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Abstract

We study the effect of ex-ante information asymmetries on revenue in common-value second-

price auctions (SPA). The motivating application of our results is to online advertising auctions

in the presence of “cookies,” which allow individual advertisers to recognize advertising op-

portunities (impressions) for users who, for example, are existing customers. Cookies create

substantial information asymmetries both ex ante and at the interim stage, when advertisers

form their beliefs. We distinguish information structures in which cookies identify “lemons” (low

value impressions) from those in which cookies identify “peaches” (high value impressions). To

make progress in a setting with multiple Nash equilibria, we first introduce a new refinement,

“tremble robust equilibrium” (TRE). We then characterize the unique TRE in both first-price

and second-price common-value auctions with two bidders who each receive binary signals. This

generates two novel insights. First, common-value second-price auction revenues are vulnerable

to ex ante asymmetry if relatively rare cookies identify lemons, but not if they identify peaches.

Second, first-price auction revenues are substantially higher than second-price auction revenues

under the same conditions. Two extensions show that these insights are robust in settings with

more than two bidders and richer signal structures. Finally, we consider revenue maximization

in a richer setting with a private component to valuations.
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1 Introduction

This paper develops new theoretical results about the impact of the information structure on

revenue in second-price common-value auctions, with comparison to first-price auctions. Our focus

is on situations where bidders are not only asymmetrically informed at the interim stage (after

observing their signals) but are also asymmetric at the ex ante stage (before observing their signals).

In other words, situations where ex ante it is known that particular bidders are likely to be better

informed than others. Our primary motivation is to better understand the market design problems

presented by the use of cookies in online advertising markets.

Although there are a variety of mechanisms for selling display advertising, auctions are a leading

method, especially for “remnant” inventory, and cookies play an important role in these markets.

Cookies placed on users’ computers by specific web sites can be used to match a user with infor-

mation such as the user’s purchasing history with an online retailer, their recent history of airline

searches on a travel website, or their browsing and clicking behavior across a network of online

publishers (such as publishers on the same advertising network). As shown by Shiller (2014), such

information can be a good predictor of a web surfer’s value to an advertiser. As a result, adver-

tisers increasingly use cookies to customize their bidding and target their advertising in display ad

auctions (Helft and Vega, 2010).

For example, Google’s ad exchange is currently described as a second-price auction that takes

place in real time: that is, at the moment an internet user views a page on an internet publisher, a

call is made to the ad exchange, bidders on the exchange instantaneously view information provided

by the exchange about the publisher and the user as well as any cookies they may have for the

individual user, and based on that information, place a bid.

The cookie is only meaningful to the bidder if it was placed by the bidder (e.g., Amazon.com

may have a cookie on the machines of regular customers), or if the bidder has purchased access

to specific cookies from a third-party information broker. Cookie-based bidding potentially makes

display auctions inherently asymmetric at both the ex ante and the interim stage. At the ex ante

stage, bidders may vary greatly in their likelihood of holding informative cookies, both because

popular websites have more opportunities to track visitors and because different sites vary in the

sophistication of their tracking technologies. At the interim stage, for a particular impression, a

bidder who has a cookie has a substantial information advantage relative to those who do not.

If cookies only provided advertisers with private-value information, then increasing sophistica-

tion in the prevalence and use of cookies by advertisers would present ad inventory sellers a two-way

trade-off between better matching of advertisements with impressions and reduced competition in

thinner markets (Levin and Milgrom, 2010). In such a private value setting, Board (2009) shows
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that irrespective of such asymmetry, more cookies and more targeting always increase second-price

auction revenue as long as the market is sufficiently thick. However, cookies undoubtedly also

contain substantial common-value information. For instance, when one bidder has a cookie which

identifies an impression as due to a web-bot rather than a human, the impression is of zero value to

all bidders. Similarly, if a cookie identifies a high-income frequent online shopper, the impression

is likely of high value to many bidders. As a result, the inherent asymmetry created by cookies

can lead to cream skimming or lemons avoidance1 by informationally advantaged bidders, with

potentially dire consequences for seller revenues.

Thus, a designer of online advertising markets (or other markets with similar informational

issues) faces an interesting set of market design problems. One question is whether the market

should encourage or discourage the use of cookies, and how the performance of the market will be

affected by increases in the prevalence of cookies. This is within the control of the market designer:

in display advertising, it is up to the marketplace to determine how products are defined. All

advertising opportunities from a given publisher can be grouped together, for example. Google’s

ad exchange reportedly does not support revealing all possible cookies. A second market design

question concerns the allocation problem: if an auction is to be used, what format performs best?

Both first-price and second-price auctions are used in the industry. There are a number of other

design questions, as well, including whether reserve prices, entry fees, or other modifications to a

basic auction should be considered. Our analysis begins to address these questions by focusing on

comparing two commonly used mechanisms, first and second-price auctions, and identifying infor-

mation structures in which cookies may be particularly costly. (Design of an optimal mechanism

is left for future work.)

In order to understand the market design tradeoffs involved in an environment where some

bidders are known ex ante to have better access to common-value information, the first part of

our paper specifies a model of pure common-value second-price auctions. Perhaps surprisingly, the

existing literature leaves a number of questions open. For example, while it is well known that

the presence of an informationally-advantaged bidder will moderately reduce seller revenues in a

sealed-bid first-price auction (FPA) for an item with common value (Wilson, 1967; Weverbergh,

1979; Milgrom and Weber, 1982b; Engelbrecht-Wiggans, Milgrom, and Weber, 1983; Hendricks

and Porter, 1988), substantially less is known about the same issue in the context of second-price

auctions. One of the main impediments to progress has been the well known multiplicity of Bayesian

Nash Equilibria in second-price common-value auctions (Milgrom, 1981). As a consequence, little is

1Cream skimming refers to buying up the best inventory, while lemons avoidance refers to avoiding the worst

inventory.

2



known about what types of information structures lead to more or less severe reductions in revenue.

Solution Concept In order to address the multiplicity problem, we begin by suggesting a new

refinement, tremble robust equilibrium. Tremble robust equilibrium (TRE) selects only Bayesian

Nash Equilibria that are near to an equilibrium (in undominated bids) of a perturbed game in

which a random bidder enters with vanishingly small probability ε and then bids smoothly over

the support of valuations. In addition to capturing an aspect of the real-world uncertainty faced

by bidders in the kinds of applications we are interested in, we argue that this refinement has

a number of attractive properties. First, in all of the cases we analyze, this refinement selects

a unique equilibrium. Second, when bidders are ex ante symmetric in the setting with discrete

signals we study, TRE selects the analog of the symmetric equilibrium studied by Milgrom and

Weber (1982a) in a setting with continuous signals. Third, it rules out intuitively unappealing

equilibria in which uninformed bidders bid aggressively because they can rely on others to set fair

prices. We provide additional motivation for our choice of refinement in Section 2, where we also

discuss some standard refinements and explain why they do not adequately address the multiplicity

problem in common-value SPAs.

Main Results We then proceed to analyze a number of special cases of common-value second-

price auctions using the TRE refinement. We begin with our baseline model and main results: We

characterize the unique TRE in the SPA for any monotonic domain with two bidders who receive

binary signals. (By monotonic, we mean that the common-value is nondecreasing in each bidder’s

signal.) For comparison, we also characterize the unique TRE with monotonic bidding strategies

in the FPA in the same setting (with the additional assumption that signals are affiliated). We

characterize seller revenues in each case, and highlight how the information structure affects the

difference in revenue raised by the two auction formats.2

To connect this model to display advertising auctions, suppose that there are two bidders and

that each bidder uses cookie tracking rather crudely—each can only determine the presence or

absence of their own cookie. That is, each bidder receives a binary signal which either takes on

the value {no-cookie} or {cookie}, but cannot observe whether the competing bidder has a cookie

(though they know the overall information structure, including the probability of cookies). Our

results characterize the unique TRE and revenue in this setting for both first-price and second-price

auctions.

In a common-value auction, a seller does best when all bidders are equally uninformed, as she

2Murto and Välimäki (2015) also study first-price and second-price common-value auctions with binary signals,

focusing on entry costs rather than ex ante asymmetry.
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can sell the object at its expected value. When bidders have informative cookies, we expect them

to earn information rents and revenues to be lower. The question remains, however, how much

lower revenues will be. If cookies are rare there are at least two competing intuitions. On the

one hand, if bidders have little information, we might expect that information rents would be low

and revenue would be close to expected surplus. This is always true when bidders are symmetric

ex ante. On the other hand, if one bidder has much better access to cookies than the other, we

might expect the less-informed bidder to be a meek competitor in a SPA due to fears of adverse

selection—leading to low revenue. We show that which intuition is correct depends importantly on

the information structure.

To gain insight from our equilibrium characterization, we consider two scenarios: In the first

scenario, cookies identify “peaches,” or high-value impressions. This is perhaps the most natural

assumption—someone who has been to an advertiser’s website before is more likely to be an active

internet shopper than a random web surfer. In the second scenario, cookies identify “lemons,” or

low-value impressions. This might occur if a prior visit indicates the surfer is in fact a web-bot and

not a real person. In both cases, one bidder may be ex ante more likely to receive a cookie than

the other bidder.

In the unique TRE, if bidders are equally well informed ex ante then SPA revenue is close to the

full surplus when cookies are rare. If bidders are informed about peaches, we find that this remains

true regardless of the level of ex ante asymmetry. Even when only a single bidder has access to

cookies, revenue remains close to expected surplus when cookies are rare. Thus the first intuition

that little information leads to little revenue loss holds true. The finding is sharply different,

however, if bidders are informed about lemons. In that case, revenues decline as bidders become

more asymmetric ex ante, falling from full surplus in the case of ex ante symmetry to the value of

a lemon if only one bidder has access to cookies. Thus the second intuition that adverse selection

may undermine SPA revenue when bidders are asymmetric ex ante dominates. In short, our first

main insight is that common-value SPA revenues are vulnerable to ex ante bidder asymmetry when

informative cookies are rare and identify lemons, but not when they identify peaches.

For comparison, we also examine FPA revenue in the same settings under the additional assump-

tion that signals are affiliated.3 When bidders are symmetric ex ante, FPA revenue coincides with

SPA revenue in the unique TRE.4 When bidders are asymmetric, however, FPA revenue remains

close to full surplus if cookies are rare regardless of whether cookies identify peaches or lemons.

Thus, our second main insight is that common-value auction revenue is substantially higher in the

3Affiliation is a strong form of correlation introduced to the auction literature by Milgrom and Weber (1982a).
4This is consistent with Milgrom and Weber’s (1982a) result that revenue is equal or higher in the symmetric

equilibrium of the SPA than in the FPA when bidders are symmetric ex ante and signals are affiliated.
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FPA than the SPA when ex ante asymmetric bidders receive informative cookies rarely but those

cookies identify lemons.

Extensions We then proceed to two extensions which explore how robust these insights are to

settings with more than two bidders and richer signal structures. First, we focus on the special case

of extreme ex ante asymmetry in which only a single bidder is informed, but allow for any number

of uninformed bidders and any signal structure for the informed bidder. This extension provides

an analysis of the SPA that is complementary to the existing work on common-value FPAs with a

single informed bidder (Wilson, 1967; Weverbergh, 1979; Milgrom and Weber, 1982b; Engelbrecht-

Wiggans et al., 1983; Hendricks and Porter, 1988). In the SPA, TRE predicts that uninformed

bidders will essentially choose not to compete: they bid the minimum possible posterior valuation

of the informed bidder, which is the seller’s revenue. As a result, our findings about the important

distinction between private information about lemons and peaches are robust: if cookies are rare,

SPA revenue only suffers substantially when cookies identify lemons. For that reason, while FPA

revenues are always higher than SPA revenues when only one bidder is informed, the difference is

substantial when cookies are rare and identify lemons, but negligible when they identify peaches.

Our second extension restricts attention to information structures satisfying what we dub the

strong-high-signal property, but within this setting, allows for more than two bidders, signals with

more than two values, and multiple informed bidders that are asymmetric ex ante. We charac-

terize the unique TRE of the SPA (although not the FPA) in this setting. We again find that

in common-value auctions with ex ante asymmetric bidders, SPA revenues are much lower when

bidders are informed about lemons than when informed about peaches. An important qualitative

difference under the strong-high-signal property relative to the two-bidder binary-signal setting is

that, when bidders are informed about lemons, SPA revenues collapse with even slight ex ante

bidder asymmetry rather than declining smoothly as ex ante bidder asymmetry grows. (Our first

extension’s comparison of revenue with a single informed bidder to that with ex ante symmetric

bidders is silent on the transition between the two extremes.)

So far, we have focused mainly on the costs of information asymmetry, while suppressing any

benefit of cookies. In the last section of the paper, we extend the model beyond pure common

values. We show that the problems created by information asymmetry remain and we suggest

alternative mechanism designs that extract most of the possible revenue.
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2 Solution Concepts: A Discussion

This paper seeks to understand how revenues in a common-value second-price auction depend

on the structure of information held by bidders. A serious challenge to comparing revenues across

different information structures is that for any given information structure there are typically many

different equilibria with widely different revenues (Milgrom, 1981).

A common approach in the literature with ex ante symmetric bidders is to focus on the sym-

metric equilibrium. As shown by Milgrom and Weber (1982a) and Matthews (1984), this selects

the equilibrium in which each bidder bids the object’s expected value conditional on the highest

signal of competing bidders being equal to her own. This excludes extreme equilibria such as one

in which one bidder bids an object’s maximum value and all other bidders bid zero. Unfortunately,

it is not clear how the symmetry refinement can be extended to ex ante asymmetric environments

of the type we are interested in.

Consider the following simple “peach or lemon” scenario. A common-value good is equally

likely to be a peach (with value P ) or a lemon (with value L < P ). There are two bidders in a

second-price auction. One is perfectly informed about the value of the good, while the other only

knows the prior probability it is a peach. What bidding strategies and revenues should we expect?

Nash equilibrium provides no prediction about revenue beyond an upper bound of the full

surplus. It is an equilibrium for the informed bidder to bid his value and the uninformed bidder to

bid P , which results in full surplus extraction. However, it is also an equilibrium for the uninformed

bidder to bid 10P and the informed bidder to bid L/2, earning revenue L/2. There are no symmetric

equilibria to focus on.

A natural refinement is to restrict attention to Nash equilibria in which bidders only use undom-

inated bids. For such strategies, bids are always between L and P . Notice that unlike in the private

value model, agents do not necessarily have a dominant strategy in a common-value second-price

auction. Indeed, in the scenario described above the informed agent has a dominant strategy (to

bid the value given his signal), while the uninformed agent does not.5

Thus, ruling out dominated bids restricts the informed bidder to use her dominant strategy and

bid her value. However, the only restriction placed on the uninformed bidder is that he not bid

less than L or more than P . Revenue could be anywhere between L and the full surplus.

5To see that, observe that for any two bids b1 and b2 such that P ≥ b1 > b2 ≥ L there exist two strategies of the

informed agent such that for one strategy the utility from b1 is higher, while for the other strategy the utility from

b2 is higher. Bidding b1 is superior to bidding b2 when the informed is bidding (b1 + b2)/2 when the value is P , and

bidding L when the value is L. On the other hand bidding b2 is superior to bidding b1 when the informed is bidding

(b1 + b2)/2 when the value is L, and bidding L when the value is P (handing out the good items to the other bidder).
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The uninformed bidder faces a severe adverse selection problem: for any bid less than P she only

wins lemons. Our intuition is that this adverse selection problem makes the equilibrium in which

the uninformed bids L most plausible. The reason higher bids can be equilibrium strategies is that

the informed bidder always sets the price. The uninformed can bid above L safe in the knowledge

that the price will always be set fairly at the item’s value. The model implicitly ignores the fact

that the real world is a risky and uncertain place and that bidding above L exposes the uninformed

bidder to the possibility of overpaying for a lemon without any possible benefit of winning a cheap

peach.

