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Abstract

This paper addresses the impact of study programs in secondary education on

long run educational and labor market outcomes. I estimate a dynamic model of

educational decisions that allows for observed and unobserved di¤erences in initial

ability. It is novel in that it adds unobserved e¤ort as a choice variable, along with the

choice of study program. This replaces traditional approaches, which assume end-of-

year performance follows an exogenous law of motion. I use the model to calculate how

each study program contributes to di¤erent outcomes and I investigate policies that aim

to match students to the right program. I �nd that academically rigorous programs are

important to improve higher education outcomes, while vocational programs prevent

drop out, grade retention and unemployment. At the same time, policies that encourage

underperforming students to switch to less academic programs do not have a negative

impact on higher education outcomes and they substantially reduce grade retention

and drop out. I also �nd that ignoring the fact that students choose their e¤ort level

generates biases in counterfactual predictions.
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1 Introduction

Students follow di¤erent curricula during secondary education, depending on their pref-

erences and ability. Many countries separate students in academic or vocational tracks.

Academic curricula do not focus on skills that are directly useful on the labor market but

provide preparation for programs in higher education. To achieve the European 2020 tar-

get of 40% college educated people, many countries aim to induce more students to choose

academic curricula. Other countries often provide course-level di¤erentiation. In the US,

there is a similar trend towards more academic course taking, especially in STEM (Science,

Technology, Engineering, Math)-�elds.1

This trend raises two related concerns. First, it is unclear whether there is a causal e¤ect

of a more academic curriculum on success in higher education. I therefore investigate how

the availability of study programs that di¤er in their academic level contributes to long run

educational and labor market outcomes.2 Second, not every student is expected to gain from

an academic program. Students who are unlikely to go to college would waste time they could

otherwise spend on training skills that are more useful on the labor market. They might

also not have the required academic ability to �nish the program successfully. Mismatch

and failure can lead to unfavorable outcomes like grade retention and drop out. These

outcomes do not only generate large costs for students, but also cause negative externalities

on society. I therefore investigate how to design policies that help in matching students to

a study program. This is especially a concern in early tracking countries, i.e. countries that

di¤erentiate students at the age of 10 to 12.3

To investigate the impact of high school curriculum and the design of suitable policies, I

use a dataset that combines data on study program choices and performance in secondary

education with data on outcomes in higher education and on the labor market. I use rich

micro-data of Flanders, the largest region of Belgium. As in many countries, study programs

consist of tracks and elective courses within each track. Students choose a program at age

12 but can update their choice almost every year after. There is a tracking policy that o¤ers

underperforming students the choice to switch out of an academically rigorous program or

repeat the grade. First, I study the impact of study programs that di¤er in their academic

level on long run outcomes and the extent to which the current tracking policy helps to

improve these outcomes. Next, I look at an alternative policy that aims to minimize grade

1The 2011 NAEP report compares high school students graduating in 2005 to students graduating in 1990. They �nd that
they take more academic credits (16 on average instead of 13.7). The percentage of students that followed a rigorous curriculum
also increased from 5% to 13% (Nord et al. 2011).

2 In the rest of this paper I will refer to study programs as the curriculum a student follows during secondary education.
3Germany and Austria already di¤erentiate from the age of 10. Belgium and the Netherlands di¤erentiate from age 12.

Most of these early tracking countries also face much higher rates of grade retention (OECD 2013).
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retention, at the cost of graduation rates of academic programs.

I develop a dynamic model of educational decisions. In each year of secondary education

students choose a program based on the (psychic) cost of studying today and the impact on

future utility. The cost consist of (1) a �xed cost of following the program and (2) a variable

cost, increasing in unobserved study e¤ort. I distinguish between both costs by modeling

end-of-year performance as a function of the chosen level of study e¤ort. Students can

change e¤ort by choosing the distribution of performance outcomes. A better distribution is

costly today, but leads (in expectation) to better opportunities and outcomes in the future.

Identi�cation of the variable costs then follows from a �rst-order condition that sets the

(unobserved) marginal cost of e¤ort today equal to the (observed) expected marginal bene�t

of e¤ort in the future. After accounting for the variable costs and the impact on the future,

�xed costs can be identi�ed from the remaining variation in the data on program choices.

In the application, performance takes the form of permissions to di¤erent study programs

in the next grade during secondary education, and obtaining a degree after the last grade.

Allowing for dynamics in the choice of both program and study e¤ort is therefore particularly

important as we expect students to adapt their current program and level of study e¤ort to

changes in tracking policies.

To look at the long-run impact of study programs, I simultaneously estimate their e¤ect

on outcomes in higher education (enrollment, �rst year performance and graduation at age

25) and the unemployment spell between age 25 and age 35. To identify causal e¤ects, it

is crucial to allow for correlation between the unobservables that impact long run outcomes

and choices in secondary education, e.g. because of unobserved ability. I model this using

a �nite mixture of types with each type a¤ecting all components of the model. Rich panel

data and exclusion restrictions help in identifying the types without relying on arbitrary

functional form assumptions. The Flemish context is particularly useful for this purpose as

students make repeated choices and obtain important performance outcomes during many

years. The extensive data on initial ability and socioeconomic status also allows me to

include rich patterns of heterogeneity, even with a small number of unobserved types.

This paper contributes to three strands of literature. A �rst strand of literature investi-

gates the causal impact of high school curriculum on long run educational and labor market

outcomes.4 Altonji (1995) �nds small e¤ects for several high school courses in the US but

speci�cally states the di¢ culties in estimating causal e¤ects are too large to draw policy

conclusions on the results. Several papers look at the impact of intensive math courses and

found positive e¤ects, at least for some groups of students (Rose and Betts (2004), Joensen

and Nielsen (2009), Aughinbaugh (2012)). Papers that look at choices between academic

4See also the review of Altonji et al. (2012).

2



and vocational courses stress the importance of comparative advantages in di¤erent programs

which causes heterogeneous e¤ects (Kreisman and Stange (2017), Meer (2007)). I contribute

to this literature by estimating the causal impact of multiple high school programs. I distin-

guish between four tracks that di¤er in their academic level and look at di¤erences within

tracks that prepare for higher education, based on the math-intensity of the curriculum and

if classical languages are included. The bene�t of the Flemish institutional context is that

the study program does not have an impact on the higher education options students can

choose from. This allows me to identify the e¤ect of both academic and vocational study

programs. I also estimate a model that explains how students end up in a certain program.

This allows me to investigate policies that help to match students to their program, but also

to calculate the added value of each program, i.e. the total impact of the availability of each

program on grade retention, drop out and long run outcomes.

A second strand of literature looks at the impact of tracking policies during secondary

education. Most papers look at the age in which students are separated into di¤erent tracks

(see e.g. Hanushek and Woessman (2006), Pekkarinen et al. (2009)) or the long-run impact

of the academic track for marginal students or students who are a¤ected by speci�c policies

(Guyon et al. (2012), Dustmann et al. (2017)). Baert et al. (2015) also look at the

impact on students of being forced to switch track but only investigate outcomes during

secondary education and do not compare di¤erent policies. Recent evidence also shows that

switching track can diminish negative consequences of early track choice, suggesting choices

during secondary education are important to further investigate (Dustmann et al. (2017),

De Groote and Declercq (2017)). I contribute to this literature by investigating how tracking

policies during secondary education can help underperforming students to switch to the right

track.

Finally, this paper contributes to the development and estimation of structural models

of educational choices. Dynamic discrete choice models have often been used to evaluate the

impact of counterfactual policies on choices of study programs.5 Dynamics are important

because students are expected to anticipate future policy changes by choosing other study

programs. The same type of models have also been used to look at the impact of wage

returns on program choices.6 One of the downsides of these models is that they do not allow

performance in the model to be a function of the choice of study e¤ort. Nevertheless, theo-

retical (Costrell 1994) and reduced form (Garibaldi et al. 2012) evidence suggests that these

dynamic incentives should have an impact. I contribute to this literature by adding study

e¤ort to the model, without requiring additional data or exclusion restrictions. By modeling

5See e.g. Eckstein and Wolpin (1999), Arcidiacono (2005), Joensen (2009) or Declercq and Verboven (2017).
6See e.g. Arcidiacono (2004) and Be¤y et al. (2012).
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study e¤ort, I give a structural interpretation to the realization of performance outcomes.

This di¤ers from traditional structural models that assume end-of-year performance follows

an exogenous law of motion.7 While the data requirements and the number of estimated

parameters are the same, there are important implications for counterfactual predictions

because unobserved study e¤ort is now allowed to react to a new policy. The estimation of

dynamic discrete choice models also bene�tted from methodological contributions of Rust

(1987), Hotz and Miller (1993) and Arcidiacono and Miller (2011). I extend these methods

to allow for e¤ort choice such that estimation of the model remains feasible. I also compare

my results to the standard model that assumes performance follows an exogenous law of

motion.

I �nd that high school programs are important for long run outcomes. Without the

academic track, the percentage of college graduates (39%) would decrease by 8:6 percentage

points (%points). Elective courses matter mainly for the type of higher education degree.

Study programs that include classical languages in the curriculum raise the number of grad-

uates at the most prestigious higher education institutes, universities, by 1:9 %points and

intensive math courses lead to more STEM majors: 2:5 %points. These are large numbers

given that only 9:6% graduates from universities and 10:2% studies a STEM major. The

availability of the vocational track reduces higher education outcomes, but it also decreases

drop out rates by 10:7 %points and grade retention rates by 9:4 %points. It also helps in

decreasing the average unemployment spell between age 25 and 35 of 2:08 years by one

month.

These results show that di¤erent programs serve di¤erent outcomes. This is because

di¤erent students are a¤ected by the availability of each program. Tracking policies should

therefore be designed carefully. In the evaluation of di¤erent tracking policies, I �nd that

allowing underperforming students to switch tracks as an alternative for repeating a grade

has important bene�ts in the long run. Without this, the percentage of students with grade

retention would increase by 9:5%points, or 1 out of 3 students, and college graduation would

decrease by 1:8%points. This suggests that underperforming students should be encouraged

to switch to a program of lower academic level, rather than spending extra time in school to

graduate from a more academic program. I also �nd that this policy can be further improved

to avoid costly grade retention, without hurting student�s long run outcomes. Prohibiting

students to repeat a grade if they can avoid this by switching programs would decrease the

number of students who were retained in secondary education by 9:6 %points. This does

decrease graduation from higher education oriented tracks by 2:3%points and enrollment in

7This type of models has been used mainly in the college major choice literature, see Altonji et al. (2016) for a recent
overview.
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higher education by 1:2%points, but there are no negative e¤ects in the long run. There is

even a small decrease in the unemployment spell and a small, but insigni�cant, increase in

obtaining a college degree.

Finally, I �nd that a model without e¤ort choice underestimates the positive e¤ects

on student outcomes of both counterfactual simulations. This is because students increase

their e¤ort level to avoid being unquali�ed to continue in the program. This is especially

the case for a policy that no longer allows students to avoid grade retention by switching

programs. A model without e¤ort would predict an increase in grade retention of 12:6

%points instead of 9:5 and a decrease in college graduation of 2:7 %points instead of 1:8.

Also other outcomes show signi�cant di¤erences. Similarly, the estimated e¤ects of the

availability of each program are biased when we do not account for their impact on study

e¤ort.

The rest of the paper is structured as follows. Section 2 describes a dynamic model in

which both study program and e¤ort is chosen, how it relates to the literature and how

it is identi�ed. In Section 3 I explain how to estimate the model. Section 4 discusses the

institutional context and introduces the data and section 5 applies the model to this context.

I discuss the estimation results and the �t of the model in section 6, the added value of high

school programs in section 7 and I evaluate tracking policies in section 8. Finally, I discuss

the main limitations of the model in section 9 and conclude in section 10.

2 Dynamic model of program and e¤ort choice

This section introduces a dynamic model of educational choices in which students simulta-

neously choose a study program and an e¤ort level, taking into account the (psychic) cost of

education and the future impact of their choice. I assume a �nite horizon, limited by the year

following the last year a student is allowed to study in secondary education: t = Tmax + 1.

Long run outcomes are not modeled in a structural way. At the end of this section I explain

how the e¤ect of secondary education programs and counterfactuals on long run outcomes

can still be estimated without a structural model.

Throughout the model, i refers to a student, t the time period in years and j = 0; :::; J

di¤erent study programs to choose from. These programs are mutually exclusive and are

either programs in secondary education (j 2 se), higher education (j 2 he) or the outside
option (j = 0). The outside option includes all other options like work, unemployment

or following training programs outside of school. Not every option is always available as

compulsory education laws prohibit j =2 se until a certain age (18 in Belgium) and j 2 he
requires a higher education degree. The choice set is given by �it. The study program
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chosen by a student is denoted by a vector of dummy variables dit = (d0it; d
1
it; :::; d

J
it)
0 and

git = f1; 2; :::; Gg is an end-of-year performance measure. This measure is assumed to be a
discrete result students obtains at the end of each year with 1 the lowest possible outcome

and G the highest. It will be modeled as function of unobserved study e¤ort y. In the

application this will take the form of the academic level the study program in the next

grade is allowed to have during secondary education, and a high school degree at the end of

secondary education. The information set of students is characterized by state variables xit
and �i and iid shocks at time t. The econometrician only observes xit, the chosen programs

dit and the performance measures git, but not the unobserved (ability) type of a student

�i or the iid shocks at time t. Each student belongs to one unobserved type m = 1; :::;M ,

indicated by a dummy variable equal to one inside the vector �i = (�1i ; �
2
i ; :::; �

M
i )

0. I will

account for observed measures of language and math ability in x, but type is still expected

to be important because these variables are expected to be noisy measures of the cognitive

skills of a student and do not capture non-cognitive skills.

2.1 De�ning e¤ort

I de�ne e¤ort y as a su¢ cient statistic of the distribution of the discrete end-of-year perfor-

mance measure git+1 = f1; 2; :::; Gg. Let performance in t + 1 be the result of e¤ort today
yijt and an iid shock �ijt+1 such that:

git+1 = �g if ��
�g
j < ln yijt + �ijt+1 � ��

�g+1
j (1)

where ���gj denotes the program-speci�c threshold to obtain at least outcome �g. Note the

di¤erence in timing between the chosen e¤ort level and the shock. Students choose, and

therefore know, yijt when they make a joint decision on a program and an e¤ort level at time

t. However, they do not know the realization of git+1 because of the shock �ijt+1. This shock

captures uncertainty in grading standards or unexpected events during the year. The only

information students have is the probability of obtaining outcome �g in program j if they

choose e¤ort level yijt:

Pj(git+1 = �gjyijt) = F (ln yijt � ���gj )� F (ln yijt � ��
�g+1
j )

with F (:) the cumulative distribution function of the distribution of the shock. Setting

��1j = �1 and ��G+1j = +1 guarantees that all probabilities add up to 1. I assume �ijt+1 is

logistically distributed such the probability of the each outcome can be written as follows:

Pj(git+1 = �gjyijt) =
exp(ln yijt � ���gj )

1 + exp(ln yijt � ���gj )
�

exp(ln yijt � ���g+1j )

1 + exp(ln yijt � ���g+1j )
: (2)
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Performance is then the result of an ordered logit model with index ln yijt. Since (1) remains

equivalent when adding or subtracting the same term on all sides, I can normalize one of the

thresholds ��2j = 0 such that all other thresholds should be interpreted with respect to the

threshold of obtaining at least git+1 = 2. Rewriting (2) for the lowest outcome (git+1 = 1)

shows that e¤ort is de�ned as the odd of avoid the lowest outcome:

yijt =
1� Pj(git+1 = 1jyijt)
Pj(git+1 = 1jyijt)

: (3)

2.2 The value of each study program

Each year, students solve a dynamic problem.8 They choose the study program j with the

highest expected lifetime utility, in which e¤ort y is chosen such that it maximizes the value

of choosing that program. The value of each program can be represented by a Bellman

equation:

vijt(xit; �i; yijt) + "ijt (4)

= uj(xit; �i; yijt) + �
X
�g

Pj(git+1 = �gjyijt) �Vt+1(xit+1(�g); �i) + "ijt for j 2 se

with vijt(xit; �i; yijt) the conditional value function for a student i with observed state vari-

able x and unobserved type � of choosing program j and e¤ort level y at time t and
�Vt+1(xit+1; �i) �

R
Vt+1(xit+1; �i; "it+1)h("it+1)d"it+1. Students do not know future realiza-

tions of taste shocks but they do know the distribution h("ijt). I follow Rust (1987) and

assume this is iid and distributed extreme value type 1. The observed state variable contains

the entire information set students and the econometrician share. This includes the observed

student background but also time-varying and endogenous variables like past choices and

performance.

The conditional value function is decomposed into uj(xit; �i; yijt), the �ow utility of

schooling, and the discounted expected value of behaving optimally from t + 1 on, with

� 2 (0; 1) the one-year discount factor.9 The value of behaving optimally in the future is
given by Vt+1(xit+1; �i; "it+1). This includes study costs in future years in education, but also

outcomes after high school like the value of going to college, wages and leisure in the future.

It can be written as a weighted sum over the ex-ante value functions �Vt+1(xi;t+1; �i), i.e. the

value functions integrated over the iid shocks in state xit+1. Since performance measure g

8The decision will often be a collective decision by parents and their child, after advice from teachers. I do not distinguish
between these di¤erent actors and simply assume some utility function is optimized, regardless of who makes the decision. See
Giustinelli (2016) for a paper that does makes this distinction.

9 I follow Arcidiacono et al. (2016) and set the discount factor � = 0:9.
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is the only stochastic element in x, the weights are simply the ordered logit probabilities of

the performance measure Pj(git+1jyijt).
Traditional models of educational decision directly estimate the �ow utility as a function

of the state variables and estimate an exogenous law of motion on performance. I instead split

up the �ow utility in C0j (xit; �i), the �xed cost students attach to schooling, and cj(xit; �i)yijt,

the variable e¤ort cost:

uj(xit; �i; yijt) = �C0j (xit; �i)� cj(xit; �i)yijt: (5)

This �xed cost includes cost components that are not associated with performance. This

captures a (dis)taste to go to school, which is allowed to depend on student or family charac-

teristics because of di¤erences in preferences or social norms. Note that this cost can also be

negative because students might enjoy going to school or parents can reward (or force) them

to go to school. cj(xit; �i) is the marginal cost of e¤ort and yijt the e¤ort level the student

chooses. The marginal cost captures that, conditional on future values, students dislike the

e¤ort that is required to perform better. Similar to �xed costs, marginal cost should be

interpreted as net e¤ects. If parents encourage their children to study hard or some children

enjoy it more than others, marginal costs will be lower. In contrast to �xed costs, marginal

costs do need to be positive to ensure no one is willing to exert in�nite e¤ort. Note that this

functional form implies a constant marginal cost of e¤ort assumption. However, this does

not imply that there is a constant cost to increase the probability to perform better. E¤ort

is de�ned as the odd of avoiding the lowest performance outcome (see (3)). If the probability

of the lowest outcome is already low, it is therefore much more costly to further decrease

it, than if the probability is high.10 The model is therefore consistent with the notion that

increasing the probability of being successful in the program becomes more costly when this

probability is already high.

2.3 The value of leaving secondary education

Each period t, students take two decisions: (1) which program j to study and (2) which

e¤ort level y to exert. The model can be solved by backward induction, provided we know

the expected value of the lifetime utility after leaving secondary education t = T SEi + 1,

and we know the �nal year t = Tmax in which students are allowed to go to secondary

education. I therefore impose Tmax and estimate the lifetime utility of leaving secondary

education with and without a degree.11 To derive the value of a high school degree, I look
10E.g. the cost of decreasing the probability to avoid the lowest outcome from 50% to 40% is 10 times smaller than decreasing

it from 20% to 10%.
11 In Flanders, secondary education takes 6 years to complete. I impose Tmax = 9, implying students can have at most three

years of grade retention and are no longer able to be in secondary education in the 10th year.
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at the choice they make in the year after leaving secondary education. Students with a high

school degree can choose among higher education options j 2 he or the outside option j = 0.
The outside option captures (un)employment or training programs outside of the regular

system of tertiary education Students without a high school degree can only choose j = 0.

Let the value of each option after leaving secondary education ( j 2 fhe; 0g and t =
T SEi + 1) be given by

vijt(xit; �i) + "ijt = Degree
0
it�

degree +	HEEj (xit; �i) + "ijt (6)

with Degree0it � xit a vector of dummy variables for each possible degree a student can

obtain in high school, �degree a vector of parameters to estimate and 	HEEj (:) a reduced form

function of the state variables that predict the higher education enrollment (HEE) decision.

�degree captures the fact that students stay in school to obtain a degree, also if they do not

go to higher education. 	HEEj (:) describes how state variables a¤ect the lifetime utility of

each option. Since only di¤erences in utility are identi�ed, I normalize 	HEE0 = 0. Note that

the common parameter �degree can still be identi�ed by choice behavior during secondary

education. This is because of the dynamics of the model. Students who are more likely to

graduate because of higher expected performance, or because they have almost completed all

grades of high school, will be less likely to drop out. This is similar to Eckstein and Wolpin

(1999) who use data in secondary education to identify the value of graduating from high

school.

