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Abstract. Risks related to events that arrive randomly play important role in
many real life decisions, and models of learning and experimentation based on two-
armed Poisson bandits addressed several important aspects related to strategic and
motivational learning in cases when events arrive at jump times of the standard
Poisson process. At the same time, these models remain mostly abstract theoreti-
cal models with few direct economic applications. We suggest a new class of models
of strategic experimentation which are almost as tractable as exponential models,
but incorporate such realistic features as dependence of the expected rate of news
arrival on the time elapsed since the start of an experiment and judgement about
the quality of a “risky” arm based on evidence of a series of trials as opposed to a
single evidence of success or failure as in exponential models with conclusive exper-
iments. We demonstrate that, unlike in the exponential models, players may stop
experimentation before the first failure happens. Moreover, ceteris paribus, experi-
mentation in a model with breakthroughs may last longer than experimentation in
the corresponding model with failures.
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1. Introduction

This paper suggests a new class of learning and experimentation models based on
Erlang bandits. We show that such models are more realistic than models based on
Poisson bandits and generate qualitatively new results.

In many situations in real life, it is necessary to quantify risks related to events
that arrive at random times, as well as frequency of their arrivals. For example, in
finance, it is necessary to evaluate default risks of borrowers or assets and default
rates. In pharmaceuticals, it is necessary to evaluate possible side effects of a new

I am thankful for discussions to participants of research seminars at The Center for Rationality
in the Hebrew University of Jerusalem, at the University of Tel Aviv, at Haifa University, at the
Research University Higher School of Economics, Moscow and St. Petersburg. I am especially
grateful to Ehud Lehrer and Eilon Solan for pointing out mistakes in the previous version of the
paper and making useful suggestions. I am also thankful for discussions to Max Stinchcombe. The
usual disclaimer applies.

1



2 S. BOYARCHENKO

drug or its efficiency. In any kind of sponsored research, sponsors have to figure
out the probability of success, and so on. At the same time, it is also important
to take into consideration existence of strategic partners (or adversaries) - what sort
of information one could learn from them or which pieces of information one would
disclose.

An extensive literature on learning and experimentation based on so called Poisson
bandits addresses these sorts of issues. A standard “two-armed” bandit is an attempt
to describe a hypothetical experiment in which a player faces two slot machines; the
quality of one of the slots is known (“safe” arm), and the other one (“risky” arm)
may be “good” or “bad.” In case of so called “conclusive” experiments - the first
event observed on the “risky” arm reveals its quality completely, so the experiment is
over, when the first (“conclusive”) success or failure is observed. Bandit models were
successfully used in various settings in economics, for example, learning and matching
in labor markets, monopolist pricing with unknown demand, choice between R&D
projects, or financing of innovations (see, e.g., [1, 2, 3, 4, 5, 6, 19, 27, 29, 30] and
references therein).

Models of strategic learning and experimentation extend “two-armed” bandit ex-
periments to a setting where several players face copies of the same slot machine.
Players then learn about the quality of the risky arm not only from outcomes of their
own experiments, but also from their colleagues. In models of strategic experimen-
tation, it is common to assume away payoff externalities and focus on information
externalities, the role of information, and, in more advanced settings, on design of
information. See, for example, [7, 10, 17, 18, 20, 21]. Recent developments include
(but are not limited to) correlated risky arms as in Klein and Rady [22] and Rosen-
berg et al. [28], or private payoffs as in Heidhues et al. [14] and Rosenberg et al.
[28], or departures from Markovian strategies as in Hörner et al. [17]. For other
developments and an excellent comprehensive review of the literature see Hörner and
Skrzypacz [15] and references therein.

In continuous time models, the payoff generated by the “risky” arm of a “two-
armed” bandit follows a certain continuous time stochastic process whose parameters
are not known. For example, Bolton and Harris [7] model the unknown payoff as
a Brownian motion with unknown drift and known variance in a model of strategic
experimentation. Decamps et al. [11, 12] study timing a fixed size investment into
a risky project with the payoff generated by a Brownian motion with unknown drift
and known variance. Keller et al. [18], Keller and Rady [20, 21] use a Poisson process
with unknown rate of arrival to model the risky arm. Decamps and Mariotti [10]
study a duopoly model of investment where a signal about the quality of the project
is modeled as a Poisson process. Cohen and Solan [8] bridge the gap between the
Brownian motion and Poisson bandits and consider “two-armed” bandits, where the
risky arm yields stochastic payoffs generated by a Lévy process.

Poisson bandits models with random costly breakdowns (“bad” news models) differ
significantly from similar models with random profitable breakthroughs (“good” news
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models). The main distinction in these models arises from the fact that updating of
beliefs when no news arrive moves in the opposite directions in case of breakdowns
and breakthroughs. If nothing happens in the model with potentially “bad” news,
players become more and more optimistic about the quality of the “risky” arms,
and the expected rate of arrival of “bad” news decreases over time. Therefore, if it
is optimal to start experimentation at the prior beliefs levels, experimentation never
stops until the first breakdown occurs (if ever). On the contrary, if no successes arrive
in the model with potentially “good” news, players become more and more pessimistic
about the quality of the risky arms, and the expected rate of arrival of “good” news
decreases over time, therefore, experimentation always stops in finite time, unless the
first success arrives earlier. Note that experimentation levels in “good” news models
are low.

The main feature of exponential bandits models is that the rate of arrival of “good”
or “bad” news over a time interval (t, t+ ∆t) is independent of t. This is convenient
for tractability, but not very realistic. Possibly, this unrealistic feature is one of
the reasons why Poisson bandits experimentation models remain mostly abstract
theoretical models with few direct economic applications.

Indeed, even if a lender assigns a high prior belief to potential default of a borrower,
she would hardly expect the borrower being equally likely to default immediately upon
the loan initiation or some time after. Moreover, defaults typically do not happen
completely “out of the blue” - they are preceded by several smaller events such as
missed monthly loan payments, for example.

The 2010 Deepwater Horizon disaster, which seemed to be quite unexpected to
unsophisticated observers, was preceded by early signs of degradations in the safety
systems of BP, such as a series of explosions and fires at the Grangemouth facility in
Scotland between 1987-2001.

When a researcher starts a new research project, sponsors hardly expect her to
generate immediate success even when they have high beliefs in the quality of the
project. At the same time, occurrence of a single success may be inconclusive - it has
to be replicated in several similar trials for a project to be labeled as a “success.”
For example, recently, drug company Merck had to halt the late-stage trial of its
promising Alzheimer’s drug verubecestat, after an independent study demonstrated
that the drug was not working as expected.

We propose a class of experimentation models which are almost as tractable as
exponential models and can reflect such realistic features that rates of news arrival
may depend on the amount of time elapsed since an experiment had started and that
better assessment of the quality of the tested “arm” may require several consecutive
random events as opposed to a single random success or failure. Namely, we consider
scenario, where two agents experiment with a project of unknown quality (we consider
separately “bad” and “good” news models) and assume that random times of news
arrival are Erlang-2 random variables. In this case, the expected rate of arrival of the
news is a non-monotone function of time - it grows from zero (at the moment when
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experiment starts) to a certain maximal level, then starts decreasing and behaving
more and more as a negative exponential as the experiment “grows older.” Thus,
for some time after the start of the experiment, the beliefs about the quality of the
“risky” arm and the expected rate of arrival of “bad” or “good” news move in the
opposite directions. In particular, this may cause the players stop experimentation in
finite time even in the model with breakdowns. The longer the experimenter observes
no “bad” news, the more optimistic she becomes about the quality of the risky arm,
but at the same time, the anticipated rate of arrival of a failure also grows, and these
two opposite movements makes stopping before the first breakdown optimal. If such
stopping is optimal, it happens where the expected rate of arrival is increasing. As
opposed to this, in a model with breakthroughs, experimentation does not stop while
the expected rate of arrival of “good” news keeps growing, even though experimenters
become more pessimistic about the quality of the “risky” arm. Khan and Stinchcombe
[23] find similar results in semi-Markovian decision theory. Namely, they identify two
classes of situations in which delay in decision systems is optimal: in the first class
delay is optimal when the hazard rate of further changes is increasing, and in the
second class, delay is optimal when the hazard rate is decreasing.

Stopping regions in exponential bandits are described in terms of cutoff beliefs. In
many situations, “internal” experimentation happens: that is before complete switch
from experimentation with the “risky” arm only to playing the “safe” arm only, play-
ers start diversifying their time between these two activities. Regions of “internal”
experimentation (or “partial exit” from experimentation) are also described in terms
of cutoff beliefs. We argue that a more relevant characterization of stopping rules is in
terms of cutoff expected rates of the news arrivals. While in exponential models char-
acterizations in terms of cutoff beliefs and cutoff expected rates of the news arrival
are equivalent, they are not so in Erlang models. Furthermore, stopping rules based
on expected rates of the news arrivals have clear economic interpretation. In a model
with failures, a player stops experimentation when the marginal benefit from staying
active equals the expected marginal cost. If the marginal benefit is higher than the
expected marginal cost at any time, the player never stops before the first failure is
observed (if ever). In a model with breakthroughs, a player stops experimentation
when the expected marginal benefit from staying active equals the marginal cost. If
parameters of a “good” and “bad” news models are such that the cutoff expected
rates of the news arrival are the same, experimentation in the “good” news model
lasts longer than in the “bad” news model, provided no news arrive in either model.

Another rather unrealistic feature of traditional Poisson bandit models is that
the value of an outside option (“safe” arm payoff) is the same no matter whether
this option is taken before any news arrive or after that. For example, one gets a
higher value for a used car if there were no recalls or negative consumers’ reports on
this make. Similarly, if one abandons a research project that generated no positive
outcome, the recovery value is smaller than in case of a successful project that ends,
for example, in patenting a new invention. To make our model more realistic, we
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assume that if one or both players exit before any failure happens, the recovery value
(the value of the outside option) they get is higher than the one which they can get
if they exit after a failure had revealed the “bad” quality of the tested project. This
loss in the recovery value may be due to a reputation loss or the cost of liquidation of
the research facility after a costly accident, or the costs a pharmaceutical company
has to pay in case patients testing new drugs develop side effects. While each of the
two active players is equally likely to suffer a cost of failure, both of them suffer the
loss of recovery value in case of a failure, no matter who incurs a failure. We show
that when the loss in the recovery value is sufficiently high, the value of a single
player is higher than a value of a player who exits first (the leader), but the value of
a single player is lower than the value of the player who exits second (the follower).
Similarly, in the “good” news model, we distinguish payoffs in case experimentation
stops before the first success was observed and after the first success was observed.
We also assume that the player who is the first one to observe a breakthrough gets
higher payoff than the other player.

Depending on parameters of the model with failures, the following subgame perfect
equilibria are possible in the corresponding stopping time game: (1) none of the
players find it optimal to stop unless the first failure happens; (2) the leader stops in
finite time, and the follower either exits later in finite time, or never unless the first
failure happens; (3) a symmetric equilibrium, where the players do not stop until the
optimal stopping time of the leader and then randomize in the interval between the
leader’s and the follower’s optimal stopping times. Type (3) equilibrium is Pareto
dominated by asymmetric equilibria of type (2), because in the former equilibrium
both players get the leader’s payoff, which is lower than the follower’s payoff. If there
is no loss in the recovery value in case of a failure, the follower optimal stopping time
becomes the same as the stopping time of the leader, so type (2) and (3) equilibria
collapse into one equilibrium, where the players stop simultaneously at the leader’s
optimal stopping time. Similar results hold in the model with breakthroughs.

The papers which are mostly close to our paper are Keller and Rady [20, 21] and
Rosenberg et al. [28]. Keller and Rady [21] study the case of costly breakdowns that
arrive at the jump times of Poisson processes which are independent. Rosenberg et
al. [28] consider an irreversible exit problem in a model with breakthroughs with
correlated risky arms both in the case when payoffs are public and private.

The rest of the paper is organized as follows. Section 2 considers a stopping time
game in a “bad” news model. The detailed analysis of the game and construction of
subgame perfect equilibria are in Section 3. A stopping game in a “good news” model
is analyzed in Section 5. Generalizations for more general intensities of the news
arrival (humped bandits) are outlined in Section 6. Section 7 concludes. Technical
proofs are relegated to the appendix.
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2. Conslusive failures

2.1. The setup. We consider the game of timing, characterized by the following
structure. Time t ∈ R+ is continuous, and the discount rate is r > 0. Two symmetric
players experiment with risky projects, such as a nuclear technology, a defaultable
loan, or a new drug. The quality of the project depends on the state of nature
θ ∈ {0, 1}. If θ = 0, the project is “good,” which means that it never fails. If θ = 1,
the project is “bad,” which means that the player experimenting with this project
may incur costs when the project fails, which may happen at random times. Assume
that the (lump-sum) cost in case of a failure is Ĉ > 0. The quality of the project is
not known initially. We leave for the future study the case when the players can have
projects of different types, and the types may be positively of negatively correlated
as in Rosenberg et al. [28] or Klein and Rady [22], and assume that the quality of the
project is the same for both players, so that if a failure happens to one of the players’
projects, both players know that their projects are “bad.” The initial common prior
assigns probability π̄ ∈ (0, 1) to θ = 0.

