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Abstract

Along the ever increasing data size and model complexity, an im-

portant challenge frequently encountered in constructing new estima-

tors or in implementing a classical one such as the maximum likelihood

estimator, is the computational aspect of the estimation procedure. To

carry out estimation, approximate methods such as pseudo-likelihood

functions or approximated estimating equations are increasingly used

in practice as these methods are typically easier to implement numeri-

cally although they can lead to inconsistent and/or biased estimators.

In this context, we extend and provide refinements on the known bias
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correction properties of two simulation based methods, respectively

indirect inference and bootstrap, each with two alternatives. These

results allow one to build a framework defining simulation based esti-

mators that can be implemented for complex models. Indeed, based

on a biased or even inconsistent estimator, several simulation based

methods can be used to define new estimators that are both consis-

tent and with reduced finite sample bias. This framework includes

the classical method of indirect inference for bias correction without

requiring specification of an auxiliary model. We demonstrate the

equivalence between one version of the indirect inference and the it-

erative bootstrap, both correct sample biases up to the order n−3.

The iterative method can be thought of as a computationally efficient

algorithm to solve the optimization problem of the indirect inference.

Our results provide different tools to correct the asymptotic as well as

finite sample biases of estimators and give insight on which method

should be applied for the problem at hand. The usefulness of the

proposed approach is illustrated with the estimation of robust income

distributions and generalized linear latent variable models.

Keywords: Iterative bootstrap; Two-step estimators; Indirect infer-

ence; Robust statistics; Weighted maximum likelihood estimators; Gen-

eralized latent variable models.
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1 Introduction

Estimation of parameters of complex statistical models often leads to diffi-

cult numerical problems. This is a difficulty shared by the classical Maximum

Likelihood Estimator (MLE) and other estimators. For example, in the fi-

nance domain, stochastic models representing different unobserved processes

are proposed on a continuous timeline while only observations reflecting the

joint effect of these processes are available, usually on discrete times. La-

tent variable models, such as state space models (see e.g. Harvey, 1990 and

Durbin and Koopman, 2001) or Generalized Linear Latent Variable Models

(GLLVM) (see e.g. Bartholomew, 1984 and Moustaki and Knott, 2000) are

such typical models and the corresponding estimation procedure often im-

plies integrating out from the likelihood equations the unobserved variables,

leading to multiple integrals that have no analytical solution. Another exam-

ple is in robust estimation, where the consistency correction in an estimating

equation often renders the computation very difficult or nearly infeasible

while the estimating equation without consistency correction is numerically

relatively simple.

To overcome these numerical challenges, many strategies have been used,

and they are usually different from model to model, or application to applica-

tion. For intractable integrals, approximations such as adaptive quadratures

or Laplace approximations can be used. In time series, stochastic models are

often discretized to yield an approximate model and then classical estimators
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are used which lead to biased estimates (see e.g. Gouriéroux and Monfort,

1997). In such cases, simulation methods are used to correct the biases of the

estimators. In robust statistics, to ease the computational burden, two-step

estimators can be built that analytically correct the linear part of the first

step estimator’s bias (see e.g. Dupuis and Morgenthaler, 2002). With latent

variable models, alternative target functions such as composite likelihoods

(see Lindsay, 1988) are used to replace the likelihood function. Strategies

used to overcome computational difficulties in estimating complex models

are mostly tailor made to specific (classes of) models and their application

outside the models they are used for is, in general, not straightforward, and

sometimes even impossible.

In this paper, we study the properties of several simulation based methods

which can be used to correct sample and asymptotic biases. The resulting

properties allow one to build a framework defining simulation based esti-

mators that can be implemented very generally for complex models. This

framework includes for example the method of indirect inference for bias

correction, but does not necessarily rely on the specification of an auxiliary

model. The estimators considered in this paper are two-steps estimators, in

which the first step proposes an estimator that is easy to compute, but is not

necessarily consistent, while the second step corrects biases via simulations.

In practice, the relatively small price to pay is a sample variance increase (of

a quantifiable order) of the simulation based estimator relative to the sample

variance of a direct consistent estimator, if computable without numerical
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approximations. As a by product, some of the simulation based estimators

can have a reduced sample bias of order up to n−3.

More specifically, we consider four existing simulation methods, two of

them being based on the indirect inference method (Gouriéroux et al., 1993,

Smith, 1993 and Gallant and Tauchen, 1996a) and two on the boostrap. The

bootstrap is mainly used to reduce sample bias (Efron and Tibshirani, 1993),

but Kuk (1995) propose an iterative bootstrap for asymptotic bias correc-

tion, that is for example used in Mealli and Rampichini (1999) for Gener-

alized Linear Mixed Models (GLMM). Indirect inference is mainly used to

correct for asymptotic bias caused by the necessary approximations induced

by the specification of an auxiliary model. In this context, Arvanitis and

Demos (2015) define a set of indirect inference estimators based on moment

approximations of the auxiliary estimators for essentially analytical and com-

putational facilitation. Gouriéroux et al. (2000) have studied the sample bias

correction properties of indirect inference. Arvanitis and Demos (2013) (see

also Gallant and Tauchen, 1996b, Arvanitis and Demos, 2014) define, within

the framework of indirect inference, classes of estimators based on analytical

approximations of either the binding or the score function of the auxiliary

estimator. They study and compare their properties on the resulting bias

convergence order. In this paper, the emphasis is put on estimators for very

complex models and/or complex estimators like robust estimators. We there-

fore concentrate on the classical indirect inference (without analytical bias

correction) and the bootstrap, and find that the iterative bootstrap is equiv-
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alent to (one version of) indirect inference. This hence provides an easy to

implement algorithm to obtain the indirect inference estimator.

