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Abstract

In this paper, we propose an estimation method that allows for unrestricted interactions be-
tween worker and firm unobserved characteristics in both wages and the mobility patterns along
with a model of mobility that allows us to quantify sources of sorting. Related to Bonhomme
et al. (2017) (BLM), our method identifies double sided unobserved heterogeneity through an
application of the EM-algorithm where the firm classification is repeatedly updated so as to
improve on the likelihood function. Firm classification is a result of both wage and mobility
patterns in the data. We estimate the model on Danish matched employer-employee data for
the period 1985-2013. The estimation includes gender, education, age and time controls. We
find significant sorting on wages and that it is stable over the period. Sorting is established
early in careers, increasing during the first decade after which it declines steadily. Counterfac-
tuals demonstrate that sorting is primarily driven by 2 channels: First, a “preference” channel
whereby higher wage workers are more likely to accept jobs in higher wage firms. Second, a job
finding channel where the job destination distribution out of non-employment is stochastically
increasing in the wage type of the worker.
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1 Introduction

What is the assignment of workers to firms, and how is it realized? In this paper, we estimate a
flexible parametric model of wages and mobility with two-sided unobserved heterogeneity using
Danish matched employer-employee data. First, this will allow us to measure how wages depend
on worker and firm unobserved heterogeneity, and how worker and firm unobserved types corre-
late across matches in any cross-section (sorting). Second, because we also model the matching
process between workers and firms, we will also explain how the estimated cross-sectional match
distribution is produced.

Since the seminal contribution of Abowd et al. (1999) (hereafter AKM) the literature that aims
to decompose the cross-sectional variance of individual wages into an effect of time-varying ob-
served heterogeneity (essentially tenure and age or potential experience), two separate worker and
firm unobserved heterogeneity effects, sometimes a match-specific effect, and a residual compo-
nent, has focussed on estimating a linear model with fixed effects using Ordinary Least Squares.1

The AKM model, in its version without match effects, has been criticized for being too restric-
tive. Eeckhout and Kircher (2011) claim that non monotonicity in the way wages depend on worker
and firm effects may explain the weak correlation that is found when estimating AKM’s additive,
fixed-effect model. Several recent studies have designed and estimated search-matching models
that confirm Eeckhout and Kircher’s hypothesis (Lise et al., 2016; Lise and Robin, 2017; Hagedorn
et al., 2017; Bagger and Lentz, 2014; de Melo, 2018). In this paper, we do not follow this route as
we want to be as agnostic as possible on the way unobserved and firm unobserved heterogeneity
determine wages and employment mobility. Our aim is to document relationships so that we can
then design appropriate theoretic models.

For the same reason, we also depart from AKM’s linearity by following the recent approach
of Bonhomme et al. (2017) (BLM), who put no shape restrictions on the way wages and matching
depend on worker and firm heterogeneity. This is rendered possible by assuming that worker and
firm unobserved types are discrete; that is, workers and firms can be clustered into homogeneous
groups of identical workers and firms. The difficulty for the econometrician is that one does not
observed which group workers and firms belong to.2

Our model and estimation differs from BLM in the following ways. First, consider the proba-
bility for a worker of type k and observed time-varying characteristics x who is currently employed
at a firm of type ` to move to a firm of type `′ before the end of the period. The collection all these
different probabilities for all k,x, `, `′ is soon a very large set. In order to reduce the dimensionality

1See Holzer et al., 2004; Martins, 2008; Iranzo et al., 2008; Gruetter and Lalive, 2009; Bagger et al., 2013; Card
et al., 2013; Woodcock, 2015; Song et al., 2015; Card et al., 2016. Recent application correct the naive OLS estimator
for finite sample biases using the method in Andrews et al. (2008).

2As far as we know, BLM and our paper are the only ones which model wages and employment mobility with both
worker and firm heterogeneity. There are many papers with only worker heterogeneity (e.g. Altonji et al., 2013) and
one paper with only firm heterogeneity (Abowd et al., 2006).
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we assume that employed workers meet other employment opportunities at a rate that depends on
worker characteristics k and x. The type of the employment opportunity `′ is drawn from a distri-
bution that is common to all workers and independent of the type of the current firm. Finally, the
probability that the worker decides to quit the current job and move to the new firm is assumed to
depend both on the worker’s type as well as the types of the two firms involved. In our particular
specification, the choice probability takes the shape of a binomial logit. Hence, one interpretation
of the mobility patterns in the paper is that of a standard on-the-job search model with random
utility. So doing, we make the transition probabilities both easier to identify and estimate, and
easier to interpret. As in BLM’s application, the log wage of a match is assumed to be normally
distributed with a mean and variance that depends on both observed and unobserved worker and
firm heterogeneity.

Second, instead of estimating the model using just two years of data (2002-2004), we use the
entire panel of Danish matched employer-employee data for the period 1987-2013. We assume that
worker and firm unobserved types do not change over time. However, the way wage and mobility
parameters depend on observed and unobserved types is allowed to change over time by periods
of three years. For example, the complementarity of worker and firm types in match productivity
(wage) can thus change along the business cycle and be subject to structural change. Therefore,
a type here conditions wage and mobility in a dynamic way. This allows us to run counterfactual
exercises where we remove structural changes to the parameters (time variations). This could
also allow, in particular, to calculate ex post earnings present values, like in the recent work of
Guvenen et al. (2017), conditional on worker types. The downside of this approach to unobserved
heterogeneity is that we may need more types to capture the diversity of possible dynamics.3

Third, BLM proceed in two steps for estimation. First, they classify firms using an automatic
classification procedure (k-means) based on the distribution of wages within each firm. Then, they
estimate the wage and mobility parameters with only worker types unobserved using the EM al-
gorithm. Instead, we propose a Classification EM algorithm in the spirit of Celeux and Govaert
(1992), which updates the firm classification after the EM step so as to improve the expected likeli-
hood. So doing, we make use of mobility data, in addition to wages, to classify firm types. This can
be important for measuring inequality as two firms offering identical wage but with different lev-
els of job stability would result in different lifetime earnings for workers. Moreover, the mobility
parameters involve substantial non-linearity in the likelihood function. The structure of transi-
tion probabilities being close to that of a Bradley-Terry model, we formulate an MM algorithm
(Hunter, 2004; Hunter and Lange, 2004) that is embedded in the M step and allows a fast solution
for mobility parameters - a substantial contribution for the feasibility of the estimator. Monte Carlo

3We checked that this modeling assumption was not determining our results by alternatively estimating 9 completely
separate models, one for each 3-year subpanel. Both our evaluation of the correlation between worker and firm effects
and the variance decomposition barely changed. This by the way also confirms BLM’s short-T identification result.
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simulations show that this CEM algorithm improves over a one-step k-means.
Nevertheless, we do not view our paper’s main contribution as being technical. Our empirical

application is rich of interesting lessons. First, we show both in the data and in large-scale simu-
lations (i.e. with a one million workers and 100,000 firms, and using our estimated complex wage
and mobility model) that the AKM model tends to underestimate the residual variance and sorting
(i.e. the correlation between worker and firm fixed effects, and the contribution of the covariance
between worker and firm fixed effects to the log-wage variance), and overestimate the contribution
of the worker and firm effects to the overall variance. We find relatively large biases for the OLS
estimator of the AKM model that result both from the incidental parameter problem and model
misspecification.4

Second, our estimates show an apparent disagreement in the way unobserved heterogeneity
determines conditional mean wages, on one hand, and, on the other hand, the idiosyncratic wage
variance and the mobility parameters.5 The strongest link is estimated for layoff rates and job
finding probabilities for unemployed workers. The parameters governing the way a worker of a
given type values job types display a much weaker link, and only at low tenure. As a consequence,
the cross sectional distribution of match types that results from the first match that is drawn when
entering the labor market, and from subsequent employment mobility therefore shows evidence of
moderate, yet non negligible sorting. We measure sorting as the correlation of the worker and firm
components obtained from a linear projection of conditional mean wages on worker and firm type
dummies. Our estimates are around 25% and very stable over the all period. This is however a
greater correlation than is usually estimated using the AKM model.

Third, our parametric model allows us to run counterfactual simulations that help tracing which
parameters are key drivers of sorting. Surprisingly, we find that this correlation level is already
obtained at the first draw of a match in workers’ careers. The moderate relationship between
conditional mean wages and mobility parameters is only sufficient to maintain sorting at its initial
level. There is no evidence of a strong ladder effect. The main parameters here are the preference
for the job, the sampling distribution of firm types and the job finding rates of unemployed.

The layout of the paper is as follow. Section 2 describes the model, Section 3 the estimation
procedure, Section 4 the parametric specification. Then, Section 5 presents the estimation results,
and the last two section presents applications. Section 6 is about measuring sorting and Section 7
about the log-wage variance decomposition.

4Model misspecification here refers to the fact that, although conditional mean log-wages are not badly approxi-
mated by two additive worker and firm effects, there is some evidence of nonlinearity that shows in a non negligible
match-specific effect.

5For example, we estimate µk` and σk` the conditional mean log-wage and standard deviation for a worker of type
k and an employer of type `. The correlation between µk` and σk` across matches (k, `) is estimated around 0.10 for all
workers with tenure greater than 100 days.
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2 The Model

We start by developing a model for the data.
We use the matched employer-employee data from Denmark from 1985-2013. Wages are re-

ported at annual frequency and mobility data of workers are reported at a weekly level. Our analysis
panel starts in 1987 and we use information from 1985 and 1986 to distinguish between short and
long tenure jobs in the stock of jobs in 1987. We restrict the sample to include only employment
spells that start after individuals finished their highest levels of education. We remove any spells
that start after the individuals turn 50 years old and treat any spells with less than an average of 25
work hours in a week as a non-employment spell.

Workers are indexed by i ∈ {1, ..., I} and firms by j ∈ {0,1, ...,J}, where j = 0 reflects non-
employment. For each worker i, we observe a set of time-invariant characteristics zi including
gender and education. Firms also differ from each other by a set of observed, fixed characteristics
ζ j such as public/private status. Each worker i is either drawn from the working age population
in 1987, or enters the panel in the first week of the first year following his or her last year of
schooling. Individual trajectories Xi = (wit , jit ,xit)

T
t=1 are recorded at weekly frequency, where

jit ≡ j(i, t) ∈ {0,1, ...,J} is the employer’s ID in the t-th week of observation, xit are observed
worker controls including potential experience (age minus age upon leaving school), job tenure,
and calendar time, and wit is the worker’s log-wage rate at occurrence t. Note that although the
number of repeated observations T varies across individuals, we adopt the simplified notation of a
balanced panel. Job mobility is measured at a weekly frequency but wages are measured at annual
frequency. Thus, wage observations are missing except for the first week of any new match and the
first week of the year.6

We assume that employers (firms) can be clustered into L different groups indexed by ` ∈
{1, . . . ,L} and that workers can be clustered into K different groups indexed by k ∈ {1, ...,K}. The
index ` j is the type of firm j and ki is the type of worker i. Non-employment is observable and is
denoted by `= 0.

We make two assumptions regarding worker and firm classifications. We omit the individual
index i for simplicity and denote as p(x) the probability mass of a random variable X , describing
the distribution of some trait in the population of workers at a point x.

Assumption 1 (Initial condition). 1) Initial x1 does not predict worker type k conditional on z:

p(k|x1,z) = p(k|z). 2) Initial employer type `1 is independent of z given k and x1: p(`1|z,k,x1) =

p(`1|k,x1).

6At the end of the year, employers declare to the tax administration services the cumulative salary paid to each of
their employees during the elapsed year. Total salary divided by the total number of hours worked by the worker in
that year is the wage rate that we assign to the first week of that year or of the next employment spell if the job started
inside the year. Hours worked are inferred by Statistics Denmark from observed mandatory pension contributions that
are conditional on weekly hours worked.
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Leaving aside the dependence to x1, these assumptions are natural. First, it is well known that the
effects of time-invariant controls are not identified in fixed-effect models and are subsumed in the
fixed effects. Second, by this way, we have a common scale of heterogeneity to compare workers
of different gender or education and jobs in different industries. Third, there is a priori no loss of
generality in proceeding this way. Suppose for example that wages are constant across all men and
across all women, but differ across gender types. Then the best way of classifying wages given
gender will be the align k on gender. However, in practice, K is likely to be lower that the number
of different values of z. So there may be some loss of information.

The assumption that z predicts k independently of x1 is more disputable. First, because some
workers in 1987 are drawn from the stock. So x1 contains tenure and potential experience for these
workers. If better workers tend to have higher tenure, for example, then tenure predicts worker
type. Second, the association between type and gender and education may vary across cohorts of
workers.7

Our next assumption is a conditional independence assumption giving a Markovian structure to
the model.

Assumption 2 (Conditional independence). The next employer type and wage (wt , `t+1) depend on

the current information: z, `t = (`t , `t−1, ...), wt = (wt ,wt−1, ...) and xt = (xt ,xt−1, ...) as follows

p(wt , `t+1|z,k, `t ,wt ,xt) = p(wt |k, `t ,xt) p(`t+1|k, `t ,xt).

We implicitly assume that mobility to `t+1 occurs at the end of period t, and hence is conditioned
by xt , like the wage wt that is realized in period t.

