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I Introduction

The central insight of consumption based macro-finance models is that equilibrium prices

of financial assets should be determined by their equilibrium risk to households’ marginal

utilities and, in particular, current and future marginal utilities of consumption: agents

are expected to demand a premium for holding assets that are more likely to yield low

returns when the marginal utility of consumption is high i.e. when consumption (current and

expected) is low. Nevertheless, in the data the contemporaneous covariance of asset returns

and consumption growth is small and not disperse cross-sectionally, making it challenging

to rationalised both average risk premia (e.g., Mehra and Prescott (1985), Weil (1989)) and

their wide cross-sectional dispersion (e.g., Hansen and Singleton (1983), Mankiw and Shapiro

(1986), Breeden, Gibbons, and Litzenberger (1989), Campbell (1996)).1

In this paper, we document that consumption growth reacts slowly, but significantly, to

bond and stock returns common innovations. These slow consumption adjustment shocks

account for about a quarter of the time series variation of aggregate consumption growth,

and its innovations explain most of the time series variation of stock returns (on average

about 79%), and a significant, but small, share of the time series variation of bond returns,

and generate substantial predictability for future consumption growth.

Since consumption responds with a lag to changes in wealth, the contemporaneous co-

variance of consumption and wealth understates and mismeasures the true risk of an as-

set, rendering empirically measured risk premia hard to rationalise. On the contrary, slow

consumption adjustment (SCA) risk, measured by the cumulated response of consumption

growth to asset return innovations, can jointly explain the average term structure of interest

rates and the cross-section of a broad set of stock returns (including industry portfolios and

Fama-French size and book to market portfolio).

To assess the role of SCA risk in a robust manner, and using post-war data on a large cross

section of both stock and US treasury returns, we perform our empirical analysis following

two very different approaches and identification strategies.

First, we consider a flexible parametric setting in which consumption growth is mod-

elled as being the sum of two independent processes: a (potentially, since parameters are

estimated) long memory moving average component that (potentially) co-moves with as-

set returns and a transitory component orthogonal to financial assets. Innovations to asset

return are in turn modelled as depending (potentially) on the long memory component of

consumption plus an orthogonal component.

1Recently, Julliard and Ghosh (2012) show that pricing kernels based on consumption growth alone cannot
explain either the equity premium puzzle, or the cross-section of asset returns, even after taking into account
the possibility of rare disasters.
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Empirically, we find that: a) consumption reacts very slowly (i.e. over a period of two

to four years), but significantly, to asset returns innovations, and these innovations account

for about 27% of the time series variation of consumption growth; b) returns on portfolios

of stocks load significantly on the SCA component, with a pattern that closely mimics the

value and size pricing anomalies, and this component tends to explain between 36% and 95%

of their time series variation; c) returns on US treasury bonds load significantly on the SCA

component, with loadings increasing with the time to maturity, but this component explains

no more than 3.5% of their time series variations (an additional latent variable, independent

from both consumption and stock returns, seems to drive most of the time series variation

of bonds); e) SCA risk, measured as the loading of asset returns on the SCA component,

can explain between 57% and 90% of the joint cross-section of stocks and bond returns.2

Second, not to take an ex-ante stand on a parametric model of consumption dynamics, we

consider a broad class of consumption-based equilibrium models (see, e.g., Ghosh, Julliard,

and Taylor (2013)) in which the stochastic discount factor can be factorized into a component

that depends on consumption growth and an additional, model specific, component. In this

setting, following Parker and Julliard (2005), we show that a pricing kernel can be constructed

by measuring asset risk via the covariance between an asset return and the change in marginal

utility over several quarters following the return. Using this measure, we demonstrate that

the SCA risk is priced in the cross-section of bond holding returns, as well as the joint cross-

section of stocks and bonds. Moreover, we show that the slow consumption adjustment risk

creates a ‘fanning out’ pattern in consumption betas, leading to both more pronounced and

dispersed covariance with the stochastic discount factor. As a result, the model captures

85% of the cross-sectional variation in bonds returns, and 37-94% of the joint cross-sectional

variation in stocks and bonds.

Interestingly, our findings are consistent (both qualitatively and quantitatively) with the

consumption dynamics postulated by the Long Run Risk (LRR) literature (see e.g. Bansal

and Yaron (2004), Hansen, Heaton, Lee, and Roussanov (2007), Bansal, Kiku, and Yaron

(2012)), but are also supportive of a broader class of consumption based asset pricing models.

Our analysis builds upon the finding of Parker and Julliard (2005) that consumption risk

measured by the covariance of an assets return and consumption growth cumulated over

many quarters following the return – that is, measured as slow consumption adjustment

risk – can explain a large fraction of the variation in average returns across the 25 Fama-

French portfolios and, more broadly, on the empirical evidence linking slow movements in

consumption and asset returns (see, e.g., Daniel and Marshall (1997), Bansal, Dittmar, and

2In our baseline specification we consider a cross section of 46 asset given by 12 industry portfolios,
25 size and book-to-market portfolios, and 9 bond portfolio, but the results appear robust to alternative
specifications.
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Lundblad (2005), Jagannathan and Wang (2007), Hansen, Heaton, and Li (2008), Malloy,

Moskowitz, and Vissing-Jorgensen (2009)). We expand upon this framework by both i)

identifying the SCA risk component from, and quantifying its relevance for, the time series

properties of consumption and asset returns, and ii) by showing that this component can

price jointly different classes of assets and tends to act as a driving factor of the term structure

of interest rates. We also show that an additional, non-spanned (i.e. that does not seem to

require a risk premium), factor is also required to rationalise the time series behaviour of

bonds, and that this factor tends to behave as a slope type component.3

More broadly, our work is connected to the large literature on the co-pricing of stocks

and bonds.4 In particular, our focus on the role of macroeconomic risk is related to a series

of works that combine the affine asset pricing framework with a parsimonious mix of macro

variables and bond factors for the joint pricing of bonds and stocks. In particular: Bekaert

and Grenadier (1999) and Bekaert, Engstrom, and Grenadier (2010), that presents a linear

model for the simultaneous pricing of stock and bond returns that jointly accommodate the

mean and volatility of equity and long term bond risk premia; Brennan, Wang, and Xia

(2004), that assumes that the investment opportunity set is completely described by two

state variables given by the real interest rate and the maximum Sharpe ratio, and the state

variables (estimated using US Treasury bond yields and inflation data) are shown to be

related to the equity premium, the dividend yield, and the Fama-French size and book-to-

market portfolios; Lettau and Wachter (2011), that focus on matching an upward sloping

bond yield term structure and a downward sloping equity yield curve via an affine model

that incorporates persistent shocks to the aggregate dividend, inflation, risk-free rate, and

price of risk processes; Koijen, Lustig, and Nieuwerburgh (2010), that develops an affine

model in which three factors –the level of interest rates, the Cochrane and Piazzesi (2005)

factor,5 and the dividend-price ratio– have explanatory power for the cross-section of bonds

and stock returns, while the latter two factors have explanatory power for the time series of

these assets; Ang and Ulrich (2012), that considers an affine model in which returns to bonds

(real and nominal) and stocks, are decomposed into five components meant to capture the

real short rate dynamics as well as term premium, inflation related components (a nominal

3This last finding is consistent with Chernov and Mueller (2012) that identify an unspanned latent factor
driving in bond yields.

4E.g.: Fama and French (1993) expands the original set of Fama and French (1992) stock market factors
(meant to capture the overall market return, as well as the value and the size premia), with two bond factors
(the excess return on a long bond and a default spread), meant to capture term and default premia; Ma-
maysky (2002) built upon the affine term structure framework canonically used in term structure modelling
(see, e.g., Duffie and Kan (1996)) by adding affine dividend yields to help pricing jointly bonds and stocks.

