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Abstract

In this paper, we assess theoretically and empirically the consequences of demand mis-
perceptions. To this end, we develop a New Keynesian model with dispersed information
where agents receive noisy signals on both supply and demand. Firms and consumers
have an asymetric access to information, so aggregate misperceptions of demand by the
supply side can drive economic fluctuations, as well as aggregate misperceptions of supply
by the demand side. We use the model’s predictions to identify fundamental shocks on
supply and demand and their corresponding noise shocks in the data. Our identification
methodology exploits the nowcast errors on both GDP growth and inflation, using the fact
that fundamental and noise shocks affect the errors with opposite signs. We show that
demand-related noise shocks have a negative effect on output and contribute substantially
to business cycles. Both the theory and the data suggest that monetary policy plays a
key role in the transmission of demand noise.
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1 Introduction

It is commonly accepted that expectations on economic activity can be important drivers of
fluctuations by generating waves of optimism and pessimism.1 This very old idea, which dates
back to Pigou (1927) and Keynes (1936), has been revived recently through the concept of
“news”, “animal spirit” or “sentiments”. Agents are imperfectly informed not only about the
future, but also about what is currently going on in the economy, and have “misperceptions”
about the current state of fundamentals. This is apparent in Figure 1, which displays values
of annualized output growth and inflation rate and their associated expectation at different
horizons for the period 2007q2-2011q4.2 Forecasters make mistakes in their predictions at all
horizons, and even contemporaneously.

The recent literature exploring the effects of noise shocks has been mostly focused on mis-
perceptions of TFP. These misperceptions have been rationalized by noise shocks affecting a
common signal on TFP. Several authors argue that these noise shocks related to supply resem-
ble demand shocks, and account for a significant share of short-term and medium-term output
fluctuations (see Blanchard et al., 2013; Forni et al., 2013; Enders et al., 2015; Dées and Zimic,
2016).3 However, misperceptions related to demand signals have been largely neglected.

Yet, misperceptions about demand exist as well, as Figure 1 shows. Consider for instance
the Great Recession. It is striking to observe that forecasters strongly underestimated both the
recession and the large slowdown in inflation at the peak of the crisis in late 2008. Excessive
optimism about the supply side of the economy cannot explain these two facts simultaneously:
forecasters would have underestimated the drop in output but they would also have expected a
reduction in inflation larger than what has been finally observed. Could noisy signals on demand
explain this misperception during the crisis? More generally, do they drive business cycles? In
this paper, we investigate the theoretical implications of noise shocks affecting common signals
on demand and quantify empirically their contribution to business cycle fluctuations. To this
end, we use a sign restriction approach that relies crucially on the survey expectation errors on
both GDP growth and inflation.

We first build a model with dispersed information which is a tractable generalization of
a bare-bones New-Keynesian model à la Gal̀ı with imperfect common knowledge. In this
model, crucially, consumers and firms are distinct agents, so the aggregate expectations of

1See for instance Beaudry and Portier (2004), Lorenzoni (2009, 2010), Jaimovic and Rebelo (2009), Barsky
and Sims (2009), Christiano et al. (2010), Beaudry et al. (2011), Angeletos and La’O (2013), Benhabib et al.
(2015), among others.

2Real GDP growth expressed in annualized rate is extracted from BEA and annualized inflation rate is from
BLS. Forecasts are provided by the Survey of Professional Forecasters (SPF) of the Fed of Philadelphia. The
horizon of the forecast is to the number of quarter ahead the prediction has been made for a given period.

3More generally, the literature has not reached a consensus regarding the contribution of non-fundamental-
driven expectation shifts on the business cycle. Barsky and Sims (2012) disentangle fundamental news and
non-fundamental noise shocks by estimating a structural model with a measure of consumer confidence. They
argue that “animal spirit shocks” account for a negligible part of output volatility. Angeletos et al. (2014)
model confidence through higher-order uncertainty and they show that these type of shocks explain half of the
fluctuations. Fève and Guay (2016) or Levchenko and Pandalai-Nayar (2016) designate “sentiments shocks” as
shocks that explain the largest share of confidence volatility in the US. Levchenko and Pandalai-Nayar (2016)
argues that this form of demand shocks explain a substantial part of high-frequency business cycle while Fève
and Guay (2016) claim that, instead, news shocks on productivity are the main driver of the fluctuations.
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Figure 1: GDP growth and inflation - Final releases and expectations
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consumers differ from those of firms, because firms and consumers have an asymmetric access
to information about the demand- and the supply-side of the economy. Following the literature
on TFP noise shocks, we assume that consumers do not directly observe aggregate productivity
that works as a supply shifter.4 Our originality lies in the assumption that firms on their side do
not directly observe the aggregate preference shock that works as a demand shifter. Therefore,
they make their production decisions with an imperfect information regarding the demand they
face. All agents receive noisy signal regarding the contemporaneous true state of the economy: a
signal on TFP (supply signal) and a signal on preferences (demand signal). Hence, we can study
the implications of “demand-noise shocks” along with the more typical supply-noise shocks.

Our theoretical model shows that demand-noise shock generates an increase in inflation and,
if firms make only pricing decisions, a decrease in output. Indeed, an excessive optimism of firms
on demand leads to excessive inflation that pushes the central bank to react, which drives down
aggregate demand. However, if firms make also quantity decisions, and in particular, use an
intermediate output, then the response of output is ambiguous. The reason is that aggregate
demand depends on firms’ expectations on consumption as well as actual consumption. As
previously, the rise in inflation depresses household’s demand through the monetary policy
channel. However, firms increase their demand for intermediate goods since they interpret
the shock as a fundamental demand shock, i.e. an excess of demand that they have to meet.
The final effect on output depends on the share of intermediate goods in aggregate demand.
Consistently with Lorenzoni (2009), an excessive optimism of consumers about TFP leads to
both an increase in output and inflation, just like fundamental demand shocks.

Consistently with Lorenzoni (2009), an excessive optimism of consumers about TFP leads
to both an increase in output and inflation, just like fundamental demand shocks. As explained
above, the demand-noise shocks has an ambiguous effect on output and so, depending on
parameters, it behaves either like a (negative) supply shock or like (a positive) demand shock.
Accordingly, fundamental and noise shocks cannot be distinguished based solely on inflation
and output. We argue that expectation errors on output and inflation can be used to fix
this identification problem. Precisely, we add an external observer called a surveyor into the
model who has little access to private information and makes expectation errors on output
and inflation. 5 For example, surveyors typically overestimate output following a supply-noise
shock while they underestimate it following a fundamental demand shock. Similarly, surveyors
typically overestimate inflation in the case of a demand-noise shock while they underestimate
it in the case of a fundamental demand shock or a supply-noise shock. These predictions are
derived analytically from the model under exogenous information and the absence of persistence,
and the model is simulated under more general assumptions. Other types of demand shocks
are considered (government spending shocks and monetary policy shocks) and the case where
prices can be used as a source of information, but our results remain robust.

4See Lorenzoni (2009) and Blanchard et al. (2013). In these papers, consumers and firms are the same
agents and do observe aggregate productivity, but they still need to infer its permanent component, which they
do not directly observe.

5To understand this point, suppose that all information is public. Then surveyors, who also observe public
information, can perfectly infer aggregate variables, which are conditional on the same public information. We
therefore assume that all agents receive private signal on top of the public signals that are commonly observed.
In this respect, our model enables us to highlight the key role of private information in generating expectation
errors that can be exploited for identification.
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The contribution of noise shocks to the business cycle is then measured by estimating a
Structural VAR (SVAR) model on US data, using our model-based long-run and sign restric-
tions to identify the shocks. Except the fundamental supply shock which can be identified
through long-run restrictions, fundamental and noise shocks are identified through sign restric-
tions on output and inflation and their respective expectation errors. While we let the data
speak regarding the effect of demand noise shocks on output, we find that they generate a
persistent recession. As we impose a positive response of inflation, this makes them look like
a negative fundamental supply shock. Second, noise shocks in general explain about 30% of
output fluctuations on impact and about 20% after one year, in our most conservative specifica-
tion, which is our baseline. Looking more carefully at our results, we observe that a substantial
part of this contribution is attributable to demand-noise shocks. In other terms, we claim that
misperceptions about the true state of demand emanating from firms is a key and neglected
driver of the business cycle. This result reinforces the idea supported by a growing literature
that expectations-driven (or sentiments) shocks matter for the understanding of the business
cycle. In a series of robustness, we use alternative identification assumptions.

Our methodological contribution consists in showing how the sign restriction methodology
can be extended to expectation errors in order to estimate multiple noise shocks. We exploit
the fact that fundamental and noise shocks affect errors with opposite signs. While these sign
properties have already been exploited in the context of noise shock identification by Dees
and Zimic (2016), we are the first to combine expectation errors on more that one variable. By
backing up our results with those of the literature, we show that, when using the nowcast errors
for identification, omitting the demand side of the economy typically leads to underestimate
the share of noise as a whole, and overestimate the supply noise in particular.

The mechanism leading to a recessionary effect of demand noise is based on the reaction of
monetary policy. Indeed, in our model, we assume that the central bank is imperfectly informed
on the fundamentals and hence uses the common signals to infer inflation. It therefore reacts
positively to the demand signal. This reaction to the signal is beneficial to the economy in the
case of an actual demand shock, as the rise in interest rate mitigates inflation and stabilizes
the economy, but it is detrimental in the case of a noise shock. We test this mechanism by
evaluating the effect of the structural shocks on the Fed Funds rate. Our results show that
the interest rate does react positively to a demand noise shock, which is consistent with our
mechanism.

Our paper belongs to the literature that studies, both theoretically and empirically, the
effect of fundamental and non-fundamental shocks on the business cycle. On the theoretical
front, expectations-driven shocks have been explored from different perspectives. A strand of
the literature interprets those non-fundamental shocks as waves of optimism and pessimism, or
alternatively, as shift in sentiments/confidence. Agents’ perception about economic conditions
might be altered by informational frictions either through sunspot-like mechanisms (Angeletos
and La’O, 2013, Benhabib et al., 2015) or through noisy signal about technology (Lorenzoni,
2009).6 We enrich Lorenzoni’s approach by explicitly modelling the noise-ridden signals received
by the production sector about demand.

On the empirical front, we contribute to the research on the identification of noise shocks.

6There is another road to formalize sentiments shocks which have been adopted for instance by Melosi
(2014) and Milani (2014) who assume near-rational agents.
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In particular, we are the first to estimate multiple noise shocks. The identification through
SVARs is plagued by a non-invertibility issue, as explained in Blanchard et al. (2013). This
issue is simply due to the fact that, contemporaneously to a given shock, if the agents cannot
identify the shock, neither can the econometrician. Some identification strategies, tightly linked
to theoretical models, such as the GMM, as in Blanchard et al. (2013), or minimum-distance
estimation, as in Barsky and Sims (2011), can be used to overcome that issue. Another solution
is to use information that is not contemporaneously available to the agents, in which case,
SVARs can be used. This is the route followed by Forni et al. (2013), Enders et al. (2015),
Dées and Zimic (2016) and Masolo and Paccagnini (2015) and which we follow as well. Our
paper is closest to Enders et al. (2015) in the methodology since we all exploit expectation
errors based on GDP nowcast to identify fundamental and noise shocks ex post. However, unlike
them (and also other papers using the SVAR strategy), we expand the identification strategy
by using expectation errors on inflation which allows us to identify demand noise shocks as
well.

Our paper is also related to the literature that studies more specifically the effect of expec-
tations on demand. Fiscal and monetary news, in particular, have been the focus of attention.7

These studies focus on foresighted demand shocks, not demand misperceptions. To the best
of our knowledge, we are the first to quantify the contribution to business cycles of noise
shocks on demand, and to show their recessionary effect. Fève and Pietrunti (2016) identify
the amount of noise in fiscal policy signaling by using survey data for several countries. Ricco
(2015) evaluates the impact of “misexpectations” about fiscal policy. These papers however do
not quantify the contribution of these noise shocks to the business cycle. Our approach is also
more comprehensive to the extent that we try to include all types of demand shocks.

The paper is structured as follows. Section 2 lays down a simple New Keynesian model with
dispersed information, and Section 3 derives the predictions of the model that will be used in
Section 4 for the SVAR estimation. Section 5 concludes.

2 A Model with Dispersed Information

We model an economy hit by permanent aggregate technology (supply) and transitory prefer-
ence (demand) shocks. There is a continuum of households, each owning a continuum of firms
producing differentiated goods. We include two sources of uncertainty. First, the households
do not observe the current technology. Second, firms do not observe the current preference
shock. Instead, agents receive one public signal on the technology shock and one public signal
on the preference shock. These two categories of signals are affected by aggregate noise shocks,
which we refer to respectively as the supply and demand noise shocks.

