
Supplementary Materials

Simulation based Bias Correction Methods

for Complex Models

A Proof of Corollary 1

For θ̂ and θ̃, the proof is directly obtained by verifying the conditions of Theorem

2.1 of Newey and McFadden (1994). First, θ̂ satisfies

θ̂ = argmin
θ∈Θ

Q̂ (θ, n) ,

where Q̂ (θ, n) = ||π̂(θ0, n) − π̄(θ, n)||22. Let Q (θ) = ||π(θ0) − π(θ)||22. By

Assumption 1, Q (θ) is a continuous function of θ and is uniquely minimized at

θ0. Consider the absolute value of the difference between Q̂ (θ, n) and Q (θ), i.e.
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∣∣∣Q̂ (θ, n)−Q (θ)
∣∣∣ =

∣∣ ||π̂(θ0, n)− π̄(θ, n)||22 − ||π(θ0)− π(θ)||22
∣∣

=
∣∣||{π̂(θ0, n)− π(θ0)}+ {π(θ0)− π(θ)}

+ {π(θ)− π̄(θ, n)}||22 − ||π(θ0)− π(θ)||22
∣∣

=
∣∣||π̂(θ0, n)− π(θ0)||22 + ||π̄(θ, n)− π(θ)||22

+ 2{π̂(θ0, n)− π(θ0)}T{π(θ0)− π̄(θ, n)}

+ 2{π(θ)− π̄(θ, n)}T{π(θ0)− π(θ)}
∣∣

≤ ||π̂(θ0, n)− π(θ0)||22 + ||π̄(θ, n)− π(θ)||22

+ 2‖π̂(θ0, n)− π(θ0)‖2‖π(θ0)− π̄(θ, n)‖2

+ 2‖π(θ)− π̄(θ, n)‖2‖π(θ0)− π(θ)‖2.

Because of the uniform consistency of π̂(θ, n) as an estimator of π(θ) (see (1)),

we have π̂(θ, n)
p→ π(θ) and hence

π̄(θ, n) =
1

H

H∑
h=1

π̂h(θ, n)
p→ π(θ),

uniformly. The function π(θ) is continuous and consequently we have that

||π(θ0)− π̄(θ, n)||2 and ||π(θ0)− π(θ)||2 are bounded for all θ ∈ Θ and that

sup
θ∈Θ

∣∣∣Q̂ (θ, n)−Q (θ)
∣∣∣ p→ 0.

By combining the above results, the four condition of Theorem 2.1. of Newey

and McFadden (1994) can be verified implying that θ̂
p→ θ0. Using the same
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argument and simply replacing π̄(θ, n) by π̂(θ, nH), we have that θ̃ defined in

(5) is also a consistent estimator for θ0.

Finally, the consistency of θ̃B is directly implied by the consistency of θ̂ and

Theorem 4 presented in Section 3 of the main document.
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B Proof of Theorem 1

From (3) we have that θ̂ satisfies:

π̂(θ0, n) = π̄(θ̂, n).

Using (2) and (4), we have

π̂(θ0, n) = θ0 + b (θ0, n) + c(n) + v (θ0, n) = π̄(θ̂, n)

= θ̂ + b
(
θ̂, n

)
+ c(n) +

1

H

H∑
h=1

vh

(
θ̂, n

)
,

with vh

(
θ̂, n

)
corresponding to the noise of the hth simulated sample. By rear-

ranging the terms and defining

ṽ ≡ v (θ0, n)− 1

H

H∑
h=1

vh

(
θ̂, n

)
,

we obtain,

θ̂ = θ0 +
{

b (θ0, n)− b
(
θ̂, n

)}
+ ṽ. (1)