5Cochrane and Piazzesi (2005) find that a single factor (a single tent-shaped linear combination of forward
rates), predicts excess returns on one- to five-year maturity bonds. This factor tends to be high in recessions,
but forecasts future expansion, i.e. this factor seems to incorporate good news about future consumption.
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premium, an expected inflation as well as an inflation risk component) as well as a real cash

flow risk element.

The reminder of the paper is organized as follows. Section II formally defines the concept

of slow consumption adjustment risk in a broad class of consumption based asset pricing

models. Sections III presents the econometric methodology, while a description of the data

is reported in Section IV. Our empirical findings are reported in Section V while Section VI

concludes. Additional methodological details, as well as robustness checks and additional

empirical evidence, are reported in the Appendix.

II The Slow Consumption Adjustment Risk of Asset

Returns

Representative agent based consumption asset pricing models with either CRRA, Epstein

and Zin (1989), or habit based preferences, as well as several models of complementary in

the utility function, and models with either departures from rational expectations, or robust

control, or ambiguity aversion, and even some models with solvency constraints,6 all imply

a consumption Euler equation of the form

C−φt = Et
[
C−φt+1ψ̃t+1Rj,t+1

]
(1)

for any gross asset return j including the risk free rate Rf
t+1, and where Et is the rational

expectation operator conditional on information up to time t, Ct denotes flow consumption,

ψ̃t+1 depends on the particular form of preferences (and expectation formation mechanism)

considered, and the φ parameter is a function of the underlying preference parameters.7

Rearranging terms, moving to unconditional expectations, and using the definition of covari-

ance, we can rewrite the above equation as a model of expected returns

E
[
Re
t+1

]
= −

Cov
(
Mt+1; Re

t+1

)
E [Mt+1]

. (2)

where Mt+1 := (Ct+1/Ct)
−φ ψ̃t+1 represents the stochastic discount factor between time t and

t+1 and Re ∈ RN denotes a vector of excess returns. Log-linearizing the above relationship,

6See, e.g.: Bansal and Yaron (2004); Abel (1990), Campbell and Cochrane (1999), Constantinides (1990),
Menzly, Santos, and Veronesi (2004); Piazzesi, Schneider, and Tuzel (2007), Yogo (2006); Basak and Yan
(2010), Hansen and Sargent (2010); Chetty and Szeidl (2015); Ulrich (2010); Lustig and Nieuwerburgh
(2005).

7E.g., φ would denote relative risk aversion in the CRRA framework, while it would be a function of both
risk aversion and elasticity of intertemporal substitution with Epstein and Zin (1989) recursive utility.
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expected returns can be expressed as

E
[
Re
t+1

]
=
[
φCov

(
∆ct,t+1; ret+1

)
− Cov

(
log ψ̃t+1; ret+1

)]
λ (3)

where ∆ct,t+1 := ln (Ct+1/Ct), re ∈ RN denotes log excess returns, and λ is a positive scalar.

Since, in the data, the covariance between one period consumption growth and asset returns

is small and has a much smaller cross-sectional dispersion than average excess returns, the

first term of the above equation is not sufficient for pricing a cross-section of asset returns, and

most of the modelling effort in the literature has been devoted to identifying a ψ̃ component

that can help rationalise observed returns.

Note that Equation (1) above implies that

C−φt = Et
[
C−φt+1+Sψt+1+S

]
where ψt+1+S := Rf

t,t+1+S

∏S
j=0 ψ̃t+1+j. Hence, the Euler equation

0N = E

[(
Ct+1

Ct

)−φ
ψ̃t+1R

e
t+1

]
(4)

where 0N denotes and N -dimensional vector of zeros, can be equivalently rewritten as

0N = E

[(
Ct+1+S

Ct

)−φ
ψt+1+SRe

t+1

]
. (5)

Once again, using the definition of covariance, we can rewrite the above equation as a model

of expected returns

E
[
Re
t+1

]
= −

Cov
(
MS

t+1; Re
t+1

)
E
[
MS

t+1

] . (6)

where MS
t+1 := (Ct+1+S/Ct)

−φ ψt+1+S. That is, under the null of the model being correctly

specified, there is an entire family of SDFs that can be equivalently used for asset pricing:

MS
t+1 for every S ≥ 0. Log-linearizing the above expression, we have the linear factor model

E
[
Re
t+1

]
=
[
φCov

(
∆ct,t+1+S; ret+1

)
− Cov

(
logψt+1+S; ret+1

)]
λS (7)

where ∆ct,t+1+S := ln (Ct+1+S/Ct) and λS is a positive scalar.

But why measure risk, and price returns, using the slow consumption adjustment frame-

work as in equations (5)-(7) instead of the contemporaneous risk as in equations (2)-(4)?

First, it is a well-known fact that consumption displays excessive smoothness in response to
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the wealth shocks (Flavin (1981), Hall and Mishkin (1982)), which can be caused by various

adjustment costs (Gabaix and Laibson (2001)) and asynchronous consumption/investment

decisions (Lynch (1996)). Moreover, the problem could be further exacerbated if the agent

has a nonseparable utility function, potentially including labour or other state variables

that are also costly to adjust, and hence leading to further staggering in the consumption

adjustment in response to wealth innovations. Second, if there is measurement error in con-

sumption, then using a one-period growth rate does not reflect the true pricing impact of

the SDF. Indeed, in a recent paper ? demonstrates that one of the reasons for the failure of

the standard consumption-based model to solve equity premium and risk-free rate puzzles,

is that NIPA consumption data is filtered to eliminate the impact of the measurement error.

The unfiltered data, in turn, produces substantially better results. The fourth quarter to

fourth quarter consumption growth of Jagannathan and Wang (2007), as well as the ultimate

consumption risk of Parker and Julliard (2005), are related to the reconstructed unfiltered

time series of consumption growth, and therefore provide a better measure for the overall

consumption risk.

To model parametrically the–potential–slow reaction of consumption to financial market

shocks, we postulate that the consumption growth process can be decomposed in two terms:

a white noise disturbance, wc with variance σ2
c , that is independent from financial market

shocks, plus a (covariance stationary) autocorrelated process–the slow consumption adjust-

ment component–that depends on current and past stocks to asset returns. In order not to

have to take an ex ante stand on the particular time series structure of the slow adjustment

component, we work with its (potentially infinite) moving average representation. That is

we model the consumption growth process as:

∆ct−1,t = µc +
S̄∑
j=0

ρjft−j + wct ; (8)

where S̄ is a positive integer (potentially equal to +∞), the ρj coefficients are square

summable, and most importantly ft, a white noise process normalised to have unit vari-

ance, is the fundamental innovation upon which all asset returns loads contemporaneously

i.e. given a vector of log excess returns, re, we have

ret
N×1

= µr
N×1

+ ρr
N×1

ft + wr
t

N×1

(9)

where µτ is a vector of expected values, ρr contains the asset specific loadings on the common

risk factor, wr
t is a vector of white noise shocks with diagonal covariance matrix Σr (the

diagonality assumption can be relaxed as explained below and in Appendix A.1), that are
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meant to capture asset specific idiosyncratic shocks.

The dynamic system in equations (8)-(9) can be reformulated as a state-space model, and

Bayesian posterior inference can be conducted to estimate both the unknown parameters

(µc, µr, {ρj}S̄j=0, ρr, σ2
c , Σr) and the time series of the unobservable common factor of

consumption and asset returns ({ft}Tt=1). This estimation procedure is described in detail in

the next section and Appendix A.1.

