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Abstract

How important are falling transport costs for patterns of population and income
growth since 1000 CE? To answer this question, I build a quantitative dynamic
spatial model with an agricultural and a non-agricultural sector, and endogenous
fertility, migration, innovation and technology diffusion. In this model there exists
an endogenous threshold for global transport costs, which is characterized by a
simple network statistic. If transport costs are above this threshold, the world
converges to a Malthusian steady state. If transport costs fall below this threshold,
the world economy enters a process of sustained growth in population and income
per capita. Taking this model to the data, I divide the globe into 2,249 3° by
3° quadrangles. I assign each location an agricultural potential determined by
exogenous climate and soil characteristics. I infer bilateral transport costs by
calculating the cheapest route between each pair of locations given the natural
placement of rivers, oceans and mountains. I calibrate the model so that in the
year 1000 the world is in a Malthusian steady state. I then drop the cost of
water and land transport exogenously in a way that is consistent with historical
evidence and track the endogenous evolution of population and income until the
year 2000. Qualitatively, this exercise generates slow but accelerating growth in
both population and income per capita for the first 800 years, an abrupt takeoff
in growth after 1800 CE with Europe in the lead, and a large increase in the
dispersion of income per capita after 1800 CE. Quantitatively, the model accounts
for 55% of the variation in population density across 10 major regions in 1000 CE,
44% of the variation in income per capita across regions in 1800 CE, and is able
to generate 43% of the overall dispersion in income per capita in 2000 CE.
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1 Introduction

Over the past 1000 years, successive improvements in transportation technology have

given people in every part of the world progressively easier access to goods, ideas, and

people from every other part of the world. During this same period, the world has ex-

perienced gradually accelerating growth in population, and an abrupt increase in income

per capita growth, first in Europe and then in other regions, after 1800 CE. This latest

burst of growth is the proximate cause of the distribution of income across regions we see

in the world today, with the great distance between rich and poor countries and all the

challenges and opportunities this entails.

How big is the role of falling transport costs in these great shifts of population and

income? Why did the growth rate of income per capita increase abruptly around 1800

CE, and why in some places and not in others? These are the questions I address in this

paper. To that end, I build a quantitative dynamic spatial model, with an agricultural

and a non-agricultural sector. In this model, I allow both population, through fertility

and migration, and knowledge, through innovation and diffusion, to be fully endogenous.

Bilateral transport costs between each pair of locations determine the cost of trade, the

cost of migration, and the speed of the diffusion of ideas. These shape the networks of

trade, migration and technology diffusion through which outcomes in distinct locations

are linked. Productivity in the agricultural sector depends on exogenous factors such

as climate and soil characteristics, while the productivity of the non-agricultural sector

depends on access to stocks of ideas.

I find that this model implies the existence of a threshold for global transport costs,

which can be characterized in terms of a simple network statistic. If transport costs are

above this threshold, population growth drives down income per capita, and the world

converges to a Malthusian steady state with no growth. If transport costs fall below this

threshold, population growth leads to a structural transformation from the agricultural to

the non-agricultural sector, and the world economy enters a process of sustained growth

in population and income per capita. In general, a universal reduction in transport costs

will impact some locations more than others, so the take-off into growth may occur in a

subset of locations at first. Trade and technology diffusion imply that all locations will

start to catch up eventually.

Taking this model to the data, I divide the world into 3° by 3° quadrangles. I exclude

quadrangles that contain no land or that are in Antarctica, leaving 2,249 habitable loca-

tions. I assign each location an agricultural potential based on available evidence from

ecological studies. I infer bilateral transport costs by calculating the cheapest route be-

tween each pair of locations, given the natural placement of rivers, oceans and mountains,

and given the cost of traversing each of these topographical features.

I then conduct a quantitative exercise in two stages. First, I calibrate the handful of



parameters that are not already taken from historical data or tied to specific targets so

that model predictions for population density in all of the 2,249 locations match the data

for 1000 CE as closely as possible, under the assumption that the world is in a Malthusian

steady state. I then reduce the costs of water and land transport gradually, in a way that

is consistent with historical evidence, and track the endogenous evolution of population

and income in 50 year periods until 2000 CE.

Qualitatively, this exercise is able to match all of the salient features of the data. The

model generates slow but accelerating growth for the first 800 years, an abrupt takeoff

around 1800 CE with Europe in the lead, and a large increase in the dispersion of income

per capita across regions after 1800 CE.

Quantitatively, the model is able to account for most of the variation in population

density across 10 major regions in 1000 CE–55% in all. China, India and Europe were

more densely populated than other regions because they had more land with better agri-

cultural potential better-linked by water transport. Europe is particularly well-connected

to water transport, and so it benefits from the water-biased transport cost reductions that

occur before 1750 CE. This is why Europe starts growing first, and is what allows the

model to account for nearly half (44%) of the variation in income per capita across regions

in 1800 CE, the first year for which there exists meaningful data. The model tracks the

sharp rise of dispersion in the distribution of income per capita during the 19th century

almost perfectly, and ultimately generates 43% of the overall dispersion across regions in

the 2000 CE.

There are also some patterns that the model is not able to match. In particular, the

model does not predict enough growth in the United States, Canada, Australia and New

Zealand after 1800 CE. Also, the model predicts too much convergence between Europe

and the rest of the world during the 20th century. I believe that these observations

indicate avenues for future research, and I discuss them in more detail in the conclusion

of the paper.

This study breaks new ground in a number of areas. To the best of my knowledge, it

is the first study to propose a theory of the take-off from stagnation to growth as a global

phenomenon dependent on a reduction in transport costs. It is related to the theory of

Desmet and Parente (2012), who examine the role of market size in the industrial revo-

lution. I build upon this study by considering the role of transport costs, and expanding

the analysis to a global scope. It is also related to Galor and Weil’s (2000) unified growth

theory. I build upon their study by considering the role of space, and by providing a

particular rationale for the relationship between technological progress and population

size that they propose. In my model, when transport costs are reduced, we might also say

that the effective population size has increased, as people living in different locations have

been brought effectively closer together. So when transport costs fall below the critical

level, we could also say that a “critical mass” of connected people has been created, not
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unlike the threshold population size which emerges from Galor and Weil’s model.2

This is also the first study to leverage available data on topography and exogenous

climate and soil characteristics in a quantitative model to assess their role in determining

the distribution of population and income in the world today. Prominent among previ-

ous efforts to assess the impact of geographical features on the distribution of population

and income are Henderson, Squires, Storeygard and Weil (2016) and Gallup, Sachs and

Mellinger (1999). I confirm the main conclusions of these studies in finding an association

between agricultural potential and high pre-modern population density, and between ac-

cess to water transport and modern growth, and propose and test quantitatively specific

mechanisms through which these features can have an impact. Also, these studies implic-

itly assume that the value of access to a river or to the coast is the same in every location

in the world, regardless of how far away or how wealthy potential trading partners are.

The method that I use, which, similar to Donaldson and Hornbeck (2016), calculates

distances to trading partners and determines the value of the trading connection using a

general equilibrium model, accounts better for this natural heterogeneity.

This study is also, to my knowledge, the first to allow for endogenous population

growth in a spatial setting. A recent study which analyzes the global distribution of

population and income using a spatial dynamic framework is Desmet, Nagy and Rossi-

Hansberg’s (2016). In contrast to my focus on understanding how we arrived at the

distributions of 2000 CE, they take these distributions as given, and run counterfactual

scenarios for the future. Population growth plays no role in their model. Another related

paper in this vein is that of Nagy (2017), which takes aggregate population and technology

growth in the 19th century United States as given, and seeks to explain their distribution

across space in the decades leading up to 1860.

This study is also related to the literature which has looked at the relationship be-

tween between market access and the global distribution of income. Redding and Venables

(2004) and Head and Mayer (2011) find important static effects, taking the current dis-

tribution of population and technology as given. The current study extends these efforts

by investigating the role of market access in determining these distributions. There have

also been a number of studies measuring the importance of market access within a single

country, such as Donaldson and Hornbeck (2016).

My paper is also related to efforts such as Alcalá and Ciccone’s (2004) and Pascali’s

(2016) to assess the impact of trade on growth. Pascali’s study is particularly related,

as he exploits heterogeneity in access to water transport in a similar fashion, although in

his case he uses it to construct an instrumental variable. Whereas studies in this strain

of literature have been primarily interested in establishing whether or not there is an

effect of trade on growth, I build on their insights by proposing a particular model of this

2Galor and Mountford (2008) also analyze the effect of increased trade on the divergence in income
per capita in modern times between the richest and poorest countries.
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relationship and assessing its performance quantitatively.

Similarly to this paper, Buera and Oberfield (2015) propose diffusion as a dynamic

gain from trade. I build upon their insights by modeling this mechanism in a spatial

setting and assessing its impact on growth over the last 1000 years quantitatively. Comin,

Dmitriev and Rossi-Hansberg (2013) propose a similar model of the diffusion of technology

across space, and show that it is consistent with observed patterns of technology diffusion

over the past 150 years. My setup differs that of Nagy (2017) and Desmet, Nagy and

Rossi-Hansberg (2016) in that I track to transmission of ideas to particular locations,

which can then themselves transmit the idea, as if it were a virus.

Finally, my study builds on that of Acemoglu, Johnson and Robinson (2005), who

document that western Europe’s higher rate of growth between 1500 and 1800 is almost

entirely due to the growth of a handful of countries on the Atlantic Ocean who were en-

gaged in substantial overseas trade. While Acemoglu and coauthors emphasize the role

of institutions in deciding which of the Atlantic traders were best able to take advantage

of their ocean access, my paper confirms and deepens the significance of the first fact,

by showing that falling water transport costs during this period benefited some loca-

tions more than others and can account quantitatively for a number of key patterns in

population and income growth.

The remainder of the paper is organized as follows. Section 2 presents the model.

Section 3 analyzes the long run outcomes of the model. Section 4 describes how I bring

the model to the data in a quantitative exercise. Section 5 presents and discusses the

results of the calibration of the initial 1000 CE steady state. Section 6 presents and

discusses the results of the simulation of the evolution of global population and income

per capita from 1000-2000 CE. Section 7 discusses possible extensions and concludes.

2 Theoretical framework

The basic building blocks are as follows. Time is discrete, and indexed by t. Each

model period is intended to represent a span of about 50 years. There exist a finite

number of discrete locations n, contained in the set N ≡ {1, 2, ..., n}. Each location, at

each point in time, is distinguished by three permanent, exogenous characteristics, and

two endogenous characteristics that evolve over time. The three exogenous, permanent

characteristics are λi > 0 for i ∈ N , the quantity of available land, αi ≥ 0 for i ∈ N ,

agricultural potential, and bilateral transport costs reflected in γij ∈ [0, 1] for i, j ∈ N .

The two endogenous, time-varying characteristics for are xi(t) ≥ 0 for i ∈ N , the number

of residents, and mi(t) ≥ 0 for i ∈ N , the stock of ideas.

Consumers are endowed with labor, from which they derive wage income, and value

goods and housing. There are many types of goods, and firms produce each one using

labor, land and other goods as inputs. There is one type of housing, and producing it re-
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quires land and goods. Housing production is more land-intensive than goods production,

and the demand for it increases the negative welfare effects of having many consumers

living in a single location.3

All the varieties of goods exist in a continuum, and are indexed between 0 and 1.

Among these, there are two basic categories or sectors. All of the goods indexed between

0 and A < 1 (the span [0, A]) are agricultural goods. All of the goods indexed between

A and 1 (the span (A, 1]) are non-agricultural goods.

All goods may be produced in all locations, but different locations are better at

producing some goods than others. This means that consumers and firms in different

locations can gain by trading with each other, each specializing in the type of production

they excel at.

Locations may also differ in their average suitability for producing agricultural and

non-agricultural goods. Average agricultural suitability is partly determined by the ex-

ogenous, time-invariant characteristics of each location which are summarized by agri-

cultural potential αi. This quantity is meant to represent all of the durable climatic and

geological characteristics that make some places respond more fruitfully to the efforts of

the farmer.

Average non-agricultural suitability does not directly depend on any fixed, exogenous

feature of a location. Instead it depends on the endogenous, time-varying stock of ideas,

mi(t). The way in which this stock evolves over time is as follows. Firms that produce

goods employ labor and land in innovation, which gives them an immediate, private

productivity boost. As an externality, this innovative effort also leads to the discovery of

new ideas. These ideas are added to local stock of ideas, and may also diffuse between

locations that are trading partners.

If the stock of ideas in a location is small, its overall productivity will be mostly

determined by its agricultural potential. But if the stock of ideas grows, the importance

of this exogenous characteristic will decline.

Trade is limited by the cost of transporting goods. Bilateral transport costs are

embodied in the parameters γij ∈ [0, 1], which each represent the fraction of goods sent

from i to j that arrive. It is assumed that transport within a location is costless (γii = 1)

and that the triangle inequality holds (γijγjk ≤ γik for ∀i, j, k). In the current section we

postpone the analysis of time-varying transport costs, and assume that transport costs

are constant over time.

Transport costs determine the trade opportunities available to consumers and firms

in each location. They also determine, according to simple functions, the strength of two

other types of bilateral links. These are the cost faced by consumers when migrating

between locations, and the probability that an idea invented in one location will spread

to another. Therefore, locations which have more trading opportunities will also learn

3Also known as congestion effects.
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about more new ideas, sooner, and be more easily reached by migrants.

Consumers are atomistic and live a single period. The number of consumers living

in each location, xi(t), is determined according to two processes. The first process is

fertility. For each consumer who lived in a location the previous period, a certain number

will be born there the current period. Á la Hansen and Prescott (2002), the fertility

rate is determined as a simple function of parents’ real income, which is a measure of

the abundance of goods and housing they enjoyed. If goods and housing are very scarce,

net fertility will be negative and the local population will shrink. If they are abundant

enough, it will be positive and the local population will grow.

