max
i

(HZ̈)
1/2
`` L.

Thus, by Markov inequality, the third term in (44) is also of the order oP (r̈n), which shows that the

third term in (43) is of the order oP (r̈n). Since diji = djii if i 6= j, the fourth term in (43) is of the

order oP (r̈n) by a similar argument. Next, we show that the last term in (43) is of the order oP (r̈n). By

Lemma D.6, ∑
i 6=j 6=k

d2
ijkε1iε2jε3kε4k = Op(

√∑
i,j,k d

2
ijk +

∑
i,j (
∑

k dijkσ34k)
2). (45)

Note that by (34),∑
i,j,k

d2
ijk �

∑
i,j,k

(HZ̈)2
ik(HZ̈)2

jk +
∑
i,j,k

(HZ̈)2
kk(HZ̈)2

jkN
2
ik +

∑
i,j,k

(HZ̈)4
kkN

2
ikN

2
jk +

∑
i,j,k

(HZ̈)4
jk(HW )2

ij

+
∑

i,j,k,`,m

(HZ̈)2
`k(HW )`i(HW )`j(HZ̈)2

mk(HW )mi(HW )mj

≤ 3
∑
k

(HZ̈)2
kk +

∑
j

(HZ̈)jj(HW )jj +
∑
k,`,m

(HZ̈)2
`k(HZ̈)2

mk(HW )m`(HW )`m

≤ 4 max
i

(HQ)iiK +
∑
k,`,m

(HZ̈)2
`k(HZ̈)2

mk ≤ 5 max
i

(HQ)iiK.

To bound the term in equation (45),

∑
i,j (
∑

k dijkσ34k)
2
, write dijk =

∑8
a=1 d

a
ijk, where d1

ijk =

−I {i = j} (HZ̈)2
ik, d2

ijk = (HZ̈)ik(HZ̈)jk, d3
ijk = −(HZ̈)kk(HZ̈)jkNik, d4

ijk = d3
jik, d5

ijk = 2(HZ̈)2
kk ·

NikNjk, d6
ijk = (HZ̈)2

ik(HW )ij , d
7
ijk = d6

jik, and d8
ijk = −

∑
`(HZ̈)2

`k(HW )`i(HW )`j . Note that for

any projection matrices P,R, and a vector a,

∑
i,j

(∑
k

akPikRjk

)2

= ‖P diag(a)R‖2F ≤ ‖diag(a)‖2F =
∑
i

a2
i .

Hence,

∑
i,j

[
(
∑
k

d3
ijkσ34k)

2 + (
∑
k

d4
ijkσ34k)

2 + (
∑
k

d5
ijkσ34k)

2

]
≤
∑
i

σ2
34i

(
2(HZ̈)2

ii + 4(HZ̈)4
ii

)
�a.s. K.

Furthermore,∑
i,j

(
∑
k

d1
ijkσ34k)

2 �
∑
i

(HZ̈)2
ii ≤ K∑

i,j

(
∑
k

d2
ijkσ34k)

2 �
∑
i,j

(
∑
k

d2
ijk)

2 =
∑
ij

(HZ̈)2
ij = K
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∑
i,j

(
∑
k

d8
ijkσ34k)

2 =
∑
k,`,i,j

σ34kσ34i(HZ̈)2
`k(HZ̈)2

ij(HW )2
j` �a.s.

∑
k,`,i,j

(HZ̈)2
`k(HZ̈)2

ij(HW )2
j`

≤ K∑
i,j

(
∑
k

d6
ijkσ34k)

2 =
∑
i,j

(HW )2
ij(
∑
k

(HZ̈)2
ikσ34k)

2 �a.s.

∑
i,j

(HW )2
ij(
∑
k

(HZ̈)2
ik)

2 ≤ K,

and

∑
i,j(
∑

k d
7
ijkσ34k)

2 �a.s. K by a similar argument. Thus, by (34),∑
i,j

(
∑
k

dijkσ34k)
2 �a.s.

∑
a=1

∑
i,j

(
∑
k

daijkσ34k)
2 �a.s. K,

so that by (45), the last term in (43) is of the order oP (r̈n) as claimed.

3c. To complete the proof, it remains to show that (42) holds for ` = 5. We have∑
k

ε3kε4kT5k = −
∑
i,k

ε3kε4k(HZ̈)2
ikµ1i(Nε2)i −

∑
i,k

ε3kε4k(HZ̈)2
ikµ1i(Nε2)i

We will show that the �rst term in the above display is of the order oP (r̈n); the proof the the second

term is of the order oP (r̈n) follows by a similar argument. To this end, letting Aik = (HZ̈)2
ikµ1i, we

can write∑
i,k

ε3kε4k(HZ̈)2
ikµ1i(Nε2)i =

∑
i

(Aii − (HWA)ii)ε3iε4iε2i +
∑
i 6=j

(NA)ijε2iε3jε4j . (46)

The expected value of �rst term in (46) can be bounded as

EQ|
∑

i(Aii − (HWA)ii)ε3iε4iε2i| �a.s.

∑
i|Aii|+

∑
i|(HWA)ii|

�a.s.

∑
i

(HZ)2
ii + ‖A‖F ‖HW ‖F �a.s. r̈n max

i
(HZ̈)ii.

Thus, by Markov inequality, the �rst term in (46) is of the order oP (r̈n). Note that ‖NA‖2F ≤ ‖A‖2F �a.s.

K , and that ‖NAσ34‖22 ≤ ‖Aσ34‖22 �a.s. K , so that by Lemma D.7, the second term in (46) is also of

the order oP (r̈n), so that (42) holds for ` = 5, which proves the result.