Note that, since ∆ct−1,t+S ≡
∑S

j=0 ∆ct−1+j,t+j ≡ ln (Ct+S/Ct−1), from the one period

consumption growth process in equation (8) we can recover the dynamic of cumulated con-

sumption growth with a simple rotation since

[∆ct−1,t,∆ct−1,t+1, ...,∆ct−1,t+S]′ ≡ Γ [∆ct−1,t,∆ct,t+1, ...,∆ct−1+S,t+S]′

where Γ is a lower triangular square matrix of ones (of dimension S). From this last expres-

sion it is easy to see that the ρj coefficients identify the impulse response function of slow

consumption adjustment to the fundamental asset market shock ft as

∂E [∆ct−1,t+S]

∂ft
=

S∑
j=0

ρj (10)

where ρj>S̄ := 0. Moreover, the consumption betas of the factor model of asset returns in

equation (7) are fully characterised by the loadings of the dynamic system on the factor ft

since

Cov (∆ct−1,t+S; ret ) ≡
S∑
j=0

ρjρ
r. (11)

That is, the time series estimates of the latent factor loadings (ρ̂j and ρ̂r) can be used to

assess whether the slow consumption adjustment component has explanatory power for the

cross-section of risk premia (via, for instance, simple cross-sectional regressions of returns on

these estimated covariances).

The formulation in Equations (8)-(9) can be generalize to allow for a bonds specific latent

factor (gt) to which consumption, potentially, reacts slowly over time. This is an appealing

extension since the factor ft, as shown in the empirical section, explains most of the time

series variability of stocks, a quarter of the one of consumption growth, but a small share of
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the time series variation of bonds. The dynamic system in this case becomes:

∆ct−1,t = µc +
S̄∑
j=0

ρjft−j +
S̄∑
j=0

θjgt−j + wct ; (12)

ret
N×1

= µr
N×1

+ ρr
N×1

ft +
[

θ′b
Nb×1

, 0′N−Nb

]′
gt + wr

t
N×1

; (13)

where Nb is the number of bonds and they are ordered first in the vector ret , θb ∈ RNb

contains the bond loadings on the factor gt–a white noise process with variance normalized

to one. Note that in this case the implied covariance of consumption and returns becomes:

Cov (∆ct−1,t+S; ret ) ≡
S∑
j=0

ρjρ
r +

[
θ′b, 0′N−Nb

]′ S∑
j=0

θj. (14)

III Econometric Methodology

Our empirical analysis is based on both parametric and nonparametric inference, ensuring

the results are robust to the methodology employed. The main approach (Section III.1)

consists in rewriting the model in Equations (8)-(9) in state-space form and employ stan-

dard Bayesian filtering techniques to recover the unobservable latent consumption factor

(ft) and other model parameters. Since the model is tightly parametrised, with the factor

loadings driving not only the time series, but also the cross-sectional relationships between

asset returns, this in turn allows us to assess model performance in both time series and

cross-sectional dimensions, using variance decomposition and Fama-MacBeth (1973) cross-

sectional regressions.

In addition, we also use the standard semi-parametric techniques (e.g. GMM and Em-

pirical Likelihood estimation) to assess whether ultimate consumption risk of Parker and

Julliard (2005) can successfully capture the cross-section of stock and bond returns. Section

III.2 provides further details on the moment construction, parameter estimation and tests

used for inference.

III.1 Parametric Inference

We can rewrite the dynamic model in Equations (8)-(9) in state-space form, assuming Gaus-

sian innovations, as

zt = Fzt−1 + vt, vt ∼ N (0S̄+1; Ψ) ; (15)

yt = µ + Hzt + wt, wt ∼ N (0N+1; Σ) . (16)
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where yt := [∆ct, r
e′
t ], zt := [ft, ..., ft−S̄]′, µ := [µc,µ

′
r]
′ , vt :=

[
ft,0

′
S̄

]′
, wt := [wct ,w

′r
t ]
′,

Ψ :=

[
1 0′

S̄

0S̄ 0S̄×S̄

]
︸ ︷︷ ︸

(S̄+1)×(S̄+1)

, F :=

[
0′
S̄

0

IS̄ 0S̄

]
︸ ︷︷ ︸
(S̄+1)×(S̄+1)

, (17)

Σ :=

[
σ2
c 0′N

0N Σr

]
︸ ︷︷ ︸
(N+1)×(N+1)

, H :=

[
ρ0 ρ1 ... ρS̄

ρr 0N ... 0N

]
︸ ︷︷ ︸

(N+1)×(S̄+1)

. (18)

and IS̄ and 0S̄×S̄ denote, respectively, an identity matrix and a matrix of zeros of dimension

S̄.

Similarly, the dynamic system in Equations (12)-(13) can be represented in the state-

space form (15)-(16) with: zt := [ft, ..., ft−S̄, gt, ..., gt−S̄]′; vt :=
[
ft,0

′
S̄
, gt,0

′
S̄
,
]′ ∼ N (0S̄+1; Ψ);

Ψ and F block diagonal with blocks repeated twice and given, respectively, by the two ma-

trices in equation (17); and with space equation coefficients given by

H :=



ρ0 ... ... ρS̄ θ0 ... ... θS̄

ρr1 0 ... 0 θb1 0 ... 0

... ... ... ... ... ... ... ...

ρrNb
0 ... 0 θbNb

0 ... 0

... 0 ... 0 0 0 ... 0

ρrN 0 ... 0 ... 0 ... 0


︸ ︷︷ ︸

(N+1)×2(S̄+1)

. (19)

The above state-space system implies the following conditional likelihood for the data:

yt| It−1,µ,H,Ψ,Σ, zt ∼ N (µ + Hzt; Σ) (20)

where It−1 denotes the history of the state and space variables until time t−1. Hence, under

a diffuse (Jeffreys’) prior and conditional on the history of zt and yt, and given the diagonal

structure of Σ, we have the standard Normal-inverse-Gamma posterior distribution for the

parameters of the model (see e.g. Bauwens, Lubrano, and Richard (1999)). Moreover,

the posterior distribution of the unobservable factors zt conditional on the data and the

parameters, can be constructed using a standard Kalman filter and smoother approach (see,

e.g., Primiceri (2005)).

Using equation (7), the above specification for the dynamics of consumption and asset

returns implies, in the presence of only one latent factor (ft) common to both assets and
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consumption

E [Re
t ] = α +

(
S∑
j=0

ρjρ
r

)
λf (21)

where λf is a positive scalar variable that captures the price of risk associated with the slow

consumption adjustment risk, and α ∈ RN . If consumption fully captures the risk of asset

returns, the above expression should hold with α = 0N , otherwise α should capture the

covariance between the omitted risk factors and asset returns.

Similarly, if we also allow for a bond specific latent factor (gt), the implied cross-sectional

model of returns is

E [Re
t ] = α +

(
S∑
j=0

ρjρ
r

)
λf +

[
θ′b, 0′N−Nb

]′ S∑
j=0

θjλg (22)

with the additional testable restriction λf = λg.

Equation (21) (and similarly Equation (21)), conditional on the data and the parameters

of the state-space model, defines a standard cross-sectional regression, hence the parameters

α, λf and λg can be estimated via standard Fama and MacBeth (1973) cross-sectional

regressions. This implies that, not only we can compute posterior means and confidence

bands for both the coefficients of the state space model and for the unobservable factor’s

time series, but we can also compute means and confidence bands for the Fama and MacBeth

(1973) estimates of the cross sectional regressions defined in Equations (21) and (22). That

is, we can jointly test the ability of the slow consumption adjustment risk of explaining both

the time series and the cross-section of asset returns with a simple Gibbs sampling approach

described in detail in Appendix A.1.

III.2 Semi-parametric Inference

We start with the pricing restriction in Euler Equation (5):

0 = E
[
MS

t+1R
e
t+1

]
where MS

t+1 := (Ct+1+S/Ct)
−φ ψt+1+S and S ≥ 0.