We now consider E
[
θ̂j

]
− θj, with θ̂j, respectively θj, the jth element of θ̂, re-

spectively θ0. Using (1), we get

E
[
θ̂j

]
− θj = E

 p∑
i=1

ai,j

(
θi − θ̂i

)
n

+

p∑
k=1

p∑
l=1

dk,l,j

(
θkθl − θ̂kθ̂l

)
n2

+Op
(
n−3
) .
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Next, we define u ≡ [u1 . . . up]
T , where

uj ≡
p∑

k=1

p∑
l=1

dk,l,j

(
θkθl − θ̂kθ̂l

)
n2

+Op
(
n−3
)
,

and using this new quantity we can write

E
[
θ̂
]
− θ0 =

1

n
A
(
θ0 − E

[
θ̂
])

+ E [u] ,

where A ≡ [ai,j]i,j=1,...,p. Therefore, we obtain

(
Ip +

1

n
A

)(
E
[
θ̂
]
− θ0

)
= E [u] .

For sufficiently large n the matrix
(
Ip + 1

n
A
)−1

is invertible and we obtain

E
[
θ̂
]
− θ0 =

(
Ip +

1

n
A

)−1
E [u] . (2)

Because u = Op(n−2), a direct consequence of (2) is that

E
[
θ̂
]
− θ0 = O(n−2). (3)

We now consider the variance of θ̂. Using (1), we get

var
(
θ̂
)

= var
{

b
(
θ̂, n

)}
+ var (ṽ)−

(
W + WT

)
, (4)
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where W ≡ cov{b(θ̂, n), ṽ}. We now investigate the three elements of (4) sepa-

rately. For the second term, we have

var (ṽ) = var {v (θ0, n)}+
1

H
var
{

v1

(
θ̂, n

)}
−
[
cov

{
v (θ0, n) ,v1

(
θ̂, n

)}
+ cov T

{
v (θ0, n) ,v1

(
θ̂, n

)}]
.

Moreover, we have

cov
{

v (θ0, n) ,v1

(
θ̂, n

)}
= E

[
cov

{
v (θ0, n) ,v1

(
θ̂, n

) ∣∣θ̂}]
+ cov

[
E
{

v (θ0, n)
∣∣θ̂} ,E{v1

(
θ̂, n

) ∣∣θ̂}]
= 0

(5)

Thus, we get

var (ṽ) = n−αVθ0,n +
1

H
E
[
var
{

v1

(
θ̂, n

) ∣∣θ̂}] . (6)

Using (3), Assumption 4 and performing a MacLaurin expansion on the last term

of (6) we obtain

E
[
var
{

v1

(
θ̂, n

) ∣∣θ̂}]
= var {v1 (θ0, n)}+ E

[
D1(θ

∗, n)(θ̂ − θ0), . . . ,Dp(θ
∗, n)(θ̂ − θ0)

]
= var {v1 (θ0, n)}+O

(
n−2
)
,

where θ∗ ∈ Θ is on the line connecting θ̂ and θ0. Therefore, we get

var (ṽ) = n−α
(

1 +
1

H

)
Vθ0,n +O(n−2). (7)
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Note that the above results directly implies that var (ṽ) = O
(
n−min(α,2)

)
.

Next, we consider the first element of (4) and we study the variance of the jth

element of the vector b(θ̂, n). For simplicity, we define rj ≡
∑p

k=1

∑p
l=1 dk,l,j

θ̂k θ̂l
n2 +

Op (n−3), which is Op(n−2). Then, using Cauchy-Schwarz inequality, we have

var
{
bj

(
θ̂, n

)}
= var

(
p∑
i=1

ai,j
θ̂i
n

+ rj

)

= var

(
p∑
i=1

ai,j
θ̂i
n

)
+ 2 cov

(
p∑
i=1

ai,j
θ̂i
n
, rj

)
+O

(
n−4
)

=
1

n2

p∑
k=1

p∑
l=1

ak,jal,j cov
(
θ̂k, θ̂l

)
+O

(
n−3
)

≤ p2

n2
max

i,j=1,...,p

{
ak,jal,j cov

(
θ̂k, θ̂l

)}
+O

(
n−3
)

= O
(
n−min(3,2+α)

)
,

since from (4) and (7) we have var
(
θ̂i

)
= O

(
n−min(α,2)

)
.