Lemma D.11. Put σ̂34k = (Mε3)k(Mε4)k and σ̂12k = (Mε1)k(Mε2)k. Then, if maxi(HQ)ii → 0 and

(K + L)/r̈n = O(1) a.s.,∑
i 6=j

(HZ̈)2
ij σ̂12,j σ̂34,i =

∑
i 6=j

(HZ̈)2
ijE[ε3kε4k | Q]E[ε1kε2k | Q] + oP (r̈n). (47)

Proof. Decompose the left-hand side of (47) as∑
i 6=j

(HZ̈)2
ij σ̂12,j σ̂34,i =

∑
i

[σ̂34i − ε3iε4i]Ti +
∑
i

[σ̂12i − ε1iε2i]Si +
∑
i 6=j

(HZ̈)2
ijε3iε4iε1jε2j , (48)
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where Ti =
∑

j : j 6=i(HZ̈)2
ij(Mε1)j(Mε2)j , and Si =

∑
j : j 6=i(HZ̈)2

ijε3jε4j . The conditional variance

of the third term in (48) satis�es

var

(∑
i 6=j

(HZ̈)2
ijε3iε4iε1jε2j | Q

)
=
∑
i 6=j

(HZ̈)4
ijṼ1ijk +

∑
i 6=j 6=k

(HZ̈)2
ij(HZ̈)2

ikṼ2ijk +
∑
i 6=j 6=k

(HZ̈)2
ij(HZ̈)2

jkṼ3ijk

�a.s.

∑
i 6=j

(HZ̈)4
ij +

∑
i 6=j 6=k

(HZ̈)2
ij(HZ̈)2

ik +
∑
i 6=j 6=k

(HZ̈)2
ij(HZ̈)2

jk ≤ 3K max
i

(HZ̈)ii.

where

Ṽ1ijk = σ3344iσ1122j + σ1234iσ1234j − σ2
34iσ

2
12j − σ34iσ12jσ34jσ12i,

Ṽ2ijk = σ3344iσ12jσ12k + σ1234iσ12jσ34k − σ34iσ12jσ34kσ12i − σ34iσ12jσ34iσ12k,

Ṽ3ijk = (σ34iσ1122jσ34k + σ1234jσ34iσ12k − σ34iσ12jσ34kσ12j − σ34iσ12jσ34jσ12k) .

Therefore, by Markov inequality,∑
i 6=j

(HZ̈)2
ijε3iε4iε1jε2j = EQ

∑
i 6=j

(HZ̈)2
ijε3iε4iε1jε2j + oP (r̈n) =

∑
i 6=j

σ34iσ12j(HZ̈)2
ij + oP (r̈n).

To prove the claim of the Lemma, it therefore su�ces to show that the �rst and second terms in (48)

are of the order oP (r̈n). To that end, note that by Cauchy-Schwarz inequality,

(EQ|
∑
i

[σ̂34i − ε3iε4i]Ti|)2 ≤
∑
i

[σ̂34i − ε3iε4i]2 ·
∑
i

EQT
2
i (49)

If we can show that the right-hand side is of smaller order than r̈2
n, then it follows by Markov inequal-

ity that the �rst term in (48) is order the order oP (r̈n). It follows from equation (39) in the proof of

Lemma D.10 that EQ
∑

i [σ̂34i − ε3iε4i]2 �a.s. K + L. By Lemma D.8,∑
i

EQT
2
i =

∑
i

∑
j : j 6=i

(HZ̈)2
ij

∑
k : k 6=i

(HZ̈)2
ikEQ(Mε1)j(Mε2)j(Mε1)k(Mε2)k

�a.s.

∑
i,j,k

(HZ̈)2
ij(HZ̈)2

ik ≤ K max
i

(HZ̈)ii,

so that the right-hand side of (49) is of the order o(r̈2
n) as claimed. By similar arguments,

EQ|
∑
i 6=j

(HZ̈)ijε3iε4jSi|2 ≤
∑
i

EQS
2
i ·
∑
i

EQ[σ̂12i − ε1iε2i] �a.s. (K + L)
∑
i

EQS
2
i .
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Since

EQS
2
i =

∑
i

∑
j : j 6=i

∑
k : k 6=i

(HZ̈)ij(HZ̈)ikEQε3jε4jε3kε4k �a.s.

∑
i,j,k

(HZ̈)ij(HZ̈)ik ≤ K max
i

(HZ̈)ii,

it follows by Markov inequality that the second term in (48) is also of the order oP (r̈n).

Appendix E Proofs of unconditional results

Let % ≡ E
[
R̃2
i

]
and ψi ≡ Σ

−1/2
WWWi.

Proof of Theorem 5.2: 1. First we show that the conditions of the theorem ensure that the conditions of

Theorem 5.1 are satis�ed w.p.a.1. By Assumption 4 (v), ‖Qi‖ .
√
K + L. Since Z̃i ≡ Zi − E [Zi|Wi],

Assumption 4 (iv) implies that ‖Wi‖ .
√
L,

∥∥Z̃i∥∥ . √K , and that the eigenvalues of Σ
Z̃Z̃
≡ E

[
Z̃iZ̃

′
i

]
are uniformly bounded from above and away from zero. Then,

∥∥Σ̂QQ

∥∥
λ

+
∥∥Σ̂−1

QQ

∥∥
λ

+
∥∥Σ̂WW

∥∥
λ

+∥∥Σ̂−1
WW

∥∥
λ

+
∥∥Σ̂

Z̃Z̃

∥∥
λ

+
∥∥∥Σ̂−1

Z̃Z̃

∥∥∥
λ
. 1 by Lemma F.5 and Assumption 4 (i). Also, Σ̂Z̈Z̈ = 1

n Z̈
′Z̈ =

1
n Z̃
′ (I −HW ) Z̃ = Σ̂

Z̃Z̃
− En

[
Z̃iW

′
i

]
Σ̂−1
WWEn

[
Z̃iWi

]
, so

∥∥Σ̂Z̈Z̈ − Σ̂
Z̃Z̃

∥∥
λ

= Op

(∥∥En [Z̃iWi

]∥∥2

λ

)
= Op

( 1

n
(K + L) log(K + L)

)
, (50)

which in particular implies that ∥∥Σ̂Z̈Z̈

∥∥
λ

+
∥∥Σ̂−1

Z̈Z̈

∥∥
λ
. 1. (51)

Thus, maxi≤nHZ̈,ii . K/n, maxi≤nHW,ii . L/n, and maxi≤nHQ,ii . (K + L) /n w.p.a.1.

2. Next, we show that for each of the estimators,

1

r̃n
R′AGR =

1

%
E
[
R̃AiR̃i

]
+ op (1) . (52)

Equation (52) implies that r̈n/r̃n = 1 + oP (1), and that βC,G = βU,IA94 + oP (1).