The fact that the stochastic discount factor can be decomposed into the product of

the consumption growth over several consecutive periods (Ct+1+S/Ct) and an additional,

potentially unobservable, component, makes the above setting particularly appealing for

the application of Empirical Likelihood -based techniques (for an excellent overview, see

Kitamura (2006)) as discussed in Ghosh, Julliard, and Taylor (2013).
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Consider the following transformation of the Euler equation:

0 = E
[
MS

t Re
t

]
≡
∫ (

Ct+S
Ct−1

)−φ
ψt+SRe

tdP =

∫ (
Ct+S
Ct−1

)−φ
ψt+S
ψ̄

Re
tdP

=

∫ (
Ct+S
Ct−1

)−φ
Re
tdΨ = EΨ

[(
Ct+S
Ct−1

)−φ
Re
t

]
(23)

where P is the unconditional physical probability measure, ψ̄ = E [ψt+S], Ψ is another

probability measure, related to the physical one through the Radon-Nikodym derivative8

dΨ
dP

= ψt+S

ψ̄
.

Empirical Likelihood provides a natural framework for recovering parameter estimates

and probability measure Ψ defined by Equation (23), by minimising Kullback-Leibler Infor-

mation Criterion (KLIC):

(Ψ̂, φ̂) = arg min
Ψ,φ

D(P ||Ψ) ≡ arg min
Ψ

∫
ln
dP

dΨ
dP s.t. 0 = EΨ

[(
Ct+S
Ct−1

)−φ
Re
t

]
(24)

Equation (24) provides a nonparametric maximum likelihood estimation of the probability

measure, induced by the unobservable components of the SDF, and has been used in various

applications, including the recovery of the risk-neutral probability density (Stutzer (1995)).

For more information on the rationale behind this change of measure, see Ghosh, Julliard,

and Taylor (2013).

Following Csiszar (1975) duality approach, one can easily show that:

Ψ̂t =
1

T

(
1 + λ̂(θ)′

(
Ct+S

Ct−1

)−φ̂
Re
t

) ∀t = 1..T, (25)

where φ̂ and λ̂ ≡ λ̂(φ̂) ∈ Rn are the solution to the dual optimisation problem:

φ̂ = arg min
φ∈R

−
T∑
t=1

ln

(
1 + λ̂(φ)′

(
Ct+S
Ct−1

)−φ
Re
t

)
(26)

λ̂(φ) = arg min
λ∈Rn

−
T∑
t=1

ln

(
1 + λ(φ)′

(
Ct+S
Ct−1

)−φ
Re
t

)
(27)

The dual problem is usually solved via the combination of internal and external loops (Kita-

mura (2001)): first, for each φ find the optimal values of the Langrange multipliers λ, as in

Equation (27); then minimize the value of the dual objective function w.r.t. φ(λ̂), following

8We assume absolute continuity of both P and Ψ.
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Equation (26).

Empirical likelihood estimator is known not only for its nonparametric likelihood inter-

pretation, but also for its convenient asymptotic representation and properties. It belongs

to the family of Generalised Empirical Likelihood estimators (Newey and Smith (2004)),

with other notable members including the Exponentially Tilted Estimator (ET, Kitamura

and Stutzer (1997)) and the Continuously Updated GMM (CU-GMM, Hansen, Heaton, and

Yaron (1996)). While the whole family enjoys the same asymptotic distribution of the pa-

rameter estimates, achieves the semiparametric efficiency bound of Chamberlain (1987), and

shares the standard battery of tests for moment equalities (e.g. J -test), the empirical likeli-

hood estimator is also higher-order efficient (Newey and Smith (2004), Anatolyev (2005)).

We can also capture the average pricing error of the model implied by Equation (5)

simply by introducing additional parameters in the following way:

0 = E
[
MS

t+1

(
Re
t+1 − α

)]
, (28)

where α stands for the average rate of return that is not cross-sectionally captured through

the covariance between MS
t+1 and Re

t+1, since Equation (28) implies

E
[
Re
t+1

]
= α−

Cov
(
MS

t+1,R
e
t+1

)
E[MS

t+1]
. (29)

Parameter estimation proceeds in exactly the same way, following the procedure outlined in

Equations (24)-(27). We consider several versions of Equation (28): α = 0 (correct model

specification); average pricing errors; error specific to a particular asset class (αb 6= αs); and

a common level of mispricing for both stocks and bonds (αb = αs).

For each model we also report the cross-sectional adjusted R-squared

R2
adj = 1− n− 2

n− 1
V̂ arc

 1

T
Ri,t+1 − α̂−

Ĉov
(

(Ct+1+S/Ct)
−φ̂ ,Re

t+1

)
E[(Ct+1+S/Ct)

−φ̂

/ V̂ arc

(
1

T
Ri,t+1

)
(30)

where V̂ arc is the sample cross-sectional variance and Ĉov is the sample time series covari-

ance.

Finally, for the sake of completeness we also use two-stage Generalised Method of Mo-

ments (GMM, Hansen (1982)) to estimate consumption-based asset pricing models on the

cross-section of stock and bond returns, and report its results alongside those for EL. While

the estimator-implied probabilities no longer have the convenient nonparametric maximum

likelihood interpretation (unlike those in Equation (25)), if one restricts the class of admissi-

13



ble SDF to the external habit models, asset pricing implications and inference based on the

ultimate consumption risk only, remain valid. Under fairly general conditions, this result is

a direct consequence of Proposition 1 in Parker and Julliard (2003), implying that GMM

estimates of risk aversion retain consistency and asymptotical normality, and do not require

an explicit knowledge of the habit function, if one relies on the ultimate consumption risk

in the estimation.

IV Data Desciption

Bond holding returns are calculated on a quarterly basis using the zero coupon yield data

constructed by Gurkaynak and Wright (2007)9 from fitting the Nelson-Siegel-Svensson curves

daily since June 1961, and excess returns are computed subtracting the return on a three-

month Treasury bill. We consider the set of the following maturities: 6 months, 1, 2, 3, 4,

5, 6, 7, and 10 years, which gives us a set of 9 bond portfolios.

We consider several portfolios of stock returns. The baseline specification relies, in addi-

tion to the bond portfolios, on the 25 size and book-to-market Fama-French portolios (Fama

and French (1992)), and 12 industry portfolios, available from Kenneth French data library.

We consider monthly returns from July, 1961 to December, 2013, and accumulate them to

form quarterly returns, matching the frequency of consumption data. Excess returns are

then formed by subtracting the correponding return on the three-month Treasury bill.

Consumption flow is measured as real (chain-weighted) consumption expenditure on non-

durable goods per capita available from the National Income and Product Accounts (NIPA).

We use the end-of-period timing convention and assume that all of the expenditure occurs

at the end of the period between t and t+ 1. We make this (common) choice because under

this convention the entire period covered by time t consumption is part of the information

set of the representative agent before time t + 1 returns are realised. All the returns are

made real using the corresponding consumption deflator.

Overall, this gives us consumption growth and matching real excess quarterly holding

returns on a number of portfolios, from the forth quarter of 1961 to the end of 2013.

V Empirical Evidence

While our model allows for a potentially infinite number of lags for the consumption process,

in order to proceed with the actual estimation one has to choose a particular value of S̄. For

9The data is regularly updated and available at:
http://www.federalreserve.gov/pubs/feds/2006/200628/200628abs.html
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the rest of the section we use S = 15 for a number of reasons.

First, we rely on the previous results of Parker and Julliard (2003), who demonstrate that

most of the pricing ability of the ultimate consumption risk is contained within the time span

of 15 quarters. They define a proxy for the signal-to-noise ratio, taking into account both

the time-series and cross-sectional variation of the data, and find that the maximum (as well

as the best overall fit) is obtained around S = 11.

Second, Equation (8) implies a certain autocorrelation structure of the nondurable con-

sumption growth through the combination of the common factor lags and its loadings. Hence,

the value of S should be high enough to capture most of the time series autocorrelation in

the consumption growth. Figure A1 in the Appendix presents the sample autocorrelation

coefficients and the results of Ljung-Box (1978) and Box-Pierce (1970) tests. Since most of

the dependence occurs within the first 15 lags, this value also becomes a natural choice for

the lag truncation.