Hence

var
{

b
(
θ̂, n

)}
= O

(
n−min(2+α,3)

)
, (8)

componentwise.

Considering the last term of (4) and using wj,k to denote the (j, k) element

of the matrix W, we obtain by Cauchy-Schwarz inequality together with (8) and

(6) that

w2
j,k ≤ var

{
bj

(
θ̂, n

)}
var (ṽk) = O

(
n−min(3+α,2+2α,5)

)
. (9)
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By combining the results of (8), (6) and (9) , we get

var
(
θ̂
)

= n−α
(

1 +
1

H

)
Vθ0,n +O

(
n−min(2,1+α)

)
, (10)

which verifies the second part of Theorem 1. Note that from (10) we also have

that var
(
θ̂
)

= O
(
n−min(2,α)

)
.

Next, we return to (3) and study further the term u. Indeed, using (3) we

have that

E
[
θ̂k

]
E
[
θ̂l

]
=
{
θk +O(n−2)

}{
θl +O(n−2)

}
= θkθl +O(n−2),

and therefore, we obtain

E [uj] =
1

n2

p∑
k=1

p∑
l=1

dk,l,j

(
θkθl − E

[
θ̂kθ̂l

])
+O

(
n−3
)

=
1

n2

p∑
k=1

p∑
l=1

dk,l,j

{
θkθl − E

[
θ̂k

]
E
[
θ̂l

]
− cov

(
θ̂k, θ̂l

)}
+O

(
n−3
)

=
1

n2

p∑
k=1

p∑
l=1

dk,l,j

(
θkθl − E

[
θ̂k

]
E
[
θ̂l

])
+O

(
n−min(2+α,3)

)
= O

(
n−min(2+α,3)

)
.

Using (2), we finally get

E
[
θ̂
]
− θ0 =

(
Ip +

1

n
A

)−1
E [u] = O

(
n−min(2+α,3)

)
,

which verifies the first part of Theorem 1 and concludes the proof.
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C Proof of Theorem 2

From (5) we have that θ̃ satisfies:

π̂(θ0, n) = π̂(θ̃, nH).

Using (2), we have

π̂(θ0, n) = θ0 + b (θ0, n) + c(n) + v (θ0, n) = π̂(θ̃, nH)

= θ̃ + b
(
θ̃, nH

)
+ c(nH) + v

(
θ̃, nH

)
,

By rearranging the terms and defining

v∗ ≡ v (θ0, n)− v
(
θ̃, nH

)
,

we obtain,

θ̃ = θ0 +
{

b (θ0, n)− b
(
θ̃, nH

)}
+ {c(n)− c(nH)}+ v∗. (11)

We now consider E
[
θ̂j

]
− θj, with θ̂j, respectively θj, the jth element of θ̂, re-

spectively θ0. Using (11) and, as in the proof of Theorem 1, we define u ≡

[u1 . . . up]
T , where

uj ≡
p∑

k=1

p∑
l=1

dk,l,j

(
θkθl − θ̂kθ̂l

)
n2

+Op
(
n−3
)
,

9



we get

E
[
θ̂j

]
− θj = E

 p∑
i=1

ai,j

(
θi − θ̂i

)
n

+ uj

+ [c(n)− c(nH)]j ,

Therefore, we have

E
[
θ̂
]
− θ0 =

1

n
A
(
θ0 − E

[
θ̂
])

+ E [u] + c(n)− c(nH),

where A ≡ [ai,j]i,j=1,...,p. Then we can write

(
Ip +

1

n
A

)(
E
[
θ̂
]
− θ0

)
= E [u] + c(n)− c(nH).