2.4 Solving the model

It is now possible to solve the model by backwards induction. In the last period, secondary

education is not possible and the model can be solved like a static one. Because I assume

h("it) is extreme value type 1, I can write the expected value of lifetime utility in the period

where secondary education is no longer allowed as follows:

�Vt(xit; �i) = 
 + ln
X

j2�(xit)

exp(Degree0it�
degree +	HEEj (xit; �i)) if t = Tmax + 1

with 
 � 0:577 the Euler constant and �it = �(xit) the choice set. �Vt is used as an input

in t� 1 (see (4)). First, students look for the optimal value of e¤ort yijt�1 = y�ijt�1 in every
possible option in secondary education. This implies the following �rst-order condition:

cj(xit�1; �i) = �
X
�g

@Pj(git = �gjyijt�1)
@yijt�1

�Vt(xit(�g); �i) if yijt�1 = y�ijt�1: (7)

The optimality condition is a standard equalization of marginal costs and marginal bene�ts

and allows us to write marginal costs as a function of future values and the way e¤ort changes
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performance. Note that we implicitly assumed e¤ort is only a¤ecting end-of-year performance

but not the value of behaving optimally in the future, conditional on performance. Therefore

we only need to take into account the derivative of the performance measure and not how

future values would react directly to a change in e¤ort. In appendix section A.1 I show that

the marginal bene�ts are always positive and decreasing in e¤ort y. They follow an S-shaped

curve, bounded by 0 and a weighted sum of the gains of obtaining a better performance

measure.

For a binary performance measure (G = 2), optimal e¤ort has a simple analytic solution

with an intuitive interpretation:

y�ijt�1 =

s
�( �Vt(xit(2); �i)� �Vt(xit(1); �i))

cj(xit�1)
� 1:

Optimal e¤ort in period t� 1 increases in the discounted bene�ts of obtaining performance
level 2 instead of 1 in period t, and decreases in marginal costs c in period t� 1. This shows
a clear dynamic trade-o¤. Extra e¤ort at time t�1 is costly but generates bene�ts in t. The
way e¤ort was de�ned in section 2.1 restricts the domain of y to be in the open set (0;+1).
An interior solution is therefore required. We see that this assumption puts an upper bound

on marginal costs. If marginal costs of e¤ort are larger than the discounted bene�t of having

a better outcome, the student would have no incentive to exert e¤ort. A similar intuition

applies when there is more than one performance measure (see appendix section A.1).12

When students know the optimal levels of e¤ort in each program, they can choose the

option with the highest value of vijt�1(xit�1; �i; y�ijt�1) + "ijt�1. This results in the following

logit choice probabilities:

Pr(djit�1 = 1jxit�1; �i) =
exp(vijt�1(xit�1; �i; y

�
ijt�1))P

j02�(xit�1) exp(vij0t�1(xit�1; �i; y
�
ij0t�1))

with vijt�1 given by (4) for j 2 se and (6) for j 2 f0; heg. �Vt�1 can also be calculated using:
�Vt�1(xit�1; �i) = 
 + ln

X
j2�(xit�1)

exp(vijt�1(xit�1; �i; y
�
ijt�1)):

This procedure can be repeated until the start of secondary education to solve the entire

model.

2.5 Long run outcomes

To evaluate the impact of high school programs on long run outcomes, a structural model

in secondary education is needed as it allows for policy counterfactuals that will not change
12A su¢ cient behavioral condition that implies this model assumption is to assume that a student always believes there is a

non-zero probability of avoiding the worst performance outcome.
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the primitives of the model, like �xed costs, marginal cost of e¤ort or the value of a degree,

but it will change student behavior. Without a structural model, we would not be able to

assess the e¤ects of changes in policy. For outcomes after secondary education, we do not

need to know the primitives of the model but only the way these outcomes are in�uenced

by secondary education outcomes, after controlling for observed and unobserved student

characteristics. I therefore model a reduced form function only. Let w 2 W be an outcome

variable that can be described by a function of the state variables (xitw ; �i) and an iid shock

!wi :
~	w(xit; �i; !

w
i ) if t = tw (8)

with tw the time period when the long run outcome w is realized and xitw containing char-

acteristics of students, but also the high school program from which the student graduated

and the years of study delay he accumulated in secondary education. Correlation between

long run outcomes and other parts of the model is captured by observables x and unobserved

type � and is crucial to avoid ability bias in the estimates. We also need to control for long

run outcomes in xitw that are realized at t < tw to allow for !
w
i to be modeled credibly as an

iid shock.13 Other assumptions on ~	w(:) and !wi will be imposed when applying the model

to the institutional context in section 5.

After estimation, we can use these functions to look at the impact of counterfactual

policies in secondary education. Let xitw(Policy = 0) be the realized state vector of i at time

tw in the status quo scenario, and xitw(Policy = p0) the state vector in the counterfactual

scenario. The expected e¤ect on long run outcome w of policy p0 is then given by:

Ex;�;!

h
~	w(xitw(Policy = p

0); �i; !
w
i )� ~	w(xitw(Policy = 0); �i; !

w
i )
i

with Ex;�;! an expectations operator over the empirical distribution of the observables x and

the estimated distribution of the unobserved types � and shocks !.

2.6 Relation to the literature

Most study choice models use a special case of the value function in (4) to estimate the

model. A dynamic model (� 2 (0; 1)) is often needed to capture the fact that students make
di¤erent study program choices in anticipation of policy changes that will a¤ect their utility

in the future. Similarly, (wage) returns to education are expected to in�uence these program

choices. Although these models are dynamic, they all set marginal costs cj = 0 and either

do not model y (Keane & Wolpin 1997) or assume it is exogenous, conditional on observed

13Take for example a shock that causes students to graduate from higher education. This is also expected to have an impact
on labor market outcomes through its e¤ects on higher education.
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decision variables. With cj = 0, y only enters the conditional value function through its

impact on future bene�ts and can therefore not be treated as a choice variable as students

would always exert maximum e¤ort. In practice, researchers estimate law of motions that

depend on study program choices and on past results. Examples are grade equations in

Eckstein and Wolpin (1999) and Arcidiacono (2004), course credit accumulation in Joensen

(2009) and Declercq and Verboven (2017), college admission probabilities in Arcidiacono

(2005) or length of study in Be¤y et al. (2012). In this type of models, counterfactual

simulations allow students to choose a di¤erent program j, but not a di¤erent e¤ort level y,

conditional on the program choice and the realization of the state variable. Law of motions

are estimated reduced form or recovered nonparametrically from the data, and kept constant

in these simulations. This is a strong assumption as most policies that are expected to change

program choices because of dynamic considerations, are also expected to change e¤ort levels.

An increase in the return to better grades, more credits, college or length of study is not

only going to make some programs more popular, it will also induce students to exert more

e¤ort to make sure they graduate from them.

There is also a related literature on structural models of job search. Some models endoge-

nize the probability to �nd a job, or search intensity, by equating marginal costs and marginal

bene�ts (Paserman (2008), van den Berg et al. (2015) and Cockx et al. (2017)). This paper

applies a similar identi�cation strategy for marginal costs, but within a rich model of educa-

tional decisions. The richness of the model comes at the cost of computational complexity.

In section 3 I describe how this burden can be reduced signi�cantly.

2.7 Identi�cation

I �rst discuss identi�cation if the type of a student, �i, is observed by the econometrician

and then discuss how types can be identi�ed if they remain unobserved. As is common for

dynamic discrete choice models, identi�cation of �ow utility parameters depends on the dis-

tributional assumptions on iid shocks "ijt, only di¤erences in utility are identi�ed and require

the normalization of the �ow utility of one option (j = 0) (Magnac & Thesmar 2002). The

discount factor � is set before estimation.14 The added complexity in this paper, is that I

split up the �ow utility of a study program in two components that depend on the state

variables: a �xed cost C0j (xit; �i) and a variable e¤ort cost as a function of marginal costs

cj(xit; �i). Nevertheless, I do not estimate more parameters than a model that does not make

this distinction. This is because other models estimate the law of motion of performance mea-

sures directly, instead of assuming it is generated by the structural model. Instead of using

14The discount factor can be identi�ed using exclusion restrictions. However, the same variation is already used to identify
the value of a degree (Eckstein & Wolpin 1999).

12



data on program choices and measures of performance to estimate �ow utility and a law of

motion, I use it to estimate a component that is independent of performance: �xed costs,

and a component that rises in the probability to perform better: marginal costs. Optimal

behavior implies that marginal costs can be identi�ed from marginal bene�ts that arise nat-

urally in a dynamic model (see equation (7)). This avoids the need for exclusion restrictions.

The following example shows how data on program choices and data on performance identify

di¤erent parameters. Take two students with the same characteristics that have the same

probability to go to each college option after high school, conditional on their characteris-

tics and high school background. If we observe them in their last year of high school in

the same program but with di¤erent distributions of performance, then the one with worse

performance must have a higher marginal cost of e¤ort, regardless of their �xed costs. If two

students are equally likely to go to college, conditional on their high school background and

they have the same performance distribution, they must have the same marginal costs (see

equation (7)). Fixed costs can then be identi�ed by looking at di¤erences in program choice

or drop out the year before.

I now turn to the identi�cation of the unobserved types. Note that all shocks in the

model are assumed to be iid. This holds for the �ow utility shocks "ijt, performance shocks

�ijt and shocks on long run outcomes !
w
i . Any correlation we see in the data that cannot

be captured by observable characteristics, will therefore help in identifying the unobserved

type. For example, when we observe two students with identical observable characteristics

but one consistently outperforms the other during high school, it reveals something about

the student�s unobserved ability that will help him in high school, but might also help

him in higher education. A second source of identi�cation are exclusion restrictions in the

model. In particular, I will assume that travel time to high school options in�uences selection

into programs, but has no direct e¤ect on outcomes after secondary education.15 Similarly,

distance to higher education options does not in�uence labor market outcomes directly. This

instrumental variables strategy helps in separately identifying the unobserved types from the

e¤ect of a high school program. If students living nearby speci�c programs obtain better

outcomes, the model must attribute this e¤ect to the program and not to unobserved ability

because unobserved ability is assumed to be uncorrelated with distance and time, while

distance and time do in�uence program choices.

15See De Groote and Declercq (2017) for a discussion on the validity of distance to school as an instrument for school choice
in this context. The paper assumes that distance to school is uncorrelated with success in high school. Here I make a weaker
assumption by saying it is uncorrelated with success after high school. I also make an additional assumption, saying that there
is no direct e¤ect of distance on choices after high school, after controlling for distance to higher education.
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3 Estimation

This model can be matched to the data, using maximum likelihood. This estimates all

parameters of the model, after imposing functional form assumptions on �xed costs C0j (:),

marginal costs cj(:) and the reduced form functions. At the same time, a distribution of types

� can be estimated. However, solving the model and estimating the parameters at the same

time is computationally costly. Even in models without a choice of e¤ort, many dynamic

models on educational decisions have relied on methods that avoid solving the entire model

when estimating parameters (see e.g. Arcidiacono et al. (2016), Declercq and Verboven

(2017) and Joensen (2009)). With endogenous e¤ort, the computational issues increase

further because state transitions that follow from performance can no longer be estimated in

a �rst stage as performance is an endogenous function of the choice of e¤ort. Nevertheless,

I can show that solutions to avoid fully solving the model, pioneered by Hotz and Miller

(1993) and extended to allow for persistent unobserved heterogeneity �i in Arcidiacono and

Miller (2011), can still be applied.

I explain �rst how to estimate the model if the econometrician observes the type � of

each student and then generalize to the case where � is unobserved.

3.1 Estimation when student type is observed

To match the model to the data, the following program choice probabilities are used in the

likelihood function:

Pr(djit = 1jxit; �i) =
exp(vijt(xit; �i; y

�
ijt))P

j02�(xit) exp(vij0t(xit; �i; y
�
ij0t))

: (9)

For j 2 f0; heg we can substitute in (6), which is a function of observed variables and
parameters to estimate. For j 2 se this is not possible as (4) does not only depend on

a function of parameters to estimate, but also on optimal behavior in the future and the

optimal level of e¤ort. We would therefore have to solve the model as explained in section

2.4 to be able to estimate all parameters. To reduce the computational burden, I avoid

solving the model during estimation. I �rst show how the �rst-order condition (7) allows me

to substitute out the marginal cost function, when estimating other parameters of the model

and how the optimal level of e¤ort can be derived from the data. I can then apply the CCP

method of Hotz and Miller (1993) to avoid solving the dynamic model during estimation.

Finally I show how additivity of the likelihood function allows for each equation in the model

to be estimated separately.

Optimal e¤ort
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The �rst-order condition (7) helps estimation for two reasons. First, it shows that stu-

dents with the same state vector (xit; �i) at time t will choose the same e¤ort levels: y�ijt =

y�jt(xit; �i), allowing us to recover it directly from the data. This follows from the assumption

that marginal cost of e¤ort does not contain an unobserved shock and all future unobserved

shocks are uncorrelated with the current shock. If we substitute in the optimal level of e¤ort

y�jt(xit; �i) in (3), we obtain:

y�jt(xit; �i) =
1� Pj(git+1 = 1jt; xit; �i)
Pj(git+1 = 1jt; xit; �i)

: (10)

If �i is observed, y�jt(:) is easily obtained from the probability to obtain the lowest performance

level for each realization of the state variables in the data in each period. After obtaining

y�jt(:), the probabilities to reach other performance levels can be used to recover the thresholds

��j = f��1j ; :::; ��Gj g.
A second reason the �rst-order condition (7) is helpful is that it allows us to write the

conditional value functions (4) without a marginal cost function to estimate:

vijt(xit; �i; y
�
ijt) + "ijt (11)

= �C0j (xit; �i)

+�
X
�g

�
�Vt+1(xit+1(�g); �i)

�
Pj(git+1 = �gjy�jt(xit; �i))�

@Pj(git+1 = �gjyijt)
@yijt

jyijt=y�ijty
�
jt(xit; �i)

��
+ "ijt

with y�jt(xit; �i) given by (10).
@Pj(git=�gjyijt)

@yijt
can be derived from the distributional assump-

tions on the performance measure. The conditional value function is now written with the

same unknowns as in standard dynamic models with exogenous state transitions, following

Rust (1987). The only di¤erence is the transition matrix. This matrix characterizes how

current states impact utility in the future. In a model without e¤ort, this depends only on

how states transition in the data. Since e¤ort now o¤ers a way to increase these outcomes,

it now also depends on y and how it a¤ects state transitions.

CCP method
Hotz and Miller (1993) introduced the CCP (Conditional Choice Probability) method as

an alternative to solve dynamic models during estimation. They show that the future value

term can be written as follows:

�Vt+1(xit+1; �i) = 
 + vid�t+1(xit+1; �i)� ln Pr(d�it+1jxit+1; �i) (12)

with d�it+1 the vector of dummy variables for each option in which the indicator of one

arbitrary option is set to 1 and vid�t+1(:) the conditional value function of this option. This
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is particularly useful when there is an option that terminates the (structural) model. If it is

possible to leave secondary education in t + 1, we can choose j = 0 as the arbitrary choice

and substitute its value function (6) in (12):

V t+1(xit+1; �i) = 
 +Degree
0
it�

degree +	HEE0 (xit+1; �i)� ln Pr(d0it+1 = 1jxit+1; �i): (13)

As explained in section 2.3, 	HEE0 (:) = 0 by normalization. We can now substitute (13) in

(11), such that for all j 2 se:

vijt(xit; �i; y
�
ijt) + "ijt (14)

= �C0j (xit; �i) + �


+�
X
�g

" �
Degree0it(�g)�

degree � ln Pr(d0it+1 = 1jxit+1(�g); �i)
��

Pj(git+1 = �gjy�jt(xit; �i))�
@Pj(git+1=�gjyijt)

@yijt
jyijt=y�ijty

�
jt(xit; �i)

� #+ "ijt:
The bene�t of using the outside option j = 0 as the arbitrary choice is that this removes

the future value terms in the current period conditional value functions. This is because

the terminal nature of j = 0 allows us to write its conditional value function directly as a

function of observables and parameters (see section 2.3). As in Hotz and Miller (1993), a

nonparametric estimate of the Conditional Choice Probability (CCP) Pr(d0it+1 = 1jxit+1; �i)
can be recovered from the data, before estimating the model.16 Because of compulsory

education laws, the outside option is not always in the choice set. In the appendix, I show

how the concept of �nite dependence, introduced in Arcidiacono and Miller (2011), can

be used to overcome this problem without fully solving or simulating the model during

estimation.17

Likelihood function
We can now use (14) to estimate the �xed cost parameters of C0j (:), a functional form for

long run outcomes ~	w(:) (including (6) for w = HEE) and the common component of a value

of a high school degree �degree. This can be done by using the probabilities according to the

model and data on program choices and long run outcomes. Let the �xed cost parameters

in C0j (:) and the common value of a degree �
degree be given by � and the reduced form

parameters by �. Assuming iid observations, the loglikelihood of the data is18:

lnL(�; �) =
NX
i=1

0@TSEiX
t=1

lnLprogramit (�; �) +
X
w2W

lnLwi (�
w)

1A
16Similar to Arcidiacono et al. (2016), I estimate a �exible conditional logit to obtain predictions of the CCPs.
17See also Arcidiacono and Ellickson (2011) for an overview on the bene�ts of using �nite dependence.
18Note that data on performance measures does not enter the likelihood function because its distribution is already recovered

directly from the data. In the application of the model I will however approximate the optimal level of e¤ort by a parameteric
function such that the performance measure also enters the likelihood function.
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with Lprogramit (�; �) given by logit choice probabilities (9) and Lwi (�) given by the assumed

processes on long run outcomes (8). This loglikelihood could be maximized directly to obtain

the estimates of (�; �). However, because of additive separability, consistent estimation could

also be performed in sequential steps by �rst estimating the process of each long run outcome

and then estimate the structural model. After estimation, the marginal cost function cj(:)

can be recovered from the �rst-order condition (7) without requiring any structure on its

functional form.

3.2 Estimation when student type is unobserved

To allow for persistent unobserved heterogeneity, I follow Arcidiacono and Miller (2011) and

estimate a �nite mixtures of types. I assume there are M = 2 unobserved types m in the

population, with an estimated probability to occur �m. For interpretability, I model the

types as independent from observed student background. A dummy for belonging to type

2 then enters each part of the model as if it were an observed student characteristic. To

avoid an initial conditions problem, I condition the type distribution on the age the student

starts secondary education: age_starti. This is because students who accumulated study

delay before secondary education will be faced with di¤erent opportunities in the model

because they will be able to drop out more quickly. Since starting age depends on past grade

retention, it is likely correlated with unobserved ability, creating a bias in the estimates. By

conditioning the unobserved types on age_starti, we can allow for this correlation.19 The

loglikelihood function then becomes:

lnL(�; �) =
NX
i=1

0@ln MX
m=1

�mjage_start

TSEiY
t=1

Lprogram;mit (�; �)Lperformance,mit+1

Y
w2W

Lw;mi (�w)

1A :
There are three main changes to the likelihood function. First, �mjage_start is added as

an parameter to estimate, speci�c for each starting age, and likelihood contributions are

conditioned on the type. Second, the likelihood contribution of the performance outcome

in secondary education Lperformance,mit+1 is added to the likelihood function. This is needed

to recover the optimal levels of e¤ort in the data as they depend on the unobserved type.

Therefore they can no longer be recovered from the data before estimating other parameters.

Third, the function is no longer additively separable such that sequential estimation is not

possible anymore.

Additive separability can be restored using the estimator of Arcidiacono and Miller

(2011). The estimation procedure is an adaptation of the EM algorithm. The algorithm

19This is similar to Keane and Wolpin (1997), who start their model at age 16 and condition the types on the educational
attainment at that age.
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starts from a random probability of each observation to belong to each type. The entire

model can then be estimated as explained in section 3.1, but weighs each observation-type

combination by the probability that the observation belongs to the type. Afterwards, the

joint likelihood of the data conditional on each type, is used to update the individual type

probabilities with Bayes rule. This is repeated until convergence of the likelihood function.

I use the two-stage estimator of Arcidiacono and Miller (2011) which implies that in the cal-

culation of the joint likelihood, reduced form estimates of the CCPs are used for Lprogram;mit ,

instead of the choice probabilities from the structural model. This means that only the

population type probabilities �mjage_start, the reduced form parameters �, the optimal e¤ort

levels in the data y�jt(xit; �i) and the thresholds ��j are identi�ed in a �rst stage.
20 In a second

stage, the �xed cost parameters and the common component of the value of a degree � can be

recovered using the structural model. Finally, the �rst-order condition (7) is used to recover

the marginal costs. Standard errors can be obtained by using a bootstrap procedure.21

4 Institutional background and data

Before applying the model to the data, I �rst describe the institutional context that is

relevant for the model and the counterfactual analysis. I also introduce the dataset and

discuss some descriptive evidence. I make use of the LOSO dataset in which I follow a

sample of 4927 students in Flanders (Belgium) that started secondary education in 1990.22

I follow them through their entire career in secondary education but also up to 18 years

afterwards, allowing me to observe the long run outcomes.