An active experimenting player gets a constant revenue stream rR > 0 as long as
no failure had been observed. This stream can be viewed, for example, as sponsored
research contributions, or revenue generated by a project net of insurance costs, or
mortgage payments. For simplicity, we assume that if the project is “bad”, then
after the first failure, the stream of revenues disappears (e.g., the sponsor withdraws
support from a pharmaceutical company as soon as a side effect of a new drug is
observed; the insurance company increases the premium to the extent that offsets
the revenue stream of a faulty technology; a borrower is not able to make monthly
payments after a default, etc). Given this assumption, experimentation after the first
failure becomes non-profitable, so the players stop experimenting as soon as they
learn that the quality of the project is “bad.”

Let τi denote the random time of the first failure of player i’s project if θ = 1.
We assume that τi and τj are i.i.d. Erlang(2, λ) random variables1. Note that the
expected time until the first failure is 2/λ.

W.l.o.g. assume that the game starts at t = 0. At each point t ≥ 0, player
i ∈ {1, 2} may make an irreversible stopping decision conditioned on the history of
the game. The value of an outside option (recovery value) in case of exit is S ∈ [0, R)
if exit happens before the first failure is observed, and S−L if it happens at the time
of the first failure or later. Here L ≤ S represents the loss in the recovery value due
to the fact that the “bad” quality of the project has been revealed. If S = 0, then
L ≤ 0 can be viewed as an additional liquidation cost of the research facility. Set
C = Ĉ + L.

In the current setting, we consider the case when all payoffs, parameters of the
Erlang distribution, and the players’ actions are public information. W.l.o.g. assume

1The p.d.f. of Erlang(k, λ) distribution for k ≥ 1 and λ > 0 is given by f(t) = λktk−1e−λt/(k−1)!.
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that the game starts at t = 0. At each point t ≥ 0, player i ∈ {1, 2} may make an
irreversible stopping decision conditioned on the history of the game. At any t ≥
0, the history of the game includes observations of all failures (including the empty
set if no failures were observed by the players up to time t) and the actions of the
players. As far as the actions are concerned, only two sorts of histories matter in the
stopping game: (i) both players are still in the game; (ii) at least one player exited
the game.

Let Ti ∈ R+ denote the exit time of player i. Define the function

t̃i(t) =

{
Ti, if Ti ≤ t,

∞, otherwise.

Let τ si denote a random time, when a failure of player i’s project occurred for the sth

time. The history of observations at any t ≥ 0 is

Ot = {(τ s′1 )}s′≤t∧T1 ∪ {(τ s
′′

2 )}s′′≤t∧T2 .

If Ot = {∅}, then a typical history at time t is ht(Ot, t̃1(t), t̃2(t)). If Ti < Tj, we call
player i the leader, and player j the follower. If Ot 6= {∅}, the game is over.

Definition 2.1. A simple strategy for player i ∈ {1, 2} in the game starting at t = 0
is a function

qi : [0,+∞)→ [0, 1],

which is non-increasing, left-continuous with right limits (LCRL); and qi(0) = 1.

Following Laraki et al. [24], and Dutta and Rustichini [13], for any time t > 0,
define a proper subgame as the timing game that starts at the end of the history ht.

Definition 2.2. A simple strategy for player i ∈ {1, 2} in a subgame game starting at
t > 0 is a function

qti : [t,+∞)→ [0, 1],

which is non-increasing, left-continuous with right limits (LCRL); and qti(t) = 1.

It follows from Definitions 2.1 and 2.2, that qi(t) is the probability that player i
did not exit at time t or earlier, and qti(s) is the probability that player i did not exit
during [t, s], conditioned on being active at t. In either of the definitions above, we
allow for the case qi(+∞) > 0 and qti(+∞) > 0, which means that player i decides
not to exit ever with the positive probability qi(+∞) and qti(+∞), respectively, unless
a failure happens. Thus, the probability that the agent will not exit is qi(+∞)π̄ and
qti(+∞)π̄, respectively.

Definition 2.3. A simple strategy of player i is called consistent, if for any 0 ≤ t ≤
t′ ≤ s,

qti(s) = qti(t
′)qt

′

i (s). (2.1)
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2.2. Evolution of beliefs, “survival” probabilities, and rates of arrival. Let
τ ∼ Erlang(2, λ). Use the following notation:

pλ(t) = prob(τ > t) =

∫ ∞
t

λ2se−λsds = (λt+ 1)e−λt.

Let τi and τj be i.i.d. Erlang(2, λ) random variables. Then

p2λ(t) := prob(τi > t)prob(τj > t) = p2
λ(t) = (λt+ 1)2e−2λt.

Consider any t ≥ 0 s.t. Ot = {∅}. Given the prior belief π̄, let pd(π̄, t) denote
the “survival” probability (i.e., the probability of the event that no failure happens
before time t) if two players experiment with the project of unknown quality. Then
pd(π̄, t) is given by

pd(π̄, t) = π̄ + (1− π̄)p2λ(t) = π̄ + (1− π̄)(λt+ 1)2e−2λt. (2.2)

Function

[0,∞) 3 t 7→ pd(π̄, t) ∈ R+

defines the time-inhomogeneous Poisson process with the rate of arrival

λd(π̄, t) = −p
′
d(π̄, t)

pd(π̄, t)
=

2(1− π̄)λ2t(1 + λt)e−2λt

π̄ + (1− π̄)(λt+ 1)2e−2λt
. (2.3)

Similarly, given the prior belief π̄, let ps(π̄, t) denote the “survival” probability if
one player experiments with the project of unknown quality. Then ps(π̄, t) is given
by

ps(π̄, t) = π̄ + (1− π̄)pλ(t) = π̄ + (1− π̄)(λt+ 1)e−λt. (2.4)

Function

[0,∞) 3 t 7→ ps(π̄, t) ∈ R+

defines the time-inhomogeneous Poisson process with the rate of arrival

λs(π̄, t) = −p
′
s(π̄, t)

ps(π̄, t)
=

(1− π̄)λ2te−λt

π̄ + (1− π̄)(λt+ 1)e−λt
. (2.5)

Let πd(π̄, t) (respectively, πs(π̄, t)) denote the belief that θ = 0 at time t, conditioned
on no failures happened before t if two (respectively, one) players experiment(s) with
the project of unknown quality. Then the beliefs πd(π̄, t) and πs(π̄, t) are given by

πd(π̄, t) =
π̄

pd(π̄, t)
, (2.6)

πs(π̄, t) =
π̄

ps(π̄, t)
. (2.7)

Observe that, for any t > 0,

πd(π̄, t) = πs (πs(π̄, t), t) . (2.8)
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Remark 2.4. Equation (2.8) can be generalized for the case of n players experimenting
with projects of unknown quality with i.i.d. random times of arrival of failures.
Namely, let πk(π̄, t) be the belief that θ = 0 at time t, conditioned on no failures
happened before t if k players experiment. Then, for any t > 0,

πn(π̄, t) = π1 (πn−1(π̄, t), t) . (2.9)

To see, why, let π̂ be a solution to

πn(π̄, t) = π1 (π̂, t) . (2.10)

We write (2.10) as
π̄

π̄ + (1− π̄)pnλ(t)
=

π̂

π̂ + (1− π̂)pλ(t)
.

Equivalently,

π̄(1− π̂)pλ(t) = π̂(1− π̄)pnλ(t),

whence

π̂ =
π̄

π̄ + (1− π̄)pn−1
λ (t)

= πn−1(π̄, t),

and (2.9) follows.

2.3. Value functions and equilibrium. Consider the game that starts at t = 0.
Rates of arrival given by (2.3) and (2.5) are continuous and equal to zero at t = 0.
Therefore, none of the players has yet stopped at the start of the game. As the rate
of arrival λd(π̄, t) increases, it may become optimal for one or both players to quit.
We will prove that, depending on parameters of the model, either the players do not
stop until the first failure happens, or the stopping rules in pure strategies are of
the threshold type - the players quit when the corresponding rates of arrival reach a
certain threshold from below; in addition, there may exist a time interval such that
(qt1, q

t
2) continuously decrease from one to zero on this interval. Given a strategy

profile (q1, q2), one may observe the following outcomes: (i) none of the players stops
before the first failure; (ii) only one of the players stops before the first failure; (iii)
players stop before the first failure simultaneously; (iv) players stop before the first
failure sequentially. The first two outcomes are possible if the ratio r(R − S)/C is
sufficiently high.

In order to define value functions of the players in this game, we will use the
following version of the definition of the Riemann-Stieltjes integral.

Definition 2.5. Assume that the following conditions hold

(i) q,Ψ : [0,+∞)→ R are bounded LCRL functions;
(ii) q is of finite variation;

(iii) the singular continuous component of the Lebesgue decomposition of q is trivial;
(iv) I is an interval of one of the following forms: (a, b), [a, b), (a, b], [a, b], [a,+∞), (a,+∞),

where 0 ≤ a < b < +∞ or a union of non-intersecting intervals of this form.
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Define ∫
I

Ψ(s)dq(s) =

∫
I

Ψ(s)q′(s)ds+
∑

tj∈I:∆q(tj)6=0

Ψ(tj)∆q(tj), (2.11)

where ∆q(tj) := q(tj + 0)− q(tj).

Let Gi(π̄, t) denote the instantaneous expected payoff flow of player i if none of the
players stopped until time t > 0. Let Fi(π̄, t) denote the expected value of player i
if player j stopped at time t, and player i did not. From now on, we will consider
the simple strategies q1, q2, whose singular continuous components of the Lebesgue
decompositions are trivial. Given the strategy profile (qi, qj), the value of player i in
the game that starts at t = 0 is

Vi(π̄; qi, qj) =

∫ ∞
0

e−rtpd(π̄, t)Gi(π̄, t)qi(t)qj(t)dt (2.12)

+

∫
{t≥0 | ∆qi(t)=0}

e−rtpd(π̄, t)Fi(π̄, t)qi(t)(−dqj(t))

+

∫ ∞
0

e−rtpd(π̄, t)Sqj(t)(−dqi(t)).

Later we will show that Gi(π̄, ·) and Fi(π̄, ·) are continuous and have finite limits as
t → ∞, hence, V (π̄; qi, qj) is well-defined and finite. Note that the second integral
in (5.2) takes into account jumps in qj only, and the last integral takes into account
jumps in qi only as well as simultaneous jumps in qi and qj.

Definition 2.6. A strategy profile q̂ = (q̂i, q̂j) is a Nash equilibrium for the game
starting at t = 0, if for every (i, j) ∈ {(1, 2), (2, 1)}

Vi(π̄; q̂i, q̂j) = sup
qi

Vi(π̄; qi, q̂j).

A profile of consistent strategies q̂t = (q̂ti , q̂
t
j) is a subgame perfect Nash equilibrium

(SPE) if for every t ≥ 0, q̂t is a Nash equilibrium in the subgame that starts at t
(when payoffs are discounted to time t).

3. Main steps of solution

Once one of the players has quitted experimentation, the other player faces a
non-strategic stopping problem, which can be easily solved. Thus, when considering
subgame perfect equilibria, we will first examine subgames when one of the play-
ers has stopped, and then move to subgames where neither player has quitted as
yet. To simplify the notation, we suppress the dependence of value functions on the
other player’s strategy. Since the players are symmetric, we also drop the subscripts
identifying the players.
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3.1. Follower’s problem. Consider a subgame that starts after the history such
that no observations arrived, and only one of the players has stopped. Suppose, this
happened at time t. Then the remaining player (the follower) chooses a strategy qtf
satisfying conditions of Definition 2.2, which solves the following problem:

F (π̄, t) = sup
qtf

[∫ ∞
t

e−r(t
′−t)qtf (t

′)
ps(πs(π̄, t), t

′)

pd(π̄, t)
(rR + λs(πs(π̄, t), t

′)(S − C)) dt′

+S

∫ ∞
t

e−r(t
′−t)ps(πs(π̄, t), t

′)

pd(π̄, t′)
(−dqtf (t′))

]
, (3.1)

where the first integral is the expected present value (EPV) of the payoff while the
follower is active, and the second integral is the EPV of the payoff, when the follower
exits prior to the first failure.

Introduce the notation

A =
r(R− S)

C
, (3.2)

Âs(πs(π̄, t), t) = max
t′≥t

λs(πs(π̄, t), t
′), (3.3)

Φ(A, π̄, t;T ) = C

∫ T

t

e−rt
′
ps(πs(π̄, t), t

′) (A− λs(πs(π̄, t), t′)) dt′. (3.4)

Lemma 3.1. The value of the follower, given by equation (3.1), can be equivalently
written as

F (π̄, t) = S (3.5)

+
Cert

pd(π̄, t)
sup
qtf

∫ ∞
t

e−rt
′
ps(πs(π̄, t), t

′) (A− λs(πs(π̄, t), t′)) qtf (t′)dt′.

The first term in representation (3.1) is the value of immediate exit; the second
term is the option value of waiting. See Section 8.1 for the proof.

Let τ > t denote the time of the first failure of the project if the quality is “bad.”
Since experimentation is not profitable after the first failure, we have q̂tf (t

′) = 0 for
all t′ > τ . In all the theorems below, the optimal strategies q̂tf (t

′) are conditioned on
t′ ≤ τ . For the brevity of exposition, we omit multiplication of the strategies by the
indicator function 1t′≤τ .

Theorem 3.2. If A ≥ Âs(πs(π̄, t)), the only optimal strategy of the follower is

q̂tf (t
′) = 1, ∀ t′ > t, (3.6)

and

F (π̄, t) = S +
ert

pd(π̄, t)
Φ(π̄, t; +∞). (3.7)
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Figure 1. Illustration for Lemma 3.3. Parameters: π̄ = 0.3, λ = 1,
A = 0.3, tl = 0.651 - exit time of the leader.