Each household lives in a different island, and visits other islands to shop and work. In
this set-up, prices are island-specific, so they do not fully reveal aggregate shocks. As a result,
noise shocks will have an impact on the economy. We derive from this setup a two-equation

7Yang (2005), Perotti (2011), Leeper et al. (2013) and Forni and Gambetti (2014) have studied the effect of
fiscal news, while Campbell et al. (2012), Milani and Treadwell (2012), Ben Zeev et al. (2016) study the effect
of monetary news. Milani and Rajbhandari (2012) estimate the effect of news about a large array of shocks,
using a workhorse New Keynesian model and the SPF estimates of a wide range of variables.
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New-Keynesian model that extends Gaĺı (2008) under dispersed information. In particular, we
allow firms’ information to differ from the households’. As a result, both noise on demand and
on supply will affect aggregate outcomes.

We also introduce surveyors (one per island), some external observers of the economy who
play no role in the model but they collect information on their island and produce survey
expectations. Therefore, we distinguish the “survey” expectations from the “agents” expecta-
tions. Agents expectations are the rational expectations of the agents of the economy that are
relevant for their decision-making. Survey expectations, which are conditional on the surveyor
information, are empirically relevant as they will enable us to make predictions on the effect of
noise shocks.

2.1 Preferences, Technology and Policy

The economy is composed of a continuum of islands indexed by i ∈ [0, 1], each populated by a
representative household and a surveyor, also indexed by i. The household owns a continuum
of monopolistic firms each producing a differentiated good indexed by j ∈ [0, 1] on island i.
The household buys goods produced in another island and supplies labor in yet another island.
Namely, each period nature randomly selects an island lc(i, t) ∈ [0, 1] visited by household i
to shop and independently selects an island lw(i, t) ∈ [0, 1] visited by household i to work.
Similarly, firms of island i are visited by a household kc(i, t) ∈ [0, 1] to shop and by a household
kw(i, t) ∈ [0, 1] to work.

Fundamental shocks (technology, preferences) are identical across islands. Only information
can differ from one island to another. We will specify later the exact structure of information
in this economy.

Preferences and technology The household’s utility is given by

Uit = Et

∞∑
s=0

Bt+s

{
log(Cit+s)−

1

1 + ζ
N1+ζ
it+s

}
, (1)

where Bt is the coefficient of time preference for date t defined by Bt = βBt−1e
−ubt−1 , with

B0 = 1. β is the average factor of time preference and ubt is an intertemporal time preference
shifter following the process:

ubt = ρbu
b
t−1 + εbt , (2)

with εb a gaussian i.i.d. shock with mean zero and standard deviation σb. Household i decides
both consumption Cit for period t, and the labor supply Nit by maximizing (1), but at different
sub-periods.

In each island i, a competitive final good firm combines a continuum of intermediate goods
produced on i in quantities Yijt, with j ∈ [0, 1] to produce the final good Yit, following the
typical production function

Yit =

(∫ 1

0

Y
(γ−1)/γ
ijt dj

)γ/(γ−1)

, (3)

where γ is the input demand elasticity, with γ > 1. The final good is then sold at price Pit on
island i.
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Each type-j good is produced by firm j and sold on island i at price Pijt. Firm j produces
using a quantity of labor Nkw(i,t)jt supplied by household kw(i, t) with the production function

Yijt = AtNkw(i,t)jt, (4)

where At is a productivity shifter. Let At = Āeu
a
t where uat follows a random walk:

uat = uat−1 + εat , (5)

with εat a gaussian i.i.d. shock with mean zero and standard deviation σa. Notice that technology
shocks have a permanent component while preference shocks are transitory, see Equations (2)
and (5). Nominal rigidities in price-setting follow Calvo (1983): each period, a fraction 1− θ of
island i firms are able to re-optimize their prices.

Monetary policy The central bank forms expectations on inflation and sets the interest rate
on one-period-maturity nominal deposits with the rule

it = ī+ ϕEg
t (πt), (6)

where πt = pt − pt−1 with pt = log(Pt) the average price across islands (Pt =
∫ 1

0
Pitdi), and

Eg
t (.) is the expectation of the central bank.

Timing and trading We follow a timing and a trading structure similar to Lorenzoni (2011).
The central bank works as an account keeper for the households. Each household holds an
interest-bearing deposit denominated in nominal terms at the central bank. This account is
credited and debited by the agents of the household whenever they make a purchase or receive
payments. A period is divided in four stages, as described in Figure 2: the contingent claims
trading stage, the price-setting stage, the shopping stage and the production stage. In the first
stage, households trade contingent claims in a centralized market. These claims are paid in the
next period’s first stage. The market for contingent claims closes in the next three stages. In
the second stage, shocks are realized. Firms set their prices, the central bank sets the interest
rate. In the third stage, the consumer visits an island and participates to the local good market,
making orders to firms. In the fourth stage, the household goes to another island to work and
production takes place. At the end of period, the household receives firms’ profits and the
remaining resources are left in the central bank’s account. We will discuss later in details how
information unfolds along this timeline.

The representative household faces then the following budget constraint:

(1+ it)Dit+1 +Plc(i,t)tCit+

∫
Q(ωit)Zit+1(ωit)dωit = Dit+Wlw(i,t)tNit+

∫ 1

0

PijtYijtdj+Zit(ωit−1),

(7)
where Dit+1 denotes the one-period-maturity nominal deposits, Plc(i,t)t is the price of the final
consumption good in island lc(i, t), Wlw(i,t)t is the nominal wage in island lw(i, t). ωit denotes the
state, which depends on the set of aggregate and idiosyncratic shocks that occur in the second
stage. Q(ωit) is the unit price of a contingent claim that delivers 1 in state ωit. Zit+1(ωit) are
the quantities of contingent claims bought by the household.
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Figure 2: Timeline

Stage 1 Stage 2 Stage 4

- Agents

observe

past

shocks

and past

variables

- Past

contingent

claims are

settled

- New

State-

contingent

claims are

traded

- Shocks are

realized

- Exogenous

signals are

observed

- Firms set prices

- The central bank

sets the interest

rate

- Households

decide on

consumption

EXOGENOUS 

INFORMATION

CASE

- Households

shop (make

orders)

- Households

decide on

consumption

ENDOGENOUS 

INFORMATION

CASE 

- Households

work

Stage 3

Each household starts with zero deposits so Dit = 0. Since households face idiosyncratic
shocks, their ex post deposits may evolve over time. However, since they have access to state-
contingent claims and since they face identical shocks ex ante, they can fully insure against
those shocks. Since in equilibrium we have

∫ 1

0
Ditdi = 0, their ex post net position therefore

stays equal to zero over time. This eliminates ex post heterogeneity across households, which
greatly simplifies the problem.

2.2 Information

At the first stage of date t, agents (households, firms and surveyors) observe past variables:
unt−1, n = a, b and past prices pt−1 and pit−1, i ∈ [0, 1]. In the second stage, firms also learn
their productivity uat and the households learn the households’ preferences ubt . Additionally, the
households, the firms, the central bank and the surveyors all receive exogenous public signals
on the fundamentals εat and εbt .

We denote by snt , n = a, b, the public signal received by all the agents at date t regarding
shock εnt , so that we have, for n = a, b:

snt = εnt + ent , (8)
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where ent , is a gaussian i.i.d. shock with mean zero and a standard deviation equal to σ0n. eat
and ebt correspond respectively to the productivity and preference noise shocks while εat and εbt
are the corresponding fundamental shocks.

Besides, on island i, the household, firms and the surveyors receive the following private
signals on productivity and preferences:

xnit = εnt + λnit, (9)

for n = a, b, where λnit, is a gaussian i.i.d. shock with mean zero and a standard deviation equal

to σ1n and that satisfies
∫ 1

0
λnitdi = 0.

Agents expectations are defined as follows: Em
it (.) = E(.|Imit ), m = c, w, f, s, where c, w,

f and s denote respectively households at stage 3 (shopping stage), households at stage 4
(production stage), firms and surveyors, and Imit is the information set of agent m. Eg

t (.) =
E(.|Igt ) is the expectation of the central bank.

Notice that the firms and the households share common signals, but they have an unequal
access to εat and εbt . Namely, firms have a privileged access to the information on technology
while households have the knowledge on their preferences.

The information set of the agents derives from the timing assumption and from the island
structure of the economy. Consider firms of island i first. Firms know technology, but do
not observe preferences, which they try to infer. Firms set their price in the second stage,
before the good and labor markets open. Their pricing decisions are then conditional on their
private and public signals on the preference shock, and their assessment of the preference shock
is imperfect, which will generate excessive optimism or pessimism about demand. What is
crucial in this respect is that firms do not observe the marginal cost before they set their prices.
This assumption is a natural one. First, in the New-Keynesian literature, prices are typically
predetermined. Second, marginal costs are notoriously difficult to measure. Note that labor
decisions, by contrast, are taken conditional on the nominal wage observed on the island, in
the fourth stage. Since the household from island kc(i, t) at this stage knows her consumption,
nominal price, nominal wage and labor supply, the nominal wage (and hence the marginal cost)
will perfectly reflect the nominal marginal rate of substitution of the working household.

Consider households from island i at their consuming stage now. They know the preference
shock but not the technology shock, so they try to infer its value from their exogenous signals,
but also from market signals. Indeed, while shopping, they observe the price of the final good
on island lc(i, t), which is a source of information on technology. However, because prices are
conditional on the island’s private information, they are imperfect signals of technology. As
a result, households are not able to fully disentangle the fundamental shock from the noise.
Errors on the technology shock will then drive excessive optimism or pessimism about supply
among households.

Finally, when setting the interest rate in stage two, the central bank observes the public
signals but does not have access to the agents’ private information. Thus, despite being ob-
served by households at the shopping stage, the interest rate does not convey any additional
information.

For expositional purposes, we first assume that the households’ consumption decisions are
not conditional on the price observed on island lc(i, t), where they shop. As a result, consump-
tion depends only on the exogenous signals and on the interest rate (observed in the second
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stage). This would imply that consumption decisions are made before the third stage, that
is, before participating to the good market, as described in Figure 2. Besides, as a result
of our setup where firms set prices before participating to any market, pricing decisions are
conditional on exogenous signals only. Therefore, information is mostly exogenous: the only
endogenous signal is the interest rate, observed by the households, but it does not improve their
information. The agents’ information sets are defined precisely in the following assumption:

Assumption 1 (Exogenous information) Define It =
{

(snt )n=a,b ,
(
unt−1

)
n=a,b

, pt−1, (pit)i∈[0,1]

}
as the information set common to the whole economy and Iit =

{
xait, x

b
it, It

}
as the information

set common to island i. We have Ifit = {εat , Iit}, Icit =
{
εbt , it, Iit

}
, Iwit =

{
Wlw(i,t),t, Plc(it),tε

b
t , it, Iit

}
,

Isit = {Iit} and Igt = It.

In the exogenous information case, households cannot use prices to infer the technology
shock. While not realistic, this assumption is useful to derive closed-form solutions, as the
household’s consumption decisions are not conditional on endogenous variables. In an extension,
we will allow consumers to use their endogenous information to form expectations and show
that our results are still valid.8, 9

In the endogenous information case, we assume that consumption decisions are taken as the
consumer participates to the good market, as described in Figure 2. In that case, the agents
have access to the same exogenous information as described in Assumption 1, but household
i, as he participates to the final good market in island lc(i, t), observes Plc(i,t),t while deciding
how much to shop. We formulate this case in through the following assumption:

Assumption 2 (Endogenous information) Define It and Iit as in Assumption 1. We have
Ifit = {εat , Iit}, Isit = {Iit}, Icit =

{
Plc(i,t),t, ε

b
t , it, Iit

}
, Iwit =

{
Wlw(i,t),t, Plc(it),t, ε

b
t , it, Iit

}
and Igt =

It.

2.3 Model’s Summary

Except for the information structure, this model is close to Gaĺı (2008). Small-case letters de-
note variables in log-deviation from their steady-state value. From the households perspective,
the Euler equation on consumption and bonds yields:

cit = Ec
it {cit+1}+ Ec

it {πit+1} − it + ubt . (10)

where πit+1 = plc(i,t+1)t+1 − plc(i,t)t. The Euler equation depends the expected real interest rate
it−Ec

it {πit+1}, on the expectation about future consumption and on the preference disturbance.

8In this context, there is asymmetric information between firms and households, and among firms and
households as well, which generates higher-order beliefs. Note that the assumption that agents learn past
variables reduces the dimensionality issue that is typical of higher-order beliefs. See Woodford (2003), Nimark
(2008) and Melosi (2014).

