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Abstract

Nowadays, a common practice to forecast integrated variance is to do

simple OLS auto-regressions of the observed realized variance data. How-

ever, non-parametric estimates of the tail index of this realized variance

process reveal that its second moment is possibly unbounded. In this case,

the behavior of the OLS estimators and the corresponding statistics are

unclear. We prove that when the second moment of the spot variance

is unbounded, the slope of the spot variance’s auto-regression converges

to a random variable when the sample size diverges. Likewise, the same

result holds when one consider either integrated variance’s auto-regression

or the realized variance one. We also characterize the connection between

these slopes whether the second moment of the spot variance is finite or

not. Our theory also allows for a nonstationary spot variance process.

We derive the results for the case of several lags in the auto-regressions

and multifactor volatility process. A simulation study corroborates our

theoretical findings.
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1. Introduction

In this paper, we are interested in using high frequency based measures to forecast

future variance. A common practice is to approximate the latent daily integrated

variance by high-frequency based realized measures like realized variance (Andersen

et al. (2001)) or robust-to-noise measures (Zhang et al. (2011); Barndorff-Nielsen

et al. (2008); Jacod et al. (2009)) and then estimate by OLS a simple auto-regressive

regression of this realized measures to get a forecast of the integrated variance. This

auto-regressive regression is often misspecified because the dynamics of the integrated

variance is more complex. For instance, if the true instantaneous (or spot) variance

is a square-root process, then the integrated and realized variances are ARMA (1,1)

processes (Barndorff-Nielsen and Shephard (2002), Meddahi (2003)). Still, even if

the auto-regression model is misspecified, it provides a very accurate forecast be-

cause integrated variance as well as high-frequency realized measures are persistent

and therefore few lags are sufficient to predict well future volatility (Andersen et al.

(2004)).

On the other hand, the GARCH era (Engle (1982), Bollerslev (1986)) based on

parametric models of daily data provides very useful information about the variance

process. One of them which is a primary interest in this paper is fat tails. When

one estimates a daily GARCH model on stock returns and exchange rates, one often

finds that the returns’ fourth moment is not bounded or close to be unbounded. If

the fourth moment of the returns is unbound, then the second moment of the daily

realize variance defined as the sum of intra-daily squared returns is also unbounded.

Consequently, the interpretation of the auto-regressive regression and the OLS esti-

mation are questionable. Likewise, the delivered forecast and all the statistical tools

used to assess the quality of the forecast could be not valid. Note also that the same

concerns are in place when the fourth moment of the returns is close to be unbounded,

that is traditional statistical tools are less reliable when for instance the fifth or sixth

moment of the returns is unbounded.

The doubt about the finiteness of the fourth moment of the returns is based

on a parametric model of the volatility. In contrast, an important contribution of

the high-frequency volatility literature is that the availability of a lot of information

allows one to get non-parametric measures of the variance and therefore get rid of
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these volatility parametric models. It is therefore necessary to assess the finiteness

of the second moment of realized measures in a non-parametric way. The solution

hinges on a non-parametric estimation of the tail index. We use the Hill’s (1975)

estimator to our data and we get the same result.

Observe that when one considers a continuous time model without jumps and

without market microstructure noise, the fourth moment of the intra-day returns is

unbounded if and only if the second moment of the instantaneous variance is infinite.

In this paper, we revisit the results about the auto-regressive regression of the

variance process like Andersen et al. (2004) when the second moment of the spot

variance is possibly unbounded, implying that the second moment of integrated and

realized variances are unbounded. We also allow for nonstationary stochastic volatility

models. When the instantaneous variance is either stationary with an unbounded

second moment or nonstationary, then the results in Andersen et al. (2004) are no

more valid because one cannot compute population auto-regression parameters.

We consider empirical regressions instead of population regressions. More pre-

cisely, we study the asymptotic behavior of the OLS estimator of the auto-regressions.

We study auto-regressions of three variables: the spot variance, the integrated vari-

ance and the realized variance. Of course, the first two auto-regressions are not doable

in practice because the variables are not observed, but still the two auto-regressions

provide good benchmarks. In particular, the third auto-regression will try to mimic

the second one.

We study two types of asymptotic approaches. We start by considering the re-

gression of V(i+1)∆ on a constant and Vi∆, where Vt is the spot variance process. In

the first asymptotic approach, we assume that ∆→ 0 while T = N∆ is fix. Here, T

should be interpreted as the time span of the data. In contrast, ∆ is the length of

sub-periods. In practice, ∆ would be the length of one day while N is the number of

days. We do this type of asymptotic because we want to characterize the behavior of

the OLS estimators without making a parametric model assumption as did Andersen

et al. (2004). The same asymptotic is done when we consider the auto-regression of

scaled integrated variance, that is the regression of 1
∆

∫ (i+1)∆

i∆
Vsds on a constant and

its lagged value 1
∆

∫ i∆
(i−1)∆

Vsds. The third regression involves the realized variance

where an interval of length ∆ is divided into equal intervals of length δ. For this case,

δ will also shrink to zero in order to ensure that realized variance will converge to the
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integrated variance.

In this first asymptotic analysis, we characterize the behavior of the OLS estimator

of the three regressions slopes. In addition, we characterize the connection between

them. We then consider the second asymptotic by allowing T → ∞, that is we

consider long span asymptotics and derive various results depending on the spot

variance process. When the spot variance process is stationary and has a bounded

second moment, we prove that the OLS estimators converge to finite quantities, which

are the same ones as the population parameters derived in Andersen et al. (2004).

In contrast, when the spot variance is stationary with unbounded second moment,

we prove that the OLS estimators converge to random variables. The same result

holds when the spot variance process is nonstationary. Both the simulations and the

comparison with the results in Andersen et al. (2004) when the spot variance has a

finite second moment corroborate the good quality of our approach.

The paper is organized as follows. The next section provides the setup, an empiri-

cal motivation for fat tails, and various regressions. Section 3 provides the asymptotic

behavior of the OLS estimators when ∆→ 0, whereas Section 4 studies the long-span

asymptotics, that is the limits of the OLS estimators when T → ∞. The following

section provides simulations to assess the finite sample properties of the estimators,

while the last section concludes. All the proofs are provided in Appendix.

2. Model and Preliminary

2.1. Integrated and Realized Variances

Let (Pt, 0 ≤ t ≤ T ) be a price process given by

d log(Pt) = Dtdt+ V
1/2
t dW P

t ,

where W P is a Brownian motion, D and V are, respectively, drift and variance pro-

cesses of P . Then the integrated variance x and realized variance y of P , for a given

∆-period, are defined respectively as, for i = 1, · · · , N with N∆ = T ,

xi =
1

∆

∫ i∆

(i−1)∆

Vtdt and yni =
1

∆

n∑
j=1

(
r

(δ)
(i−1)∆+jδ

)2

,
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where the δ-period return is given by r
(δ)
(i−1)∆+jδ = log(P(i−1)∆+jδ)−log(P(i−1)∆+(j−1)δ),

for j = 1, · · · , n with nδ = ∆. It is well known that

(n/2)1/2(yni − xi)→d ηiN(0, 1), (2.1)

where η2
i = ∆−1

∫ i∆
(i−1)∆

V 2
t dt, as n → ∞ for fixed ∆ and for each i = 1, · · · , N . See,

e.g., Barndorff-Nielsen and Shephard (2004). Moreover, the convergence (2.1) holds

jointly for i = 1, ..., N if T = N∆ is fixed (see, e.g., Jacod and Protter (1998)).

Instead of analyzing the realized variance yni directly, we simply consider a limiting

analogue yi of yni , where yi is defined in the following assumption.

Assumption 2.1. For i = 1, · · · , N , we let yi = xi+ηigi, where η2
i = ∆−1

∫ i∆
(i−1)∆

V 2
t dt

and gi is defined as

gi = ((2δ)1/2/∆)
(
Gi∆ −G(i−1)∆

)
,

where (W,G) is a standard bivariate Brownian motion such that E[WtGt] = 0 for all

t.

Assumption 2.1 implies

(n/2)1/2(yi − xi) =d ηiN(0, 1)

for i = 1, · · · , N , since N(0, 1) =d

(
G(i+1)∆ −Gi∆

)
/
√

∆. In particular, yi becomes a

good proxy of yni for fixed T due to the joint convergence of (2.1). In our asymptotics

below, we also allow T → ∞. In this long span case, the joint convergence of (2.1)

for growing T is required to approximate yni using yi uniformly in i = 1, · · · , N .

2.2. Fat Tails: An Empirical Assessment

We will now assess the magnitude of tails of empirical data. We will use trade data

on the SPDR S&P 500 ETF (SPY), which is an exchange traded fund (ETF) that

tracks the S&P 500 index. Our primary sample comprises 10 years of trade data on

SPY starting from June 15, 2004 through June 13, 2014 as available in the New York

Stock Exchange Trade and Quote (TAQ) database. This tick-by-tick dataset has been

cleaned according to the procedure outlined by Barndorff-Nielsen et al. (2008). We

also removed short trading days leaving us with 2497 days of trade data.
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We will estimate the tail index of the daily returns and daily realized variance

based on five minutes intra-day returns. Because we could have jumps that may

affect the tail of the realized variance data, we also consider daily bipower variation

which is a consistent estimator of integrated variance under the presence of jumps;

see Barndorff-Nielsen and Shephard (2006).

We estimate the tail index by using the Hill’s (1975) estimator. Let (Xi)
n
i=1 be a

stationary time series with

P[Xi > x] ∼ x−α`(x), x→∞,

where ` being a slowly varying function.

The Hill’s estimator for α−1 which arose in the i.i.d. context as a conditional MLE

is defined as

h =
1

kn

kn∑
i=1

log(X(i)/X(kn)),

where (X(i))
n
i=1 is the order statistics X(n) ≤ · · · ≤ X(kn) ≤ · · · ≤ X(1) for some kn ≤ n

such that kn →∞ and kn/n→ 0 as n→∞.

The results by Hsing (1991) and Resnick and Stărică (1995) indicate that the Hill

estimator is asymptotically quite robust with respect to deviations from independence;

Resnick and Stărică (1998) prove consistency under ARCH-type dependence. See

also Hill (2010) for some other processes including ARFIMA, FIGARCH, explosive

GARCH, nonlinear ARMA-GARCH and etc.

Let kn be the truncation levels for extreme observations. Let α̂H = h−1. Then the

standard errors of α̂H is given by
√

1/knα̂H . Following Ibragimov et al. (2015), who

recommended to take kn in [0.025× n, 0.15× n], we consider three values: 0.025× n,

0.0875× n and 0.15× n.

kn/n Returns RV BPV
0.025 2.569 1.590 1.423

(0.325) (0.201) (0.180)
0.0875 2.125 1.322 1.289

(0.144) (0.089) (0.087)
0.15 1.817 1.176 1.213

(0.094) (0.061) (0.063)

Table 1: Estimated Tail Index
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Table 1 provides estimates of the tail index and the corresponding standard errors.

They clearly show that the fourth moment of the returns and the second moment of

both realized variance and bipower variation are unbounded.

2.3. Notation

To facilitate our exposition, we need to make some notational conventions. Following

the markov process literature, we use the same notation for both a measure and its

density with respect to Lebesgue measure. As an example, for a given measure or a

density m and a function f on D ⊂ R, we write m(D) and m(f) interchangeably with∫
Dm(x)dx and

∫
Dm(x)f(x)dx respectively. The identity function on R is denoted by

ι, i.e., ι(x) = x, and we write the p-th order power function as ιp so that ιp(x) = xp.

Moreover, for a stochastic process (Vt, 0 ≤ t ≤ T ), we let T (f) = max0≤t≤T |f(Vt)|
for a function f defined on the domain of V . Finally, we use “PT ∼p QT” and

“PT ∼d QT” to denote PT = QT

(
1 + op(1)

)
and PT =d QT

(
1 + op(1)

)
, respectively,

as T →∞.

2.4. Spot Variance

Let (Vt, 0 ≤ t ≤ T ) be a diffusion process on D = (v, v) ⊂ R driven by

dVt = µ(Vt)dt+ σ(Vt)dWt, (2.2)

where W is a Brownian motion, and µ and σ are respectively drift and diffusion

functions of V . We let s be the scale function defined as

s(v) =

∫ v

y

exp

(
−
∫ x

y

2µ(z)

σ2(z)
dz

)
dx, (2.3)

where the lower limits of the integrals can be arbitrarily chosen to be any point y ∈ D.

Defined as such, the scale function s is uniquely identified up to any increasing affine

transformation, i.e., if s is a scale function, then so is as+ b for any constants a > 0

and −∞ < b <∞. We also define the speed density

m(v) =
1

(σ2s′)(v)
(2.4)
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on D, where s′ is the derivative of s, often called the scale density, which is assumed

to exist. The speed measure is defined to be the measure on D given by the speed

density with respect to the Lebesgue measure.

Throughout this paper, we assume

Assumption 2.2. We assume that (a) σ2(v) > 0 for all v ∈ D, and (b) µ(v)/σ2(v)

and 1/σ2(v) are locally integrable at every v ∈ D.