Now consider perturbing the game by adding, with some small probability ε > 0, a non-strategic

bidder who bids randomly between L and P using a “nice” distribution (having full support and

continuous density between L and P ).6 The purpose is to make the game “noisy” to eliminate

unreasonable equilibria by ensuring that the underlying adverse selection problem in the game has

consequences. Given that the informed bidder bids the value, the presence of a random bidder

means that L is the only undominated bid for an uninformed bidder. The informed bidder ensures

that the uninformed bidder can never win the object at a discount below value. However, the

random bidder ensures that any bid above L risks overpaying for a low value object when the

random bidder sets the price. Thus bidding above L leads to a negative payoff. We observe that

adding noise yields unique predictions for equilibrium bidding and revenue.

Motivated by the this example, we want to consider only Nash equilibria that are nearby to Nash

equilibria (in undominated bids) of games perturbed with an ε probability of an additional random

bidder. In the spirit of other perturbation based refinements, such as trembling-hand perfection,

we identify Nash equilibria that are nearby by considering the limit as ε goes to zero. Therefore,

we define a Tremble Robust Equilibrium (TRE) to be a Nash equilibrium that is the limit, as ε goes

to zero, of a series of Nash equilibria (using undominated bids) of each modification of the original

game in which another “random” bidder is added with small probability ε. The random bidder bids

a random value drawn from a distribution with continuous and positive density over the “relevant”

values. Moreover, if there is a TRE with a profile of strategies that is a Nash equilibrium not just

in the limit as ε goes to zero, but also away from the limit for sufficiently small ε > 0, we call it a

strong Tremble Robust Equilibrium. The formal definitions of these new refinements are presented

in Section 3.2.

6In an analysis of the generalized second price (GSP) auction for sponsored search with independent valuations

and complete information, Hashimoto (2013) proposes to refine the set of equilibria by adding a non-strategic random

bidder that participates in the auction with small probability. Edelman, Ostrovsky, and Schwarz (2007) and Varian

(2007) have shown that GSP has an envy-free efficient equilibrium; the main result of Hashimoto (2013) is that this

equilibrium does not survive the refinement.
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In the preceding peach or lemon scenario with one informed and one uninformed bidder, the

unique TRE is a strong TRE and predicts that the informed bidder bids the value while the

uninformed bidder bids the value of a lemon.

2.1 Related Refinements

Perturbation Based Refinements It is natural to ask how TRE compares to Selten’s (1975)

trembling-hand perfect equilibrium. The two refinements yield very different predictions in our

preceding peach or lemon example with one informed and one uninformed bidder. In particular,

in Appendix F, we show that two extensions by Simon and Stinchcombe (1995) of trembling-hand

perfection to infinite action-space games (which we adjust to incomplete information) are too per-

missive: they make the same revenue prediction as Nash equilibrium. Revenues could be anywhere

between the value of a lemon and the full surplus. On the other hand, in the same setting, if we

restrict the tremble of the informed agent to be independent of his signal then the unique trembling-

hand perfect equilibrium predicts that the uninformed agent bids the unconditional expected value

of the item, contrary to our expectation.

In our simple example with one bidder who learns whether the item is a peach or a lemon, Mil-

grom and Mollner’s (2016) test-set equilibrium is more restrictive than trembling-hand perfection.

Test-set equilibria are those in which the informed bidder bids the item’s value, and the unin-

formed bidder mixes between the two possible values, bidding P with some probability p ∈ [0, 1]

and L otherwise. Unfortunately, this still yields the same ambiguous revenue prediction as Nash

equilibrium.

Work by Parreiras (2006), Cheng and Tan (2010), Larson (2009), and Syrgkanis, Kempe, and

Tardos (2013) introduce perturbations to select a unique equilibrium in two-bidder auctions with

continuously distributed signals. Parreiras (2006) and Syrgkanis et al. (2013) perturb the auction

format by assuming that winning bidders pay their own bid rather than the second highest with

probability ε (Parreiras (2006) focuses on the limit as ε goes to zero). Cheng and Tan (2010) and

Larson (2009) introduce private value perturbations to the common-value environment and take

the limit as these perturbations go to zero. In contrast to TRE, the equilibrium selected is sensitive

to assumptions about the distributions of the vanishing perturbations.7

7Cheng and Tan (2010) assume private value perturbations are perfectly correlated with common-value signals

and are symmetric across bidders. The symmetry of perturbations (across asymmetric bidders) selects a unique

equilibrium. Larson (2009) allows for asymmetric perturbations which are assumed to be independent of common-

value signals and shows that the equilibrium selected depends on the ratio of the standard deviations of the two

bidders’ private value perturbations. More generally, Liu (2014) shows that any of the equilibria identified by

Milgrom (1981) can be selected by an appropriate choice of the distribution of private value perturbations.
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Our finding that sufficient ex ante asymmetry favors first-price auctions over second-price auc-

tions (reversing Milgrom and Weber’s (1982a) result from the symmetric case) is similar to Cheng

and Tan’s (2010) result that ex ante asymmetry favors first-price auctions but contrasts with Par-

reiras’ (2006) and Syrgkanis et al.’s (2013) findings that Milgrom and Weber’s (1982a) first-price

and second-price auction revenue ranking result is robust to asymmetry.

Inspired by our work, Liu (2014) studies equilibria that are “robust to noisy bids”, a concept

closely related to TRE. Like TRE, the robust-to-noisy-bids refinement considers perturbations in

which an additional bidder enters with probability ε and bids randomly. Unlike TRE, however, the

refinement does not impose Nash equilibrium upon the perturbations. As a result, the refinement

is distinct from TRE, and while ruling out “discontinuous” equilibria, admits the entire continuum

of equilibria identified by Milgrom (1981).

Iterated Deletion of Dominated Strategies An alternative approach taken in the literature

that has been applied to auctions with more than two bidders is to select equilibria that survive

iterated deletion of dominated strategies. Harstad and Levin (1985) consider the case in which the

first order-statistic of bidders’ signals is a sufficient statistic for the object’s value in the Milgrom

and Weber (1982a) setting with symmetric bidders and continuously distributed signals. For this

case, Harstad and Levin (1985) shows that iterated deletion of dominated strategies uniquely selects

the symmetric Milgrom and Weber (1982a) equilibrium. Einy, Haimanko, Orzach, and Sela (2002)

consider the case of asymmetric bidders and discrete signals with finite support. They show that if

the information structure is connected then iterated deletion of dominated strategies selects a set

of sophisticated equilibria with a unique Pareto-dominant (from bidders’ perspective) equilibrium.

Malueg and Orzach (2009) apply Einy et al.’s (2002) refinement in two examples and Malueg

and Orzach (2012) apply it to the special case of two-bidder auctions with connected and overlap-

ping information partitions. For a particular one-parameter family of common-value distributions,

Malueg and Orzach (2012) find that distributions with sufficiently thin left tails yield lower revenues

in second-price auctions than in first-price auctions.

Einy et al.’s (2002) result applies to our lemon or peach example with one informed and one

uninformed bidder, as this can be represented as a connected domain. Iterated deletion of dom-

inated strategies is unhelpful on its own: the uninformed bidder may still bid anywhere between

the value of a lemon and a peach. However, the Pareto dominant equilibrium for the bidders is

that in which the uninformed bidder bids the value of a lemon. This is the equilibrium we believe

to be natural and coincides with the unique TRE.

The primary drawback to Einy et al.’s (2002) approach is that the required assumptions on
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the information structure are very restrictive. For instance, we show in Online Appendix G that

Einy et al.’s (2002) connectedness property is strictly more restrictive than our strong-high-signal

property. Moreover, connectedness rules out many interesting settings such as our model of two

bidders with binary signals in which neither bidder is perfectly informed. In contrast, our TRE

refinement selects a unique equilibrium in this setting.

3 The Model and Tremble Robust Equilibrium

3.1 The Model

An auctioneer is offering an indivisible good to a set N of n potential buyers. Let Ω be the set of

states of the world (possibly infinite). There is a commonly known prior distribution H ∈ ∆(Ω)

over states of the world. Let ω ∈ Ω be the realized state of the world, which is not observed by

the buyers. The value of the item to agent i when the state of the world is ω is vi(ω), which is

bounded. (Our analysis in Section 4 assumes that agents share the same common value v(ω), but

we define TRE in this more general setting.)

Each buyer i gets a signal about the state of the world ω from a finite set of signals Si. For

every state ω ∈ Ω and buyer i, there is a commonly known distribution over signals di(ω) ∈ ∆(Si).

Each buyer i gets a private signal si ∈ Si, sampled from di(ω). Signal si ∈ Si for agent i is feasible

if agent i receives signal si with positive probability, and the vector of signals s = (s1, s2, . . . , sn) ∈

S1 × S2 × . . . × Sn is feasible if it is realized with positive probability. Without loss of generality,

we assume that for every i, every signal si ∈ Si is feasible. We denote the set of feasible signal

vectors by S. When buyer i realizes signal si, we denote his updated expected value of the good

by vi(si) = E[vi(ω)|si]. Similarly, we denote the posterior expected value given signal vector s by

vi(s) = E[vi(ω)|s].

3.2 Tremble Robust Equilibrium

We define the TRE refinement in the context of any auction game and in Section 4 apply it to

second-price and first-price common-value auctions. The refinement is based on the restriction to

the closure8 of the set of undominated bids and the addition of a random bidder that bids according

8In the second price auctions we study, the set of undominated bids is closed so the distinction does not matter.

However, for many games with continuous action spaces but discontinuous payoff functions, such as the first price

auctions we study, restricting bidders to undominated strategies can lead to non-existence. Hence we follow the

standard approach of allowing for all bids in the closure of the set of undomindated bids. See Jackson and Swinkels

(2005) for a discussion.
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to a standard distribution. To define a standard distribution, let vmin and vmax be the infimum

and supremum undominated bids for any bidder i and signal si ∈ Si.9

Definition 1 We say that a distribution R is standard if it is continuous, its support is [vmin, vmax]

(the “relevant” values), and on that support it is differentiable and increasing with density function

r that is continuous and positive.

Consider an auction and the game λ that is induced by the auction. We next define the game

perturbed by the addition of a random bidder.

Definition 2 For a standard distribution R and ε > 0, define λ(ε, R) to be the game induced by λ

with the following modification: with probability ε there is an additional bidder submitting a bid b

sampled according to R. We call λ(ε, R) an (ε, R)-tremble of the game λ.

Let µi be a strategy of agent i. A mixed strategy maps the signal of the agent to a distribution

over bids. The strategy is a pure strategy if for every signal the mapping is to a single bid. Let µ

be a profile of strategies, one for each agent.

Definition 3 (i) A Nash equilibrium µ is a Tremble Robust Equilibrium (TRE) of the game λ

if bidders only bid within the closure of the set of undominated bids and there exists a standard

distribution R, a sequence of positive numbers {εj}∞j=1 that converge to 0, and a sequence of strategy

profiles {µεj}∞j=1 such that

1. For every εj, µ
εj is a Nash equilibrium of λ(εj , R), the (εj , R)-tremble of the game λ, in which

bidders only bid within the closure of the set of undominated bids.

2. For each bidder i ∈ N and signal si ∈ Si, {µ
εj
i (si)}∞j=1 converges in distribution to µi(si).

(ii) µ is a strong Tremble Robust Equilibrium if it is a TRE and, in addition, for the sequence

{µεj}∞j=1 satisfying (1) and (2) above, there exists k such that for every j > k it holds that µεj = µ.

4 Second-Price and First-Price Common-Value Auctions

In this section we consider the restriction of the above model to the common-value case and study

the second-price auction (SPA), with comparisons to the first price auction (FPA). When we talk

about the second-price auction game we refer to the game induced by a second-price auction with

a random tie breaking rule, and similarly for the first price auction game. In the common-value

9If Bi(si) is the set of undominated bids for bidder i with signal si then vmin = mini∈{1,...,N}minsi∈Si inf Bi(si)

and vmax = maxi∈{1,...,N}maxsi∈Si supBi(si).
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model, the state of the world determines a common value of the good to all buyers such that

vi(ω) = v(ω) for some function v(ω) and every bidder i.

We begin with our main results: We characterize the unique TRE in the SPA for any monotonic

domain with two bidders who receive binary signals. (By monotonic, we mean that the expected

common-value is nondecreasing in each bidder’s signal.) For comparison, we also characterize the

unique TRE with monotonic bidding strategies in the FPA in the same setting (with the additional

assumption that signals are affiliated). We characterize seller revenues for each auction format,

and highlight how the information structure affects the difference in revenue raised by the two

auction formats using two contrasting information structures: An information structure where

signals identify “lemons”, or very low value items, and an information structure where signals

identify “peaches”, or very high value items. When private information identifies lemons, we find

that SPA revenue is much more vulnerable to ex ante bidder asymmetry than is FPA revenue.

However, we find that this is not the case when private information identifies peaches. We then

proceed to two extensions which explore how robust these insights are to settings with more than

two bidders and richer signal structures.

4.1 Baseline Model: Two Agents, Each with a Binary Signal

In this section we begin by characterizing the unique TRE of the SPA for any monotonic domain

with two bidders who receive binary signals. Let {Li, Hi} be the low and high signals, respectively, of

agent i ∈ {1, 2}. With some abuse of notation we will also use Hi to denote the event that the signal

of agent i was realized to Hi, and similarly for Li. We denote VLL = v(L1, L2), VHH = v(H1, H2),

VHL = v(H1, L2), VLH = v(L1, H2), and make the following assumption:

Assumption 1 The domain is monotonic (VLH , VHL ∈ [VLL, VHH ]), at least one signal is in-

formative (VLL < VHH), and all four possible signal realizations arise with positive probability

(Pr[L1, L2],Pr[L1, H2],Pr[H1, L2],Pr[H1, H2] > 0).

Note that while Assumption 1 rules out the uninteresting case in which neither bidder’s signal

is informative, it does allow for the special case in which one bidder is entirely uninformed. For

instance, bidder 2 is entirely uninformed if VLL = VLH < VHL = VHH , and Pr[H1|H2] = Pr[H1|L2].

Without loss of generality, we label agents 1 and 2 such that:

Pr[H1, L2](VHH − VHL) ≤ Pr[L1, H2](VHH − VLH). (1)

As discussed following Theorem 1, this labeling turns out to identify bidder 1 as the more aggressive

bidder conditional on receiving a high signal.
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Theorem 1 states our first result—a characterization of bidding in the unique TRE of the

second-price auction.

Theorem 1 Consider any SPA game with two bidders that each receive a binary signal, satisfying

Assumption 1. (1) There exists a unique TRE. (2) If bidders are labeled as in equation (1) then,

in the unique TRE:

� Every bidder i bids VLL when getting signal Li.

� Bidder 1 with signal H1 always bids VHH .

� If VHH > VLH , bidder 2 with signal H2 bids VHH with probability Pr[H1,L2]
Pr[L1,H2] ·

VHH−VHL
VHH−VLH and

bids VLH with the remaining probability. Otherwise, bidder 2 with signal H2 bids VHH = VLH

with probability 1.

According to the theorem, both bidders bid conservatively at b = VLL and earn zero payoff

when they receive a low signal. Both bidders bid more aggressively conditional on a high signal,

but not equally so. While bidder 1 always bids her maximum possible value VHH given a high

signal, bidder 2 mixes between the same bid and the lower possible value VLH . Thus equation (1)

identifies bidder 1 as the more aggressive bidder conditional on receiving a high signal. The loose

intuition is that bidder 1 bids more aggressively because the potential downside from bidding VHH

conditional on a high signal is smaller than for bidder 2. The potential downside to bidder 1 (in a

tremble of the game) is overpaying for an item worth only VHL. This possibility is less likely when

Pr[H1, L2] (and hence Pr[L2|H1]) is small, and less consequential when the difference between VHH

and VHL is small. Nevertheless, as bidder 2 may receive a high signal more often, bidder 2 may

earn a higher expected payoff. We provide intuition for Theorem 1 in our sketch of the proof in

Section 4.2. First, however, we discuss important special cases of the theorem and investigate its

implications for revenue.