Further, intuitively most of the pricing impact from the consumption adjustment is prob-

ably taking place within the business cycle frequency, consistent with a number of recent

empirical studies (e.g. Bandi and Tamoni (2015)). Therefore, S = 15 is a rather conserva-

tive choice, since it provides a 4 year window to capture most of the interaction between the

ultimate consumption and returns.

Finally, our results remain robust to including additional lags.

V.1 Parametric approach

We start our analysis by examining the time-series properties of a one (common) factor

model implied by Equations (8)–(9). We then turn to the 2-factor specification described

by Equations (12)–(13). Finally, we present the cross-sectional properties of the model and

demonstrate that the slow consumption adjustment risk is a priced factor, explaining a

significant proportion of the cross-sectional variation in returns.

V.1.1 Time series properties of stocks and bonds

Our baseline cross-section consists of 9 bond portfolios, 25 Fama-French portfolios sorted by

size and book-to-market, and 12 industry portfolios. We estimate the model in Equations

(8)–(9) using the inference procedure outlined in Section III.1. Figures 1 and 2 present stock

and bond loadings on the common factor, along with the 68% and 90% confidence bounds.

All the portfolios in Figure 1 display significant and positive exposures to the common

factor. However, even more interesting is a widely recognisable pattern in the factor loadings:

decreasing from the smallest to the largest decile on size, with a similar effect for book-to-

market sorting. This is in line with the size and value anomalies and, in addition, provides
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Figure 1: Common factor loadings (ρr) of the stock portfolios in the one-factor model.

Note. The graph presents posterior means (continuous line with circles) and centred posterior 90% (dashed
line) and 68% (dotted line) coverage regions. Ordering of portfolios: 25 Fama and French (1992) size and
book-to-market sorted portfolios (e.g. portfolio 2 is the smallest decile of size and the second smaller decile
of book-to-market ratio), and 12 industry portfolios.

some preliminary evidence that the SCA risk plays an important role in explaining the cross-

sectional dispersion of stocks returns. These findings also remain unchanged, when a second,

bond-specific factor is added into the model (see Figure 3, lower panel).

In a single factor model, bond loadings, however, are not as prominent (Figure 2). While

there is some evidence in favour of their increase with the bond maturity, the magnitude is

still considerably smaller than that of the stocks.

Figures 2 (upper panel) and 4 highlight the importance of adding a bond-specific factor

into the model. While the cross-section of bonds reveals a very pronounced maturity-driven

pattern of loadings on the bond-specific factor, gt, its presence also allows to highlight the

effect of the consumption-related component. Compared to a one factor specification, these

loadings are still not as high as those of the stocks, however, they are contained within

very tight confidence bounds, are significantly different from zero (except for the 6 months

return), and generally increase with maturity.

To summarise, not only (nearly) all the assets in the mixed cross-section of stocks and

bonds have a significant positive exposure to the innovations in the ultimate consumption

growth, the pattern of those loadings reflects well-known features of the data: size and value

anomalies for stocks, and positive slope of the yield curve for bonds.

One of the possible concerns could be that we inadvertently capture a factor that heavily
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Figure 2: Bond loadings (ρr) on the common factor (ft).

Note. The graph presents posterior means (continuous line with circles) and centred posterior 90% (dashed
line) and 68% (dotted line) coverage regions.

loads on one of the principal components of the cross-section of asset returns and thus me-

chanically has rather high factor loadings (Lewellen, Nagel, and Shanken (2010)). However,

this is not the case. While there is indeed some correlation with the principal components

of the cross-sections, composed of different assets (see Table 1), the common factor does

not heavily correlate with any of them in particular, but rather displays a certain degree of

spread in loadings. For example, it is related to the first, third and fourth principal compo-

nents of the joint cross-section of stocks and bonds. Therefore, we conclude that our results

are not driven by a particular implied factor structure of a given cross-section, but rather

reflect a more general feature of the data.

Table 1: Correlation of Slow Consumption Adjustment with Principal Components

Correlation of:∑S̄
j=0 ρ̂j f̂t−j

∑S̄
j=0 θ̂j ĝt−j

PCA of: I II III IV V I II III IV V
re -.37 .01 -.13 -.17 .03 -.03 -.32 -.01 -.54 .04

rebonds .11 -.12 .10 .15 -.03 .64 -.10 .01 .06 -.08
restocks .38 .08 -.11 .01 -.01

The economic magnitude of asset exposure to the SCA risk can in turn be assessed by the

standard variance decomposition techniques. Figure 5 summarises our results. The common
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factor explains on average 79% of the time series variation in the stock returns, ranging

from 36% to nearly 95% for individual portfolios. Moreover, this level of fit in our model

is produced by a single consumption-based factor, as opposed to some of the alternative

successful specifications, relying on 3 and sometimes 4 explanatory variables.

The same common factor accounts for a small (about 1.5%), but significant proportion of

the time series variation in bond returns as well. The bond-specific factor, in turn, manages to

capture most of the residual time series in variation in returns. While the model captures just

about 55% of the variation in the 6-month bond returns, its performance rapidly improves

with maturity and results in a nearly perfect fit for the time horizon of 2 years and more.

V.1.2 Consumption process and its properties

Slow consumption adjustment explains a significant proportion of the time series variation

in consumption growth. As Figure 5 demonstrates, the common factor is responsible for

roughly 27% of the variation in the one-period nondurable consumption growth, 33% of the

two-period consumption growth, and so on, followed by a slow decline towards just above

5% for the 15-period growth. The bond-specific factor amounts for an additional 5% of

the explanatory power. While these numbers may not seem as impressive as those for the

cross-section of stocks, the pattern is highly persistent and significant, confirming a common

factor structure between nondurable consumption growth and asset returns. Further, it also

allows to use the model in Equations (12)–(13) for predictive purposes.

The upper right panel in Figure 5 displays the outcome of the predictive regression for

the one-period consumption growth, should one rely on the factor loadings from Equation

12. Ultimate consumption risk predicts about 27% of the time series variation in the next

period consumption and 18% of the consumption growth 2 quarters from now. Interestingly,

the model retains significant predictive power (albeit, much lower) even for the one-period

consumption that will occur nearly 4 years from now. A bond-specific factor increases the

quality of predictive regressions by roughly another 5%.

The consumption growth process in Equation (12) is similar to the moving average de-

composition, which allows us to model the dynamics of the slow consumption adjustment

(∆ct,t+1+S) in response to a common and/or a bond-specific shock. Figure 6 depicts SCA

loadings on the factors as a function of the horizon S. If S = 0, the case of a standard

consumption-based asset pricing model, SCA virtually does not load on the common factor.

This is expected, since the factor manifests itself at a lower frequency. Indeed, as S increases,

the impact of the common factor becomes more and more pronounced, levelling off at around

S = 11. Interestingly, the pattern of the loadings observed in our two-factor model, is very

similar to the one implied by the moving average representation of the consumption process
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Figure 3: Bond and stock loadings on the common factor (ft).

Note. Upper panel: loadings of bonds (ρr) on common factor (ft). Lower panel: loadings of stock portfolios
(ρr) on common factor (ft). The graph presents posterior means (continuous line with circles) and centred
posterior 90% (dashed line) and 68% (dotted line) coverage regions. Ordering of the portfolios: 25 Fama
and French (1992) size and book-to-market sorted portfolios (e.g. portfolio 2 is the smallest decile of size
and the second smaller decile of book-to-market ratio), and 12 industry portfolios.
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Figure 5: Variance decomposition box-plots of asset returns and consumption growth

20



0.
00
0

0.
01
0

SCA loadings on common factor

S

∑ j=
0S
ρ j

0 1 2 3 4 5 6 7 8 9 10 11 12 13
-0
.0
02

0.
00
2

SCA loadings on bond factor

S

∑ j=
0S
θ j

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Figure 6: Slow consumption adjustment (∆ct,t+1+S) response to shocks.