Assumption 2.2 provides a simple sufficient set of conditions to ensure that a

weak solution to the stochastic differential equation (2.2) exists uniquely up to an

explosion time. See, e.g., Theorem 5.5.15 in Karatzas and Shreve (1991). Note, under

Assumption 2.2, that both the scale function and speed density are well defined, and

that the scale function is strictly increasing, on D. Moreover, under Assumption 2.2,

the diffusion V is recurrent if and only if the scale function s in (2.3) is unbounded

at both boundaries v and v, i.e.,

s(v) = −∞ and s(v) =∞.

Furthermore, the recurrent diffusion V becomes positive recurrent or null recurrent,

depending upon

m(D) <∞ or m(D) =∞,

where m is the speed measure defined in (2.4). A diffusion which is not recurrent is

said to be transient.

Positive recurrent diffusions are stationary. More precisely, they have time invari-

ant distributions, and if they are started from the time invariant distributions they

become stationary. The time invariant density of the positive recurrent diffusion V is

given by π(v) = m(v)/m(D). Null recurrent and transient diffusions are nonstation-

ary. They do not have time invariant distributions, and their marginal distributions

change over time. Out of these two different types of nonstationary processes, we

mainly consider null recurrent diffusions in the paper. Brownian motion is the prime

example of null recurrent diffusions. Like unit root processes in discrete time, null

recurrent processes have stochastic trends and the standard law of large numbers and

central limit theory in continuous time are not applicable. See, e.g., Kim and Park

(2017) for more details on the statistical properties of null recurrent diffusions.
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Let V s = s(V ) be the scale transformation of V , which may be defined as dV s
t =

m
−1/2
s (V s

t )dWt with speed measure ms given by

ms =
1

(s′σ)2 ◦ s−1
.

Both recurrence and stationarity are preserved under scale transformation. First, V

is recurrent on D if and only if V s is recurrent on R. Trivially, the scale function

of V s is identity, since it is already in natural scale, and therefore, V s is recurrent if

and only if its domain is given by the entire real line R. However, the domain of V s

becomes R if and only if V is recurrent, i.e., s(v) = −∞ and s(v) =∞. Second, V is

stationary on D if and only if V s is stationary on R, since ms(R) = m(D).

2.5. Regressions with Spot, Integrated and Realized Variances

In this paper, we consider the auto-regression of (zi)
N
i=1 for z = v, x, y, where vi = Vi∆

is a discrete sample of underlying diffusion V , x and y are, respectively, the integrated

and realized variance of V defined in the earier section. Specifically, we consider

zi+1 = αz + βzzi + ui, (2.5)

and test the null hypothesis β = 1 against the alternative hypothesis β 6= 1 based on

the ordinary least square method. The least square estimator and the t-statistic for

βz in (2.5), denoted respectively as β̂z and t(β̂z), are given by

β̂z =

∑N
i=1(zi − zN)zi+1∑N
i=1(zi − zN)2

and t(β̂z) =
β̂z − 1

τ̂z

(∑N
i=1(zi−1 − zN)2

)−1/2
,

where zN is the sample mean of (zi, i = 1, ..., N), and τ̂ 2
z is the usual estimator for

the variance of regression errors (ui), i.e., τ̂ 2
z = 1

N

∑N
i=1

(
zi+1 − α̂z − β̂zzi

)2

. We also

consider the usual coefficient R2
z of determination for the discrete time regression

(2.5).

In the followings, the asymptotic theory for β̂z, t(β̂z) and R2
z is developed when

the spot variance V is either nonstationary or stationary with possibly unbounded

variance or mean. Our asymptotics for z = v, x involves two parameters, the sampling
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interval ∆ and the time span T , and it is developed under the assumption that ∆→ 0

and T → ∞ simultaneously. On the other hand, the asymptotics for z = y involves

three parameters, the sampling interval ∆ at low frequency, the sampling interval δ

at high frequency, and the time span T . In this case, the asymptotics is developed

under the assumption that δ/∆ → 0, ∆ → 0 and T → ∞ simultaneously. For the

case of stationarity with bounded variance, the fixed ∆ asymptotics are considered

in Andersen et al. (2004) using the eigenfunction approach.

2.6. Population Regressions with Spot, Integrated and Realized Vari-

ances

In this section, we revisit the results of Andersen et al. (2004) where various re-

gressions in population were studied. These authors considered the Eigenfunction

Stochastic Volatility (ESV) model of Meddahi (2001) to derive analytical forecast

results. Examples of ESV includes the square-root model, the log-normal stochastic

volatility model and the GARCH diffusion model. We will focus here on the GARCH

diffusion model of Nelson (1990) because this example allows for unbounded moments

while the two other ones lead to bounded ones. More precisely, assume that the spot

variance process Vt is given by

dVt = κ(µ− Vt)dt+ σVtdWt,

where Wt is a standard Brownian process, possibly correlated with the Brownian

process W p
t that drives the price process. One can easily prove that the second

moment of Vt is bounded when σ2 < 2κ.

Andersen et al. (2004) computed the population values of the auto-covariances

and variances of spot, integrated and realized variances. From these quantities, one

gets the corresponding auto-regressive coefficients βv, βx and βy. In particular, one
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has

βv = exp(−κ∆),

βx =
1

2

(1− exp(−κ∆))2

exp(−κ∆) + κ∆− 1
,

βy =
a2

1

∆2κ2

(1− exp(−κ∆))2

V ar(y)
,

with

V ar(y) = 2
a2

1

∆2κ2
(exp(−κ∆) + κ∆− 1) +

4

∆2

∆

δ

(
a2

0δ
2

2
+
a2

1

κ2
(exp(−κδ) + κδ − 1)

)
,

and

a0 = E(Vt) = µ, a2
1 = V ar(Vt) = µ2 ψ

(1− ψ)
, with ψ =

σ2

2κ
.

One should notice that in this example, the spot variance is an AR(1) process while

both integrated and realized variances are ARMA(1,1) processes. In addition, the

three processes have the same auto-regressive root which equals exp(−κ∆).

When ∆ is small, one gets

βv = 1− κ∆ + o(∆),

βx = 1− 2

3
κ∆ + o(∆).

Likewise, when both ∆ and δ/∆ are small, one gets

βy = 1− 2

3
κ∆− 2

δ

∆

E(V 2
t )

V ar(Vt)
+ o(∆) + o(δ/∆).

It is interesting to notice that

βx = βv +
1

3
κ∆ + o(∆)

βy = βx − 2
δ

∆

E(V 2
t )

V ar(Vt)
+ o(∆) + o(δ/∆),

that is, integrated variance has a larger first order auto-correlation than the spot and

realized variances.
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3. Primary Asymptotics

Recall that T = N∆ and ∆ = nδ. For our asymptotics here we let ∆, δ/∆→ 0, with

T being fixed or T →∞ simultaneously as ∆, δ/∆→ 0. In case we have ∆, δ/∆→ 0

and T → ∞ simultaneously, we assume that ∆, δ/∆ → 0 sufficiently fast relative to

T →∞. It is indeed more relevant in a majority of practical applications, which rely

on observations collected at small sampling intervals over only moderately long span.

More precisely, we assume

Assumption 3.1. We let σ2 be twice continuously differentiable on D, and we also let

f = µ, σ2, σ2′ , σ2′′ , ι be all majorized by a locally bounded function ω on D, for which

we have (a) ∆T (ω4)T 2 log(T/∆)→p 0 and (b) (δ/∆3/2)T (ω3)T
√

log(T/∆)→p 0.

Assumption 3.1 (a) is similar to Assumption 5.1 in Kim and Park (2017), and

provides a sufficient condition for our primary asymptotics of z = v, x. On the

other hand, the asymptotics for realized variance z = y involves three parameters,

and requires Assumption 3.1 (b) in addition to Assumption 3.1 (a). In particular,

Assumption 3.1 (b) requires δ/∆3/2 → 0, which is more restrictive than δ/∆ → 0,

regardless of T = T and T → ∞. The role of Assumption 3.1 (b) is to analyze the

asymptotic effect of the noise (ηigi) of (yi) in the least square estimates.

3.1. First Order Auto-Regressions

The following lemma is useful in our primary asymptotics.

Lemma 3.1. Under Assumption 3.1, we have

(a)
N−1∑
i=1

(zi+1 − zi)2 ∼p


[V ]T , for z = v

(2/3)[V ]T , for z = x

(2/3)[V ]T + (4δ/∆2)
∫ T

0
V 2
t dt, for z = y,

(b) z2
N − z2

1 − zN(zN − z1) ∼p
(
V 2
T − V 2

0 − V T (VT − V0)
)

for z = v, x, y,

(c)
N∑
i=1

(zi − zN)2∆ ∼p
∫ T

0

(Vt − V T )2dt for z = v, x, y,

where V T = T−1
∫ T

0
Vtdt.



13

Remark 3.1. (a) The primary asymptotics of
∑N

i=1(zi+1 − zi)2 in Lemma 3.1 (a) is

depending upon z. In particular, Lemma 3.1 (a) implies

N∑
i=1

(xi+1 − xi)2 <

N∑
i=1

(vi+1 − vi)2 and
N∑
i=1

(xi+1 − xi)2 <

N∑
i=1

(yi+1 − yi)2 (3.1)

with probability approaching one as ∆, δ/∆→ 0 under Assumption 3.1. An intuitive

explanation for the inequalities in (3.1) are as follow. We can naturally expect that the

integrated variance (xi) has more smoother sample path compare to its corresponding

spot variance (vi). As a result, the sum of squared increments of (xi) tends to be

smaller than that of (vi), and we have the first inequality in (3.1). On the other hand,

the additional noise (ηigi) in the realized variance (yi) generates additional variation,

and hence, the sample path of (yi) becomes more rough compare to the integrated

variance (xi). Therefore, we have the second inequality in (3.1).

(b) Unlike Lemma 3.1 (a), each result in Lemma 3.1 (b) and (c) is identical for

all z = v, x, y under Assumption 3.1. The results in Lemma 3.1 (b) and (c) are well

expected since |zi−V(i−1)∆| →p 0 for all z as long as δ/∆ and ∆ are sufficiently small

relative to T .

(c) It follows from Lemma 3.1 and Ito’s lemma that

N∑
i=1

(zi − zN)4zi ∼p


∫ T

0
(Vt − V T )dVt, for z = v∫ T

0
(Vt − V T )dVt + (1/6)[V ]T , for z = x∫ T

0
(Vt − V T )dVt + (1/6)[V ]T − (2δ/∆2)

∫ T
0
V 2
t dt, for z = y

(3.2)

as ∆, δ/∆→ 0 under Assumption 3.1, since

N∑
i=1

(zi − zN)4zi =
1

2

((
z2
N − z2

1 − zN(zN − z1)
)
−

N∑
i=1

(zi+1 − zi)2

)
,

where 4 is the usual difference operator, i.e., 4zi = zi+1 − zi. The result (3.2) for

z = v is quite natural and expectable by the asymptotic negligibility of discretization
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errors when ∆→ 0. In a similar argument, one may expect

N∑
i=1

(zi − zN)4zi ∼p
N∑
i=1

(vi − vN)4vi ∼p
∫ T

0

(Vt − V T )dVt for z = x, y (3.3)

since sup0≤i≤N |zi−vi| →p 0 as δ/∆,∆→ 0. In this case, however, our result in (3.2) is

different from the conjecture (3.3). This is not surprising at all since the convergence

of stochastic process does not necessarily imply the convergence of stochastic integral

associated with the stochastic process. Here, in particular, |zi4zi − vi4vi| 6→p 0 as

δ/∆,∆ → 0. The reader is referred to Kurtz and Protter (1991) for more detailed

discussions about the weak convergence of stochastic integrals.

Now we are to show the primary asymptotics for β̂z and t(β̂z). To effectively

explain our asymptotics, it is useful to note that

β̂z − 1 =

∑N
i=1(zi − zN)4zi∑N
i=1(zi − zN)2

=
1

2

(z2
N − z2

1 − zN(zN − z1))−
∑N

i=1(zi+1 − zi)2∑N
i=1(zi − zN)2

. (3.4)

We then can easily obtain the primary asymptotics for β̂z and t(β̂z) from Lemma 3.1

and (3.4) with Ito’s lemma.

Proposition 3.2. Let Assumption 3.1 hold.

(a) For β̂z, we have

β̂v ∼p 1 + ∆

∫ T
0

(Vt − V T )dVt∫ T
0

(Vt − V T )2dt
,

β̂x ∼p 1 + ∆

∫ T
0

(Vt − V T )dVt + (1/6)[V ]T∫ T
0

(Vt − V T )2dt
,

β̂y ∼p 1 + ∆

∫ T
0

(Vt − V T )dVt + (1/6)[V ]T − (2δ/∆2)
∫ T

0
V 2
t dt∫ T

0
(Vt − V T )2dt

.