(i) For tsls, ijive1, and jive1 we have: RAGtslsR = R̈′AR̈ = R̃′A (I −HW ) R̃ = R̃′AR̃ − R̃′AHW R̃.

Note that λmax

(
Σ̂−1
WW

)
. 1 w.p.a.1, E

[
R̃AW

]
= 0, E

[∥∥R̃AiWi

∥∥2
]
. E

[
R̃2
Ai

]
L . %L, and∣∣R̃′AHW R̃

∣∣ ≤ R̃′AHW R̃A + R̃′HW R̃. For any A ∈ {X,Y,∆},

1

r̃n
R̃′AHW R̃A =

1

%
En
[
R̃AiW

′
i

]
Σ̂−1
WWEn

[
WiR̃Ai

]
= Op

(
1

%

∥∥En [R̃AiW ′i ]∥∥2
)

= Op

(L
n

)
= op (1) .

Then equation (52) holds, since
1
r̃n
R̃′AR̃ =

E[R̃AiR̃i]
E[R̃2

i ]
+ oP (1) by Assumption 4 (ii) and the LLN.

(ii) For ijive2, R′AGijive2R = R̈′AR̈− R̈′ADZ̈R̈. Since

∣∣R̈′ADZ̈R̈
∣∣ ≤ maxi≤nHZ̈,ii

(
R̈′AR̈A + R̈′R̈

)
the

conclusion follows from the arguments for ijive1 above.

(iii) For ujive, equation (52) follows from Lemma E.3, which shows that
1
r̃n
RAGujiveR = 1

r̃n
R̃′AR̃ +

op (1). Remember that E [ (ζ, η)Gujiveη|W,Z] = 0, since Gii = 0. We have
1
r̃n
‖(ζ, η)GujiveR‖ =
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1
r̃n
OP (‖GujiveR‖) = OP

(
r̃
−1/2
n

)
= oP (1), since ‖GujiveR‖ =

∥∥(I −DW )−2 R̈
∥∥ =

∣∣R̈′ (I −DW )−2 R̈
∣∣1/2

.w.p.a.1

∣∣R̈′R̈∣∣1/2 = r̈
1/2
n . Then, using part (i) we have

1
r̃n
‖(ζ, η)GujiveR‖ = OP

(
1
r̃n

√
r̃n + L

n

)
=

oP (1) . Also,
1
r̃n
‖(ζ, η)Gujiveη‖ = oP (1) by Lemma D.1 and equations (20), since ‖Gujive‖F .w.p.a.1

(K + L)1/2 = o (r̃n).

This veri�es Assumption 2 (ii) and (iii), that r̈n/r̃ = 1 + oP (1), and that βC,G − βU,IA94 = oP (1)

for all of the considered estimators. �

Proof of Theorem 5.4:

1. First, we show that Assumption 5 holds. Indeed, by Lemma F.7, maxi≤n r̃
−1/2
n

∣∣R̈i − R̃i∣∣ = oP (1),

and hence,

∣∣En [R̈4
i

]
− En

[
R̃4
i

]∣∣ . maxi≤n
∣∣R̈i − R̃i∣∣×En [1 +

∣∣R̃i∣∣3] = op (
√
r̃n) by the LLN. Thus,

by Theorem 5.2 the conditions of Theorem 5.3 hold w.p.a.1. Let

κn = (VC + VMW)−1/2
, αn = (ΩC + ΩMW)−1/2 .

By Lemma F.1, κn/αn
p→ 1. Then, the conclusion follows from Lemma F.3 with A = β̂, βC,n = βC,G,

βU = βU,G, and σ2
β = ΩE. �

Lemma E.1. Suppose R′AGR = R̃′AR̃ + SA,n + op

(
r̃

1/2
n

)
, where E [SA,n] = o (r̃n), and V [SA,n] =

o (r̃n), for A ∈ {X,Y } . Suppose E
[{(

R̃2
Y i + R̃2

i

)
R̃2
i

}1+δ
]
. E

[
R̃2
i

]1+δ
. Then, for any s ∈ R and

c ∈ R, ∣∣∣E [exp
{
is
√
r̃n (βC,G − βU,G)

}]
→ e−s

2ΩE/2
∣∣∣→ 0, and

P
(√

r̃n (βC,G − βU,G) < c
)
− P (N (0,ΩE) < c)→ 0, where

βU,G ≡
E
[
R̃Y iR̃i

]
+ E [SY,n] /rn

E
[
R̃2
i

]
+ E [SX,n] /rn

, ΩE =
E
[
(R̃∆i − βU,GR̃i)2R̃2

i

]
E
[
R̃2
i

] .

Proof. Since SA,n = E [SA,n] + op

(
r̃

1/2
n

)
, R̃′Y R̃ = Op (r̃n), and R̃′R̃ = r̃n +Op

(
r̃

1/2
n

)
, we have

βC,G =
R̃′Y R̃/rn + E [SY,n] /rn + op

(
r̃
−1/2
n

)
R̃′R̃/rn + E [SX,n] /rn + op

(
r̃
−1/2
n

)
= βU,G −

(
R̃Y − βU,GR̃

)′
R̃/rn + E [SY,n − βU,GSX,n] /rn + op

(
r̃−1/2
n

)
.

The conclusion of the Lemma now follows from

E
[(
R̃Y − βU,GR̃

)′
R̃/rn + E [SY,n − βU,GSX,n] /rn

]
= 0,
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Lyapunov CLT, and

V
[
r̃−1/2
n

(
R̃Y − βU,GR̃

)′
R̃
]

=
E
[(
R̃∆i − βU,GR̃i

)2
R̃2
i

]
E
[
R̃2
i

] =
E
[(
R̃Y i − βU,IA94R̃i

)2
R̃2
i

]
E
[
R̃2
i

] (1 + o (1)) .

E.1 Unconditional Expansions of Estimators

Lemma E.2. Suppose

(i) L4 log2 L = o (n3).

(ii) ‖Wi‖ ≤ C
√
L.