Theorem 1 encompasses two important special cases: (1) ex ante symmetric bidders (VHL = VLH

and Pr[H1, L2] = Pr[L1, H2]), and (2) a single informed bidder (VLL = VLH < VHL = VHH , and

Pr[H1|H2] = Pr[H1|L2]). If bidders are ex ante symmetric, then our TRE refinement selects the

symmetric equilibrium studied by Milgrom and Weber (1982a) and others. In the unique TRE, both

agents bid VHH given a high signal but bid VLL otherwise. If only bidder 1 is informed, however,

then the setting corresponds to the example discussed in Section 2. In this case, the unique TRE

predicts that bidder 1 bids VHH given a high signal and VLL otherwise, but that bidder 2 always

bids VLL. In other words, bidder 2 chooses not to compete.
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Theorem 1 is not confined to these two special cases, but also spans all the intermediate cases

in which both bidders are informed but are nonetheless asymmetric ex ante. Begin with the case in

which bidder 1 is the only informed bidder, and consider what changes if bidder 2 becomes informed.

Theorem 1 shows that if bidder 2’s signal is informative about bidder 1’s signal (Pr[H1|H2] 6=

Pr[H1|L2]), but bidder 1’s signal remains a sufficient statistic for the value (VLL = VLH < VHL =

VHH), then bidding strategies and payoffs are unaffected. However, as bidder 2 begins to acquire

information about the item’s value for which bidder 1’s signal is not a sufficient statistic, and hence

VLH and VHL begin to differ from VLL and VHH , respectively, then bidder 2 gradually becomes more

aggressive in two respects. First, as VLH increases above VLL, bidder 2’s minimum bid increases.

Second, as VHL decreases below VHH , bidder 2 begins to place positive weight on a bid of VHH .

Equilibrium bidding, and bidder 2’s aggressiveness, vary continuously with these parameters from

one extreme (a single informed bidder) to the other (ex ante symmetric bidders).

Next, we investigate how revenue varies with the information structure. An immediate corollary

of Theorem 1 is a prediction about seller revenue in the unique TRE of the game. (Proofs of all

corollaries are in Appendix C.)

Corollary 1 The seller’s expected revenue under the unique TRE predicted by Theorem 1 is

RSPA = VLL + (VHH − VHL) Pr[H1, H2]
Pr[H1, L2]

Pr[L1, H2]
+ (VLH − VLL) Pr[H1, H2]. (2)

Denote the ex ante expected value of the item as V̄ . This is the social surplus and would be

the seller’s revenue if there were no asymmetric information—either because both bidders were

uninformed or because both bidders were fully informed. With asymmetric information, we expect

informed bidders to earn information rents, and hence for revenue to be below V̄ . At the same

time, revenue should always be at least the minimal possible value of VLL. It is an interesting

question, however, where between these bounds revenue will fall.

4.1.1 Symmetric Case

Intuition suggests that if bidders have little information, then information rents could be low so

that revenue is close to expected surplus V̄ . This intuition turns out to be correct if bidders are

symmetric ex ante and cookies are rare, as shown in Corollary 2. By cookies being rare, we mean

that that both bidders almost always receive the default signal of {no-cookie}, whether that be the

low signal (such that Pr[L1, L2] is near 1) or the high signal (such that Pr[H1, H2] is near 1).
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Corollary 2 Given Assumption 1: If bidders are symmetric ex ante (such that VLH = VHL and

Pr[H1, L2] = Pr[L1, H2]) then SPA revenue in the unique TRE is:

RsymmetricSPA = V̄ − (Pr[H1, L2] + Pr[L1, H2])(VHL − VLL). (3)

As cookies become rare, and either Pr[L1, L2] or Pr[H1, H2] approaches 1, revenue approaches the

full expected surplus:

lim
Pr[L1,L2]→1

RsymmetricSPA = lim
Pr[H1,H2]→1

RsymmetricSPA = V̄ .

4.1.2 Peaches and Lemons Cases

To illustrate the implications of Corollary 1 beyond the symmetric case, we consider the following

setting. There are two possible qualities for the item, low (L for Lemon) and high (P for Peach),

that is Ω = {L,P}. A peach is more valuable than a lemon, such that v(L) < v(P ). The ex ante

expected value is V̄ . We then define two special cases:

Definition 4 Both bidders are informed about peaches if VLH = VHL = VHH = v(P ).

If bidders are informed about peaches, our interpretation is the following: A cookie corresponds to

the high signal and precisely identifies an item as a peach. Absence of a cookie corresponds to the

low signal. If neither bidder has a cookie (both receive low signals), then Definition 4 implies an

expected value for the item of:

VLL = V̄ − (v(P )− V̄ )
1− Pr[L1, L2]

Pr[L1, L2]
. (4)

Definition 5 Both bidders are informed about lemons if VLL = VLH = VHL = v(L).

If both bidders are informed about lemons, our interpretation is the following: A cookie corresponds

to the low signal and precisely identifies an item as a lemon. Absence of a cookie corresponds to

the high signal. If neither bidder has a cookie (both receive high signals), then Definition 5 implies

an expected value for the item of:

VHH = V̄ + (V̄ − v(L))
1− Pr[H1, H2]

Pr[H1, H2]
. (5)

Notice that while the assumption that bidders are informed about peaches or lemons imposes

a symmetric mapping between signals and values (as VLH = VHL), it does not impose symmetry

between bidders ex ante. In particular, bidders may still have asymmetric probabilities of receiv-

ing each signal (Pr[L1, H2] 6= Pr[H1, L2]). (In both cases, equation (1) labels bidders such that

Pr[L1, H2] ≥ Pr[H1, L2].)
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One intuition suggests that if bidders have little information, then information rents could be

low so that revenue is close to expected surplus V̄ . Corollary 2 shows this to be correct if bidders

are symmetric ex ante and cookies are rare. When bidders are asymmetric ex ante, however, there

is a competing intuition—that we might expect low revenue because the less-informed agent bids

low for fear of adverse selection. Investigating this possibility reveals a sharp distinction between

the seemingly similar cases of information about peaches and lemons.

Peaches: If both bidders are informed about peaches, then Theorem 1 predicts that bidders 1

and 2 both bid VHH = v(P ) when receiving a cookie (a high signal), and VLL ∈ (v(L), V̄ ) otherwise.

Importantly, neither bidder faces an adverse selection problem conditional on receiving a high signal

(a cookie), and can bid equally aggressively in this case. Moreover, absent a cookie, a bid of VLL

is still relatively close to the expected surplus of V̄ if cookies (high signals) are rare. Thus, when

cookies are rare, revenues are close to the expected surplus of V̄ :

Corollary 3 Given Assumption 1: If both bidders are informed about peaches then SPA revenue

in the unique TRE is:

RpeachesSPA = V̄ − (v(P )− V̄ )
Pr[L1, H2] + Pr[H1, L2]

Pr[L1, L2]
. (6)

As cookies become rare and Pr[L1, L2] approaches 1, revenue approaches expected surplus:

lim
Pr[L1,L2]→1

RpeachesSPA = V̄ .

Lemons: If both bidders are informed about lemons, then Theorem 1 predicts that bidder 1 bids

VLL = v(L) given a cookie (a low signal) and bids VHH ∈ (V̄ , v(P )) otherwise. Bidder 2 also bids

v(L) given a cookie, but absent a cookie mixes between bidding VHH and VLH = v(L). Unlike

the peaches case, VLL and VLH are never close to V̄ , but rather both equal v(L). Thus the seller

only receives revenue above v(L) when both bidders aggressively bid VHH . However, in contrast to

the peaches case, bidders with the high signal (meaning no cookie) now face a substantial adverse

selection problem. Winning might imply that the other bidder was avoiding a known lemon. Hence

bidder 2 bids less aggressively than in the peaches case—bidding VLH = v(L) with probability

1− Pr[H1,L2]
Pr[L1,H2] given the high signal. Corollary 4 shows the implications for revenue.

Corollary 4 Given Assumption 1: If both bidders are informed about lemons then SPA revenue

in the unique TRE is:

RlemonsSPA = v(L) + (V̄ − v(L))
Pr[H1, L2]

Pr[L1, H2]
. (7)
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Corollary 4 shows that SPA revenue varies with the probability, Pr[H1,L2]
Pr[L1,H2] , that bidder 2 aggres-

sively bids VHH upon receiving a high signal (no cookie). If bidders are symmetric ex ante, such

that Pr[H1,L2]
Pr[L1,H2] = 1, then unaggressive bidding due to adverse selection is not an issue and revenue

achieves the upper bound: RlemonsSPA = V̄ . However, when bidders are very asymmetric ex ante, such

that Pr[H1,L2]
Pr[L1,H2] → 0, bidder 2 stops competing for peaches entirely and revenue collapses to the lower

bound: RlemonsSPA → v(L). Thus, as Pr[H1,L2]
Pr[L1,H2] varies between 0 and 1 (recall that bidders are labeled

such that Pr[H1, L2] ≤ Pr[L1, H2]), revenue varies from the lower bound v(L) to the full expected

surplus V̄ .

4.1.3 Peaches and Lemons Example

Next, consider an example that further illustrates the contrast between information about peaches

and lemons.

Example 1 The commonly known prior is that with probability 1/2 the impression is a peach (P ),

and with probability 1/2 it is a lemon (L). Normalize v(L) = 0 and v(P ) = 2 so that V̄ = 1. We

consider two cases:

� Both bidders are informed about peaches: Conditional on the impression being a peach, each

bidder receives a cookie with independent probability pi which identifies the impression as a

peach. Otherwise the bidder receives no cookie and is uncertain whether the impression is a

peach or a lemon. In this case a cookie corresponds to the high signal and lack of a cookie

corresponds to the low signal.

� Both bidders are informed about lemons: Conditional on the item being a lemon, each bidder

receives a cookie with independent probability qi which identifies the impression as a lemon.

Otherwise the bidder receives no cookie and is uncertain whether the impression is a peach or

a lemon. In this case a cookie corresponds to the low signal and lack of a cookie corresponds

to the high signal.

We can translate the example into the notation of Theorem 1 as follows. If bidders are informed

about peaches, then VLH = VHL = VHH = 2, Bayes rule implies that VLL = 2 (1−p1)(1−p2)
1+(1−p1)(1−p2) ,

and we label bidders such that p1 ≤ p2.10 Similarly, if bidders are informed about lemons, then

VLH = VHL = VLL = 0, Bayes rule implies that VHH = 2
1+(1−q1)(1−q2) , and we label bidders such

that q1 ≥ q2.11

10Also, Pr[H1, H2] = 1
2
p1p2, Pr[L1, H2] = 1

2
(1−p1)p2, Pr[H1, L2] = 1

2
p1(1−p2), Pr[L1, L2] = 1

2
+ 1

2
(1−p1)(1−p2).

11Also, Pr[L1, L2] = 1
2
q1q2, Pr[H1, L2] = 1

2
(1− q1)q2, Pr[L1, H2] = 1

2
q1(1− q2), Pr[H1, H2] = 1

2
+ 1

2
(1− q1)(1− q2).
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Figure 1: Panel A: SPA revenues in Example 1 when bidders are informed about peaches for

p2 = 1/5 and p1 ∈ [0, 1/5]. Panel B: SPA revenues in Example 1 when bidders are informed about

lemons for q1 = 1/5 and q2 ∈ [0, 1/5].

Applying Corollary 1 yields predicted revenues of

RpeachesSPA =
2(1− p1)(1− p2) + p1p2

1 + (1− p1)(1− p2)
, (8)

RlemonsSPA =
q2(1− q1)

q1(1− q2)
. (9)

Revenues when bidders are informed about peaches are plotted as a function of p1 ∈ [0, 1/5] for

the case of p2 = 1/5 in Panel A of Figure 1. The right hand edge of the figure corresponds to ex

ante symmetric bidders (p1 = p2 = 1/5), while the left-hand edge of the figure corresponds to only

bidder 2 being informed (p1 = 0 and p2 = 1/5). The figure shows that expected revenues vary little

with ex ante asymmetry of the bidders, and are always at least 80% of expected surplus—which

holds for all values of p2 ≤ 1/5.

Revenues when bidders are informed about lemons are plotted as a function of q2 ∈ [0, 1/5] for

the case of q1 = 1/5 in Panel B of Figure 1. As both the figure and equation (9) make clear, revenues

equal the full expected surplus of 1 when bidders are symmetric ex ante at the right-hand edge of

the figure (where q1 = q2 = 1/5). However, moving left across the figure, as the bidders become

increasingly asymmetric ex ante, revenues fall to zero as bidder 1 becomes the only informed bidder

at the left-hand edge of the figure (where q1 = 1/5 and q2 = 0).

Comparing the peaches and lemons cases shows that the vulnerability of the second-price auc-

tion to adverse selection with ex ante asymmetric bidders varies greatly across the two types of

information that cookies might contain. When cookies are relatively rare, revenues appear robust

to the presence of bidders with ex ante better access to cookies that identify peaches, but revenues

can collapse when cookies identify lemons.
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4.2 Sketch of the Proof of Theorem 1

Next we sketch the proof of Theorem 1 and provide intuition for the result. For the complete proof

see the formal outline in Appendix B and supporting details in Online Appendix H.

Fix any standard distribution R and ε > 0 and let λ(ε, R) be the (ε, R)-tremble of the game. In

the (ε, R)-tremble of the game the random bidder enters the auction with small probability ε > 0 and

is bidding according to a standard distribution R (its support is [VLL, VHH ]). Denote the probability

that the random bidder does not enter or enters but bids below x by R̂(x) = 1− ε+ ε · R(x). Let

its derivative, the density of random bids unconditional on entry, be r̂(x) = ε · r(x).

Note that in both the original game and any (ε, R)-tremble, the set of undominated bids is

closed, so the requirement that bidders only bid within the closure of the set of undominated bids

is equivalent to a requirement that bidders do not place dominated bids or that equilibrium is “in

undominated bids”. The proof then relies on two results. (1) First, we show that in each of the

games λ(ε, R) a mixed NE µε in undominated bids exists (Lemma 3). (2) Second, we show that

the limit of any sequence of NE µε in undominated bids of the games {λ(ε, R)}ε must converge to

µ as ε goes to zero (Lemma 4). As µ is a NE of the original game, these two results imply that it

is the unique TRE.

We defer the first result to the appendix and next present the high level arguments for the

second result. We first observe that if bidders never submit dominated bids, bidder i ∈ {1, 2} that

receives signal Li must not bid outside the interval [VLL, v(Li, Hj)], while bidder j that receives

signal Hj must bid at least v(Li, Hj). As a result, a bidder i with signal Li will never bid above

VLL because doing so means paying at least the item’s value (a lower bound for j’s bid) and risks

overpaying if the random bidder sets the price. Thus a bidder i with signal Li always bids exactly

VLL.

Turning to bidder i’s strategy given the high signal Hi, we first establish notation to describe

the bidding strategies. Recall that µε denotes a NE of the tremble λ(ε, R), and define GHi = µεi(Hi)

to be the cumulative distribution of bidder i’s bids conditional on her receiving the signal Hi. When

it exists, we denote the derivative of GHi by gHi.

If VLH = VHH , equation (1) implies that VHL = VHH , and hence it is a dominant strategy for

each bidder i to bid VHH conditional on receiving signal Hi. If VHL = VHH but VLH < VHH , then

bidder 1 has a dominant strategy to bid VHH given signal H1. Bidder 2 must then bid VLH given

signal H2 because all incremental wins from bidding higher would either priced at their value (when

bidder 1 sets the price at VHH) or above their value (when the random bidder sets the price).