For sufficiently large n the matrix
(
Ip + 1

n
A
)−1

is invertible and we obtain

E
[
θ̂
]
− θ0 =

(
Ip +

1

n
A

)−1
{E [u] + c(n)− c(nH)} . (12)

Because u = Op(n−2), a direct consequence of (12) is that

E
[
θ̃
]
− θ0 = O

(
n−min(2,λ)

)
, (13)

which verifies the first part of Theorem 2. We now consider the variance of θ̃.

Using (11), we get

var
(
θ̃
)

= var
{

b
(
θ̃, nH

)}
+ var (v∗)−

(
M + MT

)
. (14)
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where M ≡ cov
{

b
(
θ̃, nH

)
,v∗
}

. We now investigate the three elements of (14)

separately. First, it is clear bj

(
θ̃, nH

)
= Op

(
(nH)−1

)
and therefore by Cauchy-

Schwarz inequality we have that var
{

b
(
θ̃, nH

)}
= O

(
(nH)−2

)
componentwise.

Considering the second term of (14), we have

var (v∗) = var {v (θ0, n)}+ var
{

v
(
θ̃, nH

)}
−
(
G + GT

)
= n−αVθ0,n + var

{
v
(
θ̃, nH

)}
= n−αVθ0,n + E

[
var
{

v
(
θ̃, nH

) ∣∣θ̃}] ,
(15)

where G ≡ cov
{

v (θ0, n) ,v
(
θ̃, nH

)}
= 0 similarly to (5) in the proof of Theo-

rem 1. Using (13), Assumption 4 and performing a MacLaurin expansion on the

last term of (15) we obtain

E
[
var
{

v
(
θ̃, nH

) ∣∣θ̃}]
= var {v (θ0, nH)}+ E

[
D1(θ

∗, nH)(θ̃ − θ0), . . . ,Dp(θ
∗, nH)(θ̃ − θ0)

]
= var {v (θ0, nH)}+O

(
n−min(2,λ)

)
,

where θ∗ ∈ Θ is on the line connecting θ0 and θ̃. Therefore, we get

var (v∗) = n−αVθ0,n + (nH)−α Vθ0,nH +O
(
n−min(2,λ)

)
. (16)

Considering the last term of (14) and using mj,k to denote the (j, k) element of

the matrix M, we obtain by Cauchy-Schwarz inequality that

m2
j,k ≤ var

{
bj

(
θ̃, nH

)}
var (v∗k) = O

(
(nH)−2 n−min(α,2,λ)

)
.
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By combining the previous results, we get

var
(
θ̃
)

= n−αVθ0,n + (nH)−α Vθ0,nH +O
(

max
{
n−min(2,λ), H−1n−

min(α,λ)
2

−1
})

,

which verifies the second part of Theorem 2 and concludes the proof.
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D Proof of Theorem 3

From (7), θ̂B is defined as:

θ̂B = 2π̂(θ0, n)− π̄ {π̂(θ0, n), n} .

To simplify the notation we write π̂(θ0, n) as π̂ for the rest proof. Using (2) and

(4), we obtain

θ̂B = π̂ + {θ0 + b (θ0, n) + c(n) + v (θ0, n)}

−

{
π̂ + b (π̂, n) + c(n) +

1

H

H∑
h=1

vh (π̂, n)

}

= θ0 + {b (θ0, n)− b (π̂, n)}+

{
v (θ0, n)− 1

H

H∑
h=1

vh (π̂, n)

}
.

(17)

Next, we consider E [bj (θ0, n)− bj (π̂, n)], with bj(·, ·), respectively θj and π̂j, the

jth element of b(·, ·), respectively θ0 and π̂. We obtain

E [bj (θ0, n)− bj (π̂, n)]

= E

[
p∑
i=1

ai,j
θi − π̂i
n

+Op
(
n−2
)]

= E

[
p∑
i=1

ai,j
θi − {θi + bi (θ0, n) + ci(n) + vi (θ0, n)}

n

]
+O

(
n−2
)

= E

[
p∑
i=1

−ai,j
bi (θ0, n) + ci(n)

n

]
+O

(
n−2
)

= O
(
n−min(1,β)−1) .
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Therefore, we obtain

E
[
θ̂B

]
− θ0 = E [b (θ0, n)− b (π̂, n)] + E

[
v (θ0, n)− 1

H

H∑
h=1

vh (π̂, n)

]

= O
(
n−min(1,β)−1) ,

which verifies the first part of Theorem 3. We now consider the variance of θ̂B.