4.1 Study programs

Belgium is a federal country, divided in communities and regions. The communities have

jurisdiction over all educational a¤airs. There is a Dutch-speaking Flemish Community, a

20Note that the parameters of long run outcomes are already identi�ed from the �rst stage, without specifying the economic
structure of the model in secondary education. As mentioned by Arellano and Bonhomme (2017), this is a speci�c case of a
nonlinear panel data model where structural assumptions are not needed to recover the parameters of interest. Therefore, it is
robust to model assumptions about forward looking behavior, or rational decision making. We do however need this structure
to recover the deep parameters that govern the costs of schooling. Also for counterfactual analyses, the full model is needed.
21 I sample students with replacement from the oberved distribution of the data. Since the EM algorithm takes a long time

to converge, I do not correct for estimation error in the probabilities to belong to each type.
22The LOSO data were collected by professor Jan Van Damme (KU Leuven) and �nanced by the Flemish Ministry of

Education and Training, on the initiative of the Flemish Minister of Education.
Note that some observations were dropped because some variables were missing or because students made choices that were

not consistent with the tracking systems as explained in this paper. I also restrict attention to a sample of students that did
not skip a year before entering secondary education.
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French Community and a German Community. I discuss the schooling system of the Flemish

Community (which represents about 60% of the Belgian population).23

After �nishing six grades in elementary school, students enroll in secondary education

(high school) in the 7th grade, usually in the calendar year they become 12 years old.

Students can choose between all schools in Flanders since school choice is not geographically

restricted and free school choice is law-enforced.24 In practice, most students choose one of

the closest alternatives. After high school, students can enroll in higher education.

Students in full time education choose between di¤erent high school programs, grouped

into tracks that di¤er in their academic level.25 The academic track has the most academically

rigorous curriculum. Its aim to is to provide a general education and to prepare for higher

education. The middle track prepares students for di¤erent outcomes.26 Therefore I follow

Baert et al. (2015) and distinguish between a track preparing mainly for higher education

programs (middle-theoretical), and a track that prepares more for the labor market (middle-

practical). Students can also choose for the vocational track, that prepares them for speci�c

occupations that do not require a higher education degree. Within each track, students can

choose several programs which consist of bundles of elective courses. Since there are many

programs to choose from, I aggregate them up to 8 study programs. In particular, I split up

the academic track in four programs: classical languages, intensive math, intensive math +

classical languages and other. The middle-theoretical track is split between intensive math

and other.27 This aggregation still allows for a su¢ cient number of students in each group

and corresponds to important di¤erences in enrollment and success rates in higher education

(Declercq & Verboven 2015).28

A student graduates from high school after a successful year in the 12th grade in the

academic or one of middle tracks, or the 13th grade in the vocational track. Compulsory

education laws require a student to pursue education until June 30th of the year he reaches

23Almost all schools in Flanders either belong to the �o¢ cial education� or to �free education�. Although only the o¢ cial
education institutions are government-owned, also the �free education� institutions have to conform to educational standard
set by the Flemish government. Moreover, they are all subsidized such that there are no tuition fees and the �nancial cost of
education is limited to the cost of personal school material and school trips.
24 In case capacity constraints become binding, the law protects free school choice and prevents schools from cream skimming.

If the school is capacity constrained, it must add pupils to a waiting list and if spots become available, it must respect the
order of this list. (http://onderwijs.vlaanderen.be/leerlingen/tien-vragen-van-leerlingen/mag-een-school-weigeren-om-mij-in-te-
schrijven)
25O¢ cially the distinction between tracks exists only from the third year on. However, before this, pupils decide on elective

courses that prepare for a particular track.
26O¢ cially this consists of two tracks called the "technical track" and "arts track".
27On average, students follow �ve hours of math/week in math-intensive programs and three hours in the other programs

that prepare for higher education.
28The supply of programs di¤ers between schools in Flanders. Some schools specialize and o¤er programs in only one track

while other schools do not specialize and o¤er programs in all tracks. In the model I will not distinguish between di¤erent
schools as they are all regulated in the same way and the restrictions implied by certi�cates also hold for other schools.
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the age of 18. From the age of 15, he can also decide to leave full time education and start

a part-time program in which he can combine working and schooling.29

Despite of the fact that each track prepares for di¤erent options after secondary education,

enrollment in almost any higher education option is free of selection by track or by the higher

education institutes themselves. Students from any track can enroll in almost any program

of higher education (Declercq & Verboven 2017). Therefore, selection into higher education

only takes the form of self-selection.

4.2 Tracking policy

At the start of secondary education, all programs are available. The choice set in the future

depends on the current program and performance during the year. Upward mobility, i.e.

moving from a track of lower academic level to a more rigorous one, is practically impossible,

except for switches between middle tracks and the academic track in the �rst two grades.

Similarly, students can never enroll in programs with classical languages anymore if they did

not choose it from the start. Math-intensive programs are available from grade 9 on. From

then on, switching from a program without extra math to one with intensive math in the

academic track is not possible. Similarly, students in the middle track that did not have

extra hours of math cannot choose this anymore. Finally, there can be no more switching

between full-time programs from grade 11 on.30

Performance also matters for the choice set. Each year, students obtain a certi�cate. An

A-certi�cate means the student succeeded on all courses. He can then move on to the next

grade and continue in the program. If he did not, teachers decide on the certi�cate he gets.

This can still be an A-certi�cate, e.g. if the student only failed on a small number of courses,

but it can also be a B- or a C-certi�cate. A C-certi�cate means that the student failed on

too many important courses and has to repeat the grade to continue in full time secondary

education. A B-certi�cate indicates that the student failed on some important courses within

the program. He is allowed to proceed to the next grade, but he will be excluded from some

programs, speci�ed in the certi�cate. Alternatively, a student with a B-certi�cate can decide

to repeat the grade without being excluded from a program. In most cases, a B-certi�cate

excludes the track a student is currently in and therefore encourages them to downgrade to

another track. However, a B-certi�cate can also exclude only certain elective courses within

a track (see appendix Table A25).

29The age requirement is 16 if the student did not �nish the �rst two grades of high school. Since success in these grades is
not required, 15 years applies to the large majority of students and I will use this in the model.
30Note that these rules are not always formal and students have the legal right to ignore them. Nevertheless, this is a realistic

description of the perceived rules by students as schools often advertise them as being binding. Baert et al. (2015) apply a
similar set of (informal) rules in their model.
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The restrictions that are imposed on student�s choice sets, and the di¤erent curriculum

they have from the 7th grade on, makes it important to study their decisions. A wrong choice

at an early age can have large consequences for the future. This is the reason why a lot of

students keep their options open by choosing the academic track with classical languages in

the beginning and gradually move towards their �nal program. Figure 1 summarizes these

movements.

Figure 1: Transitions from �rst study program to last choice in secondary education

Note: Left: program chosen in grade 7, right: last choice before leaving secondary education. Clas= classical

languages included. Light blue area = proportion of students in program with extra math. See appendix Table A26

for data on these transitions.

These transitions are not always a smooth or voluntary process. Each year students

obtain a certi�cate that can restrict their choice set. C-certi�cates prohibit students from

going to the next grade. B-certi�cates can cause grade retention if students do not want to

switch to a di¤erent program. Most of the time students obtain an A-certi�cate. However,

8% of the certi�cates are B-certi�cates and 7% are C-certi�cates. One out of four students

with a B-certi�cate also decides to repeat the grade instead of downgrading, i.e. switching to

a track of lower academic level or dropping an elective course. Although the number of B- and

C-certi�cates is low on a yearly basis, many students obtain at least one of them during their
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high school career. This causes a lot of grade retention. Table 1 shows that 33% of students

leave high school with at least one year of study delay. There is a large di¤erence between

Table 1: Performance during secondary education

At least 1 At least 1 At least 1 year Obtains high
B-certi�cate C-certi�cate of study delay school degree
(% of students) (% of students) (% of students) (% of students)

All 38.1 30.7 33.2 78.3

Conditional on �rst choice of study program

Academic 34.3 23.5 29.0 91.3

Middle-Theoretical 60.0 37.6 43.5 72.7

Middle-Practical 66.4 44.0 41.2 54.6

Vocational 0.0 50.8 33.3 28.2

Conditional on last choice in secondary education

Academic 10.6 11.4 15.3 100.0

Middle-Theoretical 41.9 24.8 33.2 100.0

Middle-Practical 55.8 36.3 51.6 100.0

Vocational 62.8 32.8 36.4 63.0

Drop out 52.6 78.7 58.3 0.0
Note: Di¤erent measures of performance, conditional on the study program chosen at the start of secondary education and on

the �nal choice. A-certi�cate: proceed to next grade, C-certi�cate: repeat grade, B-certi�cate: repeat or downgrade. Degree

obtained after successfully completing the 13th grade in the vocational track or the 12th grade in other tracks.

the performance measures of students who started in the academic track if we compare them

to students who also graduated from the academic track. 15% of students who graduated

from the academic track obtained at least one year of study delay, but students who started

in it are twice as likely to be retained. This is re�ected in the certi�cates they get. They are

three times as likely to obtain a B-certi�cate and two times as likely to obtain a C-certi�cate.

This shows that track switching is not just a choice of students but the certi�cate policy has

an important impact on steering choices.
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4.3 International comparison

The Flemish educational system resembles mostly the early tracking systems in Europe,

like Germany, Austria or the Netherlands, because it sorts students on ability at an early

age. However, it also shares characteristics of more comprehensive educational systems by

allowing free track choice at the start of secondary education, having many schools with

multiple tracks and allowing access to all higher education options from any track. This

setting provides an important application of the model and is particularly useful to study

the impact of high school curriculum and tracking policies.

First, free access to all higher education options allows me to identify the impact of all

study programs, including vocational programs, on higher education outcomes. Second, there

is a uniform tracking policy across the region to encourage students to choose the program

that matches best with their preferences and ability. The B-certi�cate is of particular interest.

While many countries o¤er ways to avoid grade retention by changing program, there is not

always a mechanism across schools that we can use to estimate a behavioral model.31 The

implications of this type of trade-o¤between grade retention and studying a rigorous program

is not only interesting for countries that separate students in di¤erent tracks. Also countries

like the US that di¤erentiate more at the course-level can require students to retake failed

classes. Moreover, many universities explicitly ask for a high GPA and a rigorous academic

curriculum in their admission criteria. Students, especially those of lower ability, then face a

similar trade-o¤ between studying advanced courses at the risk of retakes and a lower GPA,

or choosing a curriculum with less advanced courses.

Although similar issues arise in other educational systems, they are particularly important

in the current context. Belgium spends 2.8% of its GDP on secondary education, the highest

number among OECD countries. It is therefore crucial to study the e¤ectiveness of the

system in helping students to achieve their future goals in a cost-e¢ cient way. Since 96% of

the cost is paid for by government spending, it is also crucial to see if students have the right

incentives within the system to optimize total welfare (OECD 2017). Finally, Belgium has

a very high rate of grade retention in secondary education which comes at a large cost. The

total cost of a year of study delay in Belgium amounts to at least 48 918 USD (corrected for

PPP)/student or 11% of total expenditures on compulsory education, the highest percentage

in the OECD (OECD 2013).

31The trade-o¤ between grade retention and studying a program of higher academic level is also common in countries
like Germany, Portugal, Lithuania, Luxembourg, the Netherlands, Austria, Liechtenstein and Slovakia (Eurydice European
Unit 2011).
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4.4 Study program and student background

Table 2 summarizes student characteristics by the program in which they graduate. The

dataset contains measures on ability at the start of secondary education in the form of item

response theory (IRT) scores based on standardized tests. These scores measure language

(Dutch) and math ability and are standardized to be mean 0 and standard deviation 1. To

capture di¤erences in preferences for each program, I also include gender and socioeconomic

status (SES) in the analysis. SES is measured by a dummy equal to one if at least one of

the parents has completed higher education.

Not surprisingly, students with high SES end up much more in the academic track. Also

initial ability matters. The average language ability of a student in the academic track is

0:69 standard deviations higher than the overall average. For students in the vocational

track this is 0:73 below the overall average. Math ability shows a similar trend.32 Moreover,

we also see large di¤erences within tracks with both classical languages and math programs

attracting stronger students. Finally, gender is important too. Male students are less likely

to be in tracks that prepare better for higher education, except for math-intensive programs.

The data also contains information on the location of students and schools. I use this

to calculate distance to higher education options and travel time to the closest high school

that o¤ers each program.

32Note that this is very similar to other tracking countries. In Germany (grade 9), average language and math ability is 0:8
standard deviations above the average in the high track and 0:9 standard devations below the average in the vocational track
(Dustmann et al. 2017).
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Table 2: High school program and student background

Students Male Language Math High
Study program ability ability SES

All 4927 (100.0%) 0.49 0.00 0.00 0.27

Academic 1787 (36.3%) 0.39 0.69 0.62 0.47

clas+math 184 (3.7%) 0.46 1.09 1.02 0.62

clas 272 (5.5%) 0.35 0.91 0.65 0.57

math 621 (12.6%) 0.47 0.77 0.76 0.49

other 710 (14.4%) 0.32 0.44 0.38 0.38

Middle-Theoretical 807 (16.4%) 0.54 0.13 0.21 0.22

math 126 (2.6%) 0.71 0.33 0.48 0.32

other 681 (13.8%) 0.51 0.09 0.16 0.21

Middle-Practical 626 (12.7%) 0.51 -0.04 0.01 0.23

Vocational 1009 (20.5%) 0.52 -0.73 -0.70 0.10

13th grade 636 (12.9%) 0.50 -0.64 -0.64 0.12

12th grade 373 (7.6%) 0.54 -0.87 -0.80 0.07

Dropout 698 (14.2%) 0.66 -0.87 -0.77 0.08

Part-time 389 (7.9%) 0.70 -0.90 -0.80 0.07

Full time 309 (6.3%) 0.62 -0.82 -0.74 0.08
Note: Ability measured using IRT score on tests at start of secondary education. Score normalized to be

mean zero and standard deviation 1. High SES= at least one parent has higher education degree. Clas=

classical languages included. Math= intensive math. Students in vocational track only obtain full high

school degree after an additional 13th grade. Drop out split between students directly opting for full time

dropout or �rst choosing part-time option.
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4.5 Higher education and unemployment

Table 3 summarizes di¤erences in the main higher education outcomes, conditional on grad-

uating from di¤erent study programs in secondary education. When students leave high

Table 3: High school program and long run outcomes: summary statistics

Higher education Unemployment

Enrollment First year success Degree age 25 Spell age 25-35

Study program (% of students) (% of enrolled) (% of students) (mean in years)

All 55.2 45.6 39.0 2.08

Academic 94.2 52.8 76.7 1.43

clas+math 97.8 63.3 87.0 1.02

clas 97.4 55.8 82.4 1.39

math 94.8 55.0 80.8 1.34

other 91.5 46.9 68.2 1.62

Middle-Theoretical 79.3 38.7 48.1 1.65

math 93.7 44.1 67.5 1.39

other 76.7 37.7 44.5 1.70

Middle-Practical 50.2 30.6 23.8 1.69

Vocational 8.2 9.1 1.5 2.61

13th grade 13.1 14.5 2.4 2.33

12th grade 3.10

Dropout 3.86

Part-time 3.95

Full time 3.74
Note: Clas= classical languages included. Math= intensive math. Students in vocational track only obtain full high school degree

after an additional 13th grade. Drop out split between students directly opting for full time dropout or �rst choosing part-time

option.

school, 55% decides to go directly to higher education.33 Although not all tracks prepare

33To test the representativeness of the data, I compared these numbers to population data. For Belgium as a whole, I �nd an
almost identical number of higher education enrollment around the same time period: 56% in 1996 and 57% in 1999 (UNESCO
Institute for Statistics, indicator SE.TER.ENRR).
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for higher education, they do not restrict any options. Therefore, the �rst year of higher

education in practice serves as an admission test as overall success rates are very low and a

lot of students do not �nish the program they started (Declercq & Verboven 2017). Indeed,

we see a �rst year success rate of 46% among enrolled students and only 39% of all students

eventually obtains a higher education degree (by the age of 25). I also measure the years of

unemployment between age 25 and 35 to look at the e¤ects on labor market outcomes.34

There are large di¤erences in higher education outcomes. 94% of all students graduating

from the academic track start higher education, and the large majority eventually obtains a

degree. For the other tracks this is less common. Nevertheless, the track distinction is not

always clear from the results as students with extra math in the middle-theoretical track

obtain similar outcomes as students in the academic track without extra math or classical

languages. Despite the fact that the middle-practical track prepares primarily for the job

market, we do see half of the students enrolling in higher education and 24% obtaining a

degree.

Di¤erences within the academic track become more clear when we look at di¤erent higher

education choices. To capture heterogeneity in returns to high school study programs, I dis-

tinguish between di¤erent levels of higher education and di¤erent majors (see Table 4).

Similar to Declercq and Verboven (2015), I distinguish between three types of higher educa-

tion, increasing in their academic level (or prestige): professional college, academic college

and university. In addition, I also distinguish between two majors in each level: STEM

and other.35 Most students graduate from professional colleges and only 1 out of 4 students

with a higher education degree graduated from a STEM major. Only students who grad-

uated from the academic track with classical languages in their curriculum are more likely

to graduate from universities than from professional colleges. Extra math in the program is

associated with graduating from STEM majors and academic colleges.

34Unemployment captures all years in which the individuals are not studying or working, regardless of the reason why they
do not work.
35The distinction between di¤erent levels is also used in o¢ cial statistics on Belgian education. To de�ne STEM majors, I use

the characterization by the Flemish government (https://www.onderwijskiezer.be/). The di¤erent types of (higher) education
are also associated with large di¤erences in wages. For descriptive purposes, I use data of the "Vacature Salarisenquete", a large
survey of workers in Flanders in 2006, to compare di¤erences in median wages. I compare the wages of 30-39 year olds (sample
size of 20534 workers) with di¤erent degrees. High school drop outs earned a gross monthly wage of 2039 EUR, high school
graduates without a higher education degree earned 2250 EUR, professional college graduates 2600 EUR, academic college
graduates 3281 EUR and university graduates 3490 EUR. Students that graduated in a STEM major earned 3351 EUR, while
students that graduated in a non-STEM major earned 2800 EUR.
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Table 4: High school program and level and major college degree: summary statistics

Academic level higher education Major

University Academic Professional STEM

college college

Study program (% of students) (% of students) (% of students) (% of students)

All 9.6 4.8 24.8 10.2

Academic 25.8 10.2 40.6 18.4

clas+math 56.5 14.1 16.3 33.2

clas 41.5 7.7 33.1 11.4

math 29.5 15.6 35.7 32.4

other 8.6 5.5 54.1 4.9

Middle-Theoretical 1.0 4.7 42.4 17.7

math 5.6 17.5 44.4 42.1

other 0.1 2.3 42.0 13.2

Middle-Practical 0.5 1.9 21.4 4.6

Vocational (13th grade) 0.0 0.2 2.2 0.3
Note: Three types of higher education options in decreasing order of academic level: university, academic college, professional

college. Graduation rates adds up to the total graduation rate of 39.0%. Each level has di¤erent programs, aggregated to STEM

and other majors, only STEM major is reported. Clas= classical languages included. Math= intensive math.

5 Application of the model

I now apply the model to the Flemish educational context. I specify the choice set of study

programs, functional form assumptions of �xed costs of schooling, the performance measure

and the long run outcomes of interest.

As explained in section 2, i refers to a student, t the time period in years and j = 0; :::; J

di¤erent study programs to choose from. The choice set is given by �it and the study

program chosen by a student is denoted by a vector of dummy variables dit: git is an end-of-

year performance measure, which is a function of the chosen e¤ort level y. The information

set of students is characterized by a time-varying observed state variable xit, iid shocks

at time t and a time-invariant type �i. The econometrician only observes xit, the chosen

programs dit and the performance measure git.
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5.1 Choice set

After completion of elementary education, students start in secondary education. Each

year in secondary education, they choose a study program j 2 se. Each study program
belongs to one of four tracks: academic (acad), middle-theoretical (midt), middle-practical

(midp) and vocational (voc). Within the academic track, students can also choose for math-

intensive programs (math), and/or classical languages (clas) in the curriculum. In the

middle-theoretical track they can also choose for a math-intensive program. The tracks are

available throughout secondary education, i.e. grade 7 to 12 (and 13 in the vocational track).

The classical languages option starts at the same time, while the math options start in grade

9. Next to the full time education system, there is also a part-time vocational option (part).

This option is available from the moment a student is 15 years old and does not have a grade

structure.

The program choices are restricted. First, students can never upgrade tracks according

to the following hierarchy: acad > midt > midp > voc > part, with the exception of the

�rst two grades in which mobility between acad, midt and midp is allowed. Second, they

can stop with their specialization in extra math or classical languages, but the reverse is not

possible.36 Finally, from grade 11 on, students who want to stay in full time education must

stay in the same program.

Students progress in secondary education by obtaining a certi�cate at the end of the year.

As explained in the institutional context, the �exibility of a B-certi�cate can have di¤erent

implications on the choice set. I therefore use the certi�cate data to create a variable that

captures the permission for a student to enter or continue in each track in the next grade as

a measure of performance gtrackit+1 . To allow for B-certi�cates to only exclude elective courses,

I extend the model to allow for additional performance measures that contain permissions

to study classical languages gclasit+1 and intensive math g
math
it+1 .