If max{VLH , VHL} < VHH , we show that bidding strategies conditional on high signals must fall

into one of two cases. In both cases, the more cautious bidder (bidder 2) with signal H2 bids an atom
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Figure 2: Two examples of the bidding CDFs for the two bidders when getting their high signals

in the unique NE of the tremble λ(ε, R). Panel A: In this example, bidder 2 bids an atom at

VLH = bmin, and both bidders mix over (bmin, bmax]. Panel B: In this example, bidder 2 bids an

atom at VLH , bidder 1 bids an atom at bmin > VLH , and both mix over (bmin, bmax].

at VLH (except in the special case of symmetric bidders in which there are no atoms). Moreover,

in both cases, both bidders mix continuously over the interval (bmin, bmax) for some bmin and bmax

satisfying max{VLH , VHL} ≤ bmin < bmax < VHH and there are no bids outside [VLH , bmax]. In the

first case (illustrated in Figure 2 Panel A), there is no gap in bidding as VLH = bmin and there are

no atoms in the bid distribution of the aggressive bidder (bidder 1). In the second case (illustrated

in Figure 2 Panel B), there is a gap in bidding between VLH and an atom in the aggressive bidder’s

bid distribution at bmin > VLH .

In the second case, the aggressive bidder’s atom serves to keep bidder 2 with signal H2 indifferent

between bidding VLH and bidding just above bmin. It is just the right size to provide a benefit for

bidding above VLH equal to the additional cost associated with overpaying due to a random bid

falling between VLH and bmin when the aggressive bidder has the low signal L1. This cost goes to

zero as ε goes to zero and the random bidder vanishes. Thus the aggressive bidder’s atom at bmin

also vanishes as ε goes to zero, and is not part of the TRE.

The remainder of the result follows from considering bidder first-order conditions which apply

over the interval (bmin, bmax) where both bidders mix continuously. In this interval, if bidder i

has signal Hi, his bid b could be pivotal in one of three ways. First, a bid b could tie bidder j

and beat the random bidder (an event with density Pr [Hj |Hi] gHj (b) R̂ (b)), leading to a gain of

(VHH − b). Second, a bid b could tie the random bidder and beat bidder j with a high signal Hj

(an event with density Pr [Hj |Hi] r̂ (b)GHj (b)), again leading to a gain of (VHH − b). Third, a

bid b could tie the random bidder and beat bidder j with a low signal Lj (an event with density

Pr [Lj |Hi] r̂ (b)GHj (b)), leading to a loss from overpayment of (b− E [V | Hi, Lj ]). The first-order
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condition for b to be an optimal bid requires that these expected gains and losses from a slight bid

change are equal so there is no benefit to raising or lowering the bid:

Pr [Hj |Hi]
(
r̂ (b)GHj (b) + R̂ (b) gHj (b)

)
(VHH − b) = Pr [Lj |Hi] r̂ (b) (b− E [V | Hi, Lj ]) (10)

In the limit as ε goes to zero and the random bidder vanishes, a bid is only pivotal if it ties the

strategic bidder. Thus the right-hand side of the first-order condition in equation (10) goes to zero

and all bids in (bmin, bmax] must approach VHH . Note that this implies that, in the limit as ε goes

to zero, the aggressive bidder 1 bids VHH with probability 1. This follows because bidder 1’s atom

at bmin vanishes so that in the limit all her bids fall in (bmin, bmax]. To determine the probability

bidder 2 bids VHH , we solve the differential equation given in equation (10) to find GH2(b) for ε > 0

and take the limit of 1−GH2(VLH) as ε goes to zero (see Online Appendix H for details).

Next, we provide an informal intuition for the size of bidder 2’s atom at VHH . In the limit as

ε tends to zero, all bidding mass in (bmin, bmax] approaches VHH . Thus, in the limit bidder j bids

VHH conditional on Hj with probability limε→0

∫ bmax
bmin

gHj(b)db. Moreover, as bidder 1 has an atom

of size 1, bidder 2’s atom is equal to the ratio of the atoms:

Pr(b2 = VHH |H2) =
limε→0

∫ bmax
bmin

gH2(b)db

limε→0

∫ bmax
bmin

gH1(b)db
= lim

ε→0

∫ bmax
bmin

gH2(b)db∫ bmax
bmin

gH1(b)db
. (11)

The second equality above relies on the fact that limε→0

∫ bmax
bmin

gH1(b)db = 1 > 0.

We solve the first-order condition from equation (10) for the bid density gHj (b) and present the

solution in equation (12). This characterizes the bid density of bidder j required for i with signal

Hi to bid b:

gHj (b) =
Pr[Lj |Hi]

Pr[Hj |Hi]
· r̂(b)
R̂(b)

· b− E [V | Hi, Lj ]

VHH − b
− r̂(b)

R̂(b)
·GHj(b). (12)

The first term in equation (12) is proportional the ratio of i’s potential loss from overpaying when

bidder j has a low signal Lj to i’s potential gain from winning when bidder j has a high signal Hi.

The second term is O(ε) for all b, and hence it is unimportant for small ε. (In contrast the first

term is large near bmax as limε→0 bmax = VHH .) Substituting this expression into equation (11),

while omitting the second term and cancelling r̂(b)/R̂(b), gives bidder 2’s atom at VHH :

Pr(b2 = VHH |H2) =
Pr[H1, L2]

Pr[L1, H2]
· lim
ε→0

∫ bmax
bmin

b−VHL
VHH−bdb∫ bmax

bmin
b−VLH
VHH−bdb

=
Pr[H1, L2]

Pr[L1, H2]
· VHH − VHL
VHH − VLH

. (13)

The second equality above follows from the fact that limε→0 bmax = VHH and a result shown in

Lemma 23 in the online appendix. Thus, bidder 2’s atom at VHH is proportional to the potential

overpayment by bidder 1 bidding VHH when bidder 2 has a low signal to the potential overpayment

by bidder 2 bidding VHH when bidder 1 has a low signal. Finally, bidder 2’s atom at VLH has

complementary probability 1− Pr[H1,L2]
Pr[L1,H2] ·

VHH−VHL
VHH−VLH .
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4.3 Comparison to FPA

For comparison, we now consider the FPA game in a slightly more restrictive setting than that

studied in Section 4.1. In particular, in addition to Assumption 1, we assume that:

Assumption 2 The signals are affiliated: Pr[H1, H2] Pr[L1, L2] ≥ Pr[L1, H2] Pr[H1, L2].

In this setting, for the FPA game, we label bidders such that

Pr[L1, H2] ≥ Pr[H1, L2]. (14)

Note that this labeling of bidders coincides with our labeling in the SPA for Theorem 1 and

Corollaries 1-4 if VLH = VHL but not necessarily otherwise. Bidding strategies are monotone if

bidder i ∈ {1, 2} places higher bids given signal Hi than given signal Li.
12

Theorem 2 Consider any FPA game with two bidders that each receive a binary signal that sat-

isfies Assumptions 1–2, and label bidders as in equation (14). The unique Nash equilibrium with

monotone bidding strategies is also the unique TRE with monotone bidding strategies and is char-

acterized by equations (18)-(25) in Appendix A.13

The equilibrium characterization in Appendix A shows that, conditional on signals received,

equation (14) identifies bidder 1 as the more aggressive bidder and bidder 2 as the less aggressive

bidder in the FPA game. This coincides with the finding in the SPA game if VLH = VHL, including

the special cases in which bidders are informed either about peaches or about lemons, but not

necessarily otherwise. (As in the SPA game, being the aggressive bidder does not necessarily mean

being the bidder with a higher expected payoff.)

Next, the following corollary characterizes seller revenue in the unique TRE with monotonic

strategies in the FPA game.

12To be precise, monotone bidding by i implies that if i bids more than b with positive probability given signal Li

then i must bid b or lower with zero probability given signal Hi. See also Definition 10 in Appendix A.
13Note that for the case VLL < min{VLH , VHL} ≤ max{VLH , VHL} < VHH , Rodriguez’s (2000) Proposition 1

implies that equilibrium bidding strategies must be monotone. If one bidder is entirely uninformed (e.g., bidder 2 is

uninformed if VLL = VLH < VHL = VHH and Pr[H1|H2] = Pr[H1|L2]) the uninformed bidder’s signal realizations

do not matter—only her unconditional bid distribution (Engelbrecht-Wiggans et al., 1983). While we are unaware

of any Nash equilibria of the FPA game with non-monotone bidding strategies when both bidders are informed but

VLL = min{VLH , VHL} or max{VLH , VHL} = VHH , we have not ruled them out either. As a result, we simply choose

to focus on the unique Nash equilibrium in monotone bidding strategies. Moreover, it should be noted that in the

FPA game, TRE and Nash equilbrium coincide given monotone bidding strategies. Thus TRE is not helpful in

refining the Nash prediction, but the fact that the unique Nash equlibrium in monotone bidding strategies is also a

TRE ensures that we are comparing apples to apples when comparing to the TRE of the SPA game.
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Corollary 5 The seller’s expected revenue under the equilibrium characterized by Theorem 2 is

RFPA = VLL + Pr[H1, H2]
Pr[H1]

Pr[H2]
(VHH − VLH) + Pr[H1, H2] (VLH − VLL)

+
(Pr[L1, H2])2 − (Pr[H1, H2] Pr[L1, L2]− Pr[H1, L2] Pr[L1, H2])

Pr[L1, H2] Pr[L1] + (Pr[H1, H2] Pr[L1, L2]− Pr[H1, L2] Pr[L1, H2])

· (Pr[L1, H2]− Pr[H1, L2]) (VLH − VLL) (15)

As cookies become rare, and either Pr[L1, L2] or Pr[H1, H2] approaches 1, revenue approaches the

full expected surplus:

lim
Pr[L1,L2]→1

RFPA = lim
Pr[H1,H2]→1

RFPA = V̄ .

The expression for revenue in the FPA is more cumbersome than that for revenue in the SPA.

Nevertheless, it allows for an insightful comparison of revenue between the two auction formats.

First, when bidders are ex ante symmetric, FPA revenue coincides with that in the SPA character-

ized in Corollary 2. This is consistent with Milgrom and Weber’s (1982a) result that, given ex ante

symmetric bidders and affiliated signals, revenue is equal or higher in the symmetric equilibrium of

the SPA than in the FPA. Second, when cookies are rare, the finding that FPA revenue is always

close to expected surplus can be compared with the characterization of SPA revenue when bidders

are informed about peaches (Corollary 3) or lemons (Corollary 4).

Peaches Case: Consider the case in which both bidders are informed about peaches. In this

case, Corollaries 3 and 5 show that both the SPA and the FPA perform similarly well when cookies

are rare, both with revenues close to expected surplus.

Returning to Example 1, Panel A of Figure 3 illustrates this finding. The figure replicates plots

of SPA revenue when bidders are informed about peaches (panel A) and lemons (panel B) first

shown in Figure 1 with the addition of FPA revenue for comparison. As before, the left-hand side

of each plot corresponds to the case in which only a single bidder is informed, while the right-hand

side of each plot corresponds to ex ante symmetry.

Panel A shows that FPA and SPA revenue are so similar that they are hard to distinguish in

the figure. Moreover, for the chosen parameter values at which cookies identify no more than 20%

of peaches, both auction formats capture at least 80% of surplus as revenue.

Lemons Case: Next, consider the case in which both bidders are informed about lemons. In this

case, comparing Corollaries 4 and 5 reveals an important difference between first-price and second-

price auctions. If bidders are informed about lemons, FPA revenues are robust to bidder asymmetry

when cookies are rare, always being close to expected surplus. In contrast, bidder asymmetry can
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Figure 3: Panel A: SPA and FPA revenues in Example 1 when bidders are informed about peaches

for p2 = 1/5 and p1 ∈ [0, 1/5]. Panel B: SPA and FPA revenues in Example 1 when bidders are

informed about lemons for q1 = 1/5 and q2 ∈ [0, 1/5].

be devastating to SPA revenue even when there is little private information because cookies are

rare for both bidders. In fact, the two auction formats yield revenues at opposite bounds when

bidders are informed about lemons, cookies are rare such that Pr[H1, H2] is large, and bidders are

asymmetric such that Pr[H1,L2]
Pr[L1,H2] is small. In such a setting, SPA revenues are close to the lower

bound of v(L), while FPA revenues are close to the full expected surplus of V̄ . In the context of

Example 1, this is the scenario illustrated on the left-hand side of Panel B in Figure 3.

Summary: Figure 3 clearly summarizes our findings. Whether bidders are informed about

peaches or about lemons, both SPA and FPA yield high revenues when bidders are symmetric

ex ante. However, when cookies are rare (they arrive only 10% of the time for the better informed

bidder in the example shown in Figure 3) bidder asymmetry has sharply different implications if

bidders are informed about peaches than if they are informed about lemons. When bidders are

informed about peaches, SPA revenues are nearly identical to FPA revenues and close to full surplus

whether bidders are asymmetric or not. When bidders are informed about lemons, however, SPA

revenues collapse to the value of a lemon, v(L), as bidder asymmetry widens, while FPA revenues

remain robust. As a result, whether online-advertising impression marketplaces are losing substan-

tial revenue due to bidder asymmetry by running SPA rather than FPA depends importantly on

what information is contained in bidders’ cookies. If cookies identify peaches, then the loss may be

minimal. If cookies identify lemons, however, the loss could be substantial.
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4.4 Extension: Only One Informed Bidder

We now consider the special case in which only a single bidder is informed, but allow for multiple

uninformed bidders and for the informed bidder to receive a signal with many possible realizations

rather than only two. Our findings about the important distinction between private information

about lemons and peaches are robust in this extension. (Proofs are in Appendix D.)

Suppose that only a single informed buyer I receives an informative signal sI ∈ SI about the

value, while all n ≥ 0 others are uninformed buyers (always receiving a null signal). Thus we write

v(sI) = E[v(ω)|sI ] for the informed bidder’s interim expected value conditional on sI and denote

the minimum and maximum such values by vmin and vmax, respectively. Throughout this section

we assume that 0 ≤ vmin < vmax <∞.

When only one bidder is informed, Theorem 1 implies that: (1) the informed bidder bids the

expected value conditional on her signal (either v(L) or v(H)); (2) the uninformed bidder bids

to match the informed bidders’ lowest bid, her minimum possible posterior valuation, v(L); (3)

revenues are equal to that minimum posterior valuation. Theorem 3 establishes that all three

results apply more generally, for any number of uninformed bidders and any signal distribution of

the informed bidder.

Theorem 3 In any common-value domain with one informed buyer and n ≥ 0 uninformed buyers,

the unique TRE of the SPA game is a strong TRE in pure strategies in which:

1. the informed buyer bids bI(sI) = v(sI).

2. each of the uninformed buyers bids the informed bidders minimum possible expected value,

bU = minŝI∈SI v(ŝI) = vmin.

Moreover, revenue is R1−informed
SPA = vmin.

Theorem 3 shows that the revenue of the SPA with only one informed bidder in the unique

TRE is as low as it can be with undominated bids. When the informed bidder receives a signal

that identifies a lemon with positive probability, this means that revenues can be very low. In the

setting of the previous section, we found FPA revenues to be more robust. This insight can also be

extended to allow for any number of uninformed bidders and a general signal distribution for the

informed bidder. In particular, using the FPA revenue result in Theorem 4 of Engelbrecht-Wiggans

et al. (1983), FPA revenues can be bounded below, independent of the signal distribution of the

informed bidder.
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Proposition 1 Consider any common-value domain with one informed buyer and n ≥ 0 unin-

formed buyers that satisfies 0 ≤ vmin < vmax < ∞. There exists a TRE of the FPA. Letting

V̄ = E[v] and F be the cumulative distribution of v(sI), TRE implies that (1) R1−informed
FPA =∫∞

0 (1− F (v))2dv > R1−informed
SPA , and (2)

V̄ ≥ R1−informed
FPA ≥ vmin +

(V̄ − vmin)2

vmax − vmin
.