In Section 2 we formally set up two versions of indirect inference, the

bootstrap and the iterative bootstrap. The two versions of indirect inference

differ in the simulation of either H samples of size n or one sample of size nH,

and the conventional bootstrap corresponds to the first step of the iterative

bootstrap. In Section 3 we study the properties of the four resulting esti-

mators, and find out that the indirect inference with H samples of size n is

equivalent to the iterative bootstrap, both providing a higher order reduction

in terms of bias (and often variance) over the other two. Basically, a higher

order bias reduction is achieved when using the version of indirect inference

with H samples of size n over the one sample of size nH, and the same

is true for the iterative bootstrap over conventional bootstrap. Gouriéroux

et al. (2000) studied the finite sample bias correction properties of indirect

inference procedures via Edgeworth expansions. Our results provide an al-

ternative study, which in some cases, lead to bias correction of higher order.

Also, MacKinnon and Smith (1998) study the relationship between the na-

ture of the bias and the method that should be used to reduce the sample

bias more effectively. We show instead that for a large class of bias struc-

tures, iterative bootstrap and indirect inference achieve overall sample bias

reduction of order n−3. We also demonstrate the equivalence between one

version of the indirect inference and the iterative bootstrap, hence provid-

ing iterative bootstrap as a computationally efficient algorithm to solve the
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optimization problem involved in the indirect inference procedure.

As an application, we propose new simulation based estimators in two

different settings, that are drastically easier to compute especially in complex

models. The first one provided in Section 6 is for robust estimation in general,

and for robust income distribution estimation in particular, and the second

one provided in Section 7 is for estimation of GLLVM.

2 Mathematical Setup

Let the true parameter value θ0 be an interior point of a compact convex

set Θ ⊂ �p. Let π̂(θ0, n) be an estimator of θ0 based on a sample of size

n generated from Fθ0 . We assume that this estimator has a non-stochastic

limit in the sense that

sup
θ∈Θ
||π̂(θ, n)− π(θ)||2 p→ 0. (1)

Typically π(θ0) 6= θ0, hence π̂(θ0, n) is not a consistent estimator of θ0

but is readily available (e.g. easier to compute). Assume E[π̂(θ0, n)] exists,

where E [·] denotes the expectation under Fθ0 . We let the bias be d (θ0, n) ≡

E[π̂(θ0, n)]− θ0. We can write

π̂(θ0, n) = π (θ0, n) + v (θ0, n) , (2)
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where π (θ0, n) ≡ E[π̂(θ0, n)] = θ0 + d (θ0, n) and v (θ0, n) ≡ π̂(θ0, n) −

E[π̂(θ0, n)] is a zero mean random vector.

We now describe four bias correction strategies. The first two are indirect

estimators in the sense of Gouriéroux et al. (1993). The third strategy is the

first-order bootstrap correction of Efron and Tibshirani (1993), and the last

strategy is an iterative version of the third strategy proposed in Kuk (1995).

Strategy 1: We define indirect estimator based on H samples of size n as

θ̂ = argzero
θ∈Θ

π̂(θ0, n)− π̄(θ, n), (3)

where

π̄(θ, n) =
1

H

H∑
h=1

π̂h(θ, n), (4)

where π̂h(θ, n) denotes the value of π̂ obtained from the hth simulated sample

of size n under Fθ.

Strategy 2: We define the indirect estimator based on one sample of size

nH as

θ̃ = argzero
θ∈Θ

π̂(θ0, n)− π̂(θ, nH), (5)

where π̂(θ, nH) denotes the value of π̂ obtained from one simulated sample

of size nH under Fθ.

Remark A: The definitions used in Strategies 1 and 2 for indirect estimators
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are not standard. Indeed, such estimators are typically defined as

θ̃ = argmin
θ∈Θ

||π̂(θ0, n)− π̂∗(θ)||2Φ, (6)

where Φ is a positive-definite matrix and π̂∗(θ) is a suitable estimator of

π(θ) or π(θ, n). In our context, π̂(θ, n) is an estimator of θ0, implying that

dim(π) = dim(θ). Therefore, the minimization problem defined in (6) can

be expressed as the solution in θ of π̂(θ0, n) = π̂∗(θ) or using the argzero

operator as in Strategies 1 and 2, provided that the minimum of the quadratic

form defined in (6) is attained in the interior of Θ.

Strategy 3: The bootstrap bias corrected estimator is defined as:

θ̂B = π̂(θ0, n) + [π̂(θ0, n)− π̄ {π̂(θ0, n), n}] ,

= 2π̂(θ0, n)− π̄ {π̂(θ0, n), n} ,
(7)

where π̄{π̂(θ0, n), n} is calculated as in (4) but with θ replaced by π̂(θ0, n).

Here the bias θ0−E[π̂(θ0, n)] is assessed through sampling H samples of size

n from Fπ̂.

Strategy 4: At iteration k, the iterative bootstrap bias corrected estimator

θ̃
(k)
B is defined as:

θ̃
(k)
B = π̂(θ0, n) +

{
θ̃
(k−1)
B − π̄

(
θ̃
(k−1)
B , n

)}
, (8)
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with

π̄
(
θ̃
(k−1)
B , n

)
=

1

H

H∑
h=1

π̂h

(
θ̃
(k−1)
B , n

)
.

We define θ̃B as the limit of θ̃
(k)
B once the procedure converges. In the proof

of Theorem 4 given in the supplementary material E, we prove that the limit

of θ̃
(k)
B indeed exists (under some appropriate conditions).

Remark B: In all the strategies, we assume that synthetic samples can be

generated under the model Fθ, i.e. the model is parametric. In most of

the cases where bias correction techniques are employed, Fθ fully defines the

data generating process. In some cases, it is possible to extend the parametric

model setting to the semi-parametric case, while the extension to a general

semi-parametric model can be challenging and is worth further research.

Before presenting the statistical properties of the four bias correction

methods, we first describe the assumptions we use.

Assumption 1: The function π(θ) is continuous and one-to-one on Θ.

Assumption 2: Let n−αVθ,n be the variance-covariance matrix of v (θ, n)

given in (2). Then α > 0, and ||Vθ,n||1 < ∞ for any θ ∈ Θ and at any

sample size n.

