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Abstract

The basic assumption of a structural VARMA model (SVARMA) is that it is driven by a
white noise whose components are independent and can be interpreted as economic shocks,
called “structural” shocks. When the errors are Gaussian, independence is equivalent to non-
correlation and these models have to face two kinds of identification issues. The first iden-
tification problem is “static” and is due to the fact that there is an infinite number of linear
transformations of a given random vector making its components uncorrelated. The second
identification problem is “dynamic” and is a consequence of the fact that the SVARMA pro-
cess may have a non invertible AR and/or MA matrix polynomial but, still, has the same
second-order properties as a VARMA process in which both the AR and MA matrix poly-
nomials are invertible (the fundamental representation). Moreover the standard Box-Jenkins
approach [Box and Jenkins (1970)] automatically estimates the fundamental representation
and, therefore, may lead to misspecified Impulse Response Functions. The aim of this paper
is to explain that these difficulties are mainly due to the Gaussian assumption, and that both
identification challenges are solved in a non-Gaussian framework. We develop new simple
parametric and semi-parametric estimation methods when there is non-fundamentalness in the
moving average dynamics. The functioning and performances of these methods are illustrated
by applications conducted on both simulated and real data.
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Introduction

1 Introduction

The basic assumption of a structural VARMA model (SVARMA) is that it is driven by a white noise
whose components are independent and are interpreted as economic shocks,1 called “structural”
shocks. When the errors are Gaussian, independence is equivalent to non-correlation and these
models have to face two kinds of identification problems.

First the components of the white noise appearing in the reduced-form VARMA are instanta-
neously correlated and the shock vector must be derived from this white noise by a linear trans-
formation eliminating these instantaneous correlations. The snag is that this can be done in an
infinite number of ways and there is a huge literature trying to solve this “static” identification
issue by adding restrictions on the short-run impact of a shock [see e.g. Bernanke (1986), Sims
(1980, 1986, 1989), Rubio-Ramirez, Waggoner, and Zha (2010)], or on its long-run impact [see
e.g. Blanchard and Quah (1989), Faust and Leeper (1997), Erceg and Gust (2005), Christiano,
Eichenbaum, and Vigfusson (2006)], as well as on the sign of some impulse response functions
[see e.g. Uhlig (2005), Chari, Kehoe, and McGrattan (2008), Mountford and Uhlig (2009)].

A second identification issue comes from the fact that the stationary SVARMA process may
feature a non-invertible moving average (MA) matrix lag polynomial. The latter situation, called
non-fundamentalness, may occur when the SVARMA is deduced from business cycle models [see
e.g. Kydland and Prescott (1982), Francis and Ramey (2005), Gali and Rabanal (2005)], or from
log-linear approximations of Dynamic Stochastic General Equilibrium (DSGE) models involving
rational expectations [see e.g. Hansen and Sargent (1991), Smets and Wouters (2003), Chris-
tiano, Eichenbaum, and Vigfusson (2007), Leeper, Walker, and Yang (2013)]. Typically the matrix
MA polynomial is not invertible and the shock vector is not simply linearly linked to the (linear)
causal innovation of the process [see e.g. Lippi and Reichlin (1993, 1994)]. Moreover the non-
fundamental SVARMA process has exactly the same second-order properties as another VARMA
process with an invertible MA part (the fundamental representation) and, in the Gaussian case, both
processes are observationally equivalent. This creates a dynamic identification problem, which is
exarcerbated by the fact that the standard Box-Jenkins approach –the Gaussian Pseudo Maximum
Likelihood method based on a VAR approximation of the VARMA [Box and Jenkins (1970)]–
provides a consistent estimation of the fundamental representation and, therefore, may lead to
misspecified Impulse Response Functions (IRFs).

The aim of this paper is to explain that these difficulties are due to the Gaussian assumption
underlying the Box-Jenkins type approaches, and that these identification problems disappear in
a non-Gaussian framework. We also introduce simple semi-parametric and parametric estima-

1Our paper will not consider the debate about how structural are the parameters and the shocks in SVARMA models
[see e.g. Pesaran and Smith (2011) and the reference therein, as well as the application in Gouriéroux, Monfort, and
Renne (2017)].
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tion approaches when there is a potential non-fundamentalness in the multivariate moving-average
dynamics.

In Section 2, we consider a vector autoregressive moving average process, with roots of the
moving average polynomial that are not necessarily outside the unit circle. We stress that the eco-
nomic shocks are not necessarily interpretable in terms of causal linear innovations. We review
different examples of non-fundamental representations in the moving average dynamics given in
the literature. Next we discuss the identification issue in the Gaussian case and explain why the
standard Box-Jenkins approach based on Gaussian pseudo-likelihood suffers from these identifi-
cation issues.

Section 3 is the core of the paper. We consider non-Gaussian SVARMA processes based on
serially and instantaneously independent shocks [see e.g. Brockwell and Davis (1991), Rosen-
blatt (2000) for an introduction to linear processes]. We explain that, in this context, the standard
static and dynamic identification problems encountered in the Gaussian SVARMA analysis disap-
pear and we also discuss the identification of the structural shocks and of the Impulse Response
Functions (IRFs) when the shocks are deterministic or stochastic. In Section 4 we suggest new
parametric and semi-parametric estimation methods to improve the standard SVAR methodology.
We first consider a semi-parametric SVARMA with non-fundamental representation in the moving
average dynamics only and introduce a two-step moment approach to estimate the autoregressive
and moving average parameters as well as the distributions of the errors. When the distribution of
the error term is parametrically specified, it is easily seen that the maximum likelihood approach
is computationally demanding, since the different regimes of possible non-fundamentalness can
have to be considered. To circumvent this difficulty, we introduce estimators based on appropriate
incomplete likelihood functions and composite likelihood functions. Applications are provided
in Section 5. First, we conduct a Monte-Carlo analysis aimed at illustrating the performances of
the parametric approaches in the context of a univariate ARMA(1) process. Second, the max-
imum likelihood estimation procedure is employed to estimate the processes followed by GDP
growth rates of different countries. Third, following Blanchard and Quah (1989), Lippi and Re-
ichlin (1993, 1994), we study the joint dynamics of U.S. GDP growth and unemployment rates;
our results suggest that the data call for non-fundamental bivariate VARMA models. Section 6
concludes.

The special case of a one-dimensional MA(1) process is completely analysed in Appendix A.
Appendix B provides a proof of the key proposition and Appendix C shows how to recover the
structural shocks.
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2 Dynamic Linear Model and Non-Fundamentalness

2.1 The dynamic model

Despite the standard Vector Autoregressive (VAR) terminology, the linear dynamic reduced-form
structural models may have both autoregressive and moving average parts. The VARMA model is
the following:

Φ(L)Yt = Θ(L)εt , (2.1)

where Yt is the n-dimensional vector of observations at date t, εt is the n-dimensional vector of
errors, L the lag operator,

Φ(L) = I−Φ1L− . . .−ΦpLp,Θ(L) = I−Θ1L− . . .−ΘqLq, (2.2)

and the matrix autoregressive and moving average lag-polynomials are of degree p and q, respec-
tively.2

Let us now introduce the following assumptions on model (2.1)-(2.2):

Assumption A.1. Assumption on errors.

i) The process εt is a square-integrable strong white noise, i.e. the errors εt are independently,

identically distributed and such that E(εt) = 0 and E(‖εt‖2)< ∞.

ii) The errors can be written as εt = Cηt ⇔ ηt = C−1εt , where the components η j,t of ηt are

mutually independent, and satisfy V (η j,t) = 1.

Assumption A.1 i) on the errors is standard in the literature. Assumption A.1 ii) is required
for defining separate shocks on the system when deriving the impulse response functions (see the
discussion in Section 3.2). The random variables η j,t are usually called “structural shocks”, and
the representation Φ(L)Yt =Θ(L)Cηt is called a “structural” VARMA or SVARMA representation.

Assumption A.2. Assumption of left coprimeness on the lag-polynomials.

If Φ(L) and Θ(L) have a left common factor C(L), say, such that: Φ(L) =C(L)Φ̃(L),Θ(L) =

C(L)Θ̃(L), then det(C(L)) is independent of L.

2The underlying structural model may include state variables, which are not necessarily observable. This explains
why the number of shocks m, corresponding to the number of state variables might be larger than the number n of
observed variables Y , even if models considered in practice are often such that n = m [see e.g. Hansen and Sargent
(1991), p83, Lippi and Reichlin (1994), Giannone and Reichlin (2006), p457, Fernandez-Villaverde, Rubio-Ramirez,
Sargent, and Watson (2007) Section C, for this assumption on the dimensions].
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This condition ensures that the VARMA representation is minimal in the sense that all possible
simplifications have been already done [see Hannan and Deistler (1996), Chap 2 for more details].
This condition will greatly simplify the discussions in the next sections. It is often forgotten in
structural settings and it might be necessary to test for the minimality of the representation. This
is clearly out of the scope of this paper.3

Assumption A.3. Assumption on the autoregressive polynomial.

All the roots of det Φ(L) have a modulus strictly larger than 1.

Under Assumptions A.1–A.3, the linear dynamic system (2.1)-(2.2) has a unique strongly sta-
tionary solution, such that E(‖Yt‖2) < ∞ [see e.g. the discussion in Gouriéroux and Zakoian
(2015)]. Also note that, if the RHS of (2.1) is µ +Θ(L)εt , the process Yt − [Φ(1)]−1µ satisfies
(2.1) without intercept µ; we can therefore assume µ = 0 without loss of generality.

Assumption A.4. Assumption on the observable process.

The observable process is the stationary solution of model (2.1) associated with the true values

of Φ, Θ, C and of the distribution of ε .

Since all the roots of det(Φ(z)) lie outside the unit circle, it is easy to derive the inverse of the
polynomial operator Φ(L) as a convergent one-sided series in the lag operator L:

Φ(L)Yt = Θ(L)εt

⇐⇒ Yt = Φ(L)−1
Θ(L)εt ≡Ψ(L)εt =

∞

∑
k=0

ΨkLk
εt =

∞

∑
k=0

Ψkεt−k (2.3)

=
∞

∑
k=0

ΨkCηt−k =
∞

∑
k=0

Akηt−k,

with Ak = ΨkC.
Moreover, when all the roots of det(Θ(z)) lie outside the unit circle, Yt has a one-sided autore-

gressive representation:

Θ
−1(L)Φ(L)Yt ≡

∞

∑
k=0

BkLkYt =
∞

∑
k=0

BkYt−k = εt

3See Deistler and Schrader (1979) for a study of identifiability without coprimeness, and Gouriéroux, Monfort, and
Renault (1989) for the test of coprimeness, i.e. common roots, for one-dimensional ARMA processes.

5



Dynamic Linear Model and Non-Fundamentalness

and
ηt =C−1

Θ
−1(L)Φ(L)Yt ,

where Θ−1(L) is the one-sided series operator involving positive powers of L and that satisfies
Θ−1(L)Θ(L) = I. In this case, we will say that the operator is invertible.

From the macroeconomic literature we know that SVARMA models do not always have roots of
the moving average located outside the unit circle (see Section 2.2). If det(Θ(z)) has no roots on the
unit circle, but some roots inside the unit circle, we get a two-sided autoregressive representation
(see Appendix C):

∞

∑
k=−∞

BkYt−k = εt ,

and
ηt =C−1

∞

∑
k=−∞

BkYt−k.

Here B(L) = ∑
∞
k=−∞

BkLk = Θ−1(L)Φ(L) where Θ−1(L) is the two-sided series operator satis-
fying Θ−1(L)Θ(L) = I. In this case, we will say that Θ(L) is invertible in a general sense.