Comparing Proposition 1 with Theorem 3 bounds the difference in FPA and SPA revenues when

only one bidder is informed:

V̄ − vmin ≥ R1−informed
FPA −R1−informed

SPA ≥ (V̄ − vmin)2

vmax − vmin
. (16)

This difference can be large when the informed bidder receives a signal that identifies a lemon with

positive probability and vmin = v(L) < V̄ . However, the difference is negligible when cookies are

rare and always correspond to above average impressions. In this case, absence of a cookie is both

the only negative signal and not very informative so that vmin ≈ V̄ .

At the opposite extreme, we can consider the case of ex ante symmetric bidders with affiliated

signals. For a SPA with two bidders and binary signals, we found in Section 4.1 that the TRE

coincided with the symmetric equilibrium when bidders are ex ante symmetric. Under the con-

jecture that this is true with more than two bidders and richer information structures, Milgrom

and Weber’s (1982a) result ranking second-price auction revenue equal or higher than first-price

auction revenue applies:14

RsymmetricFPA ≤ RsymmetricSPA . (17)

Comparing equations (16)-(17) shows that from the seller’s perspective, while SPA perform well

in symmetric settings, sufficient asymmetry leads the SPA to substantially underperform the FPA

if an informed bidder sometimes receives signals that cause a low posterior valuation. Thus, this

insight which was first shown in Section 4.3, appears to be much more general than the 2-bidder and

binary signal case—but rather applies to any number of bidders with rich information structures.

4.4.1 Comparison to Akerlof (1970)

The prediction of TRE in a SPA with one informed bidder bears a striking similarity to Nash

equilibrium in Akerlof’s (1970) lemons market: In both cases, uninformed buyers only buy “lemons”,

paying no more than the value of a lemon, and similar adverse selection phenomena drive both

results. Nevertheless, there is an important difference between the two cases. In Akerlof’s (1970)

14Milgrom and Weber’s (1982a) result is proved for continuous signals, but the authors point out in footnote 15

that it is true more generally.
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market for lemons there is a single market price, which therefore cannot be commensurate with

quality for all items. In stark contrast, in the SPA with a single informed bidder, information is

revealed about the quality of the item during the auction. When the informed bidder sets the price,

it reflects the fair value of the item given its quality. Hence, there are Nash equilibria in which

uninformed buyers bid high prices and win high quality items at high prices as well as low quality

items at low prices. We believe the fact that our refinement excludes such equilibria and selects

one in the spirit of Akerlof’s (1970) market for lemons is an attractive feature of the refinement.

However, this was not a foregone conclusion that could be reached without the TRE refinement.

4.5 Extension: Many Agents, each with Finitely Many Signals

Characterizing TRE of the SPA with N bidders and an arbitrary information structure is beyond

the scope of this paper. Instead, in this final extension, we characterize TRE in the SPA game

with N bidders that each receive finitely many signals that jointly satisfy the strong-high-signal

property. We therefore begin by recursively defining the strong-high-signal property, and providing

examples in which it holds. Next, Theorem 4 characterizes the unique TRE when the strong-high-

signal property holds. In particular, the profile of strategies in which each agent bids the posterior

given his signal and the worst feasible combination of signals of the others is a strong TRE in

pure strategies and the unique TRE. Finally, Propositions 2-3 apply the result to make revenue

predictions for settings in which bidders are informed about peaches or bidders are informed about

lemons. We find again that SPA revenues can be much lower when bidders are informed about

lemons than when informed about peaches.

4.5.1 Strong-High-Signal Property

Recall that we denote the vector of all bidder signals by s. Extending notation from the previous

section, vmin = mins∈S{v(s)} and vmax = maxs∈S{v(s)} are the minimal and maximal possible

values conditional on any feasible signal profile, respectively.15 In every domain satisfying the

strong-high-signal property, there exists a signal si for some agent i such that his interim expected

value v(si) ≡ E[v(ω)|si] is equal to vmax. Such a signal is strong in the sense that it is a sufficient

statistic for the value. (Conditional on si, other signals sj 6=i are uninformative.) Such a signal is

also high in the sense that no other information set could lead to a higher expected value. Moreover,

if we condition on that signal not being realized and consider the domain with that restriction, that

15Thus vmin and vmax are the infimum and supremum undominated bids for any bidder i and signal si ∈ Si, as

defined in Section 3.2
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domain also satisfies the condition.16 (Any domain in which all agents are uninformed satisfies the

strong-high-signal property.)

Definition 6 Consider a common-value domain with n agents, each with finitely many signals.

We say that such a domain satisfies the strong-high-signal property if: (1) For some agent i and

signal si ∈ Si it holds that v(si) = vmax, and (2) if we consider the same domain but restricted to

the case that agent i does not receive the signal si, if that restricted domain contains any feasible

vector of signals then it also satisfies the strong-high-signal property.

A variety of information structures satisfy the strong-high-signal property. First, any domain

with a single informed bidder (as in Section 4.4) satisfies the strong-high-signal property.17 Sec-

ond, the case of two-bidders with binary signals (as in Section 4.1) satisfies the strong-high-signal

property if and only if VHL = VHH or VLH = VHH .18 (This includes the case of cookies identi-

fying peaches from Section 4.1, but not the case of cookies identifying lemons if both bidders are

informed.) Moving beyond these cases already covered by our earlier results, Online Appendix G

shows that any connected domain satisfies the strong-high-signal property (but that the converse

does not hold). In a connected domain, each bidder’s information is a partition of the interval of

common values [minω v(ω),maxω v(ω)]. Formally, a connected domain is defined as follows:

Definition 7 Let each agent i have a partition Πi of the set of states Ω and receive a signal that is

the element of the partition that includes the realized state. The information partition Πi of bidder

i is connected (with respect to the common value v) if every πi ∈ Πi has the property that, when

ω1, ω2 ∈ πi and v(ω1) ≤ v(ω2) then every ω ∈ Ω with v(ω1) ≤ v(ω) ≤ v(ω2) is necessarily in πi. A

common-value domain is connected (with respect to the common value) if the information partition

Πi is connected for every agent i.

4.5.2 Tremble Robust Equilibrium

Theorem 4 characterizes the unique TRE of the SPA given the strong-high-signal property; its

proof is in Appendix E.

16By definition, vmax is a function of the domain. When we remove a high signal, its value falls.
17This follows because at each point one can take the signal with the highest posterior value for the informed agent

and recursively remove it.
18If VHL = VHH then v(H1) = v(H1, H2) = vmax, meaning that H1 is a strong high signal. To prove that the

property holds we only need to consider the domain restricted to agent 1 receiving L1. But that domain clearly

satisfies the property as it has at most one informed bidder (bidder 2). The case VLH = VHH also satisfies the

strong-high-signal property by symmetric logic.
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Theorem 4 Consider a SPA in a common-value domain with n agents, each with finitely many

signals, in which the strong-high-signal property holds. Let µ be the profile of strategies in which

agent i with signal si ∈ Si bids the minimal value consistent with her signal si:

vmin(si) ≡ min{v(si, s−i)|s−i such that (si, s−i) ∈ S}.

Then µ is the unique TRE and moreover, µ is a strong TRE in pure strategies.

Theorem 4 has significant implications regarding the revenue of the seller in the unique TRE.

In this TRE, each bidder bids the posterior given his signal and the worst feasible combination of

signals of the others, which can be much lower than the interim valuation given only the bidder’s

signal. We further explore implications for revenue below.

Notice that for the connected domains studied by Einy et al. (2002), Theorem 4 applies and

the unique TRE coincides with the Nash equilibrium highlighted by Einy et al. (2002) as the

single “sophisticated equilibrium” that Pareto-dominates the rest in terms of bidders resulting

utilities. In other words, the two refinements coincide on connected domains. Importantly, in

Online Appendix G we give an example of a simple domain that satisfies the strong-high-signal

property but is not connected, and also is not equivalent to any connect domain. This shows that

Theorem 4 applies in more settings than do Einy et al.’s (2002) results.

4.5.3 Lemons versus Peaches

In this section, Propositions 2 and 3 contrast revenue consequences of cookies that identify various

quality peaches with those of cookies that identify various quality lemons. (Proofs are in Ap-

pendix E.) Our definitions of what it means for cookies to identify lemons or peaches are adapted

for the setting of multiple agents, multiple signals, and the strong-high-signal property. Neverthe-

less, they remain similar in spirit to those used in previous sections.

Consider a common-value domain satisfying the strong-high-signal property with items of value

in [0, 1] and expected value of V̄ . Assume that there are n agents, each receiving a signal si from

an ordered, finite set of signals Si. Let Li and Hi denote the lowest and highest signals of agent

i, respectively. We also assume that the domain is monotonic (meaning that the common value is

nondecreasing in each bidder’s signal):

Definition 8 Let s ≤ s′ if for every i it holds that si ≤ s′i. A common-value domain is monotonic

if, for every pair of feasible signal vectors, the comparison s ≤ s′ implies that v(s) ≤ v(s′).

We define an agent i to be slightly informed about peaches if his non-peaches signal Li occurs

with probability close to 1 (as the cookies that identify peaches are rare). Further, we define an

29



agent i to be slightly informed about lemons if (1) her non-lemons signal Hi occurs with probability

close to 1 and (2) lemons signals indicate that the value is close to zero (meaning cookies identifying

lemons are rare but informative). Formal definitions are as follows:

Definition 9 Fix any εi ≥ 0.

� Bidder i is εi-informed about peaches, if Pr[si 6= Li] ≤ εi.

� Bidder i is εi-informed about lemons, if (1) 0 < Pr[si 6= Hi] < εi, and (2) for any si ∈

Si \ {Hi}, if (si, s−i) is feasible then v(si, s−i) < εi.

If all n agents are slightly informed about peaches, then SPA revenue in the unique TRE is

close to social surplus V̄ .

Proposition 2 Fix any nonnegative constants ε1, ε2, . . . , εn. Consider any monotonic domain

for which (1) v(ω) ∈ [0, 1], (2) the strong-high-signal property holds, and (3) every agent i ∈

{1, 2, . . . , n} is εi-informed about peaches. In the unique TRE, SPA revenue is at least

Rε−peachesSPA ≥ V̄ −
n∑
j=1

εj

In contrast to the previous result, Proposition 3 implies (as a special case) that when one or

more bidders are slightly informed about lemons and the rest are slightly informed about peaches,

then revenue will be close to zero (as long as some non-degeneracy conditions are satisfied).

Proposition 3 Fix n ≥ i and positive constants ε1, ε2, . . . , εi. Consider any monotonic domain

with n bidders for which: (1) v(ω) ∈ [0, 1], (2) the strong-high-signal property holds, (3) each agent

j ∈ {1, 2, . . . , i− 1} is εj-informed about peaches, (4) agent i is εi-informed about lemons, and (5)

the following non-degeneracy conditions hold:

� For any j < i, the signal Lj does not imply Hi (alternatively, (Lj , si, s−{i,j}) is feasible for

some si 6= Hi and some s−{i,j}).

� For any j > i and any signal sj ∈ Sj, the signal sj does not imply Hi (alternatively,

(sj , si, s−{i,j}) is feasible for some si 6= Hi and some s−{i,j}).

Then SPA revenue in the unique TRE is at most

Rε−lemonsSPA ≤ εi +

i∑
j=1

εj
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Figure 4: A simple example illustrating Proposition 3

The non-degeneracy conditions rule out the case of ex ante symmetric bidders. Thus comparing

Propositions 2 and 3 yields a similar conclusion to that with two-bidders in Section 4.1. When

cookies are relatively rare, revenues appear robust to the presence of bidders with ex ante better

access to cookies that identify peaches, but revenues can collapse when cookies identify lemons. The

difference is in the amount of ex ante asymmetry required for revenues to collapse. In the lemons

case of the two-bidder model in Section 4.1, revenues decline smoothly as ex ante asymmetry widens.

In contrast, in the current setting with the strong-high-signal property, even a slight asymmetry is

sufficient to collapse revenues.

To illustrate Proposition 3, consider the domain illustrated in Figure 4 for which the proposition

applies. The item’s value v is sampled uniformly from [0, 1]. Each agent j has a different threshold

tj : he gets signal Hj if v ≥ tj and signal Lj otherwise. It holds that 0 < t3 = ε3 < t2 = ε2 < t1 =

1−ε1 < 1. Agent 1 is ε1 informed about peaches, while agents 2 and 3 are ε2 and ε3 informed about

lemons, respectively. It is easy to verify that the non-degeneracy conditions hold.19 Proposition 3

applies for i = 2 and implies that the revenue is at most ε1 + 2ε2 by the following argument. As

illustrated in Figure 4, the signal profile (L1, H2, H3) occurs if the value is between ε2 and 1− ε1,

an event that occurs with probability 1− (ε1 + ε2). Therefore, a combination of signals other than

(L1, H2, H3) happen with probability ε1 + ε2 and as v ≤ 1 it contributes at most ε1 + ε2 to the

expected revenue. The signal combination (L1, H2, H3) occurs with probability smaller than 1.

While the bid of agent 2 in that case is high (almost 1/2), both agent 1 and 3 bid at most ε2 with

signals L1 and H3, respectively (as they never win when agent 2 gets signal H2). The contribution

to the expected revenue in this case is thus bounded by ε2. We conclude that the total revenue is

at most (ε1 + ε2) + ε2.

The example in Figure 4 can be generalized to allow for many agents and many signals for each,

as follows. The item’s value v is sampled uniformly from [0, 1]. Each agent j has an increasing

19Non-degeneracy fails when ε3 = ε2 as the combination (L1, L2, H3) becomes infeasible. It is easy to see that in

this case the result fails as, on the likely profile (L1, H2, H3), both agent 2 and 3 are bidding high.

31



list of kj + 1 thresholds satisfying 0 = t0j < t1j < t3j < . . . < t
kj
j = 1, and his signal indicates the

interval between two consecutive thresholds of his that includes the realized value. Fix i ≤ n. The

condition that every agent j < i is εj-informed about peaches is satisfied when t1j > 1 − εj . The

condition that agent i is εi-informed about lemons is satisfied when tki−1
i < εi. Every agent j > i

is also εi-informed about lemons when tki−1
i > t

kj−1
j . For such an agent j, the value conditional on

his best signal is not as high as the value conditional on i’s best signal (this captures the second

non-degeneracy condition). It is easy to verify that the first non-degeneracy condition is satisfied

for any such a domain. Proposition 3 states that the revenue is at most εi +
∑i

j=1 εj . The seller’s

revenue is low even though with high probability (at least 1−
∑i

j=1 εj) agent i gets signal Hi and

is bidding relatively high (at least (1 − εi −maxj<i εj)/2). The revenue is low as all other agents

are bidding low (at most εi) and thus the second highest bid is also low.

5 Discussion: Mechanism Design

The previous section shows that in the common-value model the revenue of the SPA may be only

a small fraction of total welfare. In this section we consider how to maximize the seller’s revenue.

In the common-value model there is a trivial mechanism that is ex-ante individually rational

and maximizes both welfare and revenue: Before signals are realized, make the first buyer a take-

it-or-leave-it offer to buy the item for the price equal to the unconditional expected value of the

item.

Unfortunately, this trivial mechanism does not extend to cases with a private component to

the item’s value. For example, in online advertising markets it is reasonable to assume that an

informed buyer (advertiser) that has an accurate signal about the user (from a cookie on the user’s

machine) can tailor a specific advertisement to the specific user, generating some additional value

over the common value created by placing a generic advertisement that is not user specific.

This motivates us to consider the following generalization of the model with a single informed

bidder, in which the informed bidder is also advantaged. In this model there are n potential buyers.