9Note that we do not keep track of past values of unt and xnit beyond unt−1 and xnit−1 , n = a, b. This
is because agents learn the past value unt−1, which is enough to summarize the current state of the economy.
Keeping track of past shocks would not be relevant in that case.
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A firm j that is part of the portion 1− θ of firms who reset their price in period t on island
i sets the following price that depends on the expected marginal cost in the period and on the
future optimal price (see the Appendix for details):

p∗ijt = p∗it = (1− βθ)[Ef
it(wit)− uat ] + βθEf

it(p
∗
it+1) (11)

where wit is determined as follows:

wit − plc(kw(i,t),t)t = ckw(i,t)t + ζnkw(i,t)t. (12)

Indeed, production and labor hiring take place in stage 4, when households know their con-
sumption and its price, and obviously know how much they work. Therefore, the competitive
wage satisfies exactly their labor supply equation. Since it is household kw(i, t) who works in
island i in period t, the wage in i depends on the price in island lc(kw(i, t)), and the consumption
and labor of household kw(i, t).

The price of the final good on island i is Pit =
(∫ 1

0
(Pijt)

1−γdi
) 1

1−γ
. The log-linearization of

this equation gives us pit =
∫ 1

0
pijtdj. Since firms are identical, pijt depends only on the last

date where j has reset its price, following (11). We can then show that pit on island i is defined
by

pit = θpit−1 + (1− θ)p∗it (13)

Additionally, the production functions and the resource constraints in island i respectively
read:

nkw(i,t)t = yit − uat . (14)

yit = ckc(i,t)t. (15)

Finally, the central bank follows the simple rule (6).
For given functions kc, kw, lc and lw, given past values pt−1, pit−1, i ∈ [0, 1], uat−1 and

ubt−1, given shocks εnt , ent , {λnit}i∈[0,1], for n = a, b, laws of motion (2) and (5) and given infor-
mation sets as defined by Assumptions 1 or 2, a period-t equilibrium is defined by quantities
{cit, yit, nit}i∈[0,1] and prices {p∗it, pit, wit}i∈[0,1] and it satisfying Equations (6) and (10)-(15).

3 The Model’s Predictions

We first derive the model’s prediction in our benchmark specification, under exogenous infor-
mation as described by Assumption 1 and with i.i.d. demand shocks: ρb = 0. These two
assumptions enable us to derive closed-form results. We then relax these assumptions using
numerical simulations, and consider several extensions.

3.1 Benchmark case

In the benchmark case, Assumption 1 holds, and ρb = 0. Denote by Ēm
t (.) =

∫ 1

0
Em
it (.)di,

m = c, w, f, s, the aggregate expectations.

12



Consider the Euler equation (10). Aggregating across households and using (6) and (15),
we obtain (see the Appendix for details):

yt = Ēc
t {yt+1 + πt+1} − ϕEg

t {πt}+ ubt . (16)

Equation (16) corresponds to the aggregate Euler equation, or the New IS. Unlike the traditional
New IS, it does not depend on a homogenous expectation of future output and inflation, but
on the average households’ expectations.

Using Equations (11)-(15) and aggregating across firms and islands, we obtain the aggregate
Phillips curve (see the Appendix for details):

πt = κ
(
Ēf
t {yt} − uat

)
+ βĒf

t {πt+1}

+1−θ
θ

[
Ēf
t {πt} − πt

]
+(1− θ)βĒf

t

{
p∗it+1 − p∗t+1

}
.

(17)

where κ = (1 + ζ) (1− θ) (1− βθ) /θ. It is determined by firms’ expectations. The first term
depends on the average firms’ expected output gap and the second term depends on the average
expectations by firms of future inflation. So far, the system is similar to the bare-bones New
Keynesian model.

Dispersed information introduces some additional terms to the Phillips curve. The third
term depends on the difference between the average inflation expectations and actual inflation.
Indeed, because of dispersed information, there are higher-order beliefs. The firms’ expectations
about other firms’ expectations differ from firms’ expectations. Thus, the average price will
differ from the expected average price. This term represents the fact that, if firms expect
that other firms set higher prices, strategic complementarities in price-setting leads them to
set higher prices. The fourth term represents the average expected difference between the
individual optimal price and the average one. Again, because of dispersed information, firms
might expect their optimal price to differ from the average one. This term simply represents
the fact that firms are more concerned about their individual future optimal price when setting
their current price, as apparent in Equation (11).

Consider now uat and ub. They appear here respectively as a supply shifter (it corresponds
to capacity output) and a demand shifter. While supply uat shifts (17), the aggregate Phillips
curve, demand ubt shifts the aggregate Euler equation (16).

Notice that the demand shifter, everything else equal, has a positive effect on current output.
Notably, a shift in households’ expectations on future output has a similar effect. This is
consistent with Lorenzoni (2009), who shows that supply noise shocks (i.e. overly optimistic
expectations on future output) have an effect on the economy that is observationally equivalent
to demand shocks. Similarly, the supply shifter has a negative effect on inflation, while a shift
in firms’ expectations on current aggregate demand has a positive effect. Consistently, we will
show that positive demand noise shocks (i.e. overly optimistic expectations on demand) have
an effect that is observationally equivalent to negative supply shocks.

Output and inflation We first solve for the equilibrium output and inflation yt and πt, and
then infer the corresponding expectation errors yt − Es

t (yt) and πt − Es
t (πt). We derive the

following Lemma:
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Lemma 1 Under Assumption 1 and ρb = 0, the equilibrium output and inflation are

yt = uat−1 +
δ0a+κϕδg0a(1−δ1a)

1+κϕ
sat + δ1aε

a
t

−κϕ(δ0b+θδ1bδ
g
0b)

(1+κϕ)[1−(1−θ)δ1b]
sbt + εbt

πt = κ
[
δ0a+κϕδg0a(1−δ1a)

1+κϕ
sat − (1− δ1a)ε

a
t

]
+ κ

1−(1−θ)δ1b

[
δ0b−θκϕδ1bδg0b

1+κϕ
sbt + θδ1bε

b
t

] (18)

with δ0j = (σj0)−2/[(σj)
−2 + (σj0)−2 + (σj1)−2], δ1j = (σj1)−2/[(σj)

−2 + (σj0)−2 + (σj1)−2] and
δg0j = (σj0)−2/[(σj)

−2 + (σj0)−2] for j = a, b.

Proof. See the Appendix.
It is useful to define the following condition.

Condition 1 θκϕσ−2
1b < σ−2

b + σ−2
0b .

The effect of shocks on output and inflation is then summarized by the following proposition.

Proposition 1 (Responses of output and inflation) Using Lemma 1, we establish that:

(i) Fundamental supply shocks εat have a permanent, positive effect on output yt and a negative
effect on inflation πt.

(ii) Supply noise shocks eat have a temporary, positive effect on output and a positive effect on
inflation.

(iii) Fundamental demand shocks εbt, have a temporary, positive effect on output and a positive
effect on inflation.

(iv) Demand noise shocks ebt, have a temporaray, negative effect on output. They have a
positive effect on inflation if and only if Condition 1 is satisfied.

Proof. For results (i)-(iii) and for the first part of (iv), we use yt and πt as defined in Lemma
1 and use the fact that 0 < δ0j < 1, 0 < δ1j < 1 and 0 < δg0j < 1 for j = a, b. The second part
of (iv) derives from the fact that the effect of demand noise shocks on inflation depends on the
sign of δ0b − θκϕδ1bδ

g
0b, which is of the same sign as σ−2

b + σ−2
0b − θκϕσ

−2
1b . The permanent and

temporary effect of shocks come from the nature of uat , ε
b
t , e

a
t and ebt .

Result (i) is standard in New Keynesian models: a positive productivity shock has a per-
manent, positive effect on output and a negative effect on inflation. First, consumers increase
their consumption because they receive a positive signal on productivity, which is permanent.
Firms decrease their prices as a response to a lower marginal cost. The negative response of
the policy rate to this deflation further stimulates demand.

Note that result (ii) is reminiscent of Lorenzoni (2009). That is, as in Lorenzoni (2009),
supply noise shocks behave as demand shocks. As in the case of a fundamental productivity
shock, consumers increase their consumption because they receive a positive signal on produc-
tivity. Since this increase in demand is not matched by an actual increase in productivity, firms
increase their prices in expectation of an increase in the marginal cost.
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Result (iii), which states that fundamental demand shocks are both expansionary and infla-
tionary, is also standard in New Keynesian models. Here, these shocks have a direct, positive
effect on aggregate demand. On the other hand, firms receive a positive signal on aggregate
demand, so they increase their prices in expectation of higher marginal costs.

Result (iv), which describes the effects of demand noise shocks, is new. Namely, a positive
noise shock provokes a decrease in output. The central bank increases the interest rate, as
it anticipates a boost in demand and therefore a price increase. Consumers respond to this
increase in interest rate by decreasing consumption, which generates a decrease in output. We
will show below that this result is more ambiguous when firms also make quantity decisions,
which will affect our identification strategy in Section 4.

The effect of demand noise shocks on inflation is ambiguous and depends on Condition 1.
When firms receive a positive public signal on the demand shock, they anticipate a positive
demand shock, but they also anticipate an interest rate increase, which has a negative effect
on aggregate demand. The effect on inflation is then positive if firms anticipate an overall rise
in aggregate demand. This happens if the policy rate is not too responsive (ϕ small) and if the
firms do not have too much of an advantage in detecting the noise shock as compared to the
central bank, hence if the private signals received by firms are not too precise as compared to
the public signal, shared by both firms and the central bank. We argue that it is likely to be the
case. Consider the coefficient θκϕ. It is typically below 1.10 Therefore, a sufficient condition
for demand noise shocks to be inflationary is that the public signal is more precise than the
private signals, so that σ−2

1b < σ−2
0b . This is a natural assumption, in particular since aggregate

signals in fact often arise from a partial aggregation of individual signals. For example, suppose
that the public signal is the average of two randomly chosen private signals xbj1t and xbj2t, so

that sbt = (xbj1t + xbj2t)/2 = εbt + (λbj1t + λbj2t)/2. Then σ2
0b = σ2

1b/2, so we do have σ−2
1b < σ−2

0b .
We therefore assume throughout that Condition 1 is satisfied, so that demand noise shocks are
inflationary.

Note the role played by private and public signals here. To generate an effect of aggregate
noise shocks on output and inflation, only public signals are needed. This can be seen by
setting δ1a and δ1b (the weights of private signals in agents’ expectations) to zero. In this case,
eat and ebt still affect yt and πt in the same way, through the aggregate signals sat and sbt . This
is intuitive as aggregate noise, by definition, affects only aggregate signals. However, as we will
see, private signals play a key role to generate expectation errors.

The role of monetary policy Note that monetary policy is a central channel to understand
the effect of noise shocks on the economy. In the case of a supply-noise shock, the central
bank, because it expects a deflation, decreases the interest rate, which accentuates the positive
response of aggregate demand. What drives the recession after a demand-noise shocks is the
increase in interest rate due to the expected inflation by the central bank. This policy-driven
volatility is in fact a natural result of the limited information of a central bank. This exacerbated
response of output to noise shocks is the counterpart of the traditional stabilizing role of the
monetary policy in presence of fundamental shocks.

10In our baseline parametrization, described in the Appendix, θκϕ = 0.55.
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Expectation errors The predictions summarized in Proposition 1 are not sufficient to iden-
tify fundamental and noise shocks on demand and supply using sign restrictions on output
and inflation. While sign restrictions on output and inflation have been widely used to identify
supply and demand fundamental shocks, they are not consistent in the presence of noise shocks.
Indeed, as highlighted by Lorenzoni (2009), a supply noise shock behaves like a fundamental
demand shock (results (ii) and (iii)) and, as implied by our predictions, a positive demand noise
shock behaves like a negative fundamental supply shock (results (i) and (iv)).11 In order to
broaden our set of identifying assumptions, we can use predictions on the expectation errors of
the surveyor Es

t yt − yt and Es
t πt − πt.

The effect of shocks on expectation errors is summarized in the following proposition.

Proposition 2 (Responses of errors in survey expectations) We establish the following:

(i) Fundamental supply shocks εat have a negative effect on the average survey expectation error
on output Ēs

t yt − yt and a positive effect on the average survey expectation error on
inflation Ēs

t πt − πt.

(ii) Noise supply shocks eat have a positive on the average survey expectation error on output
and a negative effect on the average survey expectation error on inflation.

(iii) Fundamental demand shocks εbt, have a negative effect on the average survey expectation
error on output and a negative effect on the survey average expectation error on inflation.

(iv) Noise demand shocks ebt, have a positive effect on the average survey expectation error on
output and a positive on the average survey expectation error on inflation.