From the age of 18 on, students have the possibility to leave the education system:

j 2 (0; he) with j = he enrollment in a higher education (if they obtained a high school

degree) and j = 0 the outside option. I assume this is a terminal choice, i.e. they never

return to secondary education.

5.2 Costs and performance

Section 2 describes the model without specifying the variables that are used in the analyses

and how they impact the schooling costs. The estimation section 3 explains the need for

specifying a functional form for �xed costs, but marginal costs can be derived from the

36However it is allowed to switch from acad without extra math to midt with extra math.
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marginal bene�ts at the optimal level of e¤ort in the data. In this section I impose functional

form assumptions on �xed cost and explain the performance measure that is used to derive

the optimal level of e¤ort from the data. I also extend the model to allow for more than one

measure of performance such that B-certi�cates can also exclude elective courses.37

Fixed cost of secondary education
Students pay a �xed cost for the program they choose in secondary education, regardless

of the amount of e¤ort. Note that schools in Flanders are tuition-free, so the cost is only a

psychic cost. As they can also enjoy school, the sign of the �xed cost is not restricted. Let

C0ijt be the �xed cost of student i in option j at time t:

C0ijt = �0j + �timetimeijt + �
grade
j gradeijt + S

0
i(�

S;0
j + �S;gradegradeijt) + �

0
i(�

�;0
j + ��;gradegradeijt)

+retention0ijt(�
ret,0 + �ret,gradegradeijt + �

ret,levellevel_SEijt) (15)

+�upupgradeijt + �downdowngradeijt:

� is a vector of parameters to estimate. Si is a vector of time-invariant observed student

characteristics, �i is a vector of dummy variables that indicate to which type the student

belongs, timeijt is the daily commuting time by bike to the closest school that o¤ers the study

option in the current grade and gradeijt is the grade a student is in.38 This �rst line allows

for each program to di¤er in �xed costs and a linear interaction with the grade. Observed

and unobserved characteristics of students in�uence the cost of each study program and a

common cost of schooling is also allowed to change over grades by student characteristics.

The second line allows costs to react to two di¤erent measures of grade retention, contained

in the 2x1 vector: retentionijt. This vector contains a �ow variable: a dummy equal to one

if the student is currently in the same grade as the year before and a stock variable that

captures the years of study delay accumulated in previous years. The disutility of grade

retention can di¤er over grades and over level_SEijt and the ranking of the academic level

of the track (from 0 to 3). Upgradeijt and downgradeijt are dummy variables indicating if a

student is currently in a track with at a higher or lower academic level than the year before

and capture switching costs.39

37Note that the part-time track does not have a grade structure. I therefore only model its �xed cost. Due to a lack of
variation, I only estimate a choice-speci�c constant, which implies that student background should have the same e¤ect on
part-time and full-time drop out.
38Commuting time by bike is measured by geocoding address data using the STATA command "geocode3" and by

calculating travel time using the STATA command "osrmtime". A bike is the most popular mode of transporta-
tion. According to government agency VSV, 36% of students use a bike, 30% the bus and 15% a car (source:
http://www.vsv.be/sites/default/�les/20120903_schoolstart_duurzaam.pdf). Since distance to school is small, travel time
by bike is also a good proxy for other modes of transportation.
39Note that the �xed cost of upgrading is only identi�ed in the �rst two grades as upgrading afterwards is not feasible and

therefore not included in the choice set of students.
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Note that in section 2, the scale of the utility function was implicitly normalized to unity.

Therefore all parameters � are identi�ed. However, to directly interpret the cost estimates,

I will renormalize the scale by dividing all parameters by �time. This way, the cost estimates

can be measured in daily commuting time.

End-of-year performance
Study performance during the year has an impact on future utility through potential

grade retention and changes in choice sets. At the end of the year, students obtain an A,

B or C certi�cate that de�nes their choice set for the next grade. The main measure of

performance is gtrackijt+1 = f1; 2; :::; 5g. If gtrackijt+1 = 1, student i�s performance at time t was

insu¢ cient to go to the next grade, regardless of the program they want to follow. gtrackijt+1 = 2

allows access to the next grade of the vocational track (voc) but not other tracks. Similarly,

gtrackijt+1 = 3 additionally allows access to the next grade midp, gtrackijt+1 = 4 allows midt and

gtrackijt+1 = 5 allows acad. In the �nal year of the program, the measures no longer allow access

to a certain track but result in a high school degree.

In section 3, I explained how a measure of performance can be used to back out the

optimal level of e¤ort y�ijt in a nonparametric way. However, the �nite number of observations

and the large state space does not allow me to do this. I therefore approximate the optimal

level of e¤ort by a parametric structure.40 The optimal level of e¤ort and the thresholds

to obtain each outcome can then be recovered by estimating an ordered logit model with

index ln(y�ijt). Note that some of the thresholds are not identi�ed from the data but from

the institutional context that imposes restrictions on mobility. I also allow the thresholds to

di¤er not only by di¤erent programs but also by the grade a student is in.41

Note that there is still no need to impose structure on the marginal costs as they are

recovered from the marginal bene�ts at the optimal level of e¤ort (see equation (7) at page

9).

Extension to allow for course-speci�c restrictions
The model in section 2 only includes one measure of performance. I de�ned this as the

permission to start in each track in the next grade. The problem with this approach is that

B-certi�cates can also exclude elective courses instead of tracks. I therefore extend the model

to allow for two additional measures of performance: gclasijt+1 = f1; 2g speci�es if a students
40 I impose the same structure on the logarithmic transformation of e¤ort as for the �xed costs, but I also add the e¤ects

of distance to higher education institutes and characteristics of last year�s program. This is because distance should not have
an e¤ect on the �xed cost of schooling in secondary education, but it can have an e¤ect on the optimal level of e¤ort because
future utility is a¤ected. I add characteristics of the program a student followed in the previous year to allow experience to
a¤ect e¤ort today because of a change in marginal cost of e¤ort. These results can be found in the appendix section A.3.
41Because there is little variation in the data, I do not estimate separate thresholds for each program but distinguish between

thresholds in the academic track and thresholds in other tracks.
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can go to the next grade in a program that includes classical languages. gmathijt+1 = f1; 2; 3g
speci�es if a student can go to the next grade in a math option in the middle-theoretical

track (gmathijt+1 = 2) or the academic track (gmathijt+1 = 3).42 I model their distribution by an

ordered logit, conditional on the outcome of gtrackijt+1, with indexes:

gmath
�

ijt+1 + �
math
ijt+1 = �mathy ln yijt + S

0
i�
math
S + � 0i�

math
� + �mathijt+1 (16)

gclas
�

ijt+1 + �
clas
ijt+1 = �clasy ln yijt + S

0
i�
clas
S + � 0i�

clas
� + �clasijt+1: (17)

I also estimate grade- and track-speci�c thresholds.43 �mathy > 0 and �clasy > 0 measure how

much e¤ort, identi�ed from the permissions to start in each track, matters for each elective

course. I also allow for comparative advantages in elective courses by estimating the in�uence

of observed and unobserved student characteristics through (�mathS ; �math� ) and (�clasS ; �clas� ).

5.3 Choice after leaving secondary education

From the age of 18 on, students can leave the education system. If they decide to leave, they

can either go to a higher education option (j 2 he) or choose the outside option j = 0 (but
might enroll later). If a student leaves secondary education without a degree, he cannot go to

higher education. Admission to the �rst year of higher education is allowed for all students

with a high school degree. As explained in section 4.5, I distinguish between three types of

higher education, increasing in their academic level: professional college, academic college

and universities. In addition, I also distinguish between STEM and non-STEM majors and

allow for �ve campuses to study a university program: Leuven, Ghent, Antwerp, Brussels

and Hasselt. For professional and academic colleges, I follow Declercq and Verboven (2017)

and assume students choose the closest campus. This results in 15 options after graduating

from high school: j = 0 or one of the 14 study options j 2 he.
As explained in section 2.3, the value functions after leaving secondary education can be

written as the sum of an estimated, common value of a high school degree �degree and a choice-

speci�c component. I now impose structure on the choice-speci�c component	HEEj (xit; �i) =

42The downside of this extension is that marginal bene�ts of e¤ort in the model are not necessarily decreasing over the
entire domain of yijt, making it more di¢ cult to �nd a solution. Nevertheless, an interior solution is still required and this
should satisfy the �rst-order condition, allowing us to estimate the model as explained in section 3, but now by calculating joint
probabilities for all performance outcomes instead of one particular outcome. When solving the model in counterfactuals, I use
a grid search around the optimal level in the data to �nd a new optimum.
43Note that the thresholds for elective courses are not always estimated as they can also be deterministic, given the result of

gtrackijt+1. If g
track
ijt+1 < 4, g

math
ijt+1 = g

clas
ijt+1 = 1. If g

track
ijt+1 = 4, g

math
ijt+1 = f1; 2g and gclasijt+1 = 1.

32



	HEEij to let this value di¤er by the option a student chooses after graduation:

	HEEij = �HEE;0j + S 0i�
HEE;S
j + � 0i�

HEE;�
j + �HEE;distdistance_HEij (18)

+d0iTSEi
�HEE;SEj + �HEE;delayj delayiTSEi

+�
HEE;delay_level
j level_SEiTSEi delayiTSEi :

Distance_HEij is the distance in kilometers from the student�s home to the chosen option,

�HEE;SEj and �HEE;delayj estimate how secondary education outcomes a¤ect the enrollment

decision, with diTSEi a vector of dummy variables for each possible program a student can

graduate in and delayiTSEi the years of accumulated study delay. I also include an interaction

e¤ect between the academic level, measured by a ranking of the track level_SEiTSEi and study

delay.

Since only di¤erences in utility are identi�ed, I normalize �HEE0 = 0. By this normaliza-

tion, all �xed cost parameters in the model should be interpreted as the disutility of going to

school, compared to the total value of working (without a degree). Note that this includes

e¤ects on labor market outcomes. E.g. if male students experience a higher �xed cost of

school than female students, this can be because they dislike school more, relative to work,

but also because they might earn higher wages when they choose to work. Because the

number of options is large, I need to constrain some of the parameters. I allow for �exible,

j-speci�c constants �HEE;0j , but only allow other parameters to di¤er by the ranking of the

academic level of the higher education option (0 to 2) and a dummy that indicates if it is a

STEM major.44

Note that travel time to secondary education programs does not enter the lifetime utility

of leaving secondary education directly, while it does in�uence the program students choose.

It therefore serves as an exclusion restriction that helps in identifying the unobserved type

distribution.

5.4 Additional long run outcomes

I specify three additional long run outcomes: success in the �rst year of higher education,

graduation from higher education before age 25 and the unemployment spell between age 25

and 35. All long run outcomes follow a similar structure as (18) and can be characterized

by w 2 W = fHEE;HES,HED;SPELLg.
44For this outcome I also do not allow a di¤erent e¤ect of each secondary education program on decisions but allow for a

general e¤ect of each track on going to college and interactions with the ranking of the academic level of the track, a dummy
variable for extra math and a dummy variable for classical languages in the program. Note that this implies that elective courses
can only increase enrollment through their e¤ect on programs of higher academic level or STEM-major. This assumption is
necessary because very few students in the academic track decide not to enroll in college. I do not need to make this assumption
for other long run outcomes.
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First year success higher education (HES)
In the �rst year students can fail, pass without distinction, pass cum laude or pass magna

cum laude or higher. I estimate an ordered logit model with an index that is identical to

(18) as all variables that are expected to in�uence enrollment decision are also expected to

in�uence performance:

	HESij + !HESij = �HES;0j + S 0i�
HES;S
j + � 0i�

HES;�
j + �HES;distdistance_HEij

+d0iTSEi
�HES;SEj + �HES;delayj delayiTSEi

+�
HES;delay_level
j level_SEiTSEi delayiTSEi

+!HESij

with !HESij logistically distributed. I also allow for interactions of thresholds with the level

and major of the program. Similar to the enrollment decision, I allow for �exible j-speci�c

choice-speci�c constants and constrain other parameters to di¤er only by the ranking of the

academic level of the higher education option and a dummy that indicates if it is a STEM

major.

Higher education degree obtained at age 25 (HED)
The model to obtain a higher education degree is similar to the model explaining the

decision after leaving secondary education, but adds controls for the enrollment decision and

the fact that the student passed the enrollment year. The indexes used to form the logit

probabilities are given by:

	HEDij + !HEDij = �HED;0j + S 0i�
HED;S
j + � 0i�

HED;�
j + �HED;distdistance_HEij

+d0iTSEi
�HED;SEj + �HED;delayj delayiTSEi

+�
HED;delay_level
j level_SEiTSEi delayiTSEi

+Switch0ij�
HED,switch + !HEDij :

!HEDij is distributed extreme value type 1 and the vector of a parameters associated to not

obtaining a higher education degree are normalized: �HED0 = 0. Switchij is a vector of

controls for outcomes after leaving secondary education, but before obtaining a degree. This

includes a dummy equal to one if the student is in the same higher education level as in the

enrollment year (including no higher education as the lowest level), a dummy equal to one if

the student is in a higher educational level than in the enrollment year and a dummy equal

to one if the student is in the same major as in the enrollment year. Note that this implies

that the (full) e¤ect of a study program in secondary education on obtaining a degree at age

25 does not only go through diTSEi and level_SEiTSEi , but also through Switch0ij. All controls
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are then also interacted with a dummy equal to one if the student passed the enrollment

year in higher education. I allow for �exible j-speci�c choice-speci�c constants and constrain

other parameters to di¤er only by the ranking of the academic level of the higher education

option and a dummy that indicates if it is a STEM major.

Unemployment spell age 25-age 35 (SPELL)
Unemployment spell in years is modeled as an ordered logit with thresholds for each year.

The index is given by:

	SPELLij + !SPELLij = �SPELL;0 + S 0i�
SPELL;S + � 0i�

SPELL;�

+d0iTSEi
�SPELL;SE + �SPELL;delaydelayiTSEi

+�SPELL;delay_levellevel_SEiTSEi delayiTSEi
+d0iTHEi

�SPELL;HE + !SPELLij

with diTHEi
a vector of indicators for each potential higher education degree obtained at age

25 and !SPELLij logistically distributed. The total e¤ect of study programs in secondary

education now goes through diTSEi and level_SEiTSEi , but also through higher education

diTHEi
. The latter is a vector of dummy variables equal to one if the student obtained a

speci�c higher education degree. Note that distance to higher education does not enter the

unemployment spell directly, while it does in�uence graduation from higher education. It

therefore serves as an exclusion restriction that helps in identifying the unobserved type

distribution.

6 Estimation results

I present the structural schooling cost estimates, the estimates of long run outcomes and

conclude with a model validation exercise.

6.1 Cost of schooling

In this section I summarize the estimates of �xed costs (C0 in (15)) and marginal costs of

e¤ort cj. While the structure in the model on the �xed costs is the same as shown in these

tables, the marginal costs are derived from the optimal choices of program and e¤ort in the

data and are therefore a nonlinear function of the variables and other parameters in the

model (see section 3). I therefore perform an OLS regression of the estimated marginal costs

with the same structure as the �xed costs to interpret them. All parameters are divided by
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the parameter of the travel time variable and can therefore be interpreted in terms of daily

minutes to travel.45

Table 5 shows that high SES students pay a lower �xed costs in the academic track

than a student of low SES, equivalent to commuting 282 minutes to school on a daily basis.

Also in other programs they pay a lower cost, but to a lesser extent. The impact of SES

on marginal cost of e¤ort however is small and insigni�cant. On the contrary, an increase

in math ability by one standard deviation (SD) has no signi�cant impact on �xed costs

but decreases the marginal cost of e¤ort by 7.8 minutes. If students would be indi¤erent

between time spent commuting and time spent studying, this would mean that a low math

ability student (1 SD lower than the average) can compensate his lower chances of success,

compared to the average student, by studying an additional 7.8 minutes per day. We see this

trend also in other estimates: SES is mainly a¤ecting the �xed costs, while initial ability is

a¤ecting marginal costs of e¤ort. I.e. preferences for going to school and choosing higher

level programs are a¤ected mainly by socioeconomic background, but initial ability is more

important in explaining the di¤erences in experienced di¢ culty level. A low ability, high SES

student will therefore have to work harder (experience a higher e¤ort costs, due to a larger

marginal cost) to achieve the same result. But, since preferences are higher, this student is

more willing to pay the additional cost as low e¤ort will be associated with lower chances of

staying in the most favored program. This explains why SES has a positive impact on the

optimal level of e¤ort in the data and thus on performance, even though there is no e¤ect

on the marginal cost of e¤ort.46

An important result for the identi�cation approach is the e¤ect of persistent unobserved

heterogeneity. The model estimates 67% of students to be of type 1 and 33% to be of type

2 (see appendix Table A1). Type 2 students have lower marginal costs, suggesting they

are of higher ability, not captured by the included ability variables. They also have lower

�xed costs, especially in more academic programs. This shows that there will be selection

on unobservables in the data as type 2 students are more likely to choose more academic

programs.

In Table 6, we see that high ability, high SES and type 2 students have lower �xed costs in

classical language and math options. For math options, only math and not language ability

is relevant. Furthermore, male students experience lower �xed costs in math options. There

is no e¤ect on the way marginal costs of e¤ort depend on student background, except for

type 2 students who loose the advantage they had in the academic track (classical languages

is only available in the academic track). We also see that high SES or belonging to type 2 is

45Choice-speci�c constants can be found in the appendix Table A8.
46See appendix section A.3 for the reduced form estimates of the optimal e¤ort level.
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Table 5: Costs of schooling: tracks by student background and grade

Fixed cost Marginal cost of e¤ort
coef se coef se

Academic

Male 61.0 (60.2) 4.291 ** (1.689)

Language ability -99.6 ** (44.8) -7.254 ** (2.951)

Math ability -42.1 (39.4) -7.776 *** (2.550)

High SES -281.7 ** (125.9) -1.003 (1.275)

Type 2 -718.3 *** (169.0) -3.928 ** (1.587)

Grade -9.5 (15.5) 0.140 (0.759)

Middle-Theoretical

Male -22.3 (58.1) 8.711 *** (2.714)

Language ability -20.5 (37.2) -9.193 ** (3.816)

Math ability -32.3 (39.2) -12.431 *** (3.278)

High SES -248.4 ** (124.8) -1.390 (1.848)

Type 2 -678.9 *** (164.7) -11.558 *** (3.022)

Grade 1.2 (13.7) -0.344 (0.683)

Middle-Practical

Male -21.2 (54.7) 7.135 ** (3.094)

Language ability 32.6 (42.2) -12.647 *** (4.502)

Math ability -31.8 (36.9) -4.433 * (2.548)

High SES -239.6 * (122.4) -2.331 (3.253)

Type 2 -572.1 *** (150.6) -13.758 *** (4.062)

Grade -15.4 (12.2) 1.093 (1.257)

Vocational

Male 24.0 (58.4) 3.136 (2.068)

Language ability 53.5 (44.6) -8.787 ** (4.445)

Math ability 43.8 (35.7) -3.076 (2.848)

High SES -226.0 * (123.2) -2.663 (1.818)

Type 2 -497.1 *** (148.4) -9.681 *** (2.690)

Grade 12.8 (13.7) 2.772 *** (0.957)
Note: Estimates of a sample of 4927 students or 31932 student-year observations during secondary education. Fixed cost

estimates of equation (15). The reported marginal costs of e¤ort are an approximation of the predicted values from the model.

All parameters are divided by �time in equation (15) such that they can be interpreted in minutes of daily travel time.

Ability measured in standard deviations. Type 2 = dummy equal to one if student belongs to unobserved type 2 instead of 1.

High SES= at least one parent has higher education degree. Grade subtracted by 6 to start counting in secondary education.

Bootstrap standard errors between parentheses. *** p<0.01, ** p<0.05, * p<0.1 (normal-based).
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Table 6: Costs of schooling: elective courses, grade interactions and switching costs

Fixed cost Marginal cost of e¤ort
coef se coef se

Classical languages

Male -34.3 (25.9) -2.319 (1.656)

Language ability -61.2 ** (25.2) 2.970 (5.097)

Math ability -71.4 *** (22.9) 3.268 (6.961)

High SES -63.0 ** (26.7) 1.294 (1.348)

Type 2 -93.2 *** (26.2) 4.740 *** (1.499)

Grade -24.2 *** (8.5) -0.203 (0.602)

Intensive math

Male -98.1 *** (36.2) -1.930 (1.552)

Language ability 11.9 (27.3) 1.357 (3.695)

Math ability -167.2 *** (34.9) 0.685 (3.211)

High SES -71.7 ** (28.5) 1.528 (1.201)

Type 2 -194.9 *** (35.5) 0.850 (2.171)

Grade -59.7 *** (17.3) 1.761 (1.090)

Grade

Male -9.0 (11.2) 0.533 (0.515)

Language ability -8.5 (9.3) 0.278 (0.906)

Math ability -7.2 (6.8) 0.317 (0.618)

High SES 35.8 * (20.9) -0.742 * (0.385)

Type 2 88.7 *** (27.2) -1.736 *** (0.551)

Study delay 87.7 (58.6) 8.110 (5.703)

Grade -15.4 (11.1) 0.285 (1.213)

Level SE 8.4 (9.9) -0.322 (1.368)

Repeat grade 387.0 *** (120.5) -14.087 *** (5.406)

Grade 4.1 (18.9) 4.119 ** (1.774)

Level SE 138.8 *** (28.7) -3.090 ** (1.466)

Downgrade 270.3 *** (46.1) 0.213 (0.961)

Upgrade 545.6 *** (106.9) 2.954 (2.502)

Time 1.0 -0.003 (0.004)
Note: Estimates of a sample of 4927 students or 31932 student-year observations during secondary education. Fixed cost

estimates of equation (15). The reported marginal costs of e¤ort are an approximation of the predicted values from the model.