Proof. Under condition A ≥ Âs(πs(π̄, t)), the integrand on the RHS of (3.5) is non-
negative, and positive in a neighborhood of +∞. Hence, the integral is maximized
with the choice (3.6). �

Lemma 3.3. Let A < Âs(πs(π̄, t)). Then (a) the equation

A− λs(πs(π̄, t), t′) = 0 (3.8)

has exactly two solutions 0 < t∗s(A, πs(π̄, t)) < t∗s(A, πs(π̄, t)).
(b) t∗s(A, πs(π̄, t)) is the local maximum of Φ(A, π̄, t; ·); t∗s(A, πs(π̄, t)) is the local

minimum of Φ(A, π̄, t; ·).

See Fig. 1 for illustration.

Proof. (a) The equation (3.8) can be rewritten in the form

at′ − b = eλt
′
,

where a > 0, b < 1. Such an equation has either two solutions, or one, or none, and
any solution is positive. Under condition A > Âs(πs(π̄, t)), the graphs of functions

t′ 7→ at′ − b and t′ 7→ eλt
′

do not intersect, under condition A = Âs(πs(π̄, t)), the

graphs are tangent, and under condition A < Âs(πs(π̄, t)), the graphs of functions
t′ 7→ at′ − b and t 7→ eλt

′
intersect at two points.

(b) If 0 < t∗s(A, πs(π̄, t)) < t∗s(A, πs(π̄, t)) are solutions to (3.8), then it is easy to see
that the LHS in (3.8) is positive if t′ < t∗s or t′ > t∗s; and it is negative if t∗s < t′ < t∗s.
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Since Φ(A, π̄, t, ·) is increasing (respectively, decreasing) iff the LHS in (3.8) is positive
(respectively, negative), (b) follows. �

Lemma 3.4. For any t ≥ 0, there exists a unique A∗s(πs(π̄, t)) ∈
(

0, Âs(πs(π̄, t))
)

s.t.

Φ(A, π̄, t; +∞) ≤ 0 ⇔ A ≤ A∗s(πs(π̄, t)).

Proof. Fix (π̄, t), and suppress the dependence on (π̄, t) in the notation Âs, t
∗
s(A),

A∗s. For A < Âs, consider

Φ(A, π̄, t∗s(A); +∞) = C

∫ ∞
t∗s(A)

e−rt
′
ps(πs(π̄, t), t

′) (A− λs(πs(π̄, t), t′)) dt′. (3.9)

The integrand in (3.9) increases in A. Furthermore, while A remains below Âs, the
integrand is negative in a right neighborhood of t∗s(A), and t∗s(A) moves to the right
as A increases. Hence, the integral in (3.9) is increasing in A. As a function of A,

the integral is positive at Âs; by continuity, it is also positive in a left neighborhood
of Âs. In the limit A → +0, the integral becomes negative. Hence, there exists
A∗s ∈ (0, Âs) s.t. the integral in (3.9) is negative for any A < A∗s, and positive for any

A ∈ (A∗s, Âs). By monotonicity of Φ(A, π̄, t∗s(A); +∞), this A∗s is unique. �

Theorem 3.5. Let A < Âs(πs(π̄, t)). Then

(1) if A > A∗s(πs(π̄, t)), the follower never exits before the first failure, and the only
optimal strategy is (3.6);

(2) if A < A∗s(πs(π̄, t)) and t ≤ t∗s(A, πs(π̄, t)), the follower exits at t∗s(A, πs(π̄, t)).
The only optimal strategy is

q̂tf (t
′) =

{
1, t′ ∈ (t, t∗s(A, πs(π̄, t))],

0, t′ > t∗s(A, πs(π̄, t));
(3.10)

(3) if A = A∗s(πs(π̄, t)) and t ≤ t∗s(A, πs(π̄, t)), then, for any q̄ ∈ [0, 1], the strategy

q̂tf (t
′) =

{
1, t′ ∈ (t, t∗s(A, πs(π̄, t))],

q̄, t′ > t∗s(A, πs(π̄, t)),
(3.11)

is optimal, and any optimal strategy is of the form (3.11);
(4) if A < A∗s(πs(π̄, t)) and t > t∗s(A, πs(π̄, t)), then the only optimal strategy is

q̂tf (t
′) = 0, t′ > t; (3.12)

(5) if A = A∗s(πs(π̄, t)) and t > t∗s(A, πs(π̄, t)), then, for any q̄ ∈ [0, 1], the strategy

q̂tf (t
′) = q̄, ∀ t′ > t, (3.13)

is optimal, and any optimal strategy is of the form (3.13).
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Obviously, cases (3) and (5) are non-generic, while the rest of the cases in Theorem
3.5 are generic ones. All statements of the theorem are immediate from the following
Lemma.

Lemma 3.6. Let the following conditions hold

(i) F1 is a piece-wise continuous function and ∃B > 0 and r > 0 s.t. |F1(t)| ≤
Be−rt ∀ t ≥ 0.

(ii) Function F2 defined by

F2(T ) =

∫ T

t

F1(t′)dt′

has a finite number t ≤ t1 < t2 < · · · tn ≤ +∞ of points of the global maximum.
(iii) q : [t,+∞)→ [0, 1] is a non-decreasing LCRL function with the trivial singular

continuous component, s.t. q(t) = 1;

Then the problem

V = sup
q

∫ +∞

t

F1(t′)q(t′)dt′

where the supremum is taken over the class of function satisfying (iii), has solutions
of the form

q̂tf (t
′) =


1, t′ ∈ [t, t1],

q̄j, t′ ∈ (tj, tj+1], j = 1, 2, . . . , n− 1,

0, t′ > tn,

(3.14)

where 1 ≥ q̄1 ≥ q̄2 ≥ · · · ≥ q̄n ≥ 0, and any optimal solution is of the form (3.14).

Proof. Integrating by parts, we obtain

V = −F2(t) + F2(+∞)q(+∞) +

∫ +∞

t

F2(t′)(−dq(t′))

= F2(+∞)q(+∞) +

∫ +∞

t

F2(t′)(−dq(t′)).

and the statement follows. �

The critical value A∗s is s.t. for all A < A∗s, t
∗
s(A) is the global maximum of

Φ(A, π̄, t; ·). If A > A∗s, the global maximum of Φ(A, π̄, t; ·) is at T = +∞. If
A = A∗s, Φ(A, π̄, t; ·) (which is a non-generic case) has two maxima - T = t∗s(A) and
T = +∞. The statements of Theorems 3.2 and 3.5 imply that, in a generic case,
the follower may find it optimal to exit at the same time as the leader, never to exit
before the first failure, or exit some time after the leader’s exit unless the first failure
happens earlier. Let tf = tf (A, π̄; t) denote the optimal stopping time of the follower,
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which may be t, t∗s(A, πs(π̄, t)), or +∞. Then, in a generic case, we can write the
follower’s optimal strategy as

q̂tf (t
′) =

{
1, t′ ∈ (t, tf ],

0, t′ > tf ;

and the follower’s value as

F (π̄, t) = S +
ert

pd(π̄, t)
Φ(A, π̄, t; tf ). (3.15)

Corollary 3.7. If t < t∗s(A, πs(π̄, t)) and A < A∗s(πs(π̄, t)), the follower’s optimal
strategy is

q̂tf (t
′) =

{
1, t′ ∈ (t, t∗s(A, πs(π̄, t))],

0, t′ > t∗s(A, πs(π̄, t));

and

F (π̄, t) = S +
ert

pd(π̄, t)
Φ(A, π̄, t; t∗s(A, πs(π̄, t))). (3.16)

Hence, the follower exits at time t∗s(A, πs(π̄, t)) unless the first failure happens earlier.

Recall that t∗s(A, πs(π̄, t)) is the first time the rate of arrival λs(π̄, t; t
′) of the

time-inhomogeneous Poisson process defined by the “survival” probability ps(π̄, t; t
′)

reaches its critical value A. In the literature dealing with two-armed Poisson bandits,
it is common to formulate stoping strategies in terms of critical beliefs about the
quality of the “risky” arm. In particular, in the case of failures, the beliefs about the
project being “bad” and the rate of arrival of the corresponding time-inhomogeneous
Poisson process are decreasing functions of time. To be more specific, these two func-
tions differ only by a positive factor. That is why, in that model, it is either optimal
to stop immediately, or never to stop before the first failure, and formulation of the
optimal stopping strategy in terms of the critical beliefs or the critical rate of arrival
is equivalent.

Comparing (2.5) and (2.7), we see that

λs(π̄, t; t
′) =

λt′

1 + λt′
(1− πs(π̄, t; t′)),

i.e., the rate of arrival is the product of 1− πs(π̄, t; t′), the beliefs about the project
being “bad”, which decreases in time, and the rate of arrival λ2t′/(1+λt′) of the time-
inhomogeneous Poisson process defined by the “survival” probability pλ(s

′), which
increases in time. Hence, λs(π̄, t; t

′) and 1 − πs(π̄, t; t
′) may behave differently as

functions of time, and formulation of the optimal stopping strategy in terms of the
critical rate of arrival is more adequate than in terms of critical beliefs.

Also, notice that the critical level λs(π̄, t; t
′) is achieved, when the marginal benefit

of staying active r(R − S) reaches the marginal expected cost λs(π̄, t; t
′)C for the

first time. If the net expected marginal benefit r(R − S) − λs(π̄, t; t
′)C is positive
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for all t′ ≥ t, it is never optimal to exit before the first failure (tf (A, πs(π̄, t) = ∞).
If the net expected marginal benefit is negative for t′ is a right neighborhood of t,
then it is necessary to calculate the net expected life-time benefit and exit either
immediately (tf (A, πs(π̄, t) = t) if the net expected life-time benefit is negative) or
never (tf (A, πs(π̄, t) = +∞) if the net expected life-time benefit is positive).

3.2. Value of player i. Consider a subgame starting at t ≥ 0 after a history such
that none of the players has yet acted. Consider the value function of player i in such
a subgame. We have

Vi(π̄, t; q
t
i , q

t
j) =

∫ ∞
t

e−r(t
′−t)pd(π̄, t

′)

pd(π̄, t)
Gi(π̄, t

′)qti(t
′)qtj(t

′)dt′ (3.17)

+

∫ ∞
{t′≥t | ∆qti(t

′)=0}
e−r(t

′−t)pd(π̄, t
′)

pd(π̄, t)
Fi(π̄, t

′)qti(t
′)(−dqtj(t′))

+

∫ ∞
t

e−r(t
′−t)pd(π̄, t

′)

pd(π̄, t)
Sqtj(t

′)(−dqti(t′)),

where, as before, Gi(π̄, t
′) is the expected payoff flow that player i gets when both

players are experimenting. The flow Gi(π̄, t
′) has several components. The revenue

flow is rR; if a failure happens to one of the players, then this player pays the cost
of failure Ĉ, but both players suffer the loss L in the recovery value. Assuming that,
if the project is bad, the players are equally likely to incur a costly failure, we can
write

Gi(π̄, t
′) = rR + λd(π̄, t

′)(S − L− 0.5Ĉ).

Recall that we set C = L+ Ĉ, which is the total loss in case of a failure. Therefore,
the expected payoff in case of a failure can be written as S − 0.5(L+ C). Introduce
κ = (L+ C)/C, then κ ∈ [1, 2), where κ = 1 corresponds to the case L = 0 - no loss

in the recovery value; κ→ 2 as Ĉ → 0. Given this notation, we rewrite

Gi(π̄, t
′) = rR + λd(π̄, t

′)(S − 0.5κC).
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Lemma 3.8. We have

Vi(π̄, t; q
t
i , q

t
j) = S (3.18)

+
ert

pd(π̄, t)

∫ ∞
t

[
Ce−rt

′
pd(π̄, t

′) (A− 0.5κλd(π̄, t
′)) qtj(t

′)

−Φ(A, π̄, t′; tf (A, π̄, t
′))(qtj(t

′))′
]
qti(t

′)dt

+
ert

pd(π̄, t)

∑
t′ ≥ t :

∆qi(t
′) = 0

∆qj(t
′) 6= 0

Φ(A, π̄, t′; tf (A, π̄, t
′))qti(t

′)(−∆qj(t
′))

− ert

pd(π̄, t)

∑
t′ ≥ t :

∆qi(t
′) 6= 0

∆qj(t
′) 6= 0

Se−rt
′ (
qti(t

′) + ∆qti(t
′)
)

(−∆qj(t
′)).

See Section 8.2 for the proof.

4. Equilibria

4.1. SPE, where both players stay until the first failure. Let

Âd = Âd(κ, π̄) = 0.5κmax
t≥0

λd(π̄, t), (4.1)

and

Ψ(κ,A, π̄, t;T ) = C

∫ T

t

e−rt
′
pd(π̄, t

′) (A− 0.5κλd(π̄, t
′)) dt′. (4.2)

Let τ > t denote the time of the first failure of the project if the quality is “bad.” Since
experimentation is not profitable after the first failure, we have q̂ti(t

′) = q̂tj(t
′) = 0

for all t′ > τ . In all the theorems below, the optimal strategies q̂ti(t
′) (i ∈ {1, 2})

are conditioned on t′ ≤ τ . For the brevity of exposition we omit multiplication of
strategies by the indicator function 1t′≤τ .