Assumption 1 ensures identifiability. Assumption 2 requires that the vari-

ance of v (θ, n) goes to zero as n increases. For example, for many estimators,

α = 1. Assumptions 1 and 2, are quite mild and frequently employed. These

assumptions directly lead to Corollary 1, whose proof is based on Theorem
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2.1 of Newey and McFadden (1994) and is given in Appendix A in the Sup-

plementary Materials.

Corollary 1: Under the Assumptions 1 and 2, θ̂ defined in (3), θ̃ defined

in (5) and θ̃B defined after (8) are consistent estimators of θ.

Corollary 1 only considers Strategies 1, 2 and 4 since the classical one-

step bootstrap (i.e. Strategy 3) does not necessarily provide a consistent

estimator under the general conditions considered here. Next, we impose

some additional assumptions on the form of the bias vector d (θ0, n).

Assumption 3: The bias vector d (θ, n) can be expressed as follows:

d (θ, n) = c(n) + b (θ, n) , (9)

and ∃ai,j ∈ �, dk,l,j ∈ �, i, j, k, l = 1, . . . , p such that

b (θ, n) =

[
p∑
i=1

ai,j
θi
n

+

p∑
k=1

p∑
l=1

dk,l,j
θkθl
n2

+O
(
n−3
)]

j=1,...,p

. (10)

Moreover, c(n) is bounded, converges to a constant c when n→∞ and

c(n) = O
(
n−β

)
, β ≥ 0. (11)

Here and throughout the text, for a vector or a matrix a, a = O(n−α)

implies each component of a is of order O(n−α). Assumption 3 essentially

employees a Taylor expansion of b(θ, n) as a function of θ/n, and is generally
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always applicable when b(θ, n) is a sufficiently smooth function of θ/n. Sim-

ilar approximations are commonly used to assess the bias of simulation-based

methods (see e.g. Efron and Tibshirani, 1993).

Remark C: A direct consequence of Assumption 3 is that c(n) − c(Hn) =

O(n−λ), componentwise and where λ ≥ β ≥ 0.

The next assumption imposes some continuity restrictions (with respect

to θ) on the matrix Vθ,n defined in Assumption 2.

Assumption 4: Let wj(θ, n) denote the jth column of the matrix Vθ,n, then

we have that for j = 1, . . . , p and any sample size n, the matrix

Dj(θ, n) ≡ ∂

∂θT
wj(θ, n),

exists and is such that ||Dj(θ, n)||1 <∞ for all θ ∈ Θ.

Assumptions 1 to 4 are very mild and likely satisfied in most practical

situations including the examples discussed in Sections 4 to 7. However, they

are not necessarily the weakest possible in theory and may be further relaxed.

We however do not attempt to pursue the weakest possible conditions to avoid

overly technical treatments in establishing the theoretical results in Section

3.
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3 Statistical Properties of Simulation Based

Methods for Bias Reduction

We now study the convergence rate of the four bias reduction methods pre-

sented in Section 2. In Theorem 1, we show that indirect inference provides

consistent estimators with a fast convergence rate for any H. Moreover, the

variance of the indirect estimator is only slightly inflated compared to the

variance of the initial estimator, with an increment of order O
(
n−min(2,1+α)

)
.

The proof of Theorem 1 is given in Appendix B (in the Supplementary Ma-

terials).

Theorem 1: Under Assumptions 1 to 4, the corrected estimator θ̂ defined

in (3) satisfies

E
[
θ̂
]

= θ0 +O
(
n−min(3,α+2)

)
,

var
(
θ̂
)

= n−α
(

1 +
1

H

)
Vθ0,n +O

(
n−min(2,1+α)

)
.

An important consequence of Theorem 1 is that the corrected estimator

θ̂ operates at least a second order bias correction regardless of the number

of simulations H. On the other hand, the variance of the estimator is clearly

dependent on H. Therefore when α = 1 and H is sufficiently large, the
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corrected estimator θ̂ is such that

E
[
θ̂
]

= θ0 +O
(
n−3
)
,

var
(
θ̂
)
≈ n−1Vθ0,n +O

(
n−2
)
.

In Theorem 2, we show that for the indirect inference procedure, using a

single sample of size nH instead of H samples of size n, the asymptotic

properties differ. In particular, the sample bias of the single-sample based

estimator θ̃ is larger than that of the multi-sample based estimator θ̂ and

depends on the number of simulations H. The proof of Theorem 2 is given

in Appendix C (in the Supplementary Materials).

Theorem 2: Under Assumptions 1 to 4, the corrected estimator θ̃ defined

in (5) satisfies for H > 1

E
[
θ̃
]

= θ0 +O
(
n−min(2,λ)

)
,

var
(
θ̃
)

= n−αVθ0,n + (nH)−α Vθ0,nH +O
(

max
{
n−min(2,λ), H−1n−

min(α,λ)
2

−1
})

,

with λ defined in Remark C.

In order to compare the two versions of indirect inference in a simple

setting we consider α = 1 and assume that H is sufficiently large, then the

corrected estimator θ̃ is such that

E
[
θ̃
]
≈ θ0 +O

(
n−min(2,λ)

)
,

var
(
θ̃
)
≈ n−1Vθ0,n +O

(
n−min(2,λ)

)
.
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Therefore, in this simplified setting the indirect inference procedure based

on a single sample of size nH operates at best a second order correction

while indirect inference based on H samples of size n achieves a third order

correction. Regarding the variance of the estimators, the indirect inference

procedure based on a single sample has a remainder that is at best equivalent

to the one of the procedure based on multiple samples.

Remark D: The results of Theorems 1 and 2 are implicitly based on the

assumption that the root defining the estimators can be solved exactly. How-

ever, in practice, numerical error always occurs hence the zero (or minimizer)

found from an optimizer is almost never the exact solution. Nevertheless, the

validity of Theorems 1 and 2 can be extended to this practical situation by as-

suming that the distance between the solution found by the optimizer and the

true solution is of higher order than the ones of the leading bias and standard

deviation.