Proof. Note that, because sat and sbt are part of the common information set, Lemma 1 implies

Ēs
t yt − yt = δ1a

(
Ēs
t ε
a
t − εat

)
+ Ēs

t ε
b
t − εbt

Ēs
t πt − πt = κ

[
−(1− δ1a)

(
Ēs
t ε
a
t − εat

)
+ θδ1b

1−(1−θ)δ1b

(
Ēs
t ε
b
t − εbt

)] (19)

The surveyors’ average expectation errors on output and inflation depend on their average
expectation errors on fundamental shocks Ēs

t ε
j
t − ε

j
t , j = a, b. We have Ēs

t ε
j
t − ε

j
t = −(1− δ0j −

δ1j)ε
j
t + (δ0j + δ1j)e

j
t . Since 0 < δ0j + δ1j < 1, then the fundamental affects the average error

negatively while the noise affects it positively.
Table 1 summarizes the sign restrictions in our benchmark specification implied by Propo-

sitions 1 and 2.
We find that fundamental shocks that induce a direct positive (negative) response of endoge-

nous variables tend to generate a negative (positive) error on these variables by the surveyors.
Corresponding noise shocks then generate a positive (negative) error. Said differently, the fun-
damental shock leads the surveyors to underestimate the actual response of the variable while

11Note that in our identification strategy, we also use long-run restrictions to identify the fundamental supply
shock, which should make the identification of the demand noise easier, based on the responses of output and
inflation. However, as we show in the extensions, the negative response of output to this shock is not robust.
This implies that, whatever is the identification strategy used for supply shocks, additional restrictions are
needed.
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Table 1: Sign restriction summary

yt πt Es
t (yt)− yt Es

t (πt)− πt
Supply (εat ) +

(permanently)

- - +

Supply noise (eat ) + + + -
Demand (εbt) + + - -
Demand noise (ebt) - + + +

the noise shock leads them to overestimate it. This implies that supply noise shocks can be
differentiated from fundamental demand shocks through the survey expectation errors. The
supply noise shock drives the surveyors to overestimate output, while the fundamental shock
drives them to underestimate it. Besides, a positive demand noise shock can be distinguished
from a negative supply shock by looking at inflation: the former leads the surveyors to over-
estimate inflation, while the latter leads them to underestimate it. Indeed, a positive demand
shock would lead to inflation, so the surveyors anticipate inflation if they get a positive signal
on demand. Inflation however does not materialize fully if the signal was in fact driven by
noise, which implies that they overestimate inflation. Similarly, a negative supply shock leads
to inflation, which will tend to be underestimated by the surveyors.

Importantly, expectation errors arise in this model because of private information. Indeed,
if all information were public, then there would be no expectation errors, as all agents would
share the same -though possibly noisy- information. This can be seen by setting δ1a and δ1b

(the weights of private signals in agents’ expectations) to zero, as would be the case in the
absence of private signals xait and xbit. As a result, fundamental supply and supply noise shocks
would have no effect on the expectation errors on output, because consumers and surveyors
would share the same information on supply. Similarly, fundamental demand and demand noise
shocks would have no effect on the expectation errors on inflation, because firms and surveyors
would share the same information on demand.12 The fact that firms observe productivity and
that households observe preferences constitute also private information, and is at the source of
the effect of fundamental supply and supply noise shocks on the expectation errors on inflation
and of the effect of fundamental demand and demand noise shocks on the expectation errors
on output.

3.2 Extensions

We further extend the model by allowing firms to make quantity decisions. We also include
other types of shocks and add some persistence by setting ρb > 0. Finally, we allow households
to use prices as signals. Some of these extensions are solved numerically. The parametrization
is described in the Appendix. The online Appendix details the methodology for numerical
simulations.

12Note that the firms’ and consumers’ information need not be superior, as here, surveyors also receive private
signals.
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Quantity decisions by firms In our baseline setup, demand noise shocks have a negative
effect on aggregate demand because firms set higher prices. This aggregate decline in demand
hinges on the fact that firms make only pricing decisions. We study here an extension allowing
firms to make quantity decisions as well. We show that, under some conditions, the effect on
aggregate demand can become positive. However, the effect on inflation and expectation errors
remains the same, still allowing identification. In the empirical exercise, we therefore relax the
restriction on the effect of demand noise on output. Instead, we let the data determine the sign
of the effect.

To introduce quantity decisions by firms, we assume that firms use a quantity Xijt of final
good in the individual good production function. The production function of firm j on island
i (4) then becomes

Yijt = Xα
ijt(AtNkw(i,t)jt)

1−α, (20)

with 0 < α < 1. One can think of Xijt as intermediate input or as an investment that fully
depreciates from period to period. Firms make plans on Xijt at the second stage, at the same
time when they set prices, and shop at the third stage, on island i. Hence, the log-linearized
equilibrium equation for island i is modified as follows

yit = (1− τ)ckc(i,t)t + τxit. (21)

where τ = X/Y is the steady-state share of intermediate input in aggregate demand.
Using the firms’ optimal choice of intermediate input, and taking the island average, we

obtain13

xit = Ef
it(yit). (22)

Crucially, the demand for intermediate input depends on firms’ expectation on the demand
for the final good. Combining Equations (22) and (28), we get that xit = Ef

it(ckc(i,t)t), so
local demand now depends not only on local consumption, but also on firms’ expectations on
consumption. As explained in the Appendix, under Assumption 1, aggregate demand then
follows

yt = (1− τ)ct + τĒf
it(ct), (23)

Aggregate demand depends on aggregate consumption and on the firms’ expectations on ag-
gregate consumption.

We can show that the aggregate Euler equation and the aggregate Phillips curve can be
written as a function of ct and πt only:

ct = Ēc
t {ct+1 + πt+1} − ϕEg

t {πt}+ ubt . (24)

πt = κ(1− α)
(
Ēf
t {ct} − uat

)
+ βĒf

t {πt+1}

+1−θ
θ

[1− α(1− βθ)]
[
Ēf
t {πt} − πt

]
+(1− θ)βĒf

t

{
p∗it+1 − p∗t+1

}
.

(25)

then we use (23) to determine yt. The Euler equation is the same as before, while the Phillips
curve is slightly different. As the share of labor 1− α is lower than one, inflation reacts less to

13See the Appendix for details
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the expected marginal cost of labor Ēf
t {ct} − uat . Notice that when α = 0, this system boils

down to (16)-(17), with yt = ct.
It is useful to define the following set of conditions:

Condition 2 .

(i) 1−α
1−α(1−θ)(1−βθ)θκϕσ

−2
1b < σ−2

0b + σ−2
0b .

(ii) (1− α)κϕσ−2
1b < σ−2

b + σ−2
0b .

(iii) (1− α)κϕσ−2
1b < τ(σ−2

b + σ−2
0b ).

We can show that a demand noise shock is inflationary under Condition 2 (i). This condition
boils down to Condition 1when α = 0, and it is less restrictive when α > 0.

The key difference is that now aggregate demand yt depends also on firms’ expectations on
households’ demand Ēf

t (ct). We can show that under Condition 2 (ii), demand noise shocks
have a positive effect on firms’ demand for intermediate input. Indeed, under this condition,
firms believe that monetary policy is not going to offset what they believe is a demand shock.
It is more likely to be satisfied if inflation reacts less to the expected marginal cost of labor,
that is, if α is large, triggering a milder adverse response of the policy rate. This condition
is similar to Condition 2 (i), under which a demand noise shock is inflationary, except that
Condition 2 (i) also depends on nominal rigidities θ.

Suppose now that this condition is satisfied. The overall effect of demand noise shocks
on aggregate demand is ambiguous, because the household component reacts negatively while
the firms’ component reacts positively. We establish in the Appendix that under Condition
2 (iii), aggregate demand responds positively. This condition is more restrictive: the share of
intermediate input in aggregate demand τ must also be large enough.

If this condition is satisfied, then demand noise shocks are both inflationary and expan-
sionary. How can we then distinguish them, empirically, from fundamental demand shocks and
from supply noise shocks? In fact, we show that the expectation errors still follow Proposition
2. Namely, when a demand noise shock occurs, output and inflation increase, but less than
anticipated. This is in contrast to actual demand shocks, which generates more output and
inflation than anticipated. In the case of supply noise shocks, output expectations are also
over-optimistic, but not inflation expectations.

Adding other shocks We introduce aggregate monetary policy shocks and government
spending shocks. We prove that, in the benchmark case with no persistence and exogenous
information, these shocks correspond to aggregate demand shocks, as the corresponding fun-
damental and noise shocks generate a response of output, inflation and expectation errors that
is qualitatively the same as preference shocks. Our empirical procedure therefore identifies a
large set of demand shocks, and not only preference shocks.

More specifically, the Taylor rule (6) is modified as follows:

it = i+ ϕEg
t (πt)− uvt , (26)
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where uvt is a monetary policy shifter. This shifter can be viewed as a change in velocity or in
the term premium. Alternatively, we could add additional noisy signals received by the central
bank on the fundamentals of the economy.

We introduce a government. The government finances spending Gt by raising debt Bt or
through taxes: Gt + Bt = Tt + RtBt+1, where Gt = Ytḡe

ugt . This means that government
spendings are on average proportional to GDP but Gt/Yt is subject to a shifter ugt . We assume
that the government purchases equal amounts of goods in the different islands. Each household
i pays tax Tit, so that

∫ 1

0
Titdi = Tt, which modifies their budget constraint. The resource

constraint (15) then becomes:
yit = clc(i,t)t + χ̄ugt . (27)

with χ̄ = ḡ/(1− ḡ).
We assume that unt , n = v, g follow autoregressive processes:

unt = ρnu
n
t−1 + εnt . (28)

where εnt are gaussian i.i.d. shocks with mean zero and a standard deviation equal to σn,
n = v, g.

Regarding information, all agents (households, firms, surveyors) in the economy observe
public signals snt on the fundamental shock εnt , n = v, g, of the form described in (8), where ent ,
is a gaussian i.i.d. noise shock with mean zero and a standard deviation equal to σ0n. Besides,
on island i, the household, firms and the surveyor receive private signals xnit on εnt , n = v, g, of
the form described in (9), where λnit, is a gaussian i.i.d. shock with mean zero and a standard

deviation equal to σ1n and that satisfies
∫ 1

0
λnitdi = 0, for n = v, g.

Apart from these new signals, the information structure stays unchanged. The exogenous
and endogenous information assumptions (Assumptions 1 and 2) are only slightly modified.
Now It includes svt and sgt and Iit includes xvit and xgit. Note that, since households observe
the interest rate, they can identify the monetary policy shock, so they have an informational
advantage over firms regarding this shock, just like the preference shock. However, neither firms
nor households have any informational advantage regarding the government spending shock.

If information is exogenous (Assumption 1 holds), then the key equations (16) and (17)
write as follows:

yt = Ēc
t {yt+1 + πt+1} − ϕEg

t {πt}+ ubt + uvt + χ̄
(
ugt − Ēc

t

{
ugt+1

))
. (29)

πt = θ
[
κ
(
Ēf
t {yt} − uat − χĒ

f
t {u

g
t}
)

+ βĒf
t {πt+1}

]
+(1− θ)

[
Ēt {πt} − πt

]
+θ(1− θ)βĒt

{
p∗it+1 − p∗t+1

}
.

(30)

with χ = χ̄/(1+ζ). The monetary policy shifter uvt plays exactly the same role as the preference
shifter ubt , by shifting aggregate demand (29). The government spending shifter however plays a
dual role. It shifts aggregate demand as well, but only to the extent that the current government
spending exceeds the future amount expected by the households. It also plays the role of a
supply shifter in (30). Indeed, government spending plays a positive role on labor supply.
Therefore, firms take into account the expected government spending when setting prices. Yet,
we show in the Appendix that the predictions applying to the preference shock described in
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Propositions 1 and 2 apply not only to the monetary shock, but also to government spending
shock.

Adding persistence The full model, with all 4 fundamental shocks and 4 noise shocks and
exogenous information is simulated, and we allow for some persistence in demand shocks (prefer-
ence, monetary, government spending). Consistently with the benchmark case and Propositions
1 and 2, the only cases where our empirical predictions do not hold are those where we assume
an unrealistically large level of precision for the private signals. In those cases, inflation reacts
negatively to demand noise. Otherwise, our predictions remain very robust.14

Endogenous information Moreover, we assume that the households use prices as a source
of information, so we replace Assumption 1 with Assumption 2. In equilibrium, the observed
price is equal to the aggregate price up to some idiosyncratic shocks τit

plc(i,t)t = pt + τit

where τit is a function of the idiosyncratic shocks in island lc(i, t), which is orthogonal to
the information of island i’s household. The price plc(i,t)t therefore does not perfectly reveal
the aggregate fundamental and noise shocks to household i. The model with endogenous
information is thus similar to the model with exogenous information, except that it includes
additional private information. This case however is not easily tractable. Indeed, aggregation is
more complex, and the information structure is endogenous. We therefore solve it numerically.
Numerical simulations show that all our results carry through as well.15

4 Assessing Noise and Fundamental Shocks

We now exploit the theoretical predictions established in the previous section to gauge the
contribution of demand and supply shocks to the business cycle. To this aim, we estimate a
SVAR model from which structural shocks are identified through sign restrictions derived from
the theoretical framework. Nowcast errors provide information regarding the misperseption of
agents on economic activity. Consistently with our setup, we use this piece of information to
disentangle the transmission channels of fundamental and noise shocks. We first describe the
estimation strategy before turning to the results.