Let us now study the consequences of ill-located roots of det(Θ(z)). For expository purpose,
we consider a one-dimensional ARMA(1,1) process:

(1−ϕL)yt = (1−θL)εt , (2.4)

where |ϕ| < 1 and |θ | > 1. Thus the root of det(Θ(z)) is ill-located, that is inside the unit circle.
To get the (infinite) pure autoregressive representation of process (yt), we have to invert (1−θL).
We get:

(1−ϕL)yt =

(
1− 1

θ
L−1
)
(−θLεt)

⇔
(

1− 1
θ

L−1
)−1

(1−ϕL)yt =−θLεt . (2.5)

Formula (2.4) implies that
yt = (1−ϕL)−1(1−θL)εt

and, therefore, yt is function of the present and past values of εt .
Formula (2.5) implies that εt is function of the present and future values of yt and the informa-

tion {yt−1,yt−2, . . .} is strictly included in the information {εt−1,εt−2, . . .}; therefore, εt is not the
innovation of yt , defined by yt−E(yt |yt−1,yt−2, . . .).

To summarize, under Assumptions A.1-A.3, the error term in the VARMA representation is
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equal to the causal innovation of the process if the roots of det(Θ(z)) are all outside the unit circle.
Under this condition, we say that process Yt has a fundamental VARMA representation [see e.g.
Hansen and Sargent (1980), p18, (1991), p79, and Lippi and Reichlin (1994) for the introduction
of this terminology in the macroeconometric literature].4,5 Otherwise, εt is not equal to the causal
innovation, and the VARMA representation is non-fundamental.

2.2 Examples of non-fundamentalness

There exist different sources of non-fundamentalness in SVARMA models, that is, of ill-located
roots of the moving average polynomial [see also the discussion in Alessi, Barigozzi, and Capasso
(2011)]. Let us consider some examples.

i) Lagged impact. A well-known example appears in the comment of the Blanchard, Quah model
[Blanchard and Quah (1989)] by Lippi and Reichlin (1993). The productivity, yt , can be
written as:

yt = εt +θεt−1,

where εt denotes the shock on productivity. It may be realistic to assume that the maximal
impact of the productivity shock is not instantaneous and is maximal with a lag, i.e. that
θ > 1. The MA(1) process is then non-fundamental (or non-invertible).

ii) Non-observability. Non-fundamentalness can also arise from a lack of observability. Fernandez-
Villaverde, Rubio-Ramirez, Sargent, and Watson (2007) give the example of a state-space
representation of the surplus in a permanent income consumption model [see Lof (2013),
Section 3, for another example]. The state-space model is of the following type:{

ct = act−1 +(1−1/R)εt , 0 < a < 1,
yt = −act−1 +1/Rεt ,

where ct (resp. yt) denotes the consumption (resp. the surplus), R > 1 a constant gross
interest rate on financial assets, and εt is an i.i.d. labor income process. From the first

4The term “fundamental” is likely due to Kolmogorov and appears in Rozanov (1960), p367, and Rozanov (1967),
p56, to define the “fundamental process”, that is, the second-order white noise process involved in the Wold decom-
position of a weak stationary process. At any date t, the information contained in the current and past values of the
fundamental process coincides with the information contained in the current and past values of the observations. In
Box and Jenkins (1970), a fundamental representation is also called invertible.

5The terminology “fundamental” can be misleading, in particular since fundamental shock and structural shock
are often considered as equivalent notions [see e.g. the description of the scientific works of Nobel prizes Sargent and
Sims in Economic Sciences Prize Committee (2011), or Evans and Marshall (2011)]. Moreover in some papers [see
Grassi, Ferroni, and Leon-Ledesma (2015)] a shock is called fundamental if its standard deviation is non-zero.
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equation, we deduce:

ct =
(1−1/R)

1−aL
εt ,

and by substituting in the second equation, we get the dynamics of yt as:

yt =

[
1/R−a

L(1−1/R)
1−aL

]
εt =

R−1−aL
1−aL

εt .

Thus the root of the moving-average lag-polynomial is equal to 1/aR. It is smaller than one
when aR > 1.6

iii) Rational expectation. Other sources of non-fundamentalness are the rational expectations
introduced in the models. In the simple example of Hansen and Sargent (1991) the economic
variable yt is defined as:

yt = Et

(
∞

∑
h=0

β
hwt+h

)
, with wt = εt−θεt−1, 0 < β < 1, |θ |< 1.

If the information set available at date t is It = (εt ,εt−1, . . .), we get:

yt = (1−βθ)εt−θεt−1.

The root of the moving average polynomial is (1− βθ)/θ . Depending on the values of
β and θ , this root is larger or smaller than 1. When the root is strictly smaller than 1, the
information contained in the observations, i.e. (yt ,yt−1, . . .), is strictly included in It . In other
words the information of the econometrician differs from the information of the economic
agent.

iv) Rational expectation and lagged impact. Non-fundamentalness may also occur when the
economic agent and econometrician information sets are not aligned. The literature on in-
formation flows applied to fiscal foresight or productivity belongs to this category [see e.g.
Fève, Matheron, and Sahuc (2009), Fève and Jihoud (2012), Forni and Gambetti (2010),
Leeper, Walker, and Yang (2013)]. A stylized model is [see Fève, Matheron, and Sahuc

6This reasoning does not hold for a = 1, which is precisely the case considered in Fernandez-Villaverde, Rubio-
Ramirez, Sargent, and Watson (2007), where ct and yt are nonstationary co-integrated processes. Indeed their equation
(5) assumes the stationarity of the y process and is not compatible with the assumption of a cointegrated model.
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(2009)]:
yt = aEtyt+1 + xt ,

xt = εt−q,

where εt is a white noise, and Et is the conditional expectation given εt , εt−1,...

If |a|< 1, the forward solution is easily seen to be:

yt =
q

∑
i=0

aq−i
εt−i. (2.6)

The roots of Θ(L) = aq
q

∑
i=0

a−iLi = aq 1− (a−1L)q+1

1−a−1L
are equal to: aexp(2ikπ/(q+1)),k =

1, . . . ,q, with common modulus |a|< 1. Therefore the moving-average lag polynomial Θ(L)

is noninvertible and the MA process is non-fundamental.

v) Prediction error. When the variable of interest is interpreted as a prediction error, non-
fundamentalness may also appear [see Hansen and Hodrick (1980)]. For instance if yt is
the price of an asset at t, Et−2yt can be interpreted as the futures price at t−2 (if the agents
are risk-neutral) and, also as the forward price (if, moreover, the riskfree interest rates are
zero). The spread between the spot price and the futures price is: st = yt − Et−2yt and,
if yt is a fundamental, or invertible, MA(2) process: yt = εt + θ1εt−1 + θ2εt−2 = Θ(L)εt ,

we get st = εt + θ1εt−1 = Θ1(L)εt , which is not necessarily fundamental. For example if
Θ(L) = (1−θL)2 with |θ | < 1, we have Θ1(L) = 1− 2θL, which is not invertible as soon
as |θ |> 1/2.

2.3 The limits of the Gaussian approach

Let us first consider the very popular case of a structural VAR process (SVAR), that is the case
where Θ(L) = I. The SVAR process is defined, in the Gaussian case, by:

Φ(L)yt =Cηt ,

where the roots of det(Φ(L)) are outside the unit circle and where the process ηt is a Gaussian
white noise, with E(ηt) = 0 and V (ηt) = I.

It is well-known that, in this case, Φ(L) is identified but C is not, since replacing C by CQ,
where Q is an orthogonal matrix, leaves the distribution of the process Yt unchanged. It is the static

identification problem.
In order to solve this identification problem, additional short-run, long-run or sign restrictions
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have been imposed in the literature [see e.g. the references in the introduction].7 It turns out that if
at most one of the components of ηt is Gaussian, the identification problem disappears since C is
then identified, up to a permutation and a sign change of its columns. This result, shown by Comon
(1994) (Theorem 11) is a consequence of the Darmois-Skitovich characterization of the multivari-
ate Gaussian distribution [see Darmois (1953), Skitovich (1953), Ghurye and Olkin (1961)]. In this
case, C can be estimated using Independent Component Analysis (ICA) algorithms [see Hyväri-
nen, Karhunen, and Oja (2001)] or by Pseudo Maximum Likelihood techniques [see Gouriéroux,
Monfort, and Renne (2017)]. The (quasi) identifiability of C in the non-Gaussian case implies that,
for instance, the recursive approach proposed by Sims, imposing that C is lower-triangular, cannot
be used in general to find independent shocks but only uncorrelated shocks. However, the lack
of correlation is not sufficient to define impulse response functions (IRFs) and their confidence
intervals.8

Let us now consider the general case of a SVARMA process:

Φ(L)Yt = Θ(L)Cηt ,

where the roots of det(Φ(L)) lie outside the unit circle, the roots of det(Θ(L)) can be inside or
outside the unit circle, and ηt is a Gaussian white noise with E(ηt) = 0 and V (ηt) = I.

In the Gaussian case, the distribution of the stationary process Yt depends on parameters through
the second-order moments of the process or, equivalently, through the spectral density matrix:

f (ω) =
1

2π
Φ
−1(exp iω)Θ(exp iω)CC′Θ(exp−iω)′Φ−1(exp−iω)′. (2.7)

Using the equalities Γ(h)−Φ1Γ(h−1)−·· ·−ΦpΓ(h− p)= 0, ∀h≥ q+1, with Γ(h)= cov(Yt ,Yt−h),
it is readily seen that the coefficient matrices Φ1, ..., Φp are identifiable from the distribution of the
process Yt (Gaussian or not), but several sets of coefficients (Θ1, . . . ,Θq,C) yield the same spectral
density and, therefore, the same distribution for the process Yt in the Gaussian case; the different
polynomials Θ(L) are obtained from the fundamental one –the one with the roots of Θ(L) outside
the unit circle– by use of the Blaschke matrices.9 The lack of identification of Θ(L) is called the

7An alternative consists in leaving the linear dynamic framework by considering Markov Switching SVAR [see
Lanne, Lütkepohl, and Maciejowska (2010), Lütkepohl (2013), Herwartz and Lütkepohl (2017), Velinov and Chen
(2014)]. This extended framework allows to test the identification restrictions. In this paper we will stay in a pure
SVARMA framework.

8In most studies using SVAR models, the shocks are implicitly assumed Gaussian, but the Gaussian hypothesis is
never tested in practice. This assumption is even explicit in some papers [see e.g. Forni, Gambetti, Lippi, and Sala
(2017)].

9A Blaschke matrix is a square matrix of the lag operator B(L) such that [B(L)]−1 = B∗(L−1), where B∗(.) is
obtained from B(.) by transposing and taking conjugate coefficients. See Leeper, Walker, and Yang (2013), p1123-
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dynamic identification problem. We will see below that this second identification problem also
disappears in the non-Gaussian case.

A simple example of the dynamic identification problem can be seen even in the univariate
MA(1) model yt = σηt −θσηt−1, where ηt is a Gaussian white noise with E(ηt) = 0, V (ηt) = 1
and, for instance, 0 < θ < 1. If we replace θ by θ ∗ = 1/θ and σ by σ∗ = σθ , we get the process:

y∗t = σ
∗
ηt−θ

∗
σ
∗
ηt−1

= σθηt−σηt−1,

which is also Gaussian and with the same covariance function as yt , namely:

Γ(0) = σ
2(1+θ

2), Γ(1) =−θσ
2 and Γ(h) = 0, for h≥ 2,

and, therefore, with the same distribution. In other words, the pairs (θ ,σ) and (1/θ ,σθ) give the
same distribution for the process yt . By contrast, we will see that if the ηt are non-Gaussian, the
distributions of the processes yt and y∗t are different, although their spectral density matrices are
the same.

Another equivalent way to illustrate this situation is to consider the process η∗t defined through
yt = σθη∗t −ση∗t−1. In the Gaussian case (i.e. if ηt and, therefore, yt are Gaussian), η∗t is also
a standard Gaussian white noise; by contrast, in the non-Gaussian case, η∗t will be a weak white
noise, but not a strong white noise, i.e. the η∗t ’s will be uncorrelated, but not independent.

Another problem with the usual Box-Jenkins approach is that the estimation of the parameters
Φ1, ..., Φp, Θ1, ..., Θq, Σ = CC′ is based on a truncated VAR approximation relying on the as-
sumption that Θ(L) is invertible (i.e. the roots of det(Θ(L)) are outside the unit circle), namely a
truncation of Θ(L)−1Φ(L)Yt = εt , with V (εt) = Σ =CC′. In other words, a fundamental represen-
tation is a priori imposed without test.