The second process determining the distribution of consumers across locations is mi-

gration. Given their birthplace, each consumer chooses either that location or another

in which to work and consume. They will tend to move towards locations where there

is a greater abundance of goods and housing, but to do so they must pay a migration

cost. They also have idiosyncratic preferences for specific locations, which may cause a

minority of individuals to choose locations which are less desirable in terms of real income

and migration cost.

In the following subsections, I will specify each component of the framework in greater

detail. I will also derive the equilibrium conditions and laws of motion that jointly

determine current real income in each location, population growth, and the invention

and diffusion of technology over time.

Many of the choices and processes that will be described take place in the context of

a single time period. Therefore, for simplicity, I will from here on omit t-indices except

where doing so introduces ambiguity.

2.1 Consumers

Consumers are atomistic and live a single period. The number of consumers born in

each location at time t is denoted by xi,b(t), hereafter referred to as xi,b, except where

ambiguous. The first decision they must make is where to live, work and consume. The

number of consumers choosing each location at time t is denoted by xi(t), hereafter

referred to as xi, except where ambiguous.

A consumer born in j ∈ N chooses a location i ∈ N in which to live based on three

factors. First, their beliefs about the real income they can enjoy in each location, u∗i .

Second, moving costs between their birthplace and each destination. It is assumed that in

order to move, consumers must give up a certain fraction of the real income they will earn

at their destination. The inverse moving cost, ϑji ∈ [0, 1], represents the fraction of real

income that they get to keep. Third, consumers have random idiosyncratic preferences

for each potential destination, represented by µi ∼ Fi(µ), drawn independently across

individuals and locations from cumulative distribution function Fi(.).
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Formally, the location choice problem of a consumer born in j ∈ N is given by

max
i∈N
{µiϑjiu∗i } |j ∈ N (1)

In equilibrium, consumers’ ex-ante beliefs must be true, and coincide with ex-post

real income, u∗i = ui. Inverse moving costs are a simple function of transport costs,

ϑij = ζm,0γ
ζm,1
ij ,

for some ζm,0 ∈ [0, 1] and ζm,1 ≥ 0. Idiosyncratic preference shocks are drawn from a

Fréchet distribution, so that

Fi(µ) = e−µ
−κ
,

for κ > 1.

Upon arriving in their destination i ∈ N , the choices consumers make of how much to

consume of housing and of each good may be characterized in terms of a representative

consumer. The representative consumer’s real income is determined by their consumption

of goods and housing as given by

ui =

(∫ 1

0

ci,ldl

)α
ρ

h1−α
i , (2)

where ci,l represents the quantity consumed of good l ∈ [0, 1], and hi represents the

quantity of housing consumed. Parameter α ∈ [0, 1] determines the importance of housing

relative to goods consumption, and ρ ∈ [0, 1] determines the elasticity of substitution

between different goods.

Each consumer is endowed with 1 unit of labor, which they provide inelastically to

the local market in exchange for prevailing wage wi. It assumed that the rights to land

are distributed equally among all residents of location i, so that each owns a quantity λi
xi

.

Given land rents pi,λ, each consumer’s income is equal to wi + pi,λ
λi
xi

. The representative

consumer’s budget constraint is then given by∫ 1

0

pi,lci,ldl + pi,hhi = wi + pi,λ
λi
xi
, (3)

where pi,l represents the local equilibrium price of good l ∈ [0, 1] and pi,h represents the

equilibrium price of housing.

Given i, then, the problem of the consumer is maximize (2) subject to (3).
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2.2 Goods Firms

Firms may enter freely into the production of any good k ∈ [0, 1] in any location

i ∈ N with zero fixed cost. Let us assume for the moment, as we will later confirm, that

the problem of the producers of each good in each location may be characterized in terms

of a representative producer.

The suitability of each location i, for producing each good k ∈ [0, 1], at each point in

time t, is determined by productivity shock si,k(t), hereafter referred to as si,k, which is

drawn independently across locations, goods, and time periods. Each location has two dis-

tributions of productivity shocks, one for agricultural goods, and one for non-agricultural

goods. For agricultural goods, k ∈ [0, A], si,k ∼ Gi,a(s) with Fréchet cumulative distribu-

tion function Gi,a(.) being given by

Gi,a(s) = e−λiα
χ
i s
−χ
, (4)

for χ > 1. For non-agricultural goods, k ∈ (A, 1], si,k ∼ Gi,n(s, t), with

Gi,n(s, t) = e−λimi(t)
χs−χ , (5)

where mi(t) represents the time-t stock of ideas in location i and will hereafter be referred

to as mi. It is necessary to factor land area into the expectations of these distributions,

because fundamentally they are meant to represent spatial variation in suitability for

producing different goods, and locations in this model are allotted different amounts of

space. The properties of the Fréchet distribution mean that Gi,a(.) and Gi,n(.) can be

derived by assuming that a shock for each good is drawn for each tiny piece of land from

G∗i,a(s) = e−α
χ
i s
−χ

and G∗i,n(s) = e−m
χ
i s
−χ

, and that the best draws are used. Gi,a(.) and

Gi,n(.) then reflect the maximum of draws from G∗i,a(.) and G∗i,n(.) across the λi units of

land available in i.

After observing si,k, the first choice made by the representative producer of k in i

is how much to innovate. By employing labor bi,k,I and land li,k,I , the firm is able to

improve its own efficiency in the current period. Final efficiency is given by

ŝi,k = si,k
(
bηi,k,I l

1−η
i,k,I

)κ
, (6)

where η, κ ∈ [0, 1].

Then, taking ŝi,k as given, each firm chooses the quantity of labor, land and interme-

diate inputs to employ in production. The quantity produced qi,k is determined according

to

qi,k = ŝi,k
(
bηi,kl

1−η
i,k

)1−σ−κ
(∫ 1

0

zρi,k,ldl

)σ
ρ

, (7)
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where bi,k, li,k and zi,k,l for l ∈ [0, 1] represent the quantities of labor, land and intermedi-

ate inputs employed, and σ ∈ [0, 1−κ] is a parameter. Note that the production function,

including the investment in innovation, exhibits constant returns to scale overall. This

allows the representative firm characterization, and, together with the assumption of free

entry and zero fixed cost, implies that firms must earn zero profits in equilibrium.

As firms must earn zero profits in the end, the firm’s profit maximization problem can

be fully represented as one of cost minimization, taking prices and the market-clearing

quantity qi,k as given. Formally, the problem of the firm is

min
bi,k,I ,bi,k,li,k,I ,li,k,zi,k,l

{
wi (bi,k,I + bi,k) + pi,λ (, li,k,I + li,k) +

∫ 1

0

pi,lzi,k,ldl

}
, (8)

subject to (7) and (6).

The zero-profit condition implies that in equilibrium all firms must have a cost of

production inversely related to their efficiency shock and equal to Pi
si,k

, where Pi is defined

as the efficiency price of a unit of output in location i. When selling its output to a buyer

in some location j ∈ N , zero profits implies that the price charged will be Pi
si,kγij

, just

covering the costs of production and transport.

2.3 Housing Firms

Firms may also enter freely into the production of housing in any location with zero

fixed cost. The representative housing firm employs a quantity of land li,h and quantities

of intermediate inputs zi,h,l for l ∈ [0, 1] to produce a quantity of housing Hi according to

Hi =

(∫ 1

0

zρi,h,ldl

)ϕ
ρ

l1−ϕi,h . (9)

In equilibrium, the profits earned by this housing producer must be zero. Taking the

market-clearing quantity of housing Hi as given, the problem of the housing firm is

min
li,h,zi,h,l

{∫ 1

0

pi,lzi,h,ldl + pi,λli,h

}
(10)

subject to (9).

2.4 Market Equilibrium

When considering equilibrium outcomes in this economy, the first thing we need to

know is the vector of real incomes, ui for i ∈ N , which will result in a single period from

any given allocation of population and idea stocks. To that end, let us define a market

equilibrium as follows.
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Given resident populations xi and idea stocks mi, a market equilibrium is defined as

prices for goods, land, and labor, production decisions by goods firms and housing firms,

and consumption decisions by consumers, such that markets for goods, land and labor

clear, and all decisions are optimal.

As is shown in appendix A.3, these equilibrium conditions imply that real income in

location i depends on two key quantities. The first is population density, xi
λi

. The second

is a measure of location i’s trade access to highly productive locations, which we will call

market access. Market access is defined as Mi ≡

[∫ 1

0

(
Pi
pi,l

) ρ
1−ρ

dl

]χ 1−ρ
ρ

. In equilibrium

it is equal to the following weighted sum:

Mi = BM

[
A
∑
j∈N

(
Pi
Pj

)χ
γji

χαj + (1− A)
∑
j∈N

(
Pi
Pj

)χ
γji

χmj

]
. (11)

In the above equation, BM represents a constant equal to Γ
(

1− 1
χ

ρ
1−ρ

)χ 1−ρ
ρ

, where

Γ(.) denotes the gamma function. What (11) means is that market access is improved by

having low transport-cost access to locations that have high agricultural potential, large

stocks of ideas, and low costs of production.

Equilibrium real income as a function of population density and market access is given

by the following:

ui = Bu

(
λi
xi

)ν2
M

ν1
i , (12)

where

ν1 ≡
α + (1− α)ϕ

χ(1− σ)
,

ν2 ≡ 1− η[α + (1− α)ϕ],

and

Bu ≡ αα
(
σ

σ
1−σκ

κ
1−σ (1− σ − κ)

1−σ−κ
1−σ

)α+ϕ(1−α)
(
ϕ(1− η)

1− ϕ

)ϕ(1−α)
(1−Bg,λ)

1−α [ηBg,λ + 1− η]α

B
η[α+ϕ(1−α)]
g,λ

.

and Bg,λ = (1−η)(α+ϕ(1−α))
(1−ϕ)(1−α)+(1−η)(α+ϕ(1−α))

represents the constant equilibrium fraction of

land dedicated to goods production.

2.5 Evolution of population

Population evolves over time through two processes: fertility and migration. Following

Hansen and Prescott (2002), net fertility is assumed to be a simple function f(u) of
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parents’ real income. It is assumed that f(u) satisfies two properties: First, that if

real income is low enough, population growth is negative. Second, that as real income

increases without bound, that fertility approaches a finite positive limit. Formally, these

two conditions can be represented as lim
u→0

= 0, and lim
u→∞

= ū, for some ū ≥ 1.

The quantity of consumers born in a location, as a function of the number of consumers

who lived there the previous period, is given by

xi,b(t) = xi(t− 1)f (ui(t)) (13)

Migration occurs as the result of consumer choices of where to live, given their place

of birth. The properties of the Fréchet distribution allow the following characterization

of the fraction of consumers who will choose to move from i to j:

lji =
ϑκ
jixi,bu

κ
i∑

k∈N
ϑκ
jkxk,bu

κ
k

(14)

The number of consumers living in i as a function of the numbers of consumers born

in every location is then equal to

xi =
∑
j∈N

ljixj,b (15)

Combining (13) and (15) yields the following law of motion for xi(t):

xi(t) =
∑
j∈N

lji(t)xj(t− 1)f (uj(t)) (16)

2.6 Evolution of technology

Technological progress happens as a result of the resources that firms spend in inno-

vation. Each firm benefits privately from its innovative effort by through an immediate

increase in productivity. As an externality, the labor bi,k,I and land li,k,I that each firm

dedicates to innovation leads to the discovery of a number of ideas equal in measure to

bηφi,k,I l
1−ηφ
i,k,I . The parameter φ > 0 determines whether returns to density of innovative ac-

tivity are increasing, decreasing, or constant. Aggregating across firms, the total number

of ideas discovered in location i at time t is given by

m̂i(t) = Bmxi(t)
ηφλ1−ηφ

i , (17)

where Bm ≡ B1−ηφ
g,λ

κ
1−σ . These ideas are added to the location-i stock of ideas at time

t+ 1.

Each period, any idea already in the stock of ideas at the start of period t in location
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i has a probability θ̄ij of diffusing to each other location j. If the idea diffuses and is

not already known in location j, then it is added to location j’s stock of ideas at time

t+ 1. The diffusion probabilities are determined as a simple function of transport costs,

according to

θ̄ij = γζdij (18)

for ζd > 0.

A particular idea, discovered in a particular location i, may arrive in another location

j after only one period, or after two, three, or more periods. It may be transmitted

directly, or it may be transmitted through an intermediate chain of other locations that

learn the idea first. To model this process, let θij,s for s ∈ {0, 1, 2, ...} represent the

probability that an idea invented in i is known in j after s periods. In the period of its

discovery an idea is known in its home location and not in any other, so θii,0 = 1 and

θij,0 = 0 for i 6= j. For s ≥ 1, θij,s is determined by the following recursive process:

θij,s = 1− (1− θij,s−1)︸ ︷︷ ︸
Pr not known at s−1

∏
k∈N

(
1− θik,s−1θ̄kj

)
︸ ︷︷ ︸
Pr no arrival in period s︸ ︷︷ ︸

Pr not known at s

. (19)

In the above expression, 1 − θij,s−1 is the probability that the idea has not already

reached j before s periods have passed; θik,s−1θ̄kj is the probability of transmission from

k to j during the current period; and
∏
k∈N

(
1− θik,s−1θ̄kj

)
is the probability that no lo-

cation transmits the idea to j during the current period. Clearly, as long as there ex-

ists some sequence of m + 2 locations, {i, l1, l2, . . . , lm−1, lm, j}, such that the product

θ̄il1 θ̄l1l2 . . . θ̄lm−1lm θ̄lmj > 0, then lims→∞ θij,s = 1. In other words, as long as there is a

path of finite distance, however long and indirect, from i to j, then all ideas discovered

in i will eventually arrive in j.

