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In this paper, we consider a parametric density contamination
model. We work with a sample of i.i.d. data with a common density,
f? = (1 − λ?)φ + λ?φ(. − µ?), where the shape φ is assumed to be
known. We establish the optimal rates of convergence for the estima-
tion of the mixture parameters (λ?, µ?). In particular, we prove that
the classical parametric rate 1/

√
n cannot be reached when at least

one of these parameters is allowed to tend to 0 with n.

1. Introduction. Because of their wide range of flexibility, finite mixtures
are a popular tool to model the unknown distribution of heterogeneous data.
They are found in several domains and have been at the core of several
mathematical investigations. For a complete introduction to mixtures, we
refer the reader to [MP00] and [FS06]. In most cases of interest, a sample
Sn := (X1, . . . , Xn) of i.i.d. data is at our disposal, and each entry admits
the probability density f? w.r.t. the Lebesgue measure. For a finite mixture
model, the density f? is assumed to have the following shape:

(1.1) f? =
K∑
k=1

λkφk.

With such a representation, the population of interest can in some sense be
decomposed into K different groups where each group k has a proportion
λk and is distributed according to the density φk. For practical purposes,
parametric models are often considered. In such cases, the densities φk are
assumed to be known, at least up to some finite parameters, and the pa-
rameter estimation problem is often addressed using an EM-type algorithm
[DLR77]. In contrast, with the impressive range of applications based on

AMS 2000 subject classifications: Primary 62G05, 62F15; secondary 62G20
Keywords and phrases: L2 contrast, parameter estimation, rate of convergence, two-

component contamination mixture model

1

ar
X

iv
:1

60
4.

00
30

6v
1 

 [
m

at
h.

ST
] 

 1
 A

pr
 2

01
6

http://www.imstat.org/aos/
http://arxiv.org/abs/arXiv:0000.0000


2 S. GADAT, C. MARTEAU, C. MAUGIS-RABUSSEAU,

mixtures, theoretical issues related to mixture models are somewhat poorly
understood.
Among the available theoretical results for mixtures, some of them are
particularly linked to the density estimation problem. The works [GW00],
[GvdV01] and [KRvdV10] develop a nonparametric Bayesian point of view,
while exploiting both the approximation capacity of mixtures and their met-
ric entropy size, first with Gaussian distributions and later with exponential
power distributions. A Gaussian mixture estimator based on a non asymp-
totic penalized likelihood criterion is proposed in [MM11] and the adaptive
properties of this estimator are investigated in [MRM13].
In the mixture models, the focus on the parameters themselves has received
less theoretical attention because of their great mathematical difficulty de-
spite their natural interest. It is indeed highly informative to obtain the
estimation of the mixing distribution, and many applied works use this esti-
mation for descriptive statistics. Among them, the unsupervised clustering
with Bayesian interpretation is certainly one of the most widely used ap-
plications of mixtures (see, e.g, [MP00]). Given a dictionary of densities,
[BTWB10] propose an estimation procedure based on the minimization of
an L2 empirical criterion with a sparsity constraint, providing an estima-
tion of the parameters of interest when the location parameters µ?k (here
φk = φ(. − µ?k)) are not too close to each other. [Che95] studied the esti-
mation of the mixing distribution under a strong identifiability condition.
As observed in the recent work of [HK15], the optimal rate depends on the
knowledge of the number of components. [HN16a] show that the parame-
ter estimation rates are slower for some weakly identifiable mixtures. Other
extensions are available in [HN16b].
Finally, the EM algorithm (see, e.g., [DLR77]) is a popular alternative for
the analysis of the latent structures involved in the mixture models, but the
analysis of the convergence rate of the final estimator is somewhat intricate.
A first positive result about the convergence of this method is given in
[Wu83] when the density is unimodal and certain smoothness conditions
hold. However, when multimodality occurs, the behavior of the EM method
remains mysterious. Some recent advances in the analysis of this famous
method were brought by [BWY16], where a general result is given for a
convergence of the sample-based EM towards the population one, up to
initialization, Lipschitz and concavity conditions.
In this paper, we focus on the parameter estimation problem when the den-
sity of interest is a two-component contamination mixture:

(1.2) f? = (1− λ?)φ+ λ?φ(.− µ?),



ANOTHER L2 LOOK AT TWO-COMPONENT CONTAMINATION MIXTURE 3

where the density φ is known and the parameters (λ?, µ?) are to be esti-
mated.
The estimation of the couple (λ?, µ?) has already been considered in the
literature. In [BMV06], a slightly different model is considered where f? =
(1−λ?)φ(.−µ?1)+λ?φ(.−µ?2) and φ is assumed to be symmetric and unknown.
Using a recurrence procedure based on an inversion formula, they propose
an estimator for θ? = (λ?, µ?1, µ

?
2) and the function φ. In particular, the

parameter λ? is estimated at the ‘classical’ parametric rate 1/
√
n, while the

rate n−1/4 is obtained for location parameters (µ?1, µ
?
2). A similar problem is

addressed in [BV14] where the rate 1/
√
n is reached for the estimation of the

whole parameter θ?. The estimation procedure is based on a computation
of an empirical Fourier transform. In the setting considered here (i.e., when
f? is defined as in (1.2)), [CJL07] proposes an iterative procedure based
on the empirical distribution function. In the so-called sparse setting where
λ� 1/

√
n and µ? ∼

√
2r log(n) for some r ∈ (0, 1) as n→ +∞, the authors

derive rates of convergence for the estimation of λ?. In particular, they prove
that the classical parametric rate cannot be attained in such a setting.
In all the aforementioned contributions except [CJL07], it is implicitly as-
sumed that both location and proportion parameters are fixed with respect
to n. The main aim of this paper is to fill this gap. We propose a procedure
inspired by [BTWB10] and derive an estimator (λ̂, µ̂) for the couple (λ?, µ?).
This estimator is based on the minimization of an L2 contrast instead of a
usual maximum likelihood estimator of mixture parameters computed with
an EM-type algorithm. Then, given a bound M s.t. |µ?| ≤ M and under
mild assumptions on the shape φ, we prove that:

(1.3) sup
(λ?,µ?)∈[0,1]×[−M,M ]

Eλ?,µ? [(λ?µ?)2(µ̂− µ?)2] .
log2 n

n
,

and

(1.4) sup
(λ?,µ?)∈[0,1]×[−M,M ]

λ?{µ?}2&n−1/2

Eλ?,µ? [{µ?}4(λ̂− λ?)2] .
log2 n

n
.

These results are completed by the corresponding lower bounds that ensure
the optimality of (1.3) and (1.4). In particular, we can immediately deduce
that the parametric rate of 1/

√
n is attained when λ? and µ? are fixed, but

is deteriorated as soon as these parameters are allowed to tend to 0 with n.

The paper is organized as follows. First, a preliminary oracle inequality for
L2 density estimation is established in Section 2. On the basis of this result,
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some rates of convergence for the estimation of (λ?, µ?) are deduced (see
Section 3.2) under some assumptions on φ presented in Section 3.1. Some
lower bounds are provided in Section 4, first in a strong contamination model
(|µ?| > m with m independent of n; see Section 4.1); and second, in a weak
contamination model (|µ| can tend to 0 when n → +∞; see Section 4.2).
Proofs of the upper bounds (resp. lower bounds) are given in Section 5
(resp. Section 6). Some simulations are presented in Section 7. Technical
results are presented in Appendix A, whereas Appendix B is devoted to a
needed refinement of the Cauchy-Schwarz inequality.

2. A preliminary result on L2 density estimation.

2.1. Statistical setting and identifiability. We recall that we have at our
disposal an i.i.d. sample of size n denoted Sn := (X1, . . . , Xn), where the
distribution of each Xi is associated with a two-component contamination
mixture model. More precisely, we assume that each Xi admits an unknown
density f? with respect to the Lebesgue measure on R, which is given by:

(2.1) f? = (1− λ?)φ+ λ?φ(.− µ?).

In the following text, θ? = (λ?, µ?) refers to the parameters of the two-
component contamination mixture model. We assume that the density φ is
a known function and that a real contamination of this baseline density φ
occurs (λ? > 0). Finally, we assume that the unknown contamination shift
µ? belongs to a bounded interval [−M,M ] where M > 0 is known.

Here and below, for any θ = (λ, µ) ∈ (0, 1)× R, we write:

fθ = fλ,µ = (1− λ)φ+ λφµ,

where φµ is defined according to the standard notation in location models:

∀µ ∈ R φµ : x 7−→ φ(x− µ).

In particular, as a slight abuse of notation, we write f? = fθ? = fλ?,µ? and

(when the meaning is clear following the context) f̂ = fθ̂ = fλ̂,µ̂ for any

estimator θ̂ of θ?.

We aim to recover the unknown parameter θ? from the sample Sn. This
might be possible according to the next identifiability result, whose proof is
given in Appendix A.
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Proposition 2.1. Any two-component contamination mixture model is
identifiable: fθ1 = fθ2 if and only if θ1 = θ2.

Such an identifiability result is well known in some more general cases up to
additional assumptions on the baseline density φ (see, e.g., Theorem 2.1 of
[BMV06] where the symmetry of φ is added to ensure the identifiability of
the general mixture model without contamination). Here, the fact that one of
the components of the mixture is constrained to be centered makes it possible
to get rid of any additional assumption on φ. In particular, Proposition 2.1
holds as soon as φ is non-negative with

∫
R φ = 1.

2.2. Estimation strategy and oracle inequality on the L2 norms. Our es-
timator will be built according to an optimal L2 density estimation con-
strained to the contamination models. For this purpose, we first define a
grid over the possible values of λ and µ through:

MΛ,M := {(λ, µ) : λ ∈ Λ = {λ1, . . . , λp} and µ ∈M = {µ1, . . . , µq}} ,

where Λ,M will depend on n to obtain good properties both from the sta-
tistical and approximation point of view. To obtain a good estimation of
f? and θ?, we adopt a SURE approach (see, e.g., [Ste81]) and choose an
estimator that minimizes ‖f?− fλ,µ‖2 over the gridMΛ,M. Observing that:

‖f? − fλ,µ‖2 − ‖f?‖2 = −2〈f?, fλ,µ〉+ ‖fλ,µ‖2,

and since ‖f?‖2 does not depend on (λ, µ), it is natural to introduce the
following contrast function:

∀(λ, µ) ∈MΛ,M γn(λ, µ) := − 2

n

n∑
i=1

fλ,µ(Xi) + ‖fλ,µ‖2,

leading to the estimator:

(2.2) (λ̂n, µ̂n) = arg min
(λ,µ)∈MΛ,M

γn(λ, µ).

Our first main result, stated below, quantifies the performances of f̂ .

Theorem 2.1. Let (λ?, µ?) ∈ (0, 1)×R. Let (λ̂, µ̂) be the estimator defined
in (2.2). Then, a positive constant C exists such that for all 0 < α < 1:

(2.3) E
[
‖f̂ − f?‖2

]
≤
(

1 + α

1− α

)
inf

(λ,µ)∈MΛ,M

‖fλ,µ−f?‖2+
C

2α

log2(|MΛ,M|)
n

,

where |MΛ,M| corresponds to the cardinal of the grid MΛ,M.