Using (17), we get

var
(
θ̂B

)
= var {b (π̂, n)}+ var

{
v (θ0, n)− 1

H

H∑
h=1

vh (π̂, n)

}

−
(
Q + QT

)
,

(18)

where Q ≡ cov
{

b (π̂, n) ,v (θ0, n)− 1
H

∑H
h=1 vh (π̂, n)

}
. We now investigate

the three elements of (18) separately. For the first element, it is clear that

bj (π̂, n) = Op (n−1) and therefore by Cauchy-Schwarz inequality we have that

var {b (π̂, n)} = O (n−2) componentwise. For the second term of (18), and us-

ing cov{v (θ0, n) ,vh (π̂, n)} = 0, h = 1, . . . , H, similarly to (5) in the proof of

Theorem 1, we have

var

{
v (θ0, n)− 1

H

H∑
h=1

vh (π̂, n)

}

= var {v (θ0, n)}+ var

{
1

H

H∑
h=1

vh (π̂, n)

}

= n−αVθ0,n +
1

H
E
[
var
{
v1 (π̂, n)

∣∣π̂}] ,
(19)
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Using Assumption 4 and performing a MacLaurin expansion on the last term of

(19) we obtain

1

H
E
[
var
{
v1 (π̂, n)

∣∣π̂}]
=

1

H
var {v (θ0, n)}+

1

H
E [D1(θ

∗, n)(π̂ − θ0), . . . ,Dp(θ
∗, n)(π̂ − θ0)]

=
1

H
n−αVθ0,n +O

(
H−1n−min(1,β)

)
,

where θ∗ ∈ Θ is on the line connection π̂ and θ0. Therefore, we get

var

{
v (θ0, n)− 1

H

H∑
h=1

vh (π̂, n)

}

= n−α
(

1 +
1

H

)
Vθ0,n +O

(
H−1n−min(1,β)

)
.

(20)

Considering the last term of (18) and using qj,k to denote the (j, k) element of

the matrix Q, we obtain by Cauchy-Schwarz inequality that

q2j,k ≤ var {bj (π̂, n)}

[
var

{
v (θ0, n)− 1

H

H∑
h=1

vh (π̂, n)

}]
k,k

= O
(
max

[
n−(2+α), H−1n−min(1,β)−2])

By combining the previous results, we get

var
(
θ̂B

)
= n−α

(
1 +

1

H

)
Vθ0,n

+O
(

max
{
n−

min(2,α)
2

−1, H−1n−min(1,β), H−1/2n−
min(1,β)

2
−1
})

,

which verifies the second part of Theorem 3 and concludes the proof.
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E Proof of Theorem 4

For large H, π̄(θ, n) = π(θ, n) +Op(H
−1/2). Let F(θ) = π̂(θ0, n) + θ − π̄(θ, n),

then for θ1 6= θ2,

‖F(θ1)− F(θ2)‖

= ‖(θ1 − θ2)− (π(θ1, n)− π(θ2, n)) +Op(H
−1/2)‖

= ‖d(θ1, n)− d(θ2, n)‖+Op(H
−1/2)

= ‖b(θ1, n)− b(θ2, n)‖+Op(H
−1/2)

=

∥∥∥∥∥∥
[

p∑
i=1

ai,j
n

(θ1i − θ2i) +

p∑
k=1

p∑
l=1

dk,l,j
n2

(θ1kθ1l − θ2kθ2l) +O
(
n−3
)]

j=1,...,p

∥∥∥∥∥∥
+Op(H

−1/2)

< δ‖θ1 − θ2‖.

with 0 ≤ δ < 1 for sufficiently large n. Thus, taking into account that Θ is

compact, Banach fixed point theorem ensures that F(θ̃
(k−1)
B ) converges, i.e. θ̃

(k)
B

indeed converges.