The identification of finite mixture models is now beginning to be well understood (see e.g. Hall
and Zhou, 2003; Hu, 2008; Hu and Schennach, 2008; Kasahara and Shimotsu, 2009; Allman et al.,
2009; Hu and Shum, 2012; Henry et al., 2014; Bonhomme et al., 2016b,a; Gassiat et al., 2016).
Recently, Bonhomme et al. (2017) have applied these identification tools to a model of wages and
mobility with two-sided heterogeneity, which can be understood as a non-parametric version of the
model of Abowd et al. (1999) but with finite types. They show that two consecutive observations
of wages and employer’s types are generically sufficient to identify the model. In Appendix A we
discuss two identification arguments that complement their analysis. First, we show how observed
covariates can deliver identification with only one period. Second, we show identification with two
periods if individuals can change employer within the same group of firms.

7A more sophisticated assumption would allow k to depend on z and cohort. Then, for experienced workers in 1987,
we would translate the current date 1987 and potential experience into the corresponding cohort. Moreover, instead of
conditioning on tenure, we would add a term in the likelihood for the probability of initial tenure given worker type,
firm type, initial experience and initial date (1987).
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3 The estimation procedure

In this section we develop a Classification Expectation Maximization (CEM) algorithm for esti-
mating the mixture model. We shall be treating the unobserved firm types F = (`1, ..., `J) as fixed
effects (i.e. a parameter to be estimated), and worker types E = (k1, ...,kI) as random effects.

3.1 Likelihood

We state the likelihood for a given firm classification. Let `it = ` j(i,t) denote the type of the firm
employing worker i in period t. Let also

Dit =

1 if ji,t+1 6= jit ,

0 if ji,t+1 = jit ,

indicate an employer change between t and t +1.
For the given firm classification F = (`1, ..., `J) let

q(`|ζ ,F) =
#{ j : ζ j = ζ , ` j = `}

#{ j : ζi = ζ}
and q(`|F) =

#{ j : ` j = `}
J

denote the share of type-` firms given observed firm type ζ (e.g. public/private status) and the
unconditional share.

Let f denote a parametric version of the wage distribution p(w|k, `,x); let M denote the transi-
tion probability p(`′|k, `,x); let π denote the worker type probability p(k|z); and let m denote the
distribution of initial employer types p(`1|k,x1). For a value β = ( f ,M,π,m) of the parameters and
a classification F of firms, the likelihood for one worker i – i.e. of Xi = (wit , jit ,xit)

T
t=1 conditional

on (zi,xi1) – is
K

∑
k=1

Li(k|β ,F),

where the complete individual likelihood is

Li(k|β ,F)≡ p(k,Xi|zi,xi1,β ,F) =
m(`i1|k,xi1)π(k|zi)

q(`i1|F)

T

∏
t=1

f (wit |k, `it ,xit)

×
T−1

∏
t=1

M(¬|k, `it ,xit)
1−Dit

(
M(`i,t+1|k, `it ,xit)

q(`i,t+1|F)

)Dit

, (1)

where M(¬|k, `,x)= 1−∑L
`′=0 M(`′|k, `,x) is the probability of staying with the same employer, and

assuming that for the last observation period we do not know whether a mobility occurs or not by the
end of it. By convention f (w|k, `,x) = 1 if the wage observation w is missing and M(`′|k, `,x) = 0
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if ` = `′ = 0 (no transition from unemployment to unemployment). The term m(`i1|k,xi1)π(k|zi)

is the probability of the initial match type (ki, `i1), for ki = k, under Assumption 1. We assume
that each firm within a group is equally likely to be selected. With that, the ratio 1/q(`it |F) is
proportional to the probability that this particular firm jit , which is of type `it , be selected, either
initially or upon job-to-job mobility. The rest of the likelihood factors in this way under Assumption
2. Note that the terms 1/q(`it |F) do not show up in Bonhomme et al. (2017) because they do not
imbed the estimation of the firm classification F in the same likelihood-maximization framework
as the other parameters. Omitting them would make the firm classification step fail.

3.2 The EM algorithm for a given firm classification

The firm classification in the data is unobserved. It is infeasible to evaluate the likelihood function
for the formulation of the model where a firm’s unobserved type is a latent variable symmetric to
the unobservable worker type formulation in equation (1). The difficulty lies with accounting for
the co-dependency between a firm’s workers resulting from their matches to a common firm type
in a setup where workers move between firms. Consequently, we estimate the model for a given
firm classification F . We shall explain in the next subsection how we set and update F .

For a given value of β = ( f ,M,π,m), the posterior probability of worker i to be of type k given
all wages and controls (all the available information) is

pi(k|β ,F)≡ Li(k|β ,F)

∑K
k=1 Li(k|β ,F)

. (2)

Note that the factors 1/q(`|F) in the definition of Li(k|β ,F) (equation (1)) appear in the numer-
ator and the denominator of the definition of posterior probabilities in the same way and can be
simplified out.

Then, define

Qi( f |β (m),F) =
K

∑
k=1

pi(k|β (m),F)

[
T

∑
t=1

ln f (wit |k, `it ,xit)

]
(3)

as the expected log-likelihood of worker i’s wages for a given value β (m) of the parameter. The
worker posteriors are determined by the model parameters and firm classification

(
β (m),F

)
, where

the superscript is used to denote the given EM-algorithm iteration. Also, let

Hi(M|β (m),F) =
K

∑
k=1

pi(k|β (m),F)

[
T−1

∑
t=1

{
(1−Dit) lnM(¬|k, `it ,xit)+Dit lnM(`i,t+1|k, `it ,xit)

}]
(4)

be the expected log-likelihood of worker i’s employment history conditional on the first state `i1.
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The EM algorithm iterates the following steps:

E-step For β (m) = ( f (m),M(m),π(m),m(m)) and F , calculate posterior probabilities pi(k|β (m),F).

M-step Update β (m) by maximizing ∑i pi(k|β (m),F) lnLi(k|β ,F) subject to ∑k π(k|z) = 1 for all z

and ∑`1 m(`1|k,x1) = 1 for all k,x1, that is

f (m+1) = argmax
f

I

∑
i=1

Qi( f |β (m),F), (5)

M(m+1) = argmax
M

I

∑
i=1

Hi(M|β (m),F), (6)

π
(m+1)(k|z) = ∑I

i=1 pi(k|β (m),F)1{zi = z}
#{i : zi = z}

, (7)

m(m+1)(`|k,x1) =
∑I

i=1 pi(k|β (m),F)1{xi1 = x1, `i1 = `}
∑I

i=1 pi(k|β (m),F)1{xi1 = x1}
. (8)

Note that m(`1|k,x1) is identified for all levels of experience and tenure only in the first survey
year. For all subsequent years, all workers entering the survey are also entering the labor market
and hence have zero experience and tenure.

3.3 Firm re-classification

Given an initial value β̂ (s),F(s), where β̂ (s) can be obtained given F(s) using the previous EM
algorithm, we update F(s) as

F(s+1) = argmax
F

I

∑
i=1

K

∑
k=1

pi(k|β̂ (s),F(s)) lnLi(k; β̂
(s),F). (9)

In practice we only search for a firm reclassification that increases the likelihood. To do that we
order firms by size from the largest to the smallest. We find `

(s+1)
1 that maximizes equation (9)

keeping all other firm types equal to their values in F(s). Then we find `
(s+1)
2 given `

(s+1)
1 and

`
(s)
3 , ..., `

(s)
J and so on until `(s+1)

J . We then return to the EM iterations with the updated F(s+1). We
call this algorithm a Classification EM algorithm as it resembles the eponym algorithm proposed
by Celeux and Govaert (1992) as a variant of the EM algorithm of Dempster et al. (1977). See
Appendix B for a detailed exposition of our CEM algorithm and why it is working.

This leaves the question of initialization of the firm classification, F0. For this we opt for
simplicity: We rank firms by average wage per worker in the firm, and cluster firms equally into J

groups based on that sorting. Alternatively, we could use the k-means algorithm as in Bonhomme
et al. (2017).
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4 Empirical specification

In this section, we provide the details of parametric specifications of f and M.

4.1 Wage distribution

Wages are assumed lognormal given match type. Specifically,

f (w|k, `,x) = 1
σk`(x)

ϕ

(
w−µk`(x)

σk`(x)

)
, (10)

with ϕ(u) = (2π)−1/2e−u2/2. This specification of the log-wage mean allows for a match-specific
mean µk` and variance σ2

k`.
8

The M-step update 5 takes the following form:

µ
(m+1)
k` (x) =

∑I
i=1 pi(k|β (m))∑T

t=1 1{`it = `,xit = x}wit

∑I
i=1 pi(k|β (m))∑T

t=1 1{`it = `,xit = x}
,

[σ
(m+1)
k` (x)]2 =

∑I
i=1 pi(k; |β )∑T

t=1 1{`it = `,xit = x}[wit−µ
(m+1)
k` (x)]2

∑I
i=1 pi(k|β (m))∑T

t=1 1{`it = `,xit = x}

(simple averages weighted by posterior type-probabilities).

4.2 Transition probabilities

We omit conditioning on xit to simplify the notations. The probability for a worker of type k of a
transition from a firm of type `= 1, ...,L to a firm of type `′ = 1, ...,L at time t is specified as

M(`′|k, `,x) = λk(x)ν`′(x)Pk``′(x). (11)

Parameter λk ∈ [0,1] is the worker k conditional probability of a meeting with an outside employer.
Parameter ν`′ ≥ 0, with ∑L

`′=1 ν`′ = 1, is the probability that the outside draw is a job of type `′.
The parameter Pk``′ is the probability that the transition from ` to `′ becomes effective. We

assume a Bradley-Terry specification for Pk``′ (see e.g. Agresti, 2003; Hunter, 2004). That is,

Pk``′ =
γk`′(x)

γk`(x)+ γk`′(x)
. (12)

Parameter γk`, with ∑L
`=1 γk` = 1, measures the quality of the match (k, `). If the worker draws a

8The distribution f is the distribution of wages for matches with given characteristics. One may interpret these
wages as productivity if there is no selection into employment conditional on types.
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same-type job, with little loss of generality, we assume that the worker moves with probability 1/2.9

We also model unemployment-employment transitions in a completely unrestricted way:

M(`′|k,0) = ψk`′, M(0|k, `) = δk`.

With this it follows that

M(¬|k,0) = 1−
L

∑
`′=1

M(`′|k,0) = 1−
L

∑
`′=1

ψk`′ ,

and for `≥ 1,

M(¬|k, `) = 1−
L

∑
`′=0

M(`′|k, `) = 1−δk`−λk`

L

∑
`′=1

ν`′Pk``′ = 1−δk`−λk`+λk`

L

∑
`′=1

ν`′(1−Pk``′).

We prove in Appendix C that the more flexible specification λk`,νk`′,γk` is not identified given
knowledge of unrestricted transition probabilities M(`′|k, `) = λk`νk`′Pk``′ . In this case, for every
choice of Mk``′ for all k and `,`′ ≥ 1 there are two and only two solutions. Let (λk`,νk`′,γk`) be
such that

M(`′|k, `) = λk`νk`′
γk`′

γk`+ γk`′
.

Then we also have
M(`′|k, `) = λk`

γk`
νk`′γk`′

1/γk`′

1/γk`+1/γk`′
.

Hence
(

λk`
γk`

,νk`′γk`′ ,
1

γk`

)
is also a solution (with the appropriate normalizations). We thus need to

restrict the parametrization further. We opt for making λk` independent of ` and νk`′ independent
of k (but dependent on x). An employee will draw an alternative offer with probability λk, this offer
is from a firm of type `′ with probability ν`′ and `′ beats ` with probability Pk``′ =

γk`′
γk`+γk`′

.
This parametric restriction on transition probabilities M(`′|k, `,x) is a considerable reduction of

dimensionality with respect to letting transition probabilities unrestricted as in BLM. We believe
that the loss of generality is amply compensated by the gains in efficiency and intelligibility. How-
ever, we also lose in simplicity. Transition probability estimates for the M-step of the EM algorithm
are simple frequencies in the unrestricted case. Obtaining estimates in the the parametric restric-
tion is another challenge. In Appendix D we develop an MM algorithm (Hunter, 2004; Hunter and
Lange, 2004) that allows to maximize H(M|β (m)) subject to the parametric restriction on M very
rapidly.10

9We experimented the specification Pk``′ =
γk`′

θγk`+ γk`′
, where θ > 0 measures the incumbent’s advantage and

parametrizes mobility within the same group of firms. However it appeared difficult to disentangle θ from λ .
10The MM algorithm works by finding a function that minorizes the objective function and that is more easily

maximized. Let f (θ) be the objective concave function to be maximized. At the m step of the algorithm, the constructed
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5 Estimation results

5.1 Data and estimation

The time-invariant worker characteristics zi include gender and education. Education level is based
on the normed number of years of education associated with the worker’s highest completed degree.
The low education group comprises all degrees normed to less than 12 years of education. The
medium education group has a norm of exactly 12 years, and the high education group is any
education level with a norm greater than 12 years. The time-invariant firm characteristics ζ j include
the public/private status. The worker’s time variant characteristics xi include the short/long tenure
status, potential experience (time since graduation), and calendar year.11 Short tenure is defined as
less than 100 weeks of employment, and 26 weeks for non-employment. We divide experience into
four groups: less than 5 years; 5-10 years; 11-15 years; and more than 15 years. Additionally, we
allow the wage and mobility parameters to vary by 3-year time intervals. This leads to 9 different
calendar time groups between 1987-2013.12 Thus, xit is one of 72 different groups.