6 S. GADAT, C. MARTEAU, C. MAUGIS-RABUSSEAU,

It is worth mentioning that the result above is almost assumption-free on
the two-component contamination mixture model. Nevertheless, this result
implicitly requires that the approximation term inf(λ,µ)∈MΛ,M

‖fλ,µ − f?‖2
is comparable to the residual. In practice, this cannot be achieved unless we
have an upper bound on the range for possible values of µ at our disposal.
The proof of Theorem 2.1 is given in Section 5.1.
We stress that Theorem 2.1 is not the main interest of our work. It is a mini-
mal requirement to further extend our analysis on the parameter estimation
of the mixture models themselves. In particular, the following question now
arises: does the fact that f̂ is a ‘good’ L2 estimator of f? imply that the
corresponding θ̂ provides a satisfying estimator of θ?? The positive answer
to this question is the main contribution of our work and is described in the
next section. In order to establish this result, some mild restrictions on the
class of possible densities φ are required.

3. Estimation of the parameter θ?.

3.1. Baseline assumptions. We now introduce mild and sufficient assump-
tions for an optimal recovery of θ? from the oracle inequality (2.3) (in terms
of convergence rates). In the following, we denote by Ckp (R) the set of con-
tinuous functions that admits piecewise k continuous derivatives.

Assumption (HS). The density φ fulfills one of the two assumptions:

(HS1) φ is symmetric and belongs to C3
p(R) ∩ L2(R)

or
(HS2) φ belongs to C3(R) ∩ L2(R).

The set of admissible densities considered in Assumption (HS) is very large,
and contains many possible distributions (Gaussian, Cauchy and Laplace,
to name a few). Note that if the density is not regular enough, the symmetry
of φ is required.
Our second important assumption is concerned with a tight link that may
exist between φ−φµ and µ itself. It requires a type of Lipschitz upper bound
in the translation model.

Assumption (HLip). The density φ satisfies:

(3.1) ∃ g ∈ L2(R) ∀x ∈ R ∀µ ∈ [−M,M ] |φ(x)− φµ(x)| ≤ |µ|g(x),

and g satisfies the integrability condition:

J :=

∫
R
g2(x)φ−1(x)dx < +∞.
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This assumption will be of primary importance to obtain estimation results
on the parameters of the mixture themselves. In particular, it will make it
possible to derive a relationship between the L2 norm of φ−φµ and the size
of |µ|. Hence, under Assumption (HLip), a good estimation of the density
f? for the L2 norm is assumed to yield a good estimation of the mixture
parameters.

Assumption (HD). The density φ satisfies:

Iφ :=

∫
φ′′(x)2φ−1(x)dx < +∞.

Assumption (HD) will be needed for our lower bound results (see Section
4) but is not necessary to obtain good estimation properties. However, this
assumption is very mild and is again satisfied for many probability distribu-
tions.

Remark 3.1. Instead of listing all the possible densities that both meet
Assumptions (HS), (HLip) and (HD), we will show that any log-concave
distribution φ written as:

φ = e−U with Uconvex such that |U ′|+ |U ′′| = o±∞(U),

satisfies these three conditions. The relationships between (HS), (HLip), (HD)
and the log-concave distributions are given in Appendix A.3.

In the following text, we maintain a formalism that uses the three assump-
tions of Section 3.1 for the sake of generality.

3.2. Consistency rates on the parameters (λ?, µ?). We now use our assump-
tions on φ to deduce some rates of convergence for the estimation of the
couple (λ?, µ?) from the oracle inequality of Theorem 2.1. According to
the assumption µ? ∈ [−M,M ] for some given M > 0, we define the grid
Mn =MΛ,M as:

Mn =

{
(λ, µ) : λ =

i√
n
, µ = ± j√

n
(3.2)

with i ∈ {1, . . . ,
√
n}, j ∈ {1, . . . ,M

√
n}
}
,

so that the approximation term inf(λ,µ)∈Mn
‖fλ,µ − f?‖2 in Equation (2.3)

can be made lower than n−1, while keeping the size of log(|Mn|) reasonable
and of order 2 log(n). The next result, whose proof is given in Section 5.2,
explicitly gives a non-asymptotic consistency rate of the estimation of µ? in
terms of the sample size n, of the amount of contamination µ?, and of the
probability λ? of this contamination itself.
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Theorem 3.1. Let (λ̂n, µ̂n) be the estimator defined in (2.2) withMn given
in (3.2). If φ satisfies Assumptions (HS) and (HLip), a positive constant C1

exists such that:

∀n ∈ N sup
(λ?,µ?)∈(0,1)×[−M,M ]

Eλ?,µ?
[
(λ?µ?)2(µ̂− µ?)2

]
≤ C1 log2 n

n
.

As an immediate consequence of Theorem 3.1, we can establish that for a
fixed couple (λ?, µ?):

Eλ?,µ?
[(

µ̂

µ?
− 1

)2
]
≤ C1 log2 n

n{λ?}2{µ?}4
.

In particular, since µ? is allowed to tend to 0 with n, the estimator µ̂ will
be consistent as soon as

√
nλ?{µ?}2 → +∞ as n → +∞. In a detection

context, a two-component mixture distribution can be distinguished from
that of a single component as soon as

√
nλ?|µ?| > C for some positive con-

stant C (see, e.g., [CJJ11] or [LMMR16]). Naturally, detection is “easier”
than estimation in the sense that the first task requires weaker conditions
on the parameters of interest than the second. Since the contamination level
µ? is assumed to be upper bounded, it is worth observing that we implicitly
require that λ? � 1/

√
n as n→ +∞.

Before checking the optimality of this result (see Section 4), we investigate
the estimation of the contamination proportion λ?. According to the pre-
vious discussion, we will assume that λ?{µ?}2 is significantly larger than
n−1/2 log2 n. This ensures that the contamination level µ? is consistently es-
timated. For this purpose, we introduce the set Θn(M, (`n)n, λ) indexed by
a sequence (`n)n:

Θn(M, (`n)n, λ) :=

{
θ = (λ, µ) :

`n
µ2
√
n
≤ λ ≤ λ, |µ| ≤M

}
,

for some λ̄ ∈ (0, 1).

Theorem 3.2. If φ satisfies Assumptions (HS) and (HLip) and the se-
quence (`n)n is such that limn→+∞

`n
logn = +∞, then a positive constant C2

exists such that:

sup
(λ?,µ?)∈Θn(M,(`n)n,λ)

Eλ?,µ?
[
{µ?}4(λ̂− λ?)2

]
≤ C2 log2 n

n
.
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The proof is given in Section 5.3. Once again, we can immediately deduce
from this bound that:

Eλ?,µ?

( λ̂

λ?
− 1

)2
 ≤ C2 log2 n

n{λ?}2{µ?}4
,

which only makes sense when
√
nλ?{µ?}2 → +∞ as n → +∞. We stress

that in the particular case of fixed λ? and µ? (w.r.t. n), these quantities can
be estimated at the classical parametric rate of 1/

√
n (up to a logarithmic

term).

4. Lower bounds. We now derive some lower bounds on the estimation
of λ? and µ? and show that our previous results are minimax optimal with
respect to the values of n, λ? and µ? up to some log2 n terms.

4.1. Strong contamination model. For this purpose, we split our study into
two cases and first consider the “standard” situation of a strong contami-
nation, meaning that µ? is bounded from below by a constant independent
on n: it translates the fact that the contamination is not negligible when
n −→ +∞. Let m and c be two positive constants, and:

Θn(m, c) :=

{
θ = (λ, µ) :

c

µ2
√
n
≤ λ, m ≤ |µ|

}
.

Note that this still allows a weak effect of contamination since λ? can be
on the order of n−1/2. In this case, we obtain the next lower bound that
matches (up to a log term) the upper bounds obtained in Theorems 3.1 and
3.2 as soon as Assumption (HD) is satisfied.

Theorem 4.1. Assume that φ satisfies (HLip) and (HD). Consider two
positive constants m and c such that 0 < c

m2
√
n
< 1 so that Θn(m, c) is non

empty. Then,

(i) a positive constant C1 exists such that:

(4.1) inf
(λ̂,µ̂)

sup
(λ,µ)∈Θn(m,c)

E[λ2(µ̂− µ)2] ≥ C1

n
,

(ii) a positive constant C2 exists such that:

(4.2) inf
(λ̂,µ̂)

sup
(λ,µ)∈Θn(m,c)

E[(λ̂− λ)2] ≥ C2

n
,
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where the infimum is taken over all estimators θ̂ = (λ̂, µ̂) in (4.1) and (4.2).

Even though the proof relies on a Le Cam argument and leads to a n−1

rate, it clearly deserves a careful study for at least two reasons: the loss is
asymmetric in (λ, µ) in i) and the balance between λ, µ and n is unclear.
We give the proof of this result in Section 6.2.

4.2. Weak contamination model. We now study the situation when the con-
tamination |µ| is not yet bounded from below and can therefore tend to 0
as n −→ +∞. Let c > 0, and:

Θn(c) :=

{
θ = (λ, µ) :

c

µ2
√
n
≤ λ

}
.

Theorem 4.2. Assume that φ satisfies (HS1) and (HD). Then, N > 0
exists such that, for all n > N :

(i) a positive constant C1 exists such that:

inf
(λ̂,µ̂)

sup
(λ,µ)∈Θn(c)

E[µ4(λ− λ̂)2] ≥ C1

n
.

(ii) a positive constant C2 exists such that:

inf
(λ̂,µ̂)

sup
(λ,µ)∈Θn(c)

E[λ2µ2(µ− µ̂)2] ≥ C2

n
.

We emphasize that this last result is only true when dealing with a sym-
metric density function φ. We have not been able to extend it to the general
situation induced by (HS). Even if we believe that this result is still true in
that case, our proof strategy cannot be used to extend our result to (HS).

5. Proofs of the upper bounds.

5.1. Preliminary oracle inequality. We first establish a technical proposi-
tion that will be used to derive the proof of Theorem 2.1. For a given grid
MΛ,M, we first introduce the theoretical minimizer of the L2-norm on this
grid:

(5.1) (λ0, µ0) = arg min
(λ,µ)∈MΛ,M

‖fλ,µ − f?‖2.

We then define En(λ, µ) the empirical process indexed by (λ, µ) ∈MΛ,M as:

En(λ, µ) =
2

n

n∑
i=1

{fλ,µ(Xi)− fλ0,µ0(Xi)− [〈fλ,µ − fλ0,µ0 , f
?〉]} .
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For all (λ, µ) ∈MΛ,M, the term En(λ, µ) can be rewritten as:

(5.2) En(λ, µ) =
1

n

n∑
i=1

(Yi − E[Yi]) where Yi := 2[fλ,µ(Xi)− fλ0,µ0(Xi)].

In particular, E[En(λ, µ)] = 0 and:

Var(Yi) ≤ E[Y 2
i ] = 4E[(fλ,µ(Xi)− fλ0,µ0(Xi))

2],

= 4

∫
R

[fλ,µ(x)− fλ0,µ0(x)]2f?(x)dx,

≤ 4‖φ‖∞‖fλ,µ − fλ0,µ0‖2,

since ‖f?‖∞ ≤ ‖φ‖∞. We will use a normalized version of this process below,
which naturally leads to the introduction of Gn(λ, µ):

∀(λ, µ) ∈MΛ,M \ {(λ0, µ0)} Gn(λ, µ) =
En(λ, µ)

‖fλ,µ − fλ0,µ0‖
.

Our estimator (λ̂, µ̂) defined in (2.2) satisfies the following useful property.