All parameters are divided by �time in equation (15) such that they can be interpreted in minutes of daily travel time. Ability

measured in standard deviations. Type 2 = dummy equal to one if student belongs to unobserved type 2 instead of 1. High

SES= at least one parent has higher education degree. Grade subtracted by 6 to start counting in secondary education. Level

SE = academic level of study program. Bootstrap standard errors between parentheses. *** p<0.01, ** p<0.05, * p<0.1

(normal-based).
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more important for �xed costs in lower grades but shifts to marginal cost in higher grades.

We also see the importance of variables that are in�uenced by the tracking policy. We do

not �nd a signi�cant e¤ect of study delay, i.e. past grade retention, but a strong increase in

�xed costs of currently repeating a grade, especially in programs of higher academic level. At

the same time, repeating the grade also decreases marginal costs, especially in higher level

programs. This shows a clear trade-o¤: students dislike repeating a grade but it does help

them to perform well, especially in more academic programs. This is one of the explanations

why students might consider repeating a grade, even if they have the possibility to go to the

next grade in another program. Students also do not like to switch programs. Both down-

and upgrading is associated with much higher �xed costs, indicating a preference of students

to stay in the same program.

6.2 Long run outcomes

All estimates for long run outcomes can be found in appendix section A.4. I hereby discuss

the main results.

Students value the long run impact of their program. First, I �nd positive estimates of

the value of a degree. Furthermore, students obtain an additional bene�t of being allowed

to enroll in higher education. Male students are less likely to have better higher education

outcomes, but they do have smaller unemployment spells. Initial ability matters especially for

higher education programs of higher academic level. Math ability is particularly important

for enrollment in and graduation from STEM programs and also decreases unemployment

spells. High SES students have better higher education outcomes but do not experience an

e¤ect on unemployment. For the identi�cation strategy, it also important to point out that

unobserved type is again important. While type 2 students are not more likely to enroll

in professional colleges, they are more likely to choose a STEM major and institutions of

higher academic level. Moreover they perform better and are more likely to obtain a higher

education degree. We can therefore conclude that type 2 is of higher ability, according to

long run outcomes. Note that this type also has lower schooling costs in secondary education,

especially in programs of higher academic level. This means that there will be self-selection

into programs by high ability students into programs that showed better outcomes in a

descriptive analysis. Therefore, it is important to control for type to avoid ability bias in

the estimates and counterfactuals.

Because the estimates of high school programs on long run outcomes are di¢ cult to

interpret, I also calculate the total Average Treatment E¤ects on the Treated (ATT) of each

study program in appendix section A.5. These estimates look at the total causal impact
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of the high school program students graduates in on long run outcomes, after conditioning

on other high school outcomes like study delay and drop out. Most estimates point in the

same direction as a simple comparison of means in the data, but to a smaller extent. I �nd

that graduating from the academic track without classical languages or extra math leads

to an increase in college graduation of 25 %points compared to the middle-practical track.

Also the other higher education oriented track, the middle-theoretical track, leads to lower

chances of college graduation (12%points). Elective courses mainly matter for type of higher

education. Students who choose classical languages are 20%points more likely to graduate

from universities, but 19 %points less likely to graduate from professional colleges. Extra

math in the academic track leads to an increase of 12 %points in STEM degrees and extra

math in the middle-theoretical track to an increase of 19%points.

Tracking policies alter the trade-o¤ between the academic level of the program a student

is in and years of study delay he accumulates. It is therefore also interesting to look at

the ATT of study delay. I compare the e¤ect for students with zero and one year of study

delay for those that are retained during secondary education. I �nd a negative e¤ect on

higher education outcomes, but only statistically signi�cant for the probability to obtain a

higher education degree. One year of study delay decreases the probability to obtain a higher

education degree by 10%points. Also the unemployment spell is a¤ected as it increases by

3:6 months on a time span of 10 years.

6.3 Model �t

After estimation, I solve the model as explained in section 2.3. Once I have solved the model

backwards to �nd all the conditional value functions and e¤ort levels, I forward simulate

all error terms to simulate choices and performance and let the model generate a database

of predictions. I then compare this database to the actual data and use it to compare it

to counterfactual scenarios. To allow students to change their e¤ort level, I perform a grid

search over di¤erent e¤ort levels in each conditional value function to look for the optimal

value.47 Table 7 shows the ability of the model to replicate the actual data if there is no

policy change. The model does a decent job in predicting the graduation track, although

there is a slight overprediction of graduating from the academic track. The main outcomes

47 I predict value functions for a sample of students and weigh them according to the empirical distribution of the discrete
variables in the data, and a distretized transformation of the continuous variables. Within each group, I take draws of the
continuous variables and ensure that no draw ever represents more than 50 students. To forward simulate error terms, I replicate
each draw by the number of students it represents to obtain a database of the same size as the original sample. This procedure
has the bene�t of having su¢ cient draws, while needing only a limited number of students to use for a grid search of the optimal
e¤ort level. The grid search for e¤ort levels starts at the optimal level in the data and looks for better levels with increments
in the log of e¤ort of 0.05 with a minimum of -5 and a maximum of +5.
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Table 7: Predictions of the model

Data Predictions

High school graduation (% of students)
Academic 36.3 43.3 (2.9)

clas+math 3.7 4.7 (1.0)

clas 5.5 5.1 (1.1)

math 12.6 15.6 (1.5)

other 14.4 17.9 (1.8)

Middle-Theoretical 16.4 11.1 (2.1)

math 2.6 2.1 (0.6)

other 13.8 9.0 (1.5)

Middle-Practical 12.7 11.2 (2.1)

Vocational 20.5 21.3 (1.0)

Dropout 14.2 13.2 (0.5)

Students with grade retention 33.2 32.0 (1.2)

Higher education (% of students)
Enrollment 55.2 56.8 (1.0)

First year successful (among enrolled) 45.6 45.1 (1.2)

Degree (age 25) 39.0 40.2 (0.8)

University degree 9.6 8.6 (0.7)

Academic college degree 4.8 5.0 (0.4)

Professional college degree 24.8 26.7 (0.9)

Degree in STEM major 10.2 9.8 (0.6)

Unemployment (mean in years)
Spell age 25-35 2.08 2.03 (0.05)

Note: Clas= classical languages included. Math= intensive math. Observed outcomes in the data and prediction

from a dynamic model with program and e¤ort choice in secondary education. High school graduation summarizes

the programs in which students graduated or dropout and the number of students with grade retention. Bootstrap

standard errors between parentheses.
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of interest are predicted very precisely. This holds for outcomes in secondary education

like grade retention and drop out, but also outcomes in higher education and the average

unemployment spell.

7 Added value of high school programs

In the previous section I interpreted the estimates on long run outcomes to look at the e¤ect

of high school programs for individual students. These estimates are "ceteris paribus" causal

e¤ects, i.e. they are the e¤ect of one variable if all other variables that were realized before

leaving secondary education are kept �xed. The ceteris paribus e¤ects are problematic when

we think about policy recommendations. This is because enabling students to choose a cer-

tain program can also in�uence other outcomes during secondary education like preferences

to go to school and the willingness to exert e¤ort. This will in�uence other endogenous

variables like drop out and grade retention. I therefore present an alternative way to assess

the causal impact of high school programs. I investigate their added values by simulating

choices in a world where one track or elective course is not available and look at the way

it in�uences outcomes of students. The added values I report are di¤erences between the

status quo, i.e. all options are available, and a world where some programs are omitted.

In this section I only discuss the added value estimates. See appendix section A.6 for the

results of these simulations.

I �rst discuss the added value estimates, and then compare my results to a traditional

dynamic model where e¤ort is assumed to be exogenous.

7.1 Added value estimates

Table 8 shows the estimates of the added value of each track and elective course on the main

higher education outcomes and the unemployment spell. The impact of high school programs

is similar for the three higher education outcomes. The academic track is responsible for an

increase of 8:6 %points in graduation from higher education. For the vocational track, we

observe the opposite e¤ect. It decreases graduation by 1:9 %points. However, without the

vocational track, unemployment spells would increase. Elective courses also matter for long

run outcomes. Classical languages increase graduation from college by 1:8 %points. Extra

math increases enrollment but the e¤ect on graduation from college is small and insigni�cant.

Table 9 discusses the e¤ect on di¤erent options of higher education in more detail. While

elective courses within the academic track only had small e¤ects on general outcomes, they

are particularly important for the academic level and major of the higher education programs
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Table 8: High school program and long run outcomes: added value

Higher education Unemployment
(added value in %points) (added value to mean)

Enrollment First year success Degree age 25 Spell age 25-35

(% of students) (% of enrolled) (% of students) (mean in years)

Tracks
Academic +8.53 *** (1.19) +3.21 (2.83) +8.64 *** (1.37) -0.02 (0.05)

Middle-Theoretical +0.28 (0.43) -0.73 (0.52) -0.62 (0.39) +0.01 (0.01)

Middle-Practical -0.27 (0.33) -0.42 (0.36) -0.57 ** (0.28) -0.03 * (0.02)

Vocational -3.72 *** (0.46) +0.75 *** (0.29) -1.90 *** (0.30) -0.09 ** (0.04)

Elective courses
Classical languages +1.82 *** (0.24) +0.60 (0.58) +1.85 *** (0.38) -0.03 ** (0.01)

Intensive math +1.14 *** (0.25) -1.39 (1.41) +0.18 (0.66) -0.01 (0.03)

Predicted value 56.8 45.1 40.2 2.0

Data 55.2 45.6 39.0 2.1
Note: Added values calculated by comparing predictions from a world without the track or elective course with the status quo.

Di¤erences in percentage points (higher education) or years (unemployment). Bootstrap standard errors between parentheses.

p<0.01, ** p<0.05, * p<0.1 (normal-based).

in which students obtain a degree. The added value of classical languages on obtaining a

higher education degree is almost exclusively explained by an increase in graduation from

the most prestigious higher education option: universities. Math-intensive programs did not

lead to a signi�cant increase in college graduation but do explain a shift to STEM majors.

Without math-intensive programs in high school, the number of students with a STEM

degree would decrease by 2:5%points, a high number given that only 10% of students obtain

a STEM degree.

Finally, Table 10 shows the impact of the availability of tracks and elective courses on

outcomes during secondary education: grade retention and drop out. The vocational track

is very important in avoiding grade retention and drop out. Without the vocational track,

students of lower academic ability would have been forced to study a more academically

rigorous program if they wanted to graduate with a high school degree. The required increase

in e¤ort leads many students to drop out or to accumulate study delay in order to graduate.

Surprisingly, we also see that the academic track decreases grade retention and drop out,
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Table 9: High school program and level and major college degree: added value in %points

Academic level higher education Major

University Academic Professional STEM

college college

(% of students) (% of students) (% of students) (% of students)

Tracks
Academic +4.68 *** (0.62) +1.21 *** (0.25) +2.75 ** (1.14) -1.31 (0.81)

Middle-Theoretical -0.34 *** (0.09) -0.16 *** (0.05) -0.12 (0.36) +0.24 * (0.14)

Middle-Practical -0.10 *** (0.03) -0.07 ** (0.03) -0.40 (0.25) +0.20 ** (0.09)

Vocational -0.02 ** (0.01) -0.03 ** (0.01) -1.85 *** (0.29) -0.15 ** (0.07)

Elective courses
Classical languages +1.92 *** (0.44) +0.16 * (0.09) -0.23 (0.36) -0.40 (0.24)

Intensive math -0.39 (0.65) +0.47 *** (0.17) +0.10 (0.67) +2.49 *** (0.75)

Predicted value 8.57 4.95 26.68 9.81

Data 9.58 4.76 24.85 10.21
Note: Added values calculated by comparing predictions from a world without the track or elective course with the status quo.

Di¤erences in percentage points (higher education) or years (unemployment). Bootstrap standard errors between parentheses.

p<0.01, ** p<0.05, * p<0.1 (normal-based).

albeit to a lesser extent. This can be explained by e¤ort choices. I illustrate this by comparing

the prediction of the model to the prediction of a model where e¤ort is not modeled as a

choice.
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Table 10: High school program and grade retention and drop out: added value in %points

Grade retention Drop out
(% of students) (% of students)

Tracks
Academic -3.10 ** (1.45) -0.68 *** (0.25)

Middle-Theoretical +2.70 *** (0.39) +0.91 *** (0.21)

Middle-Practical +1.90 *** (0.38) +0.46 (0.37)

Vocational -9.40 *** (0.68) -10.72 *** (1.03)

Elective courses
Classical languages -2.90 *** (0.62) -0.31 *** (0.11)

Intensive math +2.10 *** (0.81) +0.09 (0.11)

Predicted value 32.0 13.2

Data 33.2 14.2
Note: Added values calculated by comparing predictions from a world without the

track or elective course with the status quo. Di¤erences in percentage points (higher

education) or years (unemployment). Bootstrap standard errors between parentheses.

p<0.01, ** p<0.05, * p<0.1 (normal-based).

7.2 Bias in added values if e¤ort choice is ignored

In the Appendix Table A22, I compare the results from counterfactual simulations to the

results of the traditional model that assumes e¤ort is exogenous. I do this by estimating

the �ow utility (equation (5)) with marginal costs cj = 0, and by not updating the optimal

level of e¤ort we see in the data. While the predictions from the model in the status quo

scenario remain very similar, the counterfactual predictions show some important di¤erences

in magnitude.48 To illustrate this, Figure 2 compares the added value on grade retention of

the academic track and the vocational track.

There are strong biases in the estimated e¤ects. While the decrease in grade retention

because of the academic track is underestimated without e¤ort choice, it is overestimated for

the vocational track. To explain this di¤erence, it is important to see how e¤ort responds

to each counterfactual. High e¤ort will make it more likely to be admitted to the academic

track in the next grade. If the academic track is not available, it makes the bene�ts smaller,

48Predictions of the model without e¤ort are available upon request.
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Figure 2: Impact of modeling e¤ort on added value estimates academic and vocational track

for grade retention

Note: Added value estimates for the percentage of students with grade retention. Di¤erences in percentage points. Model without

e¤ort choice uses estimates of a model with marginal costs = 0 and the e¤ort level in the data. Di¤erences between two models are

statistically signi�cant, see appendix Table A22 and Table A23.

making students set lower levels of e¤ort. By setting lower levels of e¤ort, students also

become more likely (need smaller negative performance shocks) to not be admitted to any

program in the next grade, requiring them to repeat the grade. A model that ignores e¤ort

choice will assume students set the same levels of e¤ort as before in a given program, making

the increase in grade retention in a world without the academic track much smaller. If the

vocational track is removed, we see the opposite e¤ect. To proceed to the next grade, students

can count on the vocational track if their e¤ort is too low for other tracks. However, without

this possibility, they have to put in enough e¤ort to reach at least the middle-practical track.

The bene�ts of e¤ort therefore increase, students set higher levels of e¤ort and become less

likely to be retained. The vocational track is still responsible for a large decrease in grade

retention, but not as much as a model without e¤ort would predict.

Many biases in other outcomes can be explained as a result of the bias in predicted grade

retention. In the appendix section A.6, I show all the biases of the simulations.
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8 Tracking policies in secondary education

In the current tracking policy in Flanders, teachers decide if a student has acquired the

necessary skills to transition to the next grade in each of the programs. In some cases,

students have not acquired the skills to transition to the next grade, regardless of their

program choice. They then obtain a C-certi�cate which requires them to repeat the grade.

However, in many cases students are allowed to transition to the next grade, but have to

switch to a program of lower academic level.49 In this case they obtain a B-certi�cate. This

allows underperforming students to avoid grade retention, however they can still opt for the

same program if they are willing to repeat the grade. In a �rst counterfactual, I look at

the e¤ect of this policy by removing the option to avoid grade retention and force students

to repeat the grade if they underperformed during this year. In a second counterfactual,

I instead reinforce this policy of avoiding grade retention, by forcing them to downgrade

instead of having a choice between repeating the grade or downgrading.

I �rst discuss the predicted e¤ect of each policy and then show the biases in a model

where e¤ort is assumed to be exogenous.

8.1 Changes in the B-certi�cate policy

In Table 11 I compare the outcomes of the two counterfactuals to the status quo. Appen-

dix Table A27 shows how the number of students who graduate in each program changes.

The policy "Repeat" forces students to repeat the grade after obtaining a B-certi�cate, i.e.

removing downgrading as a way to avoid grade retention. The policy "Downgrade" forces

students to downgrade after a B-certi�cate by not allowing them to repeat the grade.

Without the ability to avoid grade retention, outcomes would have been worse. Although

the policy increases graduation from the academic track slightly, it comes at the cost of an

increase in students with grade retention by 9:5 %points and increase in drop out rates

by 4:0 %points. Also after secondary education, we only see negative e¤ects: enrollment

in higher education decreases by 1:9 %points and graduation by 1:8 %points. The average

unemployment spell increases by 0:12 years or 6%. The current policy is therefore better

than a strict pass or fail policy. Nevertheless, it can be further improved.

If students who obtained a B-certi�cate were not allowed to repeat the grade, grade

retention would decrease by 9:6 %points and drop out by 1:5 %points. This does come

at a cost in the short run. Students switch to programs of lower academic level, which

decreases enrollment in higher education by 1:2%points. However, this policy only decreases

49 In some cases, they only need to drop an elective course.
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Table 11: Predictions of the model: counterfactual tracking policy

Status quo Policy change B-certi�cate

Repeat Downgrade

High school graduation (% of students and change in %points)
Students with grade retention 32.0 +9.50 *** (0.57) -9.60 *** (0.72)

Dropout 13.2 +4.03 *** (0.35) -1.45 *** (0.18)

Higher education (% of students and change in %points)
Enrollment 56.8 -1.90 *** (0.34) -1.21 *** (0.18)

First year successful (among enrolled) 45.1 +0.11 (0.22) +0.81 ** (0.33)

Degree (age 25) 40.2 -1.75 *** (0.32) +0.32 (0.22)

University degree 8.6 -0.13 ** (0.07) +0.30 *** (0.09)

Academic college degree 5.0 -0.16 *** (0.04) +0.09 * (0.05)

Professional college degree 26.7 -1.46 *** (0.26) -0.07 (0.18)

Degree in STEM major 9.8 -0.48 *** (0.10) +0.27 * (0.16)

Unemployment (mean in years and di¤erence in means)
Spell age 25-35 2.03 +0.12 *** (0.02) -0.05 *** (0.01)

Note: Predictions from a dynamic model with program and e¤ort choice in secondary education. B-certi�cate = students acquired

skills to proceed to next grade but only in track of lower academic level or if they drop elective course. Status quo = students

can choose to downgrade or repeat grade after obtaining B-certi�cate, Repeat = students must repeat grade after obtaining B-

certi�cate, Downgrade = students must downgrade and not repeat grade after obtaining B-certi�cate. Bootstrap standard errors

between parentheses. p<0.01, ** p<0.05, * p<0.1 (normal-based).
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enrollment for students with low chances of eventually graduating from college. The �rst

year success rate increases by 0:8%points and the number of students who graduate with a

higher education degree even slightly increases, albeit not signi�cantly. Also unemployment

spells decrease slightly.

I conclude that the current tracking policy is a good alternative to guide students in their

track choices, rather than having them repeat a grade if they fail. Nevertheless, the choice

they currently have to repeat a grade instead of downgrading does not lead to bene�cial

e¤ects in the long run. Given a large cost of grade retention and drop out for society, a

policy in which students are not allowed to repeat a grade after having received a B-certi�cate

should be considered.

8.2 Bias in e¤ects tracking policy if e¤ort choice is ignored

I compare these results again with predictions from a model that ignores e¤ort is a choice by

estimating the �ow utility with marginal costs cj = 0, and by not updating the optimal level

of e¤ort we see in the data. Appendix Table A28 contains the biases of predicted outcomes

and Figure 3 illustrates this for the e¤ect on predicted grade retention.

I compare the model with and without e¤ort choice, but also a model-free naive estimate.