Finally, after experimenting with different choices for K and L, we set the number of worker
types to K = 14 and the number of firm types to L= 24. We indeed obtained greater likelihood gains
by categorizing firms more finely than workers.13 Worker and firm type assignments are assumed
to be fixed over the duration of the panel. That is, tenure and experience impact a worker’s mobility
and wages conditional on a fixed type assignment. By implication, a type is characterized also by
its dynamic wage and mobility paths. An often used alternative in the literature (see, for example
Card et al. (2013)) is to stratify the data by calendar time intervals (a common length seems to be
around 7 years) and estimate the model independently for each stratification.

The estimation groups workers with similar wage and mobility observations together. Similar
for firms. We use wage observations to give a cardinal labeling to the groups. Specifically, we

function g(θ |θm) will be called the minorized version of the objective function at θm if

g(θ |θm)≤ f (θ),∀θ , and g(θm|θm) = f (θm).

Then, maximize g(θ |θm) instead of f (θ), and let θm+1 = argmaxθ g(θ |θm). The above iterative method guarantees
that f (θm) converges to a local optimum or a saddle point as m goes to infinity because

f (θm+1)≥ g(θm+1|θm)≥ g(θm|θm) = f (θm).

11We can calculate actual experience only for the workers entering the labor market after 1987. This is why we stick
to potential experience, or age.

12We shall interpret calendar time as reflecting the macro environment. It could also refer to cohort effects. There is
obviously no way to separate cohort, time and age.

13We experimented with automatic selection techniques to select K,L such as BIC penalization. For a reason that
we do not understand, such likelihood penalization seems to work better for K (workers) than for L (firms). A deeper
theoretical analysis of the CEM algorithm (on a simpler specification) is necessary to understand it better.
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estimate
µk` (x) = c(x)+ak +b`+ εk` (x) ,

weighting each cell (k, `,x) by p(k, `,x) = 1
NT ∑i,t pi(k)1{`it = `,xit = x}, then we relabel k and ` so

that ak and b` are now increasing in k, `. Hence, by construction µk` will on average be increasing
in the k and ` indices.

5.2 Distributions of worker and firm types

We calculate
p(k) =

1
N ∑

i
pi(k), p(`) =

1
NT ∑

i,t
1{`it = `},

the marginal cross-sectional distributions of k and ` across workers. Figure 1 displays these dis-
tributions. The marginal CDFs of k and ` (we shall use F(k),F(`) to denote them; the solid lines
in Figure 1a,b) offer a different labeling for the plots that we are going to analyze. The advantage
of plotting for example µk` (x) against F(k),F(`) for a given x (year, tenure and experience) over
using k and ` for the axes is that we thus compress the axis-scale where there are few workers (as
in the case of lower firm types, `≤ 5) and stretch it where there are many. Interestingly, some firm
types are relatively rare in the population of firms (i.e. `= 10,11,13,14,16,20,21) but frequent in
the population of employed workers because these firms have larger sizes. The firm classification
respects the assumption that firms within a group are equally likely to be sampled. Hence, to the
extent that firm size and vacancy posting are related (as one would expect), the classification will
group firms by size, in addition to wage and mobility patterns. Moreover, F(k) is invariant to the
labelling of worker types, whether k = 1,2,3 or k = 1,5,7, both choices deliver the same F(k).

Figure 1: Cross-sectional distributions of types

(a) Marginal distribution of k
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(b) Distribution of ` across workers
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(c) Distribution of ` across firms
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Table 1 shows how observed characteristics z, gender and education, correlate with unobserved
worker types (mean posterior probabilities by observed type). There is a strong correlation be-
tween types and observed characteristics. High types (large k) tend to be male and highly educated
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Table 1: Proportion of gender and education by worker type

Worker type Gender Education
k Male Female Low Medium High
1 0.15 0.85 0.46 0.47 0.07
2 0.47 0.53 0.48 0.37 0.15
3 0.59 0.41 0.62 0.33 0.05
4 0.33 0.67 0.27 0.56 0.17
5 0.30 0.70 0.24 0.53 0.23
6 0.38 0.62 0.15 0.43 0.41
7 0.76 0.24 0.22 0.66 0.11
8 0.59 0.41 0.17 0.59 0.25
9 0.61 0.39 0.12 0.52 0.36

10 0.74 0.26 0.20 0.55 0.24
11 0.53 0.47 0.05 0.26 0.69
12 0.71 0.29 0.06 0.35 0.59
13 0.78 0.22 0.04 0.25 0.71
14 0.83 0.17 0.04 0.20 0.76

Table 2: Firm Characteristics

Firm type Sector Group size Avg no. spells %no. spells
` No cat. Public Private
1 0.14 0.10 0.76 31781 2 0.66%
2 0.07 0.05 0.88 15729 8 1.13%
3 0.09 0.04 0.87 13310 26 3.05%
4 0.16 0.05 0.79 45374 3 1.04%
5 0.07 0.06 0.87 29810 7 1.94%
6 0.15 0.11 0.74 5093 150 6.7%
7 0.03 0.07 0.91 17265 16 2.42%
8 0.36 0.05 0.58 43921 12 4.67%
9 0.08 0.13 0.79 14113 35 4.35%
10 0.05 0.76 0.18 251 1787 3.95%
11 0.18 0.55 0.27 49 7581 3.27%
12 0.04 0.06 0.90 49125 3 1.25%
13 0.67 0.14 0.19 36 23272 7.37%
14 0.39 0.15 0.46 216 3064 5.83%
15 0.20 0.04 0.76 49754 2 0.99%
16 0.17 0.54 0.29 35 30280 9.33%
17 0.06 0.15 0.79 8834 84 6.51%
18 0.06 0.10 0.83 1621 449 6.4%
19 0.03 0.04 0.93 18001 15 2.33%
20 0.07 0.15 0.78 492 1344 5.82%
21 0.11 0.08 0.80 61 7509 4.03%
22 0.10 0.10 0.80 3503 201 6.2%
23 0.16 0.06 0.78 17255 27 4.07%
24 0.07 0.11 0.82 589 1292 6.7%
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workers.14

Table 2 repeats the operation for firms. Strikingly, most groups gather many firms that hire
very few workers, and a few groups gather a small number of firms that hire many workers. For
example, more than half of the 49 firms in group ` = 11 and of the 35 firms of group ` = 16 are
public establishments and account for 3.27% and 9.33% of the 11.4 million spells in the panel.
The 251 firms in the second largest group, ` = 10, are mostly public and account for 3.95% of all
spells. Then, the 61 firms in group ` = 21, the 3,505 firms in group ` = 22 and the 5895 firms
in group ` = 24 are mostly private and account for 4.0%, 6.2% and 6.7% of all spells. Although
firm size and sector seem to be important factors to explain the estimated classification, it would be
obviously difficult to explain why groups 11 and 16, and groups 21 and 22 are thus split.

Summing up, although we estimate a relatively small number of groups (K = 14 groups of
workers and L = 24 groups of firms), this classification contains information that differs from the
observed characteristics.

5.3 Wages

For conciseness, we summarize our results by presenting time-aggregated parameters since the
qualitative features of these parameters are similar over time. In Figure 2, we show the time-
aggregated µk` for one experience and tenure status (10-15 years of experience and more than 100
days of tenure). Wages are generally increasing in both tenure and experience, but apart from that
the links between expected wages and match types by experience and tenure are similar and we do
not show them (see the online appendix for exhaustive figures).

Figure 2: Mean wage µk` (10-15 years of experience, more than 100 days of tenure)

k=1

k=2

k=3

k=4

k=5

k=6

k=7

k=8

k=9

k=10

k=11

k=12

k=13

k=14

F (ℓ)
0.3 0.4 0.5 0.6 0.7 0.8 0.9

µ

3

3.5

4

4.5

5

5.5

0.8

F (ℓ)

0.6

0.40.2

0.4

F (k)

0.6

0.8

3

3.5

4

4.5

5

5.5

µ

14In reality, types may reflect a combination of heterogeneity in skills, productivity and bargaining power. A more
detailed analysis controlling for observed characteristics, such as occupation, and further analyzing sources of hetero-
geneity in types would be interesting future work.
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Wages vary significantly more with worker than firm types. It is furthermore notable that µk` is
broadly speaking monotone in the ranked firm and worker types. Worker types agree on the wage
ranks of firms, and vice versa. Moreover the surface (k, `) 7→ µk` is essentially flat except for the
highest k and the lowest `. These results are broadly consistent with the assumption of linear wage
fixed effects in Abowd et al. (1999). We will later perform a variance decomposition exercise that
will allow us to make this assertion more precise.

The correlation between idiosyncratic dispersion (as measured by standard deviation σk`) and
mean wage µk` (with respect to the cross-sectional match distribution p(k, `) = 1

NT ∑i,t pi(k)1{`it =

`}) is generally negative and low. This negative link is stronger for less experienced and low tenure
workers (see Table 3). However, idiosyncratic dispersion seems generally quite concentrated with
a few outliers (mainly k = 2; see Figure 3).

Table 3: Correlation with µk`

σk` δk` ψk` γk` λk ν`′

experience tenure < 100 weeks
<5 years -0.41 -0.81 0.50 0.32 0.42 0.16

5-10 years -0.28 -0.73 0.54 0.28 0.50 0.18
10-15 years -0.19 -0.64 0.56 0.25 0.47 0.22
> 15 years -0.16 -0.58 0.53 0.20 0.33 0.11

tenure > 100 weeks
<5 years 0.10 -0.28 0.28 0.05 0.56 0.39

5-10 years 0.13 -0.29 0.19 -0.12 0.61 0.39
10-15 years 0.15 -0.26 0.16 -0.10 0.58 0.42
> 15 years 0.14 -0.17 0.07 -0.17 0.35 0.41

5.4 Mobility

The top row of Figure 4 shows the search intensity parameter λk as a function the worker type-rank
F(k). Different lines correspond to different levels of experience. The left panel depicts search
intensity for low tenure and the right panel displays search intensity for high tenure. Overall, λk

seems to be increasing in worker type k (with noise), and this relationship more pronounced for
younger workers. These plots also reveal that workers with low tenure search more intensely. It is
worth noting that the core sorting mechanism in Bagger and Lentz (2014) implies that more skilled
workers search more intensely, consistent with this finding.

The bottom row of Figure 4 shows the probability of drawing an offer from each firm type, ν`′ .
There is evidence that better firms are more likely to be sampled for higher tenure workers with
little variation across workers of different experience levels. However, this relationship is relatively
weak for short tenured workers (see also the correlations in Table 3).
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Figure 3: Idiosyncratic dispersion σk` (10-15 years of experience)

tenure < 100 weeks tenure > 100 weeks
(a) By mean wage µk`
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Figures 5 and 6 depict the other mobility parameters δk`,ψk`,γk` by mean wage µk` and by
worker and firm types. We only show the plots for workers with 10-15 years of experience as
the different levels of experience do not change the general patterns. The strength of the link with
worker and firm types varies though by experience. Table 3 displays the cross-sectional correlations
with mean wage.

As can be seen, layoff rates δk` are strongly decreasing in mean wage, especially so for low
tenure workers. The negative link between layoff rates and firm types is also emphasized in Bagger
and Lentz (2014) and Jarosh (2015). Note, however, that for higher tenure workers at least the
layoff rate is quite flat and homogeneous. For job finding rates, ψk` we find a positive link with
mean wage, less strong than for layoff rates and again stronger for low tenure workers. Finally, the
link between mean wage and the preference for the job (or match value), γk`, is slightly negative
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Figure 4: Search intensity λk and sampling probability ν`′

tenure < 100 weeks tenure > 100 weeks
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Figure 5: Mobility parameters by mean wage µk` (10-15 years of experience)

tenure < 100 weeks tenure > 100 weeks
(a) Layoff rate, δk`
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Figure 6: Mobility parameters by worker and firm type-rank (10-15 years of experience)

tenure < 100 weeks tenure > 100 weeks
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for longer tenure. It is weakly positive (correlation of the order of 0.3) at lower tenure. This may
indicate that some workers, for example unemployed, may be forced to accept lower quality jobs
that they will sooner than later quit when better opportunities show up. Now, the overall very
low correlation between γk` and µk` shows that the drivers of mobility across firm types are to a
significant extent unrelated to wages, particularly for long tenure workers. Many other factors such
as job amenities, family shocks, and job specific idiosyncratic shocks may explain mobility in ways
that is not necessarily optimal in terms of income.

To explore the ladder structure further and the mobility implied by the λk,ν`,γk` estimates,
Figure 7 presents the expected firm type destination conditional on the current firm type and a job-
to-job move. For low skill workers (say k ≤ 7; solid lines) the curves are essentially flat, except
for experienced workers with long tenure. For workers of higher type (k > 7) then the expected
destination firm rank is increasing in current firm rank, and more so for workers with short tenure.
Now, in general, for all workers with tenure greater than 100 weeks or 2 years, the ladder effect is
quite weak as these curves are quite flat. Most of the dispersion in expected destination firm rank
is explained by worker unobserved heterogeneity rather than the current firm type.