Each period after its discovery, each idea faces a probability δ ∈ [0, 1] of becoming

obsolete and no longer contributing to the level of technology in any of the locations

in which it is known. Thus, the time-t level of technology in location i, mi(t), can be

expressed as the following function of the ideas that have been discovered in each location

in each previous period:

mi(t) = m̂i(t) +
∞∑
s=1

(1− δ)sm̂i(t− s) +
∞∑
s=1

(1− δ)s
∑
j 6=i

θji,sm̂j(t− s)

=
∞∑
s=0

(1− δ)s
∑
j∈N

θji,sm̂j(t− s) (20)
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Rearranging (20), it is also possible to write the following law of motion:

mi(t) = (1− δ)mi(t− 1) + m̂i(t) +
∞∑
s=1

(1− δ)s
∑
j 6=i

[θji,s − θji,s−1] m̂j(t− s) (21)

3 The Long Run

In the previous section, I constructed a model in which flows of goods, ideas and

people between locations drives the evolution of population and productivity over time.

Now it is natural to ask–what is the behavior of this system over the long run? Will

population and technology continue to grow indefinitely, or will they stagnate? If the

processes of population growth, migration, innovation and diffusion continue indefinitely

in the absence of any changes to the transport network, where will people live, and how

productive will they be?

As I will show in this section, each of these questions is liable to an analytical answer.

In the long run, the economy must converge to a state in which the growth rates of

population and technology are non-negative and the same in all locations, and in which

all locations are populated. This state may be a Malthusian steady state in which growth

rates are equal to zero, or an asymptotic balanced growth path with strictly positive

growth. Which of these states comes to be depends on the overall level of transport

costs, which are be summarized by a simple network statistic. In all cases, population

and productivity agglomerate in central locations, according to a definition of centrality

with clear roots in the network literature.

As a first step towards formalizing these statements, let us define the two possible

types of long run states.

Definition 1 A Malthusian steady state is a dynamic spatial equilibrium such that

population xi(t) = xi and idea stocks mi(t) = mi in all locations i ∈ N are both constant

over time.

Definition 2 A balanced growth path is a dynamic spatial equilibrium such that popu-

lation xi(t) = (1+gx)
txi and manufacturing potential mi(t) = (1+gm)tmi in all locations

i ∈ N grow at constant instantaneous rates gx > 0 and gm > 0, respectively.

3.1 Real income under balanced growth

Labor is a key ingredient in innovation, and innovation drives non-agricultural pro-

ductivity. Therefore it is no surprise that in the long run technology levels, as well as

levels of real income, are a function of the distribution of population. If the growth rate of
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technology is constant, then the long run idea stock in location i is given by the following:

mi(t)
1
ψ =

∑
j∈N

∞∑
s=0

(1− δ)sθji,sm̂j(t− s)

=
∑
j∈N

m̂j(t)
∞∑
s=0

(
1− δ

1 + gm

)s
θji,s

= Bm,2

∑
j∈N

θ̃
{gm}
ji xj(t)

ηφλ1−ηφ
j ,

where θ̃
{gm}
ji ≡ δ+gm

1+gm

∞∑
s=0

(
1−δ

1+gm

)s
θji,s, and Bm,2 ≡ 1+gm

δ+gm
Bm. Note that the definition of

θ̃
{gm}
ji implies that it takes values only between zero and 1, as θ̃

{gm}
ii = δ+gm

1+gm

∞∑
s=0

(
1−δ

1+gm

)s
= 1

for ∀i ∈ N .

From this expression we can infer that if the amount of available labor (population)

does not grow, technology will not grow, either. We can also infer that under balanced

growth it must hold that 1 + gm = (1 + gx)
ηφψ, and that

m
1
ψ

i = Bm,2

∑
j∈N

θ̃
{gm}
ji xηφj λ

1−ηφ
j (22)

Incorporating this information into a calculation of real income, we can apply equation

(22) to (11) and (12) and write the following expression:

ui
(1 + gu)

t

(1 + gx)
χφψν1
ν2

t
=

= Bu,2

(
λi
xi

)ν2∑
j∈N

(
Pi
Pj

)χ
γχji

 Aαχj
(1 + gx)ηφψt

+ (1− A)

(
Bm,2

∑
k∈N

θ̃
{gm}
kj xηφk λ

1−ηφ
k

)χψ


ν1

,

where Bu,2 ≡ BuΓ
(

1− 1
χ

ρ
1−ρ

)χ 1−ρ
ρ

and gu is defined as the constant growth rate of

real income. From this expression we can infer that under balanced growth, 1 + gu =

(1 + gm)χψν1 must hold. We can also infer that that if growth rates are strictly positive,

the contribution of agricultural potential αi for i ∈ N to real income approaches zero.

Therefore, in a steady state, real income is given by the following expression:

ui = Bu,2

(
λi
xi

)ν2∑
j∈N

(
Pi
Pj

)χ
γχji

Aαχj + (1− A)

(
Bm,2

∑
k∈N

θ̃
{gm}
kj xηφk λ

1−ηφ
k

)χψ


ν1

.

(23)
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In a balanced growth path with gm > 0, real income is given by the following expression:

ui = Bu,3

(
λi
xi

)ν2∑
j∈N

(
Pi
Pj

)χ
γχji

(∑
k∈N

θ̃
{gm}
kj xηφk λ

1−ηφ
k

)χψ

ν1

, (24)

where Bu,3 ≡ Bu,2(1− A)ν2Bχψν1
m,2 .

The interpretation of these expressions is straightforward. In the long run, real income

in each location depends first of all on the number of people living in that location

(xi), and the amount of land available to divide between them for use in housing and

production (λi). Second of all, it depends on the number of people living in every other

location (xk), because a certain portion of those people are working every period to come

up with new productivity-enhancing ideas. The ideas that are discovered in each location

k accumulate not only in i, but also in each of location i’s trading partners, at certain

rates (θ̃
{gm}
kj ). The resulting stocks of ideas in each of these trading partners j, along with

the transport cost γji and the equilibrium ratio of the costs of production Pi
Pj

, determines

the contribution of this trading partner to location i’s real income.

If the world is in a Malthusian steady state, trade access to agriculturally fertile

locations also contributes to real income. If the world is on a positive growth path,

the contribution of agriculture in the long run is negligible relative to that of the non-

agricultural sector.

3.2 The Network of Utility Spillovers

I will now show how the distributions under each of these long-run configurations,

and the conditions for convergence to each of them, can be characterized in terms of a

network of utility spillovers. For this end, it is convenient to state the system of equations

represented by (23) and (24) using matrix notation. All of the analysis that follows will

be conducted under the assumption that ψ = 1
χ
.

Let I represent an n-dimensional identity matrix, and let us define ααα as the n × 1

vector such that the ith element is equal to αi; x{k} as the n× 1 vector such that the ith

element is equal to xki ; Λ as the n×n diagonal matrix such that the iith element is equal

to λi; Ξ as the n× n diagonal matrix such that the iith element is equal to ξi; G as the

n × n matrix whose ijth element is equal to
(
Pi
Pj
γij

)χ
; Θ{ςm} as the n × n matrix such

that the ijth element is equal to θ̃ij(ςm); and U as the n × n diagonal matrix such that

the iith element is equal to ui.

It is also convenient to define ū ≡ max
i∈N

ui, and ũi ≡ ui
ū

, and Ũ as the n× n diagonal

matrix such that the iith element equals ũi, so that U = ūŨ.
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Now, (23) can be stated as

ū
1
ν1 Ũ

1
ν1 x
{ ν2
ν1
}

= Aψ
1
ν1
u,2Λ

ν2
ν1 G′ααα + (1− A)ψ

1
ν1
u,2ψm,2Λ

ν2
ν1 G′Θ{0}

′
ΞΛ(1−η)φx{ηφ}

and (24) can be stated as

ū
1
ν1 Ũ

1
ν1 x
{ ν2
ν1
}

= ψu,3Λ
ν2
ν1 G′Θ{ςm}

′
ΞΛ(1−η)φx{ηφ}

There emerges from both of the above equations a key matrix, Ω, which may be

thought of as the adjacency matrix of the network a utility spillovers:

Ω ≡ Λ
ν2
ν1 G′Θ{0}

′
ΞΛ(1−η)φ.

The ijth element of this matrix is equal to

ωij = λ
ν2
ν1
i

[∑
k∈N

gkiθ̃jk(0)

]
ξjλ

(1−η)φ
j ,

and represents the extent to which consumers in location j contribute to the utility of

consumers in location i in the long run. This depends, naturally, on the amount of land

available for productive use in location j, and on the product, for each location k ∈ N ,

of location j’s contribution to that location’s technology level through diffusion, and

location i’s trade connection to that location. In other words, the benefit that location i

gets from population in location j depends on technology spillovers from j, not only to i

directly, but also to each of i’s trading partners.

Let the largest eigenvalue of this matrix be denoted π. π is a natural statistic to sum-

marize the world’s long-run global potential. Not surprisingly, this productive potential

is strictly increasing in the land endowment of each location, λi, and strictly decreasing

in the bilateral transport cost between each pair of locations, 1
γij

. As we will see in the

theorem that follows, the level of π is crucial to determining whether the world stagnates

or achieves sustained growth.

3.3 Conditions leading to stagnation or sustained growth

Theorem 1 In the environment that has been described, given a vector of starting con-

ditions s ∈ Rn3(n−1)
+ containing population xi for i ∈ N , locally-invented ideas mi,I for

i ∈ N , and diffused ideas mij,D for i ∈ N , j 6= i, such that population xi in at least one

location is strictly positive:

A. If ν2
ν1
> ηφ, the world will converge to a unique Malthusian steady state in which

every location i ∈ N has positive population.
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B. If ν2
ν1

= ηφ, then there exists a critical level of global productive potential π∗, such

that

i. if π ≤ π∗, the world will converge to a unique Malthusian steady state with

positive population in each location i ∈ N , and

ii. if π > π∗, the world will asymptotically approximate a unique balanced growth

path with positive population in each location i ∈ N .

C. If ν2
ν1
< ηφ, then there exists a critical level of global productive potential π∗ and a

critical frontier of starting conditions defined by a continuous, increasing function

z(.) mapping from R
n3(n−1)
+ to R, such that

i. if π ≤ π∗ and z(s) ≤ 0, then the world will converge to a Malthusian steady

state with positive population in each location i ∈ N , which may or may not

be unique,

ii. if either π > π∗ or z(s) > 0, the world will asymptotically approximate a

balanced growth path with positive population in each location i ∈ N , which

may or may not be unique.

Proof: See Appendix A.6.

What Theorem 1 states is that (a) if dispersion forces are stronger than agglomeration

forces, sustained growth is not possible in the long run, (b) if the forces of agglomeration

are equally balanced with the forces of dispersion, then sustained growth will occur as

long as global productive potential is high enough, and (c) if agglomeration forces are

stronger than dispersion forces, then sustained growth will occur if either global produc-

tive potential is high enough, or if starting levels of population and technology are high

enough. This suggests at least three types of change, exogenous to the model developed

here, that could push a system which is in a Malthusian steady state into a path towards

sustained growth:

1. a major technological breakthrough that raises the level of technology in a discrete

jump, leading to an increase in z(s)

2. the creation of additional land, leading to an increase in π

3. a reduction in transport costs, leading to an increase in π

So, if technological progress is essentially incremental, and if land-recovery efforts like

those undertaken in the Netherlands are not a major force in economic growth globally,

this leaves option number three. Indeed, a fall in transportation costs is one of the

key economic facts of the past several centuries. Interpreted through the lens of the

framework developed here, then, these reductions may have been a necessary condition

for the take-off in global growth that has occurred.
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Figure 1: Major regions and 3° resolution grid

4 Bringing the Model to the Data

To bring the model to the data, I divide the world into 3° × 3° quadrangles. I discard

all quadrangles that do not contain land, and all of the quadrangles in Antarctica. This

leaves 2,249 habitable locations. Figure 1 shows the 3 degree grid. It also shows the

extents of 10 major regions, which play no role in the model or its computation, but are

used to aggregate results up for comparison.

4.1 Agricultural potential from agricultural characteristics

I assign agricultural potential to each location based on the index of agricultural

suitability provided by Ramankutty et al. (2002). To ensure that the index I use reflects

only exogenous climate and soil characteristics which are stable over time, I regress the

Ramankutty index on three variables which arguably do have these properties, and use

the predicted values as my index of agricultural potential.

These three variables are the Normalized Difference Vegetation Index (NDVI), soil

nutrient availability, and soil workability. NDVI is a measure of how “green” a location is

when observed from a satellite.4 This measure captures how favorable are basic climatic

conditions, such as water availability and temperature, for the growth of vegetation.5 I

4Monthly observations for NDVI from February 2000 through January 2016 were taken from NASA
LP DAAC (2016). The measure analyzed is the mean NDVI for each location over this entire time
period.

5An alternative measure of water availability would be average rainfall. This measure has one key
drawback, however: it cannot account for the lushness of certain river valleys, such as the Nile river
delta, which in spite of having very little rainfall, are very “green,” highly productive agriculturally, and
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use indexes of soil nutrient availability and soil workability calculated by Fischer, et al

(2008) for the United Nations Food and Agriculture Organization.

I specify a log-log relationship between these variables and the Ramankutty index,

with a quartic polynomial in NDVI, quadratic terms for each of the soil quality measures,

and a full set of interaction terms. Let the predicted values resulting from this projection

be designated âi. Agricultural potential is then assigned according to

αi = ζaâi,

where ζa > 0 is a scale parameter which is calibrated to target the agricultural labor

share in Europe in 1000 CE.