Lemma 5.1.

(i) For any (λ, µ) such that ‖fλ,µ − fλ0,µ0‖ ≥ n−1/2:

(5.3) ∀s > 0 P (|Gn(λ, µ)| > s) ≤ exp

− ns2

8‖φ‖∞
[
1 + s

√
n

3

]
 .

(ii) We can find C > 0 such that:

(5.4) E
[
Gn(λ̂, µ̂)21Bc

]
≤
C log2(|MΛ,M|)

n
,

where B is the event defined as B =
{
‖f̂ − fλ0,µ0‖ ≤ 1√

n

}
.

Proof. In this proof, C refers to a constant that is independent of n, whose
value may change from line to line.

Proof of (i): thanks to the Bennett inequality, we obtain for all s > 0:

P (|Gn(λ, µ)| > s)

≤ exp

(
−

n2s2‖fλ,µ − fλ0,µ0‖2

8n‖φ‖∞‖fλ,µ − fλ0,µ0‖2 + 8n‖φ‖∞s‖fλ,µ − fλ0,µ0‖/3

)
,

= exp

(
− ns2

8‖φ‖∞ [1 + s‖fλ,µ − fλ0,µ0‖−1/3]

)
.
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Using the fact that ‖fλ,µ − fλ0,µ0‖ ≥ n−1/2, we obtain:

P (|Gn(λ, µ)| > s) ≤ exp

− ns2

8‖φ‖∞
[
1 + s

√
n

3

]
 ,

which is the desired Inequality (5.3).
Proof of (ii): observe that for all t > 0,

E
[
G2
n(λ̂, µ̂)1Bc

]
≤ t2 + E

[
G2
n(λ̂, µ̂)1{|Gn(λ̂,µ̂)|>t}1Bc

]
,

≤ t2 + E

[
sup

(λ,µ):‖fλ,µ−fλ0,µ0
‖≥n−1/2

{
G2
n(λ, µ)1{|Gn(λ,µ)|>t}

}]
,

≤ t2 +
∑

(λ,µ):‖fλ,µ−fλ0,µ0
‖≥n−1/2

E
[
G2
n(λ, µ)1{|Gn(λ,µ)|>t}

]
.(5.5)

Integrating by parts, we can remark that:

E
[
G2
n(λ, µ)1{|Gn(λ,µ)|>t}

]
= t2 P(|Gn(λ, µ)| > t)+

∫ +∞

t2
P(|Gn(λ, µ)| >

√
x)dx.

Thus, if we choose t =
(

16‖φ‖∞ log(|MΛ,M|)
3 ∨ 3

)
n−1/2, then t

√
n/3 ≥ 1, so

that for any s ≥ t and for a fixed (λ, µ), (5.3) yields:

E
[
G2
n(λ, µ)1{|Gn(λ,µ)|>t}

]
≤ t2 exp (− log(|MΛ,M|)) +

∫ +∞

t2
exp

(
− 3
√
nx

16‖φ‖∞

)
dx

≤ C
log2(|MΛ,M|)

n
× 1

|MΛ,M|
+ 2

∫ +∞

t
u exp

(
− 3
√
nu

16‖φ‖∞

)
du,

for large enough C, where the last line comes from the size of t for the
left-hand side, and from the change of variable u =

√
x in the integral. The

remaining integral may be integrated by parts, which in turn leads to:

E
[
G2
n(λ, µ)1{|Gn(λ,µ)|>t}

]
≤ C

log2(|MΛ,M|)
n

× 1

|MΛ,M|
.

If we plug the above upper bound into (5.5), we then obtain that a sufficiently
large constant C exists such that:

E
[
G2
n(λ̂, µ̂)1Bc

]
≤ C

log2(|MΛ,M|)
n

×
|MΛ,M|
|MΛ,M|

| = C
log2(|MΛ,M|)

n
.



ANOTHER L2 LOOK AT TWO-COMPONENT CONTAMINATION MIXTURE 13

We are now interested in the proof of the oracle inequality.

Proof of Theorem 2.1. The best approximation term (λ0, µ0) over the

grid MΛ,M is defined in (5.1) and the event B =
{
‖f̂ − fλ0,µ0‖ ≤

√
1
n

}
is

introduced in Proposition 5.1. On the event B, the situation is easy using
the Young inequality 2ab ≤ αa2 + α−1b2 so that for all α > 0,

E
[
‖f̂ − f?‖21B

]
≤ (1 + α)‖fλ0,µ0 − f?‖2 + (1 + α−1)E

[
‖f̂ − fλ0,µ0‖21B

]
,

≤ (1 + α)‖fλ0,µ0 − f?‖2 +
1 + α−1

n
.(5.6)

We provide below a similar control on the event Bc. First, observe that
according to the definition of (λ̂, µ̂), for all (λ, µ) ∈MΛ,M, we have:

γn(λ̂, µ̂) + ‖f?‖2 ≤ γn(λ, µ) + ‖f?‖2,

⇔ ‖f̂ − f?‖2 ≤ ‖fλ,µ − f?‖2 + 2

[
1

n

n∑
i=1

f̂(Xi)− 〈f̂ , f?〉

]

−2

[
1

n

n∑
i=1

fλ,µ(Xi)− 〈fλ,µ, f?〉

]
.

This inequality being true for (λ, µ) = (λ0, µ0), we obtain:

‖f̂ − f?‖21Bc ≤ ‖fλ0,µ0 − f?‖2 + En(λ̂, µ̂)1Bc .

This implies that for all 0 < α < 1:

‖f̂ − f?‖21Bc ≤ ‖fλ0,µ0 − f?‖2 + ‖f̂ − fλ0,µ0‖
En(λ̂, µ̂)

‖f̂ − fλ0,µ0‖
1Bc ,

⇒ ‖f̂ − f?‖21Bc ≤ ‖fλ0,µ0 − f?‖2 +
α

2
‖f̂ − fλ0,µ0‖21Bc +

1

2α
G2
n(λ̂, µ̂)1Bc .

Using ‖u+ v‖2 ≤ 2‖u‖2 + 2‖v‖2, we then deduce that:

(5.7) ‖f̂ − f?‖21Bc ≤
(1 + α)

(1− α)
‖fλ0,µ0 − f?‖2 +

1

2α
G2
n(λ̂, µ̂)1Bc .

We can conclude the proof taking (5.4) in (5.7), and (5.6) together.



14 S. GADAT, C. MARTEAU, C. MAUGIS-RABUSSEAU,

5.2. Proof of Theorem 3.1. We aim to apply the oracle inequality estab-
lished in Theorem 2.1. First, we need an upper bound on the approximation
term given by ‖fλ0,µ0 − f?‖2 when (λ0, µ0) belongs to our gridMn. We can
observe that for all (λ, µ) ∈ (0, 1)× R,

‖fλ,µ − f?‖2 = ‖(1− λ)φ+ λφµ − (1− λ?)φ− λ?φµ?‖2

= ‖(λ? − λ){φ− φµ}+ λ?{φµ − φµ?}‖2(5.8)

≤ 2(λ? − λ)2‖φ− φµ‖2 + 2{λ?}2‖φµ − φµ?‖2.

Using Proposition A.1, we can find two positive constants κ and κ such that:

(5.9) ∀(µ, µ̃) ∈ R2 κ(µ− µ̃)2 ≤ ‖φµ − φµ̃‖2 ≤ κ(µ− µ̃)2,

which in turn implies that:

‖fλ,µ − f?‖2 ≤ 8‖φ‖2(λ? − λ)2 + 2κ {λ?}2(µ− µ?)2.

In particular, the definition ofMn given in (3.2) makes it possible to find a
constant C > 0 such that:

(5.10) ‖fλ0,µ0 − f?‖2 = inf
(λ,µ)∈Mn

‖fλ,µ − f?‖2 ≤
C

n
.

At the same time, observe that (5.8) leads to:

‖f̂ − f?‖2 = (λ? − λ̂)2‖φ− φµ̂‖2 + {λ?}2‖φµ̂ − φµ?‖2

+2(λ? − λ̂)λ?〈φ− φµ̂, φµ̂ − φµ?〉.

Using Proposition B.2 with a = µ̂ and b = µ? − µ̂ and (5.9), a positive
constant c exists such that:

‖f̂ − f?‖2

≥ (λ? − λ̂)2‖φ− φµ̂‖2 + {λ?}2‖φµ̂ − φµ?‖2

−2
∣∣∣λ? − λ̂∣∣∣λ?‖φ− φµ̂‖‖φµ̂ − φµ?‖ (1− c‖φ− φµ?‖2)

≥ (λ? − λ̂)2‖φ− φµ̂‖2 + {λ?}2‖φµ̂ − φµ?‖2

−
[
(λ? − λ̂)2‖φ− φµ̂‖2 + {λ?}2‖φµ̂ − φµ?‖2

] (
1− c‖φ− φµ?‖2

)
≥ c(λ? − λ̂)2‖φ− φµ̂‖2‖φ− φµ?‖2 + c{λ?}2‖φµ̂ − φµ?‖2‖φ− φµ?‖2

≥ cκ2(λ? − λ̂)2{µ̂}2{µ?}2 + cκ2{λ?}2{µ?}2(µ̂− µ?)2.

We see here the central role of the refinement of the Cauchy-Schwarz inequal-
ity (see Appendix B at the end of the paper) to obtain a tractable bound
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that involves the parameters of the mixture themselves, from the bound on
the L2-norm of f̂ − f?. We now use the oracle inequality on ‖f̂ − f?‖2 to
deduce that a constant C > 0 exists such that:

(5.11) E
[
(λ? − λ̂)2{µ̂}2{µ?}2 + {λ?}2{µ?}2(µ̂− µ?)2

]
≤ C log2 n

n
.

In particular, we immediately deduce from (5.11) that:

E
[
{λ?}2{µ?}2(µ̂− µ?)2

]
≤ C log2 n

n
.

This result being uniform in (λ?, µ?), we obtain the proof of Theorem 3.1.

�

Unfortunately, we cannot directly use a similar approach for the estimation
of λ?. Indeed, we have to first ensure that µ̂ is close to µ? with a large enough
probability.

5.3. Proof of Theorem 3.2. Let B and D be the events respectively defined
as:

(5.12) B =

{
‖f̂ − fλ0,µ0‖ ≤

√
1

n

}

and

(5.13) D =

{
|Gn(λ̂, µ̂)| ≤ 16‖φ‖∞ log(n|Mn|)

3
√
n

}
.

Below, the control of the quadratic risk of µ̂ will be investigated according
to the partition B,Bc ∩ D and Bc ∩ Dc.

Control of the risk on B. Equation (5.6) together with (5.10) indicates
that:

‖f̂ − f?‖2 1B ≤
C

n
.

Then, Equation (5.11) implies that:

(5.14)

(
µ̂

µ?
− 1

)2

1B ≤
C

n{λ?}2{µ?}4
≤ C

`2n
.
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Control of the risk on Bc∩D. On the set Bc∩D, we apply Inequality (5.7),
which yields:

‖f̂ − f?‖2 1Bc∩D ≤ (1 + α)

(1− α)
‖fλ0,µ0 − f?‖2 +

1

2α
|Gn(λ̂, µ̂)|2 1Bc∩D

≤ C
log2(n|Mn|)

n

for some positive constant C. Since the size of |MΛn,Mn | is a polynomial of
n, we can find a constant C such that Equation (5.11) leads to:

(5.15)

(
µ̂

µ?
− 1

)2

1Bc∩D ≤ C
log2 n

n{λ?}2{µ?}4
≤ C log2 n

`2n
.