(b) For z = v, x, y, we have

(T/∆)τ̂ 2
z ∼p

N∑
i=1

(zi+1 − zi)2 and R2
z ∼p β̂2

z .
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(c) For t(β̂z), we have

t(β̂v) ∼p
√
T

∫ T
0

(Vt − V T )dVt

[V ]
1/2
T

(∫ T
0

(Vt − V T )2dt
)1/2

,

t(β̂x) ∼p
√
T

∫ T
0

(Vt − V T )dVt + (1/6)[V ]T

((2/3)[V ]T )1/2
(∫ T

0
(Vt − V T )2dt

)1/2
,

t(β̂y) ∼p
√
T

∫ T
0

(Vt − V T )dVt + (1/6)[V ]T − (2δ/∆2)
∫ T

0
V 2
t dt(

(2/3)[V ]T + (4δ/∆2)
∫ T

0
V 2
t dt
)1/2 (∫ T

0
(Vt − V T )2dt

)1/2
.

Remark 3.2. (a) If we define

γv =

∫ T
0

(Vt − V T )dVt∫ T
0

(Vt − V T )2dt
, γx =

(1/6)[V ]T∫ T
0

(Vt − V T )2dt
, γy =

2
∫ T

0
V 2
t dt∫ T

0
(Vt − V T )2dt

,

then it follows from Proposition 3.2 (a) that

β̂v ∼p 1 + ∆γv, β̂x ∼p 1 + ∆(γv + γx), β̂y ∼p 1 + ∆(γv + γx)− (δ/∆)γy.

In particular, we have β̂y < β̂x and β̂v < β̂x with probability approaching one as

∆, δ/∆→ 0 under Assumption 3.1.

(b) Note that Assumption 3.1 (b) does not necessarily imply δ/∆2 → 0. Therefore,

the speeds of δ → 0 and ∆→ 0 are important in the asymptotics of β̂y. For instance,

if δ/∆2 → 0 sufficiently quickly, then β̂y ∼p β̂x. Otherwise, β̂y 6∼p β̂x.

3.2. Extensions

As extensions of the first order auto-regression (2.5), we consider the following two

regressions

zi+1 = αz + β(k)
z zi−k + ui for some k ≥ 1 (3.5)

zi+1 = αz + β1,zzi + β2,zzi−1 + ui. (3.6)
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The regression (3.5) is a multi-lag auto-regression, and the regression (3.6) is a second

order auto-regression. Below we analyze each regression separately.

We first consider the multi-lag auto-regression (3.5). We define β̂
(k)
z and R2

z as

before. We then have

Proposition 3.3. Let Assumption 3.1 hold.

(a)
N∑

i=k+1

(zi+1 − zi−k)2 ∼p


(1 + k)[V ]T , for z = v

(2/3 + k)[V ]T , for z = x

(2/3 + k)[V ]T + (4δ/∆2)
∫ T

0
V 2
t dt, for z = y,

(b) β̂(k)
z ∼p β̂z + k(β̂v − 1) for z = v, x, y,

(c) R2
z ∼p (β̂(k)

z )2 for z = v, x, y.

Remark 3.3. (a) For Proposition 3.3 (a), it is shown in the proof that

N∑
i=k+1

(zi+1 − zi−k)2 =
N∑

i=k+1

(
(zi+1 − vi) + (vi − vi−k) + (vi−k − zi−k)

)2

∼p
N∑

i=k+1

(zi+1 − vi)2 +
N∑

i=k+1

(vi−k − zi−k)2

︸ ︷︷ ︸
∼p

∑N
i=k+1(zi+1−zi)2

+
N∑

i=k+1

(vi − vi−k)2

︸ ︷︷ ︸
∼p k

∑N
i=1(vi−vi−1)2

.

(3.7)

The stated result in Proposition 3.3 (a) follows immediately from (3.7) with Lemma

3.1 (a).

(b) As in (3.4), we have

N∑
i=k+1

(zi−k − zN)(zi+1 − zi−k)

=
1

2

k∑
j=0

(
(z2
N+1+j − z2

1+k−j)− zN(zN+1+j − z1+k−j)
)
− 1

2

N∑
i=k+1

(zi+1 − zi−k)2.
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Moreover, we can deduce from (3.7) and Lemma 3.1 (b) that

1

2

k∑
j=0

(
(z2
N+1+j − z2

1+k−j)− zN(zN+1+j − z1+k−j)
)
− 1

2

N∑
i=k+1

(zi+1 − zi−k)2,

∼p
1

2

(
z2
N+1 − z2

1+k − zN(zN+1 − z1+k)−
N∑

i=k+1

(zi+1 − zi)2
)

+
k

2

(
v2
N − v2

0 − vN(vN − v0)−
N∑
i=1

(vi − vi−1)2
)
. (3.8)

It then follows from (3.8) and Lemma 3.1 that

β̂(k)
z − 1 ∼p

1

2

(
z2
N+1 − z2

1+k − zN(zN+1 − z1+k)−
∑N

i=k+1(zi+1 − zi)2∑N
i=k+1(zi+1 − zN)2

)

+
k

2

(
v2
N − v2

0 − vN(vN − v0)−
∑N

i=1(vi − vi−1)2∑N
i=k+1(zi+1 − zN)2

)
∼p (β̂z − 1) + k(β̂v − 1).

Therefore, we can verify that the additional term, k(β̂v − 1), in β̂
(k)
z is induced by∑N

i=k+1(vi − vi−k)2 in (3.7).

Now we consider the second order auto-regression (3.6), and define the least square

estimator (β̂1,z, β̂2,z)
′ as(

β̂1,z

β̂2,z

)
=

(
N∑
i=2

wiw
′
i

)−1( N∑
i=2

wiz̃i+1

)
,

where wi = (z̃i, z̃i−1)′ with the demeaned series (z̃i, z̃i−1)Ni=2 for (zi, zi−1)Ni=2, and we

also define R2
z correspondingly.
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Proposition 3.4. Let Assumption 3.1 hold. For z = v, x, y, we have the followings.

(a)
1∑N
i=2 z̃

2
i

(
N∑
i=2

wiz̃i+1

)
∼p

(
β̂z

β̂
(1)
z

)
and

1∑N
i=2 z̃

2
i

(
N∑
i=2

wiw
′
i

)
∼p

(
1 β̂z

β̂z 1

)
,

(b) β̂1,z ∼p
β̂z

β̂z + 1
+

β̂z

β̂z + 1

β̂v − 1

β̂z − 1
and β̂2,z ∼p

β̂z

β̂z + 1
− 1

β̂z + 1

β̂v − 1

β̂z − 1
,

(c) β̂1,z + β̂2,z ∼p β̂z −∆Γz,

(d) R2
z ∼p (β̂1,z + β̂2,z)

2 + 2β̂1,zβ̂2,z(β̂z − 1),

where Γv = 0, Γx = γx/2 and Γy = γx/2− (δ/∆2)γy/2.

Remark 3.4. (a) Proposition 3.4 (c), together with Proposition 3.2 (a), implies that

β̂1,v + β̂2,v ∼p 1 + ∆γv

β̂1,x + β̂2,x ∼p 1 + ∆γv + ∆γx/2

β̂1,y + β̂2,y ∼p 1 + ∆γv + ∆γx/2− (δ/∆)γy/2,

and therefore, β̂1,v + β̂2,v ∼p β̂v and

β̂1,x + β̂2,x < β̂x and β̂1,y + β̂2,y < β̂y

with probability approaching one as ∆, δ/∆→ 0 under Assumption 3.1.

(b) As in Proposition 3.2 (see also Remark 3.2 (b)), the speeds of δ → 0 and

∆→ 0 are important in the asymptotics of β̂1,y and β̂2,y, and we have β̂1,y ∼p β̂1,x and

β̂2,y ∼p β̂2,x as long as δ/∆2 → 0 sufficiently quickly. Otherwise, neither β̂1,y ∼p β̂1,x

nor β̂2,y ∼p β̂2,x.

(c) In Proposition 3.2, we consider only the first order approximations for β̂z.

However, the higher order approximation is important in the asymptotics for each of

β̂1,z and β̂2,z. To see this, we let γ′z be the second order approximation term such that

β̂v = 1 + ∆γv + ∆2γ′v + op(∆
2),

β̂x = 1 + ∆(γv + γx) + ∆2γ′x + op(∆
2), (3.9)

β̂y = 1 + ∆(γv + γx)− (δ/∆)γy + ∆2γ′y + op(∆
2).
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By applying Taylor expansion to Proposition 3.4 (b) with (3.9), we may show that

β̂1,z =
β̂z + 1

2
− Γ1,z + ∆Γ2,z −∆Γ3,z + op(∆)

β̂2,z =
β̂z − 1

2
+ Γ1,z −∆Γ2,z −∆Γ3,z + op(∆),

where Γ1,v = Γ2,v = Γ3,v = 0 and

Γ1,x =
γx

2(γv + γx)
, Γ1,y =

γx − (δ/∆2)γy
2(γv + γx − (δ/∆2)γy)

,

Γ2,x =
γ′v

2(γv + γx)
− γvγ

′
x

2(γv + γx)2
, Γ2,y =

γ′v
2(γv + γx − (δ/∆2)γy)

−
γvγ

′
y

2(γv + γx − (δ/∆2)γy)2
,

Γ3,x =
γx
4
, Γ3,y =

γx
4
− δ

∆2

γy
4
.

Clearly, Γ2,x and Γ2,y have the first order effects in the approximations of (β̂1,x, β̂2,x)

and (β̂1,y, β̂2,y), respectively. Moreover, Γ2,x and Γ2,y contain the second order ap-

proximation term γ′z of β̂z, and hence, we may conclude that the second order ap-

proximation term γ′z has a first order effect in both β̂1,z and β̂2,z. In this paper, we

don’t consider the higher order approximation terms explicitly, and we leave them for

future research.

(d) Unlike β̂1,z and β̂2,z, it can be shown that the higher order approximation

terms do not have the first order effects on both β̂1,z + β̂2,z and R2
z.

4. Long Span Asymptotics

We now consider the long span property of the least square estimates by letting

T → ∞ under Assumption 3.1. In addition to Assumptions 2.1 and 3.1, we assume

the followings.

Assumption 4.1. We assume that (a) s′ is regularly varying or rapidly varying with

index p 6= −1, (b) σ2 is regularly varying and (c) m is either integrable or regularly

varying.

Assumption 4.1 is identical to Assumption 2.2 in Kim and Park (2016), and is

mild enough to include most diffusion processes used in practice. The reader is also
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referred to see Bingham et al. (1993) for more discussions about the regular and rapid

variations.

In the following, we let fs = f◦s−1 for any function f other than m. We may easily

show by a change of variables in integrals that ms(fs) = m(f) for any f defined on D.

Moreover, for a regularly varying function f on R, we define its limit homogeneous

function f as f(λv)/f(λ) → f(v) as λ → ∞ for all v 6= 0. Finally, for a locally

integrable f on R, we define [f ] as [f ](λ) =
∫
|v|<λ f(v)dv. This notation will be used

without reference in what follows.

4.1. Basic Asymptotics

The long span asymptotics in this paper is closely related to the mean reversion prop-

erty in Kim and Park (2016). We follow their approach, and consider the following

three conditions.

(ST) m is either integrable or nearly integrable,

(DD) 1/s′ is either integrable or nearly integrable, and

(SI) ι2 is either m-integrable or m-nearly integrable.

As in Kim and Park (2017), we say that a null recurrent diffusion V is strongly

nonstationary if m is strongly nonintegrable, and it is nearly stationary if m is nearly

integrable. Therefore, the condition ST holds if and only if V is either stationary or

nearly stationary. See Kim and Park (2016, 2017) for more detailed discussions about

the strong nonstationarity and near stationarity. The condition DD is about the m-

integrability of σ2 since mσ2 = 1/s′ by the definition of speed density (2.4). It is

shown in Kim and Park (2016) that under the condition DD the drift term dominates

the diffusion term in the following sense∫ T

0

(Vt−V T )dVt =

∫ T

0

(Vt−V T )µ(Vt)dt+

∫ T

0

(Vt−V T )σ(Vt)dWt ∼p
∫ T

0

(Vt−V T )µ(Vt)dt

as T →∞. Lastly, the condition SI is about the m-integrability of the quadratic func-

tion ι2, and it implies that V is a stationary diffusion satisfying
∫ T

0
V 2
t dt/(T`(T )) =

Op(1) for some slowly varying function `. In particular, if ι2 is m-integrable, then

V has a finite second moment and
∫ T

0
V 2
t dt/T →p E(V 2

t ) as T → ∞. The reader is
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referred to see Kim and Park (2017) for general asymptotics of diffusion functionals.

We let (λT ) be the normalizing sequence satisfying

T = λT [ms](λT ) or λ2
Tms(λT ) (4.1)

depending upon whether or not ST holds. In case either ST or DD holds, we subse-

quently define

aT =

{
λT [msσ

2
s ](λT )

λ2
T (msσ

2
s)(λT )

if
DD holds

DD does not hold and ST holds

bT =

{
λT [msι

2
s](λT )

λ2
T (msι

2
s)(λT )

if
SI holds

SI does not hold

from (λT ), and let

P =

{
L(τ, 0)∫ τ

0
msσ2

s(Bt)dt
if

{
DD holds

DD does not hold and ST holds

Q1 =


(
(π(ι))2

/
π(ι2)

)1/2

0∫ τ
0
msιs(Bt)dt

if


SI holds

SI does not hold and ST holds

DD holds and ST does not hold

Q2 =

{
1∫ τ

0
msι2s(Bt)dt

if

{
SI holds

SI does not hold

where π = m/m(D) is the time invariant density of V , and τ is a stopping time

defined as

τ = inf
{
t
∣∣∣L(t, 0) > 1

}
or inf

{
t

∣∣∣∣∫
R
L(t, x)ms(dx) > 1

}
, (4.2)

depending upon whether or not ST holds, from the local time L of Brownian motion

B. Numerical sequences (aT , bT ) and random variables (P,Q1, Q2) introduced here

will be used repeatedly in what follows.