Note. Upper panel: SCA response to common factor (ft) shocks, lower panel: SCA response to bond only
factor (gt) shocks. The graph presents posterior means (continuous line with circles) and centred posterior
90% (dashed line) and 68% (dotted line) coverage regions. Triangles denote Bansal and Yaron (2004) implied
values.

in Bansal and Yaron (2004)10. In short, our setting reveals a similar degree of persistency

and response rates, as their consumption process. The pricing of stocks and bonds, however,

differs, because we consider a more flexible, reduced form model that nevertheless uncovers

a very similar consumption-related pattern in the data as the one implied by the long-run

risk model.

As a robustness check, we recover the long-run impact of common innovations to financial

market returns and nondurable consumption using a simple bivariate SVAR model for the

market excess return and consumption growth. We achieve identification via long-run re-

strictions on the impulse response functions á la Blanchard and Quah (1989). In particular,

we distinguish a fundamental long-run shock, that can have a long-run impact on both mar-

ket return and consumption, and a transitory shock that is restricted not to have a long-run

impact on asset prices.

10For more details on the construction of the MA representation, see Appendix A.2

21



5 10 15

0.
00

0.
04

0.
08

0.
12

response: Market Return

sh
oc

k:
 L

R

5 10 15

-0
.0
02

0.
00
4

0.
01
0

response: Consumption

sh
oc

k:
 L

R

Figure 7: Cumulated response functions to a long-run shock

Note. The shock identified via a VAR and imposed long-run restrictions. Left panel depicts the cumulated
response function for the market return, while the right one - for consumption growth. The graphs include
posterior median (continuous line), mean (circles), and centred 95% coverage region (dotted lines).

Figure 7 displays the cumulated impulse response functions to a long-run fundamental

shock, that is allowed to have a potemtially permanent impact on both the market excess

return and nondurable consumption. In line with our previous reasoning, the latter response

to a shock (right panel) is very similar to the one we observed from the SCA loadings on the

common factor (Figure 6), while the response of the market returns (left panel), is consistent

with an immediate and complete reaction of asset returns to the long-run shock as in our

state-space model in Equations (8)-(9).

All these observations confirm that within the stream of nondurable consumption flow

there is a rather persistent slow-moving component, accounting for 28% of the one-period

time series variation in consumption growth, with innovations of that factor driving most

of the contemporaneous changes in stocks returns and a small, but significant proportion in

bonds. Next, we investigate whether this risk is actually priced in the cross-section of assets.

V.1.3 The price of consumption risk

Recovering factor loadings in Equations (12)–(13) also produces a cross-section of average

returns on the set of portfolios. Figure 8 displays the scatterplot of the average vs. fitted

excess returns for the baseline mixed cross-section of 46 assets. While the subset of bond

returns demonstrates an almost perfect fit (lower left corner of the plot), the variation in the

cross-section of stocks is also well-captured.

Further, as Equation (22) demonstrates, model-implied factor loadings of the asset re-

turns determine their full exposure of the SCA risk and thus allow not only to assess the
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Figure 8: SCA risk: Average and Fitted Excess returns.

Note. Fitted versus average returns using the consumption betas implied by the latent factor specification
in Equations (12)–(13).

cross-sectional fit of the model, but also to test whether the slow consumption adjustment is

indeed a priced risk factor, and whether the common and bond factors share the same value

of the risk premium.

Following the critique of Lewellen, Nagel, and Shanken (2010), we are using a mixed cross-

section of assets to ensure that there is no dominating implied factor structure of the returns.

Indeed, if that was the case, it could lead to spuriously high significance levels, quality of fit,

and significantly complicate the overall model assessment. However, as Table 1 indicated,

the slow consumption adjustment factor does not heavily load on any of the main principal

components of the returns. Further, we provide confidence bounds for the cross-sectional

measure of fit to ensure the point estimates reflect the actual pricing ability of the model.

Finally, since both stocks and bonds have significant loadings on the common factor (and in

the case of bonds, also on the bond-specific one), we do not face the problem of irrelevant,

or spurious factors (Kan and Zhang (1999)), that could also lead to the unjustifiably high

significance levels.

Table 2 summarizes the cross-sectional pricing performance of our parametric model of

consumption on a mixed cross-section of 9 bond portfolios, 25 Fama-French portfolios sorted
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Table 2: Cross-Sectional Regressions with State-Space Loadings

Row: α λf λg λf = λg R̄2

One latent factor specification
(1) .0056

[0.0051, .0062]
14.77

[8.89, 26.01]
.57

[.54, .60]

(2) 20.00
[12.05, 35.16]

.90
[.89, .91]

Two latent factor specification
(3) .0057

[.0052, .0061]
14.97

[8.72, 27.45]
.57

[.54, .60]

(4) 20.30
[11.85, 37.18]

0.90
[0.89, 0.91]

(5) .0069
[−539.5, 497.7]

13.79
[7.96, 25.49]

−1.44
[−539.5, 497.7]

.56
[0.53, 0.59]

(6) 20.27
[11.83, 37.12]

19.57
[−1140, 1218]

.91
[.90, .92]

(7) .0053
[.0042, 0.0064]

15.24
[8.80, 28.40]

.57
[.53, .60]

(8) 20.29
[11.85, 37.19]

.90
[.89, .91]

Note. The table presents posterior means and centred 95% posterior coverage (in square brackets) of the

Fama and MacBeth (1973) cross-sectional regression of excess returns on
∑S

j=0 ρjρ
r (with associated co-

efficient λf ) and
[
θ′b, 0′N−Nb

]′∑S
j=0 θj (with associated coefficient λg). The column labeled λf = λg

reports restricted estimates. Cross-section of assets: 25 Fama and French (1992) size and book-to-market
portfolio; 12 industry sorted portfolios; 9 bond portfolios.

by size and book-to-market, and 12 industry portfolios. For each of the specifications, we

recover the full posterior distribution of the factor loadings, and estimate the associated risk

premia using Fama-MacBeth (1973) cross-sectional regressions. Regardless of the specifica-

tion, there is strong support in favour of the slow consumption adjustment being a priced risk

in the composite cross-section of assets with the risk premia of about 14-20% per quarter.

The average pricing error is about 0.005% per quarter, and the cross-sectional R2 varies

from 57% to 91%, depending on whether the intercept is included in the model. While

allowing for a common intercept in the estimation substantially lowers cross-sectional fit,

95% posterior coverage bounds remain very tight, providing a reliable indicator of the model

performance.

While the risk premium on the common factor is strongly identified and seems to play

an important role in explaining the cross-section of both stock and bond returns, the bond

factor loadings do not provide an equally large spread for recovering its pricing impact with

the same degree of accuracy. As a result, the risk premium appears to be insignificant, unless

its value is restricted to that of the common factor. To summarise, the bond-specific factor

is unspanned, in the sense that while it is essential for explaining most of the time series

variation in bond returns and producing a correct slope of the yield curve, it does not have
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any cross-sectional impact on bond returns.

V.2 Semi-parametric approach

Since the relevance of slow consumption adjustment risk for the cross-section of stocks has

already been highlighted by Parker and Julliard (2005), we first focus on the cross-section

of bonds only, and provide empirical evidence that the SCA risk is important for explaining

their cross-section of returns. We then turn to analysing the model performance for pricing

a composite set of bonds and stocks.