Theorem 4.1. If A ≥ Âd(κ, π̄), then for any t ≥ 0, the following profile is a SPE in
the subgame starting at t: for i, j ∈ {1, 2}, i 6= j:

q̂ti(t
′) = q̂t1(t′) = 1, t′ > t, (4.3)

and

Vi(π̄, t; q̂
t
i , q̂

t
j) = Vj(π̄, t; q̂

t
i , q̂

t
j) = S +

ert

pd(π̄, t)
Ψ(κ,A, π̄, t; +∞). (4.4)

See Section 8.3 for the proof. Theorem 4.1 states that if A = r(R − S)/C is
sufficiently large, then in a SPE, the players stop simultaneously at the moment of
the first failure if the project is “bad,” or never if the project is “good.”
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Figure 2. Illustration for Lemma 4.2. Parameters: π̄ = 0.3, λ = 1,
A = 0.3 κ = 1.2.

Lemma 4.2. Let A < Âd(κ, π̄), then

a) the equation

A− 0.5κλd(π̄, t) = 0 (4.5)

has two solutions t∗d(κ,A, π̄) < t∗d(κ,A, π̄) s.t. t∗d(κ,A, π̄) is the local maximum,
and t∗d(κ,A, π̄) is the local minimum of Ψ(A, π̄, t; ·).

b) t∗d(κ,A, π̄) ≤ tf (κ,A, πs(π̄, t
∗
d)) for all κ ∈ [1, 2) and A < Âd(κ, π̄), and the equality

holds only if κ = 1.

See Fig. 2 for illustration. See Section 8.4 for the proof.

Remark 4.3. Lemma 4.2 implies that
(i) In any subgame that starts at time t < t∗d = t∗d(κ,A, π̄) (we suppress the

dependence of t∗d on (κ,A, π̄) in order to simplify the notation) after a history such
that none of the players has yet acted, none of the players will find it optimal to exit
before t∗d, because

ψ(A, π̄, t′) := A− 0.5κλd(π̄, t
′) (4.6)

is positive for all t ≤ t′ < t∗d. To understand why, recall that

Cψ(A, π̄, t′) = r(R− S)− 0.5κλd(π̄, t
′)C

is the net expected marginal benefit of each player, when two players keep experi-
menting. It is not optimal to stop while the net marginal benefit is positive.
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(ii) If one of the players (the leader) decides to exit at time t∗d = t∗d(κ,A, π̄), the
other player (the follower) will find it optimal to stay longer (may be until the first
failure if tf (A, πs(π̄, t

∗
d)) = ∞). The only case when the follower finds it optimal

to exit together with the leader at t∗d(κ,A, π̄) is when κ = 1, i.e., when there is no
loss in the recovery value due to a failure. To see why, recall that if a player exits
the game in finite time, the optimal stopping rule can be formulated in terms of the
critical value of the corresponding rate of arrival (i.e. the point where the expected
net marginal benefit is zero). If there is only one player, this critical level is A, if there
are two players, this critical value is 2A/κ. If κ = 1, the corresponding critical levels
of rates of arrival are achieved simultaneously. If κ > 1, the critical rate of arrival for
two players is achieved earlier than the critical level for a single agent (the follower).
That is why the follower delays his/her exit if the leader exits at t∗d(κ,A, π̄).

We have the following analog of Lemma 3.4.

Lemma 4.4. There exists a unique A∗d = A∗d(κ, π̄) ∈ (0, Âd(κ, π̄)) s.t.

Ψ(κ,A∗d, π̄, t
∗
d; +∞) = 0, (4.7)

and Ψ(κ,A, π̄, t∗d; +∞) > 0(= 0, < 0) if A > A∗d(= A∗d, < A∗d).

Proof follows the proof of Lemma 3.4 line by line.

Theorem 4.5. Let A ≥ A∗d(κ, π̄), then for t ≥ 0, (q̂ti , q̂
t
j) given by (4.3) is a SPE,

and the payoffs are given by (4.4).

Proof. If A > A∗d = A∗d(κ, π̄), the function Ψ(κ,A, π̄, t, T ) is maximized at T = +∞.
Hence if player j plays q̂tj, the best response of player i is to play q̂ti and vice versa.
By definition, Ψ(A∗d, π̄, t

∗
d; +∞) = 0, hence for any t > t∗d, Ψ(A∗d, π̄, t; +∞) > 0,

hence it is never optimal to exit before the first failure happens, hence (q̂ti , q̂
t
j) given

by (4.3) is a SPE. If t ≤ t∗d, it is never optimal to exit earlier than at t∗d, because
Ψ(κ,A, π̄, t, T ) is increasing in T if T ∈ (t, t∗d]. Since Ψ(κ,A∗d, π̄, t

∗
d; +∞) = 0, the

players are indifferent between exiting at t∗d and staying until the first failure happens
as long as they exit or stay together, but exiting at t∗d simultaneously is not an
equilibrium, because if one of the players exits at that time, the other player has an
incentive to wait until tf (A, πs(π̄, t

∗
d)) is reached. �

4.2. Symmetric SPE, where players stop before the first failure. Let A <
A∗d(κ, π̄), and let T̂d = T̂d(κ,A, π̄) > t∗d(κ,A, π̄) be the solution to

Ψ(κ,A, π̄, T̂d,+∞) = 0.

Then, for t < T̂d, Ψ(κ,A, π̄, t,+∞) < 0, and for t > T̂d, Ψ(κ,A, π̄, t,+∞) > 0.

Theorem 4.6. Consider a subgame that starts at t ≥ T̂d(κ,A, π̄)) after a history

such that none of the players has yet acted, then for all t ≥ T̂d(κ,A, π̄)), (q̂ti , q̂
t
j) given

by (4.3) is a SPE, and the payoffs are given by (4.4).
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Proof is the same as the proof of Theorem 4.5
Let A < A∗d(κ, π̄), κ > 1, and let T̂f (A, π̄; t) = inf{t′ ≥ t | tf (A, πs(π̄, t′)) = t′}.

Lemma 4.7. T̂f (A, π̄; t) is independent of t > t∗d(κ,A, π̄) such that tf (A, πs(π̄, t)) > t.

Proof. If tf (A, πs(π̄, t
′)) > t′ for all t′ > t, then T̂f (A, π̄; t′) = +∞ for all t′ ≥ t.

Otherwise, T̂f (A, π̄; t′) is the first zero above t of the function t′ 7→ tf (A, πs(π̄, t
′))−

t′. �

Thus, we may write T̂f (A, π̄) rather than T̂f (A, π̄; t). If T̂f (A, π̄) < T̂d(κ,A, π̄),

then in the interval [T̂f (A, π̄), T̂d(κ,A, π̄)), experimentation is not optimal either for
one or for two players, so for any subgame that starts at t is the latter interval, the
SPE equilibrium is q̂ti(t

′) = q̂tj(t
′) = 0, for all t′ > t.

Consider the case when T̂f (A, π̄) ≤ T̂d(κ,A, π̄). Introduce functions

U0(t′) := U0(A, π̄, t′) = e−rt
′
pd(π̄, t

′)Cψ(A, π̄, t′)

U1(t′) := Φ(A, π̄, t′, tf (A, πs(π̄, t
′))),

and consider the Cauchy problem

U0(t′)α(t, t′)− U1(t′)
∂α

∂t′
(t, t′) = 0, (4.8)

subject to α(t, t) = 1, with t as a parameter.

Lemma 4.8. a) Function α(t, ·) is well-defined on [t, T̂f ).

b) As t′ → T̂f , α(t, t′) ↓ 0.
c) For t < t1 < t′ < Tf , α(t, t1)α(t1, t

′) = α(t, t′)

Proof. a) We have α(t, t′) = exp (I(t, t′)), where

I(t, t′) =

∫ t′

t

U0(y)

U1(y)
dy.

b) Function U0 is continuous and negative on (t, T̂f ]; U1 is positive on (t, T̂f ) and
U1(Tf ) = 0. Furthermore, using the implicit function theorem, we obtain that t′ 7→
tf (A, πs(π̄, t

′)) is differentiable, hence, U1 is differentiable as well. We conclude that

0 < U1(t′) < C(Tf− t′), where C > 0 is independent of t′ ∈ [t, T̂f ). Hence, as t′ → T̂f ,
I(t, t′)→ −∞, and α(t, t′) ↓ 0.

c) It suffices to note that

I(t, t′) =

∫ t′

t

U0(y)

U1(y)
dy =

(∫ t1

t

+

∫ t′

t1

)
U0(y)

U1(y)
dy = I(t, t1) + I(t1, t

′).

�
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Theorem 4.9. Let A < A∗d(κ, π̄), κ > 1, and T̂f (A, π̄) ≤ T̂d(κ,A, π̄). Consider a

subgame that starts at t ∈ [t∗d(κ,A, π̄), T̂f (A, π̄)) after a history such that none of the
players has yet acted. Then, there exists a symmetric SPE given by the following pair
of simple consistent strategies:

q̂tj(t
′) = q̂tj(t

′) =

{
α(t, t′), t′ ∈ (t, T̂f (A, π̄)]

0, t′ ≥ T̂f (A, π̄).
(4.9)

The players payoffs are

Vi(π̄, t; q̂
t
i , q̂

t
j) = Vj(π̄, t; q̂

t
i , q̂

t
j) = S. (4.10)

Proof. We apply Lemma 3.8. If agent j follows the strategy (4.9), then 1) there are
no jumps ∆qtj, and all the jump terms on the RHS of (3.18) are 0; 2) the integral on
the RHS of (3.18) is 0 for any choice of qti . Hence, any deviation gives the same value
S. �

Theorem 4.10. Let A < A∗d(κ, π̄), κ > 1, and T̂f (A, π̄) ≤ T̂d(κ,A, π̄). Consider a
subgame that starts at t ≤ t∗d(κ,A, π̄) after a history such that none of the players has
yet acted Then, there exists a symmetric SPE given by the following pair of simple
consistent strategies:

q̂tj(t
′) = q̂tj(t

′) =


1, t′ ≤ t∗d(κ,A, π̄)

α(t∗d(κ,A, π̄), t′), t′ ∈ (t∗d(κ,A, π̄), T̂f (A, π̄))

0, t′ ≥ T̂f (A, π̄).

(4.11)

The players payoffs are

Vi(π̄, t; q̂
t
i , q̂

t
j) = Vj(π̄, t; q̂

t
i , q̂

t
j) = S +

ert

pd(π̄, t)
Ψ(κ,A, π̄, t; t∗d). (4.12)

Proof. We apply Lemma 3.8. If agent j follows the strategy (4.11), then 1) there are
no jumps ∆qtj, and all the jump terms on the RHS of (3.18) are 0; 2) the integral in
the RHS of (3.18) can be written as

Ψ(κ,A, π̄, t; t∗d) + Ψ(κ,A, π̄, t∗d, T̂f ),

where the second term is 0 for any choice of qti . Hence, any deviation gives the same
value as in (4.12). �

Remark 4.11. a) Since α(t, T̂f (A, π̄)− 0) = 0, functions qti = qtj are continuous.
b) The values at t∗d are the same as if both players exit at t = t∗d but the simultaneous

exit at t∗d is not an equilibrium.
c) The symmetric equilibrium is inefficient: it is dominated by each of the asymmetric

equilibria that we characterize in the next Section.

It remains to mention a special case, when the symmetric SPE is efficient.
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Theorem 4.12. Let A < A∗d(κ, π̄), κ = 1. Consider a subgame that starts at t ≤
t∗d(κ,A, π̄) after a history such that none of the players has yet acted Then, there
exists a symmetric SPE given by the following pair of simple consistent strategies:

q̂tj(t
′) = q̂tj(t

′) =

{
1, t′ ≤ t∗d(κ,A, π̄)

0, t′ ≥ t∗d(κ,A, π̄).
(4.13)

The players payoffs are

Vi(π̄, t; q̂
t
i , q̂

t
j) = Vj(π̄, t; q̂

t
i , q̂

t
j) = S +

ert

pd(π̄, t)
Ψ(κ,A, π̄, t; t∗d). (4.14)

If κ = 1, then t∗d(1, A, π̄) = tf (A, πs(π̄, t
∗
d)), hence simultaneous stopping is a SPE.

4.3. Asymmetric equilibria with precommitment.

Theorem 4.13. Let A < A∗d(κ, π̄), κ > 1, and T̂f (A, π̄) ≤ T̂d(κ,A, π̄). Consider a

subgame that starts at t ∈ [t∗d(κ,A, π̄), T̂f (A, π̄)) after a history such that none of the
players has yet acted. Then there are two asymmetric equilibria given by the following
pairs of simple consistent strategies: for (i, j) ∈ {(1, 2), (2, 1)},

q̂ti(t
′) = 0, ∀ t′ > t, (4.15)

and

q̂tj(t
′) =

{
1, t′ ∈ (t, T̂f (A, π̄)],

0, t′ > T̂f (A, π̄).
(4.16)

The players payoffs are

Vi(π̄, t; q̂
t
i , q̂

t
j) = S, Vj(π̄, t; q̂

t
i , q̂

t
j) = F (π̄, t).

Proof. Follows immediately from the fact that experimentation is not optimal for two
players, but optimal for one player if t ∈ [t∗d(κ,A, π̄), T̂f (A, π̄)). �

Corollary 4.14. If the same type of equilibrium is played in any subgame that starts
at t ∈ [t∗d(κ,A, π̄), T̂f (A, π̄)), then the strategy profile (4.15)-(4.16) is a SPE.

Indeed, if player j precommits not to stop in any subgame that starts at t ∈
[t∗d(κ,A, π̄), T̂f (A, π̄)), then player i′s best response is to stop first. On the other
hand, if player i will be the first one to stop, then player j′s best response is to be
the follower.