In Theorem 3, we derive the properties of the one-step bootstrap estima-

tor θ̂B. The proof is given in Appendix D (in the Supplementary Materials).

Theorem 3: Assumptions 1 to 4, the corrected estimator θ̂B defined in (7)

satisfies

E
[
θ̂B

]
= θ0 +O

(
n−min(1,β)−1) ,

var
(
θ̂B

)
= n−α

(
1 +

1

H

)
Vθ0,n

+O
(

max
{
n−

min(2,α)
2

−1, H−1n−min(1,β), H−1/2n−
min(1,β)

2
−1}
})

,
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Theorem 3 illustrates that the one-step bootstrap estimator achieves at

best a second order correction and can only perform a first order correction

when β = 0. With α = 1, the most common case, and with sufficiently large

H, this estimator is such that

E
[
θ̂B

]
≈ θ0 +O

(
n−min(1,β)−1) ,

var
(
θ̂B

)
≈ n−1Vθ0,n +O

(
n−

min(1,β)
2

−1
)
.

Therefore, in this simplified setting we can expect the one-step bootstrap

estimator to achieve a larger bias correction than the indirect inference pro-

cedure based on a single sample but a smaller than the indirect inference

approach based on multiple samples.

Finally, Theorem 4 proves the equivalence of the iterative bootstrap bias

correction estimator with the multiple sample indirect inference estimator θ̂.

The proof is given in Appendix E (in the Supplementary Materials).

Theorem 4: Under Assumption 3, for sufficiently large n and H, the iter-

ative bootstrap is equivalent to θ̂ in the sense that

θ̃B = argzero
θ∈Θ

π̂ (θ0, n)− π̄ (θ, n) . (12)

Interestingly, Theorem 4 implies that θ̃B and θ̂ are equivalent without

relying on Assumptions 1, 2 and 4. Therefore, these two methods have the

same rates of bias and variance, which are provided in Theorem 4 (under
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some conditions). In addition, this allows us to conclude that θ̃B has the

same asymptotic distribution as θ̂ (Gouriéroux et al., 1993). Thus, the iter-

ative bootstrap can be thought of as an algorithm to solve the optimization

problem of the indirect inference based on H samples of size n.

4 A Simple Example

We illustrate the performance of the various bias correction procedures dis-

cussed in the previous sections in a simple simulation example. The objective

is to provide empirical illustration of the rates at which the biases of the dif-

ferent methods converge to zero.

We let Xi
iid∼ N (0, σ2) and consider the case where we wish to estimate

σ2 based on the sample (xi)i=1,··· ,n via the auxiliary estimator

π̂ =
1

log(n)
+

n

n− 1
µ̂2 +

10

n3
µ̂4 +

10

n4
µ̂6,

where µ̂k = n−1
∑n

i=1 x
k
i . It is easy to verify that π̂ is consistent for σ2 but

has a bias given by

E [π̂]− σ2 =
1

log(n)
+

σ2

n− 1
+

30σ4

n3
+

150σ6

n4
.

We chose this auxiliary estimator to introduce additional bias. Let σ̂2, σ̃2, σ̂2
B

and σ̃2
B denote the estimator based on Strategies 1, 2, 3 and 4 respectively. In

order to study the rates of convergence of the biases, we consider 10 sample
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sizes n = 5, 10, 15, . . . , 50. The absolute values of the biases for the different

strategies and sample sizes obtained from 5,000 Monte Carlo replications are

presented in Figure 1. It can be observed that Strategies 1 and 4 produce

approximately unbiased estimates for sample size larger or equal to 15 while

a small bias can be observed for n = 5 and 10. Strategy 3 leads to esti-

mates that exhibit a larger bias than the two previously mentioned methods.

However, this method corrects most of the bias of π̂ and appears nearly un-

biased when n > 25. On the other hand, Strategy 2 corrects only marginally

the bias of the auxiliary estimator. It can be observed that the bias of this

method drops with n at a rate comparable to the original estimator π̂. To

illustrate further the rates of convergence of the biases against the results of

Theorems 1 to 4, we super-imposed curves of the type

|biasn| = an−3 + bn−4 + cn−5

on the observed biases from Strategies 1 and 4, and curves of the type

|biasn| = an−1 + bn−2 + cn−3

for Strategies 2 and 3. Specifically, the four estimated curves in Figure 1

are respectively 39.6n−3 +128.7n−4−938.2n−5, 9.6n−1−75.5n−2 +259.2n−3,

−0.7n−1+28.2n−2−6.9n−3 and 42.1n−3+67.5n−4+578.6n−5 for Strategies 1

to 4. The close fit of these curves with the observed biases clearly illustrates

the bias orders provided in the theorems.
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5 Application to Regression with Lagged Vari-

ables

In the case where the lagged dependent variables are included in a regression

model, it is well-known that the Ordinary Least Squares (OLS) estimates

are often biased in small samples. Moreover, this bias tends to increase

considerably when additional variables are included in the model. There

is a vast amount of literature on this subject and a recent discussion can

be found in Tanizaki et al. (2006) and the references therein. To illustrate

the different bias correction strategies discussed in Section 2 we consider the
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Figure 1: Observed biases from Strategies 1-4 overlaid with curves with leading
order n−3 for Strategies 1 (σ̂2) and 4 (σ̃2B), and leading order n−1 for Strategies 2
(σ̃2) and 3 (σ̂2B), at different n.
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following model:

Yt = α + βt+ φYt−1 + εt,

where t = 1, ..., n and εt
iid∼ N (0, σ2). We use the following simulation setting:

n = 40, α = β = 0, φ = 0.9, σ2 = 2 and H = 100. The estimated biases and

Mean Squared Errors (MSE) of the different approaches for the parameter φ

are presented in Table 1. Strategies 1 and 4 provide nearly equivalent results

and lead to the best performance in terms of both bias and MSE. Indeed, the

resulting MSE for these strategies is less than half of the one of the OLS π̂.

In contrast, Strategy 2 does not lead to any improvement compared to the

auxiliary estimator (similar bias and MSE). This is expected for consistent

auxiliary estimators which is the case for the OLS in this example.