4.2 Transport costs from topography

I take information on the location of land, lakes, rivers and coastlines from the Natural

Earth database. Navigable rivers are classified as those with a scalerank of 5 or lower in

the Natural Earth data set, and this set is further pared by researching the navigability

of the individual river systems that remain using a variety of sources, mimicking the

methodology of Henderson et al (2016). I use Nunn and Puga’s (2012) calculations of the

Terrain Ruggedness Index proposed by Riley, DeGloria, and Elliot (1999). I use mean

wave height calculations from Barstow, et al (2009).

Transportation costs between each pair of habitable locations may be carried out using

land transport, river transport, sea transport, or a combination of all three. Transport

is modeled as taking place on a network in which there are land, river and sea nodes.

In each grid square, there exists one land node for each disjoint body of land which is

at least partly inside the square, one river node for each navigable river system which is

at least partly inside the square, and one sea node for each disjoint body of water that

is at least partially inside the square. Each land node is directly connected to any land

nodes in the eight adjacent grid squares which belong to the same body of land, and any

river or sea nodes in the same grid square. Similarly, each river and sea node is directly

connected to any river node, or sea node, respectively, in the eight adjacent grid squares,

and any sea or land node, or river or land node, in the same grid square.

Land-land and sea-sea connections between two grid squares i and j, i 6= j, each face

a mode-specific per-unit effective distance, τL(t) or τS(t) respectively, which is multiplied

by the great circle distance dij between the centers (centroids) of the two grid squares

(latitude-longitude quadrangles) to obtain the effective distance between the two nodes.6

River-river connections face a per-unit effective distance of τS(1+τV ), where τV represents

the increased cost which may be incurred due to the special difficulties of river navigation,

very densely populated.
6All distances are calculated taking the curvature of the Earth into account.
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relative to navigation on calm seas. Let the arc between the centers of squares i and j

be divided into two segments, one, of length diij, running from the center of i to the

border between the squares, and a second of length djij, running from the center of j to

the border between the squares.7 The effective distance of land-land connections is also

multiplied by 1 + τR
diijri+d

j
ijrj

dij
, where ri and and rj represent the average ruggedness of

the terrain in grid squares i and j, respectively.8 The effective distance of water-water

connections 1 + τW
diijr

w
i +djijr

w
j

dij
, where rwi and rwj are indicator functions taking a value of

1 if the seas are “rough” in square i or j, respectively, and 0 otherwise. Seas are defined

as being “rough” in a given square if mean significant wave heights in that square are

greater than 1.5 meters.9 The effective distance of land-river and land-sea connections,

in either direction, is equal to the transshipment cost τT .

If a grid square has one land node, then the effective distances faced by that land

node are those also faced by the habitable location in that grid square. If there is more

than one land node in a grid square, the effective distances faced by the land node are

equal to the arithmetic means of the effective distances faced by the various nodes.

The effective distance between each pair of habitable locations i and j, τij(t), is then

equal to the least-cost path between them through the network.10 The inverse iceberg

transport cost γij is then given by γij(t) = eτij(t), following Allen and Arkolakis (2014).

Given initial levels τL(0) and τS(0), let the basic cost of transport over land and water

fall at constant rates ςL and ςS, such that

τk(t) = (1− ςk)tτk(0) (25)

for k ∈ {L, S} and t ∈ {0, 1, 2, ..., T}.

4.3 Net fertility

It is assumed that annual log net fertility is related to real GDP per capita, ũi,

according to the following relation:

log f̃i(ũi) =
{(

1 + eζf,0+ζf,1ũi
)−1

ζf,2 +
[
1−

(
1 + eζf,0+ζf,1ũi

)−1
]
ζf,3

−2
(
1 + eζf,4ũi

)−1
(.5− ζf,5)− ζf,5

}
. (26)

7Due to the curvature of the globe, these two segments will never be exactly equal in length, as they
would be if they were connecting centroids of true squares on a plane. Also note that it is a property
of the longitude-latitude quadrangle grid that the arc between the centroids of two quadrangles that are
adjacent diagonally will always pass through the point where the two corners of the quadrangles meet;
so the arc is contained completely within the two quadrangles and does not pass through a third.

8I use Nunn and Puga’s (2012) calculations of the Terrain Ruggedness Index proposed by Riley,
DeGloria, and Elliot (1999).

9I use mean wave height calculations from Barstow, et al (2009).
10I calculate least-cost paths using SciPy’s highly-optimized implementation of Dijkstra’s algorithm.
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Table 1: Estimated Parameters for Fertility Process

ζf,0 ζf,1 ζf,2 ζf,3 ζf,4 ζf,5
-15.71 1.91 .03726 .01357 0.64 .00821

Figure 2: Net fertility as a function of real income
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Real GDP per capita is assumed to correspond to utility according to ũi = ζ̃fui,

where ζ̃f ≥ 0 is a scalar multiplier. Parameters ζf,k for k ∈ {0, 1, ..., 5} are estimated

using data on rates of natural increase (birth rates minus death rates) and real GDP per

capita borrowed from Delventhal, Fernández-Villaverde and Guner (2017). Table 1 shows

the estimated parameters. Log net fertility per 50-year model period is then obtained by

multiplying log f̃i by 50. Figure 2 graphs the resulting function.

5 The world in 1000 CE

I conduct a quantitative exercise in two steps. First, I calibrate the model so that in

the year 1000 CE the world is in a Malthusian steady state. Then, I reduce transport

costs according to a pattern consistent with the existing historical evidence, and track

the endogenous evolution of population and income per capita in 50-year periods until

2000 CE.
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5.1 Calibration

Tables 2, 3 and 4 provide an overview of the values I choose for the parameters of

the model and why. Some are set based on evidence provided by previous estimations or

historical studies, and others are calibrated so that a moment of the model will exactly

match a specific target which is independent of model outcomes. A small number of

parameters are not tied down in either of these ways, and are set to achieve a better

overall fit with the 2,249 population density moments of the initial steady state, or to

achieve a better fit with qualitative features of the transition until 2000 CE.

All of the parameters that have the biggest impact on the fit of the model with

the distribution of population density in 1000 CE are tied down by one of the first

two methods. Those that remain to target this distribution explicitly are of secondary

importance. I will now discuss each of these parameters in turn. The scale parameter

on real income ζ̄f , shown in Table 3, determines how real income in the model translates

into fertility. In principle it would be possible to calibrate this parameter so that the

model matched total world population in 1000 CE perfectly. The exact level of total

world population in 1000 CE is, however, not known with great precision, so it makes

more sense to allow this parameter to minimize the sum of squared errors between the

model distribution of population density and the data.

The remaining parameters in this group are all initial transport cost parameters,

shown in Table 4. The New World penalty, τNW , does not have a great impact on the

Old World distribution of population, but it does improve model fit overall by reducing

overall population density in the New World to close to the historical pre-Columbian

levels. As discussed in the previous section, all indications are that New World regions

lacked important transport technologies such as pack animals and sailing ships that were

available throughout the Old World at this time. The penalty on rough and open seas

seems to be rather well-identified, improving fit significantly when a high value is assigned

to it. The penalties for traveling over rough terrain or over permafrost seem to be

relatively weakly identified, though they do improve overall fit slightly when they take

positive, but not very large, values.

I will now discuss each of the other parameters in the initial 1000 CE calibration. The

first group of these parameters are shown in Table 2. I set α = 0.75 according to evidence

provided by Davis & Ortalo-Magné (2011), so that the share of income that consumers

spend on housing is equal to 25%. By setting η = 0.8 and σ = 0.2, the land share in

production is set to 16% and the intermediate input share is set to 20%, consistent with

evidence provided by Desmet and Rappaport (2015) and Vandenbroucke (2008). Setting

ρ = 0.75 implies an elasticity of substitution between goods of 4, consistent with the

estimation of Bernard et al. (2003). Setting the elasticity of trade to distance χ = 6.5

is consistent with evidence provided by Simonovska and Waugh (2014). Setting ϕ = 0.5
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Table 2: Calibration, Technology and preferences
(Parameters taken from the literature)

Par. Par.
Value

Target Target value/source

α 0.75 housing expenditure share equal to 25% Davis & Ortalo-Magné
(2011)

η 0.8 land share in production equal to 16% Desmet & Rappaport (2015)

σ 0.2 intermediate input share equal to 20% 20% Vandenbroucke (2008)

ρ 0.75 elast. of subst. btw. goods equal to 4 4 Bernard et al. (2003)

χ 6.5 trade elasticity to distance Simonovska & Waugh (2014)

ϕ 0.5 land share, housing prod. Albouy & Ehrlich (2017)

κ 0.5 elast. of TFP to innov. Desmet & Rossi-Hansberg
(2015)

implies a land share in housing production consistent with Albouy and Ehrlich’s (2017)

study. My source for the value of κ, the elasticity of TFP to innovation effort, is Desmet

and Rossi-Hansberg (2015). I set κ = 0.5.

The second group of this parameters is shown in Table 3. The elasticity of diffusion

probability to distance, ζd, is calibrated so that the expected diffusion time from Baghdad

to Pisa, Italy is 350 years. These two points and this length of time are chosen with refer-

ence to the diffusion of Indian numerals from the Middle East to Western Europe during

the Middle Ages. In 825 CE Al-Khwarizmi, namesake of the word “algorithm”, published

a treatise on the use of Indian numerals. Knowledge of this method of numerical represen-

tation had recently spread to Al-Khwarizmi’s city, Baghdad, from its place of origin in the

Indian sub-continent.11 In 1202 CE Fibonacci (of the “Fibonacci sequence”) published

his treatise Liber Abaci, the first known work by a Western mathematician comparing

what Fibonacci now dubbed “Arabic numerals” to the Roman system of representation,

and describing their use in performing calculations.12

The elasticity of migration to distance ζm,1, is set so that in an idealized flat, homoge-

11Another mathematician, Al-Kindi, is known to have published a treatise on the same topic in either
Baghdad or Basra in 830 CE.

12The very first known reference to Indian numerals in Western Europe is contained in the Codex
Vigilanus compiled by monks in Abelda de Iregua, Spain around 976 CE. I use the timing implied by the
publication of Liber Abaci because then the event in Baghdad and the event in Pisa are like to like: both
are treatises written by a well-known mathematician fully explaining the subject. Presumably knowledge
of Indian numerals also existed in the Islamic world in a more obscure way for some decades or centuries
before the publication of Al-Khwarizmi’s treatise.
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Table 3: Calibration: Diffusion & migration

Par. Par.
Value

Target Source

φ 1 normalization –

ζd 41.8 1000 CE expected diffusion time from Bagh-
dad to Pisa equal to 350 years (diffusion time
of Indian numerals)

Devlin (2011) &
Berggren (1986)

ζm,1 31.7 % of residents in idealized steady state from
> 50km distant equal to 15%, as in migration
in 14th C. Nottinghamshire

Whyte (2000)

ψ 2.63 BGP ratio of pop./income growth equal to 2,
as in U.S. 1960-2010

Maddison 2010 dataset

ζa 8.87 1000 CE agriculture labor share in Europe
equal to 85%

Allen (2000)

ζ̄f .1 1000 CE pop. densities –

ζm,0 0.1 evolution of population, 1000-2000 CE –

ω 0.3 evolution of population, 1000-2000 CE –
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Table 4: Calibration, Initial Transport Costs

Par. Par.
Value

Target Source

τL .08 increase in wheat price of 8% per 111km in 14th

C. Engl.
Masschaele (1993)

τS
τL
8

ratio of coastal waters to land transport cost in
14th C. Engl.

Masschaele (1993)

τV 2τS ratio of river to coastal waters transport costs in
14th C. Engl.

Masschaele (1993)

τT 1.47τV ratio of transhipment cost per ton to river trans-
port cost to move 1 ton 111 km in 19th U.S.

Fogel (1962)

τW 15 1000 CE pop. densities –

τR 1 1000 CE pop. densities –

τF 1 1000 CE pop. densities –

τNW 24 1000 CE pop. densities –

neous, endless plain in a steady state, the fraction of residents living at any given point

who were born more than 50 kilometers away is equal to 15%. This is consistent with

evidence on migration in rural 14th Century Nottinghamshire compiled by Whyte (2000).

The scale parameter on agricultural potential ζa, is set so that the agriculture share of

employment in Europe in 1000 CE is equal to 85%, consistent with evidence on Medieval

European agriculture shares complied by Allen (2000). I normalize the elasticity of idea

creation to the density of innovation effort φ, to equal 1, and set the elasticity of the

effective technology level to the stock of ideas ψ equal to 2.63, which implies a balanced

growth path income per capita will grow twice as fast as population. This is consistent

with the data on population and income per capita growth in the United States from

1960 to 2010.

The last group of parameters is shown in Table 4. I set τL so that the price change

per 111 kilometers (1° latitude) is 8%, which is near the middle of the range of price to

distance elasticities that Masschaele (1993) finds for wheat being transported over land in

14th Century England. Masschaele (1993) also finds a ratio of the average land transport

cost to the average coastal waters transport cost of 8 to 1, and an average ratio of the

river transport cost to coastal waters transport cost of 2 to 1; I use these numbers as is.

Fogel (1962) estimates that the cost per ton of loading or unloading goods from a boat is
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Figure 3: Distribution across population density levels in 1000 CE, model and data

3° × 3° grid squares: R2: .31 weighted corr: .57
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1.47 times the cost of transporting the same ton of goods on a river for 111 kilometers; I

use this number as well.

The parameters ψm,0 and ω, shown in Table 3, while they do have some effect on the

distribution of population in 1000 CE, are set to match some qualitative features of the

evolution of population between 1000 and 2000 CE and are discussed in Section 6.

5.2 Results, 1000 CE

The overall fit of the model with the data in 1000 CE is summarized in Figures 3

and 4. At the level of 3° by 3° quadrangles, the model is able to to account well for the

distribution of locations across population density levels, though it is unable to generate

the handful of locations with very high density which exist in the data. The model is

able to do a good job accounting for which specific locations have low and high density

as well, accounting for 31% of the overall variation.