3 Identification and Impulse Response Functions (IRFs) in the
non-Gaussian SVARMA

3.1 Identification of the parameters

Let us consider again the SVARMA process:

Φ(L)Yt = Θ(L)Cηt

1124 for a practical example of the use of Blaschke matrices.
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with

Φ(L) = I−Φ1L−·· ·−ΦpLp,

Θ(L) = I−Θ1L−·· ·−ΘqLq,

where the roots of Φ(L) are outside the unit circle, ηt is a strong white noise, the components η j,t

of ηt are independent and such that E(η j,t) = 0 and V (η j,t) = 1.
We also make the following assumption on Θ(L):

Assumption A.5. .

The roots of det(Θ(L)) are not on the unit circle.

The previous assumption can also be written:

det(Θ(eiω)) 6= 0, ∀ω ∈]−π,π].

In the simple univariate MA(1) case, yt = (1− θL)σηt , this excludes the cases θ = ±1. In
the multivariate MA(1) case yt = (I−ΘL)Cηt , this excludes eigenvalues of Θ on the unit circle.
However, the roots of det(Θ(L)) can be inside or outside the unit circle, and Θ(L) is invertible in
a general sense, since there exists a two-sided series B(L) = ∑

∞
k=−∞

BkLk such that B(L)Θ(L) = I

(see Appendix C).

Since Φ(L) is invertible, we have:

Yt = Φ
−1(L)Θ(L)Cηt = A(L)ηt , (3.1)

with A(L) = Φ−1(L)Θ(L)C.

As mentioned above, we know that Φ(L) is identifiable. The question is the identification of
Θ(L) and C. The proposition provided below, deduced from Theorem 1 in Chan, Ho, and Tong
(2006) [based on Theorem 4 in Chan and Ho (2004)], solves both the static and the dynamic
identification problems in the non-Gaussian case.10,11 Let us first introduce two assumptions:

Assumption A.6. The components of ηt have the same distribution.
10See Findley (1986), Cheng (1992) for the one-dimensional case n = m = 1.
11A similar identification result has been recently derived when the components of ηt have fat tails [see Gouriéroux

and Zakoian (2015)]. Note that the identification result in Chen, Choi, and Escanciano (2015), Theorem 1, is much
less powerful. Indeed, while their result provides conditions to check if the fundamental representation is the right
one, it cannot be used to find the correct non-fundamental representation if this is not the case.

12
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Assumption A.7. Each component of ηt has a non-zero rth cumulant, with r ≥ 3, and a finite

moment of order s, where s is an even integer greater than r.

Proposition. Under Assumptions A.1 to A.5, if Yt is non-Gaussian and if we consider Y ∗t defined

by

Φ(L)Y ∗t = Θ
∗(L)C∗η∗t ,

then, if either Assumption A.6 or Assumption A.7 is satisfied, the processes Yt and Y ∗t are observa-

tionally equivalent if and only if:

Θ(L) = Θ
∗(L) and C =C∗,

where the last equality holds up to a permutation and sign change of the columns and η∗t = ηt in

distribution up to the same permutation and sign change of their components.

Proof See Appendix B.

3.2 Identification of the structural shocks and of the IRFs

The proposition in the previous section shows that, in the non-Gaussian case, Φ(L) and Θ(L) are
identified and, therefore, Cηt = Θ−1(L)Φ(L)Yt is identified too.

Since C is identified up to a permutation and a sign change of its columns, the structural shocks
ηt are identified up to a permutation and a sign change of their components (not depending on
t). It is just a labelling problem and the naming of each component will depend on the economic
interpretation of the Impulse Response Function defined from the sequences Ah = ΨhC. More
precisely, for a given choice of the order and of the sign of the columns of C, the differential
impact on Yi,t+h of a unit shock on η j,t will be equal to

E
(

Yi,t+h|η j,t = 1,ηt−1

)
−E

(
Yi,t+h|ηt−1

)
,

where ηt = {ηt ,ηt−1, . . .}. Due to the linearity of the process, this impact is equal to Ψi,hC j, where
Ψi,h is the ith row of Ψh and C j is the jth column of C. It is important to note that the past values
ηt−1 do not appear in this expression and, therefore, the fact that these variables may not be func-
tions of yt−1 is not a problem. For some i and j, the function of h defined by Ψi,hC j is called an
impulse response function (IRF).

13
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It is also obvious that the differential impact of Yi,t+h of a shock δ on η j,t is Ψi,hC jδ and that
this differential impact can also be obtained by computing recursively Yt from:

Φ(L)Yt = Θ(L)Cηt , (3.2)

by starting at t, setting all the past values of Yt at zero, all the past and future values of ηt at 0 and
all the components of ηt at zero except η j,t which is set at δ .

If the components of ηt were only assumed to be non-correlated, but not necessarily indepen-
dent, it would be impossible to assume that one component is shocked while the other components
are left unchanged. For instance, if η2,t = (η2

1,t−1)/
√

2, where η1,t ∼N (0,1), then η1,t and η2,t

are uncorrelated, zero-mean and with unit variance, but η2,t is a deterministic function of η1,t and
a shock δ on η1,t necessarily implies a shock δ 2/

√
2 on η2,t .

3.3 Stochastic shocks

The previous Impulse Response Function approach gives the average shift of the components of
Yt+h when the mean of the distribution of η j,t is shifted by the quantity δ . This practice has two
limits. First, the other features of the distribution of η j,t like its variance, its skewness and its
kurtosis are not changed. Second, only the modification of the conditional mean of Yt+h is con-
sidered but not the modification of its conditional distribution and, in particular, of its conditional
quantiles, which might be interpreted as Values-at-Risk.

Let us now consider another type of transitory shock taking the form of a change in the distribu-
tion f j of η j,t into g j. We can simulate the errors without and with this stochastic shock.12 Without
shock, the simulated errors ηs

t , . . . ,η
s
t+h are drawn independently in ⊗k f̂k, where f̂k is an estimate

of fk, and with shock, they are drawn independently in f̂1⊗ ·· ·⊗ f̂ j−1⊗ g j⊗ f̂ j+1⊗ ·· ·⊗ f̂n for
ηs

t and in ⊗k f̂k for ηs
t+1, . . . ,η

s
t+h. Then we can deduce simulated paths of Yt , . . . ,Yt+h with and

without shock by using recursively (3.2) with and without shock.
The only problem is to fix values for the past ηt , namely ηt−1, . . . ,ηt−q, which may not be

computable from the past values of Yt . A natural solution is to fix these values at their best linear
approximation in terms of Yt−1, . . . ,Y1, which can be obtained from the Kalman filter applied to the
linear state-space representation of the process Zt = (Y ′t , . . . ,Y

′
t−p,η

′
t , . . . ,η

′
t−q)

′.

12This is called Stochastic Economic Scenario Generation (ESG) in the terminology of the new regulator for finan-
cial stability.
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4 Estimation of Models with Non-Fundamentalness

In this section, we discuss parametric and semi-parametric estimation of non-fundamental SVARMA
models.

The proposition of Section 3.1 suggests better semi-parametric estimation methods than the
unconsistent Gaussian pseudo-maximum likelihood used in the standard Box-Jenkins methodol-
ogy. These alternative methods provide consistent estimators of the true one-sided moving average
polynomial A(L) or, equivalently, of the true (Φ(L),Θ(L)) in a VARMA representation where the
roots of det(Θ(L)) may be inside or outside the unit circle. They also provide consistent non-
parametric estimators of the distribution of the components of the error term which are required
for the derivation of the impulse response functions (IRFs) associated with stochastic shocks (see
Section 3.3). The idea is to introduce appropriate moment restrictions deduced from the inde-
pendence assumption on the components of error η and derive associated moment methods for
estimation. These semi-parametric approaches are robust, but can be weakly efficient especially in
finite samples. We also introduce parametric likelihood-based estimation methods.

4.1 Semi-parametric estimation of a non-fundamental SVARMA model

For expository purpose, let us consider a SVARMA(1,1) model:

Yt = ΦYt−1 +C0ηt +C1ηt−1, (4.1)

where the components of ηt are both serially and cross-sectionally independent with E(ηt) = 0,
V (ηt) = I (for the sake of notational simplicity, we replace C by C0 and −Θ1C by C1). We assume
that the roots of the determinant of the autoregressive polynomial are well-located, but the roots
of the determinant of the moving average polynomial may be inside or outside the unit circle.
We denote by f j the common probability density function of the η j,t , t = 1, . . . ,T . We have to
consistently estimate the (true values of) parameters Φ, C0, C1 as well as the (true) functional
parameters f j, j = 1, . . . ,n.13

i) Pure moving average process.

Let us first consider the case Φ = 0, that is, a pure moving average process, and focus on the es-
timation of the moving average matrix coefficients C0, C1. We know that C0 and C1 are locally
identifiable in the non-Gaussian case; more precisely, they are identifiable up to a same permuta-
tion and sign change of their columns, but Θ =−C1C−1

0 is fully identifiable.

13For expository purpose, we do not distinguish the generic parameters from their true values in the notations.
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The Laplace transform of Yt , Yt−1 is:

E[exp(u′Yt +υ
′Yt−1)]

= E{exp[u′(C0ηt +C1ηt−1)+υ
′(C0ηt−1 +C1ηt−2)]}

= E[exp(u′C0ηt)]×E{exp[(u′C1 +υ
′C0)ηt−1]}×E[exp(υ ′C1)ηt−2]

= Π
n
j=1E[exp(u′C0 jη j,t)]×Π

n
j=1E{exp[(u′C1 j +υ

′C0 j)η j,t−1}×Π
n
j=1E[exp(υ ′C1 jη j,t−2)],

by using the independence assumptions.
The expression of this joint Laplace transform can be used to compute the expressions of the

first, second, third (fourth) cross-moments of Yt as functions of C0, C1 and of the first, second, third
(fourth) marginal moments of the errors η j,t .14

By focusing on the first and second moments order only, we know that the corresponding GMM
estimators will not provide consistent results (see the discussion in Section 2.3). The identification
of parameters and then the consistency of associated moment methods are generally achieved if
we also consider higher-order moments.15

For instance, let us consider moments up to order 3, with data preliminary demeaned; the
“observable” second and third order moments are:

E(y j,tyk,t), j,k = 1, . . . ,n, j ≤ k

E(y3
j,t), j = 1, . . . ,n,

E(y2
j,tyk,t−1), j,k = 1, . . . ,n,

E(y j,ty2
k,t−1), j,k = 1, . . . ,n.

Thus we have n(n+1)/2+n+2n2 observable moments.
The number of unknown parameters to estimate are the elements of C0, C1 and the third-order

moments of the η j,t , j = 1, . . . ,n (since their first and second-order moments are already known
and their cross third-order moments are equal to zero because of the cross-sectional independence).
This number of unknown parameters is therefore n+2n2 and the order condition for identification,
n(n+ 1)/2+ n+ 2n2 > n+ 2n2, is satisfied. The rank condition is more difficult to analyze [see
this discussion in Gospodinov and Ng (2015), Section 2 in the one-dimensional case].

14When their moments exist. If the errors have fat tails, the expression of the Laplace transform can be used for
pure imaginary arguments u and v.

15See Giannakis and Mendel (1989), Friedlander and Porat (1990), Na, Kim, Song, and Kim (1995) for the devel-
opment of this approach in signal processing in the one-dimensional case and the discussion in Appendix A.
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ii) The general case

Let us now consider the general specification (4.1). Since the process is causal –the eigenvalues of
Φ are inside the unit circle–, ηt and ηt−1 are independent from Yt−2. Thus, under the stationarity
assumption A.4, we can estimate the autoregressive matrix coefficient by regressing Yt on Yt−1,
with the instruments Yt−2. The corresponding instrumental variable (IV) estimator of Φ is:

Φ̂ = (ΣtYtY ′t−2)(ΣtYt−1Y ′t−2)
−1. (4.2)

Once Φ has been estimated, the associated IV residuals:

V̂t ≡ Yt− Φ̂Yt−1, (4.3)

are consistent approximations of Vt =C0ηt +C1ηt−1.
Then in a second-step we can apply to observations V̂t the estimation method for pure MA

process introduced in the subsection above and deduce consistent estimates of C0 and C1.16

Example: In the one-dimensional case:

yt = ϕyt−1 + cηt− cθηt−1, say.