Indeed, for consistent and for sufficiently large H and fixed n, the auxil-

iary estimator of Strategy 2 allows the following approximation

π̃(θ, nH) = π(θ, nH) + v(θ, nH) = θ + d(θ, nH) + v(θ, nH)

= θ +Op
(

(nH)−min(1,α,β)
)
≈ θ,

where α > 0 by Assumption 2 and β > 0 by Assumption 3 since the auxiliary

estimator is consistent. This therefore implies that this method will only

provide minor improvement over the original consistent estimator. Strat-

egy 3 is able to correct most of the bias of π̂ and hence has a comparable

MSE to Strategies 1 and 4. Strategies 1 and 4, the overall best performing

strategies can be further compared. First, since both resulting estimators
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are equivalent (see Theorem 4), their observed sample performance slightly

differ for numerical approximation’s reasons. Second, the calculation speed

is expected to be significantly slower for Strategy 1 which involves finding

the root of an equation which in turn involves the computation of H times

the auxiliary estimator, while Strategy 4 only needs one computation of the

auxiliary estimator at each step.

Parameter φ

Bias MSE

π̂ (OLS) −1.51 · 10−1 (4.73 · 10−3) 3.45 · 10−2 (2.05 · 10−3)
Strategy 1 −1.93 · 10−2 (4.97 · 10−3) 1.40 · 10−2 (1.25 · 10−3)
Strategy 2 −1.52 · 10−1 (4.81 · 10−3) 3.48 · 10−2 (2.06 · 10−3)
Strategy 3 −5.52 · 10−2 (5.30 · 10−3) 1.68 · 10−2 (1.38 · 10−3)
Strategy 4 −2.98 · 10−2 (5.62 · 10−3) 1.46 · 10−2 (1.44 · 10−3)

Table 1: Estimated biases and MSE for Strategies 1 to 4 based on 500 Monte
Carlo replications for the setting described in Section 5. The numbers in parenthe-
ses are the standard deviations obtained by nonparametric bootstrap.

6 Application to Robust Estimation of In-

come Distribution

We now consider robust estimation of parameters in income distribution

models, which are often used to estimate income inequality (Cowell, 2011)

and to compare different distributions. The benefits of robust methods in

this context were already demonstrated in the literature, see e.g. Cowell and

Victoria-Feser (2007) and the references therein.
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Let θ0 ∈ Θ denote the parameter vector of an income distribution Fθ0

that we wish to estimate. In the robustness paradigm, one is concerned

with the possibility that the data generating distribution is not exactly the

postulated model Fθ0 but rather a deviation model of the form

(1− ε)Fθ0 + εFC , (13)

where FC is an unspecified contamination distribution function and ε ∈ [0, 1]

is the amount of deviation from the postulated model Fθ0 . To estimate the

income distribution Fθ0 and use it to study aspects of income inequality

such as poverty, etc., a key component is to understand how ε > 0 affects

the estimation of θ0 and hence the conclusions of the study. If ε is large,

which means that a large proportion of the data are generated from FC , an

arbitrary contamination distribution other than Fθ0 , then we may conclude

that the analysis of the model Fθ0 will not yield useful results. However, if

ε is relatively small, we may expect the analysis of Fθ0 to be indicative. In

other words, the analysis should have certain robustness under slight model

deviation.

A thorough review of possible parametric models Fθ0 for income distribu-

tions can be found in Kleiber and Kotz (2003). Robust estimators for income

distributions were first proposed by Victoria-Feser and Ronchetti (1994) and

Victoria-Feser and Ronchetti (1997) for grouped data. These robust esti-

mators are in fact Optimal B-Robust Estimators (OBRE) of Hampel et al.
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(1986) and are the most efficient estimators among the class of M -estimators

with bounded Influence Function (IF).

The OBRE estimator is the root of the estimating equation

n∑
i=1

A(θ) [s(xi;θ)− a(θ)]w(xi;θ, c) = 0, (14)

where A(θ) is a p × p matrix, often chosen to maximize the estimation

efficiency, a(θ) is a consistency correction that satisfies

∫
A(θ) [s(x;θ)− a(θ)]w(x;θ, c)dFθ(x) = 0, (15)

where s(x;θ) ≡ ∂ log{f(x;θ)}/∂θ is the score function with f(x;θ) the

probability density function of Fθ, and w(x;θ, c) is a weight function that

bounds A(θ) [s(x;θ)− a(θ)], such as the Huber or the Bi-square weight

function (see e.g. Hampel et al., 1986). If A(θ) is set to identity and the

consistency constraint is integrated in the estimating equation, the OBRE

estimator is the root of the estimating equation

n∑
i=1

s(xi;θ)w(xi;θ, c)−
∑n

i=1w(xi;θ, c)∫
w(x;θ, c)dFθ(x)

∫
s(x;θ)w(x;θ, c)dFθ(x) = 0.

(16)

The OBRE estimator obtained from (16) has the property that it is consistent

if ε = 0, and is approximately consistent even if ε > 0, hence is typically

favored in the robust statistics literature. However, the OBRE is in general

difficult to compute, mainly because the integrals in (16) are not analytically
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tractable for income distribution models. Due to these numerical difficulties,

the OBRE is hardly applicable for “complex” densities.

As in Guerrier et al. (2017), we propose to use a simpler robust start-

ing estimator that is inconsistent but easy to compute and to correct for

consistency by means of indirect inference. This approach has actually been

used in Moustaki and Victoria-Feser (2006) for robust estimation of GLLVM.

The starting estimator we propose to use is a weighted MLE π̂, which is the

solution of
n∑
i=1

w(xi;π, c)s(xi;π) = 0, (17)

where w(xi;π, c) are weights such that w(xi;π, c)s(xi;π) is bounded for

all i. This guarantees a bounded IF for the subsequent consistent estimators

obtained from indirect inference or iterative bootstrap as shown in Genton

and Ronchetti (2003).