As can be seen in Figure 4, the model also accounts well for which of the 10 major

regions are densely and which are not as densely populated in 1000 CE. In the model, as

in the data, India, China and Europe are the three most densely populated places in the

world. The model is not able to quite match the same level of density as existed in India

and China, in part because of its inability to generate very high density locations. Overall,

it is able to account for most of the variation between these major regions–55%. The

interpretation of this result is that agricultural potential and access to water transport,

taken together, are able to account well for which regions were more and which were less

developed in 1000 CE.
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Figure 4: Mean population density of 10 major regions in 1000 CE, model and data

regions: R2: .55 weighted corr: .88
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6 Falling Transport Costs

The second step of the quantitative exercise is to reduce transport costs according to

a specified pattern and simulate the model until 2000 CE. This is done in two phases,

as shown in Figure 5. First, between 1000 CE and 1500 CE, reduce water and land

transport costs at constant rates, imposing a large reduction in water transport costs,

and a much smaller reduction in land transport costs. Also over this period, the large

penalty on traveling far from the coast or over rough seas is gradually removed. This is

consistent with the broad pattern which has been found by Masschaele (1993) and others:

that prior to the development of railroads, improvements in water transport were much

more significant than any improvements in land transport. It is also consistent with the

well-known developments in navigation technology over this period which culminated in

the first cross-Atlantic voyages and the first circumnavigation of the globe.

From 1500 CE until 1750 CE there is a pause in the reduction of transport costs. Then

Figure 5: Falling transport costs
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Table 5: Transport Cost Reductions

Par. % in 1500 CE % in 1750 CE % in 2000 CE
τL 90% 90% 20%
τS 60% 60% 20%
τW 5% 5% 0.1%

from 1750 to 2000 CE transport costs are again reduced at a steady rate. This second

phase of reductions is more land-biased than the first, to reflect the importance of land

transport developments such as railroads and the automobile. The exact magnitudes of

all of these transport cost reductions are chosen to approximate the qualitative features

of the evolution of population and income between 1000 and 2000 CE. These values are

shown in Table 5.

In addition to the aforementioned transport cost reductions, the penalty on transport

in the New World, τNW , is removed linearly between 1450 and 1600 CE, reflecting the

discovery of the Americas and Australia by Old World explorers and the spread of Old

World transport technologies across the New World.

Two parameters from Table 3, ψm,0 and ω, are calibrated to improve the model fit

with qualitative features of the evolution of population between 1000 CE and 2000 CE.

ψm,0, which represents the inverse of the home bias exhibited by consumers in choosing

migration, is chosen to ensure that a plurality of consumers stay in the locations they

were born in, even in 2000 CE. ω, the elasticity of congestion to population density, is

chosen to reduce the concentration of population growth in regions that take off early

versus those that take off late.

6.1 Results, 1000-2000 CE

Figure 6 shows the evolution of total world population in the model and in the data.

The model replicates well the overall pattern of accelerating growth in world population,

with a sharp increase in growth rates after 1700 CE. The model starts with a total

world population of 260 million people, which is inside the range of plausible historical

estimates, and ends in 2000 CE with 6 billion, just as in the data.

As can be seen in Figure 7, the correlation between the model and the data distribu-

tions of population density, both across regions and across individual 3° by 3° locations,

remains high for most of the simulation. Both of these correlations decline sharply as

population growth accelerates after 1700 CE, ending in 2000 CE at lower but still positive

levels.

Figure 8 compares the evolution of world mean real income per capita in the model

and in the data, where the mean is taken of the natural log of real income and weighted by

population. The discrepancy early in the simulation, when mean real income in the model
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Figure 6: Simulation results: world population
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Figure 7: Simulation results: population density
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Figure 8: Simulation results: world income
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is somewhat less than that in the data, is not particularly meaningful, as the numbers for

the data during this period are themselves somewhat speculative. It is clear, however,

that there is much more growth in income per capita after 1800 CE in the model than in

the data. Aside from this, both the model and the data display the same basic pattern

of accelerating growth, which is almost flat prior to 1800 CE, and increases sharply after

1800 CE.

The model matches very well the evolution of income dispersion across regions until

1900 CE, as can be seen in Figure 9. Income dispersion is measured as the variance in log

real income per capita across the 10 major regions, weighted by population. They are at

the same level in 1800 CE, and move together tightly for the next 100 years. From 1900

to 1950, the increase in dispersion in the model slows down slightly, while the increase

in dispersion in the model accelerates. From 1950 to 2000, dispersion declines in both

the model and the data, though this decline is considerably larger in the model than in

the data. In the end, the variance across regions of log income per capita in the model is

43% of what is observed in the data in 2000 CE.

The first reliable data observations for income per capita begin in 1800 CE. As can be

seen in Figure 10, the model at this point matches the distribution of income per capita

across regions quite well. The correlation across regions between log income per capita in

the model and in the data at this point is 0.66. As mean world income and the dispersion

in income both increase after 1800 CE, this correlation declines.
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Figure 9: Evolution of income dispersion
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Figure 10: Simulation results: income per capita
Correlation in 1800 CE: .66
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Figure 11: Income relative to Europe - 1800 CE
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What drives this decline in correlation? There are two main reasons: Northern North

America and Australia and New Zealand do not grow enough between 1800 CE and 2000

CE, and Northern African and West Asia, Eastern Europe and Central Asia, and Sub-

Saharan Africa grow too much. Figure 11 shows the correspondence between real income

per capita relative to Northern and Western Europe in the data and in the model. The

size of the marker for each region represents its total population. As can be seen in the

figure, the distribution of income per capita across regions in the model lines up well with

that in the data in 1800 CE, and the best linear fit line has a slope close to 1.

Looking next at Figure 12, we can see that over the intervening 200 years, we can see

that the ratio between income per capita in Northern and Western Europe and in China

the “Rest of Asia,” Meso- and South America, and India have evolved in a manner more or

less consistent with the data. Northern North America, comprising the modern countries

of the United States and Canada, as well as Australia and New Zealand, however, have

not grown nearly enough. Northern Africa and West Asia, and Eastern Europe and

Central Asia have grown too much. And Sub-Saharan Africa has also grown too much,
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Figure 12: Income relative to Europe - 2000 CE
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converging towards Europe more strongly than it does in the data.

Figure 13 compares the evolution of the correlation of log income per capita across

regions between the model and the data, if the United States, Canada, Australia and New

Zealand are included or excluded from the sample. We can see that excluding these four

countries improves the correlation with the data considerably, especially during the 19th

century. During the 20th century, however, the correlation for the reduced sample still

declines steadily. One reason for this is that there is too much convergence in general in

the 20th century, as we saw when analyzing the evolution of income per capita dispersion.

6.2 Discussion

What might explain the inability of the model to match the fast growth in the U.S.,

Canada, Australia and New Zealand after 1800 CE, and the slow convergence generally

after 1900 CE? Two possible explanations in particular spring to mind. First, we know

that in reality trade costs and the speed of technology diffusion depend on other factors in
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Figure 13: Simulation results: income per capita, U.S., Canada, Australia, N. Zealand
excluded
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addition to mere transport costs. By ignoring these factors, the model effectively imposes

an average trade cost level and diffusion speed for the whole world. In reality, however,

it may be that the costs should be lower, and the speed higher, between Europe and

the United States, Canada, Australia and New Zealand, than they are between Europe

and the rest of the world. One well-known fact that might justify such a difference is

that in the 19th century all these countries were populated by people speaking the same

language as the leading European industrial power, England.

A second possible explanation is that there is significant variation across regions in

objective institutional quality. It may be, for example, that the United States, Canada,

Australia and New Zealand have better property protections or constraints than other

regions, for some reason that is not directly related to access to trade or technology

diffusion.13

With this in mind, a fruitful way to extend the current exercise would be to impose

additional restrictions on the model and perform counterfactual exercises to test each

of these possible explanations. In this way it may be possible to determine whether

either explanation is capable of reconciling the baseline model with the data, and which

explanation seems to fit best.

13This hypothesis would be consistent with the findings of an extensive literature in comparative
economic development, of which Acemoglu, Johnson and Robinson (2001) is a prominent example.
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7 Conclusion

In this paper we have seen that a pattern of falling transport costs consistent with

historical evidence, applied to a spatial dynamic model in which the strength of bilateral

connections is determined by the natural topography of the globe, can account for many of

the important features of the evolution of the distribution of population and income over

the last 1000 years. This modeling approach is able to generate initially slow, accelerating

growth, with a sharp increase in population growth, income growth, and the dispersion

of income across locations after1800 CE. Quantitatively, it is able to account for 55% of

the variation across major regions in population density in 1000 CE, 44% of the variation

across regions in income per capita in 1800 CE, and can generate 43% of the variation in

income per capita across regions in 2000 CE.

This approach is also not able to match a number of facts, such as the rapid growth in

income per capita in the United States, Canada, Australia and New Zealand after 1800

CE, and the slowness convergence of income per capita in the world in general during the

20th century. Future research could extend the framework presented here to test whether

there are institutional or historical factors which can reconcile the model to the data on

this and other points.

Another natural avenue for future research would be to try to explain the one key

factor which this study has taken as exogenous–the evolution of transport costs. Why

were key transport technologies developed at certain times and locations? What are the

implications of allowing improvements in transport technology in some locations before

others? The current framework, which is able to provide a quantitative approximation of

the location-specific benefits and global aggregate consequences of transport technology

changes, would be a natural starting point for such an investigation.
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A Proofs

A.1 Proof of optimal land allocation

To start with, let us state the consumer’s problem:

max
{cil}l∈[0,1],hi

{(∫ 1

0

cρi,ldl

)α
ρ

h1−α
i

}

such that wi + pi,λ
λi
xi
≥
∫ 1

0
pi,lci,ldl + pi,hhi.

First order conditions with respect to consumption and housing imply the following

two conditions:

cil = α
wi + pi,λ

λi
xi

P
− ρ

1−ρ
i M

1
χ

ρ
1−ρ

i

p
− 1

1−ρ
il ,

implying

Ci = α
wi + pi,λ

λi
xi

Pi
M

1
χ

i ,

and

hi = (1− α)
wi + pi,λ

λi
xi

p
− ρ

1−ρ
i,h

p
− 1

1−ρ
i,h = (1− α)

wi + pi,λ
λi
xi

pi,h
.

The production function for a goods producer with efficiency shock si,k:

qk = si,k
(
bηk,I l

1−η
k,I

)κ (
bηkl

1−η
k

)1−σ−κ
[∫ 1

0

zρkldl

]σ
ρ

The cost-minimization problem of a location-i goods producer is given by

min
bk,lk,bk,I ,lk,I ,{zkl}l∈[0,1]

{
wk (bk + bk,I) + pi,λ (lk + lk,I) +

∫ 1

0

pklzkldl

}
It is straightforward to solve for the optimal allocation of labor and land between

improvement and production, and write the following simplified problem in terms of

production land and production labor only:

min
bk,lk,{zkl}l∈[0,1]

{
1− σ

1− σ − κ
[wkbk + pi,λlk] +

∫ 1

0

pklzkldl

}
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such that

qk = si,k

(
κ

1− σ − κ

)κ (
bηkl

1−η
k

)1−σ
[∫ 1

0

zρkldl

]σ
ρ

First order conditions with respect to each type of input, land, intermediate inputs

and labor, imply the following two conditions relating land and intermediate good inputs

to the quantity of labor input:

lk =
1− η
η

wi
pi,λ

bk

zkl =
σ

η(1− σ − κ)

wi

p
1

1−ρ
il P

− ρ
1−ρ

i M

1
χ

ρ
1−ρ

i

bk

These then imply the following relationship between the quantity of labor input and

the quantity produced:

qk = si,kbk(1−η)(1−η)(1−σ)

(
1

η

)(1−η)(1−σ)+σ

κκσσ
(

1

1− σ − κ

)κ+σ

w
(1−η)(1−σ)+σ
i

(
1

pi,λ

)(1−η)(1−σ)

P−σi M
σ
χ

i

It also implies the following minimized cost of production in terms of quantity of

production labor:

1− σ
1− σ − κ

[
wibk + bk

1− η
η

wi

]
+

σ

η(1− σ − κ)
wibk

=
1

η(1− σ − κ)
wibk

This then implies the following efficiency cost of producing a single unit of good in

location i:

Pi ≡
si,k

η(1− σ − κ)
wibk(1) =

wηi p
1−η
i,λ M

− 1
χ

σ
1−σ

i

ηη(1− η)1−ησ
σ

1−σ

(
1

(1− σ − κ)1−σ−κκκ

) 1
1−σ

Note that the actual cost faced by the producer is Pi
si,k

.

Flipping this expression around, we find that

wηi p
1−η
i,λ

M

1
χ

σ
1−σ

i

= Piη
η(1− η)1−ησ

σ
1−σ
(
κκ(1− σ − κ)1−σ−κ) 1

1−σ

Applying this last formula to the expression for quantity produced in terms of quantity
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of labor employed yields the following:

qk = si,k

wηi p1−η
i,λ

M

1
χ

σ
1−σ

i

σ

w1−η
i pη−1

i,λ P
−σ
i M

1
χ

σ
1−σ

i bk(1−η)(1−η)(1−σ)ηη−ησ−1σσκκ
(

1

1− σ − κ

)κ+σ

qk = si,kbkM
1
χ

σ
1−σ

i

(
wi
pi,λ

)1−η (
1− η
η

)1−η

σ
σ

1−σκ
κ

1−σ (1− σ − κ)
1−σ−κ
1−σ −1,

and finally:

qk = si,kσ
σ

1−σκ
κ

1−σ (1− σ − κ)
1−σ−κ
1−σ −1bηkl

1−η
k M

1
χ

σ
1−σ

i .