6 Measuring sorting

Both job-to-job moves as well as the mobility patterns in and out of unemployment point to positive
sorting: over time, job-to-job mobility implies that high type workers climb up the job ladder
faster than low type workers leading to positive sorting, in a mechanism similar to that in Lise
and Robin (2017); Bagger and Lentz (2014). More skilled workers are less likely to move into
unemployment. When they do get unemployed, skilled workers move to higher ranked firms than
less skilled workers do. However, this mechanism seems rather weak in reality, as we have just
seen. The aim of this section is first to provide a measurement of sorting, and second to understand
how it is built.

6.1 Distributions of matches

To illustrate the estimated sorting, Figure 8 shows the joint distribution of workers and firms relative
to the matching probability under the assumption of independence, c[F(k),F(`)] ≡ p(k,`)

p(k)p(`) . This
is a copula density. There is evidence of positive assortative matching. The entries in the first
diagonal of the c() mapping is significantly higher than off-diagonal entries. Low type workers
tend to match with low type firms, high type workers with high type firms.

There is also significant noise in the relationship. To quantify the strength of the sorting, we
calculate the correlation coefficient between the cardinal measures of worker and firm types we
obtained in the wage projection. The worker type measure is ak(x) and the firm type measure is
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Figure 7: Conditional mobility across firm types
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b`(x), obtained by projecting µk`(x) on k and ` separately for each x, each case (k, `) being weighted
by p(k, `|x) ∝ ∑i,t pi(k)1{`it = `,xit = x}. We denote the correlation coefficient between ak and b`
in the estimated matching distribution by ρab. Figure 9 shows the correlation coefficient between
types conditional on time, experience, and tenure. As can be seen the correlation coefficients tend
to take values between 0.25 and 0.4, confirming the positive sorting between firm and worker types.
Furthermore, the positive sorting tends to get stronger from the beginning of the sample period until
the early 2000’s. The increasing pattern is particularly pronounced for long tenure matches. Also,
sorting seems a bit stronger for younger workers, which is consistent with the search ladder being
steeper for younger workers.

The findings based on AKM style wage fixed effect regressions in Bagger et al. (2013) and Card
et al. (2013) suggest a stronger increasing sorting pattern over time than we find in our analysis.
In particular, with the usual projection on x,k, `, i.e. without interacting k and ` with tenure and
experience, we find a fairly modest increase in the correlation coefficient over time from 0.25 to
0.3 (see Figure 10, line “Observed”). These estimates are considerably larger than those in Bagger
et al. (2013) using the AKM model (from a low -.07 in 1981 to a high .14 in 2001). Overall, our
sorting pattern is thus stronger and more stable.

6.2 Mobility and sorting

Initial sorting and equilibrium sorting

Figure 10 compares three correlations between ak and b` obtained from three different distributions:
the observed cross-sectional match distribution p(k, `) calculated for a given year; the steady-state
(SS) distribution p∞(k, `) that is obtained from the estimated transition probabilities Mk``′(x);15

and lastly, the initial distribution of matches p0(k, `|x1) = p(k)m(`|k,x1), where p(k) = 1
N ∑i pi(k).

We find that the corr0 calculated with p0 is above corr, calculated with p, which is above corr∞,
calculated with p∞. These correlations are close to each other and the differences may not be
significant (although with so many observations, every point estimate tends to be very precisely
estimated). It is somewhat surprising to find that mobility is not a mechanism that largely increases
sorting, instead mobility just helps maintain sorting close to its initial level.

Synthetic cohorts

To illustrate the interaction between experience and tenure on mobility patterns, we construct a
synthetic cohort for each of our 9 time periods. The cohort is initialized with zero experience and
tenure. Its initial allocation is drawn according to the estimated m(`|k,x) where the x category is
the one corresponding to zero experience, zero tenure and the time period in question. The cohort

15From Mk``′(x) calculate m∞(`|k,x) as the ergodic distribution associated with the Markov chain where we also
allow tenure status to reset. Then, p∞(k, `|x) = p(k)m∞(`|k,x), where p(k) = 1

N ∑i pi(k). Then average over x.
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Figure 8: Copula c[F(k),F(`)]≡ p(k,`)
p(k)p(`)
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Figure 9: Sorting by tenure and experience
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is then simulated forward 30 years with experience and tenure evolving endogenously. Time is held
counter factually constant to avoid conflation of experience effects with time effects.

Figure 11 shows the correlation between worker and firm wage effects among employed work-
ers for the 9 different cohorts by experience. Already at the outset, the cohorts are significantly
sorted. It is then a general pattern that during the first 10 years of a cohort’s life, mobility patterns
strengthen sorting, and the cohort’s maximal sorting level is attained already after about 10 years.
Sorting subsequently weakens as the cohort ages further.

Figure 12 further illustrates the sorting patterns, in this case for the 1990-92 cohort. The left
hand shows the average firm location, measured by the firm’s wage effect, by experience and worker
type. The cohort is positively sorted and it is seen that higher worker types are on average matched
with higher wage firms. Furthermore, the increased sorting over the first 10 years of the life cycle
of the cohort seems to be primarily driven by better workers improving their firm location.

The right hand graph in Figure 12 shows the considerable sorting on the extensive margin
that is also implied by the estimated model. It is seen that low wage workers have significantly
higher non-employment rates early in life than high wage workers. All worker types increase their
employment rates with age, but it is particularly pronounced for the low types resulting in much
less employmnet rate dispersion across worker types for high experience workers.

The anatomy of equilibrium sorting

To illustrate the relative strength of the different mobility channels that may impact sorting in the
model, we perform a series of counterfactuals. Each counterfactual changes a particular mobility
variable by removing one dimension of variation (such as worker-type, firm-type, tenure, experi-
ence and time variation) and setting the variable to its weighted average in a given dimension while
holding the others parameters constant. We simulate 1,000,000,000 workers to calculate the coun-
terfactual steady state match probability p∞

alt(k, `). We then use p∞
alt(k, `) to re-calculate the corre-

lations between the benchmark cardinal measures of worker ak and firm b` types, obtained from
the original steady-state distribution.16 Table 4 displays the percentage change of counterfactual
correlations, relative to the benchmark case, for both unconditional and conditional on experience.

In Figures 13 and 14, we only display the results of the unconditional correlations since in most
exercises, the counterfactual correlations across age group are qualitatively similar (however with
an exception of one exercise of which will be discussed shortly). Figure 13a shows the counterfac-
tual where γk` = γ`, i.e. there is no worker heterogeneity. If all workers agree on their preference
for firms then the only sources of sorting are that better workers search more intensely and climb
the common ladder faster, and that layoff rates may vary across worker types. This counterfactual
removes all homophilic source of sorting. As can be seen, the impact on sorting is substantial.

16We also tried with re-estimating akand b` with the counterfactual distribution. Results are similar.
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Table 4: Average counterfactual sorting over time

Benchmark ρa,b
Average <5 exp 5-10 exp 10-15 exp 15> exp

0.28 0.30 0.31 0.26 0.27

% change
Counterfactual Average <5 exp 5-10 exp 10-15 exp 15> exp
No k variation in γk` -63.47 -61.05 -63.57 -66.50 -63.90
No k, ` variation in γk` -69.89 -70.37 -69.55 -64.72 -70.05
No k variation in ψk` -33.63 -29.70 -32.89 -33.41 -37.90
No ` variation in ψk` -42.30 -28.26 -36.92 -49.77 -46.27
No ` variation in ν` -57.59 -33.16 -49.50 -74.68 -65.30
No k variation in λk -2.87 -3.69 -3.06 -2.81 -1.92
No E-E transition (λk = 0) -39.49 -41.72 -42.22 -40.60 -27.92
No k variation in δk` 0.37 -4.85 -3.43 3.56 2.61
No ` variation in δk` -2.18 1.08 -2.09 1.92 -4.87
No k variations in δk` given

-38.06 -42.35 -41.50 -35.36 -37.33
no k variation in ψk`

No k variation in γk` given
-102.1 -95.61 -97.43 -116.99 -100.13

no ` variation in ν`

No tenure effect in γk` -6.85 -3.21 1.16 -8.20 -11.40
No tenure effect in λk -0.50 -0.16 0.03 -2.37 -0.69
No tenure effect in ν` -2.35 -0.71 -1.49 -0.55 -4.31
No experience effect in γk` -2.76 -13.83 -11.20 3.90 7.45
No experience effect in λk -2.26 -2.13 -1.60 -2.81 -2.89
No experience effect in ν` -0.56 1.23 -0.01 -2.58 -1.16

No E-E transition (λk = 0) -39.49 -41.72 -42.22 -40.60 -27.92
No E-U transition (δk` = 0) -10.52 23.83 0.34 -22.12 -13.29
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Figure 13b then considers removing firm heterogeneity from γk`. However, because of the normal-
izing constraint ∑` γk` = 1, no firm heterogeneity means no heterogeneity at all, γk` = γ . There is
no substantial difference between the two counterfactuals, maybe because in both cases there is no
specific (k, `) complementarity in transition probabilities.

Turning to the other significant source of sorting in the estimated model, Figure 13c shows the
impact on sorting due to variation across worker types in the firm type destination distribution out
of unemployment. Specifically, the counterfactual where ψk` = ψ`. We see this channel to be a
significant source of sorting in the estimated model. It is a notable feature of the estimation since
it is a channel that is typically absent in standard random search models. Figure 13d shows the
counterfactual where we remove worker heterogeneity. The effect is the same, since the removal
of either side of two-sided heterogeneity in a given source of sorting necessarily cancels out this
channel as a potential source of sorting. Similarly, when we set λk to zero such that workers keep
their first jobs they draw out of unemployment until the next layoff, sorting is reduced by about 40
percent (see Figure 13e).

Figure 13f shows that the removal of heterogeneity in the sampling probability of firm types
ν`′ has a significant effect of sorting, similar in magnitude to the effect obtained by removing
heterogeneity in the job finding rates for unemployed. By contrast, Figure 14a demonstrates that
offer arrival rate variation across worker types by itself has little impact on sorting. Hence an
heterogeneous firm sampling probability does amplify sorting driven by heterogeneous preferences
γk`, but not heterogeneous search intensity. This is likely due to the fact that search intensity does
not vary enough across workers.

Figure 14b&c shows the impact on sorting from the layoff channel, δk` = δ ` and δk` = δ k.
Even though low-quality matches are more likely to be sent into unemployment than high-quality
matches, heterogeneous layoff risk does not significantly alter overall sorting. It is conceivable
that the lack of impact on sorting could be a consequence of heterogeneous job finding rates for
unemployed workers, ψk`. The estimated destination distribution out of unemployment goes a
long way to directly place a worker type back to the position implied by the job-to-job mobility.
Hence, layoffs could have minor sorting implications in our setting. Therefore, differential layoff
differences across worker types would not affect sorting either. Figure 14d shows the impact of
setting δk` = δ ` while also setting ψk` = ψ`. In this case, the comparison is with the counterfactual
economy where ψk` = ψ`, only. As can be seen, also in this case, the cross worker type variation
in layoff rates is not enough to significantly impact sorting.

Finally, we assess the extent to which the transition from employment to unemployment impacts
sorting by setting δk` to zero. Figure 15 displays the conditional correlations by age group. As
can be seen in Figure 15a, when workers only move from job to job, sorting rises among young
workers, while sorting reduces for workers in other age groups. This is consistent with our finding
that sorting is largely built early on in one’s career and become less strong as workers age.
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7 Decomposing the variance of log-wages and wage growth

Finally, we measure the contribution of sorting to log-wage inequality and wage growth dispersion.

7.1 Log-wage levels

Variance decomposition formula

We are interested in decomposing the conditional variance of log wages wit for a given calendar
time period into person and firm effects. For each individual i present in the panel at any time, we
can calculate pi(k) the posterior probability of being of type k using equation (2) at the estimated
parameters (β and firm classification F), and for any given worker and employment-firm types k, `

and for any x indicating a particular tenure, experience and calendar time period, let p(k, `,x) ∝
∑i,t pi(k)∑T

t=1 1{`it = `,xit = x} is the estimated proportion of observations with such k, `,x values
in the panel.

Next, for a given time period, let

µk`(x) = µ(x)+ak +b`+ µ̃k`(x),

be the linear projection of µk`(x) on all tenure and experience interactions and worker and firm
indicators. The term µ̃k`(x) denotes the residual. That is, regress µk`(x) on tenure*experience
dummies, worker dummies and firm dummies, weighing each (k, `,x) by p(k, `,x).

We can then decompose the log-wage variance as follows (omitting the conditioning on calen-
dar time):

V(wit) = E[V (wit |ki, `it ,xit)]+V[E(wit |ki, `it ,xit)]

= E[σ2(ki, `it ,xit)]+V[µ(ki, `it ,xit)],

and

V[µ(ki, `it ,xit)] = V[µ(xit)]+V[a(ki)]+V[b(`it)]

+V[µ̃(ki, `it ,xit)]+2Cov[µ(xit),a(ki)]

+2Cov[µ(xit),b(`it)]+2Cov[a(ki),b(`it)],

where expectation operators (and variance and covariance) are with respect to distribution p(k, `,x).
For example,

E[σ2(ki, `it ,xit)] =
∑k, 6̀=0,x p(k, `,x)σ2

k`(x)

∑k, 6̀=0,x p(k, `,x)
.
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Results

Turning to Figure 16, we show the log-wage variance decomposition over time. In panel (a), it is
seen that overall log wage variance, V(w), is increasing over time. Panel (b) shows the relative
importance of within match wage variance, Eσ2, and between match wage variance, Vµ , respec-
tively. As can be seen, the between match wage variance is rising proportionately over time so that
by the end of the sample, in the early 2010s, the within match wage variance accounts for 62.1%
of overall wage variance, from 47.6% at the end of the 1980s. The residual variance, the average
of the idiosyncratic component σk`(x), conversely decreased from around 52.4% to 37.9%.