At convergence of the iterative bootstrap procedure, we have that

θ̃
(k−1)
B = θ̃

(k)
B ≡ θ̃B.

(8) then yields

θ̃B = π̂(θ0, n) +
(
θ̃B − π̄

(
θ̃B, n

))
,
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which leads to

π̂(θ0, n)− π̄
(
θ̃B, n

)
= 0.

This concludes the proof.
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F Generalized Linear Latent Variable Mod-

els Simulations

Parameters values for the GLLVM simulation study (ordinal case) are given in

Table 1. The following algorithm has been used to produce the simulation based

estimator:

1. Compute the starting estimator π̂ on the original data set

(a) Using Factor Analysis on the data as if they were multivariate nor-

mal, compute the Bartlett scores (Bartlett, 1950) from the loadings

obtained with the Factor Analysis

(b) Compute the thresholds using the empirical cumulative log-odds, i.e.

the one obtained at z(2) = 0 as λ̂
(j)
0,s = log

(
γ̂
(j)
0s

1−γ̂(j)0s

)
with γ̂

(j)
0s =

1
n

∑n
i=1 ι(x

(j)
i ≤ s)

(c) Using the Bartlett scores as covariates and fixing the thresholds to

the values obtained in (1b) compute ordinal GLM estimates for the

loadings

2. Fix the starting value for the parameters θ̃
(0)
B = π̂

3. Fix k = 1, set the seed

4. For each of the H samples

(a) Generate q vectors of z(k), k = 1, . . . , q of size n from a standard normal

distribution
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λ01 λ02 λ03 λ04 λ1 λ2 λ3

-1.5 0.4 1.4 2.5 1.75 0 -1.0
-1.5 0.4 1.4 2.5 1.0 0 2.0
-1.5 0.4 1.4 2.5 -2.0 2.3 1.0
-1.5 0.4 1.4 2.5 1.2 0 -1.0
-1.5 0.4 1.4 2.5 -1.6 -1.6 0.9
-1.5 0.4 1.4 2.5 1.0 0 -0.7
-1.5 0.4 1.4 2.5 0 -0.7 0
-1.5 0.4 1.4 2.5 -1.2 2.7 0
-1.5 0.4 1.4 2.5 0 2.0 1.0
-1.5 0.4 1.4 2.5 0 1.5 0
-1.5 0.4 1.4 2.5 1.3 -1.0 -0.9
-1.5 0.4 1.4 2.5 -0.8 0.8 2.0
-1.5 0.4 1.4 2.5 0 -1.8 0
-1.5 0.4 1.4 2.5 0 0 1.6
-1.5 0.4 1.4 2.5 2.0 0 -1.8

Table 1: True parameter values used in the simulation study

(b) Generate the probabilities γ
(j)
1 , . . . , γ

(j)
m from (25) using θ̃

(k−1)
B

(c) Generate the responses x
(j)
i based on the probabilities γ

(j)
1 , . . . , γ

(j)
m .

5. Get the inconsistent estimator π̂h(θ̃
(k−1)
B ) for each of the H samples, using

the procedure in (1)

6. Compute π̄(θ̃
(k−1)
B , n) = 1

H

∑H
h=1 π̂h(θ̃

(k−1)
B , n)

7. Update θ̃
(k)
B = π̂ +

(
θ̃
(k−1)
B − π̄(θ̃

(k−1)
B , n)

)
8. Update k ← k + 1

9. Use a convergence criterion; if the conditions of convergence are met stop;

otherwise start again from Step (4)
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