Cost-minimization implies that all firms i location i must use the same ratio of land

and labor, and aggregation implies that this must be equal to the aggregate ratio of land

and labor used in goods production, 1−σ−κ
1−σ li and 1−σ−κ

1−σ xi, respectively. Then wages are

given by

wi = σ
σ

1−σκ
κ

1−σ (1− σ − κ)
1−σ−κ
1−σ η

(
li
xi

)1−η

PiM
1
χ

σ
1−σ

i

and land rents are given by

pi,λ = σ
σ

1−σκ
κ

1−σ (1− σ − κ)
1−σ−κ
1−σ (1− η)

(
li
xi

)−η
PiM

1
χ

σ
1−σ

i

Then,

wi + pi,λ
λi
xi

= σ
σ

1−σκ
κ

1−σ (1− σ − κ)
1−σ−κ
1−σ PiM

1
χ

σ
1−σ

i

(
λi
xi

)
ψ−ηg,λ [ηψg,λ + 1− η]

The production function of a housing producers is given by

Hi =

(∫ 1

0

zρil,hdl

)ϕ
ρ

l1−ϕi,h

The cost minimization problem of a housing producer is given by

min
{zil,h}1

0
,li,h

{∫ 1

0

pilzil,hdl + pi,λli,h

}

First order conditions imply the following relationship between quantity of interme-

diate input used and quantity of land used as inputs:

zil,h =
ϕ

1− ϕ
pi,λ

p
1

1−ρ
il P

− ρ
1−ρ

i M

1
χ

ρ
1−ρ

i

li,h
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Using this, housing as a function of land employed is given by

Hi =

[
ϕ

1− ϕ
pi,λ
Pi
M

1
χ

i

]ϕ
li,h.

This then implies the following unit cost of production for housing, which in equilib-

rium will also be the housing price faced by consumers:

pi,h =
1

1− ϕ
pi,λli,h(1) =

Pϕ
i M

−ϕ 1
χ

i p1−ϕ
i,λ

ϕϕ(1− ϕ)1−ϕ

Flipping this around and plugging back into the previous expression for housing in

terms of land use implies

pi,λ

M

ϕ
1−ϕ

1
χ

i

= ϕ
ϕ

1−ϕ (1− ϕ)P
− ϕ

1−ϕ
i p

1
1−ϕ
i,h ,

Hi =

 pi,λ

M

ϕ
1−ϕ

1
χ

i

ϕ

P−ϕi M

ϕ
1−ϕ

1
χ

i

(
ϕ

1− ϕ

)ϕ
li,h,

and

Hi = ϕ
ϕ

1−ϕ

(
pi,h
Pi

) ϕ
1−ϕ

M

ϕ
1−ϕ

1
χ

i li,h.

Then, the following relationship can be derived between price of goods and price of

housing:

pi,h = PiM
σ−ϕ
χ(1−σ)
i

[
σ

σ
1−σ (1− η)κ

κ
1−σ (1− σ − κ)

1−σ−κ
1−σ

(
li
xi

)−η]1−ϕ

ϕϕ(1− ϕ)1−ϕ

(
Pi
pi,h

) 1
1−ϕ

=
ϕ

ϕ
1−ϕ (1− ϕ)

σ
σ

1−σ (1− η)κ
κ

1−σ (1− σ − κ)
1−σ−κ
1−σ

(
li
xi

)η
M

ϕ
1−ϕ

1
χ

i

M

1
χ

σ
1−σ

i

Then,

wi + pi,λ
λi
xi

= σ
σ

1−σκ
κ

1−σ (1− σ − κ)
1−σ−κ
1−σ PiM

1
χ

σ
1−σ

i

(
λi
xi

)1−η

ψ−ηg,λ [ηψg,λ + 1− η]

and

xihi = xi(1− α)σ
σ

1−σκ
κ

1−σ (1− σ − κ)
1−σ−κ
1−σ

Pi
pi,h
M

1
χ

σ
1−σ

i

(
λi
xi

)1−η

ψ−ηg,λ [ηψg,λ + 1− η]
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Then setting demand equal to supply, Hi = xihi,

ϕ
ϕ

1−ϕ

(
pi,h
Pi

) ϕ
1−ϕ

M

ϕ
1−ϕ

1
χ

i λi(1− ψg,λ) = xi(1− α)σ
σ

1−σκ
κ

1−σ (1− σ − κ)
1−σ−κ
1−σ

Pi
pi,h
M

1
χ

σ
1−σ

i

(
λi
xi

)1−η

ψ−ηg,λ [ηψg,λ + 1− η]

ϕ
ϕ

1−ϕ

σ
σ

1−σ

1

(1− α)κ
κ

1−σ (1− σ − κ)
1−σ−κ
1−σ

ψηg,λ

(
λi
xi

)η
M

ϕ
1−ϕ

1
χ

i

M

1
χ

σ
1−σ

i

(1− ψg,λ) =

(
Pi
pi,h

) 1
1−ϕ

[ηψg,λ + 1− η]

(1− η)

(1− ϕ)(1− α)
(1− ψg,λ) = ηψg,λ + 1− η

ψg,λ

[
η + (1− η)

1

(1− ϕ)(1− α)

]
= (1− η)

[
1

(1− ϕ)(1− α)
− 1

]
and, finally:

ψg,λ =
(1− η) (α + ϕ(1− α))

η(1− ϕ)(1− α) + (1− η)

=
(1− η) (α + ϕ(1− α))

(1− ϕ)(1− α) + (1− η) (α + ϕ(1− α))

A.2 Proof of equilibrium total revenue and wage

Quantity produced for a particular good in location i:

qi,k = si,kσ
σ

1−σκ
κ

1−σ (1− σ − κ)
1−σ−κ
1−σ −1bηi,kl

1−η
i,k M

1
χ

σ
1−σ

i

Revenue per unit of output for good k is given by Pi
si,k

, so total revenue from good k, yi,k,

is given by

yi,k = Piσ
σ

1−σκ
κ

1−σ (1− σ − κ)
1−σ−κ
1−σ −1bηi,kl

1−η
i,k M

1
χ

σ
1−σ

i

In equilibrium, each unit of resource will earn the same revenue no matter which good it

is dedicated to producing. So, total revenue for location i, Yi is given by

Yi = ψyPix
η
i λ

1−η
i M

1
χ

σ
1−σ

i

where

ψy ≡ ψ1−η
g,λ σ

σ
1−σ

(1− σ − κ)
1−σ−κ
1−σ κ

κ
1−σ

1− σ
Adapting the expression from section A.1 to account for the equilibrium fraction of

land devoted to goods production, equilibrium wages are given by
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wi = ψ1−η
g,λ σ

σ
1−σ η(1− σ − κ)

1−σ−κ
1−σ κ

κ
1−σ

(
λi
xi

)1−η

PiM
1
χ

σ
1−σ

i

pi,λ = ψ−ηg,λσ
σ

1−σ η(1− σ − κ)
1−σ−κ
1−σ κ

κ
1−σ

(
λi
xi

)1−η

PiM
1
χ

σ
1−σ

i

Note that wixi = η(1 − σ)Yi and pi,λψg,λλi = (1 − η)(1 − σ)Yi–each factor is paid

exactly its CES share of revenue, as expected.

A.3 Proof of housing consumption and equilibrium utility

From appendix A.1, the following relationship between the price of goods and the

price of housing:

(
pi,h
Pi

) ϕ
1−ϕ

=

(
σ

σ
1−σ (1− η)κ

κ
1−σ (1− σ − κ)

1−σ−κ
1−σ

ϕ
ϕ

1−ϕ (1− ϕ)

)ϕ

ψ−ηϕg,λ xηϕi λ
−ηϕ
i M

1
χ [ σ

1−σ−
ϕ

1−ϕ ]ϕ
i

Total housing production is then

Hi = ϕ
ϕ

1−ϕ

(
pi,h
Pi

) ϕ
1−ϕ

(1− ψg,λ)λiM
1
χ

ϕ
1−ϕ

i

=

(
ϕσ

σ
1−σ (1− η)κ

κ
1−σ (1− σ − κ)

1−σ−κ
1−σ

1− ϕ

)ϕ

(1− ψg,λ)ψ−ηϕg,λ xηϕi λ
1−ηϕ
i M

1
χ

ϕ
1−σ

i

Per-capita housing consumption, hi = Hi
xi

, is then

hi =

(
ϕσ

σ
1−σ (1− η)κ

κ
1−σ (1− σ − κ)

1−σ−κ
1−σ

1− ϕ

)ϕ

(1− ψg,λ)ψ−ηϕg,λ

(
λi
xi

)1−ηϕ

M

1
χ

ϕ
1−σ

i

Appendix A.1 also provides the following expression for Ci:

Ci = α
wi + pi,λ

λi
xi

Pi
M

1
χ

i

= ασ
σ

1−σκ
κ

1−σ (1− σ − κ)
1−σ−κ
1−σ ψ−ηg,λ [ηψg,λ + 1− η]

(
λi
xi

)1−η

M

1
χ(1−σ)
i

Combining the expressions for per-capita consumption of housing and goods directly

yields the following expression for equilibrium utility:
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ui = ψu

(
λi
xi

)α(1−η)+(1−α)(1−ηϕ)

M

α+(1−α)ϕ
χ(1−σ)

i .

Simplifying, this can be stated as

ui = ψu

(
λi
xi

)1−η[α+(1−α)ϕ]

M

α+(1−α)ϕ
χ(1−σ)

i ,

where

ψu ≡ αα
(
σ

σ
1−σκ

κ
1−σ (1− σ − κ)

1−σ−κ
1−σ

)α+ϕ(1−α)
(
ϕ(1− η)

1− ϕ

)ϕ(1−α)

(1− ψg,λ)1−α ψ
−η[α+ϕ(1−α)]
g,λ [ηψg,λ + 1− η]α

A.4 Market Access

“Market access”:

Mi ≡

[∫ 1

0

(
Pi
pi,l

) ρ
1−ρ

dl

]χ 1−ρ
ρ

=

[∫ A

0

(
Pi
pi,l

) ρ
1−ρ

dl +

∫ 1

A

(
Pi
pi,l

) ρ
1−ρ

dl

]χ 1−ρ
ρ

By definition, cost of production for a location-i producer of good k is Pi
si,k

. Perfect

competition implies that if good l is bought from location-j good l sold in location i will

have a price equal to pij,l =
Pj

sj,lγji
.

The probability that the pij,l is less than p, for l ∈ [0, A], is given by

Pr (pij,l < p| l ∈ [0, A]) = Pr

(
Pj

sj,lγji
< pl ∈ [0, A]

)
= Pr

(
sj,l >

Pj
pγji

l ∈ [0, A]

)
= 1− Pr

(
sj,l ≤

Pj
pγji

l ∈ [0, A]

)
= 1− e

−αj
(
Pj
γji

)−χ
pχ

By the same reasoning,

Pr (pij,l < p| l ∈ (A, 1]) = 1− e
−mj

(
Pj
γji

)−χ
pχ

Then, the probability that pij,l is less than p, unconditional on whether l is an agri-
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cultural or non-agricultural good, can be calculated as

Pr (pij,l < p) = 1−

 ∏
l∈[0,A]

(1− Pr (pij,l < p|l ∈ [0, A]))

 ∏
l∈(A,1]

(1− Pr (pij,l < p|l ∈ (A, 1]))


= 1−

 ∏
l∈[0,A]

e
−αj

(
Pj
γji

)−χ
pχ

 ∏
l∈(A,1]

e
−mj

(
Pj
γji

)−χ
pχ


= 1−

[
e
−αj

(
Pj
γji

)−χ
pχ
]A [

e
−mj

(
Pj
γji

)−χ
pχ
]1−A

= 1− e
−
(
Pj
γji

)−χ
pχ[Aαj+(1−A)mj ]

Then, by the properties of the Fréchet distribution, the probability that pi,l = min
j∈N

pij,l

is less than p is given by

Ĝi(p) ≡ Pr(pi,l < p) = 1−
∏
j∈N

[1− Pr(pij,l < p)]

= 1−
∏
j∈N

e
−
(
Pj
γji

)−χ
pχ[Aαj+(1−A)mj ]

= 1− e
−
∑
j∈N

(
Pj
γji

)−χ
pχ[Aαj+(1−A)mj ]

dĜi(p)

dp
= χpχ−1

Pie
−Pipχ

with

Pi ≡
∑
j∈N

(
Pj
γji

)−χ
[Aαj + (1− A)mj]

Market access is therefore given by

Mi =

[
P

ρ
1−ρ
i

∫ 1

0

(
1

pi,l

) ρ
1−ρ

dl

]χ 1−ρ
ρ

=

[
P

ρ
1−ρ
i

∫ ∞
0

p−
ρ

1−ρ
dĜi(p)

dp
dp

]χ 1−ρ
ρ

=

[
P

ρ
1−ρ
i

∫ ∞
0

p−
ρ

1−ρχpχ−1
Pie

−Pipχdp

]χ 1−ρ
ρ
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Change of variable: x ≡ Pipχ:

Mi =

[
P

ρ
1−ρ
i P

1
χ

ρ
1−ρ

i,a

∫ ∞
0

x1− 1
χ

ρ
1−ρ−1e−xdx

]χ 1−ρ
ρ

Applying the definition of the gamma function, Γ(z) =
∫∞

0
xz−1e−xdx:

Mi = Γ

(
1− 1

χ

ρ

1− ρ

)χ 1−ρ
ρ

P χ
i Pi

= Γ

(
1− 1

χ

ρ

1− ρ

)χ 1−ρ
ρ ∑

j∈N

(
Pi
Pj

)χ
γχji [Aαj + (1− A)mj]

Note that the previous steps require that the restriction χ > ρ
1−ρ holds.