To illustrate the finite sample properties of the different bias correc-

tion strategies for parameter estimation in an income distribution using the

weighted MLE (17) as starting estimator, we consider the case of the Lomax

distribution with density

f(x) =
q

b

(
1 +

x

b

)−(q+1)

, x > 0.

To demonstrate the performance of the various estimators, we simulated data

from three different settings. In the first setting, we used a sample size of

n = 50, which is relatively small, while in the second setting, the sample size
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is n = 1000. In the third setting, we used the same sample size n = 1000,

but contaminated a randomly chosen 1% of the data which are multiplied by

1000. In all settings, the true parameters are b = 5 and q = 2. We compute

the weighted MLE π̂ given in (17) which is inconsistent, then implemented

the two versions of the indirect inference estimators described in Strategies 1

and 2, using π̂ as the initial estimator. These estimators are denoted θ̂ and θ̃

respectively. We also implemented the MLE π̂ML as a benchmark estimator.

Here, we set H = 100 throughout.

In the first row of Figure 2, when the sample size is 50, the weighted

MLE has a large bias that cannot be completely eliminated via the one

sample indirect inference estimator. This bias can only be corrected by the

indirect inference estimator with H samples of size n. In this case, even

the MLE has a clear bias, since the asymptotic consistency of MLE does

not demonstrate at such small sample. This is a well known issue, and in

the case of the Lomax distribution, Giles et al. (2013) derive the analytical

expression of the finite sample bias. However, analytical correction for finite

sample bias of the MLE is by far not available for all income distribution

whereas simulation based bias correction methods can always be applied. In

the second row of Figure 2, with a large sample size (n = 1000), the sample

bias of the weighted MLE is corrected by both Strategies 1 and 2. In this

case, the performance of both indirect inference estimators is similar to the

asymptotically optimal estimator MLE. Finally, when data is contaminated

as in the third row of Figure 2, both indirect estimators can correct the
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bias and result in robustness. Not surprisingly, the benchmark estimator

MLE in this case has clear bias, since MLE is not a robust estimator. We

emphasized that the robust estimation approach taken here is not specific

to income distributions. It can be used for any model for which a score

function can be specified. This opens the door to simple computation of

robust estimators especially for complex models.

Finally, we reconsider the scenarios presented in Figure 2 with the inten-

tion of evaluating the accuracy of the estimated variance θ̂ and θ̃. Indeed, a

“natural” estimator of these quantity can be obtained using the asymptotic

normality results of Gouriéroux et al. (1993) (see also Genton and Ronchetti,

2003). Under typical regularity assumptions and assuming H → ∞, this

result allows the construction of a consistent estimator for the covariance

matrix of both θ̂ and θ̃ as:

v̂ar(θ̂) = v̂ar(θ̃) = K−1v̂ar(π̂)K−T , (18)

where K denotes the Jacobian matrix of the transformation estimated by

numerical derivative and v̂ar(π̂) denotes the covariance matrix of π̂ obtained

by parametric bootstrap, quantity which is in particular directly available

from the output of Strategy 1.

Table 2 presents the empirical coverage rate of the estimated parameters

based on 1000 Monte Carlo replications for the three scenarios presented in

Figure 2. For the MLE, we use the plug-in estimator of the asymptotic ex-
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Figure 2: Finite sample distribution of the estimators of b (left panel) and q
(right panel) for the Lomax simulation study. The true parameters are b = 5 and
q = 2, π̂ML is the MLE, π̂ is the weighted MLE given in (17), θ̂ and θ̃ are the
indirect estimators using respectively Strategies 1 and 2 based on π̂ with H = 100.
The first row corresponds to samples of size n = 50, the second row to samples of
size n = 1000, and the third row to samples of size n = 1000, in which 1% of the
data (chosen randomly) are multiplied by 1000.

pression. As expected, the results of Strategies 1 and 2 are very close since

the estimators have similar performance and their confidence intervals are

both based on (18). In the small sample case (i.e. n = 50), the estimators

based on indirect inference provide far better coverage probability when com-

pared to the MLE. This can be explained partially by the fact that (18) uses
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a parametric bootstrap estimator v̂ar(π̂) while the covariance matrix of MLE

is based on the asymptotic expression. In the large sample case (n = 1000),

all methods have similar performance while MLE appears slightly better.

This is probably due to the variability introduced in (18) by the numerical

approximation of K. In the contaminated scenario, the performance of the

indirect inference-based methods is slightly hampered due to the extreme

outliers, and as expected, the MLE completely fails.

Coverage 90% Coverage 95% Coverage 99%

b q b q b q

n = 50

Strategy 1 88.8 90.2 91.2 91.5 94.5 95.6
Strategy 2 86.5 88.2 92.4 91.2 94.6 94.3
MLE 21.9 21.9 25.1 25.9 32.9 32.9

n = 1000

Strategy 1 92.4 90.3 96.1 96.2 99.4 99.1
Strategy 2 91.2 91.9 96.4 95.3 99.3 99.3
MLE 89.5 89.5 95.1 95.3 99.2 98.8

n = 1000 (C)

Strategy 1 88.2 88.8 92.5 91.6 97.2 98.3
Strategy 2 89.5 89.0 92.6 92.1 97.5 97.8
MLE 0.0 0.0 0.0 0.0 0.1 0.0

Table 2: Estimated coverage probabilities for the parameters b and q in the Lomax
distribution. The scenario n = 1000 (C) denotes the case where we consider a
sample size of n = 1000, in which 1% of the data (chosen randomly) are multiplied
by 1000. Results based on 1000 Monte Carlo replications (H = 100).
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7 Application to Generalized Linear Latent

Variable Models

GLLVM (Bartholomew, 1984 and Moustaki and Knott, 2000) are very pop-

ular in various areas of research such as psychology, social sciences or eco-

nomics. They link theoretical concepts that are not observable to manifest

variables that are observed. When the manifest variables fall outside the

normal model, analysis of such model deviates from factor analysis, and the

estimation method based on the maximum likelihood becomes computation-

ally very challenging. This is because not only the number of parameters

to be estimated increases very quickly with the increasing complexity of the

model, but also the models include non-observable latent variables that need

to be marginalized out from the likelihood function, which results in com-

plicated multidimensional integrals. The numerical approximation of these

integrals includes adaptive quadratures (see e.g. Rabe-Hesketh et al., 2002)

or the Laplace approximation (see e.g. Huber et al., 2004).