Since we assume that (λ?, µ?) ∈ Θn(M, (`n)n, λ) with `n/ log n −→ +∞
when n −→ +∞, Equations (5.14) and (5.15) imply that for large enough
n, (

µ̂

µ?
− 1

)2

[1B + 1Bc∩D] ≤ 1

4
.

Remark that for positive x and y: |x/y−1| ≤ 1
2 implies that y ≤ 2x. Applying

this simple remark to the former inequality yields:

(5.16) {µ?}2 [1B + 1Bc∩D] ≤ 4{µ̂}2 [1B + 1Bc∩D] .

Control of the risk on Bc ∩ Dc. Applying (5.3) we can check that:

P(Bc ∩ Dc) ≤ P(Dc) ≤ C

n

for some positive constant C.

Synthesis. Using (5.16), a large enough N exists such that for n ≥ N :

E[(λ̂− λ?)2{µ?}4]

= E[(λ̂− λ?)2{µ?}4(1B + 1Bc∩D)] + E[(λ̂− λ?)2{µ?}41Bc∩Dc ],
≤ 4E[(λ̂− λ?)2{µ?}2{µ̂}2] +M4P(Dc),

≤ C log2(n)

n
,

for some constant C > 0, according to (5.11). This result being uniform in
(λ?, µ?), we obtain the proof of Theorem 3.2.

�
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6. Proofs of the lower bounds.

6.1. Asymmetric risk. We begin by a useful lemma, which is a generaliza-
tion of the Le Cam method for proving lower bounds if the loss involved in
the statistical model is not symmetric, meaning that ρ(θ1, θ2) is generally
not equal to ρ(θ2, θ1), but still satisfies a weak triangle inequality. Hence,
the Le Cam Lemma requires a small modification in the spirit of the remark
of [Yu97] (Example 2, Section 3).
In the sequel, dTV(P,Q) and KL(P,Q) denote the total variation distance
and the Kullback-Leibler divergence between two measures, P and Q, re-
spectively.

Lemma 6.1. Let (Pθ)θ∈Θ be a family of measures indexed by Θ and assume
that ρ : (θ1, θ2) ∈ Θ2 7→ ρ(θ1, θ2) ∈ R+ satisfies the weak triangle inequality:

(6.1) ∀(θ1, θ2, θ3) ∈ Θ3, ρ(θ1, θ3) + ρ(θ2, θ3) ≥ ρ(θ1, θ2) ∧ ρ(θ2, θ1).

Let Φ : R+ → R+ be a non-decreasing function. Let δ > 0 and (θ1, θ2) ∈ Θ2

such that ρ(θ1, θ2) ∧ ρ(θ2, θ1) ≥ 2δ. Then,

inf
θ̂

sup
θ∈Θ

E
[
Φ(ρ(θ, θ̂))

]
≥ Φ(δ)

2

{
1− dTV(P⊗

n

θ1
,P⊗

n

θ2
)
}
,

≥ Φ(δ)

2

{
1−

√
n

2
KL(Pθ1 ,Pθ2)

}
,

where the infimum is taken over all estimators θ̂.

Proof. First, we observe that:

E[Φ(ρ(θ, θ̂))] ≥ Φ(δ)P(ρ(θ, θ̂) ≥ δ),

since Φ is a non-decreasing function. Let V = {1, 2} and Ψ(θ̂) = argmin
v∈V

ρ(θv, θ̂).

We can show that ρ(θv, θ̂) < δ implies that Ψ(θ̂) = v. According to Condition
(6.1), we have:

ρ(θv, θ̂) ≥ ρ(θv, θv′) ∧ ρ(θv′ , θv)− ρ(θv′ , θ̂) > 2δ − ρ(θv′ , θ̂).

Now, if ρ(θv, θ̂) < δ, then δ > 2δ − ρ(θv′ , θ̂), so that ρ(θv′ , θ̂) > δ, which is
necessarily larger than ρ(θv, θ̂). Hence, we obtain Ψ(θ̂) = v.
Equivalently, for v ∈ {1, 2}, we have Ψ(θ̂) 6= v =⇒ ρ(θv, θ̂) > ρ(θv′ , θ̂) since:

2δ ≤ ρ(θv, θv′) ∧ ρ(θv′ , θv) ≤ ρ(θv, θ̂) + ρ(θv′ , θ̂) ≤ 2ρ(θv, θ̂).
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The rest of the proof proceeds from the standard Le Cam argument: Φ is
non decreasing so that:

sup
θ∈Θ

E[Φ(ρ(θ, θ̂))] ≥ Φ(δ) sup
θ∈Θ

P(ρ(θ, θ̂) ≥ δ)

≥ Φ(δ)

2
{P(ρ(θ1, θ̂) ≥ δ) + P(ρ(θ2, θ̂) ≥ δ)}

≥ Φ(δ)

2
{P⊗nθ1 (Ψ(θ̂) 6= 1) + P⊗

n

θ2
(Ψ(θ̂) 6= 2)}.

Taking an infimum over all tests Ψ (see, e.g., [LCY00]) we obtain:

inf
θ̂

sup
θ∈Θ

E[Φ(ρ(θ, θ̂))] ≥ Φ(δ)

2
inf
Ψ
{P⊗nθ1 (Ψ 6= 1) + P⊗

n

θ2
(Ψ 6= 2)}

≥ Φ(δ)

2

{
1− dTV(P⊗

n

θ1
,P⊗

n

θ2
)
}
.

Pinsker’s inequality:

dTV(P⊗
n

θ1
,P⊗

n

θ2
) ≤

√
1

2
KL(P⊗nθ1 ,P

⊗n
θ2

) =

√
n

2
KL(Pθ1 ,Pθ2)

ends the proof.

6.2. Lower bound for the strong contamination model. We now study the
lower bounds in the first regime, namely when µ is lower bounded by a
constant m that is independent of n.
Proof of Theorem 4.1

Point (i). We apply Lemma 6.1 with Φ(t) = t2 and the loss function ρ
defined as:

∀(θ1, θ2) ∈ Θn(m, c)2 ρ(θ1, θ2) = λ1|µ1 − µ2|.

Remark that ρ satisfies the weak triangle inequality (6.1). Indeed, for all
(θ1, θ2, θ3) ∈ Θn(m, c)3, we have:

ρ(θ1, θ3) + ρ(θ2, θ3) = λ1|µ1 − µ3|+ λ2|µ2 − µ3|
≥ min(λ1, λ2)|µ1 − µ2|
≥ ρ(θ1, θ2) ∧ ρ(θ2, θ1).

We introduce the subset

Θn(m,M, c, λ) :=

{
θ = (λ, µ) :

c

µ2
√
n
≤ λ ≤ λ̄, m ≤ |µ| ≤M

}
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where 0 < m < M and 0 < c
m2
√
n
< λ̄ < 1. Then, Θn(m,M, c, λ) ⊂

Θn(m, c). We consider θ1 = (λ, µ1) and θ2 = (λ, µ2); their values will be cho-
sen later to ensure that (θ1, θ2) ∈ Θn(m,M, c, λ)2. According to Lemma 6.1

applied with δ = λ|µ1−µ2|
2 , we can write:

inf
θ̂

sup
θ∈Θn(m,c)

E[λ2(µ̂− µ)2] ≥ inf
θ̂

sup
θ∈Θn(m,M,c,λ)

E[λ2(µ̂− µ)2]

≥ δ2

2

{
1−

√
n

2
KL(Pθ1 ,Pθ2)

}
.(6.2)

We can compute the Kullback-Leibler divergence between the two mixtures
Pθ1 and Pθ2 : if f1 = (1 − λ)φ + λφµ1 (resp. f2 = (1 − λ)φ + λφµ2) is the
density of Pθ1 (resp. Pθ2) w.r.t. the Lebesgue measure, we have:

KL(Pθ1 ,Pθ2) =

∫
log

[
f1(x)

f2(x)

]
f1(x)dx

=

∫
log

[
1 +

f1(x)− f2(x)

f2(x)

]
f1(x)dx

≤
∫
f1(x)− f2(x)

f2(x)
f1(x)dx,

where we used the inequality log(1 + t) ≤ t. If we once again write f1 =
f2 + f1 − f2, we obtain:

KL(Pθ1 ,Pθ2) ≤
∫
f1(x)− f2(x)

f2(x)
[f2(x) + f1(x)− f2(x)] dx

=

∫
[f1(x)− f2(x)]2

f2(x)
dx

≤ λ2

∫
[φµ1(x)− φµ2(x)]2

(1− λ)φ(x) + λφµ2(x)
dx

since f2(x) ≥ (1 − λ)φ(x) and f1(x) − f2(x) = λ[φµ1(x) − φµ2(x)]. On the
basis of Assumption (HLip), we know that |φµ1 − φµ2 | ≤ |µ1 − µ2|g and we
obtain:

(6.3) KL(Pθ1 ,Pθ2) ≤ λ2(µ1 − µ2)2J
1− λ̄

,

where J := ‖gφ−1/2‖2 is the constant involved in (HLip).

We now choose λ, µ1 and µ2 so that we obtain the largest possible value in
(6.2), while satisfying the constraints given in Θn(m,M, c, λ). Without loss
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of generality, we set µ1 < µ2 and we need to find a choice of these parameters
such that m ≤ µ1 < µ2 ≤M and c

µ2
1

√
n
≤ λ ≤ λ̄. We set:

µ1 = m and λ =
c

m2
√
n
< λ̄.

For a given ε > 0, we choose µ2 such that n
2 KL(Pθ1 ,Pθ2) ≤ 1 − ε. Using

(6.3), we arrive at the calibration:

µ2 − µ1 =

√
2(1− λ̄)(1− ε)

λ2J n
.

It remains to check that µ2 ≤M . From our choice of λ and µ1, we see that:

µ2 = m

1 +

√
2(1− λ̄)m2

c2J
(1− ε)

 ≤ m
1 +

√
2m2(1− ε)

c2J


which can be made smaller than M if 1 − ε ≤ c2J (M−m)2

2m4 . If we plug these
choices of λ, µ1 and µ2 into (6.2), we obtain:

inf
θ̂

sup
θ∈Θn(m,M,c,λ)

E[(µ̂− µ)2] ≥ λ2 × 2(1− λ̄)(1− ε)
8λ2J n

×
[
1−
√

1− ε
]

≥ (1− λ̄)(1− ε)ε
8J n

,

which is the desired lower bound of the minimax risk (4.1).

Point (ii). We keep the same Φ and define ρ(θ1, θ2) = |λ1−λ2| = ρ(θ2, θ1).
We consider θ1 = (λ1, µ) and θ2 = (λ2, µ) such that |λ1 − λ2| = ε√

n
and

c

m2
√
n

= λ1 < λ2 ≤ λ̄,

µ and ε have to be chosen hereafter. Since λ2 = λ1 + ε√
n
≤ λ̄, we must

choose ε such that:

(6.4) ε ≤ λ̄
√
n− c

m2
,

which is possible since we assumed that c
m2
√
n
< λ̄. From Lemma 6.1,

inf
θ̂

sup
θ∈Θn(m,c)

E[(λ− λ̂)2] ≥ inf
θ̂

sup
θ∈Θn(m,M,c,λ)

E[(λ− λ̂)2]

≥ ε2

2n

{
1−

√
n

2
KL(Pθ1 ,Pθ2)

}
.
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We can upper bound the Kullback-Leibler divergence as:

KL(Pθ1 ,Pθ2) ≤
∫

log [f1(x)− f2(x)]2 f2(x)−1dx

≤ (λ1 − λ2)2

∫
[φµ(x)− φ(x)]2 f2(x)−1dx

≤ (λ1 − λ2)2µ2

1− λ̄

∫
g(x)2φ(x)−1dx

≤ µ2ε2J
(1− λ̄)n

.