A.5 Goods Market Clearing and Prices Derivation

The probability that location j exports a given good l to location i, rji, is the same

as the probability that location j can provide good l at the lowest cost:

rji = Pr

(
pi,j,l < min

k 6=j
{pi,k,l}

)
=

∫ ∞
0

∏
k 6=j

[1− Pr(pi,k,l < p)]
dPr (pi,j,l < p)

dp
dp

=

∫ ∞
0

e
−
∑
k∈N

(
Pk
γki

)−χ
pχ[Aαk+(1−A)mk]

χpχ−1

(
Pj
γji

)−χ
[Aαj + (1− A)mj] dp

Change of variable x = Pip
χ:

rji =

(
Pj
γji

)−χ
[Aαj + (1− A)mj]

Pi

∫ ∞
0

e−xdx

=

(
Pj
γji

)−χ
[Aαj + (1− A)mj]

Pi

In terms of market access:

rji = Γ

(
1− 1

χ

ρ

1− ρ

)χ 1−ρ
ρ

(
Pi
Pj

)χ
γχji [Aαj + (1− A)mj]

Mi
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Aggregate expenditure on good l in consumption:

xipi,lci,l = xiα
wi + pi,λ

λi
xi

P
− ρ

1−ρ
i M

1
χ

ρ
1−ρ

i

p
− ρ

1−ρ
il

= αψ−ηg,λ [ηψg,λ + 1− η]σ
σ

1−σκ
κ

1−σ (1− σ − κ)
1−σ−κ
1−σ xηi λ

1−η
i P

1
1−σ
i M

(1−ρ)(σ−ρ)
χ(1−σ)

i p
− ρ

1−ρ
il

= α(1− σ)

[
η +

1− η
ψg,λ

](
Pi
pi,l

) ρ
1−ρ Yi

M

1
χ

ρ
1−ρ

i

= (1− σ)
α

αϕ(1− α)

(
Pi
pi,l

) ρ
1−ρ Yi

M

1
χ

ρ
1−ρ

i

Aggregate expenditure on intermediate input l in goods production:

pi,lzi,l =
σ

η(1− σ)

xiwi

P
− ρ

1−ρ
i M

1
χ

ρ
1−ρ

i

p
− 1

1−ρ
i,l

= ψ1−η
g,λ

σ

1− σ
σ

σ
1−σ (1− σ − κ)

1−σ−κ
1−σ κ

κ
1−σxηi λ

1−η
i P

1
1−ρ
i M

(1−ρ)(σ−ρ)
χ(1−σ)

i p
− 1

1−ρ
i,l

= σ

(
Pi
pi,l

) ρ
1−ρ Yi

M

1
χ

ρ
1−ρ

i

Aggregate expenditure on intermediate input l in housing production:

pi,lzil,h =
ϕ

1− ϕ
pi,λ

p
1

1−ρ
il P

− ρ
1−ρ

i M

1
χ

ρ
1−ρ

i

li,h

= (1− ψg,λ)ψ−ηg,λ(1− η)
ϕ

1− ϕ
σ

σ
1−σκ

κ
1−σ (1− σ − κ)

1−σ−κ
1−σ xηi λ

1−η
i P

1
1−σ
i M

(1−ρ)(σ−ρ)
χ(1−σ)

i p
− 1

1−ρ
i,l

=
1− ψg,λ
ψg,λ

(1− η)(1− σ)
ϕ

1− ϕ

(
Pi
pi,l

) ρ
1−ρ Yi

M

1
χ

ρ
1−ρ

i

= (1− σ)
ϕ(1− α)

α + ϕ(1− α)

(
Pi
pi,l

) ρ
1−ρ Yi

M

1
χ

ρ
1−ρ

i

Aggregate expenditure on good l in location i for all purposes, as a function of its

price:

ỹi,l ≡ xipi,lci,l + pi,lzi,l + pi,lzil,h =

(
Pi
pi,l

) ρ
1−ρ Yi

M

1
χ

ρ
1−ρ

i

From this expression, it follows immediately that total aggregate expenditure on goods
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equals total aggregate revenue of goods-producing firms:

Ỹi ≡
∫ 1

0

ỹi,ldl = Yi

Now, using export probabilities rji, it is possible to calculate r̃ji, the share of i’s

aggregate goods expenditure that is spent on goods from location j. As it turns out,

r̃ji = rji:

r̃ji =

∫ 1

0
rjiỹi,ldl

Ỹi
= rji

Yi

Ỹi
= rji

In equilibrium, aggregate revenue of goods producing firms in location i ∈ N must

equal total expenditure from all locations j ∈ N on goods produced in i:

Yi =
∑
j∈N

rijYj

Now let us substitute in for rij and develop this expression a bit further:

Pix
η
i λ

1−η
i M

1
χ

σ
1−σ

i = Γ

(
1− 1

χ

ρ

1− ρ

)χ 1−ρ
ρ ∑

j∈N

(
Pj
Pi

)χ
γχij [Aαi + (1− A)mi]

Mj

Pjx
η
jλ

1−η
j M

1
χ

σ
1−σ

j

Pix
η
i λ

1−η
i M

1
χ

σ
1−σ−1

i

∑
j∈N

(
Pi
Pj

)χ
γχji [Aαj + (1− A)mj]

=
∑
j∈N

(
Pj
Pi

)χ
γχij [Aαi + (1− A)mi]Pjx

η
jλ

1−η
j M

1
χ

σ
1−σ−1

j

With transitive asymmetry, i.e., if
γij
γji

γjk
γkj

= γik
γki

, and taking market access as given, the

following is a solution to the system of equations implied by the preceding expression:

Pix
η
i λ

1−η
i M

1
χ

σ
1−σ−1

i

Aαi + (1− A)mi

(
Pi
Pj

)χ
γχji =

(
Pj
Pi

)χ
γχij
Pjx

η
jλ

1−η
j M

1
χ

σ
1−σ−1

j

Aαj + (1− A)mj

and, thus:

(
Pi
Pj

)1+2χ

=

(
γij
γji

)χ xηjλ1−η
j

xηi λ
1−η
j

Aαi + (1− A)mi

Aαj + (1− A)mj

(
Mi

Mj

) 1
χ

σ
1−σ−1

If we apply the restriction that σ = χ
1+χ

, then the above expression is a closed-form

solution for relative prices for all locations. Given the types of values that are typically

given to these parameters, in the literature, however, this is unlikely to be a reasonable
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restriction: it would imply, simultaneously, a very high share of intermediate inputs

in production, and a very high elasticity of trade to transport costs. A smaller but

still significant concern with this restriction is that it would also, due to the necessity

that χ > ρ
1−ρ , require a relatively high complementarity between goods. Assuming that

σ < χ
1+χ

, as is more reasonable, the interpretation of this expression is as follows: revenue

per unit of input will be higher in locations that have less land and labor available

for production, that have higher agricultural potential and technology levels, that have

greater market access, and that face lower barriers to exporting than they do to importing.

A.5.1 One Period Spatial Equilibrium

In order to explore the basic properties of the mobility regime we have just specified, let

us now define a one-period spatial equilibrium. Suppose the world exists for only a single

period. A one-period spatial equilibrium consists of a static equilibrium summarized

by ui for all i ∈ N and location choices by all consumers such that, given their starting

locations, bilateral mobility costs, draws for idiosyncratic location preferences, and the

location choices of other consumers, each consumer’s choice maximizes his utility.

Following Redding (2016), the distribution of idiosyncratic preferences given by M(.)

implies that lij, the probability that a consumer with a starting location of i will choose

to reside in j, will be given by the following:

lij =
ϑijµ

0
jxj,bu

κ
j∑

k∈N
ϑikµ0

kxk,bu
κ
k

xj =
∑
i∈N

lijxi,b = µ0
jxj,bu

κ
j

∑
i∈N

ϑijxi,b∑
k∈N

ϑikµ0
kxk,bu

κ
k

(27)

These choice probabilities, aggregated over the distribution of starting populations

xi,b for i ∈ N , imply the following ratios of basic utility that must hold for all j,m ∈ N :

uj
um

=

µ0
m

µ0
j

xj
xj,b
xm
xm,b

∑
i∈N

ϑiml̃i∑
i∈N

ϑij l̃i


1
κ

, (28)

where

l̃i ≡
xi,b∑

k∈N
ϑikµ0

kxk,bu
κ
k

.

The interpretation of this expression is the following: locations will have relatively higher
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utility in equilibrium which

1. have relatively low utility multipliers (i.e., µ0
j < µ0

m),

2. are relatively costly for consumers in other locations to move to (
∑
i∈N

ϑij l̃i <∑
i∈N

ϑiml̃i), and

3. experience relatively larger inflows of resident population relative to their starting

population (
xj
xj,b

> xm
xm,b

).

The parameter κ, then, determines the sensitivity of relative utilities to differences

between locations of these three types. In the limit as κ approaches 1, a change in the

ratio of amenity multipliers µ0m
µ0j

would be matched 1:1 by a change in relative utility
uj
um

.

In the opposite limit, as κ increases without bound, utility ui is always equalized across

locations in equilibrium regardless of the fundamentals.

Another interpretation of the parameter κ becomes apparent if we think about a

series of one-period spatial equilibria indexed by t, such that xi,b(t + 1) = xi(t) for

t ∈ {0, 1, 2, ...}. It can be shown that for an arbitrary distribution of starting popula-

tion xi,b(0) or i ∈ N , such a series of equilibria is guaranteed to converge to a stable

equilibrium, one in which xi(t) = xi,b(t) = xi for i ∈ N , as t → ∞. κ determines

the speed of this convergence, with a higher value implying faster convergence. In the

limit as κ →∞, the location choices of the very first equilibrium always yield the stable

population distribution, regardless of the starting point.

To see how this specification of location preferences with idiosyncratic shocks nests

the standard case of free mobility with no idiosyncratic shocks, consider a stable one-

period spatial equilibrium. Consider the case in which all bilateral moving costs are zero:

ϑij = 1 for all i, j ∈ N .14 In this case, (28) implies that

(
µ0
j

) 1
κ uj =

(
µ0
m

) 1
κ um.

In other words, utility, controlling for location-specific amenity multipliers, is equal-

ized. A spatial equilibrium under free mobility with no preference shocks would require

exactly the same condition.

Now, to see how mobility restrictions between countries may play a role, let us consider

the case where moving costs within each country are equal to zero, but moving costs

between countries are infinite, as in the baseline model of Desmet, Nagy and Rossi-

Hansberg (2016).15 In this case, (28) implies that amenity-multiplier-controlled utility

14In the context of the paramaterization specified by (??), this requires that ζ3 = 1, ζ4 = 0, and
ϑ̄(l,m) = 1 for all country pairs l,m.

15In the context of (??), this requires that ζ3 = 1, ζ4 = 0, and ϑ̄(l,m)0 for all country pairs l,m such
that l 6= m.

55



must be equalized within countries, and also that preference shocks play no role in pinning

down the inequalities in utility which may exist between countries.16 If, alternatively,

moving costs between countries are positive but finite, then preference shocks do play

a role in determining relative utilities between countries, and κ again plays its role of

deciding how large the equilibrium inequalities will be and how fast a series of equilibria

will converge to the stable distribution.

A.6 Proof of parameter regions for forces of agglomeration and

dispersion and long-run outcomes

Theorem 2 Given the environment that has been described, if ν2
ν1

= η and the world

enters a balanced growth path, utilities corresponding to ū, Ũ and population levels cor-

responding to x must jointly satisfy the following three conditions:

1. ū
1
ν1 must be the largest eigenvalue and x{η} must be the corresponding right eigen-

vector of the matrix ξψ
1
ν1
4 Ũ

− 1
ν1 ΛηΘ{ςm}Λ1−η

2. Given x and ū, Ũ must satisfy the system of equations given by

uj
um

=

µ0
m

µ0
j

f 0
mf(um) + κ

f 0
j f(uj) + κ

∑
i∈N

ϑiml̃i∑
i∈N

ϑij l̃i


1
κ

for all j,m ∈ N .

3. The growth rate of population is equal to

ςx =

∑
i∈N

xi [f
0
i f(ui) + κ]∑
i∈N

xi
− 1,

and so the growth rate of manufacturing potential is equal to

ςm = (1 + ςx)
η − 1

.

Corollary 2.1 If ν2
ν1

= η, and ϑij = 1, f 0
i = f 0

j = f 0, and µ0
i = µ0

j for all i, j ∈ N ,

then, if the world enters a balanced growth path, ui = uj = ū for all i, j ∈ N and ū and

population levels corresponding to x are pinned down by the two following conditions:

16The second point can be seen by noting that in a stable equilibrium, if ϑij equals 0 whenever i and
j belong to separate countries and 1 whenever they belong to the same country, and if j and m in (28)
belong to separate countries, then (28) reduces to 1 = 1, a condition which always holds and so cannot
play a role in determining relative utilities between countries.
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1. ū
1
ν1 must be the largest eigenvalue and x{η} must be the corresponding right eigen-

vector of the matrix ξψ
1
ν1
4 ΛηΘ{ςm}Λ1−η.

2. the growth rate of population must be equal to

ςx = f 0f(ū) + κ− 1,

and the growth rate of manufacturing potential equal to

ςm = (f 0f(ū) + κ)η − 1

.

The interpretation of this characterization is as follows: ΛηΘΛ1−η is a matrix such

that each ijth element represents the access that the land area in location i which is

being used to produce housing has to the land area in location j which is being used to

produce goods. The largest eigenvalue of this matrix is, simply, a measure of how much

land there is in the world and how well it is connected to other land. The dependence

of the maximum utility level on this measure can be interpreted in the following way:

land is a productive resource which is distributed across space, and people are better off

when the locations holding this resource are better-connected. Similarly, the growth rate

of the economy depends on this same measure: the economy grows faster when the world

is better-connected.