Theorem 4.15. Let A < A∗d(κ, π̄), κ > 1, and T̂f (A, π̄) ≤ T̂d(κ,A, π̄). In a subgame
that starts at 0 ≤ t < t∗d = t∗d(κ,A, π̄) after a history such that none of the players has
yet acted, there are two asymmetric equilibria given by the following pairs of simple
consistent strategies: for (i, j) ∈ {(1, 2), (2, 1)},

q̂ti(t
′) =

{
1, t′ ∈ (t, t∗d],

0, t′ > t∗d;
(4.17)



ERLANG BANDITS 23

Figure 3. Illustration for Lemma 4.17. Parameters: π̄ = 0.3, λ = 1,
A = 0.3 κ = 1.2.

and

q̂tj(t
′) =

{
1, t′ ∈ (t, tf (t

∗
d)],

0, t′ > tf (t
∗
d).

(4.18)

The players payoffs are

Vi(π̄, t; q̂
t
i , q̂

t
j) = S +

ert

pd(π̄, t)
Ψ(κ,A, π̄, t; t∗d), (4.19)

Vj(π̄, t; q̂
t
i , q̂

t
j) = F (π̄, t∗d) +

ert

pd(π̄, t)
Ψ(κ,A, π̄, t; t∗d). (4.20)

Proof. Let player i play the strategy (4.17), then the best response of player j is the
strategy (4.18) as the optimal follower’s strategy that we derived in Section 3.1. Let
player j play the strategy (4.18), then Ψ(κ,A, π̄, t, T ) is maximized at t = t∗d(κ,A, π̄).
By Lemma 3.6, the strategy (4.17) is the optimal strategy of player i.

�

Corollary 4.16. If T̂f (A, π̄) ≤ T̂d(κ,A, π̄) and the same type of equilibrium is played

in any subgame that starts at t ∈ [t∗d(κ,A, π̄), T̂f (A, π̄)), then the strategy profile
(4.17)-(4.18) is a SPE.

An advantage of being an ostrich. We finish the section with the study of the role of
information externality in the stopping game with conclusive failures. To this end,
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Figure 4. Dependence of optimal stopping times on π̄. Parameters:
λ = 1, A = 0.3 κ = 1.2.

consider a single experimenter with the value function

Vs(π̄) = S + C sup
qs

∫ ∞
0

e−rtps(π̄, t) (A− λs(π̄, t)) qs(t)dt.

Let ts = ts(A, π̄) be the single player’s optimal stopping time, which may be finite or
infinite. If ts(A, π̄) < +∞, then it is the smallest solution to

A− λs(π̄, t) = 0. (4.21)

Lemma 4.17. For any π̄ ∈ (0, 1), there exists κ∗(π̄) ∈ (1, 2) such that for any
κ ∈ (κ∗(π̄), 2) and any A < A∗d(π̄, κ), t∗d(κ,A, π̄) < ts(A, π̄) < tf (A, πs(π̄, t

∗
d)), and

Vs(π̄) is higher than the value of the leader in Theorem 4.15.

See Section 8.5 for the proof. See Fig. 3 for illustration. In Fig. 4, we show
dependence of the optimal stopping times on π̄, and in Fig. 4 - dependence of value
functions on π̄.

5. Conclusive breakthroughs

5.1. The setup. In this Section, we consider the game of timing, characterized by the
following structure. Time t ∈ R+ is continuous, and the discount rate is r > 0. Two
symmetric players experiment with technologies of unknown quality. The quality
of a project depends on the state of nature θ ∈ {0, 1}. If θ = 1, the project is
“good,” which means that it generates positive revenues (breakthroughs). If θ = 0,
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Figure 5. Dependence of value functions on π̄. Parameters: λ = 1,
R = 30, S = 0, C = 1 κ = 1.2, r = 0.01.

the project is “bad,” which means that the player experimenting with this project
will never be able to generate positive revenues. Experimentation is costly, and the
stream of experimentation costs is rC for each player, independent of the quality of
the project. The initial common prior assigns probability π̄ ∈ (0, 1) to θ = 0.

Let the quality of the project be the same for both players, so that if one of the play-
ers observes a breakthrough, both players know that their technologies are “good.”
For simplicity, assume that if the project if “good”, both players stop experimenta-
tion after the first success had been observed (provided that both are active at that
moment). Further assume that, if the project is “good”, the player who is first to
succeed gets R1 > 0, and the other player gets R2 ∈ (0, R1). Thus, there is an ad-
vantage to generating the success first (though, in this stylized model, this advantage
is independent of the players’ actions), which can be interpreted as an opportunity
to file a patent. The other player can sell the research facility for R2, just knowing
that the project is good, but it would be necessary to pay for the right to use it.
If a player exits before the first observation of a success, then the recovery value is
R3 ∈ (0, (R1 + R2)/2) - i.e., without any “good” news, the player can still sell the
research facility, but since the quality of the project remains unknown the value of
the outside option is less than the expected value at the time of the observation of
the first success.
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Let τi denote the random time of the first breakthrough of player i if θ = 1.
We assume that τi and τj are i.i.d. Erlang(2, λ) random variables. Note that the
expected time until the first breakthrough is 2/λ.

In the current setting, we consider the case when all payoffs, parameters of the
Erlang distribution, and the players’ actions are public information. W.l.o.g. assume
that the game starts at t = 0. At each point t ≥ 0, player i ∈ {1, 2} may make an
irreversible stopping decision conditioned on the history of the game. At any t ≥
0, the history of the game includes observations of all failures (including the empty
set if no failures were observed by the players up to time t) and the actions of the
players. As far as the actions are concerned, only two sorts of histories matter in the
stopping game: (i) both players are still in the game; (ii) at least one player exited
the game.

Let Ti ∈ R+ denote the exit time of player i. Define the function

t̃i(t) =

{
Ti, if Ti ≤ t,

∞, otherwise.

Let τ si denote a random time, when a breakthrough in player i’s project occurred for
the sth time. The history of observations at any t ≥ 0 is

Ot = {(τ s′1 )}s′≤t∧T1 ∪ {(τ s
′′

2 )}s′′≤t∧T2 .

If Ot = {∅}, then a typical history at time t is ht(Ot, t̃1(t), t̃2(t)). If Ti < Tj, we call
player i the leader, and player j the follower. If Ot 6= {∅}, the game is over.

From Section 2.1, we borrow Definitions 2.1, 2.2 of simple strategies and Definition
2.3 of consistent strategies. The evolution of beliefs, “survival” probabilities and rates
of arrival are given by the corresponding equations in Section 2.2.

5.2. Value functions and equilibrium. Consider the game that starts at t = 0.
Assume that

sup
T>0

(∫ T

0

e−rtpd(π̄, t
′)

(
λd(π̄, t

′)
R1 +R2

2
− rC

)
dt′ + e−rTpd(π̄, T )R3

)
> R3. (5.1)

Then it is optimal for both players to experiment until the expected rate of arrival
reaches its maximal value

t̂d(π̄) = arg max
t≥0

λd(π̄, t),

and for some time after that. We leave for the future work the analysis of different
scenarios, when given parameters of the model, it may be optimal to start experimen-
tation for two players, but not for one, and vice versa. As the rate of arrival λd(π̄, t)
starts decreasing, it may become optimal for one or both players to quit. We will
show that the stopping rules in pure strategies are of the threshold type - the players
quit when the corresponding rates of arrival reach a certain threshold from above;
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in addition, there may exist a time interval such that (qt1, q
t
2) continuously decrease

from one to zero on this interval.
We show that if R2 ≥ R3, then, when a certain critical level of λd(π̄, t) is reached,

it is optimal for both players to exit. If R2 < R3, then the simultaneous exit is not
an equilibrium, and three types of equilibria are possible.

Assume that if the project is “good” and both players keep experimenting, the
players are equally likely to observe the first success. Let Gi(π̄, t) = 0.5λd(π̄, t)(R1 +
R2) − rC denote the instantaneous expected payoff flow of player i if none of the
players stopped until time t > 0. Let Fi(π̄, t) denote the expected value of player i
if player j stopped at time t, and player i did not. From now on, we will consider
the simple strategies q1, q2, whose singular continuous components of the Lebesgue
decompositions are trivial. Given the strategy profile (qi, qj), the value of player i in
the game that starts at t = 0 is

Vi(π̄; qi, qj) =

∫ ∞
0

e−rtpd(π̄, t)Gi(π̄, t)qi(t)qj(t)dt (5.2)

+

∫
{t≥0 | ∆qi(t)=0}

e−rtpd(π̄, t)Fi(π̄, t)qi(t)(−dqj(t))

+

∫ ∞
0

e−rtpd(π̄, t)R3qj(t)(−dqi(t)).

Later we will show that Fi(π̄, ·) is continuous and has the finite limit as t → ∞,
hence, V (π̄; qi, qj) is well-defined and finite. Note that the second integral in (5.2)
takes into account jumps in qj only, and last integral takes into account jumps in qi
only as well as simultaneous jumps in qi and qj. We will use the same equilibrium
concepts as in Definition 2.6.

Once one of the players has quitted experimentation, the other player faces a
non-strategic stopping problem, which can be easily solved. Thus, when considering
subgame perfect equilibria, we will first examine subgames when one of the play-
ers has stopped, and then move to subgames where neither player has quitted as
yet. To simplify the notation, we suppress the dependence of value functions on the
other player’s strategy. Since the players are symmetric, we also drop the subscripts
identifying the players.

5.3. Follower’s problem. Consider a subgame that starts after the history such
that only one of the players has stopped. Suppose, this happened at time t. Then
the remaining player (the follower) chooses a strategy qtf satisfying the conditions of
Definition 2.2, which solves the following problem:

F (π̄, t) = sup
qtf

[∫ ∞
t

e−r(t
′−t)qtf (t

′)
ps(πs(π̄, t), t

′)

pd(π̄, t)
(λs(πs(π̄, t), t

′)R1 − rC) dt′

+R3

∫ ∞
t

e−r(t
′−t)ps(πs(π̄, t), t

′)

pd(π̄, t′)
(−dqtf (t′))

]
, (5.3)
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where the first integral is the expected present value (EPV) of the payoff while the
follower is active, and the second integral is the EPV of the payoff when the follower
exits prior to the first failure.

Introduce the notation

A =
r(C +R3)

R1 −R3

.

Similarly to Lemma 3.1, we obtain

Lemma 5.1. The value of the follower, given by equation (5.3), can be equivalently
written as

F (π̄, t) = R3 (5.4)

+
(R1 −R3)ert

pd(π̄, t)
sup
qtf

∫ ∞
t

e−rt
′
ps(πs(π̄, t), t

′) (λs(πs(π̄, t), t
′)− A) qtf (t

′)dt′.

The proof is analogous to the proof of Lemma 3.1. The first term in representation
(5.1) is the value of immediate exit; the second term is the option value of waiting.
Since λs(πs(π̄, t), t

′) → 0 as t′ → +∞, the follower exits either instantly if either
λs(πs(π̄, t), t

′) ≤ A and t is to the right from the point t̂s = arg maxt′≥t λs(πs(π̄, t), t
′);

or t < t̂s and maxT≥t Φ(A, π̄, t;T ) ≤ 0, where

Φ(A, π̄, t;T ) = (R1 −R3)

∫ T

t

e−rt
′
ps(πs(π̄, t), t

′) (λs(πs(π̄, t), t
′)− A) dt′;

(in the case of equality, it is also optimal to wait until the local maximizer T is
achieved). Otherwise, the follower exits at time Ts = Ts(A, πs(π̄, t)) < +∞, Ts > t,
which is the largest solution of the following equation

λs(πs(π̄, t), T ) = A. (5.5)

Thus, the follower’s exit time tf = tf (A, πs(π̄, t)) can equal to t or Ts(A, πs(π̄, t)). In
a generic case, we can write the follower’s optimal strategy as

q̂tf (t
′) =

{
1, ∀ t ≤ t′ ≤ tf (A, πs(π̄, t)),

0, ∀ t′ > tf ;

and the follower’s value as

F (π̄, t) = S +
ert

pd(π̄, t)
Φ(A, π̄, t; tf (A, πs(π̄, t))). (5.6)

5.4. Value of player i. Consider a subgame starting at t ≥ 0 after a history such
that none of the players has yet acted. Consider the value function of player i in such
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a subgame. We have

Vi(π̄, t; q
t
i , q

t
j) =

∫ ∞
t

e−r(t
′−t)pd(π̄, t

′)

pd(π̄, t)
Gi(π̄, t

′)qti(t
′)qtj(t

′)dt′ (5.7)

+

∫ ∞
{t′≥t | ∆qti(t

′)=0}
e−r(t

′−t)pd(π̄, t
′)

pd(π̄, t)
Fi(π̄, t

′)qti(t
′)(−dqtj(t′))

+

∫ ∞
t

e−r(t
′−t)pd(π̄, t

′)

pd(π̄, t)
R3q

t
j(t
′)(−dqti(t′)),

Fi(π̄, t
′) is the value of the follower, and Gi(π̄, t

′) = 0.5λd(π̄, t
′)(R1 + R2) − rC is

the expected payoff flow that player i gets when both players are experimenting.
Introduce

κ = 1 +
R2 −R3

R1 −R3

. (5.8)

If R2 ≥ R3 (even if you know that you will be not the first to succeed, it is non-
optimal to give up the project of unknown quality), then κ ≥ 1. If R2 < R3 (it is
better not to succeed if the project is of unknown quality, then when the project is
known to be “good”), then 0 < κ < 1. If R2 ↑ R1, then κ ↑ 2. (Recall that R1 = R1

means that no loss if you are not the first to succeed if the project is “good”).
The following result can be proved in the same manner as Lemma 3.8.