By choosing:

(6.5) µ =
m+M

2
and ε ≤

√
2(1− λ̄)

J (m+M)2
,

we obtain n
2 KL(Pθ1 ,Pθ2) ≤ 1

4 . Considering the minimal admissible value of
ε in (6.4) and (6.5) now leads to a choice of the parameters θ1 and θ2 such
that:

inf
θ̂

sup
θ∈Θn(m,c)

E[(λ− λ̂)2] ≥ ε2

4n
.

This last inequality is the second lower bound (4.2). �

6.3. Lower bound for the weak contamination model.

Proof of Theorem 4.2

Point (i). We consider Φ(t) = t2 and the loss function ρ defined as:

ρ(θ1, θ2) = µ2
1|λ1 − λ2|.

Note that ρ satisfies (6.1) since ∀(θ1, θ2, θ3) ∈ Θn(c)3,

ρ(θ1, θ3) + ρ(θ2, θ3) = µ2
1|λ1 − λ3|+ µ2

2|λ2 − λ3|
≥ min(µ2

1, µ
2
2)|λ1 − λ2|

≥ ρ(θ1, θ2) ∧ ρ(θ2, θ1).

To obtain a convenient lower bound, we need to use Lemma 6.1 and find a
couple of parameters (θ1, θ2) that belongs to the admissible set and such that
KL(Pθ1 ,Pθ2) is small enough. In particular, the proximity between Pθ1 and
Pθ2 will be obtained by a careful matching of the first moments of the two
distributions, which is a good method for obtaining efficient lower bounds
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in mixture models (see, e.g., [BG14] or [HK15]). We give an example of this
method below. First, remark that:

KL(Pθ1 ,Pθ2) =

∫
log

[
f1(x)

f2(x)

]
f1(x)dx.

Since φ is a piecewise C3 function on R, considering a shift µ = o(1), we can
write a third order Taylor expansion:

∀x ∈ R φµ(x) = φ(x)− µφ′(x) +
µ2

2
φ′′(x)− µ3

6
φ(3)(ξx,µ),

where ξx,µ belongs to the interval defined by x and x − µ. In particular,
assuming that φ(3) is bounded on R leads to:

∀x ∈ R φµ(x) = φ(x)− µφ′(x) +
µ2

2
φ′′(x) + o(µ2).

This Taylor expansion permits us to write, for small values of µ1:

log[f1(x)] = log[(1− λ1)φ(x) + λ1φµ1(x)]

= log

[
(1− λ1)φ(x) + λ1φ(x)− λ1µ1φ

′(x) +
1

2
λ1µ

2
1φ
′′(x) + o(µ2

1)

]
= log [φ(x)] + log

[
1− λ1µ1

φ′(x)

φ(x)
+

1

2
λ1µ

2
1

φ′′(x)

φ(x)
+ o(µ2

1)

]
= log [φ(x)]− λ1µ1

φ′(x)

φ(x)
+

1

2
λ1µ

2
1

φ′′(x)

φ(x)
− 1

2
λ2

1µ
2
1

(
φ′(x)

φ(x)

)2

+ o(µ2
1).

In the same way, for small values of µ2:

log[f2(x)] = log[(1− λ2)φ(x) + λ2φµ2(x)]

= log [φ(x)]− λ2µ2
φ′(x)

φ(x)
+

1

2
λ2µ

2
2

φ′′(x)

φ(x)
− 1

2
λ2

2µ
2
2

(
φ′(x)

φ(x)

)2

+ o(µ2
2).

We thus obtain:

log[f1(x)]− log[f2(x)] = (λ2µ2 − λ1µ1)
φ′(x)

φ(x)
+

1

2
(λ1µ

2
1 − λ2µ

2
2)
φ′′(x)

φ(x)

+
1

2
(λ2

2µ
2
2 − λ2

1µ
2
1)

(
φ′(x)

φ(x)

)2

+ o(µ2
1) + o(µ2

2).

In particular, we observe that the term above can be considered as a “second
order term” if θ1 and θ2 are chosen such that λ1µ1 = λ2µ2, which corresponds
to the first moment of Pθ1 and Pθ2 . If λ1µ1 = λ2µ2, we obtain:

log[f1(x)]− log[f2(x)] =
1

2
(λ1µ

2
1 − λ2µ

2
2)
φ′′(x)

φ(x)
+ o(µ2

1) + o(µ2
2).
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We deduce that:

KL(Pθ1 ,Pθ2)

=

∫ [
1

2
(λ1µ

2
1 − λ2µ

2
2)
φ′′(x)

φ(x)
+ o(µ2

1) + o(µ2
2)

]
f1(x)dx

=
1

2
(λ1µ

2
1 − λ2µ

2
2)

[
(1− λ1)

∫
φ′′(x)dx+ λ1

∫
φ′′(x)φ(x− µ1)

φ(x)
dx

]
+ o(µ2

1) + o(µ2
2).

The smoothness and symmetry of φ leads to
∫
φ′′(x)dx = 0. We deduce that:∫

φ′′(x)φ(x− µ1)

φ(x)
dx

=

∫
φ′′(x)

φ(x)
[φ(x)− µ1φ

′(x) +
1

2
φ′′(x) + o(µ2

1)]dx

=

∫
φ′′(x)dx− µ1

∫
φ′′(x)φ′(x)

φ(x)
dx+

1

2
µ2

1

∫
φ′′(x)

φ(x)
dx+ o(µ2

1)dx

=
1

2
µ2

1Iφ + o
n→+∞

(µ2
1),

where the last line comes from the fact that φ satisfies (HD) and that
x 7→ φ′′(x)φ′(x)/φ(x) is an odd function. Finally, since λ1µ1 = λ2µ2, we
deduce that:

KL(Pθ1 ,Pθ2) =
1

4
(λ1µ

2
1 − λ2µ

2
2)λ1µ

2
1Iφ + o(µ4

1)

=
1

4

(
1− λ1

λ2

)
λ2

1µ
4
1Iφ + o(µ4

1).(6.6)

Next, let λ̄ ∈ (0, 1). Choosing λ2 = λ̄
2 < λ̄ and λ1 = 1

αλ2 with α = 1+
√

5
2 , we

have: (
1− λ1

λ2

)
λ2

1 = (λ1 − λ2)2.

Thus,

KL(Pθ1 ,Pθ2) =
1

4
(λ2 − λ1)2µ4

1Iφ + o(µ4
1).

In order to apply Lemma 6.1, let δ > 0 such that 2δ = ρ(θ1, θ2) ∧ ρ(θ2, θ1).
According to our constraint λ1µ1 = λ2µ2 and λ2 = αλ1 > λ1, we observe
that µ2 < µ1 so that:

2δ = µ2
2|λ1 − λ2|.

We deduce that:

|λ1 − λ2|µ2
1 = |λ1 − λ2|

(
λ2

λ1

)2

µ2
2 = 2δα2
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and

µ2
1 =

(
λ2

λ1

)2

µ2
2 = α2 4α

(α− 1)λ̄
δ.

Thus,
KL(Pθ1 ,Pθ2) = δ2α4Iφ + o(δ2),

and according to Lemma 6.1, we obtain:

inf
θ̂

sup
θ∈Θn(c)

E[µ4(λ− λ̂)2] ≥ δ2

2

{
1−

√
n

2
δ2 [α4Iφ + o(1)]

}
.

The choice of δ is determined by the right brackets that should be non-
negative. We can choose:

δ =
[
2nα4Iφ

]− 1
2 ,

so that n
2 δ

2
[
α4Iφ + o(1)

]
= 1

4(1+o(1)). Thus, an integer N exists such that:

∀n ≥ N inf
θ̂

sup
θ∈Θn(c)

E[µ4(λ− λ̂)2] ≥ δ2

6
=

1

12α4Iφn
.

This ends the proof of the first point.

Point (ii). We define in this case the loss function ρ(θ1, θ2) = λ1|µ1||µ1−µ2|
and Φ(t) = t2. The function ρ satisfies the weak triangle inequality (6.1)
since ∀(θ1, θ2, θ3) ∈ Θn(c)3:

ρ(θ1, θ3) + ρ(θ2, θ3) = λ1|µ1||µ1 − µ3|+ λ2|µ2||µ2 − µ3|
≥ min(λ1|µ1|, λ2|µ2|)|µ1 − µ2|
≥ ρ(θ1, θ2) ∧ ρ(θ2, θ1).

The proof follows the same lines as the ones of (i) and our starting point is
once again the Kullback-Leibler divergence asymptotics given in Equation
(6.6). Our baseline relationship λ1µ1 = λ2µ2 is still necessary and we obtain:

KL(Pθ1 ,Pθ2) =
Iφ
4

(
1− µ2

µ1

)
λ2

1µ
4
1 + o(µ4

1).

We choose µ1 = 2µ2 so that λ2 = 2λ1 and:

ρ(θ1, θ2) ∧ ρ(θ2, θ1) = λ1µ1|µ1 − µ2| =
1

2
λ1µ

2
1 := 2δ.
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The coefficients λ1 and λ2 can be made explicit, e.g., λ1 = λ̄/2 and λ2 = λ̄.
This choice implies that µ1 = 2

√
2δ/λ̄. These settings can be used in the

result of Lemma 6.1 and we obtain:

inf
θ̂

sup
θ∈Θn(c)

E[λ2µ2(µ− µ̂)2] ≥ δ2

2

{
1−

√
nδ2

2
[2Iφ + o(1)]

}
.

We can obtain an efficient lower bound by choosing:

δn :=
1

2
√
nIφ

,

which implies, of course, that µ1 = o(1) and µ2 = o(1). According to this
choice, an integer N exists such that ∀n ≥ N :

inf
θ̂

sup
θ∈Θn(c)

E[λ2µ2(µ− µ̂)2] ≥ 1

8nIφ
× (1− 1

2
)/2 =

1

32nIφ
.

This ends the proof of the second point. �

7. Simulation study.

Distributions. In this section, we assess the performance of the L2-estimator
given in (2.2) on four particular cases of baseline density φ. We study the
following features:

• Standard Gaussian case with φ(x) = 1√
2π
e−

1
2
x2
.

• Non-smooth distribution with the Laplace density φ(x) = 1
2e
−|x|.

• Heavy tailed distribution with the Cauchy density: φ(x) = 1
π(1+x2)

.

• Asymmetry with the skew Gaussian density: φ(x) = 2ψ(x)Ψ(αx),
where ψ and Ψ, respectively, denote the density and the cumula-
tive function of the standard Gaussian distribution and where α is
the asymmetry parameter different from 0 (in the simulations, we fix
α = 10). This example of asymmetric distributions has been intro-
duced in the recent work on mixture models of [Lin09].