Lemma 4.1. Let Assumption 4.1 hold. If either ST or DD holds, we have TaT/bT →



22

∞ and

1

aT
[V ]T →d P,

1

aT

∫ T

0

(Vt − V T )dVt →d −
P

2
,

1

bT

∫ T

0

V 2
t dt→d Q2,

1

bT

∫ T

0

(Vt − V T )2dt→d Q2 −Q2
1 ≡ Q

as T →∞.

Remark 4.1. (a) If ST holds, we have L(τ, 0) = 1 a.s. Moreover, if V is stationary,

then λT ∼ T/m(D), where we mean PT ∼ QT by PT/QT → 1 as T →∞.

(b) If a stationary V has a finite second moment, i.e., π(ι2) <∞, then bT ∼ Tπ(ι2),

Q2
1 = (π(ι))2/π(ι2) and Q2 = 1. Therefore, if π(ι2) <∞, then Lemma 4.1 implies

1

T

∫ T

0

V 2
t →p π(ι2) = E(V 2

t ) and
1

T

∫ T

0

(Vt − V T )2 →p π(ι2)− (π(ι))2 = V ar(Vt)

as T →∞.

(c) If a stationary V satisfies π(σ2) <∞, then aT ∼ Tπ(σ2) and P = 1. Therefore,

Lemma 4.1 implies

1

T
[V ]T =

1

T

∫ T

0

σ2(Vt)→p π(σ2) = E(σ2(Vt))

as T →∞.

If neither ST nor DD holds, we would have a quite different asymptotics. Let

Y = s(V ) be the scale transformation of V and define Y T by Y T
t = λ−1

T YTt with the

normalizing sequence (λT ) in (4.1). It then follows from Proposition 3.2 of Kim and

Park (2017) that Y T →d Y
◦ as T → ∞ in the space C[0, 1] of continuous functions

with uniform topology, where using Brownian motion B and its local time L we may

represent the limit process Y ◦ as

Y ◦t = B ◦ At with At = inf

{
s

∣∣∣∣∫
R
L(s, x)ms(dx) > t

}
. (4.3)

For the asymptotics of a general diffusion V , we write it as V = s−1(Y ), and define
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V T as V T
t = VTt/s

−1(λT ) = s−1(YTt)/s
−1(λT ). We then may well expect that

V T =
s−1(λTY

T )

s−1(λT )
→d s−1(Y ◦) = V ◦,

in C[0, 1] as T → ∞. In particular, it is shown in Kim and Park (2017) that the

limiting process V ◦ is a nontrivial stochastic process on [0, 1] when neither ST nor

DD holds.

Lemma 4.2. Let Assumption 4.1 hold. If neither ST nor DD holds, then

1

(s−1(λT ))2 [V ]T →d [V ◦]1

1

(s−1(λT ))2

∫ T

0

(Vt − V T )dVt →d

∫ 1

0

(V ◦t − V
◦
1)dV ◦t

1

T (s−1(λT ))2

∫ T

0

(Vt − V T )2dt→d

∫ 1

0

(V ◦t − V
◦
1)2dt

with V
◦
1 =

∫ 1

0
V ◦t dt, as T →∞.

Remark 4.2. Combining Lemmas 4.1 and 4.2, Kim and Park (2016) shows that V has

a mean reversion if and only if either ST or DD holds. They also show that the unit

root test for z = v becomes a test for no mean reversion. In the following section, we

will provide that the unit root test is still a test for no mean reversion if it applied to

z = x.

4.2. Main Asymptotics

The long span asymptotics for the one-factor model follows immediately from Propo-

sition 3.2 with Lemmas 4.1 and 4.2.

Theorem 4.3. Let Assumptions 3.1 and 4.1 hold. In addition, we let either ST or

DD hold. As ∆, δ/∆→ 0 and T →∞, we have the followings.
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(a) For β̂z, we have

N(β̂v − 1) ∼d −
TaT
bT

P

2Q
,

N(β̂x − 1) ∼d −
TaT
bT

P

3Q
,

N(β̂y − 1) ∼d −
TaT
bT

P

3Q
− δT

∆2

2Q2

Q
.

(b) For t(β̂z), we have

t(β̂v) ∼d −
(
TaT
bT

P

4Q

)1/2

,

t(β̂x) ∼d −
(
TaT
bT

P

6Q

)1/2

,

t(β̂y) ∼d −
(
TaT
bT

)1/2
P + (6δ/∆2)(bT/aT )Q2

(6P + (36δ/∆2)(bT/aT )Q2)1/2Q1/2
.

Remark 4.3. (a) If V is stationary with π(ι2), π(σ2) < ∞, then Theorem 4.3 (a)

implies

β̂v − 1 ∼p −∆
E(σ2(Vt))

2V ar(Vt)
,

β̂x − 1 ∼p −∆
E(σ2(Vt))

3V ar(Vt)
,

β̂y − 1 ∼p −∆
E(σ2(Vt))

3V ar(Vt)
− δ

∆

2E(V 2
t )

V ar(Vt)

as ∆, δ/∆ → 0 and T → ∞. It is very interesting to note that these results are the

same as those derived by Andersen et al. (2004) and given in Section 2.6.

(b) For a stationary Ornstein-Uhlenbeck process V , given as

dVt = κ(µ− Vt)dt+ σdWt,

we have E(σ2(Vt)) = σ2, V ar(Vt) = σ2/(2κ) and E(V 2
t ) = σ2/(2κ) + µ2, and hence,
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we have

β̂v − 1 ∼p −∆κ,

β̂x − 1 ∼p −∆
2

3
κ,

β̂y − 1 ∼p −∆
2

3
κ− 2

δ

∆

(
1 +

2κµ2

σ2

)
as ∆, δ/∆→ 0 and T →∞.

(c) Let V be a stationary Ornstein-Uhlenbeck process with V0 = 0, µ = 0 and

σ = 1. It then follows from Proposition 3.2 (a) that

β̂x − 1 ∼p −∆κ+ ∆

∫ T
0

(Vt − V T )dWt + T/6∫ T
0

(Vt − V T )2dt
(4.4)

as long as ∆ is sufficiently small. Moreover, if we let T →∞, then (4.4) becomes

β̂x − 1 ∼p −∆
2

3
κ 6∼p β̂v − 1 ∼p −∆κ (4.5)

as shown in Remark 4.3 (b). For the Ornstein-Uhlenbeck process here, Chambers

(2004) shows that (i) (4.4) holds when ∆→ 0 and T is fixed and (ii) β̂x− 1 ∼p β̂v− 1

when ∆→ 0 and T →∞ such that ∆T 1/2 →∞. Our result (4.5) does not contradict

the result in Chambers (2004) since we require ∆T 1/2 → 0 due to Assumption 3.1

(a).

(d) Let V be a stationary GARCH diffusion

dVt = κ(µ− Vt)dt+ σVtdWt

with σ2 < 2κ so that E(V 2
t ) < ∞. In this case, we have E(σ2(Vt)) = σ2E(V 2

t ),

V ar(Vt) = µ2σ2/(2κ− σ2) and E(V 2
t ) = 2κµ2/(2κ− σ2), and hence, we have

β̂v − 1 ∼p −∆κ,

β̂x − 1 ∼p −∆
2

3
κ,

β̂y − 1 ∼p −∆
2

3
κ− 4

δ

∆

κ

σ2
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as δ/∆,∆ → 0 and T → ∞. Again, it is very interesting to note that these results

are the same as those derived by Andersen et al. (2004) and given in Section 2.6.

(e) Let V be a linear drift diffusion

dVt = κ(µ− Vt)dt+ σ(Vt)dWt

with E(Vt) = µ and E(σ2(Vt)) < ∞. In Lemma A6 of Kim and Park (2016), it is

shown that E(σ2(Vt)) = −2E(Vtµ(Vt)) for a stationary V with E(σ2(Vt)) < ∞. In

this case, we have E(σ2(Vt)) = 2κV ar(Vt), and hence,

β̂v − 1 ∼p −∆κ and β̂x − 1 ∼p −∆
2

3
κ.

(f) Let V be a stationary GARCH diffusion with 2κ < σ2 so that E(V 2
t ) = ∞.

In this case, neither DD nor SI holds. Moreover, aTP = σ2bTQ and Q2 = Q since

aT = σ2bT and P = Q, and therefore, we have

β̂v − 1 ∼p −∆
1

2
σ2,

β̂x − 1 ∼p −∆
1

3
σ2,

β̂y − 1 ∼p −∆
1

3
σ2 − 2

δ

∆
.

(g) Our example in Remark 4.3 (f) is comparable to the limit theory for the sample

autocorrelations of a GARCH(1,1) process obtained in Mikosch and Starica (2000).

Let

Xi = σiZi with σ2
i = α0 + β1σ

2
i−1 + α1X

2
i−1 for i = 1, 2, · · · , N,

where (Zi) is a sequence of iid symmetric random variables with EZ2
i = 1. Under

some assumptions, which imply that the vector (Xi, σi) is regularly varying with index

p > 0, it is shown that for p ∈ (0, 4) the variance process (σ2
i ) has unbounded variance

and satisfies(∑N−h
i=1 X2

iX
2
i+h∑N

i=1X
4
i

− 1,

∑N−h
i=1 σ2

i σ
2
i+h∑N

i=1 σ
4
i

− 1

)
∼d
(

Σ1,X2 − Σ0,X2

Σ0,X2

,
Σ1,σ2 − Σ0,σ2

Σ0,σ2

)
,

where the limit distribution is nondegenerated since the vector (Σm,X2 ,Σm,σ2)m=0,1 is
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p/2-stable. This contrasts with our result for a GARCH diffusion with unbounded

variance (see Remark 4.3 (f)) since (β̂z − 1)/∆ has a degenerate limit for z = v, x.

Theorem 4.4. Let Assumptions 3.1 and 4.1 hold. In addition, we let neither ST

nor DD hold. As ∆, δ/∆→ 0 and T →∞, we have the followings.

(a) For β̂z, we have

N(β̂v − 1) ∼d
∫ 1

0
(V ◦t − V

◦
1)dV ◦t∫ 1

0
(V ◦t − V

◦
1)2dt

,

N(β̂x − 1) ∼d
∫ 1

0
(V ◦t − V

◦
1)dV ◦t + (1/6)[V ◦]1∫ 1

0
(V ◦t − V

◦
1)2dt

,

N(β̂y − 1) ∼d
∫ 1

0
(V ◦t − V

◦
1)dV ◦t + (1/6)[V ◦]1 − 2(δ/∆2)

∫ 1

0
V ◦2t dt∫ 1

0
(V ◦t − V

◦
1)2dt

.

(b) For t(β̂z), we have

t(β̂v) ∼d
∫ 1

0
(V ◦t − V

◦
1)dV ◦t

[V ◦]
1/2
1

(∫ 1

0
(V ◦t − V

◦
1)2dt

)1/2
,

t(β̂x) ∼d
∫ 1

0
(V ◦t − V

◦
1)dV ◦t + (1/6)[V ◦]1

((2/3)[V ◦]1)1/2
(∫ 1

0
(V ◦t − V

◦
1)2dt

)1/2
,

t(β̂y) ∼d
∫ 1

0
(V ◦t − V

◦
1)dV ◦t + (1/6)[V ◦]1 − 2(δ/∆2)

∫ 1

0
V ◦2t dt(

(2/3)[V ◦]1 + 4(δ/∆2)
∫ 1

0
V ◦2t dt

)1/2 (∫ 1

0
(V ◦t − V

◦
1)2dt

)1/2
.

Remark 4.4. (a) Theorems 4.3 and 4.4 imply that the unit root test, applied to

z = v, x, can effectively discriminate the following null and alternative hypothesis

H0 : neither ST nor DD holds (no mean reversion)

HA : ST or DD holds (mean reversion),

instead of nonstationarity and stationarity for the underlying process V . The test

statistics, bothN(β̂z−1) and t(β̂z) for z = v, x, have well defined limiting distributions

under H0, whereas it diverges to negative infinity under HA. However, the test applied

to z = y can discriminate H0 and HA only when δ/∆2 → 0. The reader is referred to
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see Kim and Park (2016) for more discussions about the unit root and mean reversion

properties when z = v.

(b) If V is a Brownian motion, then

N(β̂x − 1) ∼d
∫ 1

0
(Wt −W 1)dWt + (1/6)∫ 1

0
(Wt −W 1)2dt

as long as ∆ → 0 due to Proposition 3.2 and Theorem 4.4. This result can be also

found in Chambers (2004).