The latter is calculated by counting the students who currently choose (not) to repeat a grade

after obtaining a B-certi�cate. For the "Repeat" counterfactual, this is the percentage of

students who were not retained during secondary education because they chose to downgrade

after obtaining a B-certi�cate. For the "Downgrade" counterfactual, this is the percentage of

students who obtained grade retention because they chose to repeat a grade after obtaining

a B-certi�cate. The naive estimate clearly overpredicts the increase in grade retention when

students have to repeat the grade, and underpredicts the decrease if they have to downgrade,

compared to dynamic choice models. A similar conclusion can be made by comparing the

model with and without e¤ort choice in which the model with e¤ort choice leads to more

favorable outcomes. The reason why we see these di¤erences is because each model accounts

for behavioral responses by students in a di¤erent way. Both counterfactuals give students

less options to choose from when obtaining a B-certi�cate. Therefore, they have a reason to

avoid obtaining one. A naive estimate from the data ignores that students know about the

new policy and will make choices to avoid a B-certi�cate. It also ignores that students who

escape from grade retention, might be more likely to be retained in the future anyway. In

a model with dynamic program choice, students can escape from having a B-certi�cate by

choosing another (easier) program. The model also accounts for the fact that this student

might get di¤erent results in the future. In a model that includes e¤ort choice, students have
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Figure 3: Impact of modeling e¤ort on change in grade retention because of change in

tracking policy

Note: Estimated e¤ects of counterfactual tracking policies on the percentage of students with grade retention. Di¤erences in

percentage points. Status quo = students can choose to downgrade or repeat grade after obtaining B-certi�cate, Repeat = students

must repeat grade after obtaining B-certi�cate, Downgrade = students must downgrade and not repeat grade after obtaining

B-certi�cate. Model without e¤ort choice uses estimates of a model with marginal costs = 0 and the e¤ort level in the data.

Predicted e¤ects from the raw data for the "Repeat" counterfactual: percentage of students who were not retained during secondary

education because they chose to downgrade after obtaining a B-certi�cate. Predicted e¤ects from the raw data for the "Downgrade"

counterfactual: percentage of students who obtained grade retention because they chose to repeat a grade after obtaining a B-

certi�cate in the "Downgrade" counterfactual. Di¤erences between the models are statistically signi�cant, see appendix Table

A28.

an additional channel to avoid obtaining a B-certi�cate by increasing their e¤ort. Since they

particularly dislike repeating a grade, the di¤erences are largest for the policy in which they

are not allowed to downgrade to avoid grade retention.
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9 Limitations

As any model is a simpli�cation of reality, there are some limitations that are important to

acknowledge. As most of the literature on the returns to education, I abstract from general

equilibrium e¤ects. One form of general equilibrium e¤ects is peer e¤ects. The estimated

e¤ects of study programs can capture the e¤ects of peers. Counterfactual simulations then

ignore the impact of a change in the peer composition in the classroom. Since the counter-

factual tracking policies did not cause a large shift in graduation from each program, this is

unlikely to be of �rst order importance. However, future research that wants to address the

e¤ect of tracking itself can bene�t from modeling peer e¤ects. A second source of general

equilibrium e¤ects lies in the long run outcomes. In the current institutional context, this

is of minor importance for higher education as there is no competition for spots due to the

lack of admission standards. Nevertheless, the percentage of students who are successful and

eventually graduates can be the result of preferences by higher education institutes that aim

at certain numbers of college graduates. Also unemployment spells can be a¤ected by others�

behavior. If extra students on the labor market crowd out others, the e¤ects in the model

are overestimated. The unemployment spell should therefore be seen as a proxy for labor

market outcomes by looking how study programs and counterfactuals change the willingness

and possibility to �nd a job, through changes in labor-leisure preferences, productivity or

signaling.

A second concern is the assumption on the information of students. There is a growing

literature on the importance of imperfect information about own ability. Some models there-

fore allow for students to learn about their ability (see e.g. Stinebrickner and Stinebrickner

(2014) and Arcidiacono et al. (2016)), instead of making the standard assumption that they

know it from the start. If there is in fact learning, I do expect �xed costs of higher tracks

to be underestimated because they also help more in giving information about the acad-

emic ability of the student. However, since the counterfactual simulations are unlikely to

change this learning bene�t, I expect this to be a minor issue for the analysis in this paper.

Nevertheless, it could be interesting to investigate the e¤ects of policies that reveal more

information about ability to students to improve the match between student and program.

Future research can therefore look at how to combine a model of endogenous e¤ort with

learning about ability.

Finally, I do not look at the speci�c impact of each school but model the choice of a

study program only. It is therefore important to stress that the e¤ect of a program can be

the e¤ect of the curriculum but also the quality of the schools where the study program is

available. Schools can also di¤er in the way they set standards to go to the next grade in each
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program. Since I do not model how schools and teacher decide to set standards, I keep them

�xed in counterfactual simulations. It would be interesting to investigate if the standards

itself can be set more optimally, rather than changing the implications of B-certi�cates.

10 Conclusion

I estimated a dynamic choice model of program and e¤ort choices in secondary education to

identify the causal e¤ect of high school programs on long run educational outcomes and on

unemployment spells. Using a dataset for Flanders (Belgium), I �nd that academic programs

are important for educational attainment, while vocational programs keep students in schools

and therefore decrease long run unemployment spells. Nevertheless, policies that encourage

students who underperform to opt for programs of lower academic level do not have a negative

e¤ect on long run outcomes and signi�cantly decrease grade retention and drop out from

high school. This shows that small changes to tracking policies in secondary education can

have important e¤ects. Future research should therefore focus more on how tracking policies

can improve student outcomes.

From a methodological perspective, I show that it is important to control for the fact

that students can change their e¤ort levels in response to counterfactual policy changes. In

general, e¤ort allows students to avoid some of the negative consequences of imposed policies.

This is especially the case when e¤ort is expected to increase due to more strict policies.

This turned out to be important in the current analysis, especially because of its e¤ect

on predicted grade retention. Further research can apply the modeling strategy to other

contexts where dynamics are important. Not only models of human capital accumulation

can bene�t from this approach. This innovation also applies to models of investment in

physical capital as state transitions are often under the control of the decision maker. The

depreciation of capital can then be allowed to depend on the intensity of capital use, which

is often not exogenous but one of the decision variables of a �rm.50

50E.g. in the seminal paper by Rust (1987), agents decide on when to replace bus engines, depending on current and expected
future mileage and engine prices. While mileage itself is treated as stochastic, it is reasonable to assume that its predictable
component is controllable and an increase in future prices of bus engines can have an impact on the miles busses are expected
to drive.
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A Appendix

A.1 Curvature of marginal bene�ts

This section discusses the shape of the marginal bene�ts of e¤ort that were introduced in

section 2. Note that marginal costs of e¤ort are assumed to be constant and e¤ort lies in

the open interval (0;+1). The marginal bene�ts should therefore be su¢ ciently �exible to
guarantee an interior solution. I show that the marginal bene�ts are positive, decreasing in

e¤ort and follow an S-shaped curve.51

Marginal bene�ts are positive
In the paper section 2, I described that the marginal bene�ts of e¤ort are given by

MB(xit; �i; yijt) = �
X
�g

@Pj(git+1 = �gjyijt)
@yijt

�Vt+1(xit+1(�g); �i):

Note that Pj(git+1 = �gjyijt) = Pj(git+1 � �gjyijt) � Pj(git+1 � �g � 1jyijt) for git+1 > 1 and

Pj(git+1 = 1jyijt) = Pj(git+1 � 1jyijt):

MB(xit; �i; yijt) = �
X
�g<G

@Pj(git+1 � �gjyijt)
@yijt

�
�Vt+1(xi;t+1(�g); �i)� �Vt+1(xi;t+1(�g + 1); �i)

�
:

Because performance shocks are distributed logistically, we know that @Pj(git+1��gjyijt)
@yijt

=

� (1�Pj(git+1��gjyijt))Pj(git+1��gjyijt)
yijt

. Since 0 < Pj(git+1 � �gjyijt) < 1; it is su¢ cient to assume that
students value a higher performance measure (�Vt+1(xit+1(git+1+1); �i) > �Vt+1(xit+1(git+1); �i))

to proof thatMB(xit; �i; yijt) > 0. The last expression is also intuitive: the marginal bene�t

is larger with large gains of getting a higher performance outcome, but less so if e¤ort is

already high.

Marginal bene�ts are decreasing in e¤ort
First note that �

�
�Vt+1(xit+1(git+1 + 1); �i)� �Vt+1(xit+1(git+1); �i)

�
is always positive and

does not depend on yijt. Therefore, a su¢ cient condition for the marginal bene�ts to be

51Note that in the application of the model, I extend the model to allow for additional performance measures. In rare cases
this can lead the marginal bene�ts to be increasing in small intervals.
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decreasing is
@
(1�Pj(git+1��gjyijt))Pj(git+1��gjyijt)

yijt

@yijt
< 0 8git+1 < G:

@
(1�Pj(git+1��gjyijt))Pj(git+1��gjyijt)

yijt

@yijt
= �@Pj(git+1 � �gjyijt)

@yijt
Pj(git+1 � �gjyijt)(yijt)�1

+(1� Pj(git+1 � �gjyijt))
@Pj(git+1 � �gjyijt)

@yijt
(yijt)

�1

�(1� Pj(git+1 � �gjyijt))Pj(git+1 � �gjyijt)(yijt)�2

=
@Pj(git+1 � �gjyijt)

@yijt
(yijt)

�1(1� 2 �Pj(git+1jyijt))

�(1� Pj(git+1 � �gjyijt))Pj(git+1 � �gjyijt)(yijt)�2

= (1� Pj(git+1 � �gjyijt))Pj(git+1 � �gjyijt)(yijt)�2(2Pj(git+1 � �gjyijt)� 2)
= �2(yijt)�2Pj(git+1 � �gjyijt)(1� Pj(git+1 � �gjyijt))2:

Since Pj(git+1 � �gjyijt) > 0 and yijt > 0, we �nd that
@
(1�Pj(git+1��gjyijt))Pj(git+1��gjyijt)

yijt

@yijt
< 0 and

therefore @MB(xit;�i;yijt)

@yijt
< 0, i.e. there are decreasing returns to e¤ort.

Marginal bene�ts are S-shaped
Note that we can rewrite

(1� Pj(git+1 � �gjyijt))
yijt

=
1

yijt

 
1�

exp(���g+1j � ln yijt)
1 + exp(���g+1j � ln yijt)

!

=
1

yijt

 
1

1 + exp(���g+1j )=yijt)

!
=

1

yijt + exp(��
�g+1
j )

:

Marginal bene�ts then become

MB(xit; �i; yijt) = �
X
�g<G

1

yijt + exp(��
�g+1
j )

Pj(git+1 � �gjyijt)
�
�Vt+1(xit+1(�g + 1); �i)� �Vt+1(xit+1(�g); �i)

�
:

Because Pj(git+1 � �gjyijt)! 1 if yijt ! 0, the lower limit of yijt 2 (0;+1) is given by

lim
yijt!0

MB(xit; �i; yijt) = �
X
�g<G

1

exp(���g+1j )

�
�Vt+1(xit+1(�g + 1); �i)� �Vt+1(xit+1(�g); �i)

�
:

Pj(git+1 � �gjyijt) !constant if yijt ! +1 (with the constant 0 for all probabilities, except

for the largest performance measure where the limit is 1). Therefore the upper limit is:
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lim
yijt!+1

MB(xit; �i; yijt) = 0:

Because of the two asymptotes and the fact that MB are always decreasing in e¤ort, we

obtain an S-shaped curve. When e¤ort is very high, the probability to obtain the highest

performance level reaches 1, making additional e¤ort useless. The bene�t can also never

be larger than the di¤erences between the lifetime utility from obtaining a higher outcome.

The larger the thresholds, the more di¢ cult it is to obtain the higher outcome. Therefore,

the di¤erences in utility in the upper limit of marginal bene�ts are inversely weighted by the

size of the thresholds to capture the di¤erences in probability.

Note that these bounds are also the upper and lower limits of the marginal costs we allow

for in the model since yijt 2 (0;+1) implies an interior solution where the marginal bene�ts
curve crosses the constant marginal costs.

A.2 CCP estimation without terminal action

The CCP estimation described in the paper is only possible if students are allowed to leave

secondary education in t + 1. However, for most students we start modeling choices from

the age of 12. At t+ 1, they are age 13 and do not have that option because of compulsory

schooling laws. They will get the outside option j = 0 at t+ 6. I write �it to be the number

of years it takes before the CCP correction term with the outside option can be applied:

�it = maxf1; 18 � Ageitg. Since �it can be di¤erent from 1, it makes the correction term

more complicated. However, the intuition is similar. We need to repeat the CCP method in

future values until the outside option is available. This is an application of �nite dependence,

introduced in Arcidiacono and Miller (2011). In contrast to their application on problems

that have a renewal action in the future, I apply it to the terminal action of choosing to

work. Nevertheless, the exposition in this section is very similar to Arcidiacono and Miller

(2011) and Arcidiacono and Ellickson (2011) and I refer to their papers for more details

about �nite dependence.

The choice probabilities (9) can also be written by using di¤erenced value functions:

Pr(djit = 1jxit; �i) =
exp

�
vijt(xit; �i; y

�
ijt)� vij0t(xit; �i; y�ij0t)

�
1 +

P
j�2�(xit) exp

�
vij� t(xit; �i; y

�
ij�t)� vij0t(xit; �i; y�ij0t)

�
with vijt(xit; �i; y�ijt)� vij0t(xit; �i; y�ij0t) (19)

= uj(xit; �i) + �
X
�g

Pj(git+1 = �gjy�ijt) �Vt+1(xit+1(�g))

�uj0(xit; �i)� �
X
�g

Pj0(git+1 = �gjy�ij0t) �Vt+1(xit+1(�g));
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for any j
0 2 �(xit) and uj(xit; �i) = �C0j (xit; �i) � cj(xit; �i)y�ijt, with y�ijt = y�jt(xit; �i).

Substitute the CCP representation of the future value as a function of the CCP of an arbitrary

choice and its conditional value function (12) in (19):

vijt(xit; �i; y
�
ijt)� vij0t(xit; �i; y�ij0t) (20)

= uj(xit; �i) + �
X
�g

Pj(git+1 = �gjy�ijt)
�

 + vid�t+1(xit+1(�g); �i)� ln Pr(d�it+1jxit+1(�g); �i)

�
�uj0(xit; �i)� �

X
�g

Pj0(git+1 = �gjy�ij0t)
�

 + vid�t+1(xit+1(�g); �i)� ln Pr(d�it+1jxit+1(�g); �i)

�
with d�it+1 the vector of dummy variables in which only the dummy corresponding to the

arbitrary choice is equal to one, and vid�t+1(:) the conditional value function of this option.

De�ne the cumulative probability of being in a particular state given the current state

variable and choice, and a particular decision sequence d�i = (dit; d
�
it+1; d

�
it+2; :::d

�
it+�it

):

��� (gi�+1jxit; �i) =
X
�g

Pd�(gi�+1 = �gjy�d�t(xi� ; �i)) if � = t (21)

��� (gi�+1jxit; �i) =
X
�g

Pd�(gi�+1 = �gjy�d�t(xi� ; �i))�
�
��1(gi� jxit; �i) if � > t

with Pd�(gi�+1 = �gjy�d�t(xi� ; �i)) the probability of receiving performance outcome gi�+1 = �g
at time t = � , in the program a student will be according to the decision sequence d�i .

Similarly, de�ne �
0
� to be the transitions in a sequence where the choice in t is di¤erent:

d
0
i = (d

0
it; d

�
it+1; d

�
it+2; :::d

�
it+�it

).52 We can then repeat the CCP method in each of the future

periods and rewrite (20) as the sum of future �ow utilities and CCPs until the outside option

becomes available at t+ �it:

vijt(xit; �i; y
�
ijt)� vij0t(xit; �i; y�ij0t) (22)

= uj(xit; �i)� uj0(xit; �i)
+�[ud�(xit+1(git+1); �i)� ln Pr(d�it+1jxit+1(git+1); �i)]��t (git+1jxit; �i)
��[ud�(xit+1(git+1); �i)� ln Pr(d

�

it+1jxit+1(git+1); �i)]�
0

t(git+1jxit; �i)

+

t+�it�1X
�=t+2

���t[ud�(xi� (gi� ); �i)� ln Pr(d�i� jxi� (gi� ); �i)]����1(gi� jxit; �i)

�
t+�it�1X
�=t+2

���t[ud� (xi� (gi� ); �i)� ln Pr(d�i� jxi� (gi� ); �i)]�0��1(gi� jxit; �i)

+��itV t+�it(xt+�it(git+�it); �i)�
�
t+�it�1(git+�itjxit; �i)

���tV t+�it(xt+�it(git+�it); �i)�
0

t+�it�1(git+�itjxit; �i):
52We can also allow a more general alternative sequence in which the choice in each period is di¤erent but here it is su¢ cient

to only let the �rst choice be di¤erent.
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V t+�it, the value of behaving optimally when the outside option is available, can be

written as in (13). The calculation of the value function is now possible after choosing the

arbitrary options in each period, the prediction of their CCPs and the predictions of optimal

e¤ort. However, further simpli�cations follow from a good choice of the arbitrary options

and a convenient parameterization of the model.

In the paper I explained why I choose j = 0 when the outside option is available. The

institutional context can also o¤er further simpli�cations by choosing the right programs in

other periods. Since upward mobility from the lowest track is never allowed, I argue that the

arbitrary choices should always be the lowest track available in each period: the vocational

track if a student is not 15 years old yet, and the part-time track if the student is older. This

choice signi�cantly removes the number of CCPs and future utility terms we need. From

the moment students choose the vocational track, they can no longer make choices until the

part-time track becomes available. Similarly, once students opt for the part-time track, they

can no longer make other choices until the outside option j = 0 is available. Therefore we

only need a CCP at the time a student is switching tracks in the sequence. Moreover, since

the part-time track does not follow a grade-structure and students can never return to the

standard grade-structure, the state variables will not evolve anymore in a way that depends

on choices made. Arcidiacono and Ellickson (2011) explain that in this case, the future

utility terms after choosing that option can be ignored in estimation as they will cancel out

in the di¤erenced value functions.

The same procedure is applied within uj(xit; �i) = �C0j (xit; �i)�cj(xit; �i)y�jt(xit; �i). By
substituting the marginal cost of e¤ort by the marginal bene�t of e¤ort, future value terms

also enter directly into uj(xit; �i) (see (11)). Because
P

�g
@Pj(�gjyijt)
@yijt

= 0, all terms that do not

depend on performance drop out such that the same simpli�cations arise because of �nite

dependence.

A.3 Additional estimation results secondary education
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Table A1: Type probabilities in %

Type probabilities
Type 1 Type 2

Overall 67.3 32.7

Age 12 63.5 36.5

Age 13 88.9 11.1

Age 14 87.8 12.2
Note: Estimates of unobserved types in the student population by age they start secondary education.
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Table A2: Estimates of optimal e¤ort level (1)

Log of optimal
e¤ort

coef se

Academic

Male -0.561 *** (0.130)

Language ability 0.755 *** (0.213)

Math ability 1.037 *** (0.116)

High SES 0.439 *** (0.149)

Type 2 1.069 *** (0.165)

Grade -0.009 (0.046)

Middle-Theoretical

Male -0.551 *** (0.133)

Language ability 0.852 *** (0.132)

Math ability 0.865 *** (0.098)

High SES 0.255 * (0.148)

Type 2 0.980 *** (0.163)

Grade -0.056 (0.037)

Middle-Practical

Male -0.314 ** (0.128)

Language ability 0.812 *** (0.123)

Math ability 0.425 *** (0.105)

High SES 0.232 (0.202)

Type 2 0.712 *** (0.177)

Grade -0.062 (0.046)

Vocational

Male -0.326 ** (0.147)

Language ability 0.655 *** (0.141)

Math ability 0.352 *** (0.112)

High SES 0.500 ** (0.250)

Type 2 1.371 *** (0.277)

Grade -0.202 *** (0.052)
Note: Estimates of approximation of the optimal level of e¤ort in the data. Clas= classical languages included. Math= intensive

math. Ability measured in standard deviations. Type 2 = dummy equal to one if student belongs to unobserved type 2 instead

of 1. High SES= at least one parent has higher education degree. Grade subtracted by 6 to start counting in secondary

education. Bootstrap standard errors between parentheses. *** p<0.01, ** p<0.05, * p<0.1 (normal-based).
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Table A3: Estimates of optimal e¤ort level (2)

Log of optimal
e¤ort

coef se

Academic

clas+math -0.925 (0.772)

clas -0.683 (0.451)

math -1.073 ** (0.487)

other -1.162 *** (0.322)

Middle-Theoretical

math -0.825 * (0.492)

other -1.047 *** (0.292)

Middle-Practical -1.174 *** (0.250)

Vocational

Part-time

Grade

Male -0.026 (0.028)

Language ability -0.075 *** (0.028)

Math ability -0.049 ** (0.023)

High SES 0.010 (0.033)

Type 2 0.081 ** (0.034)

Time 0.000 (0.001)

Constant 3.523 *** (0.290)
Note: Estimates of approximation of the optimal level of e¤ort in the data. Clas= classical languages included. Math= intensive

math. Ability measured in standard deviations. Type 2 = dummy equal to one if student belongs to unobserved type 2 instead

of 1. High SES= at least one parent has higher education degree. Grade subtracted by 6 to start counting in secondary

education. Bootstrap standard errors between parentheses. *** p<0.01, ** p<0.05, * p<0.1 (normal-based).
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Table A4: Estimates of optimal e¤ort level (3)

Log of optimal
e¤ort

coef se

Classical languages

Male -0.564 ** (0.287)

Language ability 0.958 ** (0.376)

Math ability 0.065 (0.390)

High SES 0.325 (0.360)

Type 2 0.848 ** (0.371)

Grade -0.006 (0.127)

Intensive math

Male -0.225 (0.172)

Language ability 0.407 ** (0.205)

Math ability 0.096 (0.205)

High SES -0.032 (0.201)

Type 2 0.560 *** (0.213)

Grade -0.121 (0.087)

Study delay -0.505 *** (0.186)

Grade 0.352 *** (0.112)

Level SE -0.008 (0.049)

Repeat grade 0.743 ** (0.289)

Grade 0.352 *** (0.112)

Level SE 0.272 *** (0.092)

Downgrade 0.144 ** (0.073)

Upgrade 0.074 (0.120)
Note: Estimates of approximation of the optimal level of e¤ort in the data. Clas= classical languages included. Math= intensive

math. Ability measured in standard deviations. Type 2 = dummy equal to one if student belongs to unobserved type 2 instead

of 1. High SES= at least one parent has higher education degree. Grade subtracted by 6 to start counting in secondary

education. Level SE = academic level of study program. Bootstrap standard errors between parentheses. *** p<0.01, **

p<0.05, * p<0.1 (normal-based).
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Table A5: Estimates of optimal e¤ort level (4)

Log of optimal
e¤ort

coef se

Last year academic level secondary education -0.012 (0.037)

Last year classical languages 0.186 (0.124)

Last year intensive math -0.367 *** (0.142)

Distance professional college - STEM -0.006 (0.011)

x academic level secondary education 0.000 (0.006)

Distance professional college - No STEM 0.009 (0.010)

x academic level secondary education 0.001 (0.004)

Distance academic college - STEM 0.008 (0.010)

x academic level secondary education -0.002 (0.005)

Distance academic college - No STEM 0.028 (0.017)

x academic level secondary education -0.022 ** (0.010)

Distance university -0.024 (0.022)

x academic level secondary education 0.022 * (0.012)
Note: Estimates of approximation of the optimal level of e¤ort in the data. Clas= classical languages included. Math= intensive

math. Ability measured in standard deviations. Type 2 = dummy equal to one if student belongs to unobserved type 2 instead

of 1. High SES= at least one parent has higher education degree. Grade subtracted by 6 to start counting in secondary

education. Bootstrap standard errors between parentheses. *** p<0.01, ** p<0.05, * p<0.1 (normal-based).
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Table A6: Estimates of optimal e¤ort level (5)

Log of optimal
e¤ort

coef se

Constant 3.523 *** (0.290)

Threshold level 2 0.000 (.)