4.1 Estimation Strategy

We first describe the estimation strategy and the identification restrictions on the structural
shocks which lies on a mixture of sign and zero restrictions. We estimate the canonical VAR(p)
model

Yt = Φ (L)Yt + νt, (31)

14See the Appendix for details.
15See the Appendix for details.
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where Yt = (Y1,t, ..., Yn,t)
′ is an (n×1) vector of endogenous variables, Φ is the (n×1) matrix of

estimated parameters, νt is an (n× 1) vector of reduced-form residuals such that νt ∼ iid(0,Σ),
with Σ, a symmetric positive definite matrix. Canonical innovations, νt, are related to structural
innovations, ξt, by the following linear combination

νt = Γξt, (32)

where structural shocks are by assumption orthogonalized, such that ξt ∼ iid(0, In×n) and Γ
is a (n × n) non singular matrix. Relation (32) can be re-written as Σ = Γ̃QQ′Γ̃′, where Γ̃
is a Choleski decomposition of Σ and Q is an orthonormal matrix (i.e. QQ′ = In×n). The
QR decomposition is used to find an orthonormal (or rotation) matrix Q. There is an infinite
number of possible combinations in Q and therefore the structural shocks are identified by
drawing randomly Q and imposing identifying restriction on the impulse response functions
(IRFs) of selected variables to shocks.

Our identification strategy requires to express the MA(∞) representation of the VAR(p)
model

Yt =
∞∑
i=0

riξt−i, (33)

where ri = ∂Yt+i/∂ξ
′
t is interpreted as IRF of the system, Yt+i, to a variation of ξt , ∀i ≥ 0.

The estimated IRFs are asymptotically normal (Lütkepohl, 2005).
Following the Monte Carlo strategy suggested by Hamilton (1995), we randomly generate

a set of coefficients Φ̂ (L) drawn from the normal distribution of the estimated reduced-form
parameters and a matrix Σ̂ drawn from the asymptotic distribution of the variance-covariance
matrix of the reduced-form residuals associated to the canonical VAR (31). We repeat this K
times. For each of these K draws, we follow Arias et al. (2016) and draw a rotation matrix
Q, then apply a transformation to this matrix in order to satisfy the zero long-run restrictions,
and finally build the corresponding IRFs. We select only the set of IRFs among the K draws
for which the sign restrictions are satisfied.16 The identification restrictions are detailed below.
Therefore, our methodology takes into account both the uncertainty inherent to sign restrictions
and the uncertainty of the estimated parameters in (31).17

The baseline VAR model (31) includes the set of observable

Yt = [log(ht), ∆ (yt − ht) , πt, Et {∆yt} −∆ỹt, Et {πt} − π̃t], (34)

where ∆ (yt − ht) denotes the annualized growth rate of labor productivity, measured as the real
output per hour and ht denotes hours worked.18,19 The response of real GDP, yt, to the shocks

16The methodology is detailed in the online Appendix.
17In a similar spirit, Arias et al. (2016) build an algorithm where (i) they draw IRFs from the unrestricted

posterior distribution of the BVAR parameters, (ii) draw a rotation matrix, (iii) build the corresponding IRFs
and (iv) select the IRFs that satisfy the sign restrictions. They argue that this methodology provides an agnostic
shocks’ identification since the distribution of the IRFs conditional to sign restrictions is used.

18Both variables are for the businesss sector and they are taken from the Bureau of Labor Statistics.
19The effects of TFP shocks on hours series have been extensively debated in the literature since the hours

transformation (in level, in first-difference or filtered) might alter the results (see Gaĺı 1999; Francis and Ramey,
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are recovered from these two series. Let (Et {∆yt} −∆ỹt) and (Et {πt} − π̃t) denote the nowcast
error of real GDP growth and GDP deflator inflation, respectively. They are measured as the
difference between the nowcast prediction of the variable and the corresponding first-release
observation. The nowcast predictions are produced by the SPF of the Fed of Philadelphia.20

Before turning to the identification strategy of shocks, we must have a closer look at the
data. Figure 3 displays the first release of real GDP growth and the inflation rate and the
corresponding median nowcast prediction. Agents make systematic mistakes in their nowcasts,
in particular for inflation since nowcast errors are significantly different from zero over the all
sample. During the Great Recession, agents significantly underestimated the economic turmoil
since they expected an inflation rate larger than it effectively realized and they underestimated
the drop in GDP. The series covers the sample 1968q4-2014q2. However, we restrict ourselves
to the period 1983q1-2014q2, because of the changes in the nature of business cycles that
happened after the early 1980’s.21

We now turn to the identification strategy of the shocks. The structural innovations are

ξt = [εat , e
a
t , ε

b
t , e

b
t , εt], (35)

where the first four shocks – as defined in Table 1 – are supply (fundamental and noise)
shocks and demand (fundamental and noise) shocks, respectively. Notice that εt is a remaining
unconstrained structural shock which captures unidentified expansionary fluctuations.

As argued earlier, the set of restrictions described in Table 1 is enough to identify our four
shocks. Fundamental demand shocks as well as supply noise and demand noise shocks are
then identified by sign restrictions on the IRFs on impact, while we impose all shocks except
the supply shock to have no long-run effect on labor productivity, as presented in Table 2.
Consistently with our set-up, we assume that the fundamental supply shock is the only shock
that has a permanent effect on labor productivity.22 We relax the restriction of a negative
response of GDP to the demand-noise shock, as this effect is ambiguous in theory, see Section
3.2. It can nevertheless be distinguished from other short-term shocks through expectation
errors. Since we aim at assessing the contribution of each shock to economic volatility, we

2005; Canova and Paustian, 2011, among others). Since this question strays from the scope of our paper, we
estimate the SVAR model in level and following Canova et al. (2011) we use hours per capita in order to
avoid any potential non-stationarity issues. We are not interested in the response of hours to TFP per se, the
restrictions impose on hours and productivity are simply used to recover the sign restriction targeted for output.

20A nowcast prediction coincide with the median forecast of the variable within the quarter. The question-
naire is sent at the end of the first month of the quarter and the deadline to submit it is in the middle of the
second month of the quarter. At the time of the forecast, the information set of the forecasters consists of data
until the previous quarter (included). The realized values of real GDP growth and inflation, ∆ỹt and π̃t, are
the first release provided by the Real-Time Data Set of the Federal Reserve Bank of Philadelphia. In the SPF,
output is initially measured by GNP, later by GDP. The measures of realized output is adapted accordingly.
All variables are expressed as the annualized percentage change with respect to the previous quarter.

21These changes are often attributed to changes in the conduct of monetary policy, see for example Clarida
et al. (2000).

22Besides, we do not need to assume that inflation reacts negatively to a supply shock, as the effect of TFP on
inflation is not fully consensual in the literature. Gal̀ı (1999), who identifies TFP through long-run restrictions
and Basu et al. (2006), who identify it through an adjusted Solow residual, find a clear deflationary effect.
However, Dedola and Neri (2007), who identify TFP shocks using sign restrictions based on DSGE models,
show that TFP shocks do not conclusively lead to a deflation.
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Figure 3: First releases and nowcasts of GDP growth and inflation
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Note: The solid line is the first release of the annualized real GDP growth rate (upper panel) and GDP deflator
inflation rate (lower panel). The first release series are obtained from the Real-Time Data Set of the Federal Reserve
Bank of Philadelphia. The dash line is the annualized percentage change of the median response of the nowcast
prediction for real GDP (upper panel) and GDP deflator (lower panel). The nowcast data are from the SPF of the
Fed of Philadelphia. 24



Table 2: Baseline Identification Strategy

Short-run Restriction (impact) Long-run Restriction

yt πt Et {∆yt} −∆ỹt Et(πt)− π̃t yt − ht
Supply (εat ) +
Supply noise (eat ) + + + - 0
Demand (εbt) + + - - 0
Demand noise (ebt) + + + 0
Rest (εt) 0

Note: Unfilled elements correspond to unconstrained responses. Labor productivity in the long run is obtained

by taking the cumulated response of labor productivity. The response of GDP is constructed by taking the sum

of the cumulated response of labor productivity and the response of hours.

have chosen to use all the other robust sign restrictions suggested by our theoretical framework
to improve identification.23 As shown by Chari et al. (2008), SVAR models with long-run
restrictions suffers from a lag-truncation bias which leads us to select 8 lags to circumvent this
issue.

4.2 Noise Shocks as Sources of Fluctuations?

We argue that noise shocks, originating from noisy information on supply or demand, matter
for the business cycle. To do so, we examine the effects of the fundamental and noise shocks
and their contribution to GDP fluctuations. A bunch of extensions to the empirical framework
confirms this result.

4.2.1 Benchmark Estimation

In Figure 4, we focus on the median responses of real GDP and the inflation rate to the
fundamental and expectation shocks along with the 16% and 84% quantiles, as suggested by
Uhlig (2005). We can interpret these bands as confidence intervals since we resorted to Monte
Carlo procedure to take into account the uncertainty of estimated parameters in the SVAR
model. The responses of the nowcast errors of these variables are provided in Figure 5. The
use of the median response has been criticized by Fry and Pagan (2011) since it summarizes
conditional moments over different draws of Q. They suggest to compute the “median-target”
which corresponds to the responses associated to a particular draw which are as close as possible
to the medians.24 Looking at inflation, we find that the median-target response (lines with

23In the robustness analysis, we relax several restrictions and show that our results still hold.
24In practice, the impulse response functions are standardized in order to be unit-free: for each draw, we

substract the IRF of a variable to a shock from its median and the difference is divided by the standard deviation
(computed across draws). We select the draw that minimizes the unconditional distance between all the IRFs
and the associated median value.
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circles) is most of the time close to the pointwise median response (solid lines). Differences
are bigger for output responses – at least on the medium-run. In the following, we focus our
discussion on the pointwise median responses.

Figures 4 and 5 deserve several further comments. First, a supply shock has a permanent
effect on output as we restrict it to do so. Second, supply-noise and fundamental demand
shocks generate responses of a similar shape on output and inflation, as suggested by Lorenzoni
(2009). They are differentiated through their response of the output nowcast error which is
of opposite sign, as represented in Figure 5. Third, a demand-noise shock generates a rise in
inflation in the very short-run, just like the other short-run shocks. However, this shock can be
distinguished from a fundamental demand shock because it makes agents over-optimistic about
output, and from a supply-noise because it makes agents over-optimistic about inflation.

Note that these results only reflect our identifying restrictions summarized in Table 2.
Consider now the unrestricted responses. Notably, we find that fundamental supply shocks
generate a negative response of inflation, confirming the theoretical predictions of our baseline
model summarized in Table 1. The response of expectation errors are also in line with the
theory (see Figure 5). Last and not least, despite being unrestricted, the response of output to
a demand-noise shock is strong and negative.

The contribution of the shocks to business cycles is also left for the data to decide. The
variance decomposition of output and inflation is a useful tool to address the question whether
expectation shocks matter for fluctuations. Figure 6 displays the forecast error variance de-
composition of GDP and prices to fundamental and noise shocks, based on the median IRF.25

Noise shocks explain 25% of GDP fluctuations on impact. This value is greater than Enders
et al. (2015) who show that “optimism”(or noise) shocks contribute to 15% of short-term
output volatility.26 Blanchard et al. (2013) also investigate in a fully-fledged DSGE model the
contribution of noise shocks: they find that they account for 20% of output volatility. Our
approach offers a new perspective to these results since we can disentangle supply-driven and
demand-driven noise shocks. We show that a substantial part of our result is attributable to
demand-noise shocks. Indeed, they contribute to about 10 − 20% of GDP fluctuations over
the short and medium run. On the other hand, supply-noise shocks explain 6 − 8% of GDP
variance over the short and medium run. Fundamental supply shocks are important drivers
of fluctuations all over the cycle while demand shocks contribute mostly -by construction- to
short-run fluctuations (20%). The variance of prices tends to be mostly driven by fundamental
shocks, especially fundamental demand shocks (about 30% in the short-run and 75% in the
long run), but noise shocks explain 40% of their short-run fluctuations. Note that a very little
share of the forecast error variance of both GDP and prices is explained by the “rest” shock.

Interestingly, GDP responds on impact relatively more to the fundamental supply shock
than to the supply-noise shock, while it is the opposite for prices. This is consistent with our
model. Indeed, if households have a fairly good assessment of the supply shock, aggregate
demand responds well to fundamental supply shocks. As a result, firms do not expect their

25The forecast error variance decomposition of variable i for shock j at horizon h is computed as Ξijh = r2ijh

/
[∑4

j=1 r
2
ijh

]
, where rijh is the median IRF of variable i for shock j at horizon h.