Table 3 summarizes the performance of the consumption-based asset pricing model on the

cross-section of bond returns for various values of S of the ultimate consumption measure

of Parker and Julliard (2005). While EL estimation remains valid in the presence of the

multiplicative unobservable part of the stochastic discount factor, evaluating GMM output

requires a certain degree of caution, since in this case, to the best of our knowledge, the

same robustness is achieved only within the class of external habit models (see Proposition

1 of Parker and Julliard (2003)). Nevertheless, for the sake of completeness we report both

sets of results.

The S = 0 case corresponds to the standard consumption-based asset pricing model,

where the spread of the returns is driven only by their contemporaneous correlation with the

consumption growth. Both EL and GMM output reflect the well-known failure of the classical

model to capture the cross-section of bond returns: according to the J-test, the model is

rejected in the data, and the cross-sectional adjusted R-squared is negative. Increasing the

span of consumption growth to 2 or more quarters drastically changes the picture: J-test no

longer rejects the model, and the level of cross-sectional fit increases up to 85% for S = 12,

for example.

Further, the estimates of the power coefficient φ (which in the case of additively sep-

arable CRRA utility corresponds to the Arrow-Pratt relative risk-aversion coefficient) not

only appear to be much smaller (hence more in line with the economic theory), but also

more precisely estimated. The large standard error associated with this parameter for the

standard consumption-based model (S = 0) is due to the fact that the level and spread of

the contemporaneous correlation between asset returns and consumption growth is rather

low. This in turn leads to substantial uncertainty in parameter estimation. As the num-

ber of quarters used to measure consumption risk increase, the link between bond returns

and the slow moving component of the consumption becomes more pronounced, resulting

in lower standard errors, better quality of fit, and the overall ability of the model to match

the cross-section of bond returns. In fact, model-implied average excess returns are very

close to the actual ones, in drastic contrast to the standard consumption-based asset pricing
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Table 3: Cross-Section of Bond Returns and Ultimate Consumption Risk

Empirical Likelihood Generalised Method of Moments

Horizon S R2
adj(%) α φ J-test R2

adj(%) α φ J-test

(Quarters) (1) (2) (3) (4) (5) (6) (7) (8)

0 -837 0.0007 100 13.0888 -10 0.0000 4 19.5597
(0.0003) (28.5) [0.0700] (0.0002) (73.5) [0.0066]

1 -167 0.0009 88 7.6457 -35 0.0005 42 11.5448
(0.0004) (24.8) [0.3649] (0.0005) (47.3) [0.1166]

2 70 0.0030 120 2.8778 43 0.0009 50 4.6351
(0.0005) (21.8) [0.8961] (0.0011) (52.6) [0.7044]

3 39 0.0010 70 4.5187 61 0.0006 35 5.1968
(0.0004) (16.2) [0.7185] (0.0005) (20.5) [0.6360]

4 69 0.0008 55 3.4531 48 0.0004 33 3.2207
(0.0003) (13.4) [0.8402] (0.0004) (16.1) [0.8639]

5 5 0.0008 45 6.8134 38 0.0004 27 6.0294
(0.0003) (10.5) [0.4486] (0.0003) (13.0) [0.5363]

6 3 0.0008 42 8.9256 42 0.0002 23 6.8397
(0.0003) (10.0) [0.2580] (0.0003) (11.5) [0.4458]

7 64 0.0004 33 9.8236 64 0.0001 22 6.4740
(0.0003) (9.9) [0.1988] (0.0003) (10.7) [0.4856]

8 70 0.0006 35 9.6027 69 0.0003 24 6.5862
(0.0003) (10.1) [0.2122] (0.0003) (12.3) [0.4732]

9 53 0.0008 55 8.2778 67 0.0004 26 6.8314
(0.0003) (10.5) [0.3087] (0.0003) (14.7) [0.4466]

10 77 0.0008 38 10.2472 73 0.0004 25 6.8649
(0.0002) (12.3) [0.1750] (0.0003) (18.4) [0.4431]

11 77 0.0008 44 8.2683 72 0.0006 26 7.7110
(0.0002) (14.3) [0.3095] (0.0003) (23.7) [0.3588]

12 85 0.0008 78 6.1561 88 0.0008 34 6.8054
(0.0002) (16.3) [0.5216] (0.0003) (26.5) [0.4494]

13 69 0.0007 85 5.8494 89 0.0007 37 6.0817
(0.0002) (17.5) [0.5574] (0.0003) (28.7) [0.5302]

14 88 0.0006 72 8.0283 90 0.0007 41 6.7445
(0.0002) (19.6) [0.3301] (0.0004) (30.3) [0.4560]

15 77 0.0006 70 7.3656 69 0.0008 46 7.2723
(0.0002) (22.1) [0.3918] (0.0005) (36.4) [0.4011]

Note. The table reports the pricing of 9 excess bond holding returns for various values of the horizon S, and
allowing for an intercept. Standard errors are reported in parentheses and p-values in brackets. Estimation
is done using EL and two-stage GMM.
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Figure 9: Slow consumption adjustment factor and the cross-section of bond returns

Note. The figures show average and fitted returns on the cross-section of 9 bond portfolios (1961Q1-2013Q4),
sorted by maturity. The model is estimated by Empirical Likelihood for various values of consumption horizon
S. S = 0 corresponds to the standard consumption-based asset pricing model; S = 12 corresponds to the use
of ultimate consumption risk, where the cross-section of returns is driven by the their correlation with the
consumption growth over 13 quarters, starting from the contemporaneous one.

model. This is shown in Figure 9 which presents fitted and actual average excess returns

on the cross-section of 9 bond portfolios for several values of the consumption horizon S.

The contemporaneous correlation between bond returns and consumption growth (Panel A,

S = 0) is so low that not only it results is rather poor fit, but actually reverses the order of

the portfolios: i.e. the fitted average return from holding long-term bonds is smaller than

that of the short term ones. And again, once the horizon used to measure consumption risk

is increased, the quality of fit substantially improves, leading to an R-squared of 85% for

S = 12 (see Panel on the right).

The ability of slow consumption adjustment risk to capture a large proportion of the

cross-sectional variation in returns is not a feature of the bond market alone: it works equally

well on the joint cross-section of stocks and bonds, providing a simple and parsimonious one

factor model for co-pricing securities in both asset classes.

Table 4 summarises the model performance with various joint cross-sections of stocks

and bonds for different consumption horizons S. Compared to the standard case of S = 0,

slow consumption adjustment substantially improves model performance in a number of

ways. While a simple consumption-based asset pricing model is rejected by the J-test on

all the cross-section of stocks, the test values are dramatically improved over the range of

S = 10 − 12: in fact, based on Empirical Likelihood Estimation, the model is no longer
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Table 4: Expected Excess Returns and Consumption Risk, 1967:Q3-2013:Q4

Empirical Likelihood Generalised Method of Moments

Horizon S R2
adj(%) φ J-test R2

adj(%) φ J-test

(Quarters) (1) (2) (3) (4) (5) (6)

Panel A: 9 Bonds and Fama-French 6 portfolios

0 -13 -7 36.8568 70 60 36.3730
(26.3) [0.0013] (27.7) [0.0016]

10 95 23 7.275274 89 30 28.3589
(6.0) [0.9495] (6.8) [0.0194]

11 94 23 6.389318 94 32 29.3379
(6.5) [0.9724] (8.5) [0.0145]

12 91 22 5.864083 96 35 30.5354
(6.3) [0.9819] (9.4) [0.0101]

Panel B: 9 Bonds and Fama-French 25 portfolios

0 46 41 56.7788 64 73 157.2452
(17.8) [0.0084] (15.0) [0.0000]

10 75 20 24.3141 24 41 31.8799
(3.8) [0.8899] (6.1) [0.5719]

11 76 20 21.2727 45 21 26.3571
(3.7) [0.9563] (6.3) [0.8224]

12 70 18 20.9430 49 22 22.3989
(3.4) [0.9612] (7.7) [0.9364]