Threshold level 3 0.804 *** (0.046)

Threshold level 4 0.870 *** (0.048)

Threshold level 5 0.919 *** (0.051)

Academic

x Threshold level 3 -0.554 *** (0.047)

x Threshold level 4 -0.391 *** (0.062)

x Threshold level 5 -0.135 * (0.080)

Grade 8

x Threshold level 3 0.000 (.)

x Threshold level 4 0.440 *** (0.045)

x Threshold level 5 0.869 *** (0.055)

Grade 9

x Threshold level 3 -0.142 *** (0.049)

x Threshold level 4 0.118 * (0.066)

x Threshold level 5 0.368 *** (0.077)

Grade 10

x Threshold level 3 -0.138 *** (0.051)

x Threshold level 4 0.229 *** (0.070)

x Threshold level 5 0.544 *** (0.081)
Note: Threshold level 2 is normalized to 0. Grade 8 x Threshold level 3 is also set to 0 because outcome 1 impossible in �rst

grade. From grade 11 on, switching programs is no longer possible in the next grade so thresholds are not estimated but become

either 0 or in�nity. Bootstrap standard errors between parentheses. *** p<0.01, ** p<0.05, * p<0.1 (normal-based).

A11



Table A7: Estimates of impact e¤ort and comparative advantage on clas and math certi�cates

Classical languages Intensive math
coef se coef se

Log of e¤ort 0.473 (0.446) 0.347 ** (0.170)

Male 0.446 (0.681) -0.430 * (0.225)

Language ability 0.270 (0.772) 0.080 (0.217)

Math ability -0.225 (0.642) 0.023 (0.228)

High SES -0.071 (0.503) -0.233 (0.258)

Type 2 0.379 (1.044) 0.215 (0.431)

Threshold level 2 -0.365 (1.623)

Threshold level 2 x grade -0.044 (0.180)

Academic

x Threshold level 2 -2.275 *** (0.309)

x Threshold level 3 -1.385 *** (0.310)

Grade 8

x Threshold level 2 -2.239 *** (0.445)

x Threshold level 3 -2.083 *** (0.440)

Grade 9

x Threshold level 2 -2.074 *** (0.461)

x Threshold level 3 (academic only) -2.339 (3.481)

Grade 10

x Threshold level 2 -1.796 *** (0.452)

x Threshold level 3 (academic only) -0.632 (0.443)
Note: Estimates of equations (16) and (17). Ability measured in standard deviations. Type 2 = dummy equal to one if student

belongs to unobserved type 2 instead of 1. High SES= at least one parent has higher education degree. Bootstrap standard

errors between parentheses. *** p<0.01, ** p<0.05, * p<0.1 (normal-based).
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Table A8: Costs of schooling: choice-speci�c constants

Fixed cost Marginal cost of e¤ort
coef se coef se

Academic

clas+math 770.0 *** (145.9) 1.837 (6.579)

clas 259.5 *** (72.0) 8.230 *** (2.741)

math 414.6 *** (97.6) 8.767 * (4.737)

other -2.9 (63.8) 11.129 *** (2.499)

Middle-Theoretical

math 503.6 *** (111.1) 13.241 ** (5.625)

other -36.3 (61.2) 11.852 *** (3.146)

Middle-Practical 74.5 (63.1) 6.143 (5.171)

Vocational 120.1 * (66.5) -14.608 *** (4.436)

Part-time 372.9 *** (67.8)
Note: Note: Estimates of a sample of 4927 students or 31932 student-year observations during secondary education. Fixed cost

estimates of equation (15). The reported marginal costs of e¤ort are an approximation of the predicted values from the model.

All parameters are divided by �time in equation (15) such that they can be interpreted in minutes of daily travel time. Clas=

classical languages included. Math= intensive math. Bootstrap standard errors between parentheses. *** p<0.01, ** p<0.05,

* p<0.1 (normal-based).
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A.4 Estimation results long run outcomes

Table A9: Value of obtaining degree

Degree values
coef se

Academic 1481.5 *** (318.5)

Middle-Theoretical 996.4 *** (253.5)

Middle-Practical 1173.6 *** (271.7)

Vocational 594.8 *** (129.0)

12th grade certi�cate vocational 852.1 *** (153.6)

Note: Estimates of �degree in equation (6). All parameters are divided by �time in equation (15) such that they can be

interpreted in minutes of daily travel time. Bootstrap standard errors between parentheses. *** p<0.01, ** p<0.05, * p<0.1

(normal-based).
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Table A10: Estimation results of long run outcomes (1)

Higher education

Enrollment First year success Degree age 25

coef se coef se coef se

Degree Academic 3.949 *** (0.261)

clas+math -0.015 (0.462) -0.210 (0.402)

clas 0.433 (0.290) -0.162 (0.356)

math 0.082 (0.205) 0.313 (0.252)

other benchmark benchmark

Degree Middle-Theoretical 3.280 *** (0.237)

math -0.669 * (0.397) -0.028 (0.471)

other -0.493 *** (0.180) -0.398 * (0.230)

Degree Middle-Practical 1.960 *** (0.177) -0.770 *** (0.231) -0.663 ** (0.319)

Degree Vocational benchmark -1.537 *** (0.506) -2.263 *** (0.539)

Academic level secondary education

x Academic level higher education 0.539 *** (0.077) -0.378 * (0.209) -0.266 ** (0.128)

x STEM -0.788 *** (0.105) -0.042 (0.263) -0.081 (0.288)

Classical languages

x Academic level higher education 0.807 *** (0.097) 0.166 (0.192) 0.218 (0.141)

x STEM -0.684 *** (0.260) 0.048 (0.396) 0.164 (0.315)

Intensive math

x Academic level higher education 0.422 *** (0.093) -0.024 (0.181) -0.266 ** (0.128)

x STEM 0.902 *** (0.164) 0.640 (0.397) -0.081 (0.288)

Study delay 0.015 (0.180) -0.119 (0.316) -1.239 *** (0.367)

x Academic level higher education -0.037 (0.100) 0.017 (0.182) -0.464 ** (0.187)

x STEM -0.063 (0.128) -0.238 (0.272) 0.080 (0.239)
Note: Estimates of long run outcomes as speci�ed in section 4.5. Clas= classical languages included. Math= intensive math.

Bootstrap standard errors between parentheses. *** p<0.01, ** p<0.05, * p<0.1 (normal-based).
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Table A11: Estimation results of long run outcomes (2)

Higher education Unemployment

Enrollment First year success Degree age 25 Spell age 25-35

coef se coef se coef se coef se

Male -0.879 *** (0.133) -0.349 * (0.184) -0.815 *** (0.200) -0.507 *** (0.076)

x Academic level higher education 0.016 (0.087) -0.056 (0.149) 0.192 (0.124)

x STEM 1.725 *** (0.133) 0.384 (0.290) 1.218 *** (0.177)

Language ability 0.130 (0.130) 0.257 (0.173) 0.025 (0.187) -0.066 (0.057)

x Academic level higher education 0.344 *** (0.071) 0.269 ** (0.117) 0.334 *** (0.128)

x STEM -0.143 (0.123) -0.052 (0.308) -0.148 (0.198)

Math ability 0.043 (0.102) 0.210 (0.217) 0.111 (0.212) -0.113 ** (0.051)

x Academic level higher education 0.256 *** (0.079) 0.407 *** (0.138) 0.351 ** (0.162)

x STEM 0.813 *** (0.162) -0.077 (0.340) 0.836 *** (0.254)

High SES 0.242 (0.158) 0.409 ** (0.161) 0.557 *** (0.162) 0.080 (0.103)

x Academic level higher education 0.391 *** (0.057) 0.247 ** (0.101) 0.356 *** (0.120)

x STEM 0.220 (0.146) -0.346 (0.281) 0.026 (0.227)

Type 2 -0.103 (0.143) 0.482 *** (0.155) 0.430 ** (0.177) -0.168 (0.103)

x Academic level higher education 0.337 *** (0.067) 0.762 *** (0.138) 1.258 *** (0.098)

x STEM 1.693 *** (0.143) -0.097 (0.230) 0.739 *** (0.254)

Distance (km) -0.022 *** (0.002) -0.003 (0.004) -0.019 *** (0.004)
Note: Estimates of long run outcomes as speci�ed in section 4.5. Ability measured in standard deviations. Type 2 = dummy

equal to one if student belongs to unobserved type 2 instead of 1. High SES= at least one parent has higher education degree.

Bootstrap standard errors between parentheses. *** p<0.01, ** p<0.05, * p<0.1 (normal-based).
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Table A12: Estimation results of long run outcomes (3)

Higher education

Degree age 25

coef se

Same level as enroll 0.154 (0.143)

x Passed enrollment year 2.982 *** (0.164)

Same major as enroll 1.723 *** (0.152)

x Passed enrollment year 0.909 *** (0.198)

Upgraded -1.576 *** (0.333)

x Passed enrollment year 1.417 *** (0.423)
Note: Estimates of choice-specifc constants long run outcomes as speci�ed in section 4.5. Bootstrap standard errors between

parentheses. *** p<0.01, ** p<0.05, * p<0.1 (normal-based).

A17



Table A13: Estimation results of long run outcomes (4)

Higher education

Enrollment First year success Degree age 25

coef se coef se coef se

Univ Leuven - no STEM -6.980 *** (0.504) -1.497 (1.267) -5.006 *** (0.913)

Univ Leuven - STEM -9.008 *** (0.495) -1.946 (1.240) -6.890 *** (0.992)

Univ Antwerp - No STEM -9.240 *** (0.548) -0.792 (1.264) -7.202 *** (0.989)

Univ Antwerp - STEM -10.751 *** (0.766) -0.919 (1.628) -8.994 *** (1.421)

Univ Brussels - No STEM -8.532 *** (0.501) -0.015 (1.136) -6.472 *** (0.989)

Univ Brussels - STEM -10.408 *** (0.613) -1.156 (1.590) -8.386 *** (1.080)

Univ Ghent - No STEM -7.591 *** (0.532) -0.816 (1.194) -5.502 *** (0.994)

Univ Ghent - STEM -9.118 *** (0.564) -2.616 ** (1.334) -7.136 *** (1.041)

Univ Hasselt - No STEM -10.663 *** (0.629) -0.041 (1.554) -7.159 *** (1.011)

Univ Hasselt - STEM -9.041 *** (0.457) -0.881 (1.281) -8.455 *** (0.982)

Acad college - No STEM -5.349 *** (0.308) -0.103 (0.585) -4.418 *** (0.536)

Acad college - STEM -5.931 *** (0.295) -1.165 (0.814) -4.824 *** (0.669)

Prof college - No STEM -1.636 *** (0.164) -0.077 (0.340) -1.504 *** (0.291)

Prof college - STEM -3.381 *** (0.212) 0.075 (0.578) -2.774 *** (0.479)
Note: Estimates of long run outcomes as speci�ed in section 4.5. Bootstrap standard errors between parentheses. *** p<0.01,

** p<0.05, * p<0.1 (normal-based).
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Table A14: Estimation results of long run outcomes (5)

Unemployment

Spell age 25-35

coef se

Secondary education outcomes
Degree Academic

clas+math -0.562 (0.582)

clas -0.147 (0.565)

math -0.240 (0.568)

other -0.201 (0.550)

Degree Middle-Theoretical

math -0.794 (0.581)

other -0.591 * (0.339)

Degree Middle-Practical -1.012 *** (0.195)

Degree Vocational -0.472 *** (0.140)

12th grade certi�cate vocational -0.402 ** (0.187)

Part-time track 0.162 (0.155)

Level SE -0.237 (0.194)

Study delay 0.142 * (0.075)

Higher education outcomes
Degree univ Leuven - no STEM -0.700 *** (0.260)

Degree univ Leuven - STEM -0.826 (0.638)

Degree univ Antwerp - No STEM -0.411 (2.799)

Degree univ Antwerp - STEM 0.157 (3.448)

Degree univ Brussels - No STEM -0.508 (0.810)

Degree univ Brussels - STEM -0.804 (3.571)

Degree univ Ghent - No STEM -1.043 ** (0.525)

Degree univ Ghent - STEM -0.995 (1.385)

Degree univ Hasselt - No STEM -0.898 (2.809)

Degree univ Hasselt - STEM -0.254 (2.102)

Degree acad college - No STEM -0.203 (0.269)

Degree acad college - STEM -0.617 (0.422)

Degree prof college - No STEM -0.826 *** (0.125)

Degree prof college - STEM -0.518 * (0.289)
Note: Estimates of long run outcomes as speci�ed in section 4.5. Clas= classical languages included. Math= intensive math.

Level SE = academic level of study program in secondary education. Bootstrap standard errors between parentheses. ***

p<0.01, ** p<0.05, * p<0.1 (normal-based).
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Table A15: Estimation results of long run outcomes (6)

Higher education Unemployment

First year success Spell age 25-35

coef se coef se

Constant 0.033 (0.175)

Threshold level 2 -0.439 *** (0.167)

Threshold level 3 2.387 *** (0.126) -0.175 (0.168)

Threshold level 4 4.657 *** (0.397) 0.050 (0.167)

Threshold level 5 0.263 (0.163)

Threshold level 6 0.477 *** (0.162)

Threshold level 7 0.733 *** (0.153)

Threshold level 8 1.024 *** (0.149)

Threshold level 9 1.495 *** (0.158)

Threshold level 10 2.080 *** (0.165)

Academic college

x Threshold level 3 -0.270 (0.261)

x Threshold level 4 -0.223 (0.784)

University

x Threshold level 3 0.254 (0.227)

x Threshold level 4 0.245 (0.455)

STEM

x Threshold level 3 -0.272 (0.215)

x Threshold level 4 -0.970 * (0.526)
Note: Estimates of long run outcomes as speci�ed in section 4.5. Clas= classical languages included. Math= intensive math.

Level SE = academic level of study program in secondary education. Bootstrap standard errors between parentheses. ***

p<0.01, ** p<0.05, * p<0.1 (normal-based).
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A.5 Average Treatment E¤ects on the Treated

Using the parameters of long run outcomes, I can calculate the Average Treatment e¤ects

on the Treated (ATT) of the study program a student graduated in as follows:

ATT j
0
= Ex;�;!

h
~	wj (xitw(j

0); �i; !
w
i )� ~	wj (xitw(j

0); �i; !
w
i )jd

j0

iTSEi
= 1
i

(23)

with Ex;�;! an expectations operator over the empirical distribution of the observables

x and the estimated distribution of the unobserved types � and shocks !. xitw(j
0) is the

observed state vector of student i in the data and xitw(j
0) is the same vector but with the

graduation track replaced by an arbitrary benchmark program j0. The ATT then calculates

the average e¤ect on w from graduating from j0 instead of j0 for the group of students who

graduated from j0 in the data. The estimate is a "ceteris paribus" causal e¤ect, i.e. it is

the e¤ect of one variable if all other variables that were realized before leaving secondary

education are kept �xed. Similarly, I calculate the e¤ect of one year of study delay by

comparing outcomes for retained students in the counterfactual scenario where they would

not have accumulated study delay. The tables in this section summarize all ATT results.
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Table A16: ATTs of high school program and delay in higher education (in %points di¤er-

ence)

Higher education

Enrollment First year success Degree age 25

(% of students) (% of enrolled) (% of students)

Study program coef se coef se coef se

Academic

clas+math +3.31 *** (0.61) +9.40 (6.70) +1.61 (2.90)

clas +2.69 *** (0.56) +12.76 *** (4.68) +3.38 (3.39)

math +2.92 *** (0.51) +6.66 (4.27) +2.70 (2.59)

other benchmark benchmark benchmark

Middle-Theoretical

math +1.38 (1.86) -1.96 (7.05) -2.14 (6.12)

other -7.81 *** (2.74) -10.37 ** (4.43) -11.62 *** (3.56)

Middle-Practical -31.53 *** (2.92) -13.77 *** (4.13) -25.47 *** (3.55)

Vocational -67.32 *** (2.98) -25.65 *** (6.34) -44.21 *** (4.36)

One year of study delay -0.20 (2.24) -3.85 (6.59) -10.37 *** (2.98)

Data 55.2 45.6 39.0
Note: Average treatment e¤ects on the treated (ATT). Clas= classical languages included. Math= intensive math. E¤ects

on enrollment, �rst year success and degree completion after graduating from di¤erent high school programs, compared to

graduating from the academic track without clas or math option, and the e¤ects of one year of study delay, compared to 0.

E¤ects are calculated using indexes, speci�ed in section 4.5, for each individual at the realization of other variables. E¤ects

on obtaining higher education degree at age 25 and on employment spell are total e¤ects, taking into account e¤ects through

enrollment and �rst year performance. Bootstrap standard errors between parentheses. *** p<0.01, ** p<0.05, * p<0.1

(normal-based).
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Table A17: ATTs of high school program and delay on HE degree at age 25: level (in %points

di¤erence)

Academic level higher education

University Academic Professional

college college

(% of students) (% of students) (% of students)

Study program coef se coef se coef se

Academic

clas+math +23.81 *** (4.86) -3.16 ** (1.26) -19.04 *** (3.98)

clas +19.21 *** (2.95) +1.24 (0.78) -17.06 *** (3.19)

math +4.24 * (2.53) +2.56 *** (0.83) -4.11 (2.85)

other benchmark benchmark benchmark

Middle-Theoretical

math -3.30 (2.22) +1.40 (1.40) -0.24 (5.81)

other -1.43 *** (0.40) -1.23 *** (0.32) -8.96 *** (3.35)

Middle-Practical -1.10 *** (0.28) -1.47 *** (0.28) -22.91 *** (3.41)

Vocational -0.36 *** (0.12) -0.88 *** (0.16) -42.97 *** (4.28)

One year of study delay -0.81 *** (0.29) -1.12 *** (0.30) -8.43 *** (2.92)

Data 9.6 4.8 24.8
Note: Average treatment e¤ects on the treated (ATT). Clas= classical languages included. Math= intensive math. E¤ects

on enrollment, �rst year success and degree completion after graduating from di¤erent high school programs, compared to

graduating from the academic track without clas or math option, and the e¤ects of one year of study delay, compared to 0.