26Similarly to our results, noise shocks hardly contribute to long-run output volatility by construction, as
supply shocks are identified through long-run restrictions.
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Figure 4: IRFs - Benchmark Estimation
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Note: The solid lines depict the median impulse response, The lower (upper) dotted lines indicate the 16th and 84th
percentile region. The lines with circles are the median-target responses.
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Figure 5: IRFs - Benchmark Estimation - cont’d
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Note: The solid lines depict the median impulse response, The lower (upper) dotted lines indicate the 16th and 84th
percentile region. The lines with circles are the median-target responses.
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Figure 6: Variance decomposition - Output and Inflation
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marginal cost to change much as a response to a fundamental supply shock, as the increase in
the production volume compensates the productivity gains. Yet, they still have to react to an
increase in marginal cost due to noise. Similarly, prices respond on impact relatively more to
the fundamental demand shock than to the demand-noise, while it’s the opposite for GDP. On
the one hand, the relatively accurate reaction of inflation reflects the relatively good assessment
of firms about the demand shock. On the other hand, the relatively large reaction of GDP to
the noise shock is driven by a relatively poor assessment of the demand shock by the central
bank, which sets an excessively high interest rate as a response to a demand-noise shock.

4.2.2 Noise Shocks during the Great Recession

Our methodology sheds light on the role of misperception shocks to explain fluctuations and it
also allows us to assess whether these shocks contributed to the Great Recession that happened
late 2000s’. Figure 7 displays the historical decomposition of GDP reconstructed from the
historical decomposition of hours and productivity for the recent period (2004q1 - 2014q2).27

Interestingly, a large part of the expansion prior to the Great Recession was driven by
positive noise shocks on supply, meaning that agents were too optimistic on output and they
under-estimated inflation. A crucial part of the fluctuations during the crisis seem to come
from recessionary noise shocks, both supply- and demand-related. According to our model,
these two shocks lead agents to under-estimate the deflation (Es

t (πt) > πt), which is in line
with Figure 1 displayed in the introduction. Additionally, the contribution of demand-noise
shocks to the recession becomes larger during the peak of the recession, at a time when agents
under-estimated the drop in output (Es

t (∆yt) > ∆yt) and the deflation (Es
t (πt) > πt) as we

observed in Figure 1. Fundamental shocks also played a role during the economic turmoil and
the recovery. In particular, the share of demand shocks declines all over the recession while the
recovery initiated in 2013-2014 seem to be driven mostly by positive TFP shocks.

4.2.3 Robustness

We run several robustness checks. Table 4 gives the contributions to GDP variance in the
different specifications and the IRFs of output and inflation are provided in the appendix.

Identification Restrictions The sign restrictions described by Table 2 and used for identifi-
cation are based on the theoretical predictions. We can relax some of these restrictions in order
to test the predictions of our model and check the robustness of the variance decomposition.
We relax all the sign restrictions that are not necessary for identification, as summarized in
Table 3.

All shocks are restricted to generate inflation. Fundamental demand shocks are differenti-
ated from noise shocks because they induce surveyors to be under-optimistic, while noise shocks
lead them to be over-optimistic. Noise shocks on demand are then distinguished from noise

27For each draw, we infer the historical decomposition of output from hours and productivity (since these
two variables are included into the SVAR model) and we apply HP-filter. Since the historical decomposition
refers to actual events, we decide to plot the mean of all draws in order to capture the whole distribution and
not only rely on an arbitrary selected draw.
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Figure 7: Historical Decomposition of GDP
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Table 3: Identification - Minimum set of sign restrictions

Short-run Restriction (impact) Long-run Restriction

yt πt Et {∆yt} −∆ỹt Et(πt)− π̃t yt − ht
Supply (εat ) +
Supply noise (eat ) + + - 0
Demand (εbt) + - - 0
Demand noise (ebt) + + + 0
Rest (εt) 0

Note: Unfilled elements correspond to unconstrained responses. Labor productivity in the long run is obtained

by taking the cumulated response of labor productivity. The response of GDP is constructed by taking the sum

of the cumulated response of labor productivity and the response of hours.

shocks on supply through expectation errors on inflation. In the case of noise shocks on de-
mand, surveyors are over-optimistic about inflation, while they wrongly anticipate a deflation
in case of noise on supply. Figure 10 represents the IRFs of output and inflation under this
new identification strategy. Quantitatively, the results are robust. In particular, the response
of GDP to supply noise and fundamental demand, which are unrestricted here, are close to the
baseline case, where these responses are restricted on impact. The main difference is that the
response to supply noise is not significant anymore. Besides, Table 4 shows that the contribu-
tion of noise shocks to GDP variance is 22%, which is close to the baseline, although noise is
almost exclusively due to demand in this case.

Lastly, we relax the restriction regarding the long-run effect of fundamental supply shock on
TFP that we impose in the benchmark estimation. Instead, we use the theoretical predictions of
Table 1 to identify the supply shock. The noise and fundamental shocks are therefore identified
only through sign restrictions. Besides, in order to sharpen the identification, we additionally
impose that the response of GDP to the demand noise shock is not greater than its response
to the fundamental demand shock, which is consistent with the theory.

The IRFs are reported in Figure 11. The reaction of output to the demand noise shock,
the only one whose sign is not restricted, is still negative, although not as significantly as in
the benchmark case. Interestingly, the other IRFs are close to the baseline case. For example,
the response of inflation to demand shocks is persistent. Similarly, the supply shock is the
most persistent shock, and explains 64% of long-run fluctuations, as represented in panel (c)
of Table 4, despite the fact that no long run restriction has been imposed. Together, noise
shocks explain a bit less than 25% of short-term fluctuations, with still a larger contribution of
demand noise shocks in the short-term.

Additional Sensitivity Checks One caveat of SVAR models relying on long-run restrictions
resids in the difficulty to recover the matrix of long-run (infinite horizon) responses in truncated
sample and finite number of lags. We therefore check the sensitivity of our results under
these two dimensions. First, we re-estimate the model on the sample 1968q4-2014q3, ignoring
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therefore the structural break on inflation observed in the 80’s. The IRFs of variables are
displayed in Figure 12 and panel (d) in Table 4 shows the contribution of each shocks to output
volatility. The IRFs and variance decomposition are only marginally affected by adding more
observations. Second, we increase the number of lags to 12 in order to check whether our results
remains stable with a different lag length. The IRFs in Figure 13 show that the results still
holds. However, because the estimated short-run impact of supply shocks is lower, the relative
share in the variance of GDP of noise shocks, especially demand noise shocks, is larger (about
40%), as shown in panel (e) of Table 4.

There is a debate on the literature regarding the effect of technology shocks on hours
which might be affected by the transformation of hours series. In our benchmark estimation,
we normalize hours by the size of the population in order to have stationary series. As a
robustness, we adopt an alternative detrending strategy by removing the linear quadratic trend
from hours.28 The IRFs in Figure 14 and panel (f) in Table 4 show that noise shocks have
a similar effect on GDP, qualitatively and quantitatively, to the benchmark case. However,
GDP reacts less to the supply shock in the short run. This is due to the strong and persistent
negative response of hours (not shown) to the technology shocks that is usually recovered when
hours are detrended. As a result, noise shocks have an even larger contribution to short-run
fluctuations. Namely, they account for about 40% of short-term fluctuations, of which 25%
is due to demand noise shocks. However, these results have to be taken with a grain of salt,
because some potentially important drivers of fluctuations have been removed from the data.

4.2.4 Discussion

Our benchmark estimation highlights the critical role of demand-noise shocks on fluctuations,
as summarized in Panel (a) of Table 4. In order to compare our results with the literature,
we assess the contribution of the supply-noise shock when we disregard the demand side of
the economy, as is usually done. We argue that omitting demand noise shocks tends to under-
estimate the contribution of noise shocks as a whole and over-estimate the contribution of the
supply noise shock. To do so, we focus on Enders et al. (2015), as their methodology is closest
to ours. Our specification with detrended hours, in particular, can nest their methodology
best. We remove inflation and its nowcast error from the VAR to make it more comparable,
and focus our estimation on supply shocks and their noise. Following our methodology, we
use long-run restrictions to identify the fundamental supply shock and sign restrictions on
GDP and the nowcast error on growth to identify the supply-noise shock. Figure 15 shows the
response of GDP and the nowcast error. The response of GDP to the supply noise shock is
stronger than in Figure 14. Consistently, the contribution of the supply-noise shocks to short-
term fluctuations, reported in panel (g) of Table 4, is larger than in the case with all shocks,
reported in panel (f) (23% against 14%). This value is in line with the finding of Enders et al.
(2015) and Blanchard et al. (2013). However, the total contribution of noise shocks is smaller

28Note that the question of the removal of low frequency variations in hours is not an issue in our approach.
First, noise shocks are our primary object of study. Second, we can think of our identified supply shock as
including both labor supply and TFP shocks and adopt a more inclusive definition of supply shocks. Our
setup could be extended to generate similar sign restrictions in the case of labor supply fundamental and noise
shocks. On the opposite, we favor a minimal data transformation in order to obtain a more faithful variance
decomposition of GDP.
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Table 4: Contribution to GDP variance (in percentage)

Supply Supply noise Demand Demand noise Rest

Horizon
(a) Benchmark 1 47 6 21 19 6

5 72 8 8 9 4
20 99 0 0 0 0

(b) Relax sign restrictions 1 48 1 22 21 8
5 74 3 8 10 5
20 99 0 0 0 0

(c) Sign restrictions only 1 24 11 29 15 20
5 36 18 12 7 26
20 64 0 13 8 15

(d) Full sample 1 39 4 29 19 8
5 74 9 9 4 3
20 99 0 0 1 0

(e) 12 Lags 1 22 9 27 33 10
5 57 6 11 18 8
20 99 0 0 0 0

(f) Quadratic trend in hours 1 15 14 22 25 24
5 26 13 2 19 41
20 89 3 3 5 0

(g) Quadratic trend 1 64 23 0 0 13
and no demand 5 55 28 0 0 17

20 88 5 0 0 7
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(23% against 39%). This result suggests that noise supply shocks capture some, but not all,
of the fluctuations inherent to demand driven shocks when the latter are omitted. This can
explain why, in our methodology, noise shocks capture a higher share of short-term fluctuations
than in the literature.

In this paper, we argue that the effect of demand-noise shocks on GDP is due to the reaction
of the policy interest rate. We check the validity of this interpretation by evaluating the effect
of the structural shocks we estimated on the Fed Funds rate. We consider the median-target
draw from which we first extract the structural shocks series from our benchmark estimation.
We then estimate a regression in the spirit of the typical Taylor rule

FFRt =

p∑
j=1

βjFFRt−j +RGDPt + PGDPt + γshockt + εc,t,

where shockt is a structural shock and εc,t is a vector of residuals. RGDPt and PGDPt corre-
spond respectively to the real GDP growth (annualized) obtained from NIPA and the median
nowcast prediction of CPI inflation from the SPF database.29 Interestingly, a recessionary
demand-noise shock generates a significant rise in interest rate. The effect is similar in sign
and magnitude to the effect of a positive fundamental demand shock, which suggests that the
central bank cannot disentangle fundamental from noise shocks in the case of demand shocks.
This is in line with the theory, where the negative effect of a demand noise shock is driven
by policy. Notice that, in contrast, a supply-noise shock has a positive effect on the interest
rate, while a fundamental supply shock has a negative effect. This suggest that the central
bank has a better assessment of the supply side of the economy than of the demand side, and
can better disentangle fundamental and noise shocks in the case of supply shocks. This does
not contradict our model, because the response of GDP to the supply noise is mainly driven
by the consumers’ expectations about TFP, and the increase in interest rate is not enough to
counteract the excess demand generated by these expectations. It is also consistent with the
relatively larger estimated contribution of demand-noise shocks to business cycles.

5 Conclusion

This paper assesses the contribution of noise shocks on the business cycle. To the best of our
knowledge, this is the first attempt to disentangle supply-related and demand-related noise
shocks. Using sign restrictions established through a theoretical model with dispersed infor-
mation, we show that noise shocks contribute to a large part of output fluctuations, i.e 25% in
the short run, and 17% in the medium run (after one year). However, most of this contribution
is explained by demand noise shocks while supply noise shocks appears to have a negligible
impact. Abstracting from demand-driven noise shocks tends to overestimate the role of supply-
related noise shocks on the business cycle, while it underestimates the contribution of noise as
a whole. We find that noise on demand and supply can explain a non-negligible part of the

29Both measures are included to best approach an actual Taylor rule, our results are robust to different
measures of inflation (current inflation rather than nowcast prediction and GDP deflator rather than CPI
inflation).
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Figure 8: Effect of Shocks on the Fed Funds rate.
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36



2008 financial crisis. Finally, monetary policy seems to be a key determinant of the effect of
demand noise shocks.

This study opens questions for future research. First, our simple model enables us to
derive qualitative restrictions for identification. A richer and more realistic framework could
be developed to identify more noise shocks through SVARs or structural estimations of DSGE
models, using expectation errors on a larger array of variables. Second, further identifying
the information sets of firms, households, government and central banks along these lines, can
help design optimal policies that are conditional on both private agents’ and policy-makers’
imperfect information, thus extending the analysis of Orphanides (2003) and Altavilla and
Ciccarelli (2011) in a more structural framework.
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[27] Gaĺı, Jordi, 2008. Monetary Policy, Inflation, and the Business Cycle: An Introduction to
the New Keynesian Framework and Its Applications. Second Edition, Princeton Press.