One random buyer i is informed about the state of the world (gets a signal si ∈ Si), while the others

are uninformed.20 Signals are ordered by the expected common value to an uninformed bidder.

Given the maximal signal smax, the value for the informed bidder is larger than the common value

20McAfee (2011) considers a related pure common-value model in which the probability of being informed is

independent across bidders. Following an axiomatic approach, Arnosti, Beck, and Milgrom (2015) show that modified

second bid auctions achieve highly efficient allocations in a related model with both common and idiosyncratic

components to bidder values and a single uninformed bidder.
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by a bonus B > 0. For other signals there is no bonus.21

Let E be the unconditional expected value of the item to an uninformed bidder, L be the

expected value of the item conditional on the lowest signal smin, and pmax be the probability of the

highest signal smax. The expected social welfare when the realized informed bidder always gets the

item is E+pmaxB. In this model selling the item ax-ante to a fixed agent at his expected value will

generate revenue of E + pmaxB
n , which can be significantly lower than the maximal social welfare.

The unique TRE of the second-price auction in this scenario is efficient. Yet, one can easily

extend Theorem 3 to this model and see that for any realized informed bidder the unique TRE in

this model is exactly the same as the one described by the theorem (with the adjustment that the

informed bidder with signal smax bids his value that includes the bonus). Thus revenues may fall

far short of capturing total surplus.

Nevertheless, using an auction entry fee, we can build a mechanism that is ex-ante individually

rational, is socially efficient, and extracts (almost) the entire welfare as revenue. This is true in the

mechanism’s unique TRE, as we explain below.

The mechanism has two stages. First bidders choose whether to pay an auction entry fee.

Second, those who have paid the entry fee compete in a SPA. Theorem 3 (and its extension to this

model) predicts a unique TRE in the SPA subgame. The payment in the SPA is always L. The

SPA entry fee is set to be slightly less than the expected utility that an agent gets by participating,

assuming all agents participate in the SPA and bid according to the unique TRE in that subgame.

Thus the entry price is set to be slightly less than (E + pmaxB − L)/n.

As TRE provides a unique prediction to the outcome of the second stage, agents have a unique

rational decision when facing the entry decision, and they choose to pay the entry fee. Thus, in the

unique subgame-perfect-equilibrium that uses the TRE refinement, agents will all choose to pay

the entry fee and the SPA allocation will be socially efficient. Although the revenue in the SPA is

low, essentially the entire expected utility an agent gets from this auction is charged as an entry

fee. The revenue from entry would be (almost) n(E + pmaxB − L)/n = E + pmaxB − L, while the

revenue in the SPA would be L. Thus the total revenue is (almost) the social welfare E + pmaxB.

The above mechanism can only be used when both seller and agents can reasonably predict the

outcome of the SPA that takes place at the second stage, for which the unique TRE prediction is

potentially helpful. The mechanism can be extended to any other scenario in which a uniqueness

result can be proven about the outcome of the SPA game under some solution concept.

21In this extension the advantaged bidder is not known ex ante. In contrast, the literature on almost-common-value

auctions assumes that one bidder is known ex ante to value the object slightly more than other bidders (Bikhchandani,

1988; Avery and Kagel, 1997; Klemperer, 1998; Bulow, Huang, and Klemperer, 1999; Levin and Kagel, 2005).
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Interim Individually Rational Mechanism

While the entry fee mechanism is ex ante individually rational, it is not interim individually rational

once bidders have received their signals. We next design an interim individually rational mechanism

for this setting, when the informed player has only two signals smin and smax. Our mechanism is

dominant strategy incentive compatible. Let L be the value conditional on smin and P +B be the

value of the advantaged bidder conditional on smax.

While our model is not one of independent private values, it is sufficiently close that it seems

useful to consider the optimal auction when each player’s value is sampled independently and

identically from the following distribution: the value is L with probability 1− 1/n, and P +B with

probability pmax = 1/n. For this instance, Myerson’s optimal auction is to have some reserve price

r and some floor price f . If some bidders bid at least r then we run a second-price auction with

reserve r, otherwise we randomly choose a winner among those who bid at least f and charge the

winner f .22

In our advantaged bidder model, we propose using this mechanism with f = L and r = P+B−z,

where z = (P +B− f)/n is the expected utility of agent i bidding f given signal smax (conditional

on every other agent j bidding f). The revenue obtained is (1− pmax)f + pmaxr. Note that this is

at least (1− 1/n)−fraction of the efficient social welfare which is (1− pmax)L+ pmax(P +B).

6 Conclusion

This paper analyzes the impact of ex ante information asymmetries in second-price and first-price

common-value auctions, in an environment that captures key features of real world markets such

as those for online advertising. In these environments, bidders may be asymmetrically informed

at the interim stage—as some receive informative signals (called “cookies” in online advertising

markets) while others do not. Moreover, bidders may be asymmetric ex ante, with some much

more likely to receive a signal than others. The type of information contained in these signals may

be qualitatively different across settings. For example, in some settings bidders may have access

to cookies which occasionally reveal that a potential advertising viewer is a “robot” rather than a

real person, or that the asset for sale is a “lemon” with no value. Alternatively, in other settings

cookies might identify past customers who will be responsive to advertising, or that the asset for

sale is a “peach” with high value.

In these settings, both Bayesian Nash Equlibrium and a number of standard refinements have

22This mechanism is similar to the buy-it-now or take-a-chance mechanism proposed by Celis, Lewis, Mobius, and

Nazerzadeh (2014).
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limited predictive power for SPA revenues. We make progress by introducing the Tremble Robust

Equilibrium refinement. This selects a Nash equilibrium that is robust to a vanishingly small

probability that an additional bidder enters the auction and bids randomly over the support of

valuations. Applying our refinement, we show that SPA revenues can be particularly vulnerable

to ex ante asymmetry between bidders, even when those bidders are rarely informed. Whether

this is true, however, depends on the type of information that signals contain–SPA revenues suffer

substantially from ex ante asymmetry with respect to information about lemons, but not with

respect to information about peaches. In contrast, if bidders are rarely informed, FPA revenues

are close to expected surplus regardless of the details.

From a market design perspective, our findings suggest that auctioneers running second-price

auctions should think carefully about enabling information structures that allow for some bidders

to learn about lemons with substantially higher probability than others. For instance, if restrict-

ing access to cookies in an online advertising marketplace is unreasonable, a seller might consider

identifying and publicly disclosing web robots and other lemons itself. Alternatively, if ex ante

asymmetry with respect to information about lemons cannot be avoided, sellers may consider run-

ning first-price auctions rather than second-price auctions, as we predict they will yield substantially

higher revenue in those circumstances. These insights may be particularly relevant for markets such

as that for online advertising where second-price auctions are widely used and common practice

allows for substantial ex ante informational asymmetry between bidders.

A Details of FPA Equilibrium

We denote i’s bidding distribution conditional on signal Si by GSi.

Definition 10 Bidder i’s strategy is monotone if GLi(b) < 1 implies GHi(b) = 0.

Theorem 5 Consider any FPA game with two bidders that each receive a binary signal that sat-

isfies Assumptions 1–2, and label bidders as in equation (14). For each of two cases, the following

characterizes the unique Nash equilibrium with monotone bidding strategies, which is also the unique

TRE with monotone bidding strategies.23

(1) VLH > VLL and Pr[L1, H2] > Pr[H1, L2]: Bidder 1 bids over the interval [VLL, b
∗] with

distribution GL1 (b) given signal L1 and bids over the interval
[
b∗, b̄

]
with distribution GH1 (b) given

signal H1. Bidder 2 bids VLL given signal L2 and bids over the interval
[
VLL, b̄

]
with distribution

GH2 (b) given signal H2. Critical value b∗ and maximum bid b̄ satisfy VLL < b∗ < b̄ < VHH and

23See footnote 13.
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b∗ < VLH . These values and the bidding distributions are described by equations (18)-(22).

b∗ =
VLH Pr[L1, H2] (Pr[L1, H2]− Pr[H1, L2]) + VLL Pr[L1, L2] Pr [H2]

Pr[L1, H2] (Pr[L1, H2]− Pr[H1, L2]) + Pr[L1, L2] Pr [H2]
(18)

b̄ = (1− Pr [H1|H2]) b∗ + Pr [H1|H2]VHH (19)

GL1 (b) =
VLH − b∗

VLH − b
, b ∈ [VLL, b

∗] (20)

GH1 (b) =
Pr[L1, H2]

Pr[H1, H2]

b− b∗

VHH − b
, b ∈

[
b∗, b̄

]
(21)

GH2 (b) =


Pr[L1, L2]

Pr[L1, H2]

b− VLL
VLH − b

,

Pr[L1, L2]

Pr[L1, H2]

VHH − b∗

VLH − b∗
b∗ − VLL
VHH − b

+
Pr[H1, L2]

Pr[H1, H2]

b− b∗

VHH − b
,

b ∈ [VLL, b
∗]

b ∈
[
b∗, b̄

] (22)

(2) VLH = VLL or Pr[L1, H2] = Pr[H1, L2]: Bidder i ∈ {1, 2} bids VLL given signal Li and bids

over the interval
[
VLL, b̄

]
with distribution GHi (b) given signal Hi. Maximum bid b̄ ∈ (VLL, VHH)

and bidding distributions GHi (b) are described by equations (23)-(25).

b̄ = (1− Pr [H1|H2])VLL + Pr [H1|H2]VHH (23)

GH1 (b) =
Pr[L1, H2]

Pr[H1, H2]

b− VLL
VHH − b

, b ∈
[
VLL, b̄

]
(24)

GH2 (b) =
VHH − b̄
VHH − b

+
Pr[H1, L2]

Pr[H1, H2]

b− b̄
VHH − b

, b ∈
[
VLL, b̄

]
(25)

Figure 5 illustrates cumulative bid distributions in the FPA equilibrium characterized by The-

orem 5 given the information structure of Example 1. Panel A shows equilibrium bidding when

bidders are informed about peaches and p2 = 1/5 and p1 = 1/10, for which Case 1 of Theorem 5

applies. Panel B shows equilibrium bidding when bidders are informed about lemons and q1 = 1/5

and q2 = 1/10, for which Case 2 of Theorem 5 applies.

The proof of Theorem 5 is in Online Appendix I and proceeds in three parts. In Appendix I.1

we show that the conditions in the theorem are necessary for a Nash equilibrium in monotone

bidding strategies. In Appendix I.2 we show that the same conditions are also sufficient. In other

words, the described bidding strategies (which are monotone by inspection) do constitute a Nash

equilibrium. Finally, in Appendix I.3 we show that the described bidding strategies constitute a

TRE. Together, these three facts imply Theorem 5.
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Figure 5: Equilibrium bidding in Example 1. Panel A: FPA cumulative bid distributions when

bidders are informed about peaches for p2 = 1/5 and p1 = 1/10. Case 1 of Theorem 5 applies,

and VLL ≈ 0.837, b∗ ≈ 0.895, b̄ ≈ 1.006, and VLH = VHL = VHH = 1. Panel B: FPA cumulative

bid distributions when bidders are informed about lemons for q1 = 1/5 and q2 = 1/10. Case 2 of

Theorem 5 applies and VLL = VLH = VHL = 0, b̄ ≈ 1.053, and VHH ≈ 1.163.

B Outline of the Proof of Theorem 1

If VHH = VLH or VHH = VHL then the strong-high-signal property holds,24 and the result follows

from Theorem 4, which is proven independently. We next present an outline of the proof of

Theorem 1 for the case VHH > max{VHL, VLH} along with four lemmas that we use to prove

the result. The proof of these lemmas appears in Online Appendix H. Throughout, we maintain

Assumption 1 and label bidders following equation (1).

Proof outline:

Fix any standard distribution R and ε > 0 and let λ(ε, R) be the (ε, R)-tremble of the game. Let

R̂(x) = 1− ε+ ε ·R(x) and r̂(x) = ε ·r(x). Note that in both the original second price auction game

and any (ε, R)-tremble, the set of undominated bids is closed, so the requirement that bidders only

bid within the closure of the set of undominated bids is equivalent to a requirement that bidders

do not place dominated bids or that equilibrium is “in undominated bids”. We therefore use this

more succinct terminology throughout the proof.

To prove Theorem 1, we begin by developing a series of necessary conditions that any NE µε

in undominated bids of the tremble λ(ε, R) must satisfy. These are summarized in Lemmas 1 and

2 presented below. Next, we show that (for sufficiently small ε) a (mixed) NE of the tremble

λ(ε, R) in undominated bids exists (Lemma 3). This existence result implies that for any standard

distribution R, there exists a sequence of ε converging to zero and an associated sequence of NE {µε}
24See footnote 18.
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in undominated bids corresponding to the trembles λ(ε, R). The final step is to use the necessary

conditions developed in Lemmas 1 and 2 to show that the limit of any such sequence {µε} must

converge to µ as ε goes to zero (Lemma 4). It then follows that µ is the unique TRE and the result

in Theorem 1 holds.

Below, we present the four Lemmas 1-4. To simplify the notation we denote v1 = VHL, v2 = VLH ,

and vi = v(Hi, Lj), and (without loss of generality) normalize VLL = 0 and VHH = 1. Let

v(Hi) = E[v|Hi] = Pr[Hj |Hi] + Pr[Lj |Hi]vi. Moreover, for a given µε, we define the following

notation. First, for agent i ∈ {1, 2}, let GHi(b) denote i’s bidding distribution conditional on signal

Hi. Then define i’s infimum and supremum bids given signal Hi as bi = inf{b : GHi(b) > 0}

and b̄i = sup{b : GHi(b) < 1}. Finally, define b = min{b1, b2}, bmin = max{b1, b2}, and bmax =

max{b̄i, b̄j}. Note that as bidders never submit dominated bids (by assumption) it holds that

1 ≥ bmax ≥ bmin ≥ b ≥ 0.

We start with some necessary conditions that any NE µε in a fixed λ(ε, R) must satisfy.

Lemma 1 Let Assumption 1 and max{v1, v2} < 1 hold. For any standard distribution R and

ε > 0, let µε be a Nash equilibrium in undominated bids of the game λ(ε, R). At µε for some

i ∈ {1, 2}, j 6= i, and bmin and bmax that satisfy max{v1, v2} ≤ bmin ≤ bmax ≤ 1 it holds that:

1. Bidder i’s infimum bid is bi = bmin ≥ vi and GHi(b) is continuous for all b 6∈ {bmin, 1}.

Bidder j’s infimum bid is bj = vj = b ≤ bmin and GHj(b) is continuous for all b 6∈ {vj , 1}.

2. GHi(bmax) = GHj(bmax) = 1. Moreover, if bmax > bmin then bmax = b̄i = b̄j and both GHi

and GHj are increasing on (bmin, bmax).

3. GHi(b) = 0 for every b ∈ [0, bmin). GHj(b) = 0 for every b ∈ [0, vj) and GHj(b) = GHj(vj)

for every b ∈ [vj , bmin].

4. If bmin = b = vj then vj ≥ vi. If vj = vi then bmin = b = vj = vi and no bidder has an atom

below 1. If vj > vi then j has an atom at bmin = b = vj > vi while i has no atom below 1.

5. If bmin > b = vj then: (i) bidder j has an atom at vj; (ii) bidder i has an atom at

bmin =
Pr[Hj |Hi]GHj(vj) + vi Pr[Lj |Hi]

Pr[Hj |Hi]GHj(vj) + Pr[Lj |Hi]
> max{vi, vj}; (26)

(iii) bmin satisfies bmin ≤ v(Hi); and (iv) bmin = v(Hi) if and only if GHj(vj) = 1.

It also holds that either

� bmax = bmin, in this case GHi(bmin) = 1 and GHj(vj) = 1 (i always bids bmin and j

always bids vj). Or
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� bmax > bmin, GHi(bmin) > 0 and

GHi(bmin) =
Pr [Li|Hj ]

Pr [Hi|Hj ]

∫ bmin
vj

(x− vj) r̂ (x) dx

R̂ (bmin) (1− bmin)
. (27)

6. 0 ≤ max{v1, v2} ≤ bmin ≤ max{v(H1), v(H2)} < 1.