Theorem 4.5. Let Assumptions 3.1 and 4.1 hold. As ∆, δ/∆→ 0 and T →∞, we

have the followings.

(a) For z = v, x, y, we have

β̂1,z + β̂2,z − 1 ∼d β̂z − 1−∆Γz, β̂1,z ∼p 1− Γ1,z, β̂2,z ∼p Γ1,z.

(b) If either ST or DD holds, we have Γv = Γ1,v = 0 and

Γx ∼d
1

12

aTP

bTQ
, Γy ∼d

1

12

aTP

bTQ
− δ

∆2

Q2

Q
,

Γ1,x ∼p −
1

4
, Γ1,y ∼d −

aTP − 12(δ/∆2)bTQ2

4aTP + 24(δ/∆2)bTQ2

.

(c) If neither ST nor DD holds, we have Γv = Γ1,v = 0 and

Γx ∼d
1

12

[V ◦]1∫ 1

0
(V ◦t − V

◦
1)2dt

,

Γy ∼d
1

12

[V ◦]1∫ 1

0
(V ◦t − V

◦
1)2dt

− δ

∆2

∫ 1

0
V ◦2t dt∫ 1

0
(V ◦t − V

◦
1)2dt

,

Γ1,x ∼d
[V ◦]1

12
∫ 1

0
(V ◦t − V

◦
1)dV ◦t + 2[V ◦]1

,

Γ1,y ∼d
[V ◦]1 − 12(δ/∆2)T

∫ 1

0
V ◦2t dt

12
∫ 1

0
(V ◦t − V

◦
1)dV ◦t + 2[V ◦]1 − 24(δ/∆2)T

∫ 1

0
V ◦2t dt

.

Remark 4.5. (a) If V is stationary, then we have β̂1,x →p 5/4 and β̂2,x →p −1/4 as
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∆→ 0 and T →∞. Moreover, if π(ι2), π(σ2) <∞, then

β̂1,y ∼p 1 +
E(σ2(Vt))− 12(δ/∆2)E(V 2

t )

4E(σ2(Vt)) + 24(δ/∆2)E(V 2
t )

and β̂2,y ∼p 1− β̂1,y.

and

β̂1,v + β̂2,v − 1 ∼p −∆
E(σ2(Vt))

2V ar(Vt)
,

β̂1,x + β̂2,x − 1 ∼p −∆
5E(σ2(Vt))

12V ar(Vt)
,

β̂1,y + β̂2,y − 1 ∼p −∆
5E(σ2(Vt))

12V ar(Vt)
− δ

∆

E(V 2
t )

V ar(Vt)
.

(b) If V is a GARCH diffusion with π(ι2) <∞, we have

β̂1,v + β̂2,v − 1 ∼p −∆κ,

β̂1,x + β̂2,x − 1 ∼p −∆
5

6
κ,

β̂1,y + β̂2,y − 1 ∼p −∆
5

6
κ− δ

∆

2κ

σ2
.

4.3. Multi-factor Variance

In this section, we assume that the variance process V has multiple factors such that

V =
∑K

k=1 Vk with

dVk,t = µk(Vk,t)dt+ σk(Vk,t)dWk,t,

and Vks are independent each other.

The primary asymptotics of the multi-factor variance can be obtained similarly

as those of the one-factor variance, and we have

Proposition 4.6. Let Vk satisfy Assumption 3.1 for all k = 1, · · · , K. Then Lemma

3.1 and Propositions 3.2-3.4 are still valid for the K-factor variance V .

Now we consider the long span asymptotics of β̂z and t(β̂z) for z = v, x, y. For

simplicity, we consider a two-factor variance V , and let K = 2.

Theorem 4.7. Let both V1 and V2 satisfy Assumptions 3.1 and 4.1.
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(a) Let both V1 and V2 be stationary with E(σ2
k(Vk,t)),E(V 2

k,t) < ∞ for k = 1, 2.

Then Theorem 4.3 holds with aT = bT = T and P = E(σ2
1(V1,t)) + E(σ2

2(V2,t)),

Q = V ar(V1,t) + V ar(V2,t) and Q2 = E(V 2
1,t) + E(V 2

2,t).

(b) Let both V1 and V2 be stationary with a2T/a1T → 0 and b2T/b1T → 0. Then

Theorem 4.3 holds with (aT , bT , P,Q,Q2) being obtained from V1.

In Theorem 4.7, we do not consider the following two cases; (i) both V1 and V2

are stationary with a2T/a1T → 0 and b1T/b2T → 0, and (ii) one or both of V1 and V2

are nonstationary. The long span asymptotics of the these two cases can be easily

obtained at the cost of more involved analysis. Moreover, Theorem 4.7 can be easily

extended to the general K-factor model.

5. Simulations

In this section, we show by simulations that our limit theory provides a good ap-

proximation for the distribution of OLS estimates in a realistic situation. For our

simulation, we use the GARCH diffusion with two sets of parameters. The first one is

(κ0, µ0, σ
2
0) = (0.0350, 0.6360, 0.0207), corresponding to ψ0 = σ2

0/(2κ0) = 0.296. This

set of parameters was used by Andersen and Bollerslev (1998) as implied from the

(weak) daily GARCH(1,1) model estimates for the DM/dollar from 1987 through 1992

using the temporal aggregation results of Drost and Nijman (1993) and Drost and

Werker (1996); the same parameters were used by Andersen et al. (2004). Because

ψ0 < 1, the second moment of Vt is bounded.

To consider a process with an unbounded variance, we consider a second set of

parameters by keeping the same κ0 and µ0, while we multiply σ2
0 by 4, corresponding

to ψ0 = 1.183, that is (κ0, µ0, σ
2
0) = (0.0350, 0.6360, 0.0828).

The simulation samples are generated by the Euler discretization at 10 seconds

(δ0/∆ = 1/8640) for T = 1, 2, 4 years of sample span with 250 days per year. We

assume that the market is open 24 hours. For each day (∆ = 1), we set the daily spot

variance as the spot variance at the end of the day, while we compute the integrated

variance by the numerical integration of the simulated spot variance process at 10

seconds. As for the realized variance, we analyze the frequency effects by considering

three different frequencies: 10 minutes (δ/∆ = 1/144), 5 minutes (δ/∆ = 1/288) and
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1 minute (δ/∆ = 1/1440). For each design, we get rid of the first five days to reduce

the effect of the initial value, and we do 10,000 replications.

Under the stationarity, Theorem 4.3 implies that

β̂v − 1 ∼d −∆
[V ]T

2
∫ T

0
(Vt − V T )2dt

β̂x − 1 ∼d −∆
[V ]T

3
∫ T

0
(Vt − V T )2dt

β̂y − 1 ∼d −∆
[V ]T

3
∫ T

0
(Vt − V T )2dt

− δ

∆

2
∫ T

0
V 2
t dt∫ T

0
(Vt − V T )2dt

,

whereas Proposition 3.4 implies that β̂1,z + β̂2,z − 1 ∼d β̂z − 1 −∆Γz, where Γv = 0

and

Γx ∼d
[V ]T

12
∫ T

0
(Vt − V T )2dt

, Γy ∼d
[V ]T

12
∫ T

0
(Vt − V T )2dt

− δ

∆2

∫ T
0
V 2
t dt∫ T

0
(Vt − V T )2dt

.

For each simulation, we approximate the limit distributions of β̂z and β̂1,z + β̂2,z by

replacing [V ]T ,
∫ T

0
V 2
t dt and

∫ T
0

(Vt − V T )2dt in the above relations by their sample

proxies
N∑
i=1

(vi+1 − vi)2,
N∑
i=1

v2
i ∆,

N∑
i=1

(vi − vN)2∆,

respectively. We compare the approximated limit distribution, say β̃z and β̃1,z + β̃2,z,

of β̂z and β̂1,z + β̂2,z to the finite sample distribution of β̂z and β̂1,z + β̂2,z.

In Table 2, we report the root mean squared differences between the finite sample

distribution and the approximated distribution. We can easily see that the differences

become smaller as T increases in each case. Moreover, the differences become smaller

as δ decreases in realized variances. These two results are quite natural since our

approximation is based on the asymptotic distribution obtained under δ/∆,∆ → 0

and T →∞. The differences are larger in the unbounded variance cases than in the

bounded variance cases.

Figures 1-8 show the empirical distribution of β̂z − 1 and the approximated limit

distribution β̃z−1. It is easy to see that our approximated limit distribution provides

a good approximation for the finite sample distribution of β̂z − 1. Moreover, as our
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AR(1) 1 Year 2 Year 4 Year
SPOT 0.0068 0.0035 0.0018
IV 0.0081 0.0044 0.0025
RV (01 min) 0.0087 0.0048 0.0029
RV (05 min) 0.0128 0.0077 0.0050
RV (10 min) 0.0218 0.0135 0.0091

AR(2) 1 Year 2 Year 4 Year
SPOT 0.0063 0.0038 0.0024
IV 0.0047 0.0026 0.0016
RV (01 min) 0.0050 0.0028 0.0019
RV (05 min) 0.0086 0.0052 0.0034
RV (10 min) 0.0158 0.0096 0.0065

AR(1) 1 Year 2 Year 4 Year
SPOT 0.0128 0.0077 0.0041
IV 0.0169 0.0104 0.0071
RV (01 min) 0.0173 0.0107 0.0074
RV (05 min) 0.0188 0.0123 0.0086
RV (10 min) 0.0210 0.0143 0.0103

AR(2) 1 Year 2 Year 4 Year
SPOT 0.0139 0.0095 0.0071
IV 0.0097 0.0063 0.0046
RV (01 min) 0.0100 0.0065 0.0048
RV (05 min) 0.0110 0.0074 0.0057
RV (10 min) 0.0130 0.0090 0.0069

Table 2: The root mean squared differences between the finite sample distribution
and the approximated distribution (Left=Finite Variance, Right=Infinite Variance)

theory expected (see Remark 3.2 (a)), we tend to have β̂y < β̂x and β̂v < β̂x. In

particular, the gap between β̂y and β̂x decreases as δ decreases. We also note that

there are no qualitative differences between the bonded and unbounded variance cases.

6. Conclusion

Fat tails are a well-known empirical fact of financial returns. Surprisingly, the real-

ized volatility literature ignored this fact. After proving empirically that the second

moment of the realized variance is probably unbounded, we studied theoretically the

limiting behavior of the OLS estimator of simple auto-regressions of spot, integrated

and realized variances. We proved that when the second moment of the spot vari-

ance is unbounded, the OLS estimators converge to random variables. Our theory

is also valid when the second moment of the spot variance is bounded. In this case,

the OLS estimates converge to finite and deterministic quantities which are the same

ones derived by Andersen et al. (2004) in population regressions. Likewise, our theory

allows for nonstationary volatility. Our theoretical results are based on asymptotic

approximations. Both the simulations and the comparison with the results in Ander-

sen et al. (2004) when the spot variance has a finite second moment corroborate the

good quality of our approach.

There are at least two important questions that should be addressed. The first
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one is to provide consistent estimators of the regression coefficients when the second

moment of the spot variance in unbounded. Typically, one could use signed power

variation which can be viewed as an instrumental variable estimation where one uses

a signed power of the regressor as an instrument in order to reduce the magnitude of

the tails; see Samorodnitsky et al. (2007). The second question is more important and

concerns the forecast that one should compute under fat tails. Various approaches

could be considered like different loss functions or non-linear transforms of the variable

of interest. The two questions are currently under investigation.



34

Appendix

A. Useful Lemmas for Integrated Variance

Lemma A.1. If f is continuously differentiable, then we have

sup
1≤i≤N

∣∣f(xi)− f(V(i−i)∆)
∣∣ = Op (∆T (f ′µ)) +Op

(
∆1/2T (f ′σ)

√
log(T/∆)

)
.

Proof for Lemma A.1. Since V has a continuous sample path, we may deduce from

the mean value theorem and Taylor expansion that

sup
1≤i≤N

∣∣f(xi)− f(V(i−i)∆)
∣∣ = sup

1≤i≤N

∣∣∣∣f ′(Vki) 1

∆

∫ i∆

(i−1)∆

(Vt − V(i−1)∆)dt

∣∣∣∣
≤ T (f ′) sup

1≤i≤N

∣∣∣∣ 1

∆

∫ i∆

(i−1)∆

(Vt − V(i−1)∆)dt

∣∣∣∣ (A.1)

for some ki ∈ [(i− 1)∆, i∆]. Moreover, we have∫ i∆

(i−1)∆

(Vt − V(i−1)∆)dt =

∫ i∆

(i−1)∆

∫ t

(i−1)∆

µ(Vs)dsdt+

∫ i∆

(i−1)∆

∫ t

(i−1)∆

σ(Vs)dWsdt

= Op

(
∆2T (µ)

)
+Op

(
∆3/2T (σ)

√
log(T/∆)

)
(A.2)

uniformly in 1 ≤ i ≤ N , since

sup
1≤i≤N

∣∣∣∣∫ i∆

(i−1)∆

∫ t

(i−1)∆

µ(Vs)dsdt

∣∣∣∣ = Op

(
∆2T (µ)

)
and

sup
1≤i≤N

∣∣∣∣∫ i∆

(i−1)∆

∫ t

(i−1)∆

σ(Vs)dWsdt

∣∣∣∣ = Op

(
∆3/2T (σ)

√
log(T/∆)

)
due to the global modulus of continuity for Brownian motion (see, e.g., Theorem 1

of Kanaya et al. (2016) and Lemma B2 of Kim and Park (2017)). The stated result

follows immediately from (A.1) and (A.2).