Note that we estimate considerably more idiosyncratic wage dispersion than is usually the case
using the AKM model (Table 5). Along with the increased importance of between match wage
variance follows an increase in the variance across worker types V(a). Wage dispersion across
worker types is the dominant source of dispersion across matches (around 29% between 1987 and
2007, and 35% after 2007), but its importance as a fraction of between match variation is decreasing
over time (from 61.2% to 58.5%). Since we estimate so much more idiosyncratic variance, our
estimates of person effect contribution is sizably smaller than in the AKM-based literature.

The effect of sorting 2Cov(a,b) comes next, which explains about 7% of the overall log-wage
variance. We confirm the increasing trend that has been observed elsewhere (Card et al., 2013;
Song et al., 2015), although in a much more subdued way. The firm effect has remained third in
contribution after the worker effect and what we conventionally call “sorting” until the mid-2000,
explaining about 5% of the log wage variance. We observe a big drop after 2005 benefiting to
the match-specific effect V (µ̃) and the effect of age and tenure V (µ). It is difficult to say if this
corresponds to a structural change or if it is just some anecdotic phenomenon. Finally, there is
evidence that worker and firm heterogeneity impact mean wages in a non additive way. The match-
specific effect V (µ̃) has doubled in size between 1995 and 2011. Its contribution to log wage
variance is now comparable to that of the worker effect.

Summing up, we estimate much more residual variance than with the AKM model, and there-
fore a smaller contribution of worker effects. Sorting comes next and its contribution is increasing
over the period. The firm effect and the match effect have similar, smaller contributions. The
relative shares of worker, firm, sorting and residual effects are different from the estimates in Bon-
homme et al. (2017) using Swedish matched employer-employee data. They estimate a greater
correlation between worker and firm types, less residual variance, a much greater contribution of
the person effect and a lower contribution of the firm effect. However, note that they estimate their
more flexible model (as far as mobility is concerned) on just two years of data, whereas we use 26
years of data to identify worker and firm heterogeneity.
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Notice finally that the share of log wage variance explained by the correlation between worker
and firm effects, and this correlation give two different measurements of “sorting”. The latter one
being relative to the variances of worker and firm effects, we obtain a correlation that is three or four
times larger than with the AKM model. Recently, Borovičkovà and Shimer (2017) have proposed
a different way of calculating this correlation based on mean wage per worker and per firm. Using
their estimator, we find a correlation of 47%, much larger than ours. Understanding the sources of
discrepancy is beyond the aim of this paper, but it is certain that this estimator measures something
different from the correlation between worker and firm linear effects.

Monte Carlo simulations

In order to both check the accuracy of our estimation procedure and evaluate the biases of AKM,
we ran a Monte Carlo simulation as close as possible from the true data. The simulations involve
1,000,000 workers and 100,000 firms where K = 14,L = 24. The length of the panel is 7 years.
We use the parameters estimated for a given time period and age class, and we simulation worker
trajectories, allowing for tenure to change. We hold age fixed in the simulations so as not to worry
about workers’ entry into and exit from the labor market. We draw initial conditions from the
steady-state distribution.

The results can be found in Table 6. Each horizontal section of the table separated by an
horizontal line corresponds to a different simulation with a different time period and a different
experience group. Within each horizontal panel, the row labeled “true” displays the actual variance
decomposition and correlation between worker and firm effects for employed workers. The row
“LPR” shows these variance decomposition and correlation after first estimating the parameters
using our model and estimation procedure. It is a test of the capacity of our CEM algorithm to
recover the true parameters when the model is well specified. As can be seen, our algorithm works
very well. The row labeled “AKM” shows the variance decomposition and correlation that are
obtained by estimating an AKM model. The simulations confirm a tendency of AKM to overesti-
mate the contributions of worker and firm effects, and to underestimate the contribution of sorting
as well as the residual variance. Lastly, the row labeled “BS” shows Borovičkovà and Shimer
(2017)’s calculation of the degree of sorting. The simulations confirm the tendency of the correla-
tion between mean wage per worker and mean wage per firm (with all the adjustments to the naive
formula proposed by BS) to overestimate the correlation between worker and firm linear effects.
Obviously, this statistic captures more than just the correlation between linear projections of log
wages on worker and firm dummies. The role of the match-specific effect, for example, must be
better understood.
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7.2 Wage growth upon job change

Variance decomposition formula

We can do a similar exercise for wage growth ∆ lnwi = lnwi2− lnwi1 conditional on being employed
in two consecutive weeks 1 and 2 and changing employer. In period 1 the state would be some
combination (k, `,x). In period 2, she would have moved to a new firm of type `′ ∈{1, ...,L} (maybe
the same `). Note that the new calendar time, tenure and experience triple x′ is deterministic given
`,`′.

The distribution of (k, `,x) can still be described by p(k, `,x). The probability of `′ given (k, `,x)

and job change is M(`′|k, `,x). Then

V (∆ lnwi) = VE
(
∆ lnwi|k, `,x, `′

)
+EV

(
∆ lnwi|k, `,x, `′

)
.

We have
EV
(
∆ lnwi|k, `,x, `′

)
= E

[
σ

2
k`′(x

′)+σ
2
k`(x)

]
,

and

VE
(
∆ lnwi|k, `,x, `′

)
= V

[
µk`′(x

′)−µk`(x)
]

= V [∆µ(x)+∆ak +∆b0`+∆b1``′+∆µ̃k``′(x)] ,

where the terms inside the last variance denote the linear projection of µk`′(x′)− µk`(x) on 1)
tenure* experience dummies (∆µ(x)), 2) worker dummies (∆ak), 3) employer dummies for movers
(∆b``′), and 5) residuals (∆µ̃k``′(x)).

The following decomposition can finally be computed: 1) within: E
(
σ2

k`′(x
′)+σ2

k`(x)
)
, 2)

between x: Var∆µ(x), 3) between k: Var∆ak, 4) between `,`′: Var(∆b``′), 5) match-specific
effect: Var∆µ̃k``′(x), 6) sorting: 2Cov(∆ak,∆b``′), 7) all other covariances: 2Cov(∆µ(x),∆ak),
2Cov(∆µ(x),∆b``′).

Results

The results are displayed in Figure 17. Here most of the variance remains unexplained. The
between variance is about 12% in 1987 and 16% in 2013. All components are negligible except for
the match-specific effect and between-firm effects.
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8 Conclusion

In this paper we use the finite mixture framework of Bonhomme et al. (2017) to estimate a model
of wages and employment mobility on Danish panel of matched employer-employee data over the
period 1987-2013. Our model allows for structural changes in the parameters and we propose
a new parametrization for state transition probabilities. We develop a Classification Expectation
Maximization algorithm allowing to estimate a random component model for K = 14 worker types
and a classification of firms into L = 24 discrete groups. Our estimation algorithm works well and
is fast, despite the nonlinear specification of state transition probabilities.

Our estimates of unobserved worker and firm heterogeneity and structural parameters shows an
apparent disagreement in the way unobserved heterogeneity determines conditional mean wages,
on one hand, and, on the other hand, the idiosyncratic wage variance and the mobility parameters.
The strongest link is estimated for layoff rates and job finding probabilities for unemployed work-
ers. The parameters governing the way a worker of a given type values job types display a much
weaker link, and only at low tenure.

The joint distribution of match types shows evidence of moderate sorting. We measure sorting
as the correlation of the worker and firm components obtained from a linear projection of condi-
tional mean wages on worker and firm type dummies. Our estimates are around 25% and very
stable over the all period. We find that this correlation level is obtained at the first draw of a match
in workers’ careers. The moderate relationship between conditional mean wages and mobility pa-
rameters is only sufficient to maintain sorting at its initial level. There is no evidence of a strong
ladder effect. The main parameters here are the preference for the job, the sampling distribution of
firm types and the job finding rates of unemployed.

Finally, we estimate the log-wage decomposition. We estimate much more residual variance
than with the AKM model, and therefore a smaller contribution of worker effects. Sorting comes
next and its contribution is increasing over the period. The firm effect and the match effect have
similar, smaller contributions. The relative shares of worker, firm and sorting effects are consistent
with the estimates in Bonhomme et al. (2017) using Swedish matched employer-employee data.

What all this means is that the more precise description of wage and mobility that BLM’s
approach facilitates does not fundamentally upset the estimation of sorting that the AKM model
delivers. A 25% correlation is certainly not large. BLM estimate a larger correlation on Swedish
data but they only use two years of data, the bare minimum for identification. We could understand
such a small correlation for young workers, but most search-matching models would predict that
a stronger correlation should build after a while. Our estimates of the preference for a job (deter-
mining which of the current job and an alternative one a worker selects) are very weekly correlated
with mean wages (across match types), in particular for older workers. This implies that workers
tend to change employment for reasons that relate very little to productivity. Amenities, following
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one’s spouse, skill obsolescence may explain mobility at older age better. More work is needed to
understand what is determining employment mobility and how it relates to wages.
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Figure 10: Observed, initial and equilibrium sorting
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Figure 11: Sorting over the life cycle
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Figure 12: Non-employment and average firm location, 1990-92 cohort.
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Figure 13: Potent sources of sorting
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Figure 14: Ineffective sources of sorting
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Figure 15: No E-U transition δk` = 0
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Figure 16: Variance decomposition
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Figure 17: Variance decomposition of wage growth
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Table 6: Simulated log-wage variance decomposition

Components of explained variance
Date Experience Model Residual Explained Person Firm Sorting Match Obs. hetero. Correlation

variance variance effect effect effect var cov btw pe and fe

1987-89

<5 yrs

true 67.9 32.1 16.5 5.6 5.1 3.3 1.2 0.2 0.1 26.6
LPR 68.0 32.0 17.4 6.0 4.5 2.5 1.4 -0.1 0.2 22.2
AKM 53.2 46.8 35.2 10.5 -0.6 1.3 0.0 0.2 -1.4

BS 33.8

5-10 yrs

true 59.2 40.8 25.0 6.2 6.7 2.6 0.3 0.1 -0.2 27.1
LPR 59.0 41.0 24.5 7.0 6.8 2.4 0.4 0.0 -0.2 26.0
AKM 45.8 54.2 41.4 11.0 1.5 0.4 0.0 -0.2 3.6

BS 37.3

10-15 yrs

true 48.9 51.2 34.7 6.6 6.8 3.0 0.2 0.2 -0.3 22.4
LPR 48.9 51.1 34.1 7.1 7.1 2.7 0.3 0.1 -0.2 22.8
AKM 37.8 62.2 49.7 11.5 0.9 0.3 0.1 -0.3 1.9

BS 37.1

>15 yrs

true 37.5 62.6 43.6 6.1 7.8 5.3 0.1 -0.1 -0.2 24.0
LPR 38.3 61.7 42.7 7.2 7.9 4.2 0.1 -0.1 -0.2 22.5
AKM 30.0 70.0 59.1 12.2 -0.9 0.2 -0.2 -0.3 -1.7

BS 39.5

1999-01

<5 yrs

true 58.3 41.7 20.3 6.6 8.0 3.4 1.4 1.3 0.7 34.4
LPR 58.5 41.5 19.8 7.0 7.4 3.6 1.8 1.0 0.9 31.4
AKM 46.4 53.6 35.7 10.1 4.4 1.3 1.2 0.8 11.6

BS 40.8

5-10 yrs

true 55.1 44.9 25.5 5.9 8.4 2.4 1.1 1.2 0.5 34.1
LPR 55.4 44.6 25.3 6.0 8.0 2.3 1.4 1.0 0.6 32.5
AKM 43.9 56.1 39.1 9.3 5.0 1.1 1.2 0.5 13.0

BS 41.4

10-15 yrs

true 50.7 49.3 29.6 6.5 8.7 2.4 1.0 0.8 0.3 31.4
LPR 50.9 49.1 29.8 6.6 8.1 2.3 1.1 0.8 0.4 29.0
AKM 40.4 59.6 43.2 9.9 4.3 1.0 0.9 0.4 10.4

BS 42.8

>15 yrs

true 49.0 51.0 33.2 5.6 6.8 3.3 1.2 0.7 0.3 24.8
LPR 49.3 50.7 33.4 5.5 6.7 2.8 1.3 0.6 0.3 24.9
AKM 39.4 60.6 47.5 10.7 0.3 1.1 0.8 0.3 0.6

BS 36.4

2011-13

<5 yrs

true 36.9 63.2 41.4 5.6 7.4 8.0 3.0 -1.9 -0.4 24.2
LPR 38.8 61.2 40.6 5.9 6.7 7.2 2.6 -1.5 -0.2 21.6
AKM 33.4 66.6 58.3 10.0 -2.2 4.5 -4.7 0.8 -4.6

BS 44.9

5-10 yrs

true 43.9 56.1 34.0 5.6 7.5 8.1 1.6 -0.6 -0.1 27.4
LPR 45.0 55.0 33.4 6.1 7.6 7.0 1.6 -0.6 -0.1 26.8
AKM 33.0 67.0 54.9 11.3 0.7 1.4 -1.2 -0.2 1.4