Building on the preceding necessary conditions that apply for all ε, the next result gives tighter

necessary conditions for NE in undominated bids in the tremble λ(ε, R) when ε is sufficiently small.

To develop the result we first apply the first-order conditions for optimal bidding over the interval

(bmin, bmax) to characterize bid distributions above bmin. Next, we show that for sufficiently small

ε it holds that bmin < bmax < 1 (ruling out the cases bmax = bmin or bmax = 1 allowed for in

Lemma 1). Finally, we complete the proof by more tightly characterizing the size and placement of

atoms at the bottom of bidders’ bid distributions, and identifying bidders i and j from Lemma 1

as i = 1 and j = 2.

When equation (1) holds with equality, so does not distinguish the bidders, we label bidders

such that v1 ≥ v2. That is, we label bidders according to equation (1) and equation (28):

Pr[H1, L2](1− v1) = Pr[L1, H2](1− v2)→ v1 ≥ v2. (28)

Lemma 2 Let Assumption 1, equations (1) and (28), and max{v1, v2} < 1 hold. Let R be a

standard distribution, ε > 0, and µε be a Nash equilibrium in undominated bids of the game λ(ε, R).

If ε is small enough then at µε there exist bmin and bmax such that 1 > bmax > bmin ≥ 0 and it

always holds that:

GH1(bmin) =
Pr[L1|H2]

Pr[H1|H2]

∫ bmin
v2

(x− v2) r̂ (x) dx

R̂ (bmin) (1− bmin)
(29)

GH2(v2) =
R̂(bmax)

R̂(bmin)
−

(
R̂(bmax)

R̂(bmin)
−GH1(bmin)

)
· Pr[H1, L2]

Pr[L1, H2]
·
∫ bmax
bmin

x−v1
1−x r(x)dx∫ bmax

bmin
x−v2
1−x r(x)dx

(30)

GH1(b) =


0 if 0 ≤ b < bmin;
Pr[L1|H2]
Pr[H1|H2] ·

ε
R̂(b)
·
∫ b
bmin

x−v2
1−x r(x)dx+GH1(bmin) · R̂(bmin)

R̂(b)
if bmin ≤ b ≤ bmax;

1 if bmax ≤ b.

(31)

and

GH2(b) =



0 if 0 ≤ b < v2;

GH2(v2) if v2 ≤ b ≤ bmin;
Pr[L2|H1]
Pr[H2|H1] ·

ε
R̂(b)

∫ b
bmin

x−v1
1−x · r(x)dx+GH2(v2) · R̂(bmin)

R̂(b)
if bmin ≤ b ≤ bmax;

1 if bmax ≤ b.

(32)

Moreover, one of three cases will hold:
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1. No atom case: bmin = v1 = v2 and GH1(bmin) = GH2(bmin) = 0 if and only if the two bidders

are symmetric (Pr[H1, L2] = Pr[L1, H2] and v1 = v2).

2. One atom case: bmin = v2 ≥ v1, bidder 1 has no atom (GH1(bmin) = 0) and bidder 2 has an

atom at v2 ≥ v1 (GH2(v2) > 0).

3. Two atom case: bmin > v2, bidder 1 has an atom at

bmin =
Pr[H2|H1]GH2(v2) + v1 Pr[L2|H1]

Pr[H2|H1]GH2(v2) + Pr[L2|H1]
> max{v1, v2}, (33)

(GH1(bmin) > 0) and bidder 2 has an atom at v2 (GH2(v2) > 0).

If Pr[H1, L2](1 − v1) = Pr[L1, H2](1 − v2) but the bidders are not symmetric, and it holds that

v1 > v2 and Pr[H1, L2] < Pr[L1, H2], then Case 3 (two atoms) holds. If Pr[H1, L2](1 − v1) <

Pr[L1, H2](1− v2) then either Case 2 (one atom) or Case 3 (two atoms) holds.

We next show that, fixing any standard distribution R (such as the uniform distribution),

for sufficiently small ε there exists a NE in undominated bids of the tremble λ(ε, R) satisfying

the necessary conditions identified in Lemma 2. We prove existence separately for three sets of

parameter values. For symmetric bidders, we show the existence of an equilibrium with no atoms

(Case 1). For asymmetric bidders we show the existence of either a one-atom (Case 2) or a two-atom

(Case 3) equilibrium.

In each case, the proof involves three steps. First we show existence of parameters bmin, bmax,

GH1(bmin), and GH2(v2) that satisfy the necessary conditions in Lemma 2. Second, we show

that, for the chosen parameters, GH1 and GH2 are well defined distributions (nondecreasing, and

satisfying GH1(0) = GH2(0) = 0 and GH1(1) = GH2(1) = 1). Third we show that the constructed

bid distributions are best responses. By construction, bidder i ∈ {1, 2} is indifferent to all bids in

the support of his bid distribution and we show that every bid outside the support gives equal or

lower utility.

Lemma 3 Let Assumption 1 and max{v1, v2} < 1 hold. Fix any standard distribution R. For

every small enough ε > 0 there exists a mixed NE in undominated bids µε of the game λ(ε, R).

The final step is to show that any sequence of NE in undominated bids {µε} of the trembles

λ(ε, R) converges to µ as ε goes to zero. The result, stated in Lemma 4, is proved by considering

the implication of the necessary conditions identified in Lemma 2 as ε goes to zero. In particular,

we prove a sequence of four claims about bid distributions in the limit as ε goes to zero given

conditions from Lemma 2. (1) We show that limε→0 bmax = 1 by evaluating equations (31)-(32) at
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b = bmax and imposing GH1(bmax) = GH2(bmax) = 1. (2) From equation (29), we show that bidder

1’s atom at bmin (if it exists at all) vanishes as ε goes to zero. (3) From equation (30), we show that

bidder 2’s atom at v2 goes to 1− Pr[H1,L2]
Pr[L1,H2] ·

VHH−VHL
VHH−VLH . (4) Finally, we use equations (31)-(32) to show

that all the bidding mass above each bidder’s infimum bid goes to 1. Thus, in the limit, bidder 1

is bidding 1 with probability 1, while bidder 2 is bidding 1 with probability Pr[H1,L2]
Pr[L1,H2] ·

VHH−VHL
VHH−VLH , as

we need to show.

Lemma 4 Let Assumption 1, equation (1), and max{v1, v2} < 1 hold. Fix a standard distribution

R and a sequence of ε converging to zero. The associated sequence of NE in undominated bids {µε}

in the trembles λ(ε, R) converges to the NE µ in the original game λ.

C Proofs of Corollaries 1-5

C.1 Proof of Corollary 1

Revenue is VLL with probability (1−Pr[H1, H2]), VLH with probability Pr[H1, H2] · (1− Pr[H1,L2]
Pr[L1,H2] ·

VHH−VHL
VHH−VLH ), and VHH with probability Pr[H1, H2] · Pr[H1,L2]

Pr[L1,H2] ·
VHH−VHL
VHH−VLH . Thus

RSPA = VLL + (VLH − VLL) Pr[H1, H2] + (VHH − VLH) Pr[H1, H2] · Pr[H1, L2]

Pr[L1, H2]
· VHH − VHL
VHH − VLH

Cancelling (VHH − VLH) from the third term yields equation (2).

C.2 Proof of Corollary 2

Part 1: Substituting VHL = VLH and Pr[H1, L2]/Pr[L1, H2] = 1 into equation (2) yieldsRsymmetricSPA =

VLL+Pr[H1, H2](VHH−VLL). Adding V̄ , subtracting V̄ = Pr[L1, L2]VLL+(Pr[L1, H2]+Pr[H1, L2])VHL+

Pr[H1, H2]VHH , and cancelling terms yields equation (3). Part 2: As cookies become rare, and ei-

ther Pr[L1, L2] or Pr[H1, H2] approaches 1, Pr[H1, L2] and Pr[L1, H2] must approach zero, and so

the expression in equation (3) approaches V̄ .

C.3 Proof of Corollary 3

Part 1: Substituting VLH = VHL = VHH = v(P ) into equation (2) yields RpeachesSPA = VLL +

Pr[H1, H2](v(P ) − VLL). Substituting equation (4) for VLL then yields equation (6). Part 2: As

Pr[L1, L2] approaches 1, Pr[H1, L2] and Pr[L1, H2] must approach zero, and so the expression in

equation (6) approaches V̄ .
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C.4 Proof of Corollary 4

Substituting VLH = VHL = VLL = v(L) into equation (2) yields RlemonsSPA = v(L) + (VHH −

v(L)) Pr[H1, H2]Pr[H1,L2]
Pr[L1,H2] . Substituting equation (5) for VHH then yields equation (7).

C.5 Proof of Corollary 5

Part 1: Revenue is total expected surplus,

S = Pr [H1H2]VHH + Pr [L1H2]VLH + Pr [H1L2]VHL + Pr [L1L2]VLL, (34)

less expected payoffs to each bidder. Notice that both bidders earn zero expected payoff conditional

on receiving a low signal, as bidding VLL is a best best response for each that yields either zero

from losing, or zero from winning an item of value VLL at the same price. Thus expected revenues

are

RFPA = S − Pr [H1] Π1 (bmax | H1)− Pr [H2] Π2 (bmax | H2) . (35)

Expected payoffs conditional on receiving a high signal are most easily calculated by considering

the expected payoff from placing the maximum bid bmax, winning with probability one and paying

bmax for an item with expected value E [v (Hi, Sj) |Hi]:

Π1 (bmax | H1) = Pr [H2|H1]VHH + Pr [L2|H1]VHL − bmax, (36)

Π2 (bmax | H2) = Pr [H1|H2]VHH + Pr [L1|H2]VLH − bmax. (37)

Revenues are therefore computed by first substituting equations (34) and (36)-(37) into equation

(35) and then substituting equations (18)-(19) for bmax. Note that equations (18)-(19) can be

substituted for bmax for both Case 1 and Case 2 of Theorem 5. This follows because the expression

for b∗ in equation (18) reduces to b∗ = VLL under Case 2, in which case equations (19) and (23)

coincide. Making the described substitutions yields

RFPA = Pr[H1, H2]VHH + Pr[L1, H2]VLH + Pr[H1, L2]VHL + Pr[L1, L2]VLL (38)

−Pr[H1] (Pr [H2|H1]VHH + Pr [L2|H1]VHL)

−Pr[H2] (Pr [H1|H2]VHH + Pr [L1|H2]VLH)

+ (Pr[H1] + Pr[H2]) Pr [H1|H2]VHH + (Pr[H1] + Pr[H2]) ·

(1− Pr[H1, H2])
VLH Pr[L1, H2] (Pr[L1, H2]− Pr[H1, L2]) + VLL Pr[L1, L2] Pr[H2]

Pr[L1, H2] (Pr[L1, H2]− Pr[H1, L2]) + Pr[L1, L2] Pr[H2]
,

which upon rearranging terms and simplifying expressions coincides with equation (15).
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Part 2: As cookies become rare and either Pr[L1, L2] or Pr[H1, H2] approaches 1 while Pr[L1, H2]

and Pr[H1, L2] approach 0, the fourth term in equation 15 goes to zero. Moreover, the ratio

Pr[H1]/Pr[H2] approaches 1 and the sum of the second and third terms approaches Pr[H1, H2](VHH−

VLL). Thus limPr[L1,L2]→1RFPA = limPr[H1,H2]→1RFPA = VLL + Pr[H1, H2](VHH − VLL), which

coincides with V̄ when Pr[L1, H2] = Pr[H1, L2] = 0.

D One Informed Agent

D.1 Proof of Theorem 3

Note that in the SPA game, the set of undominated bids is closed. Theorem 3 then follows from

three observations:

1. Consider the SPA game or any (ε, R)-tremble of the game: The strategy of the informed

buyer is a dominant strategy, being a best response to any possible strategies of the unin-

formed buyers. Moreover, it is the unique strategy in undominated bids (even among mixed

strategies) as for any signal its bid is the unique bid that dominates any other bid.

2. Consider the SPA game or any (ε, R)-tremble of the game: For any uninformed buyer, bidding

vmin is a best response to the strategies of the other buyers as it gives 0 utility and no strategy

gives positive utility. Moreover, bidding vmin is undominated, while bidding less than vmin is

dominated by bidding vmin.

3. Consider any (ε, R)-tremble of the game: For any uninformed buyer, bidding above bU =

vmin cannot be a best response to the informed buyer’s strategy of bidding bI = v(sI).

Bidding above vmin generates a negative expected payoff because the uninformed buyer would

sometimes win and overpay at a price above v(sI) set by the random bidder, but would never

pay less than the fair value v(sI) bid by the informed buyer.

Observations (1) and (2) are sufficient to show that µ is a NE in undominated bids in the SPA

game and any (ε, R)-tremble of the game. Thus µ is a strong TRE. Observations (1) and (2) also

ensure that the informed buyer bids as in µ and uninformed buyers bid at least vmin in any TRE.

Observation (3) rules out the possibility of an uninformed buyer bidding above vmin in any NE in

undominated bids of an (ε, R)-tremble of the game. Thus µ is also the unique TRE.
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D.2 Proof of Proposition 1

D.2.1 A TRE Exists

In a FPA with a nonnegative25 common value, an informed bidder, and m uninformed bidders,

Theorem 1 of Engelbrecht-Wiggans et al. (1983) characterizes the set of Nash equilibria. The

characterization describes the informed bidder’s unique equilibrium bidding strategy β. Further, it

describes the unique equilibrium distribution of the maximum uninformed bid, which is the product

of the bid distributions for each uninformed bidder:

G(b) =
∏

i∈1...m

Gi(b).

The characterization implies that the informed bidder bids over the interval [vmin, V̄ ] with no gaps

and at most one atom at vmin. It specifies that G(b) = Pr(β(sI) ≤ b), which implies that G(b) is

continuous and increasing over b ∈ [vmin, V̄ ].

In one such NE (β,G1, . . . , Gm), uninformed bidder 1 bids with distribution G1(b) = G(b) and

the remaining m − 1 uninformed bidders bid vmin with probability 1. To show that it is a TRE,

first fix any standard distribution R. Next, define

εmax = min
b∈[vmin,V̄ ]

g(b)

r(b) + g(b)
,

which is positive because G(b) is continuous and increasing over b ∈ [vmin, V̄ ]. Then fix any

ε ∈ (0, εmax), and let λ(ε, R) be the (ε, R)-tremble of the FPA game.

Theorem 1 of Engelbrecht-Wiggans et al. (1983) implies that (βε, G1,ε, . . . , Gm,ε) is a NE of the

tremble if the informed bidder follows the same strategy as in the NE of the original game, βε = β,

and the distribution of the maximum of the uninformed and random bids coincides with G(b) in

the NE of the original game. This requires that∏
i∈1...m

Gi,ε(b) = G(b)/R̂(b),

where

R̂(b) = 1− ε+ ε ·R(x)

is the probability that the random bidder does not enter or enters but bids below b. Thus the

following is a NE of the tremble: βε = β, G1,ε(b) = G(b)/R̂(b), and the remaining m − 1 unin-

formed bidders bid vmin with probability 1. Note that G1,ε = G(b)/R̂(b) is a valid distribution for

uninformed bidder 1’s mixed strategy if it is nondecreasing, which holds if g(b)/G(b) ≥ r̂(b)/R̂(b),

25Hence our assumption that vmin ≥ 0.
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where r̂(b) = ε · r(b) is the derivative of R̂(b). This is implied by ε < εmax because ε < εmax implies

g(b) > εr(b)/(1− ε) and:

g(b)

G(b)
≥ g(b) >

εr(b)

1− ε
≥ εr(b)

1− ε(1−R(b))
=

r̂(b)

R̂(b)
.