E¤ects are calculated using indexes, speci�ed in section 4.5, for each individual at the realization of other variables. E¤ects

on obtaining higher education degree at age 25 and on employment spell are total e¤ects, taking into account e¤ects through

enrollment and �rst year performance. Bootstrap standard errors between parentheses. *** p<0.01, ** p<0.05, * p<0.1

(normal-based).
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Table A18: ATTs of high school program and delay on HE degree at age 25: majors (in

%points di¤erence)

Major

STEM No STEM

(% of students) (% of students)

Study program coef se coef se

Academic

clas+math +5.20 (5.42) -3.59 (5.66)

clas -2.16 (2.06) +5.54 * (3.32)

math +11.52 *** (3.12) -8.82 *** (3.07)

other benchmark benchmark

Middle-Theoretical

math +19.14 *** (4.98) -21.28 *** (4.41)

other +2.22 ** (0.99) -13.85 *** (2.88)

Middle-Practical +1.81 * (1.10) -27.28 *** (3.10)

Vocational -1.19 * (0.68) -43.02 *** (4.11)

One year of study delay -4.93 *** (1.87) -5.44 ** (2.34)

Data 10.2 28.8
Note: Average treatment e¤ects on the treated (ATT). Clas= classical languages included. Math= intensive math. E¤ects

on enrollment, �rst year success and degree completion after graduating from di¤erent high school programs, compared to

graduating from the academic track without clas or math option, and the e¤ects of one year of study delay, compared to 0.

E¤ects are calculated using indexes, speci�ed in section 4.5, for each individual at the realization of other variables. E¤ects

on obtaining higher education degree at age 25 and on employment spell are total e¤ects, taking into account e¤ects through

enrollment and �rst year performance. Bootstrap standard errors between parentheses. *** p<0.01, ** p<0.05, * p<0.1

(normal-based).
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Table A19: ATTs of obtaining high school degree and of study delay on unemployment spells

(in years)

Unemployment

Spell age 25-35

(mean in years)

Study program coef se

Academic

clas+math -0.93 (0.68)

clas -0.72 (0.72)

math -0.73 (0.71)

other -0.76 (0.76)

Middle-Theoretical

math -0.85 (0.73)

other -0.77 (0.72)

Middle-Practical -0.93 (0.74)

Vocational -0.37 (0.78)

One year of study delay +0.30 *** (0.06)

Data 2.08
Note: Average treatment e¤ects on the treated (ATT). Clas= classical languages included. Math= intensive math. E¤ects on

enrollment, �rst year success and degree completion after graduating from di¤erent high school programs, compared to �nishing

high school without a degree (in the academic track without clas or math option), and the e¤ects of one year of study delay,

compared to 0. E¤ects are calculated using indexes, speci�ed in section 4.5, for each individual at the realization of other

variables. E¤ects on obtaining higher education degree at age 25 and on employment spell are total e¤ects, taking into account

e¤ects through enrollment and �rst year performance. Bootstrap standard errors between parentheses. *** p<0.01, ** p<0.05,

* p<0.1 (normal-based).
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A.6 Counterfactual simulations of removing study programs

In section 7, I discussed the added value estimates of each track and elective course. To

derive these estimates, I predicted choices and outcomes from a model without each track

and without each elective course and compared them to the status quo. In this section I

show the results of these counterfactuals, as well as the biases that arise when study e¤ort

is not modeled as a choice variable. Note that the signs of the predicted e¤ects of removing

a track or elective course are the opposite of the signs of added value estimates.
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Table A20: Predictions of the model: outcomes if tracks are removed

Remove track

Academic Middle-theoretical Middle-practical Vocational

High school graduation (% of students: change in %points)
Academic -43.26 *** (2.97) +8.46 *** (1.43) +2.62 *** (0.52) +0.72 *** (0.26)

clas+math -4.71 *** (1.02) +0.29 *** (0.10) +0.11 *** (0.02) +0.00 (0.01)

clas -5.05 *** (1.06) +1.27 *** (0.23) +0.51 *** (0.11) +0.12 *** (0.03)

math -15.60 *** (1.46) +1.60 *** (0.55) +0.10 (0.11) +0.00 (0.05)

other -17.90 *** (1.78) +5.30 *** (0.85) +1.90 *** (0.39) +0.60 ** (0.24)

Middle-Theoretical +30.06 *** (2.99) -11.14 *** (2.12) +3.96 *** (0.92) +1.34 *** (0.38)

math +10.87 *** (1.66) -2.13 *** (0.66) +0.27 ** (0.11) +0.05 (0.04)

other +19.19 *** (2.69) -9.01 *** (1.56) +3.69 *** (0.85) +1.29 *** (0.37)

Middle-Practical +8.20 *** (1.74) +1.40 ** (0.65) -11.20 *** (2.05) +8.40 *** (0.80)

Vocational +4.26 *** (0.73) +2.00 *** (0.27) +5.06 *** (0.59) -21.30 *** (0.94)

Dropout +0.68 *** (0.25) -0.91 *** (0.21) -0.46 (0.37) +10.72 *** (1.03)

Students with grade retention +3.10 ** (1.45) -2.70 *** (0.39) -1.90 *** (0.38) +9.40 *** (0.68)

Higher education (% of students: change in %points)
Enrollment -8.53 *** (1.19) -0.28 (0.43) +0.27 (0.33) +3.72 *** (0.46)

First year successful (among enrolled) -3.21 (2.83) +0.73 (0.52) +0.42 (0.36) -0.75 *** (0.29)

Degree (age 25) -8.64 *** (1.37) +0.62 (0.39) +0.57 ** (0.28) +1.90 *** (0.30)

University degree -4.68 *** (0.62) +0.34 *** (0.09) +0.10 *** (0.03) +0.02 ** (0.01)

Academic college degree -1.21 *** (0.25) +0.16 *** (0.05) +0.07 ** (0.03) +0.03 ** (0.01)

Professional college degree -2.75 ** (1.14) +0.12 (0.36) +0.40 (0.25) +1.85 *** (0.29)

Degree in STEM major +1.31 (0.81) -0.24 * (0.14) -0.20 ** (0.09) +0.15 ** (0.07)

Unemployment (mean in years: di¤erence in means)
Spell age 25-35 +0.02 (0.05) -0.01 (0.01) +0.03 * (0.02) +0.09 ** (0.04)
Note: Predictions from a dynamic model with program and e¤ort choice in secondary education. Di¤erences between outcomes

in a world where tracks are removed with the status quo. Bootstrap standard errors between parentheses. p<0.01, ** p<0.05, *

p<0.1 (normal-based).
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Table A21: Predictions of the model: outcomes if elective courses are removed

Remove elective course

Classical languages Intensive math

High school graduation (% of students: change in %points)
Academic -4.36 *** (0.72) -1.06 (0.74)

clas+math -4.71 *** (1.02) -4.71 *** (1.02)

clas -5.05 *** (1.06) 8.55 *** (1.35)

math 4.70 *** (1.14) -15.60 *** (1.46)

other 0.70 (0.72) 10.70 *** (1.42)

Middle-Theoretical 2.07 *** (0.52) -0.84 * (0.47)

math 0.48 ** (0.19) -2.13 *** (0.66)

other 1.59 *** (0.39) 1.29 (0.81)

Middle-Practical 0.90 *** (0.25) 1.50 *** (0.54)

Vocational 1.03 *** (0.18) 0.34 ** (0.17)

Dropout 0.31 *** (0.11) -0.09 (0.11)

Students with grade retention 2.90 *** (0.62) -2.10 *** (0.81)

Higher education (% of students: change in %points)
Enrollment -1.82 *** (0.24) -1.14 *** (0.25)

First year successful (among enrolled) -0.60 (0.58) 1.39 (1.41)

Degree (age 25) -1.85 *** (0.38) -0.18 (0.66)

University degree -1.92 *** (0.44) 0.39 (0.65)

Academic college degree -0.16 * (0.09) -0.47 *** (0.17)

Professional college degree 0.23 (0.36) -0.10 (0.67)

Degree in STEM major 0.40 (0.24) -2.49 *** (0.75)

Unemployment (mean in years: di¤erence in means)
Spell age 25-35 (mean in years) +0.03 ** (0.01) +0.01 (0.03)

Note: Predictions from a dynamic model with program and e¤ort choice in secondary education. Di¤erences between outcomes

in a world where tracks are removed with the status quo. Bootstrap standard errors between parentheses. p<0.01, ** p<0.05, *

p<0.1 (normal-based).
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Table A22: Bias in predictions of the model: tracks removed (1)

Remove track

Academic Middle-Theoretical
With e¤ort Bias without e¤ort With e¤ort Bias without e¤ort

High school graduation (% of students: change in %points)
Academic -43.26 2.07 ** (0.91) 8.5 0.66 (0.45)

clas+math -4.71 -0.18 (0.24) 0.3 0.13 * (0.08)

clas -5.05 -0.15 (0.39) 1.3 0.03 (0.14)

math -15.60 0.50 (0.58) 1.6 0.30 (0.21)

other -17.90 1.90 *** (0.67) 5.3 0.20 (0.33)

Middle-Theoretical +30.06 -0.99 (0.88) -11.1 -1.19 * (0.61)

math +10.87 0.53 (0.45) -2.1 -0.37 * (0.22)

other +19.19 -1.52 ** (0.71) -9.0 -0.82 * (0.47)

Middle-Practical +8.20 -1.30 * (0.70) 1.4 0.70 ** (0.28)

Vocational +4.26 0.07 (0.24) 2.0 -0.08 (0.19)

Dropout +0.68 0.11 (0.20) -0.9 0.15 (0.15)

Students with grade retention +3.10 -2.50 *** (0.65) -2.7 1.20 *** (0.31)

Higher education outcomes (% of students: change in %points)
Enrollment -8.53 0.40 (0.30) -0.3 -0.25 * (0.15)

First year successful (among enrolled) -3.21 0.47 * (0.24) 0.7 -0.04 (0.14)

Degree (age 25) -8.64 0.89 *** (0.30) 0.6 -0.40 *** (0.11)

University degree -4.68 0.10 (0.15) 0.3 0.02 (0.03)

Academic college degree -1.21 0.23 *** (0.06) 0.2 -0.02 (0.02)

Professional college degree -2.75 0.56 ** (0.24) 0.1 -0.40 *** (0.11)

Degree in STEM major +1.31 0.26 * (0.16) -0.2 -0.12 ** (0.05)

Unemployment (mean in years: di¤erence in means)
Spell age 25-35 +0.02 -0.01 (0.01) -0.01 0.01 ** (0.01)

Note: Predictions from a dynamic model with program and e¤ort choice in secondary education and the bias in a model that does

not allow for e¤ort to be a choice. Bootstrap standard errors between parentheses. p<0.01, ** p<0.05, * p<0.1 (normal-based).
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Table A23: Bias in predictions of the model: tracks removed (2)

Remove track

Middle-Practical Vocational
With e¤ort Bias without e¤ort With e¤ort Bias without e¤ort

High school graduation (% of students: change in %points)
Academic +2.62 -0.30 (0.25) 0.7 0.24 * (0.14)

clas+math +0.11 0.04 (0.03) 0.0 0.00 (0.01)

clas +0.51 -0.04 (0.09) 0.1 -0.06 ** (0.03)

math +0.10 0.10 (0.09) 0.0 0.10 (0.07)

other +1.90 -0.40 * (0.21) 0.6 0.20 (0.13)

Middle-Theoretical +3.96 0.72 ** (0.31) 1.3 0.33 (0.22)

math +0.27 0.14 (0.10) 0.1 0.05 (0.04)

other +3.69 0.58 * (0.31) 1.3 0.28 (0.22)

Middle-Practical -11.20 -0.30 (0.47) 8.4 -0.90 ** (0.38)

Vocational +5.06 -0.24 (0.22) -21.3 0.06 (0.39)

Dropout -0.46 0.15 (0.22) 10.7 0.44 (0.31)

Students with grade retention -1.90 0.80 ** (0.34) 9.4 2.60 *** (0.35)

Higher education outcomes (% of students: change in %points)
Enrollment +0.27 -0.09 (0.17) 3.7 -0.26 * (0.15)

First year successful (among enrolled) +0.42 -0.06 (0.08) -0.7 0.14 ** (0.07)

Degree (age 25) +0.57 -0.23 * (0.12) 1.9 -0.25 ** (0.11)

University degree +0.10 -0.00 (0.02) 0.0 -0.01 (0.01)

Academic college degree +0.07 -0.01 (0.02) 0.0 0.00 (0.01)

Professional college degree +0.40 -0.22 ** (0.11) 1.9 -0.24 ** (0.10)

Degree in STEM major -0.20 -0.02 (0.03) 0.1 -0.03 (0.02)

Unemployment (mean in years: di¤erence in means)
Spell age 25-35 +0.03 0.01 * (0.00) +0.09 0.02 *** (0.01)

Note: Predictions from a dynamic model with program and e¤ort choice in secondary education and the bias in a model that does

not allow for e¤ort to be a choice. Bootstrap standard errors between parentheses. p<0.01, ** p<0.05, * p<0.1 (normal-based).
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Table A24: Bias in predictions of the model: elective courses removed

Remove elective course

Classical languages Intensive math
With e¤ort Bias without e¤ort With e¤ort Bias without e¤ort

High school graduation (% of students: change in %points)
Academic -4.36 0.17 (0.34) -1.1 -0.43 (0.35)

clas+math -4.71 -0.18 (0.24) -4.7 -0.18 (0.24)

clas -5.05 -0.15 (0.39) 8.6 0.95 * (0.50)

math +4.70 0.50 (0.31) -15.6 0.50 (0.58)

other +0.70 0.00 (0.34) 10.7 -1.70 ** (0.69)

Middle-Theoretical +2.07 0.00 (0.24) -0.8 0.31 (0.25)

math +0.48 0.22 ** (0.10) -2.1 -0.37 * (0.22)

other +1.59 -0.22 (0.19) 1.3 0.68 ** (0.27)

Middle-Practical +0.90 -0.10 (0.15) 1.5 0.40 * (0.21)

Vocational +1.03 0.07 (0.11) 0.3 0.04 (0.12)

Dropout +0.31 -0.01 (0.09) -0.1 -0.17 (0.12)

Students with grade retention +2.90 -0.20 (0.26) -2.1 -0.60 (0.71)

Higher education outcomes (% of students: change in %points)
Enrollment -1.82 0.03 (0.11) -1.1 0.02 (0.14)

First year successful (among enrolled) -0.60 -0.04 (0.08) 1.4 0.17 (0.25)

Degree (age 25) -1.85 0.10 (0.12) -0.2 0.05 (0.27)

University degree -1.92 -0.10 (0.08) 0.4 0.18 (0.24)

Academic college degree -0.16 0.06 (0.04) -0.5 0.04 (0.06)

Professional college degree +0.23 0.14 (0.10) -0.1 -0.17 (0.16)

Degree in STEM major +0.40 0.08 (0.08) -2.5 0.08 (0.18)

Unemployment (mean in years: di¤erence in means)
Spell age 25-35 (mean in years) +0.03 0.00 (0.00) +0.01 -0.01 (0.01)

Note: Predictions from a dynamic model with program and e¤ort choice in secondary education and the bias in a model that does

not allow for e¤ort to be a choice. Bootstrap standard errors between parentheses. p<0.01, ** p<0.05, * p<0.1 (normal-based).
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A.7 Other tables

Table A25: Exclusions because of certi�cates (in % of certi�cates)

Tracks excluded Only elective courses
excluded

Current track Academic +Middle-Theoretical +Middle-Practical +Vocational

Academic

grade 7+8 10.1 6.5 4.0 0.9 2.1

grade 9+10 9.6 6.0 4.5 4.3 1.6

grade 11+12 6.7 6.7 6.7 6.7 0

Middle-Theoretical

grade 7+8 30.6 26.0 19.3 1.0 1.3

grade 9+10 100 17.9 11.6 6.2 1.3

grade 11+12 100 11.1 11.1 11.1 0

Middle-Practical

grade 7+8 38.5 32.3 31.5 3.7 3.8

grade 9+10 100 100 22.3 9.7 0

grade 11+12 100 100 14.9 14.9 0

Vocational

grade 7+8 100 100 100 6.1 0

grade 9+10 100 100 100 12.8 0

grade 11+12+13 100 100 100 13.0 0
Note: Summary of implications of A-, B- and C-certi�cates. C-certi�cate: repeat grade, i.e. all tracks excluded, B-certi�cate can

exclude entire tracks or only elective courses. Only electives excl. = math options or classical languages excluded by certi�cate.

Upward mobility always excluded from grade 7 on in the vocational track and from grade 9 on in the other tracks. Track switching

from grade 11 on is not possible.
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Table A26: Transition matrix (in % of students)

Last choice
Acad-clas Acad-no clas Middle-theo Middle-prac Vocational Dropout

First choice
Acad-clas 9.3 15.5 4.6 2.6 1.6 1.5 35.1

Acad-no clas 10.1 6.3 5.1 3.3 2.4 27.1

Middle-theo 1.3 4.5 3.9 6.7 3.5 19.9

Middle-prac 0.1 1.0 1.1 3.2 1.8 7.3

Vocational 5.6 4.9 10.6

9.3 27.0 16.4 12.7 20.5 14.2 100.0

Proportion math in Academic-class (last choice): 40.4

Proportion math in Academic-no class (last choice): 46.7

Proportion math in Middle-theoretical (last choice): 15.6

Note: Study program choices of students when they enter and leave secondary education.
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Table A27: Predictions of the model: substitution patterns counterfactual tracking policies

Status quo Policy change B-certi�cate

Repeat Downgrade

High school graduation (% of students and change in %points)
Academic 43.3 +1.00 ** (0.46) -1.53 *** (0.49)

clas+math 4.7 +0.01 (0.06) +0.22 ** (0.10)

clas 5.1 +0.09 (0.20) +0.25 ** (0.12)

math 15.6 +0.00 (0.13) -1.20 *** (0.26)

other 17.9 +0.90 ** (0.38) -0.80 ** (0.33)

Middle-Theoretical 11.1 -1.46 *** (0.31) -0.83 * (0.45)

math 2.1 -0.46 *** (0.10) +0.10 (0.15)

other 9.0 -1.00 *** (0.29) -0.93 *** (0.35)

Middle-Practical 11.2 -2.85 *** (0.40) -0.10 (0.37)

Vocational 21.3 -0.88 *** (0.23) +3.83 *** (0.30)

Dropout 13.2 +4.03 *** (0.35) -1.45 *** (0.18)
Note: Predictions from a dynamic model with program and e¤ort choice in secondary education. B-certi�cate = students acquired

skills to proceed to next grade but only in track of lower academic level or if they drop elective course. Status quo = students

can choose to downgrade or repeat grade after obtaining B-certi�cate, Repeat = students must repeat grade after obtaining B-

certi�cate, Downgrade = students must downgrade and not repeat grade after obtaining B-certi�cate. Bootstrap standard errors

between parentheses. p<0.01, ** p<0.05, * p<0.1 (normal-based).
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Table A28: Bias in predictions of the model: tracking policy

Policy change B-certi�cate

Repeat Downgrade
With e¤ort Bias without e¤ort With e¤ort Bias without e¤ort

High school graduation (% of students: change in %points)
Academic +1.00 -0.73 ** (0.34) -1.53 -0.67 ** (0.28)

clas+math +0.01 0.10 (0.07) +0.22 -0.03 (0.09)

clas +0.09 0.07 (0.15) +0.25 -0.14 (0.12)

math +0.00 -0.20 (0.14) -1.20 -0.20 (0.17)

other +0.90 -0.70 *** (0.25) -0.80 -0.30 (0.20)

Middle-Theoretical -1.46 -0.22 (0.26) -0.83 -0.04 (0.23)

math -0.46 0.03 (0.10) +0.10 0.01 (0.11)

other -1.00 -0.25 (0.23) -0.93 -0.05 (0.18)

Middle-Practical -2.85 -0.52 ** (0.22) -0.10 0.00 (0.23)

Vocational -0.88 0.01 (0.26) +3.83 0.62 *** (0.20)

Dropout +4.03 1.55 *** (0.27) -1.45 0.13 (0.15)

Students with grade retention +9.50 3.10 *** (0.51) -9.60 1.00 ** (0.42)

Higher education (% of students: change in %points)
Enrollment -1.90 -1.16 *** (0.20) -1.21 -0.51 *** (0.11)

First year successful (among enrolled) +0.11 0.08 (0.12) +0.81 -0.17 (0.12)

Degree (age 25) -1.75 -0.94 *** (0.19) +0.32 -0.66 *** (0.09)

University degree -0.13 -0.05 (0.05) +0.30 -0.14 *** (0.05)

Academic college degree -0.16 -0.06 ** (0.03) +0.09 -0.07 *** (0.02)

Professional college degree -1.46 -0.83 *** (0.14) -0.07 -0.45 *** (0.08)

Degree in STEM major -0.48 -0.16 *** (0.05) +0.27 -0.10 ** (0.05)

Unemployment (mean in years: di¤erence in means)
Spell age 25-35 +0.12 0.05 *** (0.01) -0.05 0.01 ** (0.00)
Note: Predictions from a dynamic model with program and e¤ort choice in secondary education and the bias in a model that does

not allow for e¤ort to be a choice. B-certi�cate = students acquired skills to proceed to next grade but only in track of lower academic

level or if they drop elective course. Status quo = students can choose to downgrade or repeat grade after obtaining B-certi�cate,

Repeat = students must repeat grade after obtaining B-certi�cate, Downgrade = students must downgrade and not repeat grade

after obtaining B-certi�cate. Bootstrap standard errors between parentheses. p<0.01, ** p<0.05, * p<0.1 (normal-based).
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