(iii) E
[
R̃2
Y i + R̃2

i

∣∣Wi

]
+ E

[
R̃4
Y i + R̃4

i

∣∣Wi

]1/2
≤ CE

[
R̃2
i

]
a.s.

(iv) E
[{(

R̃2
Y i + R̃2

i

)
R̃2
i

}1+δ
]
. E

[
R̃2
i

]1+δ
.

(v) λψ,n/n
3 = o (1).

Then,

R′AGijive1R = R′AGtslsR = R̃′AR̃+ SA,n + op
(
r̃1/2
n

)
, with SA,n ≡ E

[
R̃AiR̃i ‖ψi‖2

]
.

Proof. 1. Write R′YGtslsR = R̃′Y (I −HW ) R̃ = R̃′Y R̃ − R̃′YDW R̃ − R̃′Y (HW −DW ) R̃. We will

show that

R̃′YDW R̃ = E
[
R̃Y iR̃i ‖ψi‖2

]
+ op

(
r̃1/2
n

)
, (53)

R̃′Y (HW −DW ) R̃ = op
(
r̃1/2
n

)
. (54)

2. We use Lemma D.1 to establish equation (54), taking Zn = W , P = r̃
−1/2
n (HW −DW ), u =

E
[
R̃2
i

]−1/2
R̃Y , v = E

[
R̃2
i

]−1/2
R̃, and s = t = 0. By the triangle inequality ‖HW −DW ‖F ≤ 2

√
L,

so r̃
−1/2
n R̃′Y (HW −DW ) R̃ = Op

(√
E
[
R̃2
i

]
L/n

)
= op (1).

3. Let ρi ≡ E
[
R̃Y iR̃i

∣∣Wi

]
, then E

[
R̃′YDW R̃

∣∣W ] =
∑

i ρiHW,ii and

V
[
R̃′YDW R̃

∣∣W ] =
∑
i

V
[
R̃Y iR̃i

∣∣Wi

]
H2
W,ii

≤
∑
i

(
E
[
R̃2
Y iR̃

2
i

∣∣Wi

]
+ E

[
R̃Y iR̃i

∣∣Wi

]2)
H2
W,ii

. sup
w

(
E
[
R̃4
Y i + R̃4

i

∣∣Wi = w
]

+ E
[
R̃2
Y i + R̃2

i

∣∣Wi = w
]2)∑

i

H2
W,ii

. E
[
R̃2
i

]2∑
i

H2
W,ii,
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where the last equality follows by condition (iii). Condition (ii) and Lemma F.5 imply that w.p.a.1

∑
i

H2
W,ii ≤

(
max
i≤n

1

n
W ′i Σ̂

−1
WWWi

)∑
i

HW,ii ≤ CL2/n.

Hence r̃−1
n V

[
R̃′YDW R̃

∣∣W ] . E [R̃2
i

]
L2/n2 = o (1) and

R̃′YDW R̃ =
∑
i

ρiHW,ii + op
(
r̃1/2
n

)
. (55)

4. Note thatHW = Hψ , and let S ≡ 2I−Σ̂ψψ be an approximate inverse of Σ̂ψψ . Then

∥∥Σ̂−1
ψψ − S

∥∥
λ
≤∥∥I − Σ̂ψψ

∥∥2

λ

∥∥Σ̂−1
ψψ

∥∥ = Op (L logL/n), where the last equality follows by Lemma F.5. Then

∑
i

ρiHW,ii =
∑
i

ρiHψ,ii =
1

n

∑
i

ρiψ
′
iΣ̂
−1
ψψψi =

1

n

∑
i

ρiψ
′
iψi +A1n −A2n, (56)

where

A1n ≡
1

n

∑
i

ρiψ
′
i

(
Σ̂−1
ψψ − S

)
ψi, A2n ≡

1

n

∑
i

ρiψ
′
i

(
I − Σ̂ψψ

)
ψi.

Here

|A1n| ≤
∥∥Σ̂−1

ψψ − S
∥∥
λ

1

n

∑
i

|ρi| ‖ψi‖2 =
∥∥Σ̂−1

ψψ − S
∥∥
λ

(
E
[
|ρi| ‖ψi‖2

]
+ op (1)

)
= Op

(L logL

n

(
E
[
R̃2
i

]
L
))
, (57)

where the last equality holds because E
[∣∣R̃Y iR̃i∣∣ ‖ψi‖2] . E [R̃2

i

]
L by conditions (ii) and (iii). Thus,

by condition (i), r̃
−1/2
n |A1n| = Op

(
E
[
R̃2
i

]1/2 L2 logL
n3/2

)
= op (1).

Next, let uij ≡ ρi ‖ψi‖2 + ρj ‖ψj‖2 − (ρi + ρj) (ψ′iψj)
2
. Then

A2n =
1

n2

∑
i

∑
j

{
ρi ‖ψi‖2 − ρi (ψ′iψj)

2
}

=
1

n
En
[
ρi
(
‖ψi‖2 − ‖ψi‖4

)]
+

1

n2

∑
i<j

uij = Op

(
E
[
R̃2
i

] L2

n

)
+

1

n2

∑
i<j

uij ,

where the last equality makes use of conditions (ii) and (iii). For the U-statistic term we haveE [uij ] = 0,

E[uij |ψj ] = E
[
ρi ‖ψi‖2

]
+ ρj ‖ψj‖2 − ψ′jE [ρiψiψ

′
i]ψj − ρj ‖ψj‖

2

= E
[
ρi ‖ψi‖2

]
− ψ′jE [ρiψiψ

′
i]ψj ,

V [uij ] = E
[
u2
ij

]
≤ 4E

[
ρ2
i

(
‖ψi‖2 − (ψ′iψj)

2
)2]

= 4E
[
ρ2
i

(
‖ψi‖4 + (ψ′iψj)

4
)]

. E
[
R̃2
i

]2 (
E
[
‖ψi‖4

]
+ E

[
(ψ′iψj)

4
])
. E

[
R̃2
i

]2 (
L2 + λψ,n

)
,
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and

V [E[uij |ψj ]] . E
[
R̃2
i

]2
L2.

By the formula for the variance of a U-statistic we have

V

[
1

n2

∑
i<j

uij

]
.