35

Lemma A.2. If f is twice continuously differentiable, then we have

∆
N∑
i=1

f(xi) =

∫ T

0

f(Vt)dt+Op (∆T (f ′µ)T ) +Op (∆T (f ′′σ)T )

+Op

(
∆1/2T (f ′σ)T

√
log(T/∆)

)
+Op

(
∆T (f ′σ)T 1/2

)
.

Proof for Lemma A.2. Due to Lemma A.1, we have

∆
N∑
i=1

f(xi) = ∆
N∑
i=1

f
(
V(i−1)∆

)
+Op (∆T (f ′µ)T ) +Op

(
∆1/2T (f ′σ)T

√
log(T/∆)

)
.

(A.3)

Moreover, by Lemma B1 of Kim and Park (2017), we have

∆
N∑
i=1

f
(
V(i−1)∆

)
=

∫ T

0

f(Vt)dt+Op (∆T (f ′µ)T ) +Op (∆T (f ′′σ)T ) +Op

(
∆T (f ′σ)T 1/2

)
,

from which, together with (A.3), the stated result follows immediately.

Lemma A.3. If f is twice continuously differentiable, then we have

1

∆2

N∑
i=1

∫ (i+1)∆

i∆

((i+ 1)∆− s)2(f(Vs)− f(Vi∆))ds

= Op (∆T (f ′µ)T ) +Op

(
∆T (f ′′σ2)T

)
+Op

(
∆T (f ′σ)T 1/2

)
.

Proof for Lemma A.3. Due to Ito’s lemma, we have

1

∆2

N∑
i=1

∫ (i+1)∆

i∆

((i+ 1)∆− s)2(f(Vs)− f(Vi∆))ds = AT +BT , (A.4)

where

AT =
1

∆2

N∑
i=1

∫ (i+1)∆

i∆

((i+ 1)∆− s)2

(∫ s

i∆

(f ′µ+ f ′′σ2/2)(Vt)dt

)
ds,

BT =
1

∆2

N∑
i=1

∫ (i+1)∆

i∆

((i+ 1)∆− s)2

(∫ s

i∆

(f ′σ)(Vt)dWt

)
ds.
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For AT , it is easy to see that

AT = Op (∆T (f ′µ)T ) +Op

(
∆T (f ′′σ2)T

)
. (A.5)

As for BT , we have

BT =
1

∆2

N∑
i=1

∫ (i+1)∆

i∆

(f ′σ)(Vt)

(∫ (i+1)∆

t

((i+ 1)∆− s)2ds

)
dWt

= Op

(
∆T (f ′σ)T 1/2

)
, (A.6)

where the first line is due to the changing the order of integrals, and the second line

can be deduced from the proof of Lemma B1 in Kim and Park (2017). The stated

result follows immediately from (A.4)-(A.6).

Lemma A.4. If ∆1/2T (ω3/2)T
√

log(T/∆)→p 0, we have

N∑
i=1

(xi+1 − xi)2 =
2

3
[V ]T + op (1) .

Proof for Lemma A.4. We write

N∑
i=1

(xi+1 − xi)2 =
1

∆2

N∑
i=1

(∫ (i+1)∆

i∆

(Vt − Vi∆)dt+

∫ i∆

(i−1)∆

(Vi∆ − Vt)dt

)2

= AT +BT +RT , (A.7)

where

AT =
1

∆2

N∑
i=1

(∫ (i+1)∆

i∆

(Vt − Vi∆)dt

)2

BT =
1

∆2

N∑
i=1

(∫ i∆

(i−1)∆

(Vi∆ − Vt)dt
)2

RT =
2

∆2

N∑
i=1

(∫ (i+1)∆

i∆

(Vt − Vi∆)dt

)(∫ i∆

(i−1)∆

(Vi∆ − Vt)dt
)
.
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Due to (A.7), the stated result follows immediately if we show

AT , BT =
1

3
[V ]T +Op

(
∆1/2T (ω3/2)T

√
log(T/∆)

)
, (A.8)

RT = Op

(
∆1/2T (ω3/2)T

√
log(T/∆)

)
. (A.9)

Proof for (A.8). We will only prove the result for AT , since the proof of the

result for BT is entirely analogous. For the proof, we write AT as

AT =
1

∆2

N∑
i=1

(∫ (i+1)∆

i∆

∫ t

i∆

µ(Vs)dsdt+

∫ (i+1)∆

i∆

∫ t

i∆

σ(Vs)dWsdt

)2

= A1,T + A2,T + A3,T , (A.10)

where

A1,T =
1

∆2

N∑
i=1

(∫ (i+1)∆

i∆

∫ t

i∆

µ(Vs)dsdt

)2

=
1

∆2

N∑
i=1

(∫ (i+1)∆

i∆

((i+ 1)∆)− s)µ(Vs)ds

)2

A2,T =
1

∆2

N∑
i=1

(∫ (i+1)∆

i∆

∫ t

i∆

σ(Vs)dWsdt

)2

=
1

∆2

N∑
i=1

(∫ (i+1)∆

i∆

((i+ 1)∆)− s)σ(Vs)dWs

)2

A3,T =
2

∆2

N∑
i=1

(∫ (i+1)∆

i∆

∫ t

i∆

µ(Vs)dsdt

)(∫ (i+1)∆

i∆

∫ t

i∆

σ(Vs)dWsdt

)

=
2

∆2

N∑
i=1

(∫ (i+1)∆

i∆

((i+ 1)∆)− s)µ(Vs)ds

)(∫ (i+1)∆

i∆

((i+ 1)∆)− s)σ(Vs)dWs

)

by changing the order of integrals.

For A1,T , we have

|A1,T | ≤
N∑
i=1

(∫ (i+1)∆

i∆

sup
i∆≤s≤(i+1)∆

|µ(Vs)|ds

)2

= Op

(
∆T (µ2)T

)
. (A.11)

On the other hand, we can deduce from Lemma B2 of Kim and Park (2017) that
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A3,T satisfies

|A3,T | ≤ 2T (µ)
N∑
i=1

∣∣∣∣∣
∫ (i+1)∆

i∆

((i+ 1)∆)− s)σ(Vs)dWs

∣∣∣∣∣ = Op

(
∆1/2T (µσ)T

√
log(T/∆)

)
.

(A.12)

As for A2,T , we define a continuous martingale M as

Mt =

j−1∑
i=1

∫ (i+1)∆

i∆

((i+ 1)∆− s)σ(Vs)dWs +

∫ t

j∆

((j + 1)∆− s)σ(Vs)dWs

for t ∈ [j∆, (j + 1)∆), j = 1, 2, · · · , N , so that we have

A2,T =
1

∆2

N∑
i=1

(
M(i+1)∆ −Mi∆

)2

=
1

∆2
[M ]T +

2

∆2

N∑
i=1

∫ (i+1)∆

i∆

(Mt −Mi∆)dMt, (A.13)

where the last line follows from Ito’s lemma.

For the second term of (A.13), we can deduced from Lemma B5 of Kim and Park

(2017) that

2

∆2

N∑
i=1

∫ (i+1)∆

i∆

(Mt −Mi∆)dMt

=
2

∆2

N∑
i=1

∫ (i+1)∆

i∆

(∫ t

i∆

((i+ 1)∆− s)σ(Vs)dWs

)
((i+ 1)∆)− t)σ(Vt)dWt

= Op

(
∆1/2T (σ2)T 1/2

√
log(T/∆)

)
.
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For the first term of (A.13), we have

1

∆2
[M ]T =

1

∆2

N∑
i=1

∫ (i+1)∆

i∆

((i+ 1)∆− s)2σ2(Vs)ds

=
1

∆2

N∑
i=1

σ2(Vi∆)

∫ (i+1)∆

i∆

((i+ 1)∆− s)2ds+ ST

=
1

3

N∑
i=1

σ2(Vi∆)∆ + ST , (A.14)

where

ST =
1

∆2

N∑
i=1

∫ (i+1)∆

i∆

((i+ 1)∆− s)2(σ2(Vs)− σ2(Vi∆))ds

= Op

(
∆T (σ2′µ)T

)
+Op

(
∆T (σ2′′σ2)T

)
+Op

(
∆T (σ2′σ)T 1/2

)
(A.15)

by Lemma A.3. Moreover, it follows from Lemma B1 of Kim and Park (2017) that

N∑
i=1

σ2(Vi∆)∆ =

∫ T

0

σ2(Vt)dt+Op

(
∆T (σ2′µ)T

)
+Op

(
∆T (σ2′′σ2)T

)
+Op

(
∆T (σ2′σ)T 1/2

)
,

from which, toghether with (A.14) and (A.15), we have

A2,T =
1

3
[V ]T +Op

(
∆T (σ2′µ)T

)
+Op

(
∆T (σ2′′σ2)T

)
+Op

(
∆T (σ2′σ)T 1/2

)
+Op

(
∆1/2T (σ2)T 1/2

√
log(T/∆)

)
. (A.16)

Therefore, we can obtain (A.8) by applying (A.11), (A.12) and (A.16) to (A.10).

Proof for (A.9). We write

RT = R1,T +R2,T +R3,T +R4,T , (A.17)
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where

R1,T =
2

∆2

N∑
i=1

(∫ i∆

(i−1)∆

∫ t

(i−1)∆

µ(Vs)dsdt

)(∫ (i+1)∆

i∆

∫ t

i∆

µ(Vs)dsdt

)

R2,T =
2

∆2

N∑
i=1

(∫ i∆

(i−1)∆

∫ t

(i−1)∆

σ(Vs)dWsdt

)(∫ (i+1)∆

i∆

∫ t

i∆

µ(Vs)dsdt

)

R3,T =
2

∆2

N∑
i=1

(∫ i∆

(i−1)∆

∫ t

(i−1)∆

µ(Vs)dsdt

)(∫ (i+1)∆

i∆

∫ t

i∆

σ(Vs)dWsdt

)

R4,T =
2

∆2

N∑
i=1

(∫ i∆

(i−1)∆

∫ t

(i−1)∆

σ(Vs)dWsdt

)(∫ (i+1)∆

i∆

∫ t

i∆

σ(Vs)dWsdt

)
.

We can easily show that

R1,T = Op

(
∆T (µ2)T

)
. (A.18)

Similarly as in (A.12), we have

R2,T , R3,T = Op

(
∆1/2T (µσ)T

√
log(T/∆)

)
. (A.19)

By changing the order of integrals, we rewrite R4,T as

R4,T =
2

∆2

N∑
i=1

(∫ i∆

(i−1)∆

(i∆− s)σ(Vs)dWs

)(∫ (i+1)∆

i∆

((i+ 1)∆− s)σ(Vs)dWs

)

and define a continuous martingale M as

Mt =
2

∆2

j−1∑
i=1

(∫ i∆

(i−1)∆

(i∆− s)σ(Vs)dWs

)(∫ (i+1)∆

i∆

((i+ 1)∆− s)σ(Vs)dWs

)

+
2

∆2

(∫ j∆

(j−1)∆

(j∆− s)σ(Vs)dWs

)(∫ t

j∆

((j + 1)∆− s)σ(Vs)dWs

)
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for t ∈ [j∆, (j + 1)∆), j = 1, 2, · · · , N , so that we have MT = R4,T . Then we have

[M ]T =
4

∆4

N∑
i=1

(∫ i∆

(i−1)∆

(i∆− s)σ(Vs)dWs

)2
(∫ (i+1)∆

i∆

((i+ 1)∆− s)2σ2(Vs)ds

)
= Op

(
∆T (σ4)T log(T/∆)

)
since

sup
1≤i≤N

(∫ (i+1)∆

i∆

((i+ 1)∆− s)2σ2(Vs)ds

)
= Op

(
∆3T (σ2)

)
and

N∑
i=1

(∫ i∆

(i−1)∆

(i∆− s)σ(Vs)dWs

)2

= Op

(
∆2T (σ2)T log(T/∆)

)
,

similarly as in (A.12). Therefore, we have R4,T = Op

(
∆1/2T (σ2)T 1/2

√
log(T/∆)

)
,

from which, together with (A.17)-(A.19), we have (A.9).

Lemma A.5. If ∆1/2T (ω3/2)T
√

log(T/∆)→p 0, then we have

N∑
i=k+1

(Vi∆ − V(i−1)∆)(V(i−k)∆ − V(i−k−1)∆) = op (1)

for any positive integer k ≥ 1.