Notice, that in the limit as ε goes to zero, G1,ε(b) = G(b)/R̂(b) approaches G(b) because R̂(b)

approaches 1. Moreover, the closure of the set of undominated bids is b ≤ vmax for uninformed

bidders and b ≤ v(sI) for the informed bidder. Thus bidders only bid within the closure of the set

of undominated bids, both in the original game and in the sequence of trembles. Thus the original

NE under consideration is a TRE.

D.2.2 FPA Revenue Results

Recall that v(sI) = E[v(ω)|sI ] is the informed bidder’s interim expected value conditional on sI

and that vmin and vmax are the minimum and maximum such values, respectively. Let x = v(sI)

and F be the cumulative distribution function of x. According to Theorem 3, SPA revenue equals

vmin. According to Theorem 4 of Engelbrecht-Wiggans et al. (1983), FPA revenue is∫ ∞
0

(1− F (x))2dx,

which can be re-written as vmin +
∫∞
vmin

(1− F (x))2dx. For an informed bidder, F (vmin) < 1 so

this is clearly more than vmin. Thus R1−informed
FPA > R1−informed

SPA .

According to Theorem 4 of Engelbrecht-Wiggans et al. (1983), the informed agent’s expected

payoff is ∫ ∞
0

F (x)(1− F (x))dx

Note that the revenue and the informed agent’s profit sum up to V̄ = E[v(ω)], the expected value

of the item (and social welfare). To bound the revenue from below we bound the informed agent’s

profit from above.

First, we temporarily normalize values such that the informed bidder’s posterior valuations lie

between 0 and 1. We denote its normalized distribution as F̂ (x) = F (vmin + (vmax − vmin)x).

Further, we denote expected revenue as R̂1−informed
FPA =

R1−informed
FPA −vmin
vmax−vmin and expected surplus as

V̂ = V̄−vmin
vmax−vmin . Then, we use the following result due to Ahlswede and Daykin (1978).

Lemma 5 If, for 4 nonnegative functions g1, g2, g3, g4 mapping R→ R, the following holds:

for all x, y ∈ R, g1(max(x, y)) · g2(min(x, y)) ≥ g3(x) · g4(y),
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then it follows that ∫ b

a
g1(t)dt ·

∫ b

a
g2(t)dt ≥

∫ b

a
g3(t)dt

∫ b

a
g4(t)dt.

We apply this lemma by setting

g1(t) = F̂ (x), g2(x) = 1− F̂ (x), g3(x) = F̂ (x) · (1− F̂ (x)), g4(x) = 1.

Monotonicity of F̂ implies that the conditions of the lemma hold. Indeed, if x′′ > x′ then

F̂ (x′′) · (1− F̂ (x′)) ≥ F̂ (x′′) · (1− F̂ (x′′))

and

F̂ (x′′) · (1− F̂ (x′)) ≥ F̂ (x′) · (1− F̂ (x′)).

Then, it follows that

(1− V̂ ) · V̂ =

∫ 1

0
F̂ (t)dt ·

∫ 1

0
(1− F̂ (t))dt ≥

∫ 1

0
F̂ (t)(1− F̂ (t))dt.

As the revenue is equal to the total welfare V̂ minus the informed agent’s profit we conclude that

the revenue is bounded from below by V̂ 2:

R̂1−informed
FPA = V̂ −

∫ 1

0
F̂ (t)(1− F̂ (t))dt ≥ V̂ 2

We finish by undoing our temporary renormalization. Substituting
R1−informed
FPA −vmin
vmax−vmin in place of

R̂1−informed
FPA and V̄−vmin

vmax−vmin in place of V̂ in the preceding expression and rearranging terms yields:

R1−informed
FPA ≥ vmin +

(V̄ − vmin)2

vmax − vmin
.

E Many Agents, each with Finitely Many Signals

E.1 Proof of Theorem 4

We prove Theorem 4 by induction at the end of this section. First, however, we develop the results

(Lemma 7 and Observation 1) that are applied at each induction step. Also note that, as the set

of undominated bids is closed in the SPA, we can restrict attention to undominated bids.

Preliminaries: We define a natural binary relation between signals using the relation between

the lower bounds they place on the expected value. We say that signal si of bidder i is weakly higher

than signal sj of bidder j if vmin(si) ≥ vmin(sj), and is strictly higher than signal sj of bidder j if

vmin(si) > vmin(sj). An implication of the SHSP is:
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Lemma 6 Given the SHSP holds: If s is the realized signal vector and si is the weakly highest

realized signal (such that vmin(sj) ≤ vmin(si) for all j) then v(s) = vmin(si).

Proof. Suppose we identify a strong high signal, condition on it not occurring, identify a strong

high signal of the restricted domain, and continue recursively. At each step, the SHSP guaran-

tees that we can find a strong high signal si that must satisfy vmin(si) = maxs−i{v(si, s−i) :

(si, s−i) is feasible given all signals removed in prior rounds do not occur}. This means that at ev-

ery round, the strong high signal is the one with the highest remaining vmin(si). As a result, this

process will eventually reach the domain in which any sj with vmin(sj) > vmin(si) is excluded so

that si has the highest remaining vmin(si). Moreover, si will be a strong high signal within this

restricted domain, and as a result, v(s) = vmin(si) for any feasible s in the restricted domain (that

excludes all signals si with vmin(sj) > vmin(sj)). The result then follows.

A Lemma: The next lemma is a major step in showing that bidder i with signal si does not bid

above vmin(si).

Lemma 7 Fix a signal sj received by bidder j and any strategy profile η in which every bidder i

with signal si strictly higher than sj (vmin(si) > vmin(sj)) bids vmin(si) with probability 1.

1. If η is a NE of the tremble λ(ε, R) with ε > 0, then no bidder i with signal si (including bidder

j with signal sj) weakly lower than sj bids strictly above vmin(sj).

2. Given η, in both the original game λ and in any tremble λ(ε, R) for ε > 0, the utility of bidder

j with signal sj from bidding vmin(sj) is at least as high as his utility from any higher bid.

Proof. Proof of part (1): Let bi(si) be the supremum bid by bidder i with signal si under η.

Let b be the maximum supremum bid among signals weakly lower than sj :

b ≡ max
i∈N,si∈Si

{bi(si) : vmin(si) ≤ vmin(sj)}.

Suppose η is a NE of the tremble λ(ε, R) but b > vmin(sj). Let δ > 0 be sufficiently small such

that (1) vmin(sj) < b − δ and (2) for any bidder i and signal si, bi(si) < b implies bi(si) < b − δ.

With positive probability, no signal strictly higher than sj is realized26 and the highest realized

bid falls in the interval (b − δ, b]. Therefore at least one bidder k with a signal sk that satisfies

bk(sk) = b and vmin(sk) ≤ vmin(sj) (possibly k = j and sk = sj) wins with positive probability

with a bid in the interval (b− δ, b].
26By definition of vmin(sj), there exists a feasible signal vector s such that v(s) = vmin(sj). Each element of s, sk,

satisfies vmin(sk) ≤ vmin(sj), and is therefore weakly lower than sj .
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Fix any bid b ∈ (b − δ, b] that wins with positive probability conditional on being placed by

bidder k with signal sk. We show below that for bidder k with signal sk, bidding vmin(sj) is strictly

more profitable than bidding b. Because bidder k with signal sk makes such bids with positive

probability, this contradicts η being a NE. The argument follows below.

Consider a particular realization in which bidder k receives signal sk. Let bmax−k be the highest

realized bid of bidders other than k (including the random bidder). Further, let bidder i be the

bidder who has the highest realized signal si and his bid be bi. (If there are multiple bidders whose

signals tie for the highest then choose any i from the set.) Lemma 6 implies that v(s) = vmin(si).

Now compare k’s outcome from bidding b rather than vmin(sj). If bmax−k < vmin(sj) or bmax−k > b

then k’s outcome and payoff are unchanged by bidding b rather than vmin(sj). However, if bmax−k ∈

[vmin(sj), b] then k wins and pays bmax−k by bidding b at some cases were he was losing by bidding

vmin(sj). Consider three cases. First, suppose that some bidder with a signal strictly higher

than sj is bidding bmax−k . Then by assumption bmax−k = bi = vmin(si) and by the strong-high-signal

property (Lemma 6) v(s) = vmin(si). Thus the additional win is priced at its value and does not

change k’s payoff. Second, suppose bmax−k = vmin(sj). Then by SHSP (Lemma 6) v(s) = vmin(sj)

and the additional win is priced at its value and does not change k’s payoff. Third, suppose

bmax−k ∈ (vmin(sj), b] and it is not the bid of a bidder with a strictly higher signal. If no signal

strictly higher than sj is realized, then by SHSP (Lemma 6) v(s) = vmin(sj). If at least one

signal strictly higher than sj is realized, then by assumption bmax−k > bi = vmin(si) and by SHSP

(Lemma 6) v(s) = vmin(si). In either case, the additional win must be priced strictly above its

value (bmax−k > v(s)) and strictly reduces k’s payoff.

The preceding paragraph shows that for any realization, bidding b yields an equal or lower payoff

for k than bidding vmin(sj) and in the third case yields a lower payoff. The third case occurs with

positive probability in any tremble λ(ε, R) with ε > 0. Therefore bidding b rather than vmin(sj)

reduces k’s expected payoff ex ante.

Proof of part (2): In the proof of part (1) above, we showed that bidding vmin(sj) is strictly

better than bidding b > vmin(sj) for bidder j with signal sj given η. Almost the same argument

can be repeated to prove part (2). The only difference is that we cannot claim a strict payoff

ranking because the third case in the proof of part (1) need not occur with positive probability in

the original game λ without a random bidder.

An Observation: We next observe that bidder i with signal si that only submits undominated

bids never bids below vmin(si).
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Observation 1 In the original game λ and in any tremble λ(ε, R) for ε > 0, for bidder i with

signal si bidding vmin(si) weakly dominates bidding any amount bi < vmin(si).
27

The Proof: We combine Observation 1 with Lemma 7 to prove Theorem 4 by induction.

Proof. (of Theorem 4) Fix any strict linear order over the set of all bidders’ feasible signals that

is consistent with the order of lower bounds they place on the expected value. That is, fix an

arbitrary order such that for every si and sj in the set
⋃N
k=1 Sk, if vmin(si) > vmin(sj) then si is

ranked higher than sj .

The proof proceeds by induction. The base case considers the highest signal according to the

fixed order. Suppose the highest signal is bidder i’s signal si. By Observation 1, bidding vmin(si)

dominates any lower bid for bidder i with signal si. Moreover, SHSP implies that for the highest

signal si, for any s−i ∈ S−i such that (si, s−i) is feasible, it holds that vmin(si) = v(si, s−i). Thus

vmin(si) = vmax(si) and therefore in any tremble λ(ε, R) in which the bid of agent i with signal si

belongs to [vmin(si), vmax(si)] it holds that the bid must be vmin(si) = vmax(si). Moreover, bidding

vmin(si) is a dominant strategy for bidder i with signal si in the original game λ and any tremble

λ(ε, R).

We move to the induction step. Consider the lth highest signal, which is sj received by bidder j.

Assume that every bidder i with strictly higher signal si (that is, vmin(si) > vmin(sj)) bids vmin(si)

with probability 1. Observation 1 and claim (2) of Lemma 7 imply that it is a best response for

bidder j with signal sj to bid vmin(sj) in the original game λ and the tremble λ(ε, R). Moreover,

Observation 1 and claim (1) of Lemma 7 imply that this is the unique best response in any NE in

undominated bids of any tremble λ(ε, R), for ε > 0.

Proceeding by induction through all signals shows that the pure strategy profile µ is a Nash

equilibrium both in the original game λ and in any tremble λ(ε, R) with ε > 0. Moreover, it is

the unique Nash equilibrium in undominated bids in any tremble λ(ε, R) with ε > 0. The theorem

follows directly.

E.2 Proof of Proposition 2

If
∑n

i=1 εi ≥ 1 the claim follows trivially. Items have values in [0, 1] and thus E[v(ω)] ≤ 1, this

implies that E[v(ω)] −
∑n

j=1 εj ≤ 0, and the claim about the revenue clearly holds as revenue is

nonnegative since every bid is nonnegative. We next assume that
∑n

i=1 εi < 1.

Let L = (L1, L2, . . . , Ln) be the combination of signals in which each agent i gets signals Li.

27It is trivial to come up with strategies for the other bidders for which bid vmin(si) gives strictly higher utility

than bid bi < vmin(si).
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Observe that Pr[not L] ≤
∑n

i=1 Pr[si 6= Li] ≤
∑n

i=1 εi as every agent i is εi-informed about peaches,

thus Pr[L] ≥ 1 −
∑n

j=1 εj > 0 which means that L is feasible. As the domain is monotonic and

Li is the lowest signal for agent i, for every feasible s it holds that v(L) ≤ v(s). This implies that

vmin(si) ≥ v(L) for every agent i and signal si ∈ Si.

As all bids are at least v(L), the revenue is at least v(L), thus it is sufficient to show that

v(L) ≥ E[v(ω)]−
∑n

j=1 εj .

Observe that

E[v(ω)] = v(L) · Pr[L] + v(not L) · Pr[not L]

Which implies that

v(L) =
E[v(ω)]− v(not L) · Pr[not L]

Pr[L]
≥ E[v(ω)]− Pr[not L] ≥ E[v(ω)]−

n∑
i=1

εi

since 0 < Pr[L] ≤ 1, v(not L) ≤ 1 (as for any ω it holds that v(ω) ∈ [0, 1]), and Pr[not L] <
∑n

i=1 εi.

E.3 Proof of Proposition 3

If
∑n

i=1 εi ≥ 1 the claim follows trivially. Items have values in [0, 1] and thus all bids are at most

1, which implies that the revenue is at most 1. We next assume that
∑n

i=1 εi < 1.

Since each j < i is εj-informed about peaches it holds that

Pr[L1, L2, . . . , Li−1] ≥ 1−
i−1∑
j=1

εj

Now, since i is εi-informed about lemons it holds that Pr[Hi] ≥ 1− εi, and thus

Pr[L1, L2, . . . , Li−1, Hi] ≥ Pr[L1, L2, . . . , Li−1] + Pr[Hi]− 1 ≥ 1−
i∑

j=1

εj > 0

The revenue obtained when the signals of agents 1, 2, . . . , i are not realized to (L1, L2, . . . , Li−1, Hi)

is at most the maximal value of any item, which is 1, and that happens with probability at most∑i
j=1 εj . Thus this case contributes at most

∑i
j=1 εj to the expected revenue.

We next bound the revenue obtained when the signals of agents 1, 2, . . . , i are realized to

(L1, L2, . . . , Li−1, Hi), an event that happens with probability at most 1. To prove the claim it

is sufficient to show that the maximum bid of all agents other than i is at most εi, since this is

an upper bound on revenue in this case. We first bound the bid vmin(Lj) of any agent j < i

when getting signal Lj . By the first non-degeneracy assumption (Lj , si, s−{i,j}) is feasible for some

si 6= Hi and some s−{i,j}. As agent i is εi-informed about lemons it holds that v(Lj , si, s−{i,j}) ≤ εi
and thus vmin(Lj) ≤ εi for all j < i.
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We next bound the bid vmin(sj) of any agent j > i when getting any signal sj ∈ Sj . By the

second non-degeneracy assumption (sj , si, s−{i,j}) is feasible for some si 6= Hi and some s−{i,j}. As

agent i is εi-informed about lemons it holds that v(sj , si, s−{i,j}) ≤ εi and thus vmin(sj) ≤ εi for all

j > i. We have shown that when the signals of agents 1, 2, . . . , i are realized to (L1, L2, . . . , Li−1, Hi)

the maximum bid of all agents other than i is at most εi, thus the revenue in this case is bounded

by εi, and the claim follows.
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