Remark 7.1. An easy consequence of Proposition A.2 is that the log-
concave Gaussian and Laplace distributions satisfy assumptions (HS), (HLip)
and (HD) so that Theorems 4.1 and 4.2 apply to these situations.
Concerning the Cauchy distribution case, we can explicitly compute φ− φµ:

|φ(x)− φµ(x)| = |µ| |2x− µ|
π[1 + (x− µ)2][1 + x2]

≤ Cφ(x)|µ|,
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for a large enough constant C. Hence, the assumptions (HS), (HLip) and
(HD) are satisfied with g = Cφ for the Cauchy distribution.
The skew Gaussian density φ satisfies:

|φ(x)− φµ(x)| ≤ 2ψ(x) |Ψ(αx)−Ψ(α(x− µ))|+2Ψ(α(x−µ)) |ψ(x)− ψ(x− µ)| .

If we define g as g(x) := 4 sup[x−M ;x+M ] ψ(t) × sup[x−M ;x+M ] Ψ(αt), we
can check that (HS), (HLip) and (HD) are satisfied. In particular, the inte-
grability condition (HD) is satisfied for large x because Ψ(αx) −→ 1 when
x −→ +∞. Conversely, if x −→ −∞, we have:

g2(x)φ−1(x) .
[
ψ−1(x)Ψ−1(αx)

]
sup

[x−M ;x+M ]
ψ2(t)× sup

[x−M ;x+M ]
Ψ2(αt)

.
[
αxex

2/2eα
2x2/2

]
e−(x−M)2 × e−α2(x−M)2

[α(x−M)]−2

. e−(x−2M)2/4e−α
2(x−2M)2/4,

which leads to the integrability condition around −∞.

Our estimator requires the calculation of the contrast γn and, in particular,
the value of the L2 norm:

‖fλ,µ‖2 =
[
λ2 + (1− λ)2

]
‖φ‖2 + 2λ(1− λ)〈φ, φµ〉,

that involves the value of inner product 〈φ, φµ〉 for any value of the location
parameter µ ∈ [−M,M ]. In the first three examples of distributions, a closed
formula exists:

• Gaussian density: 〈φ, φµ〉 = (4π)−
1
2 exp

[
−1

4µ
2
]

• Laplace density: 〈φ, φµ〉 = 1
4e
−|µ|(1 + |µ|)

• Cauchy density: 〈φ, φµ〉 = 2
π(4+µ2)

Unfortunately, such a formula is not available (to our knowledge) for the
skew Gaussian density: there is no analytical expression of 〈φ, φµ〉. Instead,
we used a Monte-Carlo procedure to evaluate this quantity for each value
of µ in our grid Mn given in (3.2). To obtain a sufficient approximation of
these inner products, we used a number of Monte-Carlo iterations TMC each
time of the order TMC ∝ n2 (where n will be the sample size used for our
estimation problem).

Statistical setting. We have worked with a fixed value of λ? = 1
4 while µ? is

allowed to vary with n. Below, we used the following relationship between
µ? and n:

µ? =

√
1

λ?nν
with ν =

α

24
, α ∈ {1, . . . , 24} .
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For each value of the parameter µ?, we used 103 Monte-Carlo simulations
to obtain reliable results, while the grid size is determined by fixing the
maximal value of the unknown |µ?| as M = 10. Finally, we sampled a set of
n = 5000 observations each time.
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Fig 1. Mean square error of estimating λ? (left) and µ? (right) for the 24 values of ν in
descending order.

In Fig. 1, for each case of the mixture model, we represent the evolution
of the mean square error for the estimation of λ? and of µ? when ν varies
between 1/24 and 1:

ν 7−→ MSE(λ) =
1

103

103∑
j=1

(λ̂j − λ?)2

and

ν 7−→ MSE(µ) =
1

103

103∑
j=1

(µ̂j − µ?)2.

As pointed out in Fig. 1, the estimation of λ? and µ? performs quite well
as soon as ν is lower than 1/2 but becomes completely inconsistent when
ν > 1/2, even if we use a sample size of 5000 observations.
We also represent the violin plot of these estimations indicating the same
behavior in each particular case (Gaussian and Laplace in Fig. 2; Cauchy
and skew Gaussian in Fig. 3).
Again, a similar conclusion holds: the estimators derived from (2.2) exhibit
a low bias and variance when ν is chosen small enough (lower than 1/2,
which corresponds to values greater than 12 in the horizontal axes of Figs.
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Fig 2. Evaluation of λ? (on the left) and µ? (on the right) for our estimators when
Gaussian mixtures (top) and Laplace mixtures (bottom) are considered, for the 24 values
of ν in descending order.

2-3). In contrast, the estimation is seriously damaged for values of ν greater
than 1/2 (which corresponds to values lower than 11 in the horizontal axes
of Figs. 2-3). Finally, it should be noted that the shape of the density φ does
not seem to have a big influence on the estimation ability, even though the
Cauchy distribution settings may be seen as the most difficult problem (as
represented by the green MSE in Fig. 1).

APPENDIX A: TECHNICAL RESULTS

A.1. Identifiability result.

Proof of Proposition 2.1. We assume that two parameters θ1 = (λ1, µ1)
and θ2 = (λ2, µ2) exist such that fθ1 = fθ2 . In that case, consider the Fourier
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Fig 3. Evaluation of λ? (on the left) and µ? (on the right) for our estimators when Cauchy
mixtures (top) and skew Gaussian mixtures (bottom) are considered, for the 24 values
of ν in descending order.

transform of X whose density is fθ1 . This Fourier transform is given by

ϕX(ξ) = E[eiξX ] =
[
(1− λ1) + λ1e

iξµ1

]
φ̂(ξ),

where φ̂ is the Fourier transform of φ and i is the complex number such that
i2 = −1. Since fθ1 = fθ2 , we then deduce that:

∀ξ ∈ R
[
(1− λ1) + λ1e

iξµ1

]
φ̂(ξ) =

[
(1− λ2) + λ2e

iξµ2

]
φ̂(ξ).

Since φ ∈ L1(R), φ̂ is continuous and cannot be zero everywhere. Thus,
we can find an open interval I such that φ̂(ξ) 6= 0 in I and the Lebesgue
measure of I is strictly positive. Hence,

∀ξ ∈ I (1− λ1) + λ1e
iξµ1 = (1− λ2) + λ2e

iξµ2 ,
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and from the analytical property of the exponential map, we deduce that:

∀ξ ∈ I (1−λ1)+λ1[cos(ξµ1)+i sin(ξµ1)] = (1−λ2)+λ2[cos(ξµ2)+i sin(ξµ2)]

Identifying now the imaginary parts yields:

∀ξ ∈ I λ1 sin(ξµ1) = λ2 sin(ξµ2)

It is classical that the family of functions (ξ 7→ sin(α1ξ), ξ 7→ sin(α2ξ)) is lin-
early independent if and only if |α1| 6= |α2|. We can deduce that, necessarily,
µ1 = ±µ2 and, since λ1 and λ2 are positive, µ1 = µ2.

A.2. Connection between ‖φ− φµ‖ and |µ|.

Proposition A.1. Let any M > 0 be given and assume that φ satisfies
(HS) and (HLip), then two constants 0 < κ < κ < +∞ exist such that:

(A.1) ∀(µ, µ̃) ∈ [−M,M ]2 κ(µ− µ̃)2 ≤ ‖φµ − φµ̃‖2 ≤ κ(µ− µ̃)2.

Proof. We prove the upper and lower bounds separately. According to the
shift invariance of the L2 norm, we only establish these inequalities when
µ̃ = 0. Using (HLip), the upper bound simply derives from:

‖φ− φµ‖2 =

∫
R

[φ(x)− φ(x− µ)]2 dx ≤
∫
R
|µ|2g2(x)dx = µ2‖g‖2,

which is the desired inequality if we choose κ = ‖g‖2. Concerning the lower
bound, we have:

‖φ(.)− φ(.− µ)‖2

µ2
=

∫
R

[
φ(x)− φ(x− µ)

µ

]2

dx.

Inequality (3.1) brought by Assumption (HLip) makes it possible to apply
the Lebesgue convergence theorem, which implies:

lim
µ−→0

‖φ(.)− φ(.− µ)‖2

µ2
=

∫
R

lim
µ→0

[
φ(x)− φ(x− µ)

µ

]2

dx,

= ‖φ′‖2 > 0.

Indeed, φ being piecewise differentiable (φ ∈ C1
p(R)), φ(x)−φ(x−µ)

µ −→ φ′(x)
almost surely when µ −→ 0.

Now, φ is continuous and ψ : µ −→ ‖φ−φµ‖2
µ2 ∈ C0([−M,M ],R) from the

Lebesgue convergence theorem. This continuous map ψ attains its lower
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bound on [−M,M ] and the identifiability result of Proposition 2.1 implies
that this lower bound is positive. This leads to the existence of κ > 0 such
that:

‖φ− φµ‖2 ≥ κ|µ|2.

A.3. Log-concave distributions. In this section, we establish that most
of the log-concave real distributions satisfy the assumptions (HS), (HLip)
and (HD). For this purpose, we introduce the associated class of probability
measures:

LC :=
{
φ = e−U : U is convex, U ∈ C3

p(R) and |U ′|+ |U ′′| = o±∞(U)
}
.

The set of possible densities is rich. For example, it contains Laplace and
Gaussian distributions. However, the set LC does not capture the situation
where U(x) = e|x| or U(x) = ex

2
since U exhibits variations that are too

great for large values of x.

Proposition A.2. Assume that µ varies in [−M,M ] and that φ ∈ LC.
Let ε ∈ (0,M). If we set:

g(x) :=

√
1

ε

∫ x

x−M
φ′2 ∨

√
1

ε

∫ x+M

x
φ′2 ∨ sup

u∈[x−ε,x+ε]
|φ′(u)|,

(HLip) and (HD) hold:

i) ∀µ ∈ [−M,M ] ∀x ∈ R |φ(x)− φµ(x)| ≤ |µ| g(x).
ii) gφ−1/2 ∈ L2(R)
iii) φ′′φ−1/2 ∈ L2(R)

Proof. We provide a proof in the case when φ ∈ C2. This proof can be
extended when φ ∈ C2

p according to some small modifications that are left
to the reader.
Proof of (i): Remark first that ∀µ ∈ [−M,M ]:

∀x ∈ R |φ(x)− φµ(x)| =
∣∣∣∣∫ x

x−µ
φ′(u)du

∣∣∣∣ ≤√|µ|
√∫ (x−µ)∨x

(x−µ)∧x
φ′2,

where the last upper bound comes from the Cauchy-Schwarz inequality. Let
ε ∈ (0,M). If |µ| ∈ [ε,M ], we obtain that:

|φ(x)− φµ(x)| ≤ |µ|

(√
g1(x)

ε
∨
√
g2(x)

ε

)
,
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where

g1(x) =

∫ x

x−M
φ′(u)2du and g2(x) =

∫ x+M

x
φ′(u)2du.

If |µ| ∈ [0, ε),

|φ(x)− φµ(x)| ≤ |µ| sup
u∈[x−ε,x+ε]

|φ′(u)| := |µ|g3,ε(x).

Proof of (ii): In order to prove that gφ−1/2 ∈ L2(R), we separately prove

that g1φ
−1, g2φ

−1 and g2
3,εφ

−1 belong to L1(R).