[28] Hamilton James, 1995. Time Series Analysis. Princeton University Press.

[29] Jaimovich, Nir, and Sergio Rebelo, 2009. Can News about the Future Drive the Business
Cycle? American Economic Review, 99(4), 1097-1118.

[30] Keynes John Maynard, 1936. The General Theory of Employment, Interest, and Money.

[31] Leeper Eric, Todd B. Walker and Shu-Chun S. Yang. 2013. Fiscal Foresight and Information
Flows. Econometrica, vol. 81, 1115-1145.

[32] Levchenko Andrei and Nitya Pandalai-Nayar, 2016. TFP, News, and Sentiments: The
International Transmission of Business Cycles. NBER Working Paper No. 21010.

39



[33] Lütkepohl Helmut, 2005. New Introduction to Multiple Time Series Analysis. Springer
Science and Business Media.

[34] Lorenzoni Guido, 2009. A Theory of Demand Shocks. American Economic Review, 99(5),
2050-84.

[35] Lorenzoni Guido, 2010. News and Aggregate Demand Shocks. Annual Review of Eco-
nomics, Annual Reviews, vol. 03(09), 537-557.

[36] Masolo Riccardo M. and Alessia Paccagnini, 2015. Identifying Noise Shocks: a VAR with
Data Revisions, Discussion Papers 1510, Centre for Macroeconomics (CFM).

[37] Melosi Leonardo, 2014. Estimating Models with Dispersed Information. American Eco-
nomic Journal: Macroeconomics. 6(1), 1-31.

[38] Milani Fabio and Ashish Rajrhandari, 2012. Observed Expectations, News Shocks, and
the Business Cycle. Working Papers 121305, University of California-Irvine, Department
of Economics.

[39] Milani Fabrio and John Treadwell, 2012. The Effects of Monetary Policy News and Sur-
prises. Journal of Money, Credit and Banking, 44(8), 1667-1692.

[40] Nimark Kristoffer, 2008. Monetary Policy with Signal Extraction from the Bond Market.
Journal of Monetary Economics, 55, 1389-1400.

[41] Orphanides, A. (2003) Monetary policy evaluation with noisy information, Journal of
Monetary Economics, Elsevier, vol. 50(3), pages 605-631, April.

[42] Perotti Roberto, 2011. Expectations and Fiscal Policy: An Empirical Investigation. Tech-
nical report.

[43] Pigou Arthur, 1926. Industrial Fluctuations. MacMillan, London.

[44] Ricco Giovanni, 2015. A New Identification of Fiscal Shocks Based on the Information
Flow. ECB Working paper 1813.

[45] Uhlig Harald, 2005. What Are the Effects of Monetary Policy on Output? Results from an
Agnostic Identification Procedure. Journal of Monetary Economics, vol. 52(2), 381-419.

[46] Yang Shu-Chun Susan, 2005. Quantifying Tax Effects under Policy Foresight. Journal of
Monetary Economics, 52(8), 1557-1568.

[47] Woodford Michael, 2003. Imperfect Common Knowledge and the Effects of Monetary Pol-
icy, in P. Aghion, R. Frydman, J. Stiglitz, and M. Woodford, eds., Knowledge, Information,
and Expectations in Modern Macroeconomics: In Honor of Edmund S. Phelps, Princeton
University Press.

40



A Firms’ price-setting

Firms set prices and supply goods. They observe their individual price and the quantities they
supply. They are allowed to reset their price only at random interval with probability (1− θ).
Let P ∗ijt denote the optimal price for firm j on island i that can adjust its price at time t. This
firm maximizes over Pijt the following objective

Ef
it

{ +∞∑
τ=0

θτβτλit+τ
(
Pijt+τYijt+τ −Wit+τNkw(i,t)jt+τ

)}
,

subject to Pijt+τ = Pijt, technology (4) and individual demand Yijt =
(
Pijt
Pit

)−γ
Ckc(i,t)t. The

term between brackets corresponds to the period nominal profits, composed of nominal sales,
minus the nominal wage bill. These profits are discounted by the probability θτ that price
Pijt is still in place and by the stochastic discount factor for nominal profits βτλit+τ , where
λit+τ = PitCit/Pit+τCit+τ is the multiplier of the budget constraint in t + τ in household i’s
Lagrangian.

Maximizing the objective and linearizing the result yields

p∗ijt = p∗it = (1− βθ)
+∞∑
τ=0

(βθ)τEf
it(wit+τ − uat+τ )

which implies
p∗it = (1− βθ)Ef

it(wit − uat ) + βθEf
it(p
∗
it+1)

B Derivation of the New Keynesian model with dis-

persed information (Equations (16) and (17))

Here we derive the aggregate Euler equation (16) and the aggregate Phillips curve (17), which
are obtained under the benchmark case, that is, under exogenous information as described by
Assumption 1 and with i.i.d. demand shocks: ρb = 0.

Consider first the Euler equation (10). We can write plc(i,t)t = pt + ξ1
it where ξ1

it is a
function of the idiosyncratic noise in island lc(i, t) at date t, and pt is the average price. Under
exogenous information, this noise is orthogonal to the information of household i in stage 2,
so Ec

it(plc(i,t)t) = Ec
it(pt) and Ec

it(plc(i,t+1)t+1) = Ec
it(pt+1), hence Ec

it(πit+1) = Ec
it(πt+1), where

πt+1 is the average future inflation. Similarly, because of perfect risk-sharing between islands,
current idiosyncratic shocks do not affect future consumption, we can write cit+1 = ct+1 + ξ2

it+1

where ξ2
it+1 is a function of the idiosyncratic noise in period t + 1. This noise is orthogonal to

the information of household i in period t, so Ec
it(cit+1) = Ec

it(ct+1).
Using (6), we then obtain

cit = Ec
it {ct+1}+ Ec

it {πt+1} − ϕEg
t {πt}+ ubt .

Aggregating Equation (15) across islands, we obtain

yt =

∫ 1

0

yitdi =

∫ 1

0

cls(i,t)tdi =

∫ 1

0

citdi = ct.
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Then, aggregating the Euler equation and replacing ct = yt and ct+1 = yt+1, we get Equation
(16).

Now consider the optimal price (11). The optimal price p∗it depends on the expected nominal
marginal cost wit − uat . Firms know uat by assumption, but not wit. Plugging Equations
(14) and Equation (15) into (12), we can see that the local nominal wage wit is equal to
plc(kw(i,t),t)t + ckw(i,t)t + ζ(ckc(i,t)t − uat ), so wit = pt + ct + ζ(ct − uat ) + ξ3

t where ct is the average
consumption and ξ3

it is a function of the idiosyncratic noise in islands lc(kw(i, t), t), kw(i, t)
and kc(i, t), which are independent of island i’s firms information at stage 2, so Ef

it(wit) =
Ef
it[pt + ct + ζ(ct − uat )]. Therefore, (11) writes

p∗it = (1− βθ)Ef
it [pt + (1 + ζ)(ct − uat )] + βθEf

it(p
∗
it+1)

Replacing ct = yt in the optimal price, and aggregating across islands, we get

p∗t =

∫ 1

0

p∗itdi = (1− βθ)Ēf
t [pt + (1 + ζ)(yt − uat )] + βθĒf

t (p∗it+1) (36)

Similarly, aggregating prices across islands, we obtain, using (13),

pt =

∫ 1

0

pitdi = θ

∫ 1

0

pit−1di+ (1− θ)
∫ 1

0

p∗itdi = θpt−1 + (1− θ)p∗t (37)

Using (36) and (37) and rearranging:

pt − θpt−1 = (1− θ)p∗t
= (1− θ)

[
(1− βθ)Ēf

t [pt + (1 + ζ)(yt − uat )] + βθĒf
t (p∗it+1)

]
= (1− θ)

[
(1− βθ)[pt + (1 + ζ)Ēf

t (yt − uat )] + βθĒf
t (p∗t+1)

]
+(1− θ)

[
(1− βθ)[Ēf (pt)− pt] + βθĒf

t (p∗it+1 − p∗t+1)
]

= (1− θ)(1− βθ)[pt + (1 + ζ)Ēf
t (yt − uat )] + βθĒf

t (pt+1 − θpt)
+(1− θ)(1− βθ)[Ēf (pt)− pt] + βθ(1− θ)Ēf

t (p∗it+1 − p∗t+1)

= (1− θ)(1− βθ)[pt + (1 + ζ)Ēf
t (yt − uat )] + βθ̄[Ef

t (pt+1 − pt) + (1− θ)pt]
+(1− θ)[Ēf (pt)− pt] + βθ(1− θ)Ēf

t (p∗it+1 − p∗t+1)

This yields

pt − pt−1 = (1−θ)(1−βθ)(1+ζ)
θ

Ēf
t (yt − uat )] + βĒf

t (pt+1 − pt)
+1−θ

θ
[Ēf (pt)− pt] + β(1− θ)Ēf

t (p∗it+1 − p∗t+1)

Then use πt = pt − pt−1 and Ēf (pt)− pt = Ēf (πt)− πt (as pt−1 is common knowledge) to find

πt = (1−θ)(1−βθ)(1+ζ)
θ

Ēf
t (yt − uat )] + βĒf

t (πt+1)

+1−θ
θ

[Ēf (πt)− πt] + β(1− θ)Ēf
t (p∗it+1 − p∗t+1)

which yields (17).
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C Proof of Lemma 1

We make the following educated guess:

Ēc
t (yt+1) = at−1 + Ēc

t (ε
a
t )

Ēc
t (πt+1) = Ēf

t (πt+1) = 0

Ēf
t (p∗it+1) = Ēf

t (p∗t+1)

(38)

with Ēc
t (ε

a
t ) = δ0as

a
t + δ1ax

a
it. It follows from (17) that

πt = θκ
(
Ēf
t {yt} − uat

)
+ (1− θ)Ēf

t {πt} (39)

We then make the guess that πt = γ0as
a
t + γ1aε

a
t + γ0bs

b
t + γ1bε

b
t for some (γ0a, γ1a, γ0b, γ1b).

We then replace our guess (38) in the system (16)-(39) to derive yt and πt as a function of
shocks and signals. We finally check that our guess (38) is satisfied. The first two equations
are straightforward. Using the optimal pricing equation (11), along with (12), (14) and (15),
we can show that Eit(p

∗
it+1) = Eit[Eit+1(pt+1)] = Eit(pt+1) = Eit(pt). Besides, Eit(p

∗
t+1) =

Eit[Ē
f
t+1(pt+1)] = Eit[pt + Ēf

t+1(πt+1)] = Eit(pt) + Eit[Ē
f
t+1(πt+1)] = Eit(pt). Therefore, our

guess is fully satisfied.

D Quantity decisions by firms

The New Keynesian model with quantity decisions We first explain how Equations
(23)-(25) are obtained. We assume Assumption 1 is satisfied and that preference shocks are
not persistent: ρb = 0.

The optimal choice of intermediate input satisfies

xijt = pijt + Ef
it(yijt)− pit (40)

Note that firms on island i share the same information, so pit is common knowledge. Crucially,
the demand for intermediate input depends on firms expectation on the demand for their
individual good. Taking the island average, and using the fact that

∫ 1

0
pijtdj = pit, we obtain

(22). Combining Equations (22) and (28), we get that xit = Ef
it(ckc(i,t)t), so local demand now

depends not only on local consumption, but also on firms’ expectations on consumption.
The aggregate resource constraint (23) is obtained by aggregating (28) with xit = Ef

it(ckc(i,t)t).
Under Assumption 1, consumption of household kc(i, t) is not conditional on the price pit and
depends only on the information specific to island kc(i, t), so the firm can at best forecast ct:
Ef
it(ckc(i,t)t) = Ef

it(ct). This yields (23).
The aggregate Euler equation stays unchanged. So Equation (24) is simply (16), with yt

replaced by ct.
The aggregate Phillips curve is obtained through the firm’s new pricing equation:

p∗ijt = p∗it = (1− βθ)Ef
it[αpit + (1− α)(wit − uat )] + βθEf

it(p
∗
it+1) (41)

The marginal cost now depends to a lower extent on the expected nominal marginal cost of
labor wit, but it now depends also on the intermediate input cost pit.
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Consider the expected nominal marginal cost of labor wit − uat . Firms know uat by assump-
tion, but not wit. Plugging the aggregated log-linear version of the production equation (20)
yit = αxit + (1− α)nkw(i,t)t and the resource equation (28) into the labor supply equation (12),
we can see that the local nominal wage wit is equal to plc(kw(i,t),t)t + ckw(i,t)t + [ζ/(1 − α)][(1 −
τ)ckc(i,t)t + (τ − α)Ef

it(ckc(i,t)t) − (1 − α)uat ], so wit = pt + [1 + ζ(1− τ)/(1− α)] ct + [ζ(τ −
α)/(1 − α)]Ef

it(ct) − ζuat + ξ4
it where ct is the average consumption and ξ4

it is a function of the
idiosyncratic noise in islands lc(kw(i, t), t), kw(i, t) and kc(i, t), which are independent of island
i’s firms information at stage 2, so

Ef
it(wit) = Ef

it

[
pt +

(
1 + ζ(1−τ)

1−α

)
ct + ζ(τ−α)

1−α Ef
it(ct)− ζuat

]
= Ef

it(pt) +
(

1 + ζ(1−τ)
1−α

)
Ef
it(ct) + ζ(τ−α)

1−α Ef
it(ct)− ζE

f
it(u

a
t )

= Ef
it[pt + (1 + ζ)ct − ζuat ]

Therefore, (41) writes

p∗ijt = p∗it = (1− βθ)Ef
it [αpit + (1− α) [pt + (1 + ζ)ct − ζuat − uat ]] + βθEf

it(p
∗
it+1)

= (1− βθ)
{
αpit + (1− α)Ef

it [pt + (1 + ζ)(ct − uat )]
}

+ βθEf
it(p
∗
it+1)

Taking it from there, we follow similar steps as for the baseline model to derive (25).