BS 39.2

10-15 yrs

true 37.4 62.6 35.5 13.0 8.9 5.2 1.0 -0.8 -0.3 20.7
LPR 38.2 61.8 35.0 13.3 8.5 5.1 0.9 -0.7 -0.2 19.6
AKM 33.0 67.0 54.9 11.3 0.7 1.4 -1.2 -0.2 1.4

BS 54.7

>15 yrs

true 42.2 57.8 38.4 6.1 8.9 4.1 0.8 -0.5 0.0 28.9
LPR 42.6 57.4 38.1 6.6 8.6 3.8 0.8 -0.5 0.0 26.9
AKM 34.4 65.6 53.4 11.3 0.5 1.0 -0.6 -0.1 1.0

BS 47.5

Notes: The simulations involve 1,000,000 workers and 100,000 firms where K = 14,L = 24. The length of the panel
is 7 years. We run 10 simulations from the estimated model in steady state. “Model = true” is the infeasible variance
decomposition as if heterogeneity were observed. “Model = AKM” refers to (therefore misspecified) AKM estimates.
“Model = LPR” refers to our model. “Model = BS” refers to Borovičkovà and Shimer (2017)’s calculation of the
degree of sorting. We show the mean simulation. With such a big sample size, there is very little variance across
simulations. 41



APPENDIX

A Non-parametric identification

The basic linear algebraic tool for identification is the following lemma. Let there be two m× n

matrices A0 and A1 such that
A0 = G∆0F>, A1 = G∆1F>,

for two matrices G,F of dimensions m× k and n× k, and two diagonal k× k matrices ∆0,∆1.
Suppose that rank(A0) = k ≤ min(m,n). This implies that G and F have linearly independent
columns and that ∆0 is invertible. Let the Singular Value Decomposition (SVD) of A0 be A0 =

UΛV>, for two orthogonal matrices U,V of dimensions m× k and n× k, and an invertible k× k

diagonal matrix Λ.17

Two interesting results follow. Firstly,

U>A0V Λ−1 =U>G∆0F>V Λ−1 = Ik (identity matrix).

This implies that if we let W =U>G, then W−1 = ∆0F>V Λ−1. Secondly,

U>A1V Λ−1 =U>G∆1F>V Λ−1 =W∆1∆−1
0 W−1.

This shows that ∆1∆−1
0 is the diagonal matrix of the eigenvalues of U>A1V Λ−1, and that W is one

particular matrix of eigenvectors. If there are no multiple eigenvalues (all associated eigenspaces
have dimension one), W is unique up to a multiplication of its columns by non zero numbers.
If there are several such A1 matrices, the second step’s diagonalization becomes a simultaneous
diagonalization problem.

A.1 Identification of remaining parameters with observed firm types

We first consider the case where the firm type is observed.

A.1.1 One instrument, one wage, one job mobility

Assume that for each worker, we observe a set of characteristics z (gender, education, etc), the
employer’s type ` and the current wage w, as well as employment mobility at the end of the period

17The standard SVD has A0 =UΛV> where U is m×m orthogonal, Λ is rectangular diagonal m×n and V is n×n
orthogonal. If rank(A0) = k, then we extract from U and V the first k columns, and from Λ the first k rows and columns
(assuming this block contains the non zero singular values). Orthogonality of U and V means that U>U = V>V = Ik
(the identity matrix of size k).
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(either no mobility, or mobility to a firm of type `′). The worker type k is not observed. For
simplicity, we neglect the control x and we assume that all variables are discrete.

Identifying matrices

We start by building identifying matrices using the following assumption specializing Assumptions
1 and 2 to the current case.

Assumption 3. 1) p(`|z,k) = p(`|k); 2) p(w|z,k, `) = p(w|k, `); 3) p(`′|z,k, `,w) = p(`′|k, `).

The first condition states that z helps measuring k but does not predict the employer’s type ` given
k. The second condition states the same for the wage w given the match type (k, `) and z. The third
condition says that job-to-job mobility only depends on the current match type (k, `) and not on z

or the current wage w.
Under Assumption 3,

p(k,z, `,w) = p(k) p(z|k)p(`|z,k) p(w|z,k, `) = p(k) p(z|k) p(`|k) p(w|k, `).

Then summing p(k,z, `,w) over the unobserved worker type k,

p(z, `,w) = ∑
k

p(z|k) p(k, `) p(w|k, `), (13)

where p(k, `) = p(k) p(`|k). Define the matrices

P̀ = [p(z, `,w)]z×w, G = [p(z|k)]z×k, F̀ = [p(w|k, `)]w×k, ∆` = diag[p(k, `)],

where the subscript indicates which variable indexes rows and which variable indexes columns. It
follows from (13) that P̀ = G∆`F>` .

Next, consider the probability of z,w, ` and of moving to a firm of any type `′ at the end of the
period:

p(z, `,w, `′) = ∑
k

p(z|k) p(k, `) p(w|k, `) p(`′|k, `), (14)

where the probability of moving to a new job of type `′ is p(`′|z,k, `,w) = p(`′|k, `) by Assumption
3.

We can similarly define the matrices

P̀ `′ = [p(z, `,w, `′)]z×w, ∆``′ = diag[p(k, `, `′)],

with p(k, `, `′) = p(k, `) p(`′|k, `). Equation (14) implies that P̀ `′ = G∆``′F>`′ .
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Identification

We can then apply the lemma to our setup under the following assumption.

Assumption 4. 1) All matches form with positive probability: p(k, `) 6= 0 for all (k, `). 2) p(z|k)
and p(w|k, `) are linearly independent with respect to k given `. 3) No two groups of workers k

and k′ have the same transition probabilities: p(`′|k, `) 6= p(`′|k′, `) for some (`,`′). 4) Workers of

different type k have different distributions p(z|k) of observed characteristics z.

Condition 1 implies that matrix ∆` is non singular. It is a stronger assumption than necessary
which is made to simplify the argument. We could allow for different sets of matching k’s for each
`. Condition 2 guarantees that matrices G and F̀ are full-column rank. Both conditions together
guaranty that the matrices P̀ are full column rank.

We can then apply the identification lemma with A0 = P̀ and A1 = P̀ 1, ..., P̀ L, separately for
each initial employer type `. Let P̀ = U`Λ`V>` be the SVD of P̀ . The lemma shows that the ma-
trices U>` P̀ `′V`Λ−1

` , `′ = 1, ...,L, can be simultaneously diagonalized. The matrices of eigenvalues
are ∆``′∆−1

` = diag[p(`′|k, `)], which identifies transition probabilities. Under Condition 3 of As-
sumption 4 the entries of ∆``′∆−1

` are all distinct. The common matrix of eigenvectors W` is such
that

W` =U>` GD`, W−1
` = D−1

` ∆`F>` V`Λ−1
` ,

for some non singular diagonal matrix D`. Hence, GD` is identified, and as the rows of G sum to
one because p(z|k) is a probability, it follows that the matrix D` is identified from the sum of the
rows of U`W`. In the same way, ∆`D−1

` is also identified, hence ∆`, that is p(k, `) for all k. The
identification of G and F̀ immediately follows.

Finally, note that we have proceeded separately for workers employed in different sectors `.
This means that the classification of workers is contingent on the type of the first period’s employer.
One can identify worker groups across employer types ` if the distributions of observed types z vary
across worker groups k (Assumption 4, Condition 4).

Wrapping up, if the distributions of observed worker characteristics and wages are sufficiently
“rich” to differentiate worker types, and if the worker classification is minimal in the sense that
no two groups are observationally identical and no group is degenerate (probability zero), then
one wage observation and one job mobility are enough to identify the model when firm types are
observed. If there are too few observed characteristics, say only gender, then the matrix G will not
be full column rank for K > 2 and we shall need more information, such as two wage observations.

A.1.2 One job mobility, two wages

If there are no or insufficiently many observed worker characteristics, let us consider two consec-
utive periods of time, in which we observe the worker’s wages and both employers’ types. We
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now offer a simple proof of identification for this case that differs from BLM’s in that we use both
stayers and movers, and we consider the possibility of a mobility in the same job class (from ` to
`).18

Identifying matrices

We can proceed as in the previous subsection and build identifying matrices under a similar spe-
cialization of Assumptions 1 and 2.

Assumption 5. 1) p(`|z,k) = p(`|k); 2) p(w|z,k, `) = p(w|k, `); 3) p(`′|z,k, `,w) = p(`′|k, `); 4)

p(w′|z,k, `,w, `′) = p(w′|k, `′).

Assumption 5 adds to Assumption 3 the Condition 4, which is a conditional independence assump-
tion stating that wages only depend on the current match type.

First, consider the probability of wages w and w′ in periods 1 and 2 in the same firm of type `

(no job mobility is denoted as ¬):

p(`,w,¬,w′) = ∑
k

p(k, `) p(w|k, `) p(¬|k, `) p(w′|k, `),

where p(¬|k, `) = 1−∑`′ p(`′|k, `) is the probability of staying with the same employer given (k, `).
Let

F̀ = [p(w|k, `)]w×k, ∆` = diag[p(k, `,¬)],

with p(k, `,¬) = p(k, `) p(¬|k, `). We have P` = [p(`,w,¬,w′)]w×w′ = F̀ ∆`F>` .
Second, consider the probability of wages w and w′ in periods 1 and 2 with a job mobility from

` to `′:
p(`,w, `′,w′) = ∑

k
p(k, `) p(w|k, `) p(`′|k, `) p(w′|k, `′).

Denoting ∆``′ = diag[p(k, `, `′)], with p(k, `, `′) = p(`′|k, `) p(k, `), we have

P̀ `′ = [p(`,w, `′,w′)]w×w′ = F̀ ∆``′F
>
`′ .

Identification

Now let us update Assumption 4 as follows.

Assumption 6. 1) p(k, `) 6= 0 for all (k, `). 2) p(w|k, `) is linearly independent with respect to k

given `. 3) For all (k, `), no mobility is always possible: p(¬|k, `) 6= 0. 4) For all (k,k′) there exists

` such that p(`|k,`)
p(¬|k,`) 6=

p(`|k′,`)
p(¬|k′,`) .

18BLM’s proof only uses job-to-job transitions and relies on the existence of some special, “alternating” job paths.
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Under Conditions 1 and 3, ∆` is non singular for all `. Under Condition 2, F̀ is full-column
rank. For the SVD P` =U`Λ`U>` , let W` = Λ−1/2

` U`F̀ ∆1/2
` . Then

W−1
` = ∆1/2

` F>` U>` Λ−1/2
` .

It also holds that
Λ−1/2
` U`P̀ `U>` Λ−1/2

` =W`∆
−1
` ∆``W−1

` .

Assuming that the entries of ∆−1
` ∆`` = diag[p(`|k, `)/p(¬|k, `)] are all distinct (Condition 4), any

matrix of eigenvectors is thus of the form

W` = Λ−1/2
` U`F̀ ∆1/2

` D`, W−1
` = D−1

` ∆1/2
` F>` U>` Λ−1/2

` ,

for a non singular diagonal matrix D`. Since the rows of F̀ sum to one, then ∆1/2
` D` and ∆1/2

` D−1
`

are both identified. Hence ∆` is identified, and so are D` and F̀ .

Now, having proceeded independently for each firm type `, how do we know that the worker
group k that we have thus labelled for firm type ` corresponds to the worker group k′ that we have
thus labelled for firm type `′? Take matrix P̀ `′ corresponding to a job mobility from ` to `′. We
know that P̀ `′ = F̀ ∆``′F>`′ with ∆``′ diagonal. So given arbitrarily chosen worker-group labels for
` and `′ one should relabel worker groups for `′ (say) by reordering the columns of F̀ ′ so that
F+
` P̀ `′F+

`′ = ∆``′ is a diagonal matrix (denoting A+ = (A>A)−1A> for any full column rank matrix
A).

Finally diag[p(k, `)] = ∆`+∑`′ ∆``′ is also identified.

A.2 Identification of firm types from a cross-section of wages

Suppose that for each firm j we observe a set of characteristics ζ j and two independent wages
w j1,w j2. Moreover, suppose that for firms as for workers wages are independent of independent
of observed types ζ j given ` j. Then, assuming independent wage draws given firm type, we can
identify the proportion of each firm type, and the distributions of observed firm characteristics and
wages given firm types.

More precisely let us make the following assumption. Let q denote probability distributions
across firms.

Assumption 7. 1) Within a given firm of type (`,ζ ), the distribution of wages given (`,ζ ) is inde-

pendent of ζ . 2) Wages are mutually independent given `. 3) The distribution of ` is not degenerate

(q(`) 6= 0 for all `).
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Under this assumption, we can write the probability of (w1,w2) as

q(w1,w2) = ∑̀q(`)q(w1|`)q(w2|`)

and the probability of (w1,w2,ζ ) as

q(w1,w2,ζ ) = ∑̀q(`,ζ )q(w1|`)q(w2|`).