The right eigenvector corresponding to the largest eigenvalue has in other contexts

been interpreted as an eigenvector centrality, and this interpretation is appropriate here

as well. This means that population agglomerates in locations that are central, in the

sense of being well-connected, relative to the distribution of land.

Pre-multiplying the matrix ΛηΘΛ1−η by Ũ
−1
ν1 applies weights according to locations’

relative utilities, with higher weights being placed on locations with relatively low utility.

This makes sense as, relative to the homogenous, free-mobility case in which utility ui

equalizes across locations, a location that has lower utility will have higher population

and thus more productive capacity, again relative to the equalized-utility case.

In order to specify the condition which determines whether the world will achieve

sustained growth in the long run or will instead converge to a steady, state, it is conve-

nient to introduce the concept of a “hypothetical” population growth rate–the population

growth rate which would obtain in a hypothetical balanced growth path with a specified

growth rate of manufacturing potential.

Definition 3 Let the hypothetical balanced growth path population growth rate,

ς̃x (k), be defined implicitly as a function of k by the following three conditions:

57



1.

ς̃x(k) =

∑
i∈N

xi [f
0
i f(ui) + κ]∑
i∈N

xi
− 1

2. Given x and ū, Ũ satisfies the system of equations given by

uj
um

=

µ0
m

µ0
j

f 0
mf(um) + κ

f 0
j f(uj) + κ

∑
i∈N

ϑiml̃i∑
i∈N

ϑij l̃i


1
κ

for all j,m ∈ N .

3. ū
1
ν1 is the largest eigenvalue and x{η} is the corresponding right eigenvector of the

matrix ξψ
1
ν1
4 Ũ

− 1
ν1 ΛηΘ{k}Λ1−η

Mirroring corollary 7.1, in the case where ν2
ν1

= η, and ϑij = 1, f 0
i = f 0

j = f 0, and

µ0
i = µ0

j for all i, j ∈ N , the definition of ς̃x(k) given by definition 3 simplifies considerably,

and depends on only two distinct conditions:

1.

ς̃x(k) = f 0f(ū) + κ− 1

2. ū
1
ν1 is the largest eigenvalue of the matrix ξψ

1
ν1
4 ΛηΘ{k}Λ1−η.

In any case, the condition for long-run sustained growth is given by the following

theorem:

Theorem 3 Given the environment that has been described, if ν2
ν1

= η, the world will

asymptotically approach a unique balanced growth path if and only if ς̃x(0) > 0.

Proof: See Appendix ??.

Theorem 3 makes clear the dependence of growth on the level of connectedness: if

transport costs are high enough, and thus the largest eigenvalue of ΛηΘ{0}Λ1−η is small

enough, sustained growth is not possible, and the economy stagnates instead. Low-enough

transport costs are a necessary condition for sustained growth.

Now let us examine the allocations of this steady state economy.

Theorem 4 In the environment that has been described, if ν2
ν1

= η and the world con-

verges to a Malthusian steady state, utilities corresponding to ū, Ũ and population levels

corresponding to x must jointly satisfy the following three conditions:

1.

∑
i∈N

xi [f
0
i f(ūũi) + κ]∑
i∈N

xi
= 1
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2. x{η} = ψ
1
ν1
4 ū

− 1
ν1

(
I− ξψ

1
ν1
4 ū

− 1
ν1 Ũ

− 1
ν1 ΛηΘΛ1−η

)−1

Ũ
− 1
ν1 Ληααα

3. Given x and ū, Ũ must satisfy the system of equations given by

uj
um

=

µ0
m

µ0
j

f 0
mf(um) + κ

f 0
j f(uj) + κ

∑
i∈N

ϑiml̃i∑
i∈N

ϑij l̃i


1
κ

for all j,m ∈ N .

Corollary 4.1 If ν2
ν1

= η, and ϑij = 1, f 0
i = f 0

j = f 0, and µ0
i = µ0

j for all i, j ∈ N , and

the world converges to a Malthusian steady state, then

� ui = uj = ū = f−1
(

1−κ
f0

)
� x{η} = ψ

1
ν1
4 ū

− 1
ν1

(
I− ξψ

1
ν1
4 ū

− 1
ν1 ΛηΘΛ1−η

)−1

Ληααα

Theorem 8 shows that the centrality interpretation of the equilibrium population

distribution can be maintained in the steady state as well as in the balanced growth

path, except that in this case it is not eigenvector centrality but the closely-related Katz-

Bonacich centrality.17 In a steady state, the maximum utility ū is exactly at the level that

is necessary for there to be zero population growth–in the simpler case treated by corollary

8.1 where utility equalizes across locations, this may be thought of as the “subsistence”

level of utility.18

The characterization of balanced growth path and steady state allocations, as well

as the condition that determines which type of allocation is the long-run destination of

the economy, are similar for the case where ν2
ν1
< η and the forces of agglomeration are

stronger than those of dispersion. The most important difference is that unlike in the

previous case, where long-run utility for any single location was strictly decreasing in its

own population, now the relationship is non-monotonic, with a downward-sloping portion

followed by a an upward-sloping, concave portion. This means that even if transport

costs are very high, so that an economy starting from nothing would quickly stagnate, a

17See, for example, Bonacich (1987).
18If we label the potential balanced growth path utility level as determined by the matrix ΛηΘΛ1−η

as ūb and the “subsistence” level of utility as ūs, the relation of the steady state to the balanced growth
path can be illustrated in the following way. If ūs > ūb, i.e., if potential balanced growth path utility is
lower than the level necessary to sustain growth, then by corollary ?? the world converges to a steady

state, and also the matrix I − ξψ
1
ν1
4 ū

− 1
ν1

s ΛηΘΛ1−η is guaranteed to be invertible. As ūb → ūs from

below, i.e., as transport costs become lower, the matrix I − ξψ
1
ν1
4 ū

− 1
ν1

s ΛηΘΛ1−η will come closer and
closer to being singular. If ūb ≥ ūs, then the population distribution implied by corollary 8.1 either
does not exist or has negative elements–meaning that the only stable long-run outcome is the balanced
growth path, with ū = ūb, and allocations as given by corollary 7.1.
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sustained-growth outcome can always be achieved if only the starting levels of technology

and population are above a certain threshold.

In order to express this condition succinctly, it is convenient to define the population

growth rate along a hypothetical transition path as a function of the population level in

every location. It is convenient to abstract from the gradual adjustment of population

in this hypothetical transition path, and assume that the population distribution in each

period corresponds to the stable distribution associated with that level of total world

population, where the stable distribution is defined formally as follows:

Definition 4 Let the stable distribution associated with a total population level x̄ =∑
i∈N

xi be defined as a distribution such that xi,b = xi.

In this hypothetical transition path, it is also convenient to abstract from the gradual

gradual accumulation of ideas, and assuming that levels of technology instantly jump to

the long-run levels associated with the stable population distribution.

Definition 5 Let the hypothetical transition path population growth rate,

ς̂x(x̄, t), be defined implicitly as a function satisfying the following conditions:

1.
∑
i∈N

xi = x̄ and the population distribution is stable.

2.

ς̃x(x̄) =

∑
i∈N

xi [f
0
i f(ui) + κ]∑
i∈N

xi
− 1

3.

x
ν2
ν1 = ψ

1
ν1
4 ū

− 1
ν1 Ũ

− 1
ν1 Λ

ν2
ν1

[
ααα + ξΘ{0}Λ1−ηxη

]
4. Given x and ū, Ũ must satisfy the system of equations given by

uj
um

=

µ0
m

µ0
j

f 0
mf(um) + κ

f 0
j f(uj(t)) + κ

∑
i∈N

ϑiml̃i∑
i∈N

ϑij l̃i


1
κ

for all j,m ∈ N .

In the special case where ν2
ν1

= η, and ϑij = 1, f 0
i = f 0

j = f 0, and µ0
i = µ0

j for all

i, j ∈ N , the conditions given in definition 5 are reduced to three:

1.
∑
i∈N

xi = x̄ and the population distribution is stable

2.

ς̃x(x̄) = f 0f(ū) + κ− 1
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3.

x
ν2
ν1 = ψ

1
ν1
4 ū

− 1
ν1 Λ

ν2
ν1

[
ααα + ξΘ{0}Λ1−ηxη

]
Now let us define a critical population level as the threshold such that if the world

starts with a stable population distribution and long-run levels of technology, and the

total population level is higher than this critical level, it will achieve sustained growth.

Definition 6 Considering the set of long-run, stable population and technology distribu-

tions, let the critical population level x̄∗ be defined as follows for the following two

cases:

Case 1: If min
x̄
{ς̂x(x̄)} > 0, then x̄∗ = 0

Case 2: If min
x̄
{ς̂x(x̄)} ≤ 0, then x̄∗ is the point such that ς̂x(x̄) = 0 and

∂ς̂x(x̄)

∂x̄
> 0.

Making use of definition 6, the following theorem provides sufficient conditions for the

economy to stagnate into a steady state in the long run.

Theorem 5 Given the environment that has been described, if ν2
ν1
< η, the following two

conditions are sufficient for the world to converge to a Malthusian steady state in the long

run:

1. The initial distribution of population x(0) is stable, with total population given by

x̄(0), and the initial levels of manufacturing potential in each location are the long-

run levels associated with x(0).

2. x̄(0) ≤ x̄∗

The implications of theorem 5 have an intuitive interpretation: if transportation costs

are low enough, the economy will achieve sustained growth in the long run regardless of its

starting point. If, however, transportation costs are high enough such that min
x̄
{ς̂x(x̄)} ≤

0, then unless initial levels of population and technology are above a certain threshold,

which for the case of stable, long-run starting conditions is given by x̄∗, the economy will

stagnate.

A full characterization of the necessary conditions for stagnation requires a consider-

ation of all possible starting points for the economy, including population distributions

that are not stable and arbitrary distributions of manufacturing potential.

Theorem 6 Define s(0) as an n3(n − 1)-dimensional vector in R
n3(n−1)
+ composed of

xi(0), mi,I(0), mij,D(0) for i ∈ N and j 6= i. There exists a function z(s) in n3(n − 1)

arguments and a n3(n − 1)-dimensional hypersurface defined by the condition z(s) = 0

such that the economy will converge to a Malthusian steady state if and only if z(s(0)) ≥ 0.

Proof: See Appendix ??.
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What theorem 6 says is that there exists a frontier of initial population and technology

levels such that, if initial levels lay within the limits of that frontier, the economy stagnates

in the long run. In the case where transport costs are low enough that min
x̄
{ς̂x(x̄)} > 0,

this frontier collapses to the origin: z(s) = 0 for all s ∈ Rn3(n−1)
+ . This theorem is also

valid when ν2
ν1
≥ η, though it is obviously not as useful for analyzing these cases as the

preceding theorems. In cases where ν2
ν1
> η, for example, the frontier defined by z(s)

expands outward from the origin without bound such that z(s) ≥ 0 for all s ∈ Rn3(n−1)
+ .

Theorem 7 Given the environment that has been described, if ν2
ν1
< η and the world

enters a balanced growth path, utilities corresponding to ū, Ũ and population levels cor-

responding to x must jointly satisfy the following three conditions:

1.

x
ν2
ν1 = ψ

1
ν1
4 ū

− 1
ν1 Ũ

− 1
ν1 Λ

ν2
ν1 ξΘ{ςm}Λ1−ηxη

2. Given x and ū, Ũ must satisfy the system of equations given by

uj
um

=

µ0
m

µ0
j

f 0
mf̄ + κ

f 0
j f̄ + κ

∑
i∈N

ϑiml̃i∑
i∈N

ϑij l̃i


1
κ

for all j,m ∈ N .

3. The growth rate of population is equal to

ςx =

∑
i∈N

xi
[
f 0
i f̄ + κ

]
∑
i∈N

xi
− 1,

and so the growth rate of manufacturing potential is equal to

ςm = (1 + ςx)
η − 1

.

Corollary 7.1 If ν2
ν1

= η, and ϑij = 1, f 0
i = f 0

j = f 0, and µ0
i = µ0

j for all i, j ∈ N ,

then, if the world enters a balanced growth path, ui = uj = ū for all i, j ∈ N and ū and

population levels corresponding to x are pinned down by the following single condition:

1.

x
ν2
ν1 = ψ

1
ν1
4 ū

− 1
ν1 Λ

ν2
ν1 ξΘ{ςm}Λ1−ηxη

where the growth rate of population is equal to

ςx = f 0f̄ + κ− 1,
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and the growth rate of manufacturing potential equal to

ςm = (f 0f̄ + κ)η − 1

.

Theorem 8 In the environment that has been described, if either ν2
ν1
> η or ν2

ν1
< η and

the world converges to a Malthusian steady state, utilities corresponding to ū, Ũ and

population levels corresponding to x must jointly satisfy the following three conditions:

1.

∑
i∈N

xi [f
0
i f(ūũi) + κ]∑
i∈N

xi
= 1

2.

x
ν2
ν1 = ψ

1
ν1
4 ū

− 1
ν1 Ũ

− 1
ν1 Λ

ν2
ν1

[
ααα + ξΘ{0}Λ1−ηxη

]
3. Given x and ū, Ũ must satisfy the system of equations given by

uj
um

=

µ0
m

µ0
j

f 0
mf(um) + κ

f 0
j f(uj) + κ

∑
i∈N

ϑiml̃i∑
i∈N

ϑij l̃i


1
κ

for all j,m ∈ N .

Corollary 8.1 If either ν2
ν1
> η or ν2

ν1
< η, and ϑij = 1, f 0

i = f 0
j = f 0, and µ0

i = µ0
j for

all i, j ∈ N , and the world converges to a Malthusian steady state, then

� ui = uj = ū = f−1
(

1−κ
f0

)
�

x
ν2
ν1 = ψ

1
ν1
4 ū

− 1
ν1 Λ

ν2
ν1

[
ααα + ξΘ{0}Λ1−ηxη

]
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