These moment estimators of the parameters are:

ϕ̂ = (Σtytyt−2)/(Σtyt−1yt−2),

θ̂ = −Σt [(yt− ϕ̂yt−1)
2(yt−1− ϕ̂yt−2)]/Σt [(yt− ϕ̂yt−1)(yt−1− ϕ̂yt−2)

2]

[see Appendix A.3],

ĉ =
1
T

Σt η̂
∗2
t , where η̂

∗
t =

1− ϕ̂L
1− θ̂L

yt ,

and the inverse (1− θ̂L)−1 is computed by a backward expansion if |θ̂ |< 1, by a forward expansion
otherwise.17

16If C1 = 0, C0 can be directly estimated by ICA [see e.g. Chen, Choi, and Escanciano (2015), or Gouriéroux,
Monfort, and Renne (2017)].

17In practice, the expansions are truncated to account for the finite number of observed values of y.
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iii) Nonparametric estimation of the error distribution

Once Φ, C0 and C1 have been estimated, we deduce consistent approximations of the errors:

η̂t = (Ĉ0 +Ĉ1L)−1(I− Φ̂L)Yt , (4.4)

where the inverse (in a general sense) (Ĉ0+Ĉ1L)−1 is a two-sided series which has to be computed
carefully, with backward expansions for roots larger than one, forward expansions otherwise (see
Appendix C).

Then the p.d.f. f j can be estimated by a kernel density estimator applied to residuals η̂ j,t ,
t = 1, . . . ,T .

4.2 Maximum Likelihood, Composite Likelihood and Simulated Composite
Likelihood Approaches for Parametric SVARMA Models

To introduce these parametric estimation approaches, let us first discuss the case of a one-dimensional
MA(1) process before considering the general framework of a SVARMA process.

4.2.1 The Maximum Likelihood approach in the MA(1) context

We consider the MA(1) process:
yt = εt−θεt−1, (4.5)

where the ε ′t s are independent.
Suppose that we observe {y1, . . . ,yT}. If the common distribution of the ε ′t s is N(0,σ2), we

have seen in Section 2.3 that the model is not identifiable. If εt is not Gaussian, the proposition
of Section 3.1 shows that the model is identifiable.18 Let us denote by g(ε;γ) the common p.d.f.
of the ε ′t s, where γ is an unknown parameter, and let us consider three cases, depending on the
position of |θ | with respect to 1:

i) When |θ | < 1, we can invert equation (4.5) in the standard way in order to get εt as a function
of current and lagged values of process Y as:

εt =
∞

∑
h=0

θ
hyt−h. (4.6)

18See Appendix A for a more detailed discussion of non-identifiability of a MA(1) process and the links with
invertibility.
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Then the log-likelihood function is approximated by:

La
1(θ ,γ) =

T

∑
t=1

logg

(
t−1

∑
h=0

θ
hyt−h;γ

)
, (4.7)

where the infinite sums are truncated to be compatible with the observed y1, . . . ,yT .

ii) When |θ |> 1, equation (4.5) can still be inverted, but in reverse time. We get:

yt = εt−θεt−1

⇔ −yt+1

θ
= εt−

1
θ

εt+1

⇔ εt = −
∞

∑
h=0

1
θ h+1 yt+h+1.

(4.8)

The log-likelihood function is approximated by:

La
2(θ ,γ) =

T

∑
t=1

log

{
1
|θ |

g

(
−

T−t−1

∑
h=0

1
θ h+1 yt+h+1;γ

)}
, (4.9)

where the sums are now truncated to account for the most recent observations and the factor
1/|θ | comes from the Jacobian formula.

iii) Let us now discuss the case θ = 1. Focussing on the regimes when approximating the log-
likelihood function gives the misleading impression of a lack of continuity of the exact log-
likelihood function w.r.t. θ at |θ | = 1. This exact log-likelihood is however continuous.19

Indeed, we have:

ε1 = y1 +θε0,

ε2 = y2 +θy1 +θ
2
ε0,

. . .

εT = yT +θyT−1 + . . .+θ
T−1y1 +θ

T
ε0.

Thus the joint p.d.f. of {y1, . . ., yT} given ε0 is:

Π
T
t=1g

(
t−1

∑
h=0

θ
hyt−h +θ

t
ε0;γ

)
,

19Such an exact log-likelihood is for instance used in the Gaussian case, with |θ | < 1, by Chen, Davis, and Song
(2011) to analyze the properties of the ML estimator of a moving-average parameter close to non-invertibility.
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and the exact log-likelihood is:

L(θ ,γ) = log

{∫
Π

T
t=1g

(
t−1

∑
h=0

θ
hyt−h +θ

t
ε;γ

)
g(ε;γ)dε

}
. (4.10)

Hence, the exact log-likelihood is generally a differentiable function of θ . By contrast, an
approximated value of the log-likelihood function, given by:20

La(θ ,γ) = La
1(θ ,γ)1l|θ |<1 +La

2(θ ,γ)1l|θ |≥1, (4.11)

is only right-differentiable at θ = 1.21 In practice, however, using the approximated log-
likelihood (4.11) is easier because it does not involve the computation of an integral as in the
case of the exact log-likelihood (4.10).

To conclude, in the simple MA(1) case, maximum likelihood estimation can be conducted by
maximising the approximated log-likelihood function (4.11). If |θ | 6= 1, the standard asymptotic
theory applies. Nevertheless, this is not the case if |θ | = 1. In Subsection 4.2.3, we will dis-
cuss alternative approaches based on optimization criteria that are regular in the neighbourhood of
|θ |= 1.

4.2.2 The Maximum Likelihood approach in the VARMA context

For expository purpose, let us consider the VARMA(1,1) model:

Yt−ΦYt−1 = εt−Θεt−1, (4.12)

where the errors εt are given by:
εt =Cηt , say,

where the ηt are serially and mutually independent, with E(ηt) = 0 and V (ηt) = I. The distribution
of the ηt is non-Gaussian and parameterized with γ , say. Therefore, the p.d.f. of the errors εt is
of the form g(ε,Γ), with Γ = (C,γ).22 The errors ηt are supposed to satisfy Assumption A.6 or
Assumption A.7.

20The approximation is due to the truncations of lags and leads.
21An other approximated value of the log-likelihood function is La

1(θ ,γ)1l|θ |≤1 +La
2(θ ,γ)1l|θ |>1. The latter function

is left-differentiable at θ = 1.
22Such a specification for the distribution of the errors εt notably excludes that it belongs to the standard multivariate

Student family. This assumption is indeed not appropriate for the analysis of impulse responses since this family does
not include the case of independent components. We can assume, instead, that the ith component of ηt follows a
normalized univariate Student distribution with ν(i) degrees of freedom. Additional identification restrictions can
be introduced to fix the denomination of the errors, i.e. to solve the problem of multiplicity by change of scale and
permutations. For instance, permutation is ruled out if we impose either that the degrees of freedom ν(i) are in an
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The roots of det(Φ(z)) are assumed to be outside the unit circle, but the roots of det(Θ(z)) can
be anywhere: inside, outside, or even on the unit circle.

In order to get an approximated value of the likelihood function, one needs to recover, for
a given parameterization of the model, some estimated values of the errors εt . To do this, as
explained in Appendix C, one can exploit the real Schur decomposition of Θ:23

Θ = AUA′ =



U1 U1,2 . . . U1,K

0 U2 U2,3 . . . U2,K
... . . . . . . ...

0 UK−1 UK−1,K

0 . . . 0 UK


A′, (4.13)

where A is orthogonal, and U is upper block-triangular, where the diagonal blocks (Uk, k ∈
{1, . . . ,K}) are either 1× 1 or 2× 2 blocks, the 2× 2 blocks corresponding to complex conju-
gate complex eigenvalues of Θ.

Left-multiplying Yt−ΦYt−1 = εt−Θεt−1 by A−1 = A′, we get:

Wt = ε
∗
t −Uε

∗
t−1, (4.14)

where Wt = A′(I−ΦL)Yt and ε∗t = A′εt .
Appendix C shows that the different components of ε∗t can be recovered from the Vts –and

therefore from the Yts– by means of infinite backward or forward expansions of the elements of
Wt . The use of backward versus forward expansions depends on on the position of the eigenvalues
of the Uk matrices with respect to the unit circle. When we observe {y1, . . . ,yT} only, the ε∗t s
can only be approximated by truncated backward or forward expansions (as in equations (4.7) and
(4.9)). Denoting by ε̂t the resulting estimate of εt , Appendix D shows that we can approximate the
log-likelihood with:

La(Φ,Θ,Γ) =−T
K

∑
k=1

log |det(Uk)|1l|det(Uk)|≥1 +
T−1

∑
t=1

logg(ε̂t ,Γ). (4.15)

Note that the first term appearing on the right-hand side of the previous equation is equal to T times
the opposite of the sum of the logarithms of the moduli of the eigenvalues of Θ whose modulus is

increasing order, or that the elements of the first row of matrix C are in an increasing order. The second condition is
preferable since it is compatible with the limiting case of equal degrees of freedom.

23One could also use the real Jordan decomposition for this purpose. Formulas would then actually be slightly
simpler. However, the real Jordan decomposition is less commonly available in programming softwares (typically
in R). The relative numerical instability of the real Jordan decomposition may account for its absence from usual
packages.
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larger than one. This term therefore does not depend on the (Schur) decomposition of matrix Θ.
The extension of the computation of the approximated log-likelihood function in the case where
the order of Φ(L) is larger than 1 is straightforward. Besides, Appendix C explains how to recover
the shocks εt if the order of Θ(L) is larger than 1. Hence, the computation of the approximated
log-likelihood function can be performed in the general VARMA(p,q) case.

Remark 1: As in the MA(1) case (Subsection 4.2.1), the asymptotic theories apply in the context
of the maximisation of (4.15) only if all the roots of Θ(L) are not on the unit circle.

Remark 2: Because of the discontinuity of the approximated likelihood function when the roots of
det(Θ(L)) are on the unit circle, the numerical maximisation of the approximated likelihood may
tend to result in (local) optima with parameters corresponding to the same fundamentalness/non-
fundamentalness regime as the one used to initialize the numerical optimization procedure. To
address this potential problem, one should launch the numerical optimization from initial con-
ditions reflecting different possible fundamentalness regimes. Another complementary approach
consists in running additional numerical optimizations with starting values corresponding to mod-
els featuring the same spectral density as a the one resulting from a preliminary-estimated model,
but with different fundamentalness regimes; such models can be obtained by applying Blaschke-
based transformations to the preliminary-estimated model (see Lippi and Reichlin (1994)).

The likelihood-based approaches proposed in the next subsection are based on optimization
criteria decomposed into sums which are appropriate for applying standard asymptotic theory even
if the roots of Θ(L) lie on the unit circle. These criteria do not suffer from discontinuity on the unit
circle. However, as will be illustrated in the application section –in particular in Subsection 5.1–,
these approaches may be substantially less efficient than the maximum likelihood approach.

4.2.3 Incomplete and Composite Maximum Likelihood approaches

The principle of Incomplete Maximum Likelihood (IML) is easily explained for the MA(1) process
discussed above. Let us separate the observations by omitting one out of three observations. The
set of observations becomes:

y1, y2, y4, y5, . . . , y3 j−1, y3 j−2, . . .

There is a loss of information since observations y3, y6, . . ., y3 j, . . . are not taken into account
with the advantage that the pairs of observations (y3 j−1,y3 j−2), j varying, are i.i.d.. Thus the
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exact log-likelihood function corresponding to these incomplete observations is easily computed,
naturally expressed as a sum and the standard asymptotic theory applies.