Even with these approximations, maximizing the approximated likeli-

hood function remains numerically quite challenging. An alternative is to

replace the likelihood with composite likelihood (Lindsay, 1988). Composite

likelihood functions are formed by the product of individual component like-

lihoods, each corresponding to marginal or conditional events. The pairwise

composite likelihood function is an example of a composite likelihood func-

tion. If the elements are properly chosen, the maximum composite likelihood
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estimator is consistent and normally distributed. Although composite like-

lihood is constructed as a compromise when likelihood is too hard to form

or to compute, the computational challenge of composite likelihood estima-

tor can nevertheless be still substantial for use as an auxiliary estimator for

GLLVM, see for example Varin (2008), Varin et al. (2011) and Katsikatsou

et al. (2012) for GLLVM with ordinal variables.

Another instance of the latent variable models with challenging computa-

tion is when the variances have a dynamic autoregressive component. These

models have been used widely. For example, Diebold and Nerlove (1989)

used it in multivariate autoregressive conditional heteroskedasticity (ARCH)

time-series. Sentana et al. (2008) proposed to use indirect inference to al-

low the estimation of any state space model with generalized autoregressive

conditional heteroskedasticity (GARCH) disturbances, using the model pro-

posed by Harvey et al. (1992) as auxiliary model.

In this application, we build a simulation based estimator for the pa-

rameters of GLLVM with ordinal manifest variables. The first step of our

estimator is defined by an algorithm that provides an easy to compute but

inconsistent estimator, and iterative bootstrap is then used to remove its

bias. The model we consider in this section includes 90 parameters in total

to illustrate the applicability of the bias correction techniques presented in

Section 2 to complex settings. For comparison, we also used Mplus (see e.g.

Muthén and Muthén, 1998-2011), a standard software for GLLVM, where

the likelihood function is approximated using adaptive Gauss quadratures
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to approximate integrals. However, for other latent variable models where

software such as Mplus is not available, our procedure can still be readily

implemented, as long as one can construct a starting estimator, which does

not need to have an explicit form and does not need to be consistent.

Let z(k), k = 1, . . . , q be the latent variables and x(j), j = 1, . . . , p, be the

manifest variables, p > q. A crucial assumption is that all the dependence

structure of the manifest variables is explained by the latent variables. Thus,

conditionally on the latent variables, the manifest variables are independent

of each other with conditional density gj(x
(j)|z). Hence the joint conditional

density of the manifest variables is
∏p

j=1 gj(x
(j)|z). In GLLVM, gj is assumed

to belong to the exponential family but can be different for different j, and

it satisfies

νj(E(x(j)|z(2))) = λ(j)Tz, (19)

where

z = (1, zT
(2))

T, z(2) = (z(1), . . . , z(q))T, λ(j) = (λ
(j)
0 , . . . , λ(j)q )T = (λ

(j)
0 ,λ

(j)T
(2) )T,

and where λ
(j)
(2) are the loadings, and νj are the link functions determined

by the corresponding gj, j = 1, . . . , p. The density of the latent variables,

denoted by h(z(2)) is assumed to be multivariate standard normal. This

implies that the latent variables are independent of each other. The joint

distribution of the manifest and latent variables is then
∏p

j=1 gj(x
(j)|z)h(z(2)),
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and the marginal density for the manifest variables is

fλ,φ(x) =

∫
. . .

∫ { p∏
j=1

gj(x
(j)|z)

}
h(z(2))dz(2). (20)

Given a sample of n observations x1, . . . ,xn where xi = (x
(1)
i , . . . , x

(p)
i )T ,

i = 1, . . . , n, the log-likelihood of the loadings λ and the scale parameters φ

is

l(λ,φ|x) =
n∑
i=1

log fλ,φ(xi),

=
n∑
i=1

log

∫
· · ·
∫ p∏

j=1

exp

{
x
(j)
i uj(λ

(j)Tz)− bj(uj(λ(j)Tz))

φj

+ cj(x
(j), φj)

}
h(z(2))dz(2).

(21)

The MLE for λ and φ is then obtained by maximizing (21) with respect to

λ and φ, using approximations to the integrals such as adaptive quadratures

or Laplace approximation.

Huber et al. (2004) applied the Laplace method to GLLVM and obtained

the following approximate log-likelihood function

l̃(λ,φ|xi) =
n∑
i=1

{
− log (det [Γ(λ,φ, ẑi)]) /2 + pQ(λ,φ, ẑi,xi)

}
, (22)

where

Γ(λ,φ, z) = −p∂
2Q(λ,φ, z,x)

∂zT∂z
,
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Q(λ,φ, z,x) =
1

p

p∑
j=1

(
x(j)uj(λ

(j)Tz)− b(uj(λ(j)Tz))

φj
+ cj(x

(j), φj)

)

−
zT
(2)z(2)

2p
− q

2p
log(2π),

(23)

and ẑ is the maximum of Q(λ,φ, z,x). Ignoring the first summand in the

approximate log-likelihood in (22), we obtain

l?(λ,φ, zi|xi) = p

n∑
i=1

Q(λ,φ, zi,xi), (24)

which corresponds to the h-likelihood proposed by Lee and Nelder (1996)

for GLMM in the context of latent variable models. Maximizing (24) yields

the penalized quasi-likelihood (PQL) estimator proposed in the context of

GLMM (Breslow and Clayton, 1993). Indeed, maximizing (24) provides the

same estimators that would result from the maximization of a “likelihood”

where the latent scores zi are considered as parameters.