Lemma 5.2. We have

Vi(π̄, t; q
t
i , q

t
j) = R3 (5.9)

+
ert

pd(π̄, t)

∫ ∞
t

[
(R1 −R3)e−rt

′
pd(π̄, t

′) (0.5κλd(π̄, t
′)− A) qtj(t

′) ]

−Φ(A, π̄, t′; tf (A, π̄, t
′))(qtj(t

′))′
]
qti(t

′)dt′

+
ert

pd(π̄, t)

∑
t′ ≥ t :

∆qi(t
′) = 0

∆qj(t
′) 6= 0

Φ(A, π̄, t′; tf (A, π̄, t
′))qti(t

′)(−∆qj(t
′))

− ert

pd(π̄, t)

∑
t′ ≥ t :

∆qi(t
′) 6= 0

∆qj(t
′) 6= 0

R3e
−rt′ (qti(t′) + ∆qti(t

′)
)

(−∆qj(t
′)).

Since λd(π̄, t
′) → 0 as t′ → +∞, it is non-optimal to experiment jointly either

after time t or after time T = td(κ,A, π̄) < +∞, which is the largest solution of the
following equation

0.5κλd(π̄, T ) = A. (5.10)
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Figure 6. Illustration for Lemma 5.3 (c). Parameters: λ = 1, A =
0.15 π̄ = 0.25 κ = 1.2.

The conditions for the instantaneous exit can be derived in the same way as in the
case of failures. We consider the more interesting case, when t < td(κ,A, π̄), and, for
all t < td(κ,A, π̄), it is non-optimal to stop the joint experimentation.

Lemma 5.3. Let t < td(κ,A, π̄). Let Ts(A, πs(π̄, td)) denote the largest solution to
(5.5) for t = td(κ,A, π̄). Then

(a) The graphs of functions 0.5λd(π̄, t) and λs(πs(π̄, td), t) have two points of inter-
section: at t = 0 and t = td(κ,A, π̄).

(b) For t ∈ (0, td(κ,A, π̄)),

λs(πs(π̄, td), t) < 0.5λd(π̄, t).

(c) If κ ≥ 1, then Ts(A, πs(π̄, td)) ≤ td(κ,A, π̄), hence both players exit at td(κ,A, π̄).
(d) If κ < 1, the Ts(A, πs(π̄, td)) > td(κ,A, π̄), hence the leader exits at td(κ,A, π̄),

and the follower exits at Ts(A, πs(π̄, td)).

The proof of (a) and (b) is the same as the proof of Lemma 8.3. The validity of (c)
and (d) follows from (a) and (b), and it is evident from Fig. 6 and Fig. 7, respectively.

Theorem 5.4. Let t < td = td(κ,A, π̄) and R2 ≥ R3. Then there exist a unique SPE
defined by

q̂ti(t
′) = q̂tj(t

′) =

{
1, t′ ∈ (t, td],

0, t′ > td.
(5.11)
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Figure 7. Illustration for Lemma 5.3 (d). Parameters: λ = 1, A =
0.15 π̄ = 0.25 κ = 0.9.

The players’ payoffs are

Vi(π̄, t; q̂
t
i , q̂

t
j) = R3 +

ert

pd(π̄, t)
Ψ(κ,A, π̄, t; td), (5.12)

where

Ψ(κ,A, π̄, t;T ) =

∫ T

t

(R1 −R3)e−rt
′
pd(π̄, t

′) (0.5κλd(π̄, t
′)− A) dt′. (5.13)

Let R2 < R3. As in the case of failures, let T̂f (A, π̄) = inf{t′ ≥ td | tf (A, πs(π̄, t′)) =
t′}. Then symmetric equilibria are formulated in terms of the solution of the Cauchy
problem.

U0(t′) := U0(A, π̄, t′) = (R1 −R3)e−rt
′
pd(π̄, t

′) (κλd(π̄, t
′)− A) ,

U1(t′) := Ψ(κ,A, π̄, t′, tf (A, πs(π̄, t
′))),

and consider the Cauchy problem (4.8) subject to α(t, t) = 1. The statement and
proof of Lemma 4.8 are repeated word by word.
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Theorem 5.5. Let R2 < R3. Consider a subgame that starts at t ∈ [td(κ,A, π̄), T̂f (A, π̄; t))
after a history such that none of the players has yet acted. Then, there exists a sym-
metric SPE given by the following pair of simple consistent strategies:

q̂tj(t
′) = q̂tj(t

′) =

{
α(t, t′), t′ ∈ (t, T̂f (A, π̄))

0, t′ ≥ T̂f (A, π̄).

The players payoffs are

Vi(π̄, t; q̂
t
i , q̂

t
j) = Vj(π̄, t; q̂

t
i , q̂

t
j) = R3

Proof is the same as the proof of Theorem 4.9.

Theorem 5.6. Let R2 < R3. Then, in a subgame that starts at 0 ≤ t < td =
td(κ,A, π̄) after a history such that none of the players has yet acted, there exists a
symmetric equilibrium:

q̂tj(t
′) = q̂tj(t

′) =


1, t′ ∈ (t, td]

α(td, t
′), t′ ∈ (td, T̂f (A, π̄))

0, t′ ≥ T̂f (A, π̄).

(5.14)

The players payoffs are

Vi(π̄, t; q̂
t
i , q̂

t
j) = Vj(π̄, t; q̂

t
i , q̂

t
j) = R3 +

ert

pd(π̄, t)
Ψ(κ,A, π̄, t; td). (5.15)

The proof is the same as the proof of Theorem 4.10.
There are also asymmetric equilibria, characterized in the following Theorems,

which can be proved in the same manner as Theorems 4.12 and 4.15.

Theorem 5.7. Let R2 < R3. Then, in a subgame that starts at t ∈ [td(κ,A, π̄), T̂f (A, π̄))
after a history such that none of the players has yet acted, there are two asym-
metric equilibria given by the following pairs of simple consistent strategies: for
(i, j) ∈ {(1, 2), (2, 1)},

q̂ti(t
′) = 0 ∀ t′ > td, (5.16)

and

q̂tj(t
′) =

{
1, t′ ∈ (t, tf (td)],

0, t′ > tf (td).
(5.17)

The players payoffs are

Vi(π̄, t; q̂
t
i , q̂

t
j) = R3, Vj(π̄, t; q̂

t
i , q̂

t
j) = F (π̄, t).

Theorem 5.8. Let R2 < R3. Then, in a subgame that starts at 0 ≤ t < td =
td(κ,A, π̄) after a history such that none of the players has yet acted, there are two
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asymmetric equilibria given by the following pairs of simple consistent strategies: for
(i, j) ∈ {(1, 2), (2, 1)},

q̂ti(t
′) =

{
1, t′ ∈ (t, td],

0, t′ > td,
(5.18)

and

q̂tj(t
′) =

{
1, t′ ∈ (t, tf (td)],

0, t′ > tf (td).
(5.19)

The players payoffs are

Vi(π̄, t; q̂
t
i , q̂

t
j) = R3 +

ert

pd(π̄, t)
Ψ(κ,A, π̄, t; td), (5.20)

Vj(π̄, t; q̂
t
i , q̂

t
j) = F (π̄, td) +

ert

pd(π̄, t)
Ψ(κ,A, π̄, t; td). (5.21)

6. Extensions and generalization

6.1. Hump-shaped distributions. The results of the paper derived for the case
when random times of news arrival are Erlang(2,λ) random variables can be general-
ized if we take as a primitive of the model the rate of arrival of a time-inhomogeneous
Poisson process. Let the true rate of arrival of the news be λ ∈ {0, λ1(t)}, where λ1(t)
is the rate of arrival of some time inhomogeneous Poisson process. Common prior
assigns probability π̄ to λ = 0. Let τ be a random time of the news arrival and

pλ1(t) = prob(τ > t) = e−
∫ t
0 λ1(t′)dt′ .

The expected arrival rate is

λ(π̄; t) =
(1− π̄)λ1(t)pλ1(t)

π̄ + (1− π̄)pλ1(t)
.

Lemma 6.1. a) Let π̄ ∈ (0, 1) and

(1/λ1)′′(t) > 0, ∀ t > 0, (6.1)

−(1/λ1)′(+0) > π̄. (6.2)

Then

(i) as a function of t, λ(π̄, t) has the only global maximum t̂ = t̂(π̄);
(ii) λ(π̄, t) is strictly increasing on [0, t̂(π̄)] and decreasing on [t̂(π̄),+∞).

b) If (6.1) holds but (6.2) fails, then λ(π̄, t) is a decreasing function on R+.

Suppose that n players experiment with projects of unknown quality, and the rates
of arrival of news are i.i.d. random variables. Let {τi}ni=1 be i.i.d. random times of
news arrival, and

pnλ1 = Πn
i=1prob(τi > t) = pnλ1 .
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The expected arrival rate is

λn(π̄, t) =
(1− π̄)nλ1(t)pnλ1(t)

π̄ + (1− π̄)pnλ1(t)
.

Lemma 6.2. a) Let π̄ ∈ (0, 1) and

(1/λ1)′′(t) > 0, t > 0, (6.3)

−(1/λ1)′(+0) > nπ̄. (6.4)

Then

(i) as a function of t, λn(π̄, t) has the only global maximum t̂n = t̂n(π̄);
(ii) λn(π̄, t) is strictly increasing on [0, t̂n(π̄)] and decreasing on [t̂n(π̄),+∞).

b) If (6.3) holds but (6.4) fails, then λn(π̄, t) is a decreasing function on R+.

If π̄ < −(1/λ1)′(+0) < +∞, then the qualitative behavior of the arrival rate
λn(π̄, t) depends on n.

For a sufficiently large n, the arrival rate λn(π̄, t) is a decreasing function, and the
model is qualitatively the same as the exponential bandit model.

6.2. Classification of one-humped bandits. Next, we characterize different pos-
sible types of one-humped bandits. We start with the following preliminary remarks.

• If −(1/λ1)′(+0) = +∞, then (6.4) holds for any n.
• If 0 < −(1/λ1)′(+0) < +∞, then 1/λ1(t) is bounded as t→ 0, and λ1(0) > 0.
• It is possible that λ1(0) > 0, (6.3) holds but −(1/λ1)′(+0) = +∞.
• If λ′1(0) exists and (6.3) holds, then λ1(0) > 0 ⇔ 0 < −(1/λ1)′(+0) < +∞.

Definition 6.3. Let (1/λ1)′′(t) > 0, ∀ t > 0.
We call the bandit model defined by λ1 a one-humped model of Type I, II and III

if the corresponding condition below holds

I. λ1(0) = 0, and λ′1(0) exists, and it is finite;
II. λ1(0) > 0 and λ′1(0) exists, and it is finite;

III. λ1(0) > 0 and −(1/λ1)′(+0) = +∞.

6.3. One-humped bandits of Type I: further properties. An example: Erlang-
k bandits, k ≥ 2.

Type I bandits have the properties that we used to study Erlang-2 bandits:

1. λn(π̄, t)/n < λ(π̄, t), ∀ t > 0, n > 1.
2. For any κ > 1, n > 1, there exists t(κ, n) > 0 such that

κλn(π̄, t)/n > λ(π̄, t), 0 < t < t(κ, n).

3. Let κ ∈ (1, n), and let t̃ = t̃(κ, n) > 0 be a solution of the equation

κλn(π̄, t)/n = λ(π̄, t).

Then t̃(κ, n) exists, and it is unique.



ERLANG BANDITS 35

6.4. One-humped bandits of Types II and III. Properties listed for Type I hold,
and equilibria of the same types are possible.

Depending on the parameters, the usual encouragement effect can be observed (as
in exponential bandit models).

An additional effect and type of equilibria (if r is sufficiently large): discouragement
(crowding out) effect: ∃m ≥ 1 s.t.

(1) if n < m players are in the game at time 0, they will find it optimal to start
experimenting with the “bad news” technology;

(2) n ≥ m players will not start experimenting unless n−m of them exit instantly.

In the game starting at t = 0, mixed equilibria similar to the ones considered in a
subgame that starts at the optimal leader threshold (in the model with breakdowns)
are possible.

6.5. Multi-humped bandits. We call the model a multi-humped model, if λ has
more than one point of local maximum. Examples

(a) the environment with some seasonality;
(b) if business cycle effects are taken into account;
(c) endogenous multi-humped bandits.

6.6. Endogenous multi-humped bandits. Assume that the players plan to enter
the game with breakdowns at times 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn < tn+1 := +∞; this can
be an equilibrium outcome if, for example, players are asymmetric.

Then the rate of arrival Λ(π̄; t), which the players that are in the game face, is
defined as follows. For k = 1, 2, . . . , n and t ∈ [tk, tk+1),

Λ(π̄; t) =
k∑
j=1

λ(π̄; t− tj).

Clearly, more than one hump is possible, and if the underlying one-humped bandit is
of Type II or III, then Λ exhibits jumps. Furthermore, in the model with breakdowns,
the expected cost Ct at time t is not of the form Cκn−1λn(π̄, t)/(n) (κn−1 := 1 + (n−
1)L/C). For player m, m ≤ n, the expected cost is

Cm,t = Cλ(π̄; t− tm) + L
∑

1≤j≤n,j 6=m

λ(π̄; t− tj).