1

n
V [E[uij |ψj ]] +

1

n2
V [uij ] . E

[
R̃2
i

]2 ( 1

n
L2 +

1

n2
λψ,n

)
.

Combining these we have

A2n = Op

(
E
[
R̃2
i

] L2

n
+ E

[
R̃2
i

] L√
n

+
1

n
λ

1/2
ψ,n

)
= Op

(
r̃1/2
n

{
L4 + λψ,n

n3

}1/2
)

= op
(
r̃1/2
n

)
, (58)

where the last equality follows by conditions (i) and (v).

5. Combining equations (55)-(58) we obtain

R̃′YDW R̃ =
1

n

∑
i

ρi ‖ψi‖2 + op
(
r̃1/2
n

)
.

Here En
[
ρi ‖ψi‖2

]
= E

[
ρi ‖ψi‖2

]
+ Op

(
E
[
R̃2
i

]
L/
√
n
)

= E
[
ρi ‖ψi‖2

]
+ op

(
r̃

1/2
n

)
, and hence

equation (53) holds, which concludes the proof.

Lemma E.3. Suppose 1/C ≤ λmin (E [ψiψ
′
i]) ≤ λmax (E [ψiψ

′
i]) ≤ C , ‖ψi‖ ≤ C

√
L, with L logL =

o (n), W includes the constant, maxi≤nE
[
R̃2
Y i + R̃2

i

∣∣Wi

]
≤ Cr̃n/n and E [R2

Y i +R2
i ] ≤ C . Then

(RY , R)′GujiveR =
(
R̃Y , R̃

)′
R̃+ op (

√
r̃n).

Proof. By the invariance of the estimators to invertible linear transformations we can w.l.o.g. take

Wi = ψi. The conditions of the Lemma imply that maxi≤n (HW )ii = Op (L/n) = op (1), and

‖En [WiW
′
i ]‖λ ≤ C . It is su�cient to consider only RY = R̃Y +WθY :

R′YGujiveR = R′Y (I −DW )−1 R̈

= R̈′Y R̈+ R̃′YDW (I −DW )−1 R̈+ θ′YW
′DW (I −DW )−1 R̈

= T1 + T2 + T3.

Here, n−1/2 ‖(HW −DW )‖F = op (1), hence by Lemma D.1 withZn = W we have r̃
−1/2
n R̃′Y (HW −DW ) R̃ =

oP (1), and hence

T1 = R̈′Y R̈ = R̃′Y (I −DW ) R̃+ op

(√
r̃n

)
.

Likewise, since n−1/2
∥∥DW (I −DW )−1 (HW −DW )

∥∥
F

= op (1) we have

T2 = R̃′YDW (I −DW )−1 (I −HW ) R̃ = R̃′YDW (I −DW )−1 (I −DW ) R̃+ op

(√
r̃n

)
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= R̃′YDW R̃+ op

(√
r̃n

)
.

Thus, T1 + T2 = R̃′Y R̃+ op (
√
r̃n) .

Consider T3 = θ′YW
′DW (I −DW )−1HW R̃. Note that E [T3|W ] = 0 and

E
[
T 2

3

∣∣W ] . r̃n
n
θ′YW

′DW (I −DW )−1HW (I −DW )−1DWWθY .
r̃n
n
θ′YW

′DWHWDWWθY

=
r̃n
n2
θ′YW

′DWW Σ̂−1
WWW

′DWWθY .
r̃n
n2

(1 + op (1)) θ′Y (W ′DWW )
2
θY .

Here W ′DWW ≤ nmaxi≤n (HW )ii · En [WiW
′
i ], and ‖θY ‖ ≤ C since E [R2

Y i] ≤ C . Then,

E
[
T 2

3

∣∣W ] . r̃n
n2

(1 + op (1))

(
n ·max

i≤n
(HW )ii

)2

θ′YEn [WiW
′
i ]

2
θY

. r̃n (1 + op (1)) ·
(

max
i

(HW )ii

)2
.

Thus, T3 = op (
√
r̃n) if maxi≤nHW,ii → 0, which completes the proof.

Appendix F Auxiliary proofs for unconditional results

LemmaF.1. Suppose Assumption 4 holds,E
[
R̃4
i + R̃4

∆i

]
. %2

,E [η2
i + ν2

i |Qi] ≤ C , and |corr (ηi, νi|Qi)| ≤
C < 1. Then (

ṼC + ṼMW

r̃n

)−1

(ΩC + ΩMW)
p→ 1,

where

ṼC =
∑
i

[R̈2
i σ

2
ν,i + R̈2

∆iσ
2
η,i + 2R̈iR̈∆iσνη,i],

ṼMW =
∑
i 6=j

[(HZ̈)2
ijσ

2
η,jσ

2
ν,i + (HZ̈)ij(HZ̈)jiσνη,iσνη,j ],

ΩC =
1

%
E[(R̃iνi + R̃∆iηi)

2],

ΩMW =
1

r̃n
tr
(
E[ν2

i gig
′
i]E[η2

i gig
′
i] + E[νiηigig

′
i]

2
)
, gi ≡ E[Z̃iZ̃

′
i]
−1/2Z̃i.

Proof. First, consider ṼC:

1

r̃n
ṼC −

1

r̃n

∑
i

E[(R̃iνi + R̃∆iηi)
2|Q]

=
1

r̃n

∑
i

[
(
R̈2
i − R̃2

i

)
σ2
ν,i +

(
R̈2

∆i − R̃2
∆i

)
σ2
η,i + 2

(
R̈iR̈∆i − R̃iR̃∆i

)
σνη,i].
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Note that

∥∥R̈− R̃∥∥2
=
∥∥−HW R̃

∥∥2
= Op (%L)∥∥R̈+ R̃

∥∥2
=
∥∥(2I −HW ) R̃

∥∥2
= 4

∥∥R̃∥∥2
− 3R̃′HW R̃ = 4%+ oP (%) .

Then, for any bounded nonrandom ai, using the above bounds we have

En
[(
R̈2
i − R̃2

i

)
ai
]2
≤ En

[(
R̈i − R̃i

)2]
En

[(
R̈i + R̃i

)2
a2
i

]
.