Proof for Lemma A.5. We have

N∑
i=k+1

(Vi∆ − V(i−1)∆)(V(i−k)∆ − V(i−k−1)∆) = AT +BT + CT +DT , (A.20)
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where

AT =
N∑

i=j+1

(∫ i∆

(i−1)∆

µ(Vs)ds

)(∫ (i−k)∆

(i−k−1)∆

µ(Vs)ds

)

BT =
N∑

i=j+1

(∫ i∆

(i−1)∆

σ(Vs)dWs

)(∫ (i−k)∆

(i−k−1)∆

µ(Vs)ds

)

CT =
N∑

i=j+1

(∫ i∆

(i−1)∆

µ(Vs)ds

)(∫ (i−k)∆

(i−k−1)∆

σ(Vs)dWs

)

DT =
N∑

i=j+1

(∫ i∆

(i−1)∆

σ(Vs)dWs

)(∫ (i−k)∆

(i−k−1)∆

σ(Vs)dWs

)
.

For AT , we have

AT = Op

(
∆T (µ2)T

)
. (A.21)

Moreover, we have

BT , CT = Op

(
∆1/2T (µσ)T

√
log(T/∆)

)
. (A.22)

similarly as in (A.12).

As for DT , we may show that

DT = Op

(
∆1/2T (σ2)T 1/2

√
log(T/∆)

)
(A.23)

similarly as in the proof for R4,T in (A.17). The stated result follows immediately

from (A.20)-(A.23).

Lemma A.6. If ∆1/2T (ω3/2)T
√

log(T/∆)→p 0, we have for k ≥ 0

N∑
i=k+1

(xi+1 − xi−k)2 =

(
2

3
+ k

)
[V ]T + op (1) .
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Proof for Lemma A.6. We write

N∑
i=k+1

(xi+1 − xi−k)2

=
1

∆2

N∑
i=k+1

(∫ (i+1)∆

i∆

(Vt − Vi∆)dt+

∫ (i−k)∆

(i−k−1)∆

(V(i−k)∆ − Vt)dt+ ∆(Vi∆ − V(i−k)∆)

)2

= AT +BT + CT +R1,T +R2,T +R3,T , (A.24)

where

AT =
1

∆2

N∑
i=k+1

(∫ (i+1)∆

i∆

(Vt − Vi∆)dt

)2

BT =
1

∆2

N∑
i=k+1

(∫ (i−k)∆

(i−k−1)∆

(V(i−k)∆ − Vt)dt

)2

CT =
N∑

i=k+1

(Vi∆ − V(i−k)∆)2

R1,T =
2

∆2

N∑
i=k+1

(∫ (i+1)∆

i∆

(Vt − Vi∆)dt

)(∫ (i−k)∆

(i−k−1)∆

(V(i−k)∆ − Vt)

)

R2,T =
2

∆

N∑
i=k+1

(∫ (i+1)∆

i∆

(Vt − Vi∆)dt

)
(Vi∆ − V(i−k)∆)

R3,T =
2

∆

N∑
i=k+1

(Vi∆ − V(i−k)∆)

(∫ (i−k)∆

(i−k−1)∆

(V(i−k)∆ − Vt)

)
.

Similarly as in the proofs of (A.8) and (A.9) in Lemma A.4, we may show that

AT , BT =
1

3
[V ]T +Op

(
∆1/2T (ω3/2)T

√
log(T/∆)

)
(A.25)

R1,T , R2,T , R3,T = Op

(
∆1/2T (ω3/2)T

√
log(T/∆)

)
. (A.26)
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As for CT , we have

CT =
k−1∑
j=0

N∑
i=k+1

(V(i−j)∆ − V(i−j−1)∆)2 + op (1) = k[V ]T + op (1) , (A.27)

where the first equality is due to Lemma A.5, and the last equality follows from

Lemma A11 of Kim and Park (2016). The stated result is then follows from (A.24)-

(A.27).

B. Useful Lemmas for Realized Variance

Lemma B.1. We have

sup
1≤i≤N

|yi − xi| = Op

(√
(δ/∆)T (ι2) log(T/∆)

)
sup

1≤i≤N
|y2
i − x2

i | = Op

(
(δ/∆)T (ι2) log(T/∆)

)
+Op

(√
(δ/∆)T (ι4) log(T/∆)

)
.

Proof for Lemma B.1. We have

sup
1≤i≤N

|yi − xi| = sup
1≤i≤N

|ηigi| ≤
√

2δ

∆2
sup

1≤i≤N

(
1

∆

∫ i∆

(i−1)∆

V 2
t dt

)1/2

|Gi∆ −G(i−1)∆|

≤
√

2δT (ι2)

∆2
sup

1≤i≤N
|Gi∆ −G(i−1)∆|

= Op

(√
(δ/∆)T (ι2) log(T/∆)

)
, (B.1)

where the last equality follows from the global modulus of continuity for Brownian

motion.

On the other hand, we have

sup
1≤i≤N

|y2
i − x2

i | ≤ sup
1≤i≤N

|η2
i g

2
i |+ sup

1≤i≤N
|2xiηigi|,
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and

sup
1≤i≤N

|η2
i g

2
i | = Op

(
(δ/∆)T (ι2) log(T/∆)

)
,

sup
1≤i≤N

|2xiηigi| = Op

(√
(δ/∆)T (ι4) log(T/∆)

)
due to (B.1) and

sup
1≤i≤N

|xi| = Op(T (ι)) +Op (∆T (µ)) +Op

(
∆1/2T (σ)

√
log(T/∆)

)
.

Lemma B.2. We have

∆
N∑
i=1

yi = ∆
N∑
i=1

xi +Op

(√
(δ/∆) log(T/∆)T

)
∆

N∑
i=1

y2
i = ∆

N∑
i=1

x2
i +Op

(
(δ/∆)T (ι2) log(T/∆)T

)
+Op

(√
(δ/∆)T (ι4) log(T/∆)T

)
.

Proof for Lemma B.2. The stated results follow immediately from Lemma B.1.

Lemma B.3. We have

N∑
i=1

(xi+1 − xi)(ηi+1gi+1 − ηigi) = Op

(
(δ/∆)1/2 T (ισ)T 1/2

)
.

Proof for Lemma B.3. We write

N∑
i=1

(xi+1 − xi)(ηi+1gi+1 − ηigi) = AT −BT ,

where

AT =
N∑
i=1

ηi+1(xi+1 − xi)gi+1 and BT =
N∑
i=1

ηi(xi+1 − xi)gi.
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In the following, we are to show

AT , BT = Op

(
(δ/∆)1/2 T (ισ)T 1/2

)
. (B.2)

For AT , we have

AT =

√
2δ

∆

N∑
i=1

(
1

∆

∫ (i+1)∆

i∆

V 2
u du

)1/2(
1

∆

∫ (i+1)∆

i∆

(Vu − Vu−∆)du

)
(G(i+1)∆ −Gi∆)

We define a process M as

Mt =

√
2δ

∆

j−1∑
i=1

(
1

∆

∫ (i+1)∆

i∆

V 2
u du

)1/2(
1

∆

∫ (i+1)∆

i∆

(Vu − Vu−∆)du

)
(G(i+1)∆ −Gi∆)

+

√
2δ

∆

∫ t

j∆

(
1

∆

∫ t

j∆

V 2
u du

)1/2(
1

∆

∫ t

j∆

(Vu − Vu−∆)du

)
dGs

for t ∈ [j∆, (j + 1)∆), j = 1, 2, · · · , N , so that AT = MT . Since G and V are

independent each other, M is a continuous martingale with a quadratic variation [M ]

satisfying

[M ]T =
2δ

∆

N∑
i=1

(
1

∆

∫ (i+1)∆

i∆

V 2
u du

)(
1

∆

∫ (i+1)∆

i∆

(Vu − Vu−∆)du

)2

= Op

(
(δ/∆)T (ι2)T (σ2)T

)
(B.3)

due, in particular, to Lemma A.4. The desired result (B.2) for AT follows immediately

from (B.3) since AT = MT . The proof for BT is entirely identical to the proof for AT

and omitted here.

Lemma B.4. We have

N∑
i=1

ηigiηi+1gi+1 = Op

(
(δ/∆3/2)T (ι2)

√
T log(T/∆)

)
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Proof for Lemma B.4. We define a continuous martingale M as

Mt =
2δ

∆2

j−1∑
i=1

(
1

∆

∫ i∆

(i−1)∆

V 2
u du

)1/2

(Gi∆ −G(i−1)∆)

(
1

∆

∫ (i+1)∆

i∆

V 2
u du

)1/2

(G(i+1)∆ −Gi∆)

+
2δ

∆2

∫ t

j∆

(
1

∆

∫ t−∆

(j−1)∆

V 2
u du

)1/2

(Gj∆ −G(j−1)∆)

(
1

∆

∫ t

j∆

V 2
u du

)1/2

dGs

for t ∈ [j∆, (j + 1)∆), j = 1, 2, · · · , N , so that MT =
∑N

i=1 ηigiηi+1gi+1. Using the

global modulus of continuity for Brownian motion, we may show that the quadratic

variation process [M ] satisfies

[M ]T = Op

(
(δ2/∆3)T (ι4)T log(T/∆)

)
,

from which we have the stated result.

Lemma B.5. Assume that

∆T (ω2) log(T/∆)→p 0, (δ/∆3/2)T (ω3)T
√

log(T/∆)→p 0.

Then we have

N∑
i=1

(yi+1 − yi)2 =
N∑
i=1

(xi+1 − xi)2 +
4δ

∆2

∫ T

0

V 2
t dt+ op(1).

Proof for Lemma B.5. Due to Lemma B.3, we have

N∑
i=1

(yi+1 − yi)2 =
N∑
i=1

(xi+1 − xi)2 +
N∑
i=1

(ηi+1gi+1 − ηigi)2 +Op

(
(δ/∆)1/2 T (ισ)T 1/2

)
.

(B.4)
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For the second term of (B.4), we write

N∑
i=1

(ηi+1gi+1 − ηigi)2 = 2
N∑
i=1

η2
i g

2
i +

(
η2
N+1g

2
N+1 − η2

1g
2
1

)
+ 2

N∑
i=1

ηi+1gi+1ηigi

= 2
N∑
i=1

η2
i g

2
i + op(1), (B.5)

where the last line follows from Lemma B.4 with the condition in this lemma since

we have

sup
1≤i≤N

|ηigi|2 ≤ sup
1≤i≤N

∣∣∣∣ 1

∆

∫ i∆

(i−1)∆

V 2
t dt

∣∣∣∣ sup
1≤i≤N

∣∣Gi∆ −G(i−1)∆

∣∣2 = Op

(
∆T (ι2) log(T/∆)

)
due to the global modulus of continuity for Brownian motion.

For the first term of (B.5), we have

N∑
i=1

η2
i g

2
i =

2δ

∆2

N∑
i=1

(
1

∆

∫ i∆

(i−1)∆

V 2
t dt

)
(Gi∆ −G(i−1)∆)2

=
2δ

∆2

N∑
i=1

(
1

∆

∫ i∆

(i−1)∆

V 2
t dt

)
(Gi∆ −G(i−1)∆)2

=
2δ

∆2

N∑
i=1

V 2
(i−1)∆∆ + AT +BT , (B.6)

where

AT =
2δ

∆2

N∑
i=1

(
1

∆

∫ i∆

(i−1)∆

(V 2
t − V 2

(i−1)∆)dt

)
∆

BT =
4δ

∆2

N∑
i=1

(
1

∆

∫ i∆

(i−1)∆

V 2
t dt

)∫ i∆

(i−1)∆

(Gt −G(i−1)∆)dGt.

For AT , we use Lemma A.1 to have

AT = Op ((δ/∆)T (ιµ)T ) +Op

(
(δ/∆3/2)T (ισ)T

√
log(T/∆)

)
. (B.7)
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As for BT , we define a continuous martingale M as

Mt =
4δ

∆2

j−1∑
i=1

(
1

∆

∫ i∆

(i−1)∆

V 2
u du

)∫ i∆

(i−1)∆

(Gu −G(i−1)∆)dGu

+
4δ

∆2

∫ t

j∆

(
1

∆

∫ j∆

(j−1)∆

V 2
u du

)
(Gt −G(j−1)∆)dGs

for t ∈ [j∆, (j + 1)∆), j = 1, 2, · · · , N , so that AT = MT . As in the proof of Lemma

B.4, we may show that

[M ]T = Op

(
(δ2/∆3)T (ι4)T log(T/∆)

)
,

from which we have

BT = Op

(
(δ/∆3/2)T (ι2)

√
T log(T/∆)

)
. (B.8)

The stated result is then follows from (B.4)-(B.8) with Lemma B1 of Kim and Park

(2017).

Lemma B.6. Let the conditions in Lemma B.5 hold. Then we have

N∑
i=k+1

(yi+1 − yi−k)2 =
N∑

i=k+1

(xi+1 − xi−k)2 +
4δ

∆2

∫ T

0

V 2
t dt+ op(1)

Proof of Lemma B.6. Similarly as in (B.4), we have

N∑
i=k+1

(yi+1 − yi−k)2 =
N∑

i=k+1

(xi+1 − xi−k)2 +
N∑

i=k+1

(ηi+1gi+1 − ηi−kgi−k)2 + op (1) .