Let us now describe how the incomplete likelihood approach can be adapted to the multidi-
mensional framework. Let us come back to the VARMA(1,1) model defined by equation (4.12).
This model is a Seemingly Unrelated Regression (SUR) model:

Yt = ΦYt−1 + vt , (4.16)

and the autoregressive matrix Φ can be estimated through instrumental variables (IV), using as
instruments Yt−2 (Yt−3,Yt−4, . . . ), which are uncorrelated with vt . Let us denote by Φ̂ the corre-
sponding IV estimator.

Next, let us consider the joint p.d.f. of (vt ,vt−1), where vt = εt−Θεt−1 and vt−1 = εt−1−Θεt−2.
Because we have εt = vt +Θvt−1 +Θ2εt−2 and εt−1 = vt−1 +Θεt−2, this joint distribution is:

h(vt ,vt−1;Θ,Γ) =
∫

g(vt +Θvt−1 +Θ
2
ε;Γ)g(vt−1 +Θε;Γ)g(ε;Γ)dε. (4.17)

Hence, the two-step IML estimator of (Θ,Γ) is the solution of:

(Θ̂, Γ̂) = argmax
Θ,Γ

J=(T/3)

∑
j=1

logh(Y3 j−1− Φ̂Y3 j−2,Y3 j−2− Φ̂Y3 j−3;Θ,Γ). (4.18)

The two-step IML estimator has standard asymptotic properties, irrespective of the location of
the roots of det(Θ(z)). It is in particular consistent, asymptotically normal, and its asymptotic
variance-covariance matrix can be derived. All the observations of (yt) are used if Φ 6= 0, but in a
non-optimal way.

Other consistent estimators as simple to implement and using observations in a more efficient
way can be based on the same idea. We can in particular consider the estimator solution of:

(Θ̃, Γ̃) = argmax
Θ,Γ

T

∑
t=2

logh(Yt− Φ̂Yt−1,Yt−1− Φ̂Yt−2;Θ,Γ). (4.19)

This two-step Composite Maximum Likelihood (CML) estimator uses the information on all
the vt’s. It is also consistent, asymptotically normal, but the asymptotic variance-covariance matrix
is now computed by a sandwich formula involving a general central limit theorem [Varin, Reid,
and Firth (2011), Gouriéroux and Monfort (2016)].

The composite likelihood function appearing on the right-hand side of (4.19) depends on inte-
grals of the same dimension as the VARMA system. We can approximate the integral in function

23



Estimation of Models with Non-Fundamentalness

h by simulation to get a two-step simulated composite likelihood. The numerical optimization of
the approximative criterion is:

(Θ∗,Γ∗) = argmax
Θ,Γ

T

∑
t=1

log ĥ(Yt− Φ̂Yt−1,Yt−1− Φ̂Yt−2;Θ,Γ), (4.20)

where:

ĥ(vt ,vt−1;Θ,Γ) =
1
S

S

∑
s=1
{g(vt +Θvt−1 +Θ

2
ε

s(Γ),g(vt−1 +Θε
s(Γ);Γ)}, (4.21)

and the εs(Γ) are drawn independently in distribution g(ε;Γ).24

When the number S of simulations tends to infinity sufficiently fast w.r.t. the number T of
observations, this simulation-based estimator has the same asymptotic properties as the CML es-
timator itself [see Gouriéroux and Monfort (1996) for a general presentation of simulation-based
estimation methods].

Remark 3: The composite maximum likelihood estimation approaches provide subefficient con-
sistent estimators. As mentioned above, an advantage of the CML approaches is however that
they are not affected by discontinuity problems when the roots of det(Θ(L)) are on the unit circle
(contrary to the ML approach presented in Subsection 4.2.2). This may in particular make the nu-
merical optimization of the CML criteria less sensitive to the choice of the initial conditions. The
IV-CML approach presented above can therefore be used as a preliminary step, providing a con-
sistent estimator (Φ̂,Θ̂, Γ̂) of (Φ,Θ,Γ) and of the true regime of (potential) non-fundamentalness.
The IV-CML estimators (Φ̂,Θ̂, Γ̂) can then be used as starting values in the numerical optimization
of the approximated log-likelihood La

s (Φ,Θ,Γ) given in equation (4.15).

Remark 4: Why not consider a standard simulated maximum likelihood (SML) approach? The
SML estimators would be defined as:

( ˆ̂
Φ, ˆ̂

Θ, ˆ̂
Γ) = arg max

Φ,Θ,Γ
log

{
1
S

S

∑
s=1

Π
T
t=1g

(
t−1

∑
h=0

Θ
h(Yt−h−ΦYt−h−1)+Θ

t
ε

s(Γ);Γ

)}
.

However, the expression of the objective function has been derived backward, which implies
terms like Θtεs(Γ). If the true representation is non-fundamental and T is rather large, Θt will
have exploding components when t is increasing. Thus the SML estimator will be very sensitive
to drawings of simulated ε in the tail and not robust. The IML and CML approaches do not have

24As usual the same basic drawings must be kept when Γ is modified in the optimization algorithm.

24



Applications

this drawback.

Remark 5: Simulated Method of Moment have also been suggested [see Gospodinov and Ng
(2015) in the one dimensional case]. In the parametric framework they are in general less efficient
then the composite likelihood approach.

5 Applications

5.1 Monte Carlo exercises

This subsection illustrates the performances of estimation approaches by means of Monte-Carlo
experiments. We focus on the maximum likelihood (ML) and on the composite maximum likeli-
hood (CML) approaches presented in Subsections 4.2.2 and 4.2.3, respectively.

For the sake of simplicity, we focus on a univariate MA(1) processes:

yt = εt−θεt−1, (4.22)

where the εt’s are serially independent, E(εt) = 0 and V (εt) = 1.
We consider different sample sizes (T = 100, 300 and 1000) and different types of (true)

distributions of the errors εt . Four distributions are used: the Gaussian distribution, a Gaussian
mixture distribution and two Student distributions with respective degrees of freedom of 5 and 10.
In all simulations, we use θ =−2. Hence, the data generating processes are non-fundamental.

In order to get the intuition behind the approach, it is instructive to look at the joint distributions
of yt and yt−1. Figure 1 displays contour plots associated with these distributions in the context of
the four different types of distribution used for εt . While the black solid lines correspond to the
non-fundamental case, the grey lines represent the (pseudo) distribution that would prevail under
the fundamental case, i.e. with θ =−1/2 and V (εt)= θ 2 = 1/4. In the purely Gaussian case (Panel
(a)), the two distributions coincide, reflecting the fact that the two processes are observationally
equivalent. By contrast, in the other three cases –Panels (b), (c) and (d)– the two distributions
are different. The case of the mixture of Gaussian distributions is particularly illustrative. For
this distribution, and in the non-fundamental case, the shock εt is drawn from N (0,σ2

1 ) with
probability p and from N (0,σ2

2 ) with probability 1− p. In order to to have V (εt) = 1, we set
σ1 = 5 = 10×σ2, which implies p≈ 3%. This distribution depicts a situation in which very large
shocks εt may occur at each period, but with a relatively small probability (3%). Assume that, at
date t−1, εt−1 is drawn from the large-variance distribution N (0,σ2

1 ). Because yt = εt −θεt−1,
both yt−1 and yt are then likely to take particularly large absolute values. If θ = −2 (respectively
θ =−1/2) then, with a high probability, we will have |yt |> |yt−1| (respectively |yt |< |yt−1|). Such
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large drawings of εt account for the distribution tails indicated with the letters A and B in Panel
b of Figure 1. The fact that the tails associated with the fundamental and the non-fundamental
processes are not located at the same place reflects the non-equivalence of the two processes.

Figure 2 shows the distributions of the estimators of θ resulting from both the CML and the
ML approaches. For each simulated sample, we estimate the two model parameters, i.e. θ and the
variance of εt . We however focus our discussion on the estimates of θ . Each of the four rows of
plots corresponds to one of the four considered distributions for εt . On each panel, the three curves
correspond to the three considered sample sizes (T = 100, 300 and 1000). The distributions are
often bimodal; one mode being generally close to the true value of θ –indicated by a vertical bar
on each panel– and the other being close to 1/θ . In the Gaussian case (Panels a.1 and a.2), the
first mode is closer to the fundamental value 1/θ (= −1/2). In most of the other cases, the first
mode is closer to the true value of θ . In the Gaussian mixture case (Panels b.1 and b.2), and for
longer samples, the estimator distributions are unimodal; this is consistent with the fact that, in the
Gaussian mixture case, the differences between the distributions of (yt−1,yt) in the fundamental
and non-fundamental regimes are more marked than for the other distributions (as illustrated by
Figure 1).

Table 1 reports summary statistics associated with the different estimators. Importantly, the
results show that the CML approach is substantially less efficient than the ML one. Indeed, Root
Mean Squared Errors (RMSEs) are systematically lower in the ML case. These lower RMSEs
reflect both lower biases and lower standard deviations of the estimator distributions for the ML
approach.

The last three columns of Table 1 are aimed at assessing the validity of the asymptotic distribu-
tion of the θ estimator. Specifically, they indicate the fractions of times (among the N simulations)
where the true value of θ lies within the interval [θ̂ − φασasy, θ̂ + φασasy] where σasy denotes
the estimate of the asymptotic standard deviation of the estimator θ̂ and where φα is such that
P(−φα < X < φα) = α if X ∼N (0,1). The closer to α the reported fractions, the more satisfying
is the approximation of the estimator distribution based on asymptotic theory. The results indi-
cate that the inference based on the estimated asymptotic distribution is less adequate in the CML
context than in the ML one. Both the biases and the underestimation of the estimator standard de-
viation (compare column σasy with column S.D.) explains the poor performance of the asymptotic
formula in the CML case.

5.2 Univariate real-data example: per capita GDP growth rates

In this subsection, we use the Maximum Likelihood approach to estimate the parameterizations of
ARMA(1) processes assumed to be followed by per capita real GDP growth. We consider long
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historical samples taken from Bolt and van Zanden (2014).25 As indicated in the second column of
Table 2, the data, which are at the annual frequency, start as soon as 1800 for several countries. For
most samples, the non-Gaussianity of the data is confirmed by the application of the normality test
of Bai and Ng (2005), which is a generalization of the Bera and Jarque (1981) test to time series
data. The p-values of this test are reported in the third column of the table. For the growth rates of
all countries but two of them –France and Ireland–, the null hypothesis of normality is rejected at
the 10% level.

Denoting by yt the demeaned per capita GDP growth rate, the model is as follows:

yt = φyt−1 + cηt−θcηt−1,

where the distribution of ηt is a Gaussian mixture. More precisely, we assume that ηt is drawn from
N (µ1,σ

2
1 ) with a probability p and from N (µ2,σ

2
2 ) with a probability 1− p. Therefore, if we

have E(ηt) = 0 and V (ηt) = 1, then the distribution of ηt is completely defined by γ = [µ1,σ1, p]′.
The results are reported in Table 2. For 10 countries out of 17, the absolute value of the estimate

of θ is larger than one. That is, for these countries, the estimated MA process is non-fundamental.

5.3 Bivariate real-data example: GDP growth and unemployment

In this subsection, we consider the two-variable model of Blanchard and Quah (1989), referred to
as BQ hereafter. The two endogenous variables are the U.S. real GDP growth and the unemploy-
ment rate.26 BQ fit an 8-lag VAR model to these data for the period from 1948Q2 to 1987Q4 and
impose long-run restrictions to identify demand and supply shocks. Specifically, they impose that
the demand shock has no long-run impact on real GDP. That is, in their model, the contribution of
supply disturbances to the variance of output tends to unity as the horizon increases.