1

n

∥∥R̈− R̃∥∥2
En

[(
R̈i + R̃i

)2]
= Op

(
%2L

n

)
,

and hence

1

r̃n

∑
i

(
R̈2
i − R̃2

i

)
σ2
ν,i = Op

(√
L

n

)
= op (1) .

Likewise,
1
r̃n

∑
i

(
R̈2

∆i − R̃2
∆i

)
σ2
η,i = op (1). Since 2

(
R̈iR̈∆i − R̃iR̃∆i

)
=
(
R̈i + R̈∆i

)2−(R̃i + R̃∆i

)2
−

{R̈2
i − R̃2

i } + {R̈2
∆i − R̃2

∆i}, by the same arguments we have
1
r̃n

∑
i σνη,i[R̈iR̈∆i − R̃iR̃∆i] = op (1).

Thus, we have shown that
1
r̃n
ṼC = 1

r̃n

∑n
i=1E[(R̃iνi + R̃∆iηi)

2|Qi] + op (1). Since V [E[(R̃iνi +

R̃∆iηi)
2|Qi]] . E

[
R̃4
i + R̃4

∆i

]
. %2

we have

1

r̃n
ṼC = ΩC + op (1) .

Here 1 . ΩC . 1. Then, by Lemma F.4

1

r̃n

(
ṼC + ṼMW

)
− (ΩC + ΩMW) = op (1) .

We make use of the following simple lemma.

Lemma F.2. Suppose r.v. ζn ≡ E [ |An|| Zn] satis�es (i) ζn → 0 w.p.a.1, and (ii) ζn is uniformly bounded

by a constant. Then E [ζn]→ 0.

Proof. W.l.o.g. 0 ≤ ζn ≤ 1. Suppose E [ζn] 6→ 0, i.e., ∃ε > 0 : E [ζn] ≥ ε for all large n. Together with

condition (ii) this implies that P [ζn ≥ ε] ≥ ε, which contradicts condition (i).

Lemma F.3. Suppose κn and βC,n are measurable w.r.t. Zn; αn, σβ , βU are nonrandom, σβ and βU are

bounded, and, as n→∞,

(i) For all s ∈ R, E [ exp {isκn(A− βC,n)}|Zn]− e−s2/2 → 0 w.p.a.1.

(ii) κn/αn = 1 + op(1) and αn →∞.

(iii) For all s ∈ R, E [exp {isαn (βC,n − βU)}]− e−s
2σ2
β/2 → 0.
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Then, (
1 + σ2

β

)−1/2
αn (A− βU)→d N (0, 1) .

Proof. Fix any s ∈ R, and let ∆Zn (s) ≡
∣∣E [eisκn(A−βC,n)|Zn

]
− E

[
eisαn(A−βC,n)|Zn

]∣∣
. Then ∆Zn (s) =∣∣E [(eis(κn−αn)(A−βC,n) − 1

)
eisαn(A−βC,n)

∣∣Zn]∣∣ ≤ E
[∣∣eis(1−αn/κn)κn(A−βC,n) − 1

∣∣∣∣Zn] = oP (1) .

Since characteristic functions are bounded, we have∣∣∣E [eisαn(A−βC,n)|Zn
]
− e−s2/2

∣∣∣ ≤ min
{

2,
∣∣∣E [eisκn(A−βC,n)|Zn

]
− e−s2/2

∣∣∣+ ∆Zn (s)
}

= min {2, op (1)} ,

and henceE
[
eisαn(A−βC,n)

]
−e−s2/2 = o (1), so by (iii),E

[
eisαn(A−βU)

]
= E

[
e−s

2/2eisαn(βC,n−βU)
]
+

o (1) = e−s
2(1+σ2

β)/2 + o (1).

Lemma F.4. Suppose

(i) ∃C : supq E [η4
i + ν4

i |Qi = q] ≤ C .

(ii) E [(ηi, νi) |Qi] = 0.

(iii) ∃C > 0 : 1/C ≤ λmin (ΣQQ) ≤ λmax (ΣQQ) ≤ C .

(iv)

∥∥Σ̂QQ − ΣQQ

∥∥
λ

= op (1).

(v) K + L = O (r̃n).

Then

1

r̃n

(
ṼMW − ṼMW

)
= op (1) ,

where

ṼMW =
∑
i 6=j

[(HZ̈)2
ijσ

2
η,jσ

2
ν,i + (HZ̈)ij(HZ̈)jiσνη,iσνη,j ],

ṼMW = tr
(
E
[
gig
′
iν

2
i

]
E
[
gig
′
iη

2
i

]
+ E [gig

′
iνiηi]

2
)
, gi ≡ Σ

−1/2

Z̃Z̃
Z̃i.

Proof. 1. Consider

Ṽab ≡
∑
i 6=j

H2
Z̈,ij

aibj , and Ṽab,2 ≡
∑
i,j

H2
Z̈,ij

aibj ,

for some bounded sequences ai and bi. First, by equation (50), HZ̈,ii = 1
n Z̈
′
iΣ̂
−1
Z̈Z̈
Z̈i . 1

n

∥∥Z̈i∥∥2
. κ

n

w.p.a.1. Then

∑
iH

2
Z̈,ii
|ai| . κ

n

∑
iHZ̈,ii = κ

nK w.p.a.1, and hence

∣∣Ṽab,2 − Ṽab∣∣ ≡ ∣∣∣∑iH
2
Z̈,ii

aibi

∣∣∣ .
Op (κnK) = op (r̃n). Thus, ∣∣ṼMW,2 − ṼMW

∣∣ = op (r̃n) ,

where, denoting ĝi ≡ Σ̂
−1/2

Z̈Z̈
Z̈i,

ṼMW,2 ≡
∑
i,j

H2
Z̈,ij

(
σ2
ν,iσ

2
η,j + σνη,iσνη,j

)
=

1

n2

∑
i,j

tr
(
Σ̂−1
Z̈Z̈
Z̈iZ̈

′
iΣ̂
−1
Z̈Z̈
Z̈jZ̈

′
j

(
σ2
ν,iσ

2
η,j + σνη,iσνη,j

))
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= tr
{

Σ̂−1
Z̈Z̈
En
[
Z̈iZ̈

′
iσ

2
ν,i

]
Σ̂−1
Z̈Z̈
En
[
Z̈jZ̈

′
jσ

2
η,j

]}
+ tr

{
Σ̂−1
Z̈Z̈
En
[
Z̈jZ̈

′
jσνη,j

]
Σ̂−1
Z̈Z̈
En
[
Z̈iZ̈

′
iσνη,i

]}
= tr

{
En
[
ĝiĝ
′
iσ

2
ν,i

]
En
[
ĝj ĝ
′
jσ

2
η,j

]}
+ tr

{
(En [ĝiĝ

′
iσνη,i])

2
}
.