The effect of fundamental and noise shocks Note that Equations (24) and 25 can be
solved independently from (23), to determine ct and πt. We can then derive yt from ct and
Ef
t (ct).

Using the same steps as for Lemma 1, we derive the following from Equations (24) and (25):

Lemma 2 Under Assumption 1 and ρb = 0, the equilibrium consumption and inflation are

ct = uat−1 +
δ0a+κ(1−α)ϕδg0a(1−δ1a)

1+κ(1−α)ϕ
sat + δ1aε

a
t

−κ(1−α)ϕ
(
δ0b[1−α(1−θ)(1−βθ)]+θδ1bδg0b

)
[1+κ(1−α)ϕ]

(
1−(1−θ)

[
δ1b+α(1−βθ)(1−δ1b)

])sbt + εbt

πt = κ(1− α)
[
δ0a+κ(1−α)ϕδg0a(1−δ1a)

1+κ(1−α)ϕ
sat − (1− δ1a)ε

a
t

]
+ κ(1−α)

1−(1−θ)
[
δ1b+α(1−βθ)(1−δ1b)

] [ δ0b[1−α(1−θ)(1−βθ)]−θκ(1−α)ϕδ1bδ
g
0b

1+κ(1−α)ϕ
sbt + θδ1bε

b
t

] (42)

with δ0j, δ1j and δg0j for j = a, b, defined as in Lemma 1.

From Lemma 2, we can derive Ef
t (ct) and yt, using (23):

Ef
t (ct) = uat−1 +

δ0a+κ(1−α)ϕδg0a(1−δ1a)

1+κ(1−α)ϕ
sat + δ1aε

a
t

θ
[
δ0b−κ(1−α)ϕδ1bδ

g
0b

]
+(1−θ)[1−α(1−βθ)]δ0b

(
1−δ1b[1+κ(1−α)ϕ]

)
[1+κ(1−α)ϕ]

(
1−(1−θ)

[
δ1b+α(1−βθ)(1−δ1b)

]) sbt + δ1bε
b
t

yt = uat−1 +
δ0a+κ(1−α)ϕδg0a(1−δ1a)

1+κ(1−α)ϕ
sat + δ1aε

a
t

θ
[

[τ(1+κ(1−α)ϕ)]δ0b−κ(1−α)ϕδ1bδ
g
0b

]
+(1−θ)[1−α(1−βθ)]δ0b

(
1−[1−τ(1−δ1b)][1+κ(1−α)ϕ]

)
[1+κ(1−α)ϕ]

(
1−(1−θ)

[
δ1b+α(1−βθ)(1−δ1b)

]) sbt + [1− τ(1− δ1b)]ε
b
t
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Notice that the effect of the supply shock εat and its noise eat has the same effect, qualitatively
speaking, on output and inflation.

Consider now the effect of fundamental demand shocks εbt . It is straightforward to show
that its effect on inflation is unambiguously positive. Some further calculations can also show
that its effect on output is also positive.

The effect of the noise shock ebt is however ambiguous. Its effect on inflation is of the same
sign as δ0b[1 − α(1 − θ)(1 − βθ)] − θκ(1 − α)ϕδ1bδ

g
0b, which is of the same sign as [1 − α(1 −

θ)(1− βθ)](σ−2
0b + σ−2

0b )− θκ(1− α)ϕσ−2
1b . This implies that demand noise shock has a positive

effect on inflation if and only if Condition 2 (i) is satisfied.
Similarly, the effect of ebt on expected consumption Ēf

t (ct) is of the same sign as θ
[
δ0b −

κ(1−α)ϕδ1bδ
g
0b

]
+ (1− θ)[1−α(1−βθ)]δ0b

(
1− δ1b[1 +κ(1−α)ϕ]

)
which, we can show, is of the

same sign as σ−2
0b + σ−2

0b − θκ(1− α)ϕσ−2
1b . This implies that demand noise shock has a positive

effect on expected consumption if and only if Condition 2 (ii) is satisfied. When α, the share of
intermediate input in the production function, is sufficiently large, this condition is satisfied.

Finally, the condition for ebt to have a positive effect on total output yt is that θ
[
[τ(1+κ(1−

α)ϕ)]δ0b − κ(1 − α)ϕδ1bδ
g
0b

]
+ (1 − θ)[1 − α(1 − βθ)]δ0b

(
1 − [1 − τ(1 − δ1b)][1 + κ(1 − α)ϕ]

)
is

positive. This implies that demand noise shock has a positive effect on output if and only if
Condition 2 (iii) is satisfied. Therefore, for demand noise shocks to have a positive effect on
output, we must have not only that the share of intermediate input in production α is large,
but also that its share in aggregate demand τ is large.

Regarding the effect of fundamental and noise shocks on expectation errors, we use the fact
that sat and sbt are common knowledge to derive the following expressions from Lemma 2:

Ēs
t yt − yt = δ1a

(
Ēs
t ε
a
t − εat

)
+ [1− τ(1− δ1b)]

(
Ēs
t ε
b
t − εbt

)
Ēs
t πt − πt = κ(1− α)

[
−(1− δ1a)

(
Ēs
t ε
a
t − εat

)
+ θδ1b

1−(1−θ)
[
δ1b+α(1−βθ)(1−δ1b)

] (Ēs
t ε
b
t − εbt

)]
(43)

The surveyors’ average expectation errors on output and inflation depend on their average
expectation errors on fundamental shocks Ēs

t ε
j
t − ε

j
t , j = a, b, as in (19). Therefore, the results

of Proposition 2 generalize easily to the case with quantity choices by firms.

E Adding shocks

Here we derive the effect of noise and fundamental shocks affect output, inflation and ex-
pectation errors when adding monetary and government spending shocks. We consider the
benchmark case, that is, under exogenous information as described by Assumption 1 and with
i.i.d. demand shocks: ρn = 0, n = b, v, g.

Using the same steps as for Lemma 1, we derive the following from Equations (29) and (30):

Lemma 3 Under Assumption 1 and ρb = ρv = ρg = 0, the equilibrium output and inflation
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are
yt = uat−1 +

δ0a+κϕδg0a(1−δ1a)

1+κϕ
sat + δ1aε

a
t

−κϕ(δ0b+θδ1bδ
g
0b)

(1+κϕ)[1−(1−θ)δ1b]
sbt + εbt

−κϕ(δ0v+θδ1vδ
g
0v)

(1+κϕ)[1−(1−θ)δ1v ]
svt + εvt

−κϕ(χ̄−χ)(δ0g+θδ1gδ
g
0g)

(1+κϕ)[1−(1−θ)δ1g ]
sgt + χ̄εgt

πt = κ
[
δ0a+κϕδg0a(1−δ1a)

1+κϕ
sat − (1− δ1a)ε

a
t

]
+ κ

1−(1−θ)δ1b

[
δ0b−θκϕδ1bδg0b

1+κϕ
sbt + θδ1bε

b
t

]
+ κ

1−(1−θ)δ1v

[
δ0v−θκϕδ1vδg0v

1+κϕ
svt + θδ1vε

v
t

]
+ κ(χ̄−χ)

1−(1−θ)δ1g

[
δ0g−θκϕδ1gδg0g

1+κϕ
sgt + θδ1gε

g
t

]

(44)

with χ̄−χ > 0, δ0j = (σj0)−2/[(σj)
−2+(σj0)−2+(σj1)−2], δ1j = (σj1)−2/[(σj)

−2+(σj0)−2+(σj1)−2]
and δg0j = (σj0)−2/[(σj)

−2 + (σj0)−2] for j = a, b, v, g.

Notice that the effect of monetary shocks εvt is exactly the same as the effect of preference
shocks εbt . The effect of government spending shocks εgt is also the same, up to the coefficients
χ̄−χ and χ̄. The predictions applying to the preference shock described in Propositions 1 and
2 therefore apply as well to monetary and government spending shocks.

F Numerical simulation

The numerical simulation method is described in details in the online appendix. Here we discuss
the parameter assumptions and perform a sensitivity analysis.

F.1 Parametrization

The simulations are run with the parameters described in Table 5. The preference parameters,
as well as θ and ϕ, are standard. The persistence parameters are chosen to generate a high
amount of persistence, as is often observed in the data. Finally, ḡ is equal to the steady-state
ratio of government spending to GDP, so we set it to 0.3, the average government spending
share in the US. The variance of the fundamental shocks is normalized to 1. The variance of
the aggregate and idiosyncratic noise shocks is set to 10 in the baseline. This implies that the
precision of idiosyncratic and public signals is 0.1.

F.2 Sensitivity analysis

In the sensitivity analysis, we let the persistence parameters ρj go from 0 to 0.99. In another
exercise, we let the precision of both private and public signals go from 0 to 2. Finally, we let
the precision of idiosyncratic signals go from 0 to 5, while maintaining the precision of public
signals to 0.1. The results are represented respectively in Figures 9, ?? and 9. The results of
this sensitivity analysis is summarized in Section 3.2. Here, because of the lack of space, we
represent only the results for productivity and preference shocks. The remaining results are
available on request.
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Figure 9: Sensitivity analysis

A- Persistence parameter
(a) Productivity shocks (b) Preference shocks
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B- Signal-to-noise ratio
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C- Relative precision of private versus public signals
(a) Productivity shocks (b) Preference shocks
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Note: The solid lines represent the case with exogenous information. The dashed lines represent the
case with endogenous information.

47



Table 5: Baseline parameters

Parameter Value
β 0.99
θ 0.65
γ 2
ζ 2
ḡ 0.3
ϕ 1.5

ρj, j = b, v, g 0.8
σ2
j , j = a, b, v, g 1

σ2
0j, j = a, b, v, g 10
σ2

1j, j = a, b, v, g 10

G Additional Figures
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Figure 10: Minimum set of sign restrictions
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Note: The identification restrictions are taken from Table 3. The solid lines depict the median impulse
response, The lower (upper) dotted lines indicate the 16th and 84th percentile region.
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Figure 11: Sign restrictions only
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lines depict the median impulse response, The lower (upper) dotted lines indicate the 16th and 84th
percentile region. 50



Figure 12: Long Sample
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Note: The SVAR model is estimated over the period 1968q4-2014q2. The solid lines depict the median
impulse response, The lower (upper) dotted lines indicate the 16th and 84th percentile region.
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Figure 13: Number of lags

0 5 10 15 20
0

0.5

1

1.5

2

Su
pp

ly

GDP

0 5 10 15 20
-0.4

-0.2

0

0.2
Inflation

0 5 10 15 20
-0.4

-0.2

0

0.2

0.4

Su
pp

ly
 n

oi
se

0 5 10 15 20
-0.2

0

0.2

0.4

0 5 10 15 20
-0.5

0

0.5

1

D
em

an
d

0 5 10 15 20
-0.2

0

0.2

0.4

0 5 10 15 20
-1

-0.5

0

0.5

D
em

an
d 

no
is

e

0 5 10 15 20
-0.2

0

0.2

0.4

Note: 12 lags are used in the estimation. The solid lines depict the median impulse response, The lower
(upper) dotted lines indicate the 16th and 84th percentile region.
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Figure 14: Linear quadratic trend in hours
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Note: Hours are detrended using a linear quadratic trend. The solid lines depict the median impulse
response, The lower (upper) dotted lines indicate the 16th and 84th percentile region.
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Figure 15: Exclude inflation and nowcast error on inflation
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Note: The SVAR includes hours, labor productivity growth and the expectation errors on output
growth. Identification restrictions for the supply shock, its corresponding noise shock and the rest
shock are taken from Table 2. The solid lines depict the median impulse response, The lower (upper)
dotted lines indicate the 16th and 84th percentile region.
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