If the zi’s were considered as fixed in (24), the maximum of l? over λ and

φ would be the same as the MLE of a Generalized Linear Model (GLM), in

which the covariates would be the zi’s. Therefore, as a starting estimator, we

propose to find estimates for the loadings and the scale parameter by fitting

a GLM on the data with predictions of the latent scores as covariates. These

predictions for the zi are found in a premilinary step where we perform a

Factor Analysis on the data as if they were normal and compute the Bartlett

predictions of the latent scores (Bartlett, 1950). A similar idea has been used
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in Sardy and Victoria-Feser (2012). This initial estimator is thus obviously

not consistent but is easy to compute.

When the manifest variables are ordinal, their conditional distribution

gj(x
(j)|z) is the multinomial distribution. Specifically, for j, let m(j) be the

number of categories and γ
(j)
s be the probability that the manifest variable

x(j) is smaller or equal to s, where s = 1, . . . ,m(j)− 1. We set a proportional

odds model

γ(j)s =
eλ

(j)T
s z

1 + eλ
(j)T
s z

, (25)

where λ(j)
s = (λ

(j)
0s ,λ

(j)
(2)

T
)T = (λ

(j)
0s , λ

(j)
1 , . . . , λ

(j)
q )T, λ

(j)
0s being the threshold

for the sth category with

−∞ < λ
(j)
01 ≤ λ

(j)
02 ≤ . . . λ

(j)

0(m(j)−1) <∞.

In the simulation setting presented here we consider three latent variables

(q = 3) and fifteen ordinal manifest variables (p = 15), each with five cate-

gories (mj = 5). The true parameter values are given in Appendix F (in the

Supplementary Materials). The 15 nil loadings are fixed and the thresholds

are not constrained to have the same values across manifest variables. This

yields (mj−1 + q)×p−15 = 90 parameters to estimate. For this model, the

starting inconsistent estimator π̂ is obtained by estimating an ordinal GLM

in which the covariates are the Bartlett scores obtained as explained before.

The computational details are given in Appendix F (in the Supplementary

Materials). We generate 120 samples of size n = 300 and use H = 100 for
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the iterative bootstrap procedure.

We compare our estimator (θ̃B) in terms of bias distribution to the MLE

obtained via Mplus (θ̂ML) which uses adaptive quadratures to approximate

the integrals in (21). Figure 3 shows the bias distribution of the estimates

of four loadings (the λ
(j)
k ’s). For other loading estimates, the results are very

similar. As expected, the starting estimator (π̂) is biased, but applying the

iterative bootstrap provides a nearly unbiased estimator (θ̃B), which is com-

parable to the one obtained using adaptive quadratures to approximate the

likelihood function (θ̂ML), with a slight loss of efficiency. The same can be

said when we inspect the threshold estimates (the λ
(j)
0s ’s), see Figure 4. As

a last point, we would like to comment on the computational advantage of

the iterative bootstrap method. Indeed, we have also attempted to correct

the bias of the initial estimator with indirect inference in Strategies 1 and

2, but the optimizations encountered difficulties and did not converge. Since

the iterative bootstrap can be seen as an algorithm to calculate the indi-

rect inference estimator in Strategy 1 (see Theorem 4), the former can then

be favored over the direct optimization of the indirect inference estimator

definition, from a computational point of view, especially in complex model

settings such as GLLVM.
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Figure 3: Empirical distribution of the estimates, centered at the true value, of
four loadings obtained by the starting inconsistent estimator (π̂), the estimator
based on iterative bootstrap (θ̃B) and the approximated MLE obtained using Mplus
(θ̂ML).
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Figure 4: Empirical distribution of the bias of the estimates, centered at the true
value, of four thresholds obtained by the starting inconsistent estimator (π̂), the
estimator based on iterative bootstrap (θ̃B) and the MLE obtained using Mplus
(θ̂ML).
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8 Conclusions

In this paper, we extend and provide refinements on the known properties

of four bias correction strategies. These results allow to build a framework

defining simulation-based estimators that is particularly relevant when con-

sidering complex models. Indeed, based on a simple and/or computationally

efficient estimator that is typically biased and possibly inconsistent, several

simulation based methods can be used to define new estimators that are both

consistent and benefit from a reduced finite sample bias.

In particular, we discover and demonstrate the equivalence of one version

of indirect inference (i.e. Strategy 1) and the iterative bootstrap, which both

typically correct finite sample biases up to the order n−3. This shows that

iterative bootstrap can be considered as a computationally efficient algorithm

to implement the indirect inference. Moreover, it deepens our understanding

of the properties of the iterative bootstrap, which is consequently consistent

and asymptotically normally distributed under the additional assumptions

used in the indirect inference framework (see Gouriéroux et al., 1993 for

details). The simulation studies presented in Sections 4 and 5 empirically

confirm this finding and show that the two methods have nearly identical

finite sample performance.

On the computational aspects, as we discussed in Section 7, the advantage

of the iterative bootstrap procedure is that it is faster to compute and can

be used in complex models such as the GLLVM where the indirect inference
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Ensures Finite sample Computational Numerical
consistency bias after Burden issues

correction (in complex models)

Strategy 1 Yes Very small High Likely
Strategy 2 Yes Similar to π̂ High Likely
Strategy 3 No Small Low Unlikely
Strategy 4 Yes Very small Medium Unlikely

Table 3: Comparative table of the merits and disadvantages of the four strategies
discussed in Section 2. Strategies 1 and 2 correspond to two versions of indirect
inference, Strategy 3 denotes the (one step) bootstrap bias corrected estimator and
Strategy 4 corresponds to the iterative bootstrap method.

method even fails to numerically converge.

Finally, between the two indirect inference procedures, Strategy 1 is su-

perior to Strategy 2 when finite sample bias is an issue and sample size is

small, or when sample size is large but it is still faster to compute π̂(θ, n)

H times than to compute π̂(θ, nH) once. Otherwise, Strategy 2 will be rec-

ommended. We provide a summary of the merits and disadvantages of the

different strategies in Table 3. Overall, the iterative bootstrap is often the

best choice.
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