7. Conclusion

I suggested a new model for strategic experimentation, where “good” or “bad”
news arrive at random times which are modeled as i.i.d. Erlang(2,λ) variables. The
initial value of the parameter λ is not known, and can be either positive or zero.
Erlang bandits models are almost as tractable as exponential bandits models and can
incorporate such realistic features as dependence of the expected rate of news arrival
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on the time elapsed since the start of an experiment and judgement about the quality
of a “risky” arm based on evidence of a series of trials as opposed to a single evidence
of success or failure as in exponential models with conclusive experiments.

I considered strategic experimentation with Erlang bandits and

• Characterized SPE in a model with conclusive failures.
• Characterized optimal stopping strategies in terms of critical levels of expected

rates of arrival of time-inhomogeneous Poisson processes.
• Showed that depending on parameters of the model the following equilibrium

outcomes are possible:
(i) none of the players find it optimal to stop unless the first failure happens,
(ii) the leader stops in finite time, and the follower either exits later in finite

time, or never unless the first failure happens;
(iii) a symmetric equilibrium, where the players do not stop until the optimal

stopping time of the leader and then randomize in the interval between
the leader’s and the follower’s optimal stopping times;

(iv) players stop simultaneously (special case).
• Similar results hold in a model with breakthroughs.
• In a model with costly failures, it may be better to “become an ostrich” in

the sense that a player, who has to stop first in the asymmetric SPE, is better
off experimenting alone.
• Suggested a classification of humped bandits
• Showed that a wide class of humped bandits enjoy the same properties as

Erlang bandits.

In the future, I plan to extend the Erlang bandits model to inconclusive experiments,
correlated arms, private payoffs, and other types of humped bandits.
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8. appendix

8.1. Proof of Lemma 3.1. We start with the following result.

Lemma 8.1. Let the following conditions hold:

(i) f : [0,+∞)→ R be continuous and differentiable;
(ii) there exists B > 0 and r > 0 s.t. |f(t)| ≤ Be−rt ∀ t ≥ 0;

(iii) q satisfies the condtions of Definition 2.1 and the singular continuous component
of the Lebesgue decomposition of q is trivial.

Then ∫ ∞
t

f(t′)(−dq(t′)) = f(t)q(t) +

∫ ∞
t

f ′(t′)q(t′)dt′. (8.1)

Proof. By definition,

∫ ∞
t

f(t′)(−dq(t′)) = −
∫ ∞
t

f(t′)q′(t′)dt′ +
∑

t′ ≥ t :
∆q(t′) 6= 0

f(t′)(−∆q(t′)),

and

−f(t)q(t) =

∫ ∞
t

d (f(t′)q(t′))

=

∫ ∞
t

(f(t′)q(t′))
′
dt′ −

∑
t′ ≥ t :

∆q(t′) 6= 0

f(t′)(−∆q(t′))

=

∫ ∞
t

f ′(t′)q(t′)dt′ +

∫ ∞
t

f(t′)q′(t′)dt′ −
∑

t′ ≥ t :
∆q(t′) 6= 0

f(t′)(−∆q(t′))

=

∫ ∞
t

f ′(t′)q(t′)dt′ −
∫ ∞
t

f(t′)(−dq(t′)).

Equation (8.1) follows. �
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Using Lemma 8.1, we rewrite the second integral in (3.1) as

S

∫ ∞
t

e−r(t
′−t)ps(πs(π̄, t), t

′)

pd(π̄, t)
(−dqt(t′))

= −S ert

pd(π̄, t)
e−rt

′
ps(πs(π̄, t), t

′)qt(t′)
∣∣∣∞
t

+ S
ert

pd(π̄, t)

∫ ∞
t

d

dt′

(
e−rt

′
ps(πs(π̄, t), t

′)
)
qt(t′)dt′

= S + S
ert

pd(π̄, t)

∫ ∞
t

e−rt
′
ps(πs(π̄, t), t

′)

(
−r +

p′s(πs(π̄, t), t
′)

ps(πs(π̄, t), t′)

)
qt(t′)dt′

= S + S
ert

pd(π̄, t)

∫ ∞
t

e−rt
′
ps(πs(π̄, t), t

′) (−r − λs(πs(π̄, t), t′)) qt(t′)dt′.

Substitute the last expression for the the second integral in (3.1), then

F (π̄, t) = S+
ert

pd(π̄, t)
sup
qt

∫ ∞
t

e−rt
′
ps(πs(π̄, t), t

′) (r(R− S)− λs(πs(π̄, t), t′)C) qt(t′)dt′.

Dividing and multiplying the integrand by λC and using (3.2), we arrive at (3.1).

8.2. Proof of Lemma 3.8. We start with the following result.

Lemma 8.2. Let the following conditions hold:

(i) f : [0,+∞)→ R is continuous and differentiable;
(ii) there exists B > 0 and r > 0 s.t. |f(t)| ≤ Be−rt ∀ t ≥ 0;

(iii) qi, qj satisfy the conditions of of Definition 2.1, and the singular continuous
components of the Lebesgue decomposition of qi, qj are trivial.

Then ∫ ∞
t

f(t′)qj(t
′)(−dqi(t′)) (8.2)

= −f(t)qi(t)qj(t) +

∫ ∞
t

f ′(t′)qi(t
′)qj(t

′)dt′

−
∫ ∞
t

f(t′)qi(t
′)(−dqj(t′))dt′ −

∑
t′ ≥ t :

∆qi(t
′) 6= 0

∆qj(t
′) 6= 0

f(t′)(−∆qi(t
′)∆qj(t

′)).
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Proof. Applying Definition 2.5, we obtain

−f(t)qi(t)qj(t) =

∫ ∞
t

d (f(t′)qi(t
′)qj(t

′))

=

∫ ∞
t

(f(t′)qi(t
′)qj(t

′))
′
dt′ −

∑
t′ ≥ t :

∆(qi(t
′)qj(t

′)) 6= 0

f(t′)(−∆(qi(t
′)qj(t

′)))

=

∫ ∞
t

f ′(t′)qi(t
′)qj(t

′)dt′ +

∫ ∞
t

f(t′)q′i(t
′)qj(t

′)dt′ +

∫ ∞
t

f(t′)q′j(t
′)qi(t

′)dt′

−
∑

t′ ≥ t :
∆qi(t

′) 6= 0

f(t′)qj(t
′)(−∆qi(t

′))−
∑

t′ ≥ t :
∆qj(t

′) 6= 0

f(t′)qi(t
′)(−∆qj(t

′))

−
∑

t′ ≥ t :
∆qi(t

′) 6= 0
∆qj(t

′) 6= 0

f(t′)(−∆qi(t
′)∆qj(t

′))

=

∫ ∞
t

f ′(t′)qi(t
′)qj(t

′)dt′ −
∫ ∞
t

f(t′)qj(t
′)(−dqi(t′))

−
∫ ∞
t

f(t′)qi(t
′)(−dqj(t′))dt′ −

∑
t′ ≥ t :

∆qi(t
′) 6= 0

∆qj(t
′) 6= 0

f(t′)(−∆qi(t
′)∆qj(t

′)).

Equation (8.2) follows. �

Now we can prove Lemma 3.8, in several steps.

Step 1. Rewrite the second integral on the RHS of (3.17) as∫ ∞
{t′≥t | ∆dqti(t

′)=0}
e−r(t

′−t)pd(π̄, t
′)

pd(π̄, t)
Fi(π̄, t

′)qti(t
′)(−dqtj(t′))

=

∫ ∞
t

e−r(t
′−t)pd(π̄, t

′)

pd(π̄, t)
Fi(π̄, t

′)qti(t
′)(−dqtj(t′)) (8.3)

−
∑

t′ ≥ t :
∆qi(t

′) 6= 0
∆qj(t

′) 6= 0

e−r(t
′−t)pd(π̄, t

′)

pd(π̄, t)
Fi(π̄, t

′)qti(t
′)(−∆qj(t

′)).
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Substitute for Fi(π̄, t
′) on the RHS of equation (4.13). Then (8.3) becomes∫ ∞

{t′≥t | ∆dqti(t
′)=0}

e−r(t
′−t)pd(π̄, t

′)

pd(π̄, t)
Fi(π̄, t

′)qti(t
′)(−dqtj(t′))

=
ert

pd(π̄, t)

∫ ∞
t

(Se−rt
′
pd(π̄, t

′) + Φ(A, π̄, t′; tf (A, π̄, t
′)))qti(t

′)(−dqtj(t′)) (8.4)

− ert

pd(π̄, t)

∑
t′ ≥ t :

∆qi(t
′) 6= 0

∆qj(t
′) 6= 0

(Se−rt
′
pd(π̄, t

′) + Φ(A, π̄, t′; tf (A, π̄, t
′)))qti(t

′)(−∆qj(t
′)).

By definition, ∫ ∞
t

Φ(A, π̄, t′; tf (A, π̄, t
′))qti(t

′)(−dqtj(t′))

= −
∫ ∞
t

Φ(A, π̄, t′; tf (A, π̄, t
′))qti(t

′)(qtj(t
′))′dt′

+
∑

t′ ≥ t :
∆qj(t

′) 6= 0

Φ(A, π̄, t′; tf (A, π̄, t
′))qti(t

′)(−∆qj(t
′)).

Therefore, we can rewrite (8.4) as∫ ∞
{t′≥t | ∆dqti(t

′)=0}
e−r(t

′−t)pd(π̄, t
′)

pd(π̄, t)
Fi(π̄, t

′)qti(t
′)(−dqtj(t′)) (8.5)

=
ert

pd(π̄, t)

∫ ∞
t

(Se−rt
′
pd(π̄, t

′)qti(t
′)(−dqtj(t′))

− ert

pd(π̄, t)

∑
t′ ≥ t :

∆qi(t
′) 6= 0

∆qj(t
′) 6= 0

Se−rt
′
pd(π̄, t

′)qti(t
′)(−∆qj(t

′)) (8.6)

−
∫ ∞
t

Φ(A, π̄, t′; tf (A, π̄, t
′)))qti(t

′)(qtj(t
′))′dt′

+
ert

pd(π̄, t)

∑
t′ ≥ t :

∆qi(t
′) = 0

∆qj(t
′) 6= 0

Φ(A, π̄, t′; tf (A, π̄, t
′))qti(t

′)(−∆qj(t
′)).
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Step 2. Using Lemma 8.2 write the last integral in (3.17) as∫ ∞
t

e−r(t
′−t)pd(π̄, t

′)

pd(π̄, t)
Sqtj(t

′)(−dqti(t′)) (8.7)

=
Sert

pd(π̄, t)

[
−e−rt′pd(π̄, t′)qtj(t′)qti(t′)

∣∣∣∞
t

+

∫ ∞
t

(
e−rt

′
pd(π̄, t

′)
)′
qti(t

′)qtj(t
′)dt′

−
∫ ∞
t

e−rt
′
pd(π̄, t

′)qti(t
′)(−dqtj(t′))dt′ −

∑
t′ ≥ t :

∆qti(t
′) 6= 0

∆qtj(t
′) 6= 0

e−rt
′
pd(π̄, t

′)(−∆qti(t
′)∆qtj(t

′))
]
.

Using the fact that qti(t) = qtj(1) = 1, we rewrite (8.7) as∫ ∞
t

e−r(t
′−t)pd(π̄, t

′)

pd(π̄, t)
Sqtj(t

′)(−dqti(t′)) = S (8.8)

+
Sert

pd(π̄, t)

[∫ ∞
t

e−rt
′
pd(π̄, t

′) (−r − λd(π̄, t′)) qti(t′)qtj(t′)dt′

−
∫ ∞
t

e−rt
′
pd(π̄, t

′)qti(t
′)(−dqtj(t′))dt′ −

∑
t′ ≥ t :

∆qti(t
′) 6= 0

∆qtj(t
′) 6= 0

e−rt
′
pd(π̄, t

′)(−∆qti(t
′)∆qtj(t

′))
]
.

Adding (8.5) and (8.8) to the first integral in (3.17), we obtain

Vi(π̄, t; q
t
i , q

t
j) = S +

ert

pd(π̄, t)

×
∫ ∞
t

[
e−rt

′
pd(π̄, t

′)

(
r(R− S)− κλd(π̄, t

′)C

2

)
qtj(t

′)

−Φ(A, π̄, t′; tf (A, π̄, t
′))(qtj(t

′))′
]
qti(t

′)dt′

+
ert

pd(π̄, t)

∑
t′ ≥ t :

∆qi(t
′) = 0

∆qj(t
′) 6= 0

Φ(A, π̄, t′; tf (A, π̄, t
′))qti(t

′)(−∆qj(t
′))

− ert

pd(π̄, t)

∑
t′ ≥ t :

∆qi(t
′) 6= 0

∆qj(t
′) 6= 0

Se−rt
′ (
qti(t

′) + ∆qti(t
′)
)

(−∆qj(t
′)).
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It remains to use the notation A = r(R− C)/C to arrive at (3.18).