Per se ζ does not identify the firm classification. For example, suppose that we have manufacturing
and services and public and private firms. We can classify firms into two groups by clustering
them by their public/private status, or by industry. However, observable firm heterogeneity helps
building matrices of moments with a common algebraic structure. Specifically, Pζ = [q(w1,w2,ζ )]

, w1 in rows and w2 in columns, can be factored as Pζ = F∆ζ F>, for F = [q(w|`)] and ∆ζ =

diag[q(`,ζ )]. Because q(`) = ∑ζ q(`,ζ ) 6= 0 by assumption, the identification lemma identifies
∆ζ ∆−1

ζ0
= diag[q(ζ |`)]. Finally, using a similar argument as above, the matrix of eigenvectors,

together with the fact that q(w|`) is a probability and sums to one, identifies both conditional wage
distributions F and type probabilities q(`).

If we do not observe firm characteristics, a third wage observation is necessary to identify q(`)

and q(w|`). And if we observe many wages per firm, then the posterior probability of firm type will
precisely estimate the unobserved firm type. In this paper, we thus follow BLM’s idea of classifying
firms into distinct groups, using the employees’ wages and other observed firm characteristics,
while leaving worker types random. However, we shall iterate an algorithm that estimates the model
first given a current firm classification, and then proceeds to an improved firm re-classification.

B The CEM principle

Given the statistical model which generates a set X of observed data, a set of two unobserved latent
data or missing values E,F , and a vector of unknown parameters β , along with a likelihood function
p(X ,E,F |β ), the maximum likelihood estimate (MLE) of the unknown parameters is determined
by the marginal likelihood of the observed data

p(X |β ) = ∑
E,F

p(X ,E,F |β ).

In our application E and F are two discrete variables: E is the set of worker types and F is the set of
employer types (E for employee and F for firm). However, because different workers can be in the
same firm at different periods of time, the summation over F can be extremely costly to compute
and not even feasible. So instead we treat F as a parameter (a set of firm fixed effects) and we seek
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to maximize the conditional likelihood

p(X |F,β ) = ∑
E

p(X ,E|F,β ),

with respect to β and F . For this we use the following Classification Expectation Maximization
(CEM) algorithm (not quite like the one in Celeux and Govaert, 1992, but related).

For a given value F(s), we run a standard EM algorithm treating F(s) as data. The EM algorithm
consists of applying the following two steps iteratively:

Expectation step (E step): Calculate the expected value of the log likelihood function, with
respect to the conditional distribution of E given X ,F(s) under the current estimate of the parameters
β (m):

Q(β |β (m),X ,F(s)) = ∑
E

p(E|X ,F(s),β (m)) ln p(X ,E|β ,F(s)),

where
p(E|X ,F,β ) =

p(X ,E|F,β )
∑E p(X ,E|F,β )

.

Maximization (M step): Find

β
(m+1) = argmax

β

Q(β |β (m),X ,F(s)).

The EM algorithm delivers a sequence of parameter values that increases the likelihood

p(X |F(s),β ) = ∑
E

p(X ,E|F(s),β ).

To see this, write the log likelihood of the data by,

ln p(X |F,β ) = ln p(X ,E|F,β )− ln p(E|X ,F,β ).

Then multiplying both sides by p(E|X ,F(s),β (m)) and summing over E,

ln p(X |F(s),β ) = ∑
E

p(E|X ,F(s),β (m)) ln p(X ,E|F(s),β )

−∑
E

p(E|X ,F(s),β (m)) ln p(E|X ,F(s),β )

= Q(β |β (m),X ,F(s))+H(β |β (m),X ,F(s)).

By Gibbs’ inequality H(β |β (m),X ,F)]≥H(β (m)|β (m),X ,F). Hence, Q(β |β (m),X ,F(s))+H(β (m)|β (m),X ,F(s))

is a minorization of ln p(X |F(s),β ) in the point β (m), and improving Q(β |β (m),X ,F(s)) over Q(β (m)|β (m),X ,F(s))
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improves p(X ,F(s)|β ) relative to p(X ,F(s)|β (m)).
This is well known. Let β̂ (s) denote the estimate obtained from F(s). One can let the EM algo-

rithm increase the likelihood L(β ,F(s)|X) until convergence or stop after any number of iterations.
We then update F(s) as follows.

Classification step (C step): Find

F(s+1) = argmax∑
E

p(E|X ,F(s), β̂ (s)) ln p(X ,E|F, β̂ (s)).

By the same argument as before

ln p(X |F,β ) = ∑
E

p(E|X ,F(s),β ) ln p(X ,E|F,β )−∑
E

p(E|X ,F(s),β ) ln p(E|X ,F,β ).

Therefore, improving ∑E p(E|X ,F(s), β̂ (s)) ln p(X ,E|F, β̂ (s)) delivers F(s+1) such that

p(X |F(s+1), β̂ (s))> p(X |F(s), β̂ (s))> p(X |F(s), β̂ (s−1)).

The sequence (β (s),F(s)) delivers an increasing sequence of (p(X |F(s),β (s)) that converges to
a local maximum of p(X |F,β ). This CEM algorithm is essentially like a sequential EM algorithm
where β is updated given F and then F given β .

C Parametric identification of transition probabilities

We show that the parameters λk`,νk`′,γk` are identified given Mk``′ = λk`νk`′
γk`′

γk`+γk`′
for `,`′ =

1, ...,K. Let us omit the index k to simplify the notation.
We have M`` =

1
2λ`ν`, which identifies λ` given ν`. Moreover,

M``′

2M``
=

ν`′

ν`

γ`′

γ`+ γ`′
,

M`′`

2M`′`′
=

ν`

ν`′

γ`

γ`+ γ`′
,

which identifies the parameter ratios γ`
γ`′

and ν`
ν`′

from the two ratios of transition probabilities M``′
2M``

and M`′`
2M`′`′

. Note that

r``′ ≡
1−
√

1− M``′
M``

M`′`
M`′`′

1+
√

1− M``′
M``

M`′`
M`′`′

=
γ`+ γ`′−|γ`− γ`′|
γ`+ γ`′+ |γ`− γ`′|

=
min{γ`,γ`′}
max{γ`,γ`′}

.

We would like to know which of γ`,γ`′ is the min and which is the max. If we knew the ordering
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of (γ`) then we could transform r``′ so as r``′ =
γ`
γ`′

, and the normalization ∑` γ` = 1 would identify
each γ` precisely. Unfortunately, we do not know a priori the ordering of (γ`).

Note first that r``′ =
γ`
γ`′

for all `,`′ implies that r`′`′′ = r``′′/r``′ for all `,`′, `′′. However, suppose
that γ2 < γ1 < γ3. Then r12 =

γ2
γ1
,r13 =

γ1
γ3

and r23 =
γ2
γ3

. Hence, r23 = r13× r12. If we change r13

into 1/r13 then the ratios are again consistent. The following algorithm does that for all `.

For i = 2 : L

For j = 3 : L

If r1 j
r1i

/∈
{

ri j,
1

ri j

}
then r1 j← 1

r1 j

If r1 j
r1i

= 1
ri j

then ri j← 1
ri j

end

end

end

This algorithm guaranties that r``′ =
γ`
γ`′

for all `,`′ or r``′ =
γ`′
γ`

for all `,`′.
Second, assume that r``′ =

γ`
γ`′

. Then

L

∑
`′=1

1
r``′

=
1
γ`
,

and γ` =
(

∑L
`′=1

1
r``′

)−1
. Moreover,

ν` =

(
L

∑
`′=1

M``′

2M``

γ`+ γ`′

γ`′

)−1

.

If instead r``′ =
γ`′
γ`

then

γ̃` =

(
L

∑
`′=1

1
r``′

)−1

∝
1
γ`

and

ν̃` =

(
L

∑
`′=1

M``′

2M``

γ̃`+ γ̃`′

γ̃`′

)−1

∝ v`γ`.

Hence, if M``′
2M``

=
ν`′
ν`

γ`′
γ`+γ`′

, then there is an equivalent parametrization M``′
2M``

=
ν̃`′
ν̃`

γ̃`′
γ̃`+γ̃`′

with γ̃` ∝
1
γ`

and ṽ` ∝ v`γ`. For each solution (λ`,ν`,γ`) there is an observationally equivalent one (λ̃`, ν̃`, γ̃`)∝(
λ`
γ`
,v`γ`, 1

γ`

)
, where ∝ means that second and third components must be normalized so as to sum

to one. One additional normalization is required to determine which of the two solutions is the
right one. For example, one may prefer ex ante that γ` be increasing.
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D An MM algorithm for the M-step update of transition prob-
abilities

In the M-step of the EM algorithm, we maximize the part of the expected likelihood that refers to
transitions, i.e.

H(M|β (m))≡
K

∑
k=1

L

∑̀
=0

{
nk`¬(β

(m)) lnMk`¬+
L

∑
`′=0

nk``′(β
(m)) lnMk``′

}
,

where Mk`¬ ≡M(¬|k, `),Mk``′ ≡M(`′|k, `), and

nk`¬(β
(m)) = ∑

i
pi(k|β (m))#{t : Dit = 0, `it = `,xit = x} ,

nk``′(β
(m)) = ∑

i
pi(k|β (m))#

{
t : Dit = 1, `it = `,`i,t+1 = `′,xit = x

}
,

where #{} denotes the cardinality of a set and where we reintroduce the control xit = x to remind
that we are estimating different parameters for all different control values x.

Parameters ψk` (job finding rate for unemployed) are thus updated as

ψ
(m+1)
k` =

nk0`(β
(m))

nk`¬(β (m))+∑L
`′=1 nk0`′(β (m))

.

The rest of the likelihood is similar to the likelihood of a Bradley-Terry model except that when
the incumbent firm ` wins we do not know against which `′. The likelihood is thus rendered
more nonlinear by the presence of the term in lnMk`. An MM algorithm can still be developed as
follows.19

Because the logarithm is concave, we can minorize M(¬|k, `)≡Mk`¬ as follows. With obvious

19The MM algorithm works by finding a function that minorizes the objective function and that is more easily
maximized. Let f (θ) be the objective concave function to be maximized. At the m step of the algorithm, the constructed
function g(θ |θm) will be called the minorized version of the objective function at θm if

g(θ |θm)≤ f (θ),∀θ , and g(θm|θm) = f (θm).

Then, maximize g(θ |θm) instead of f (θ), and let θm+1 = argmaxθ g(θ |θm). The above iterative method guarantees
that f (θm) converges to a local optimum or a saddle point as m goes to infinity because

f (θm+1)≥ g(θm+1|θm)≥ g(θm|θm) = f (θm).
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notations, for `= 1, ...,L,

lnMk`¬ = ln

(
1−δk`−λk +λk

L

∑
`′=1

ν`′(1−Pk``′)

)

≥
1−δ

(s)
k` −λ

(s)
k

M(s)
k`¬

ln

(
1−δk`−λk

1−δ
(s)
k` −λ

(s)
k

M(s)
k`¬

)

+
L

∑
`′=1

λ
(s)
k ν

(s)
`′ (1−P(s)

k``′)

M(s)
k`¬

ln

(
λkν`′(1−Pk``′)

λ
(s)
k ν

(s)
`′ (1−P(s)

k``′)
M(s)

k`¬

)
.

Note that both sides of the inequality are equal if (λk,ν`′,γk`) = (λ
(s)
k ,ν

(s)
`′ ,γ

(s)
k` ) (no parameter

change).
Let

ñ(s)k``′ = nk`¬
λ
(s)
k ν

(s)
`′ (1−P(s)

k``′)

M(s)
k`¬

,

where nk`¬ is implicitly a function of β (m). We omit this reference in the rest of this subsection.
This is the predicted fraction of stayers such as home beats visitor `′. Given initial values λ (s),ν(s)

one can update γ(s) so as to maximize

K

∑
k=1

L

∑̀
=1

L

∑
`′=1

{
ñ(s)k``′ ln

γk`

γk`+ γk`′
+nk``′ ln

γk`′

γk`+ γk`′

}
,

subject to the normalization ∑L
`=1 γk` = 1.20 Now, because

− ln(γk`+ γk`′)≥ 1− ln(γ(s)k` + γ
(s)
k`′ )−

γk`+ γk`′

γ
(s)
k` + γ

(s)
k`′

(see Hunter, 2004), we can instead maximize

K

∑
k=1

L

∑̀
=1

(
L

∑
`′=1

(ñ(s)k``′+nk`′`)

)
lnγk`−

K

∑
k=1

L

∑̀
=1

L

∑
`′=1

(
(ñ(s)k``′+nk``′)

γk`+ γk`′

γ
(s)
k` + γ

(s)
k`′

)
.

That is (taking special care to indices), for `= 1, ...,L,

γ
(s+1)
k` ∝

(
L

∑
`′=1

(ñ(s)k``′+nk`′`)

)[
L

∑
`′=1

ñ(s)k``′+nk``′+ ñ(s)k`′`+nk`′`

γ
(s)
k` + γ

(s)
k`′

]−1

,

20Notice that for ` = `′ = 0, we have an extra contribution of (ñ(s)k00 + nk00) ln 1
2 , but it does not matter because it is

independent of parameters.
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where X` ∝ Y` means X` = Y`/∑`Y`, that is γ
(s+1)
k` should sum to one over `= 1, ...,L.

Update δ (s),λ (s) by maximizing

K

∑
k=1

L

∑̀
=1

((
nk`¬

1−δ
(s)
k` −λ

(s)
k

M(s)
k`

)
ln(1−δk`−λk)

+nk`0 lnδk`+
L

∑
`′=1

(
ñ(s)k``′+nk``′

)
lnλk

)
.