2. For a random variable ξi with supq E [ξ2
i |Qi = q] uniformly bounded, let µξi ≡ E [ξi|Qi]. Then

−IK+L . − sup
q
E [ |ξi||Qi = q]E [QiQ

′
i] . E [QiQ

′
iξi] . sup

q
E [ |ξi||Qi = q]E [QiQ

′
i] . IK+L,

where the inequalities are in the matrix sense. Thus, ‖E [QiQ
′
iξi]‖λ . 1, ‖E [QiQ

′
iξi]‖F .

√
K + L,

and by Lemmas F.5 and F.6,

∥∥En [Z̈iZ̈ ′iµξi]− E [Z̃iZ̃ ′iξi]∥∥F ≤ Op (1) ‖En [QiQ
′
iµξi]− E [QiQ

′
iξi]‖F + op

(√
K + L

)
≤ Op

(
n−1/2 (K + L)

)
+ op

(√
K + L

)
= op

(√
K + L

)
. (59)

Therefore,

∥∥En [Z̈iZ̈ ′iµξi]∥∥F = Op
(√
K + L

)
. Also, by Lemma F.6 and conditions (iii) and (iv),

∥∥Σ̂−1
Z̈Z̈

∥∥
λ
≤ C w.p.a.1. (60)

Then

‖En [ĝiĝ
′
iµξi]− E [gig

′
iξi]‖F ≤ S1,n + S2,n, where (61)

S1,n ≡
∥∥∥Σ̂
−1/2

Z̈Z̈
E
[
Z̃iZ̃

′
iξi
]

Σ̂
−1/2

Z̈Z̈
− Σ

−1/2

Z̃Z̃
E
[
Z̃iZ̃

′
iξi
]

Σ
−1/2

Z̃Z̃

∥∥∥
F
,

S2,n ≡
∥∥∥Σ̂
−1/2

Z̈Z̈

(
En
[
Z̈iZ̈

′
iµξi

]
− E

[
Z̃iZ̃

′
iξi
])

Σ̂
−1/2

Z̈Z̈

∥∥∥
F
.

Note that ‖E [gig
′
iξi]‖λ . 1.

For symmetric K ×K matrices A, Â, S, the following inequality holds

∥∥Â′SÂ−A′SA∥∥
F
≤
(
2 ‖A‖λ +

∥∥Â−A∥∥
λ

)√
K ‖S‖λ

∥∥Â−A∥∥
λ
.

Taking Â = Σ̂
−1/2

Z̈Z̈
, A = Σ

−1/2

Z̃Z̃
, and S = E

[
Z̃iZ̃

′
iξi
]

and applying the inequality to term S1,n we

obtain that

S1,n .w.p.a.1

√
K
∥∥∥Σ̂
−1/2

Z̈Z̈
− Σ

−1/2

Z̃Z̃

∥∥∥
λ

= op
(√
K
)
, (62)

where we use equation (60) and condition (iii).

Since ‖AB‖F ≤ ‖A‖λ ‖B‖F for any symmetric A, B. Using equations (59) and (60) we obtain

S2,n ≤
∥∥∥Σ̂
−1/2

Z̈Z̈

∥∥∥2

λ

∥∥En [Z̈iZ̈ ′iµξi]− E [Z̃iZ̃ ′iξi]∥∥F = op
(√
K + L

)
. (63)

60



Together, equations (59), (61)–(63) imply

‖En [ĝiĝ
′
iµξi]− E [gig

′
iξi]‖F = op

(√
K + L

)
. (64)

3. For any conformable real matrices

tr
{
M̂1M̂2 −M1M2

}
≤
∥∥M̂1 −M1

∥∥
F

(
‖M2‖F +

∥∥M̂2 −M2

∥∥
F

)
+ ‖M1‖F

∥∥M̂2 −M2

∥∥
F
.

Thus,

∣∣tr{(En [ĝiĝ′iσ2
ν,i

]) (
En
[
ĝj ĝ
′
jσ

2
η,j

])
− E

[
gig
′
iν

2
i

]
E
[
gig
′
iη

2
i

]}∣∣
≤
∥∥En [ĝiĝ′iσ2

ν,i

]
− E

[
gig
′
iν

2
i

]∥∥
F

(∥∥E [gig′iη2
i

]∥∥
F

+
∥∥En [ĝj ĝ′jσ2

η,j

]
− E

[
gig
′
iη

2
i

]∥∥
F

)
+
∥∥En [ĝj ĝ′jσ2

η,j

]
− E

[
gig
′
iη

2
i

]∥∥
F

∥∥E [gig′iν2
i

]∥∥
F

(65)

and∣∣∣tr{En [ĝiĝ
′
iσνη,i]− E [gig

′
iνiηi]

2
}∣∣∣

≤ 2 ‖En [ĝiĝ
′
iσνη,i]− E [gig

′
iνiηi]‖F ‖E [gig

′
iνiηi]‖F + ‖En [ĝiĝ

′
iσνη,i]− E [gig

′
iνiηi]‖

2
F .

Since ‖E [gig
′
iη

2
i ]‖F .

√
K , ‖E [gig

′
iν

2
i ]‖F .

√
K , ‖E [gig

′
iνiηi]‖F .

√
K , and K + L . r̃n we have

1

r̃n

(
ṼMW,2 − ṼMW

)
= op

( 1

r̃n

√
K (K + L)

)
= op (1) .