Using the same dataset and analysing the location of the (complex roots) of the 8-lag VAR
of BQ, Lippi and Reichlin (1994)’s results suggest that this VAR approximates a VARMA(1,1)
model. Further, Lippi and Reichlin (1994) explore the influence of inverting the roots of the lag
polynomial associated with the 8-lag VAR model on the IRFs. They illustrate that fundamental
and non-fundamental versions of the model have different implications, notably in terms of first
impacts of the shocks and of variance decompositions. However, their analysis does not allow
them to statistically pinpoint the most suitable model among the different versions they obtain
(non-fundamental ones and the fundamental one). Nevertheless, as explained in Section 3.1, if the

25The data are available at http://www.ggdc.net/maddison/maddison-project/home.htm.
26Our data are extracted from the FRED economic database of the Federal Reserve Bank of St Louis. GDP growth

rates are computed as the first differences of the natural logarithms of real GDP. Following Blanchard and Quah (1989),
we remove a linear trend from the unemployment rate series.
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underlying structural shocks are non-Gaussian and independent, then the data-generating VARMA
process, be it fundamental or not, is identifiable.

In our empirical analysis, we consider two sample periods: 1948Q2-1982Q3 and 1982Q4-
2016Q4. These two sample periods are of equal sizes but correspond to two substantially different
periods.27 For each of the two samples, we estimate a VARMA(1,1) model where the two endoge-
nous variables are the log real GDP growth and the unemployment rate, as in Blanchard and Quah
(1989). The estimation is carried out by maximizing the approximated likelihood function (see
Subsection 4.2.2). The (true) distributions of the independent shocks η j,t , for j ∈ {1,2}, are as-
sumed to be Gaussian mixtures. Specifically, we assume that η j,t is drawn from N (µ j,1,σ

2
j,1) with

a probability p = 0.5 and from N (µ j,2,σ
2
j,2) with a probability 1− p = 0.5. Therefore, if we have

E(η j,t) = 0 and V (η j,t) = 1, then the distribution of the two-dimensional vector ηt is completely
defined by γ = [µ1,1,µ2,1,σ1,1,σ2,1]

′. All in all, 16 parameters have to be estimated.28,29

Parameter estimates are reported in Panel (a) of Table 3. Panel (b) shows the absolute values
of the eigenvalues of Θ, that are the inverses of the roots of det(I−ΘL). For both samples, the
two roots of det(I−ΘL) lie on each side of the unit circle. Hence, the estimated processes are
non-fundamental.

Figure 3 shows the estimated parametric distributions of the structural shocks (Gaussian mix-
tures, represented by dotted lines). Though each of them depends on two parameters only, these
estimated distributions are fairly close to kernel density estimates associated with recovered η j,t’s
(black solid lines).

Figure 4 displays the impulse response functions resulting from our approach and compares
them with those obtained with long-run restrictions à la Blanchard and Quah (1989).30 Because
the ML approach does not rely on restrictions based on economic theory, the two estimated struc-
tural shocks have no a priori economic interpretation. However, for the sake of comparing the two
approaches, we will bring the BQ supply shock closer to the ML-estimated shock that accounts
for the largest part of the GDP long-run variance. We will call this shock the “long-run shock”.
Figure 4 shows substantial differences between the two types of approaches (BQ and ML). More
precisely, while the patterns of the different IRFs resulting from the two approaches show simi-
larities, the scales of the responses are different. Moreover, in the ML approach, both structural
shocks –Shock 1 (first row of charts) and Shock 2 (second row of charts)– have a long-run impact

27For instance, the standard deviation of quarterly GDP growth rates is far lower in the more recent period than for
the older (0.63% against 1.12%).

28Setting the mixing parameter p to 0.5 facilitates the convergence of the numerical algorithm while allowing for a
large variety of distribution shapes, as illustrated by Figure 3.

29Four parameters for Φ(L), four for Θ(L), four for C and four for γ . Because the data are demeaned, no intercept
is included in the VARMA specification.

30We consider here the IRFs that correspond to deterministic shocks on the components of the vector of errors (see
Subsection 3.2).
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on GDP. This is also illustrated by variance decompositions whose results are reported in Table 4.
This table gives the share of variance accounted for by Shock 1, that is the demand shock in the
BQ approach: while this share mechanically goes to 0 with the BQ approach and for GDP, such
a restriction is not imposed in the ML case. For instance, the share of variance accounted for by
Shock 1 is of 12% at the 100-year horizon for the older sample and for the ML approach. The fact
that none of the two structural shocks identified within a bivariate VAR has a zero impact on GDP
in the long-run was also obtained by, e.g., Cochrane (1994) or Gali (1999). For both samples, the
long-run shock –i.e. Shock 2– explains a larger share of unemployment fluctuations with the BQ
than with the ML approach.

6 Concluding remarks

We have shown in this paper that the static and dynamic identification difficulties encountered in
the analysis of SVARMA models are due to the poor performance of the estimation method used in
the Box-Jenkins methodology, namely the Gaussian pseudo maximum likelihood approach. This
approach suffers from the lack of identification existing in the Gaussian SVARMA. Whenever the
shocks are not Gaussian, the SVARMA becomes identified up to a permutation and sign change of
the structural shocks. This paper further proposes simple estimation methods able to consistently
estimate non-fundamental representation in the moving average dynamics.

A dynamic model constructed to derive impulse response functions requires much more struc-
tural assumptions on the error terms (i.e. independence) than a pure forecast model for which
uncorrelated errors may be sufficient. In this respect the conventional econometric toolboxes avail-
able for macroeconomists have been conceived for a forecast purpose and are not appropriate for
the analysis of policy shocks.

Because it focuses on the second-order properties the SVARMA literature often introduces
potentially misleading identification assumptions that entail misspecification and naive interpre-
tations of VARMA residuals. To paraphrase Sims (1980): “Nonlinear analysis is getting easier,

both because of improved techniques and because of better computational hardware. This weakens

the excuse that second-order analysis has to be followed just since it is simple”. Nevertheless, as
shown in the parametric and semi-parametric analysis developed in Section 4 and in the applica-
tions presented in Section 5, SVARMA can still be useful for economic policy, provided that the
independence assumption is valid and the appropriate estimation methods are used.

The methods developed in this paper can be extended in several directions. First the asymptotic
Gaussian distributions of the various estimators proposed can be derived and testing procedures, in
particular tests of fundamentalness, can be obtained. Second the properties of estimation methods
can be analyzed in a neighbourhood of the Gaussian assumption [see e.g. Gouriéroux and Jasiak
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(2016)], or in a neighbourhood of unit roots [see e.g. Chen, Davis, and Song (2011) for mixed
causal/noncausal MA process]. Third, the identification and estimation results might be extended
to the case of more errors than observables. Indeed identification results exist when the errors are
not Gaussian [see e.g. Th 3.1. in Eriksson and Koivunen (2004) in the static case, Gouriéroux
and Zakoian (2015) for stable multivariate processes, or Gagliardini and Gouriéroux (2013) for a
non-Gaussian factor model]. This possibility to identify the dynamics when m > n and the errors
are not Gaussian would be important in the discussion of the effect of omitted variables [see e.g.
Giannone and Reichlin (2006), Lütkepohl (2014)].
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A Identifiability, Reversibility and Estimation in the Case of a
MA(1) Process

The aim of this appendix is to illustrate some of the general results of the paper by considering the
example of the one-dimensional MA(1) process: yt = εt − θεt−1, where the ε ′t s are independent.
We first consider the asymptotic behaviour of the approximated maximum likelihood approach.
Then we illustrate the reason of identifiability in a non-Gaussian case, and consider a moment
estimation method.

A.1 Limit optimization problem in the approximate ML method

We assume that the p.d.f. of the ε ′t s belongs to the family g(ε;γ). The approximate log-likelihood
function is:

LT (θ ,γ) = 1l|θ |<1

T

∑
t=1

log

{
g

(
t−1

∑
h=0

θ
hyt−h;γ

)}

+ 1l|θ |>1

T

∑
t=1

log

{
1
|θ |

g

(
−

T−t−1

∑
h=0

1
θ h+1 yt+h+1;γ

)}
.

When T goes to infinity
1
T

LT converges to the limit function:

L∞(θ ,γ) = 1l|θ |<1E0 logg

(
∞

∑
h=0

θ
hyt−h;γ

)

+ 1l|θ |>1E0[log
1
|θ |

g

(
−

∞

∑
h=0

1
θ h+1 yt+h+1;γ

)
,

where E0 is the expectation with respect to the true distribution of the process. We also have:

L∞(θ ,γ) = 1l|θ |<1E0 logg
[
yt−Eθ (yt |yt−1

−∞ ),γ
]

+ 1l|θ |>1E0

{
−1

2
logθ

2 + logg
[
− 1

θ
(yt+1−Eθ (yt+1|y∞

t+2);γ

]}
with Eθ (yt |yt−1

−∞ ) = −
∞

∑
h=1

θ
hyt−h and Eθ (yt+1|y∞

t+2) = −
∞

∑
h=1

1
θ h+1 yt+h+1 (which does not depend

on σ ).
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In the Gaussian case, where the distribution of εt is N(0,σ2), we get:

L∞(θ ,σ
2) = 1l|θ |<1E0

[
−1

2
logσ

2− 1
2σ2

(
yt−Eθ (yt |yt−1

−∞ )
)2
]

+ 1l|θ |>1E0

{
−1

2
log(θ 2

σ
2)− 1

2σ2

[
1

θ 2

(
yt+1−Eθ (yt+1|y∞

t+2)
)]2
}
.

The limit optimization problem is:

min
(θ ,σ2)

[
1l|θ |<1La

1(θ ,σ
2)+1l|θ |>1La

2(θ ,σ
2)
]

with La
1(θ ,σ

2) = logσ2 +
1

σ2 E0
[
(yt−Eθ (yt |yt−1

−∞ ))
2] ,

La
2(θ ,σ

2) = log(θ 2σ2)+
1

θ 2σ2 E0
[
(yt+1−Eθ (yt+1|y∞

t+2))
2] .

Due to the reversibility of the Gaussian process, the true distribution of yt+1−Eθ (yt+1|y∞
t+2),

if |θ |> 1, is the same as the true distribution of yt+1−E1/θ (yt+1|yt
−∞).

Let us first assume that |θ0| < 1 and let us consider the solutions of the limit optimization
problem. In order to minimize La

1(θ ,σ
2) on |θ | < 1, we can consider the case where σ2 is fixed

and we get:
min

θ
E0
[
(yt−Eθ (yt |yt−1

−∞ ))
2] .

The minimum is reached for θ = θ0, which does not depend on σ2, and the minimum value of
La

1(θ ,σ
2) is then easily found to be logσ2

0 +1. In order to minimize La
2(θ ,σ

2) on |θ |> 1, we can
put θ 2σ2 = σ̃2. Considering the case where σ̃2 is fixed, we obtain the problem:

min
θ

E0
[
(yt+1−E1/θ (yt+1|yt

−∞))
2] ,

whose minimum is reached for θ = 1/θ0, which does not depend on σ̃2. Hence the minimum of
La

2(θ ,σ
2) is again logσ2

0 +1.
When |θ0| is larger than 1, we can see that La

1(θ ,σ
2) is optimal for 1/θ0 and La

2(θ ,σ
2) for θ0

and we still have two inverse values of θ giving the same optimum, namely log(θ 2
0 σ2

0 )+ 1. The
model is not asymptotically identifiable.

However in finite sample the optimal values of La
1 and La

2 are different, even in the Gaussian
case. Thus the approximated ML approach will provide a unique solution, not necessarily well-
located.
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A.2 Identification in the non-Gaussian case

Let us consider the joint distribution of (yt ,yt−1). The characteristic function of this distribution
is:

ψ(u,υ) = E exp[i(uyt +υyt−1)]

= E exp(iuεt)E exp[i(υ−uθ)εt−1]E[exp(−iυθεt−2)].

Let us for instance assume that εt follows a stable distribution, we get:

ψ(u,υ) = exp[−c(|u|α + |υ−uθ |α + |υθ |α)].

Is this function of (c,θ) injective? If α = 2, i.e. in the Gaussian case, we verify that

c[u2 +(υ−uθ)2 +υ
2
θ

2] = c[(u2 +υ
2)(1+θ

2)−2uυθ ]

takes the same value for (c,θ) and (cθ 2,1/θ) and we do not have identifiability. On the contrary
for α 6= 2, we see, for instance, that ψ(u,υ) is not differentiable on the lines u = 0, υ = 0 and
υ−uθ = 0. The latter condition implies the identifiability of θ .