Let, for k = 1, ...,K,

λ
(s+1)
k =

[
L

∑̀
=1

L

∑
`′=1

(
ñ(s)k``′+nk``′

)][ L

∑̀
=1

[
nk`0 +nk`¬

1−δ
(s)
k` −λ

(s)
k

M(s)
k`

+
L

∑
`′=1

(
ñ(s)k``′+nk``′

)]]−1

,

δ
(s+1)
k` =

(
1−λ

(s+1)
k

)
nk`0

[
nk`¬

1−δ
(s)
k` −λ

(s)
k

M(s)
k`

+nk`0

]−1

.

Finally update ν(s) by maximizing

L

∑
`′=1

[
K

∑
k=1

L

∑̀
=1

(
ñ(s)k``′+nk``′

)]
lnν`′ s.t.

L

∑
`′=1

ν`′ = 1.

That is

ν
(s+1)
`′ ∝

K

∑
k=1

L

∑̀
=1

[
ñ(s)k``′+nk``′

]
, `′ = 1, ...,L.

For a given value of β (m), the sequence (H(M(s)|β (m))), driven by the sequence (ψ(m+1), δ (s),
λ (s),ν(s),γ(s)), is increasing. The MM algorithm can thus be stopped at any time, not only after con-
vergence, to deliver the updated values of transition parameters, (ψ(m+1), δ (m+1),λ (m+1),ν(m+1),γ(m+1)).

E Numerical implementation

The implementation of the estimation allows the estimation to be scaled up to larger data sets by ex-
pansion of the number of CPUs in the computing cluster. The following describes how the storage
and computation requirements of the estimation are delegated across CPUs in a parallel computing
environment. The coding is done in Fortran and parallelization is performed with OpenMPI.
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E.1 Data structure

The Danish Matched Employer-Employee (MEE) data comprise I = 4,000,000 workers and J =

400,000 firms observed at a weekly frequency from 1985 to 2013. The fundamental observation in
the data is a spell (either employment or non-employment).

A worker history consists of a series of employment and unemployment spells. It is stored as a
linked list. Each object in the list is a spell. The spell object contains,

• Start and end weeks of the spell.

• ID’s of the worker and firm (unemployment has firm ID 0).

• A vector of wage observations for each year of the spell.

• Pointers to the previous and next spell in the worker’s history.

• Pointers to the previous and next spell in the firm’s spell list (unlike the worker’s linked list,
the firm list is not necessarily chronological).

In addition, the data structure holds the observable characteristics of each worker and firm separate
from the list of spells. The worker i object holds the worker’s observable characteristics (gender,
education, birth year, year of entry into labor market, etc) as well as pointers to the first and last
spells in the worker’s labor history. The firm j object holds observable characteristics (public-
private) and pointers to the first and last spell in its list of spells. The firm j = 0 list holds all the
non-employment spells in the data.

The data storage is divided across CPUs so that each CPU holds its own subset of worker
histories. Denote by ιc the set of worker IDs assigned to CPU c. Each CPU holds the entire set of
firms, but CPU c’s list of employment spells in firm j consists only of those that are contributed by
workers in the subset ιc.

The Danish MEE data set is relatively small by international comparison (by the small size
of the Danish population). Nevertheless, it does place significant demands on computer memory.
Needless to say, this issue only becomes more acute for MEE data from larger countries. It is a
virtue of the code that the memory requirement associated with each CPU is roughly 1/C of the
total size of the data given a total of C CPUs. Thus, the memory pool available to the estimation
is the combined memory of the nodes in the cluster, which is trivially scaled up by adding more
nodes. This opposed to a data structure where each CPU holds the entire data set, which would
place heavy memory requirements on multi-CPU nodes.
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E.2 E-step

E.2.1 Likelihood evaluation for a given (β ,L ).

Each CPU holds its own copy of the firm classification, L . With this, CPU c evaluates Li(β ,L ) =

∑K
k=1 Li(k;β ,L ) for any i ∈ ιc by walking through the worker i linked list of spells. CPU c calcu-

lates Lc = ∑i∈ιc lnLi(β ,L ). The likelihood of the data is then found by summing Lc across CPUs,
L(β ,L ) = exp

(
∑C

c=1 Lc) . This is a modest communication of a single double precision number
across the C CPUs. The calculation of the overall likelihood is not necessary for the execution
of the E-step, but serves as useful check that the algorithm is indeed proceeding to increase the
likelihood in each iteration.

E.2.2 Worker posterior update for a given (β ,L ).

CPU c updates worker posteriors for all i∈ ιc by, pi(k;β ,L ) = Lk(k;β ,L )/Li(β ,L ). No commu-
nication across CPUs is necessary for this and CPU c knows only the posteriors for workers i ∈ ιc.
Nowhere in the CEM algorithm does CPU c need to know the worker posterior for workers outside
ιc. This is a significant savings in communication which would otherwise involve a communication
of I×K double precision numbers across the C CPUs in each E step.

E.3 M step

The M step uses the updated posterior pi(k;β ,L ) from the E step. Each part of the M step requires
only modest communication between nodes.

E.3.1 πk(z) update for given (β ,L ).

With the worker posteriors in hand CPU c calculates πk,c(z) = ∑i∈ιc pi(k;β ,L )1{zi = z}, which
is communicated across the CPUs. This is a K×Z dimension double precision array communica-
tion across C CPUs where each CPU receives ∑C

c=1 πk,c(z).21 Each CPU then calculates πk(z) =

∑C
c=1 πk,c(z)/

[
∑K

k=1 ∑C
c=1 πk,c(z)

]
.

E.3.2 mk`(x) update for given (β ,L ).

CPU c calculates mk`,c(x) = ∑i∈ιc pi(k;β ,L )1{xi1 = x, `i1 = `}, which is communicated across the
CPUs with each CPU receiving ∑C

c=1 mk`,c(x). This is a K×L×Xini double precision array where
Xini is the number of x categories in the initial distribution. Each CPU then calculates mk`(x) =

∑C
c=1 mk`,c(x)/

[
∑L
`=1 ∑N

n=1 mk`,c(x)
]
.

21Using mpi_allreduce.

55



E.3.3 Wage parameters for given (β ,L ).

CPU c calculates µk`,c(x)=∑i∈ιc pi(k;β ,L )∑T
t=1 1{`it = `,xit = x}wit and dk`,c(x)=∑i∈ιc pi(k;β ,L )∑T

t=1 1{`it =

`,xit = x}. These 2 K× L×X arrays are communicated across CPUs to form ∑C
c=1 µk`,c(x) and

∑C
c=1 dk`,c(x), where X is the number of relevant x categories for the wage parameters as well as γ

and λ mobility parameters. Each CPU proceeds to calculate µk`(x) = ∑C
c=1 µk`,c(x)/∑C

c=1 dk`,c(x).
Moving to the variance, CPU c calculates σk`,c(x)=∑I

i=1 pi(k;β ,L )∑T
t=1 1{`it = `,xit = x}[wit−

µk`(x)]2. The K×L×X array is communicated across CPUs to form ∑C
c=1 σk`,c(x). Each CPU cal-

culates σk`(x) =
√

∑C
c=1 σk`,c(x)/∑C

c=1 dk`,c(x).

E.3.4 Mobility parameters for given (β ,L ).

Running through worker spell lists, each CPU calculates mobility counts,

nk`,c(x) = ∑
i∈ιc

pi(k;β ,L )#{t : Dit = 0, `it = `,xit = x}

and
nk``′,c(x) = ∑

i∈ιc

pi(k;β ,L )#
{

t : Dit = 1, `it = `,`i(t+1) = `′,xit = x
}
.

These two integer arrays (of size K×(L+1)×X and K×(L+1)2×X , respectively) are communi-
cated across CPUs to form nk`(x) = ∑C

c=1 nk`,c(x) and nk``′(x) = ∑C
c=1 nk``′,c(x). With these counts

each CPU updates γk`(x), λ`(x) and ν`(x) according to section D.

E.4 C step

The C-step reassigns firm types in such a way as to increase the value of the expected log likelihood
function, thereby increasing the likelihood of the data. The C step can be viewed as a simple exten-
sion of the M step where the firm classification is just another set of parameters to be chosen so as
to improve on the expected log likelihood. While the M step requires very modest communication,
the C-step does involve J separate communications of size L arrays within the cluster. This is a
significant communication load and consequently, it is advantageous to do multiple EM iterations
between C steps.

The firm IDs have been chosen so that firms are ordered by size ( j = 1 is the largest firm where
size is the number of wage observations throughout the panel). The algorithm reassigns firm type
j by,

`
(s+1)
j = argmax

`

I

∑
i=1

K

∑
k=1

pi(k; β̂
(s),L (s)) lnLi(k; β̂

(s),L
(s)
− j (`)), (15)
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where L
(s)
− j (`) is the firm classification that is obtained by taking the L (s) classification where all

firm types j′ = 1, . . . , j−1 have already been reassigned, and furthermore replace the j’th element
with `. Do the reassignment in order. This step increases the expected log likelihood.

Done naively, the step is expensive since it involves L×J expected likelihood evaluations of the
data. But the expected log likelihood varies with firm j’s type only through the spells that directly
involve firm j and through firm j’s type’s impact on the q(`,L (s)

− j (`)) distribution. The latter does
involve all spells but in a way that allows simplification. Define by Ω(L ), the contribution to the
expected log likelihood from the q(·|L ) related terms,

Ω(β ,L ) = −
I

∑
i=1

K

∑
k=1

pi(k;β ,L )

[
lnq(`i1|L )+

T

∑
t=1

Dit lnq(`i(t+1)|L )

]

Define,

nq
`(L ) =

I

∑
i=1

[
1{`i1 = `}+#

{
t : Dit = 1, `i(t+1) = `

}]
with which we can write,

Ω(β ,L ) = −
L

∑̀
=1

lnq(`|L )nq
`(L ).

It is worth noting that another way of calculating Ω is by adding up spells at the firm level. Denote
by n̂ j the number of employment spells in firm j,

n̂ j =
I

∑
i=1

[
1 [ j(i,1) = j]+

T

∑
t=1

1 [Dit = 1, j(i, t +1) = j]

]
.

with this, Ω can be written as,

Ω(β ,L ) = −
L

∑̀
=1

lnq(`|L )
J

∑
j=1

n̂ j1
[
` j = `

]
=−

L

∑̀
=1

lnq(`|L )n̂(`|L ),

where the number of spells in type ` firms is,

n̂(`|L )≡
J

∑
j=1

n̂ j1
[
` j = `

]
. (16)

This firm-centric formulation of Ω is the preferable one for the firm reclassification algorithm.
Continuing the firm-centric formulation of the log-likelihood, denote by ι( j) = {(i, t) | j(i, t) =

j}, that is, all worker-time pairs with firm j. We can then write the the firm j classification update
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as,

`
(s+1)
j = argmax

`

[
∑

(i,t)∈ι( j)

K

∑
k=1

pi(k; β̂
(s),L (s))×

[
fk`(wit |xit)+

(1−Dit) lnMk`it (xit)+Di(t−1) lnMk`i(t−1)`+Dit lnMk``i(t+1)

]
+Ω(β ,L

(s)
− j (`))

]
. (17)

The algorithm is then as follows:

1. The firm j spell counts, n̂ j, are determined at the outset of the overall estimation where all
processors count how many spells they each have for each given firm j. n̂ j is then found by
a communication of a size J integer vector across all processors. Furthermore, the firm IDs
j = 1, . . . ,J, are ordered by firm size - specifically the size of ι( j). These steps are not done
in the C-step but rather just once at the outset of the full CEM algorithm.

2. The firm classification at the outset of the C-step is L (s). Denote by L (s),0 = L (s), where
L (s), j is the firm classification in the jth substep of the C-step. Initialize the C-step by the
determination of n̂(`|L (s)) by equation (16).

3. Take firm j = 1. Find the optimal firm type for firm j according to equation (17) and firm
classification L (s), j−1. The (i, t) pairs in ι( j) are by the data delegation spread out across
different CPUs. Each CPU evaluates the summation in equation (17) for its own (i, t) pairs
for each firm type `= 1, . . . ,L. The data structure has for each firm defined a linked list of its
spells held by CPU c, which allows quick within CPU evaluation of each CPU’s contribution
to equation (17). The full sum for each ` is then obtained by a summation across all CPUs
to the master process. This is a communication of an L size array from each node to the
master node. The master process resolves the maximization problem in equation (17), and
communicates the optimal firm type `

(s+1)
j to all CPUs, a single integer.

4. Update the firm classification L (s), j = L
(s),( j−1)
− j (`

(s+1)
j ). Thus, as the algorithm steps

through j = 1, . . . ,J, the firm classification is updated sequentially with a new firm type
for firm j. Also, update n̂ j(`) = n̂(`|L (s), j) and the type frequencies q(`|L (s), j). This is
done by the simple algorithm (stated just for n̂ j)

(a) If `(s+1)
j = `

(s)
j then n̂ j(`) = n̂( j−1)(`) for all `.

(b) Else, n̂ j(`
(s+1)
j ) = n̂( j−1)(`

(s+1)
j )+ n̂ j and n̂ j(`

(s)
j ) = n̂ j−1(`

(s)
j )− n̂ j. For all other firm

types, n̂ j(`) = n̂( j−1)(`).

5. loop back to step 3 for next j. Exit when j = J is completed. Denote by L (s+1) = L (s),J.
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