Lemma F.5. Let Ai ∈ Rma , Bi ∈ Rmb be i.i.d. (for each n) vectors with ma and mb allowed to change

with n. Suppose for some C and all n, λmax (E [AiA
′
i]) ≤ C and λmax (E [BiB

′
i]) ≤ C . Then∥∥Σ̂AB − ΣAB

∥∥
F

= OP

(
E
[
‖Ai‖2 ‖Bi‖2

]1/2
/
√
n
)
. (66)

If in addition (iii) ∃C : ‖Ai‖ ≤ C
√
ma, ‖Bi‖ ≤ C

√
mb for all n, and m log (m) /n = o (1) for

m ≡ mA +mB then

∥∥Σ̂AB − ΣAB

∥∥
λ

= OP
(√

m log (m) /n
)
, (67)∥∥Σ̂AB − ΣAB

∥∥
λ

a.s.→ 0. (68)

Proof. Equation (66) is easily veri�ed by a direct calculation. Equation (67) follows from Theorem 1.6

in Tropp (2012).

Lemma F.6. Suppose ξi and ξ̂i are some scalar random variables, and
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(i) ϕθ̂Z ,λ = o (1).

(ii) ∃C > 0 : 1/C ≤ λmin (ΣQQ) ≤ λmax (ΣQQ) ≤ C .

Then

∥∥En [Z̈iξ̂i]− E [Z̃iξi]∥∥ = Op (1)
∥∥En [Qiξ̂i]− E [Qiξi]

∥∥+ op (1) ‖E [Qiξi]‖ ,∥∥En [Z̈iZ̈ ′iξ̂i]− E [Z̃iZ̃ ′iξi]∥∥N = Op (1)
∥∥En [QiQ′iξ̂i]− E [QiQ

′
iξi]
∥∥
N

+ op (1) ‖E [QiQ
′
iξi]‖N ,

where norm ‖·‖N can be Frobenius or spectral norm.

Proof. We prove only the second statement, the proof of the �rst statement is analogous. Since Z̈i =(
IK ,−θ̂′Z

)
Qi, and Z̃ ′i = (IK ,−θ′Z)Qi write

∥∥En [Z̈iZ̈ ′iξ̂i]− E [Z̃iZ̃ ′iξi]∥∥N (69)

=
∥∥∥(IK ,−θ̂′Z)En [QiQ′iξ̂i] (IK ,−θ̂′Z)′ − (IK ,−θZ)′E [QiQ

′
iξi] (IK ,−θ′Z)

′
∥∥∥
N
≤ T1 + T2,

where

T1 ≡
∥∥∥(IK ,−θ̂′Z) (En [QiQ′iξ̂i]− E [QiQ

′
iξi]
) (
IK ,−θ̂′Z

)′∥∥∥
N
,

T2 ≡
∥∥∥(IK ,−θ̂′Z)E [QiQ

′
iξi]
(
IK ,−θ̂′Z

)′ − (IK ,−θ′Z)E [QiQ
′
iξi] (IK ,−θ′Z)

′
∥∥∥
N
.

Consider term T1. Since ‖AB‖N ≤ ‖A‖λ ‖B‖N , we have

T1 ≤
∥∥En [QiQ′iξ̂i]− E [QiQ

′
iξi]
∥∥
N

∥∥(IK ,−θ̂′Z)∥∥2

λ
.

By the triangle inequality,

∥∥(IK ,−θ̂′Z)∥∥λ ≤ ‖(IK ,−θ′Z)‖λ+
∥∥θ̂Z − θZ∥∥λ ≤ (1 + ‖θZ‖λ)+

∥∥θ̂Z − θZ∥∥λ .
Since Z ′i = W ′iθZ + Z̃ ′i with E

[
WiZ̃

′
i

]
= 0 we have E [ZiZ

′
i] = θ′ZE [WiW

′
i ] θZ + E

[
Z̃iZ̃

′
i

]
≥

θ′ZΣWW θZ ≥ λmin (ΣWW ) θ′ZθZ , where the inequalities are in the matrix sense. From condition (ii)

it follows that λmax (E [ZiZ
′
i]) ≤ C and λmin (ΣWW ) ≥ C > 0, and hence the above implies that

‖θZ‖λ ≤ C . Thus,

‖(IK ,−θ′Z)‖λ ≤ C, (70)

and hence by condition (i), T1 = Op (1)
∥∥En [QiQ′iξ̂i]− E [QiQ

′
iξi]
∥∥
N
.

Next, consider T2 in equation (69). For matrices Â =
(
IK ,−θ̂′Z

)′
, A′ = (IK ,−θ′Z)′, and S =

E [QiQ
′
iξi] we have

T2 =
∥∥Â′SÂ−A′SA∥∥

N
≤
(
2 ‖A‖λ +

∥∥Â−A∥∥
λ

)
‖S‖N

∥∥Â−A∥∥
λ

=
(
2 ‖(IK ,−θ′Z)‖λ +

∥∥θ̂Z − θZ∥∥λ) ‖E [QiQ
′
iξi]‖N

∥∥θ̂Z − θZ∥∥λ .
Then, by condition (i) and equation (70), T2 = op (1) ‖E [QiQ

′
iξi]‖N , which concludes the proof.
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Lemma F.7. Let A ∈ {X,Y,∆}, and suppose ‖Wi‖ ≤ C
√
L, L logL = o (n), and E

[
‖Wi‖2 R̃2

Ai

]
≤

CL%. Then

max
i≤n

1√
r̃n

∣∣R̈Ai − R̃Ai∣∣ = Op

(L
n

)
= op (1) .

Proof. From R̈− R̃ = −HW R̃ it follows that

max
i≤n

∣∣R̈Ai − R̃Ai∣∣ = max
i≤n

∣∣∣∣∣∑
j

HijR̃Aj

∣∣∣∣∣ = max
i≤n

∣∣W ′i Σ̂−1
WWEn

[
WiR̃Ai

]∣∣
≤ C
√
L
∥∥Σ̂−1

WWEn
[
WiR̃Ai

]∥∥ . (1 + op (1))
√
L
∥∥En [WiR̃Ai

]∥∥ = Op

(
L
√
%

√
n

)
.

and hence maxi≤n
1√
r̃n

∣∣R̈Ai − R̃Ai∣∣ = Op
(
L
n

)
= op (1).
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