A.3 Moment method

If we do not want to make a parametric assumption about the distribution of εt , we can use a
moment method based on higher-order cross moments (see Section 4.1).

Let us consider again the one-dimensional MA(1) process. We have:

E(yty2
t−1) =−θEε

3
t ,E(y

2
t yt−1) = θ

2Eε
3
t ,

and, therefore:

θ =−E(y2
t yt−1)

E(yty2
t−1)

,

whenever εt has a skewed distribution, i.e. E(ε3
t ) 6= 0. Thus the location of |θ | w.r.t. 1 is identified

from the lack of time reversibility of the process.

B Proof of the Proposition in Section 3.1

Let us first recall Theorem 1 in Chan, Ho, and Tong (2006).
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Theorem. Let Yt and Y ∗t be two non-Gaussian processes defined by:

Yt =
∞

∑
k=−∞

Akεt−k,

Y ∗t =
∞

∑
k=−∞

A∗kε
∗
t−k,

where the processes εt and ε∗t are strong white noises with independent components.

Then, Yt and Y ∗t are observationally equivalent if and only if

ε
∗
j,t−m( j) = σ jεπ( j),t (equality in distribution) (a.1)

A∗k, j =
1
σ j

Ak−m( j),π( j), (a.2)

where π is a permutation and Ak, j (respectively A∗k, j) is the jth column of Ak (respectively A∗k)

provided one of the two following conditions holds:

C1 The components of εt (resp. ε∗t ) are identically distributed.

C2 The components of εt (resp. ε∗t ) have non-zero rth cumulant, with r ≥ 3 and a finite even

moment of order s greater than r.

If the moving averages are one-sided (Ak = A∗k = 0, ∀k < 0, A0 6= 0,A∗0 6= 0) and εt (resp. ε∗t ) is
replaced by ηt (resp. η∗t ), where the components of ηt (resp. η∗t ) have a unit variance, this implies
that m( j) = 0 and σ j =±1 for all j.

In our case, we have:

Yt = Ψ(L)Cηt ,

Y ∗t = Ψ
∗(L)C∗η∗t ,

with

Ψ(L) = Φ
−1(L)Θ(L) = I +Ψ1L+Ψ2L2 + . . . ,

Ψ
∗(L) = Φ

−1(L)Θ∗(L) = I +Ψ
∗
1L+Ψ

∗
2L2 + . . .

Therefore, we have:

Ak = ΨkC with Ψ0 = I,

A∗k = Ψ
∗
kC∗ with Ψ

∗
0 = I.
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The previous theorem implies that the Ak are identified up to a permutation and a sign change of
the columns. That is, there exist a permutation matrix P and a diagonal matrix D, whose diagonal
elements are either −1 or 1, that are such that:

ΨkC = Ψ
∗
kC∗PD, ∀ k.

For k = 0, this gives C =C∗PD, which further implies that Ψk = Ψ∗k for all k. The Ψk are therefore
identified and C is identified up to a permutation and a sign change of its columns. Since Φ(L) and
Ψ(L) are identified, Θ(L) = Φ(L)Ψ(L) is also identified.

C Recovering Structural Shocks

This appendix deals with the problem of recovering the errors εt , t = 1, . . . ,T , when one observes
Yt , t = 1, . . . ,T , when the (true) dynamics of Yt is defined through equation (2.1), that is:

Φ(L)Yt = Θ(L)εt , (a.3)

with the roots of det(Θ(L)) inside or outside the unit circle.
To begin with, let us consider the case where Θ(L) = I−ΘL and Θ is of dimension 2×2 (i.e.

n = 2). Assume further that Θ is diagonalizable, we have:

Θ = AΛA−1, with Λ =

[
λ1 0
0 λ2

]
. (a.4)

Introducing Vt = A−1Φ(L)Yt , we have:

Vt = (I−ΛL)ε∗t ,

where ε∗t = A−1εt . Let us consider the case where |λ1|< 1 and |λ2|> 1. We have:

V1,t = (1−λ1L)ε∗1,t

V2,t = (1−λ2L)ε∗2,t =−λ2L
(

1− 1
λ2

L−1
)

ε
∗
2,t ,

which gives (using |λ1|< 1 and |λ2|> 1):

εt = Aε
∗
t = A

 (1−λ1L)−1 0

0 − 1
λ2

L−1
(

1− 1
λ2

L−1
)−1

Vt .
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Suppose now that Θ is (n×n), not necessarily diagonalizable, and with eigenvalues inside or
outside the unit circle. In this case, one can exploit the Schur decomposition of Θ, that is:

Θ = AUA′,

where A is orthogonal, and U is upper block-triangular, where the diagonal blocks (Uk, k ∈
{1, . . . ,K}) are either 1× 1 or 2× 2 blocks, the 2× 2 blocks corresponding to complex conju-
gate complex eigenvalues of Θ (see equation (4.13)).

Left-multiplying Φ(L)Yt = εt−Θεt−1 by A−1 = A′, we get:

Wt = ε
∗
t −Uε

∗
t−1, (a.5)

where Wt = A′Φ(L)Yt and ε∗t = A′εt . In particular, we have:

WK,t = ε
∗
K,t−UKε

∗
K,t−1,

where WK,t is of dimension 1 or 2, depending on the dimension of UK . The eigenvalues of UK have
the same modulus. If this modulus is strictly inside the unit circle, we have:

ε
∗
K,t =

∞

∑
h=0

Uh
KWK,t−h, (a.6)

otherwise:
ε
∗
K,t =−

∞

∑
h=1

(U−1
K )hWK,t+h. (a.7)

Let us now introduce W ∗K−1,t , defined by:

W ∗K−1,t =WK−1,t +UK−1,Kε
∗
K,t−1.

From equation (a.5), we have:

W ∗K−1,t = ε
∗
K−1,t−UK−1ε

∗
K−1,t−1.

Depending on the modulus of the eigenvalues of UK−1, one can then obtain ε∗K−1,t as in equation
(a.11) or equation (a.10), replacing W by W ∗. Iterating on this provides us with ε∗t = [ε∗1,t

′,ε∗2,t
′, . . . ,ε∗t

′]′.
In practice, to get estimates of the ε∗t ’s –and further of the εt’s (using εt = Aε∗t )– the infinite

sums in equations of the type of (a.11) or of (a.10) are truncated. More precisely, the estimates of
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Approximation of the log-likelihood

ε̂∗k,t (for K ∈ {K, . . . ,1}) are obtained by using either:

ε̂
∗
k,t =

t−1

∑
h=0

Uh
k Ŵ ∗k,t−h, (a.8)

or

ε̂
∗
k,t =−

T−t

∑
h=1

(U−1
k )hŴ ∗k,t+h, (a.9)

where, for all t, Ŵ ∗K,t =WK,t and where the Ŵ ∗k,t’s are recursively defined by (for k∈ {K−1, . . . ,1}):

Ŵ ∗k,t =Wk,t +
K−1

∑
j=k

Uk, j+1ε̂
∗
j+1,t−1.

If Θ(L) is of order q> 1, on can go back to the previous case. For this, define ε̃t = [ε ′t , . . . ,ε
′
t−q+1]

′

and Ṽt = [V ′t , . . . ,V
′

t−q+1]
′, where Vt = Φ(L)Yt . Using obvious notations, we then have: Ṽt =

(I− Θ̃L)ε̃t . Note that the eigenvalues of Θ̃ are the roots of detΘ(L) [see Davis and Song (2012)
and Gouriéroux and Jasiak (2017) where the problem is completely treated in the dual case, where
the roots of detΦ(L) can be inside or outside the unit circle].

D Approximation of the log-likelihood

In this appendix, for ease of exposition, we focus on the computation of an approximate log-
likelihood in the VMA(1) case:

Yt = εt−Θεt−1,

where the errors εt are serially independent, with a p.d.f. of the form g(ε,Γ). This case is easily
extended to the VARMA(p,1) case by replacing Yt by Φ(L)Yt (sacrificing the first p observations
of Yt). It can further be extended to the VARMA(p,q) case (q > 1) by resorting to the approach
sketched at the end of Appendix C.

Let’s start from the equation (4.14):

Wt = ε
∗
t −Uε

∗
t−1,

where Wt = A′Yt and ε∗t = A′εt , and where A and U result from the real Schur decomposition of Θ:
Θ = A′UA (see equation (4.13)).

If the roots of U are not on the unit circle, we can assume, without loss of generality, that
U1, . . .Uq have eigenvalues with modulus strictly lower than 1 whereas Uq+1, . . .UK have eigenval-
ues with modulus strictly larger than 1.
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Approximation of the log-likelihood

Let us denote by ε∗t
(1) and ε∗t

(2) the two vectors that are such that ε∗t = [ε∗t
(1)′,ε∗t

(2)′]′, the
dimension of ε∗t

(1) being equal to m= n1+ · · ·+nq, where n j is such that U j is of dimension n j×n j

(n j ∈ {1,2}). In the same way, we define Wt
(1) and Wt

(2) that are such that Wt = [Wt
(1)′,Wt

(2)′]′,
Wt

(1) being of dimension m.
With a clear block decomposition of U , equation (4.14) writes:[

ε∗t
(1)

ε∗t
(2)

]
=

[
Wt

(1)

Wt
(2)

]
+

[
U (1) U (12)

0 U (2)

][
ε∗t−1

(1)

ε∗t−1
(2)

]
.

The previous equation leads to:

ε
∗
t
(2) =

{
−(U (2))−1

}
Wt+1

(2)+ · · ·+
{
−(U (2))−1

}T−t−1
WT

(2)+{
−(U (2))−1

}T−t
ε
∗
T
(2), (a.10)

and to

ε
∗
t
(1) = Wt

(1)+U (1)Wt−1
(1)+ · · ·+U (1)t−1

W1
(1)+U (1)t

ε
∗
0
(1)+

U (12)
ε
∗
t−1

(2)+U (1)U (12)
ε
∗
t−2

(2)+ · · ·+U (1)t−1
U (12)

ε
∗
0
(2). (a.11)

Replacing the ε∗t
(2)’s appearing in equation (a.11) by their expressions given in (a.10), one obtains:



ε∗1
(1)

...
ε∗T

(1)

ε∗0
(2)

...
ε∗T−1

(2)


︸ ︷︷ ︸

=ε∗

=

[
J1 J12

0 J2

]
︸ ︷︷ ︸

=J



W1
(1)

...
WT

(1)

W1
(2)

...
WT

(2)


︸ ︷︷ ︸

=W

+



U (1) M1
...

...

U (1)T
MT

0
{
−(U (2))−1

}T

...
...

0
{
−(U (2))−1

}


︸ ︷︷ ︸

=M

[
ε∗0

(1)

ε∗T
(2)

]
, (a.12)

where J1 is upper block triangular with identity matrices on its diagonal, where J2 is an upper block
triangular matrix with

{
−(U (2))−1

}
matrices on its diagonal and where:

Mt =U (12)
{
−(U (2))−1

}T−(t−1)
+ · · ·+U (1)t−1

U (12)
{
−(U (2))−1

}T
.

Because the eigenvalues of U (1) and of (U (2))−1 are strictly inside the unit circle, the elements
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of M corresponding to 0� t � T are extremely small. As a result, for 0� t � T , the ε∗t ’s are
well approximated by the corresponding components of JW .

The likelihood associated with ε∗ = [e∗(1)1
′
, . . . ,e∗(1)T

′
,e∗(2)0

′
, . . . ,e∗(2)T−1

′
] is:

g∗(ε∗,Γ) = g
ε∗(1)

(
e∗(1)T ,Γ

)
g

ε∗(2)

(
e∗(2)0 ,Γ

)T−1

∏
t=1

g(Ae∗t ,Γ) ,

with e∗t = [e∗(1)t
′
,e∗(2)t

′
]′.

Let’s consider the vector Y = [Y ′1, . . . ,Y
′
T ]
′. If A′Yt =Wt for t ∈{1, . . . ,T} and if W̃ = [W ′1, . . . ,W

′
T ]
′,

we have:
W̃ = (I⊗A′)Y.