8.3. Proof of Theorem 4.1. Notice that the proposed strategies are consistent.
Consider a subgame that starts at t ≥ 0 after such a history that no player has
acted as yet. Let player j follow the prescribed strategy (4.3). Then ∆qtj(t

′) = 0 and
(qtj(t

′))′ = 0 for all 0 ≤ t ≤ t′. Player i chooses the best response qti(t
′) which solves

the following problem

sup
qti(t
′)

C

∫ ∞
t

e−rt
′
pd(π̄, t

′) (A− 0.5κλd(π̄, t
′)) qti(t

′)dt′. (8.9)

Let ψ(A, π̄, t) be given by (4.6). Since A ≥ Âd(π̄), ψ(A, π̄, t′) ≥ 0 for all t′ ≥ t. Hence
the best response of player i to qtj given by (4.3) is to play q̂t(t′) = 1 for all t′ ≥ t.
Hence (q̂ti , q̂

t
j) given by (4.3) is a SPE.

8.4. Proof of Lemma 4.2. Straightforward calculations show that λ′d(π̄, t) = 0 iff
t satisfies the following equation:

π̄
2(λt)2 − 1

(λt+ 1)2
= (1− π̄)e−2λt. (8.10)

The LHS in (8.10) is an increasing function, which is equal to −π̄ at t = 0, and tends
to 2π̄ as t→∞. The RHS is a decreasing exponential function, that equals 1− π̄ at
t = 0 and tends to zero as t→∞. Hence the equation (8.10) has a unique solution,
denote it t̂d. Since the LHS in (8.10) is non-positive for t ≤ 1/(λ

√
2), we conclude

that t̂d > 1/(λ
√

2). Furthermore, λ′d(π̄, t) > 0 for all t < t̂d, and λ′d(π̄, t) < 0 for all
t > t̂d, hence t̂d = t̂d(π̄) is the global maximum of λd(π̄, t) on [0,∞).

Thus, λd(π̄, t) is increasing in t on {0 ≤ t < t̂d(π̄)}, and decreasing in t on {t >
t̂d(π̄)}. Hence for any A < Âd(π̄), equation (4.5) has two solutions. Denote them
t∗d = t∗d(κ,A, π̄) < t∗d = t∗d(κ,A, π̄).

dΨ(A, π̄, t;T )

dT
= Ce−rTpd(π̄, T )ψ(π̄, T ).

If T < t∗d(κ,A, π̄) or T > t∗d(κ,A, π̄), then ψ(π̄, T ) > 0, hence Ψ(A, π̄, t;T ) is increas-
ing for such T . If t∗d(κ,A, π̄) < T < t∗d(κ,A, π̄), then ψ(π̄, T ) < 0, hence Ψ(A, π̄, t;T )
is decreasing for such T . Hence t∗d is the local maximum, and t∗d is the local minimum

of Ψ(A, π̄, t; )̇.
The part a) is proved. To prove b), we need to make a more detailed argument.

Substitute (2.3) for λd(π̄, t) in (4.5) and write equation (4.5) as

A

λκ
=

(1− π̄)λt(λt+ 1)

π̄e2λt + (1− π̄)(λt+ 1)2
(8.11)

Denote y := λt and introduce

g(π̄, y) :=
(1− π̄)y(y + 1)

π̄e2y + (1− π̄)(y + 1)2
. (8.12)
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Evidently, g(π̄, λt) is the RHS in (8.11). Hence (8.11) is equivalent to

A

λκ
= g(π̄, y). (8.13)

Let y1 = y1(κ,A, π̄) := λt∗d(κ,A, π̄) be the smallest of the two solutions of (8.13).
Similarly, we can write (3.8) replacing λs(πs(π̄, t

∗
d) with (2.5):

A

λ
=

(1− πs(π̄, t∗d))λt
πs(π̄, t∗d)e

λt + (1− πs(π̄, t∗d))(λt+ 1)
. (8.14)

Since

πs(π̄, t
∗
d) =

π̄

π̄ + (1− π̄)(λt∗d + 1)e−λt
∗
d

=
π̄

π̄ + (1− π̄)(y1 + 1)e−y1
,

we can write (8.14) in an equivalent way as

A

λ
= f(π̄, y1(κ,A, π̄), y), (8.15)

where

f(π̄, y1(κ,A, π̄), y) :=
(1− π̄)y(y1 + 1)

π̄ey1+y + (1− π̄)(y1 + 1)(y + 1)
.

To finish the proof, we need the following lemma.

Lemma 8.3. (i) Functions g(π̄, y) and f(π̄, y1(κ,A, π̄), y) intersect only at two points:
y = 0, and y = y1.

(ii) g(π̄, y) < f(π̄, y1(κ,A, π̄), y) ⇔ y > y1(κ,A, π̄).

Proof. Write the equation g(π̄, y) = f(π̄, y1, y), where y1 = (κ,A, π̄), using the defi-
nitions of f and g :

(1− π̄)y(y + 1)

π̄e2y + (1− π̄)(y + 1)2
=

(1− π̄)y(y1 + 1)

π̄ey1+y + (1− π̄)(y1 + 1)(y + 1)
. (8.16)

Obviously, y = 0 is a solution of (8.16), and if y > 0, then (8.16) is equivalent to

y + 1

π̄e2y + (1− π̄)(y + 1)2
=

y1 + 1

π̄ey1+y + (1− π̄)(y1 + 1)(y + 1)

m
π̄ey1+y(y + 1) + (1− π̄)(y1 + 1)(y + 1)2 = π̄e2y(y1 + 1) + (1− π̄)(y1 + 1)(y + 1)2

m
ey1(y + 1) = ey(y1 + 1)

m
ey

y + 1
=

ey1

y1 + 1
⇔ y = y1.
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Straightforward differentiation shows that

∂g(π̄, y)

∂y
=

1− π̄
(π̄e2y + (1− π̄)(y + 1)2)2

[
(1− π̄)(y + 1)2 − π̄e2y(2y2 − 1)

]
; (8.17)

∂f(π̄, y1, y)

∂y
=

(1− π̄)(y1 + 1)

(π̄ey1+y + (1− π̄)(y + 1)(y1 + 1))2

[
(1− π̄)(y1 + 1)− π̄ey1+y(y − 1)

]
.

We see that

∂g(π̄, 0)

∂y
= 1− π̄ > (1− π̄)(y1 + 1)

π̄ey1 + (1− π̄)(y1 + 1)
=
∂f(π̄, y1, 0)

∂y
.

By continuity,
∂g(π̄, y)

∂y
>
∂f(π̄, y1, y)

∂y

in a right neighborhood of zero. Hence g(π̄, y) > f(π̄, y1, y) in a right neighborhood
of zero. Since there is only one positive intersection of these two functions, g(π̄, y) >
f(π̄, y1, y) for all y ∈ (0, y1), and g(π̄, y) < f(π̄, y1, y) for all y ∈ (y1,∞).

�

By Lemma 8.3,

f(π̄, y1, y1) = g(π̄, y1) =
A

λκ
.

If κ = 1, then y1 is also the smallest solution of (8.15). If κ > 1 and (8.15) has two
solutions, say, z1 < z2, then z1 > y1. Therefore, the followers optimal exit time is
either z1/λ or ∞, hence tf (A, πs(π̄, t

∗
d)) > t∗d.

8.5. Proof of Lemma 4.17. Recall that if A < A∗d(κ, π̄), the optimal stopping time
of the leader is given by equation (8.13), where the function g(π̄, y) is given by (8.12).
Since A < A∗d(κ, π̄), the leader’s optimal stopping time is finite, so if ts(A, π̄) = +∞,
then ts(A, π̄) > t∗d(A, π̄). Consider the case when ts(A, π̄) < +∞. Let

gs(π̄, y) =
(1− π̄)y

π̄ey + (1− π̄)(y + 1)
,

then equation (4.21) is equivalent to

A

λ
= gs(π̄, y). (8.18)

Let κ > 1 and z̃ = z̃(κ, π̄) be the positive root of the following quadratic equation:

π̄z2 − κπ̄z − (κ− 1)(1− π̄) = 0. (8.19)

Let ỹ = ỹ(κ, π̄) be the only positive solution of the equation

eỹ

ỹ
= z̃.
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Lemma 8.4. (i) Graphs of functions κg(π̄, y) and gs(π̄, y) intersect only at y = 0,
and y = ỹ.

(ii) κg(π̄, y) > gs(π̄, y) ⇔ y < ỹ(κ, π̄).

Proof. Write the equation κg(π̄, y) = gs(π̄, y) using the definitions of gs and g:

κ(1− π̄)y(y + 1)

π̄e2y + (1− π̄)(y + 1)2
=

(1− π̄)y

π̄ey + (1− π̄)(y + 1)
. (8.20)

Obviously, y = 0 is a solution of (8.20). If y > 0, then (8.20) is equivalent to

κ(y + 1)

π̄e2y + (1− π̄)(y + 1)2
=

1

π̄ey + (1− π̄)(y + 1)

m
κπ̄ey(y + 1) + (1− π̄)κ(y + 1)2 = π̄e2y + (1− π̄)(y + 1)2

m

κπ̄
ey

y + 1
+ (1− π̄)κ = π̄

e2y

(y + 1)2
+ 1− π̄

Setting z = ey/(y+ 1), we arrive at equation (8.19), which has a single positive root.
Straightforward differentiation shows that

κ
∂g

∂y
(π̄, y) =

κ(1− π̄)

(π̄e2y + (1− π̄)(y + 1)2)2

[
(1− π̄)(y + 1)2 − π̄e2y(2y2 − 1)

]
;

∂gs
∂y

(π̄, y) =
1− π̄

(π̄ey + (1− π̄)(y + 1))2
[1− π̄ − π̄ey(y − 1)] .

We see that

κ
∂g

∂y
(π̄, 0) = κ(1− p̄) > 1− π̄ =

dgs
dy

(π̄, 0).

By continuity,

κ
∂g

∂y
(π̄, y) >

∂gs
∂y

(π̄, y)

in a right neighborhood of zero. Hence κg(π̄, y) > gs(π̄, y) in a right neighborhood of
zero. Since there is only one positive intersection of these two functions, κg(π̄, y) >
f(π̄, y) for all y ∈ (0, ỹ), and κg(π̄, y) < gs(π̄, y) for all y ∈ (ỹ,∞).

�

It is easy to see that λs(π̄, t) is decreasing in π̄ for any t > 0. Since πs(π̄, t) > π̄,
we have λs(πs(π̄, t), t

′) < λs(π̄, t
′) for any t′ > 0. Hence, f(π̄, y1, y) < gs(π̄, y) for any

y > 0 and any y1 > 0. For κ = 1, f(π̄, y1, y1) = g(π̄, y1) = A, hence gs(π̄, y1) > A if
κ = 1, hence ys < y1.

Let
ŷd(π̄) = arg max

y∈R+

g(π̄, y).
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It is easy to see that if gs(π̄, ŷd(π̄)) < κg(π̄, ŷd(π̄)), then the point of intersection of
the two functions ỹ > ŷd(π̄), which immediately implies that gs(π̄, y1) < κg(π̄, y1),
because y1 < ŷd, hence y1 < ys. Equivalently, t∗d < ts. Let

κ∗(π̄) =
gs(π̄, ŷd)

g(π̄, ŷd)
.

Then for every κ > κ∗(π̄), t∗d < ts. Notice that κ > κ∗(π̄) is a sufficient condition, but
not a necessary condition. It may be possible that t∗d < ts for some κ ∈ (1, κ∗(π̄)].

Next, we show that κ∗(π̄) ∈ (1, 2). First of all, the ratio

gs(π̄, y)

g(π̄, y)
=

π̄e2y + (1− π̄)(y + 1)2

π̄ey(y + 1) + (1− π̄)(y + 1)2
> 1, ∀ y > 0, (8.21)

because ey > 1 + y.
Next, it follows from (8.17) that ŷd is given by

(1− π̄)(ŷd + 1)2 = π̄e2ŷd(2ŷ2
d − 1),

and ŷd ∈ (1/
√

2, 1). Using this and (8.21), we calculate

gs(π̄, ŷd)

g(π̄, ŷd)
=

π̄e2ŷd + (1− π̄)(ŷd + 1)2

π̄eŷd(ŷd + 1) + (1− π̄)(ŷd + 1)2

=
2ŷ2

de
ŷd

ŷd + 1 + eŷd(2ŷ2
d − 1)

.

To establish the fact that κ∗(π̄) < 2, we need to show that

1 >
ŷ2
de
ŷd

ŷd + 1 + eŷd(2ŷ2
d − 1)

m
ŷ2
de
ŷd < ŷd + 1 + eŷd(2ŷ2

d − 1)

m
0 < ŷd + 1 + eŷd(ŷ2

d − 1)

m
0 < 1 + eŷd(ŷd − 1)

m
1− ŷd < e−ŷd ,

which holds for any ŷd > 0. The inequality ts(A, π̄) < tf (A, πs(π̄, t
∗
d)) follows from the

fact that the optimal stopping time is increasing in the initial beliefs and π̄ < πs(π̄, t
∗
d).

It remains to show that if t∗d(A, π̄) < ts(A, π̄), then the leader’s value in Theorem
4.15 is smaller than the value of the single experimenter. Let player i be the leader,
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and player j be the follower. We write

Vs(π̄) = S + C

∫ ts

0

e−rtps(π̄, t) (A− λs(π̄, t)) dt,

Vi(π̄, 0, q̂i, q̂j) = S + C

∫ t∗d

0

e−rtpd(π̄, t) (A− 0.5κλd(π̄, t)) dt,

By Lemma 8.4, for κ ≥ κ∗(π̄) and t < t∗d,

A− λs(π̄, t) > A− 0.5κλd(π̄, t),

and ps(π̄, t) > pd(π̄, t) for all t. Hence Vs(π̄) > Vi(π̄, 0, q̂i, q̂j).
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