(B.9)

Moreover, the second term in (B.9) satisfies

N∑
i=k+1

(ηi+1gi+1 − ηi−kgi−k)2 = 2
N∑

i=k+1

η2
i g

2
i + op(1) =

4δ

∆

∫ T

0

V 2
t dt+ op(1).

similarly as in the proof of Lemmas B.5, from which, jointly with (B.9), we have the

stated result.
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C. Proofs for Main Results

Proof for Lemma 3.1. The stated results for z = v can be found in Lemma 3.1 of Kim

and Park (2017), and hence, we prove this lemma for z = x, y below. The part (a)

follows from Lemmas A.4 and B.5, respectively, for z = x and y. The part (b) can be

obtained from Lemmas A.1-A.2 and Lemmas B.1-B.2, respectively, for z = x and y.

Moreover, the part (c) follows immediately from Lemmas A.2 and B.2, respectively,

for z = x and y.

Proof for Proposition 3.2. The stated result in part (a) can be deduced from Lemma

3.1 with Ito’s lemma since

N∑
i=1

(zi − zN)4xi =
1

2

(
z2
N − z2

1 − xN(zN − z1)
)
− 1

2

N∑
i=1

(zi+1 − zi)2.

For τ̂ 2
z in the part (b), we write

(T/∆)τ̂ 2
z =

N∑
i=1

(
4zi − α̂z − (β̂z − 1)zi

)2

=
N∑
i=1

(4zi)2 −N
(
4zN

)2 −

(∑N
i=1(zi − zN)4zi

)2

∑N
i=1(zi − zN)2

. (C.1)

For the second term of (C.1), we may show that

4zN =
1

N
(VT − V0) +Rz,T ,

where

Rx,T = Op

(
∆2T (µ)/T

)
+Op

(
∆3/2T (σ)

√
log(T/∆)/T

)
,

Ry,T = Rx,T +Op

(√
δ∆ log(T/∆)/T

)
due to Lemmas A.1 and B.1, and hence,

N
(
4zN

)2
= Op

(
∆T (ι2)/T

)
. (C.2)
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For the last term of (C.1), we note that

∆
N∑
i=1

(zi − zN)2 = Op(bT ), (C.3)

where bT is defined in Section 4 and satisfies T/bT = O(1). Moreover, we have

N∑
i=1

(zi − zN)4zi ∼p


∫ T

0
(Vt − V T )dVt, if z = v∫ T

0
(Vt − V T )dVt + (1/6)[V ]T , if z = x∫ T

0
(Vt − V T )dVt + (1/6)[V ]T − (2δ/∆2)

∫ T
0
V 2
t dt, if z = y

(C.4)

by the part (a) of this proposition. For each component in (C.4), we have [V ]T =

Op(T (σ2)T ), (2δ/∆2)
∫ T

0
V 2
t dt = Op ((δ/∆2)T (ι2)T ) and∫ T

0

(Vt − V T )dVt =
1

2

(
(VT − V T )2 − (V0 − V T )2 −

∫ T

0

σ2(Vt)dt

)
= Op

(
T (ι2)

)
+Op

(
T (σ2)T

)
,

from which, jointly with (C.3) and (C.4), we have(∑N
i=1(zi − zN)4zi

)2

∑N
i=1(zi − zN)2

=

{
Op (∆T (ω4)T ) , if z = v, x

Op (∆T (ω4)T ) +Op ((δ2/∆3)T (ω4)T ) , if z = y.

(C.5)

The stated result for τ̂ 2
z follows from (C.1), (C.2) and (C.5) with Assumption 3.1.

As for R2
z in the part (b), we have

R2
z = β̂2

z

∑N
i=1(zi − zN)2∑N
i=1(zi+1 − zN)2

= β̂2
z

∑N
i=2(zi − zN)2 + (z1 − zN)2∑N

i=2(zi − zN)2 + (zN+1 − zN)2
∼p β̂2

z

as desired.

The stated result in part (c) follows immediately from Lemma 3.1 and Proposition

3.2 (a)-(b).

Proof for Proposition 3.3. The part (a) follows immediately from Lemma B.6. We
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may show parts (b) and (c) similarly as in the proofs for parts (a) and (b) of Propo-

sition 3.2.

Proof for Proposition 3.4. The parts (a) and (b) follow immediately from Proposi-

tions 3.2 and 3.3 since

1∑N
i=2 z̃

2
i

(
N∑
i=2

wiz̃i+1

)
=

1∑N
i=2 z̃

2
i

( ∑N
i=2 z̃iz̃i+1∑N
i=2 z̃i−1z̃i+1

)
,

1∑N
i=2 z̃

2
i

(
N∑
i=2

wiw
′
i

)
=

1∑N
i=2 z̃

2
i

( ∑N
i=2 z̃

2
i

∑N
i=2 z̃iz̃i−1∑N

i=2 z̃iz̃i−1

∑N
i=2 z̃

2
i−1

)
.

As for the part (c), we have

β̂1,z + β̂2,z ∼p 2
β̂z

β̂z + 1
+
β̂x − 1

β̂x + 1

β̂v − 1

β̂x − 1
(C.6)

due to the part (b) of this proposition with Proposition 3.3 (b). In what follows, we

prove the part (b) only for z = x, since the proofs for z = v, y are entirely analogous.

Let z = x. It then follows from Proposition 3.2 and Taylor expansion that

β̂x

β̂x + 1
∼p

1 + ∆(γv + γx)

2 + ∆(γv + γx)
∼p

1

2
+

1

4
∆(γv + γx),

β̂v − 1

β̂x − 1
∼p

γv
γv + γx

,

β̂x − 1

β̂x + 1
∼p

∆(γv + γx)

2 + ∆(γv + γx)
∼p

1

2
∆(γv + γx)

since ∆(γv + γx) →p 0 under Assumption 3.1, from which, together with (C.6), we

have the stated result in part (c) for z = x.
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As for the part (d), we may show that

R2
z ∼p β̂2

1,z + β̂2
2,z + 2β̂1,zβ̂2,z

∑N
i=2(zi − zN)(zi−1 − zN)∑N

i=2(zi+1 − zN)2

∼p (β̂1,z + β̂2,z)
2 + 2β̂1,zβ̂2,z

∑N
i=2(zi−1 − zN)4zi−1∑N

i=2(zi+1 − zN)2

∼p (β̂1,z + β̂2,z)
2 + 2β̂1,zβ̂2,z(β̂z − 1)

which completes the proof.

Proofs for Lemmas 4.1 and 4.2. See Lemmas 3.2 and 3.3 of Kim and Park (2016).

Proofs for Theorems 4.3 and 4.4. The stated results follow immediately from Propo-

sition 3.2 with Lemmas 4.1 and 4.2.

Proof for Theorem 4.5. The stated results follow immediately from Proposition 3.4

with Lemmas 4.1 and 4.2.

Proof for Proposition 4.6. The proof is essentially identical to the proofs for Lemma

3.1 and Propositions 3.2-3.4, and is omitted here.

Proof for Theorem 4.7. The stated results can be deduced from Proposition 4.6 with

Lemmas 4.1 and 4.2.
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Analysis of Time-Deformed Lévy Processes,” Journal of Econometrics, 131, 217–

252.

Bingham, N. H., C. M. Goldie, and J. L. Teugels (1993): Regular Variation,

Cambridge, UK: Cambridge University Press.

Bollerslev, T. (1986): “Generalized Autoregressive Conditional Heteroskedastic-

ity,” Journal of Econometrics, 31, 307–327.

Chambers, M. J. (2004): “Testing for Unit Roots with Flow Data and Varying

Sampling Frequency,” Journal of Econometrics, 119, 1–18.



55

Drost, F. C. and T. E. Nijman (1993): “Temporal Aggregation of Garch Pro-

cesses,” Econometrica, 61, 909–927.

Drost, F. C. and B. J. Werker (1996): “Closing the GARCH Gap: Continuous

Time GARCH Modeling,” Journal of Econometrics, 74, 31 – 57.

Engle, R. (1982): “Autoregressive Conditional Heteroscedasticity with Estimates

of the Variance of United Kingdom Inflation,” Econometrica, 50, 987–1007.

Hill, B. M. (1975): “A Simple General Approach to Inference About the Tail of a

Distribution,” The Annals of Statistics, 3, 1163–1174.

Hill, J. B. (2010): “On Tail Index Estimation for Dependent, Heterogeneous Data,”

Econometric Theory, 26, 1398–1436.

Hsing, T. (1991): “On Tail Index Estimation Using Dependent Data,” The Annals

of Statistics, 19, 1547–1569.

Ibragimov, M., R. Ibragimov, and J. Walden (2015): Heavy-Tailed Distri-

butions and Robustness in Economics and Finance, Springer, New York: Lecture

Notes in Statistics 214.

Jacod, J., Y. Li, P. A. Mykland, M. Podolskij, and M. Vetter (2009):

“Microstructure Noise in the Continuous Case: The Pre-Averaging Approach,”

Stochastic Processes and their Applications, 119, 2249–2276.

Jacod, J. and P. Protter (1998): “Asymptotic Error Distributions for the Euler

Method for Stochastic Differential Equations,” Annals of Probability, 26, 267–307.

Kanaya, S., J. Kim, and J. Y. Park (2016): “Moduli of Continuity of Brow-

nian Motion and Gaussian Processes over an Expanding Time Interval with an

Application to Jump Thresholding,” Working Paper, Indiana University.

Karatzas, I. and S. E. Shreve (1991): Brownian Motion and Stochastic Calculus,

New York, New York: Springer-Verlag.

Kim, J. and J. Y. Park (2016): “Mean Reversion and Stationarity in Financial

Time Series Generated from Diffusion Models,” Working Paper.



56

——— (2017): “Asymptotics for Recurrent Diffusions with Application to High Fre-

quency Regression,” Journal of Econometrics, 196, 27–54.

Kurtz, T. G. and P. Protter (1991): “Weak Limit Theorems for Stochastic

Integrals and Stochastic Differential Equations,” The Annals of Probability, 19,

1035–1070.

Meddahi, N. (2001): “An Eigenfunction Approach for Volatility Modeling,”

CIRANO Working Paper.

——— (2003): “ARMA Representation of Integrated and Realized Variances,”

Econometrics Journal, 6, 335–356.

Mikosch, T. and C. Starica (2000): “Limit Theory for the Sample Autocorre-

lations and Extremes of a GARCH (1, 1) Process,” The Annals of Statistics, 28,

1427–1451.

Nelson, D. B. (1990): “ARCH Models as Diffusion Approximations,” Journal of

Econometrics, 45, 7–38.
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Fig. 1. (AR(1) with Finite Variance) The empirical distributions of β̂z−1 (blue lines)
and β̃z − 1 (red lines), where β̃ is the approximated limit distribution. The dotted,
dashed and solid lines represent respectively T = 1, 2 and 4. The upper and lower
panels represent respectively the spot and integrated variances.
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Fig. 2. (AR(1) with Finite Variance) The empirical distributions of β̂z−1 (blue lines)
and β̃z − 1 (red lines), where β̃ is the approximated limit distribution. The dotted,
dashed and solid lines represent respectively T = 1, 2 and 4. The upper, middle and
lower panels represent the realized variances obtained from, respectively, 1, 5 and 10
minutes data.
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Fig. 3. (AR(2) with Finite Variance) The empirical distributions of β̂z−1 (blue lines)
and β̃z − 1 (red lines), where β̃ is the approximated limit distribution. The dotted,
dashed and solid lines represent respectively T = 1, 2 and 4. The upper and lower
panels represent respectively the spot and integrated variances.
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Fig. 4. (AR(2) with Finite Variance) The empirical distributions of β̂z−1 (blue lines)
and β̃z − 1 (red lines), where β̃ is the approximated limit distribution. The dotted,
dashed and solid lines represent respectively T = 1, 2 and 4. The upper, middle and
lower panels represent the realized variances obtained from, respectively, 1, 5 and 10
minutes data.
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Fig. 5. (AR(1) with Infinite Variance) The empirical distributions of β̂z − 1 (blue
lines) and β̃z − 1 (red lines), where β̃ is the approximated limit distribution. The
dotted, dashed and solid lines represent respectively T = 1, 2 and 4. The upper and
lower panels represent respectively the spot and integrated variances.
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Fig. 6. (AR(1) with Infinite Variance) The empirical distributions of β̂z − 1 (blue
lines) and β̃z − 1 (red lines), where β̃ is the approximated limit distribution. The
dotted, dashed and solid lines represent respectively T = 1, 2 and 4. The upper,
middle and lower panels represent the realized variances obtained from, respectively,
1, 5 and 10 minutes data.
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Fig. 7. (AR(2) with Infinite Variance) The empirical distributions of β̂z − 1 (blue
lines) and β̃z − 1 (red lines), where β̃ is the approximated limit distribution. The
dotted, dashed and solid lines represent respectively T = 1, 2 and 4. The upper and
lower panels represent respectively the spot and integrated variances.
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Fig. 8. (AR(2) with Infinite Variance) The empirical distributions of β̂z − 1 (blue
lines) and β̃z − 1 (red lines), where β̃ is the approximated limit distribution. The
dotted, dashed and solid lines represent respectively T = 1, 2 and 4. The upper,
middle and lower panels represent the realized variances obtained from, respectively,
1, 5 and 10 minutes data.