In addition, let’s denote by P the permutation that is such that W = PW̃ , where W is defined in
equation (a.12). Then an approximation of ε∗ is given by E (Y ) := JP(I⊗A′)Y .

Because A and P are orthogonal matrices, we have:

|det(JP[I⊗A′])|= |det(J)|= 1
|det(U (2))|T

.

Therefore, the likelihood associated with Y can be approximated by:

|det(J)|g∗(E (Y ),Γ) =
1

|det(U (2))|T
g∗(E (Y ),Γ),

or by:
1

|det(U (2))|T
g̃(AE (Y ),Γ),

where

g̃(ε∗,Γ) =
T−1

∏
t=1

g(Ae∗t ,Γ) ,

with ε∗ = [e∗(1)1
′
, . . . ,e∗(1)T

′
,e∗(2)0

′
, . . . ,e∗(2)T−1

′
] and e∗t = [e∗(1)t

′
,e∗(2)t

′
]′.
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Approximation of the log-likelihood

Figure 1: Joint distributions of yt and yt−1 in the fundamental and non-fundamental cases, for
different distributions of the errors εt
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Panel (b) Mixture of Gaussian
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Panel (d) Student (df: 10)
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Notes: Each of these four panels displays contour plots associated with the joint distributions of yt and yt−1, where
yt follows an MA(1) process: yt = εt −θεt−1, where the εt are i.i.d.. Whereas the black lines correspond to the case
θ =−2 and V (εt) = 1 (non-fundamental process), the grey lines correspond to θ =−1/2 and V (εt) = θ 2 (fundamental
process with same spectral density). The titles of the panels indicate the distribution types of the εt ’s. For Panel b
(mixture of Gaussian distributions), εt is drawn from the Gaussian distribution N (0,σ2

1 ) with probability p and from
N (0,σ2

2 ) with probability 1− p, with σ1 = 5 = 10×σ2, which implies p≈ 3% (in order to have V (εt) = 1). See the
text (Subsection 5.1) for explanations regarding the letters A and B appearing on Panel (b).
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Approximation of the log-likelihood

Figure 2: Distribution of the Composite Maximum Likelihood Estimator of θ
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Notes: These panels display the distributions of the estimates of θ obtained with the Composite Maximum Likelihood
(CML) approach. The model is yt = εt −θεt−1, with θ = −2 and V (εt) = 1. On each panel, the three distributions
correspond to three sample sizes: T = 100, 300 and 1000. For each distribution and each sample size, we simulate a
large number N = 500 of yt samples of size T . For each simulated sample, we employ the CML approach to estimate
(θ ,V (εt)). The displayed distributions are obtained by applying Gaussian kernel on the N estimates of θ . The vertical
dotted bar indicates the true value of θ .

41



Approximation of the log-likelihood

Table 1: Results of the Monte-Carlo experiment

εt’s distribution: Bias RMSE MAE S.D. σasy α =75% α =90% α =95%
Panel (a) Composite Maximum Likelihood approach

Sample size: T=100
Gaussian 0.32 1.47 1.18 1.44 0.54 0.41 0.46 0.47
Mixture of Gaussian 0.06 0.85 0.57 0.85 0.30 0.42 0.55 0.63
Student (df: 5) 0.07 1.03 0.81 1.03 0.53 0.47 0.56 0.59
Student (df: 10) 0.19 1.27 0.99 1.26 0.56 0.45 0.49 0.53

Sample size: T=300
Gaussian 0.58 0.99 0.77 0.80 0.29 0.47 0.55 0.57
Mixture of Gaussian 0.22 0.39 0.27 0.32 0.14 0.38 0.51 0.56
Student (df: 5) 0.33 0.74 0.53 0.66 0.30 0.47 0.60 0.66
Student (df: 10) 0.47 0.91 0.68 0.78 0.29 0.46 0.56 0.60

Sample size: T=1000
Gaussian 0.80 1.11 0.87 0.77 0.12 0.37 0.43 0.45
Mixture of Gaussian 0.24 0.29 0.24 0.16 0.10 0.18 0.30 0.40
Student (df: 5) 0.24 0.45 0.30 0.38 0.20 0.51 0.62 0.70
Student (df: 10) 0.53 0.87 0.61 0.69 0.16 0.40 0.54 0.60

Panel (b) Maximum Likelihood approach
Sample size: T=100

Gaussian 0.67 1.08 0.88 0.84 0.25 0.38 0.45 0.48
Mixture of Gaussian 0.06 0.46 0.27 0.46 0.21 0.71 0.82 0.87
Student (df: 5) 0.14 0.66 0.45 0.64 0.32 0.66 0.76 0.79
Student (df: 10) 0.38 0.88 0.66 0.79 0.30 0.53 0.64 0.66

Sample size: T=300
Gaussian 0.73 1.05 0.81 0.75 0.12 0.37 0.45 0.48
Mixture of Gaussian 0.00 0.11 0.08 0.11 0.11 0.76 0.89 0.95
Student (df: 5) 0.02 0.26 0.16 0.26 0.17 0.72 0.86 0.89
Student (df: 10) 0.23 0.60 0.35 0.56 0.17 0.61 0.74 0.78

Sample size: T=1000
Gaussian 0.80 1.10 0.85 0.75 0.06 0.34 0.39 0.43
Mixture of Gaussian 0.00 0.05 0.04 0.05 0.05 0.76 0.91 0.96
Student (df: 5) 0.00 0.09 0.07 0.09 0.09 0.75 0.89 0.96
Student (df: 10) 0.01 0.21 0.10 0.21 0.10 0.74 0.89 0.93

Notes: The model is yt = εt − θεt−1, with θ = −2 and V (εt) = 1. This table reports the results of a Monte-Carlo
experiment based on the simulation of N = 500 samples for each of the four distributions considered for the errors εt
(see first column) and each of the three considered sample sizes (T = 100, 300 or 1000). For each simulated sample,
we employ the Composite Maximum Likelihood (CML) approach (Panel (a)) and the Maximum Likelihood approach
(Panel (b)) to estimate (θ ,V (εt)). Columns 2 to 5 give, respectively, the bias of the estimator of θ , the root mean-
squared error associated with this estimator, its mean absolute error and its standard deviation. The next column (σasy)
gives the mean (across the N simulations) of the asymptotic standard deviations based on the estimated covariance
matrix involving both the Hessian and the outer product of the first derivatives of the composite likelihood function.
(In the sandwich formula, the computation of the matrix based on the outer product of the first derivatives makes use of
the Newey-West approach to deal with the serial correlation of the different terms.) The last three columns indicate the
fractions of times (among the N simulations) where the true value of θ lies within the interval [θ̂−φα σasy, θ̂ +φα σasy]

where σasy denotes the estimate of the asymptotic standard deviation of the estimator θ̂ and where φα is such that
P(−φα < X < φα) = α if X ∼N (0,1) (i.e. φα = 1.15, 1.64 and 1.96 for the last three columns, respectively).
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Table 3: Estimation of bivariate VARMA(1,1) models

Sample: 1948-1982 Sample: 1982-2016

Panel (a) Parameter estimates
param. std dev. param. std dev.

Φ1,1 0.373 (0.086) 0.769 (0.048)
Φ2,1 −0.596 (0.063) −0.629 (0.082)
Φ1,2 0.230 (0.056) 0.064 (0.014)
Φ2,2 1.059 (0.025) 0.987 (0.016)
Θ1,1 0.010 (0.110) 0.843 (0.172)
Θ2,1 −0.133 (0.142) −0.888 (0.215)
Θ1,2 −1.567 (0.872) −3.517 (1.749)
Θ2,2 3.824 (1.232) 4.451 (2.024)
C1,1 −0.724 (0.075) −0.142 (0.068)
C2,1 0.099 (0.020) −0.046 (0.015)
C1,2 0.753 (0.117) −0.479 (0.041)
C2,2 −0.004 (0.026) −0.030 (0.011)
µ1,1 −0.048 (0.150) −0.555 (0.086)
µ2,1 0.327 (0.093) −0.069 (0.234)
σ1,1 0.647 (0.127) 0.429 (0.067)
σ2,1 0.420 (0.068) 0.754 (0.151)

Panel (b) Inverses of the roots of detΘ(L)
first second first second

3.878 0.043 5.173 0.121

Notes: This table reports the results of the estimation of VARMA(1,1) models accounting for the dynamics of two
endogenous variables: the real GDP growth (i.e. ∆gd p, where gd p = log(GDP)) and the unemployment rate. The
model is:

(I−ΦL)Yt = (I−ΘL)Cηt ,

where, for j ∈ {1,2}, η j,t is drawn from N (µ j,1σ2
j,1) with probability p = 0.5 and from N (µ j,2σ2

j,2) with probability
1− p = 0.5. We impose E(η j,t) = 0 and V (η j,t) = 1, which implies that µ j,2 and σ j,2 can be deduced from µ j,1 and
σ j,1. The (demeaned) data are quarterly and the model is estimated on two samples: 1948Q2-1982Q3 and 1982Q4-
2016Q4. The Maximum Likelihood (ML) approach is employed to estimate the model. Panel (a) reports parameter
estimates along with asymptotic standard deviations based on outer product of the first derivative of the likelihood
function. Panel (b) indicates the inverses of the roots of det(I−ΘL).
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Table 4: Variance decompositions

Sample: 1948-1982 Sample: 1982-2016

Share accounted for by Shock 1
gd p Unempl. gd p Unempl.

horizon (quarters) Long-Run Restrictions (Blanchard and Quah)
4 0.39 0.85 0.06 0.73
20 0.13 0.47 0.01 0.45
40 0.09 0.46 0.00 0.46
400 0.01 0.46 0.00 0.46
horizon (quarters) Maximum Likelihood
4 0.58 0.93 0.27 0.95
20 0.37 0.94 0.21 0.89
40 0.28 0.94 0.13 0.89
400 0.12 0.94 0.01 0.89

Notes: This table presents the results of variance decompositions associated with the two VARMA(1,1) models whose
estimation results are documented in Table 3. It reports the shares of the variances of the endogenous variables
accounted for by Shock 1 for different horizons; ML results are compared to those resulting from the implementation
of the long-run restriction approach proposed by Blanchard and Quah (1989), where Shock 1 is the demand shock. In
the ML approach, Shock 1 is defined as the shock having the lower influence on the long-run GDP variance. While
the first endogenous variable of the VARMA model is ∆gd p, the variance decomposition is conducted on gd p.
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Figure 3: Estimated shock distributions (Gaussian mixtures)
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Notes: This figure displays the estimated distributions of the structural shocks η j,t , for j ∈ {1,2} and for the two
considered sample periods. The dotted lines correspond to the distributions resulting from the Maximum Likelihood
approach. These distributions are Gaussian mixtures: Specifically, η j,t is drawn from N (µ j,1σ2

j,1) with probability
p = 0.5 and from N (µ j,2σ2

j,2) with probability 1− p = 0.5; µ j,2 and σ j,2 are computed so as to have E(η j,t) = 0
and V (η j,t) = 1. Parameters are shown in Table 3. The black solid lines correspond to kernel density estimates of the
distribution of the (estimated) structural shocks η j,t . The latter are computed by applying the approach presented in
Appendix C.
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Figure 4: Impulse response functions
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Notes: This figure compares impulse response functions obtained with the Maximum Likelihood (ML) approach
and compares them with those resulting from long-run restrictions à la Blanchard and Quah (1989), referred to as
BQ. While the ML approach is based on a VARMA(1,1) model, the BQ approach involves a 8-lag VAR model and
structural shocks are identified by means of long-run restrictions. In the latter approach, whereas Shock 1 (first row
of plots) is interpreted as a demand shock, Shock 2 (second row of plots) is interpreted as a supply shock. In BQ, by
construction, the long-run impact of the demand shock (Shock 1) on GDP is null. In the ML approach, Shock 1 is
defined as the shock having the lower influence on the long-run GDP variance. The three columns of plots correspond
to three different estimation samples.
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