Case x −→ +∞. Since U is convex, U ′ is an increasing map, and for large
enough x, U ′ is positive (otherwise U would not diverge to +∞ and φ would
not be in L1(R)). Then, x0 > 0 exists such that:

∀x ≥ x0 g1(x)φ−1(x) = eU(x)

∫ x

x−M
U ′(u)2e−2U(u)du

≤ U ′(x)eU(x)

∫ x

x−M
U ′(u)e−2U(u)du

≤ U ′(x)eU(x) e
−2U(x−M) − e−2U(x)

2

≤ U ′(x)

2
e−2U(x−M)+U(x).

The mean value theorem leads to:

∀x ≥ x0 ∃ξ ∈ [x−M,x] U(x−M) = U(x)−MU ′(ξ) ≥ U(x)−MU ′(x).

Consequently, we obtain:

∀x ≥ x0 g1(x)φ−1(x) ≤ U ′(x)

2
e−U(x)+2MU ′(x).

The density φ ∈ LC and we can find K large enough such that:

∀|x| ≥ K − U(x) + 2MU ′(x) ≤ −(1− η)U(x)

For such an x, we have g1(x)φ−1(x) ≤ U ′(x)
2 e−(1−η)U(x) ∈ L1(R).

Concerning g2(x)φ(x)−1, we can now use a closed argument to obtain:

g2(x)φ−1(x) ≤ U ′(x+M)

2
e−U(x)

≤ U ′(x+M)

2
e−U(x+M)+MU ′(x+M)

≤ U ′(x+M)

2
e−(1−η)U(x+M).
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Hence, g2(x)φ−1 ∈ L1(R). We now consider g2
3,εφ

−1:

g2
3,ε(x)φ−1(x) = sup

u∈[x−ε,x+ε]
U ′(u)2e−2U(u)+U(x).

If u ∈ [x− ε, x], the mean value theorem leads to:

U(u) = U(x)− (x− u)U ′(ξ) with ξ ∈]u, x[

≥ U(x)− εU ′(x).

Then,

U ′(u)2e−2U(u)+U(x) ≤ U ′(u)2e−U(x)+2εU ′(x) ≤ U ′(x)2e−U(x)+2εU ′(x).

Using the fact that |U ′′| + |U ′| = o±∞(U), we can find a positive constant
C > 0, a parameter η ∈ (0, 1) and for K large enough such that ∀x ≥ K:

(A.2) U ′(u)2e−2U(u)+U(x) ≤ CU ′(x)e−(1−η)U(x).

If u ∈ [x, x+ε], U(u) ≥ U(x+ε)−εU ′(x+ε) and U(x+ε) = U(x)+εU ′(ξ̃) ≥
U(x) since U ′(ξ̃) ≥ 0 for all x ≥ x0. Thus,

−2U(u) + U(x) ≤ −2U(x+ ε) + 2εU ′(x+ ε) + U(x)

≤ −U(x+ ε) + 2εU ′(x+ ε).

Then, in the same way, we can find a positive constant C > 0, a parameter
η ∈ (0, 1) and a large enough K such that ∀x ≥ K,

(A.3) U ′(u)2e−2U(u)+U(x) ≤ CU ′(x+ ε)e−(1−η)U(x+ε).

Thus, (A.2) and (A.3) imply that g2
3,εφ

−1 ∈ L1(R+). As a maximum of three

functions in L1(R), we deduce that g2φ−1 ∈ L1(R+).

Case x −→ −∞. A careful inspection of the proof above allows us to use
similar inequalities to show that g1φ

−1, g2φ
−1 and g3,εφ

−1 belong to L2(R).

Proof of (iii): A direct computation shows that, almost surely:

φ′′2φ−1 = [U ′′ − U ′2]2e−U ≤ 2U ′′2e−U + 2U ′4e−U

Again, using the fact that |U ′′| + |U ′| = o±∞(U), we can find a positive
constant C > 0, a parameter η ∈ (0, 1) and for K large enough such that
∀x ≥ K:

U ′′2(x)e−U(x) ≤ CU ′′(x)e−(1−η)U(x)

≤ C(U ′(x)e−(1−η)U(x))′ + C(1− η)U ′(x)2e−(1−η)U(x)

≤ C(U ′(x)e−(1−η)U(x))′ + C2(1− η)U ′(x)e−(1−η)2U(x),
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which is integrable when x −→ +∞. A similar argument leads to U ′4e−U ≤
CU ′e−(1−η)U . We can repeat the same argument when x −→ −∞ with an
adaptation of the sign of U ′(x). We can conclude that φ′′2φ−1 ∈ L1(R).

APPENDIX B: REFINEMENT OF A CAUCHY-SCHWARZ
INEQUALITY

In this section, without loss of generality, we normalize the density φ to 1,
meaning (with a slight abuse of notation) that:

∀µ ∈ R ‖φµ‖ = 1.

In what follows, we assume that φ satisfies (HS) and (HLip). In particular,
these conditions imply the “asymptotic decorrelation” of the location model.

Proposition B.1. Assume that φ satisfies (HS), then:

lim
|a|−→+∞

〈φ, φa〉 = 0.

Proof. The continuity of φ implies that φ is bounded by a constant K on
R and that:

lim
|x|−→+∞

φ(x) = 0,

which in turns implies that:

lim
|a|−→+∞

〈φ, φa〉 = lim
|a|−→+∞

∫
φ(x− a)φ(x)dx = 0,

from the Lebesgue dominated convergence theorem.

B.1. Main inequality. We are interested in the next property, which can
be viewed as a refinement of the Cauchy-Schwarz inequality. Its proof relies
on somewhat technical second- and third-order expansions that are given
in Section B.2 that includes several technical lemmas, and on the following
ratio:

(B.1) R(a, b) =
|〈φ− φa, φa+b − φa〉|
‖φ− φa‖ ‖φa+b − φa‖

:=
|N(a, b)|
D(a, b)

.

According to Lemma B.1, the function (a, b) 7→ R(a, b) defines a continuous
map as soon as a 6= 0 and b 6= 0.

Proposition B.2. If φ satisfies (HS) and (HLip), then a constant c > 0
exists such that ∀(a, b) ∈ R2:

(B.2) |〈φ− φa, φa+b − φa〉| ≤ ‖φ− φa‖ ‖φa+b − φa‖
(

1− c ‖φ− φa+b‖2
)
.
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Proof. The proof relies on a partition of R2. Around the diagonal a+b = 0,
Lemmas B.2 (far from the origin) and B.3 (near the origin) show that a
couple (ε, cε) exists such that:

|a+ b| ≤ ε =⇒ R(a, b) ≤ 1− cε‖φa+b − φ‖2.

Now, outside the diagonal, Lemma B.4 shows that a constant c̃ε exists such
that:

|a+ b| ≥ ε =⇒ R(a, b) ≤ 1− c̃ε.

Since‖φa+b − φ‖2 ≤ 2, it also implies that:

|a+ b| ≥ ε =⇒ R(a, b) ≤ 1− c̃ε
2
‖φa+b − φ‖2.

This concludes the proof.

B.2. Technical lemmas.

B.2.1. Properties of the location model (φa)a∈R. In the following text, we
will have to compute several Taylor’s expansions that involve (φa)a∈R and
its successive derivatives.

Proposition B.3. If the density φ satisfies (HLip) and (HS), then:

(i) 〈φ, φ′〉 = 0
(ii) 〈φ′, φ′′〉 = 0.

(iii) For any a ∈ R?, φ′ and φ− φa are not proportional.

Proof. Item (i) If φ is C2, then the conclusion is immediate. Otherwise, φ
is piecewise C3, and we can find a finite set of points a−p = −∞ < a−(p−1) <
. . . < a−1 ≤ a0 = 0 ≤ a1 < . . . ap = +∞, with a−j = −aj , such that φ is C1

on each segment [aj , aj+1]. Integrating by part on each segment, we have:

〈φ, φ′〉 =

p−1∑
j=−p

∫ aj+1

aj

φ′(x)φ(x)dx =
1

2

p−1∑
j=−p

[φ2(x)]
aj+1
aj .

Since φ is continuous and lim±∞ φ = 0, we deduce that 〈φ, φ′〉 = 0.
Item (ii) We use the same argument and obtain that:

〈φ′, φ′′〉 =
1

2

−1∑
j=−p

[φ′2(x)]
aj+1
aj +

1

2

p−1∑
j=0

[φ′2(x)]
aj+1
aj .
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The function φ being symmetric, we have:

−1∑
j=−p

[φ′2(x)]
aj+1
aj = −

p−1∑
j=0

[φ′2(x)]
aj+1
aj ,

so that 〈φ′, φ′′〉 = 0.
Item (iii) We assume that:

(B.3) ∃λ ∈ R ∀x ∈ R φ′(x) = λ[φ(x)− φ(x− a)]

If λ 6= 0, it implies that φ′ is continuous everywhere (since φb and φ are
continuous). Considering x∗ ∈ arg maxφ, we use (B.3) to obtain:

φ′(x∗) = 0⇐⇒ φ(x∗) = φ(x∗ + a).

In particular, we cannot have limx−→+∞ φ(x) = 0, and φ /∈ L2(R). We
deduce that, necessarily, λ = 0 and a = 0, which is a contradiction.

B.2.2. Properties of the ratio R.

Lemma B.1. The function R defined in (B.1) is a continuous function on
R2 with:

∀u ∈ R? R(0, u) = R(u, 0) =
|〈φ′, φu − φ〉|
‖φ′‖‖φ− φu‖

.

Moreover, R is bounded from above by 1 and:

R(a, b) = 1⇐⇒ a+ b = 0.

Proof. We first study the continuity of R and consider two cases.

• When b 6= 0 is fixed and a −→ 0, the assumption (HLip) implies that
|φ(x − a) − φ(x)| ≤ |a|g(x) with g ∈ L2(R). We can apply the Lebesgue
Theorem and obtain, when a −→ 0,

N(a, b) =

∫
[φ(x)− φa(x)][φa+b(x)− φa(x)]dx

∼ a

∫
φ′(x)[φb(x)− φ(x)]dx when a→ 0.

A similar computation shows that, when a→ 0,

D(a, b) ∼ a

√∫
φ′(x)2dx

√∫
[φ(x)− φb(x)]2dx.
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Hence, R has a limit when a −→ 0 and b 6= 0 is fixed. For the sake of
convenience, we keep the notation R(0, b) to refer to this limit and the
Cauchy-Schwarz inequality shows that:

R(0, b) := lim
a−→0

R(a, b) =
|〈φ′, φb − φ〉|
‖φ′‖‖φb − φ‖

≤ 1.

For symmetry reasons in a and b, the same results hold for a 7−→ R(a, 0).

• The situation is easier on (0, 0): the Lebesgue Theorem yields:

|N(a, b)| ∼
(0,0)
|ab|

∫
φ′(x)2dx and D(a, b) ∼

(0,0)
|ab|

∫
φ′(x)2dx,

meaning that R can also be extended to a continuous map in the neighbor-
hood of (0, 0) with R(0, 0) = 1.

As pointed out above, the Cauchy-Schwarz inequality implies that ‖R‖∞ ≤
1. Assume now that R(a, b) = 1, if a+ b 6= 0 and a 6= 0. Then the equality in
the Cauchy-Schwarz inequality implies that, necessarily, φ−φa and φa+b−φa
are proportionnal, which is impossible from the identifiability of the model.
Assume now that a + b 6= 0 and a = 0. The equality R(0, b) is possible if
and only if φ′ is proportional to φb − φ, and (iii) of Proposition B.3 shows
that in that case, b = 0, which is a contradiction since a = 0 and a+ b 6= 0.
To sum up, R can be extended to a continuous map on R2, which is stricly
lower than 1 outside the diagonal a+ b = 0.

The next lemma concerns the behavior of R around the diagonal a+ b = 0
when a or b are not close to 0.

Lemma B.2. For any η > 0, we can find ε > 0 such that:

∀|a| ≥ η ∀|h| ≤ ε R(a,−a+ h) ≤ 1− cη‖φh − φ‖2.

Proof. To establish the desired inequality, remark that:

R(a,−a+ h) ≤ 1− c‖φh − φ‖2

⇐⇒ N(a,−a+ h) ≤ D(a,−a+ h)− c‖φh − φ‖2D(a,−a+ h)

⇐⇒ D(a,−a+ h)−N(a,−a+ h) > c‖φh − φ‖2D(a,−a+ h).(B.4)

We use a Taylor expansion when h = o(1) and compute:

N(a, b) = N(a,−a+ h) = 〈φ− φa, φh − φa〉

= ‖φ− φa‖2 − 〈φ′, φ− φa〉h+
〈φ′′, φ− φa〉

2
h2 + o(h2).
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In the meantime, we have:

D(a, b) = D(a,−a+ h)

= ‖φ− φa‖
√
‖φ− φa‖2 − 2h〈φ′, φ− φa〉+ h2‖φ′‖2 + h2〈φ′′, φ− φa〉+ o(h2)

= ‖φ− φa‖2
√

1− 2〈φ′, φ− φa〉
‖φ− φa‖2

h+
‖φ′‖2 + 〈φ′′, φ− φa〉

‖φ− φa‖2
h2 + o(h2)

= ‖φ− φa‖2 − 〈φ′, φ− φa〉h

+

(
‖φ′‖2

2
+
〈φ′′, φ− φa〉

2
− 〈φ

′, φ− φa〉2

2‖φ− φa‖2

)
h2 + o(h2).

Consequently, we obtain:

D(a,−a+ h)−N(a,−a+ h)

=
h2

2‖φ− φa‖2
[
‖φ′‖2‖φ− φa‖2 − 〈φ′, φ− φa〉2

]︸ ︷︷ ︸
:=ψ(a)

+o(h2).(B.5)

Note that ψ is a continuous function of a from the Lebesgue Theorem and
as pointed out above, it is impossible for φ′ to be proportional to φ − φa,
which in turn implies with the Cauchy-Schwarz inequality that

∀a 6= 0 ψ(a) > 0.

We can study the limit of ψ when |a| −→ +∞. From (i) of Proposition B.3:

|〈φ′, φ− φa〉| ≤ |〈φ′, φ〉|+ |〈φ′, φa〉| ≤ ‖φ′‖‖φa‖ = ‖φ′‖.

Moreover,
lim

|a|−→+∞
‖φ′‖2‖φ− φa‖2 = 2‖φ′‖2.

Hence, we can find A large enough such that:

|a| ≥ A =⇒ ψ(a) ≥ ‖φ
′‖2

2
> 0,

and we conclude that:

(B.6) min
|a|≥η

ψ(a) = mη > 0.

Equations (B.5) and (B.6) show that an ε exists such that:

∀|h| ≤ ε D(a,−a+ h)−N(a,−a+ h) ≥ mη

4‖φ− φa‖2
h2.
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Since ‖φ− φa‖2 and D are upper bounded by 2, we deduce that:

∀|h| ≤ ε (D −N)(a,−a+ h) ≥ mη

8
h2 ≥ mη

16
D(a,−a+ h)h2.

This inequality associated with ‖φh − φ‖2 = h2‖φ′‖2 + o(h2) leads to the
desired inequality (B.4) with c =

mη
32‖φ′‖2 for h small enough.

The next lemma concerns the behavior of R around the origin (0, 0).

Lemma B.3. Two constants (η, cη) ∈ R2
+ exist such that:

|a| ∨ |b| ≤ η =⇒ R(a, b) ≤ 1− cη‖φa+b − φ‖2

Proof. •We first study R around the origin when a 6= 0 and b 6= 0. In that
case, we can use 〈φ′, φ(3)〉 = −‖φ′′‖2 and (ii) of Proposition B.3 to obtain:

|N(a, b)| =

∣∣∣∣〈aφ′ − a2

2
φ′′ +

a3

6
φ(3),−bφ′ + (a+ b)2 − a2

2
φ′′ − (a+ b)3 − a3

6
φ(3)〉

∣∣∣∣
=

∣∣∣∣−ab‖φ′‖2 +

(
a2b2

4
+
ab3

6
+
a3b

6

)
‖φ′′‖2 + o(a2) + o(b2)

∣∣∣∣
= |ab|

[
‖φ′‖2 − ‖φ′′‖2

(
a2 + b2

6
+
ab

4

)
+ o(a2) + o(b2)

]
Since D(a, b) = ‖φ− φa‖‖φ− φb‖, we compute in a first step:

‖φ− φa‖ =

∥∥∥∥aφ′ − a2

2
φ′′ +

a3

6
φ(3) + o(a2)

∥∥∥∥
=

[
a2‖φ′‖2 +

a4

4
‖φ′′‖2 +

a4

3
〈φ′, φ(3)〉+ o(a2)

]1/2

=

[
a2‖φ′‖2 +

a4

4
‖φ′′‖2 − a4

3
〈φ′′, φ′′〉+ o(a2)

]1/2

=

[
a2‖φ′‖2 − a4

12
‖φ′′‖2 + o(a2)

]1/2

In a second step, we obtain the expansion of D as:

D(a, b) = ‖φ− φa‖‖φ− φb‖

=

[
a2‖φ′‖2 − a4

12
‖φ′′‖2 + o(a2)

]1/2 [
b2‖φ′‖2 − b4

12
‖φ′′‖2 + o(b2)

]1/2

= |ab|‖φ′‖2 − ‖φ′′‖2|ab|a
2 + b2

24
+ o(a2 + b2)
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Hence, we see that:

D(a, b)− |N(a, b)| ≥ |ab|‖φ′′‖2
[
−a

2 + b2

24
+
a2 + b2

6
+
ab

4

]
+ o(a2 + b2)

=
3‖φ′′‖2

24
|ab|(a+ b)2 + o(a2 + b2).

Using the argument in Equation (B.4) again, we can check that:

c‖φa+b − φ‖2D(a, b) ∼ c ‖φ′‖2(a+ b)2︸ ︷︷ ︸
‖φa+b−φ‖2

× |ab|‖φ′‖2︸ ︷︷ ︸
D(a,b)

= c|ab|(a+ b)2‖φ′‖4,

which means that if c < 3‖φ′′‖2
24‖φ′‖4 , then (B.4) holds for small enough a and b.

•We now study the situation when a = 0, that involves the function R(0, .)
defined in Lemma B.1. We have:∣∣〈φ′, φb − φ〉∣∣ =

∣∣∣∣∫ φ′
[
−bφ′ + b2

2
φ′′ − b3

6
φ(3)

]
+ o(b3)

∣∣∣∣
= |b|‖φ′‖2 − |b|

3

6
‖φ′′‖2 + o(b3),

where we applied (ii) of Proposition B.3 and an integration by parts
∫
φ′φ(3) =

−‖φ′′‖2. At the same time, we have:

‖φ′‖‖φ− φb‖ = ‖φ′‖
(
b2‖φ′‖2 − b4

12
‖φ′′‖2 + o(b2)

)1/2

= |b|‖φ′‖2 − |b|
3

24
‖φ′′‖2 + o(b3).

Using the same argument, we obtain:

D(0, b)− |N(0, b)| = |b|
3

8
‖φ′′‖2,

although for any constant c:

cD(0, b)‖φb − φ‖2 ∼ c|b|‖φ′‖2 × b2‖φ′‖2 = c|b|3‖φ′‖4.

Again, if c < ‖φ′′‖2
8‖φ′‖4 , then (B.4) holds for small enough b, which ends the

proof of the Lemma.

The remaining lemma studies the behavior of R outside the diagonal.
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Lemma B.4. For any ε > 0, a constant cε exists such that:

|a+ b| ≥ ε =⇒ R(a, b) ≤ 1− cε.

Proof. Consider the function ϕ : h 7−→ |〈φ, φh〉| = 〈φ, φh〉, the last equal-
ity resulting from the positivity of φ and φh. The dominated convergence
theorem shows that ϕ is continuous and the Cauchy-Schwarz inequality im-
plies that ϕ is a bounded function whose values belong to [0, 1]. From the
identifiability result of Proposition 2.1, we then have:

ϕ(h) = 1⇐⇒ h = 0.

Finally, Proposition B.1 implies that lim|h|7−→+∞ ϕ(h) = 0. Taken together,
these elements show that for any ε > 0, ϕ attains its upper bound on B(0, ε)c.
It yields:

(B.7) ∀ε > 0 ∃ηε > 0 sup
|h|≥ε

ϕ(h) ≤ 1− ηε.

• We first consider the case where |a| ∧ |b| −→ +∞ with ε ≤ |a+ b|. In that
case, if we denote h = a+ b and use lim|a|−→+∞〈φ, φa〉 = 0, then we can find
Mε large enough such that:

|a| ∧ |b| ≥Mε =⇒
|N(a,b)|
D(a,b) = |1+〈φ,φh〉−〈φ,φa〉−〈φ,φb〉|

‖φ−φa‖‖φ−φb‖ ≤ 1+supε≤|h| ϕ(h)

2 × 1− ηε
3

1− ηε
2
≤ 1− ηε

3 ,

where ηε is defined in (B.7).

•We now consider the case where |a| −→ +∞ although |b| remains bounded
by Mε, so that b ∈ B(0,Mε) \ {0}. In that case, we compute:

N(a, b) =
∣∣〈φ, φa+b〉 − 〈φ, φa〉 − 〈φ, φb〉+ ‖φa‖2

∣∣ −→ 1−〈φ, φb〉 if |a| −→ +∞.

At the same time, we also consider D and check that:

D(a, b) = ‖φ− φa‖‖φa+b − φa‖ −→ 2
√

1− 〈φ, φb〉 when |a| −→ +∞.

We then obtain:

lim
|a|−→+∞

R(a, b) =

√
1− 〈φ, φb〉

2
≤ 1

2
.

Hence, we can find a constant Aε sufficiently large such that:

∀|a| ≥ Aε ∀b ∈ B(0,Mε) R(a, b) ≤ 3

4
.
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• If a and b now belong to the compact set:

Eε :=
{

(a, b) ∈ R2 : |a| ≤ Aε, |b| ≤Mε, |a+ b| ≥ ε
}
,

we know that R is a continuous function on Eε,A,M and attains its upper
bound, which is strictly lower than 1 by the Cauchy-Schwarz inequality.
Consequently,

∃η̃ε > 0∀(a, b) ∈ Eε R(a, b) ≤ 1− η̃ε.

Taking all the bounds obtained outside of the diagonal together, we obtain
the lemma with cε = (η̃ε ∧ ηε/3 ∧ 1/4).
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Université Toulouse 1 - Capitole.
21 allées de Brienne
31000 Toulouse, France.
E-mail: sebastien.gadat@math.univ-toulouse.fr

Institut Camille Jordan
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