Panel C: 9 Bonds, Fama-French 6, and Industry 12 portfolios

0 -6 -3 59.7497 59 68 156.2215
(21.2) [0.0003] (15.0) [0.0000]

10 54 13 24.2148 -68 40 22.9235
(3.9) [0.6184] (7.0) [0.6891]

11 51 12 24.2189 -38 42 22.0777
(3.7) [0.6181] (7.0) [0.7334]

12 52 12 22.1532 -3 45 22.0186
(3.5) [0.7295] (6.4) [0.7364]

Panel D: 9 Bonds, Fama-French 25, and Industry 12 portfolios

0 22 19 82.6606 50 86 213.7053
(15.1) [0.0007] (14.2) [0.0000]

10 37 8 52.2543 -48 42 48.9612
(2.5) [0.2440] (5.3) [0.3551]

11 37 8 49.6145 -7 44 47.8821
(2.3) [0.3312] (5.6) [0.3963]

12 36 8 47.4384 16 48 41.7552
(2.2) [0.4138] (6.3) [0.6506]

Note. The table reports the pricing of excess returns of stocks and bonds, allowing for no intercept. Standard

errors are reported in parentheses and p-values in brackets. Estimation is done using EL and GMM.
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Figure 10: Cross-sectional spread of exposure to slow consumption adjustment risk
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Note. Panels present the spread of normalised betas for the various sets of assets and horizon S (0-15): (a)
9 bonds and 6 Fama-French portfolios, (b) 9 bonds and 25 Fama-French portfolios, (c) 9 bonds, 12 Industry
and 6 Fama-French portfolios, (d) 9 bonds, 12 Industry and 25 Fama-French portfolios. All the parameters
were estimated by Empirical Likelihood.

rejected in any of the cross-sections. Combined with the improved values of the power

parameter (φ), the accuracy of its estimation (lower standard errors), and a substantial

increase in the cross-sectional quality of fit, measured by the R2, Table 4 presents compelling

evidence in favour of the slow consumption adjustment risk being an important driver for the

cross-sections of both stocks and bonds. Appendix A.3 provides similar empirical evidence

for the alternative model specifications that also include a common or asset class-specific
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intercept as a proxy for model misspecification.

But why does the slow consumption adjustment risk provide a better fit for the cross-

sectional spread in expected returns? The empirical evidence, presented in the previous

section, suggests that both stocks and bonds tend to co-vary more with the consumption

growth over the next few periods (captured by the common unobservable factor and the

loadings on it). However, not only the SCA risk measure increases the average asset exposure

to consumption growth, it also improves the spread of the latter. While the standard one-

period consumption growth does not perform well in either dimensions, leading to the equity

premium puzzle and a relatively poor cross-sectional fit, the SCA factor seems to achieve both

objectives: it increases the amount of measured risk as well as its cross-sectional dispersion.

Figure 10 displays the dispersion of the model-implied scaled betas,11 associated with the

consumption growth over different horizon values and for different cross-sections of assets.

As we move away from the standard case of S = 0, two observations immediately arise. First,

there is a substantial improvement in the average asset exposure to consumption growth,

which leads to lower and more accurate estimates of the risk aversion. However, it is the

increase in the spread of betas, with a particular contribution from the stocks, which is most

striking. The ‘fanning out’ effect, observed for the higher values of the consumption horizon

S, further supports the hypothesis that the fundamental source of risk in the asset returns

is related to the aggregate consumption growth, and should take into account its slow speed

of adjustments to the common shocks.

Finally, the fact that there is a significant correlation between asset returns and con-

sumption growth over the several periods (both in terms of its level and spread), also serves

as an additional robustness check against a potential problem of spurious factors type (Kan

and Zhang (1999)), i.e. factors that are only weakly related to the asset returns and thus

only appear to be driving the cross-section of asset returns.

VI Conclusions

This paper provides empirical evidence that the slow consumption adjustment risk is an

important driver for both stock and bond returns. A flexible parametric model with com-

mon factors driving asset dynamics and consumption identifies a slow varying component of

consumption that responds to financial shocks. Both stocks and bonds load significantly on

SCA risk factor, generating a sizeable risk premium and a dispersion in returns, consistent

with the size and value anomalies, as well as the positive slope of the yield curve. As a

11We define betas as the ratio between the asset covariance with the model-implied scaled SDF and its
variance.
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result, our model explains between 36% and 95% of the time series variation in returns and

between 57% and 90% of the joint cross-sectional variation in stocks and bonds.

Moreover, we find that slow consumption adjustment innovations drive more than a

quarter of the time series variation of consumption growth, indicating that financial market

related shocks are first order drivers of consumption risk.

While generally consistent with the consumption dynamics postulated in the long run

risk framework, these empirical findings nevertheless pose several important questions. Can

the results be applied to other asset classes, such as currencies or commodities? What is the

nature of the unspanned factor, driving most of the time series variation in bonds?

31



References

Abel, A. B. (1990): “Asset Prices Under Habit Formation and Catching Up with the Joneses,”
American Economic Review, 80, 38–42.

Anatolyev, S. (2005): “GMM, GEL, Serial Correlation, and Asymptotic Bias,” Econometrica,
73, 983–1002.

Ang, A., and M. Ulrich (2012): “Nominal Bonds, Real Bonds, and Equity,” Manuscript,
Columbia University.

Bandi, F., and A. Tamoni (2015): “Business-Cycle Consumption Risk and Asset Prices,” avail-
able at SSRN: http://ssrn.com/abstract=2337973.

Bansal, R., R. F. Dittmar, and C. T. Lundblad (2005): “Consumption, Dividends, and the
Cross Section of Equity Returns,” The Journal of Finance, 60(4), pp. 1639–1672.

Bansal, R., D. Kiku, and A. Yaron (2012): “Risks For the Long Run: Estimation with Time
Aggregation,” NBER Working Papers 18305, National Bureau of Economic Research, Inc.

Bansal, R., and A. Yaron (2004): “Risks for the Long Run: A Potential Resolution of Asset
Pricing Puzzles,” Journal of Finance, 59(4), 1481–1509.

Basak, S., and H. Yan (2010): “Equilibrium Asset Prices and Investor Behaviour in the Presence
of Money Illusion,” Review of Economic Studies, 77(3), 914–936.

Bauwens, L., M. Lubrano, and J.-F. Richard (1999): Bayesian Inference in Dynamic Econo-
metric Models. Oxofrd University Press, Oxford.

Bekaert, G., E. Engstrom, and S. R. Grenadier (2010): “Stock and bond returns with
Moody Investors,” Journal of Empirical Finance, 17(5), 867–894.

Bekaert, G., and S. R. Grenadier (1999): “Stock and Bond Pricing in an Affine Economy,”
NBER Working Papers 7346, National Bureau of Economic Research, Inc.

Blanchard, O. J., and D. Quah (1989): “The Dynamic Effects of Aggregate Demand and
Supply Disturbances,” The American Economic Review, 79, 655–73.

Box, G. E. P., and D. A. Pierce (1970): “Distribution of Residual Autocorrelations in
Autoregressive-Integrated Moving Average Time Series Models,” Journal of the American
Statistical Association, 65(332), pp. 1509–1526.

Breeden, D. T., M. R. Gibbons, and R. H. Litzenberger (1989): “Empirical Test of the
Consumption-Oriented CAPM,” The Journal of Finance, 44(2), 231–262.

Brennan, M. J., A. W. Wang, and Y. Xia (2004): “Estimation and Test of a Simple Model
of Intertemporal Capital Asset Pricing,” The Journal of Finance, 59(4), 1743–1776.

Campbell, J. Y. (1996): “Understanding Risk and Return,” Journal of Political Economy, 104(2),
298–345.

Campbell, J. Y., and J. H. Cochrane (1999): “By Force of Habit: A Consumption-Based
Explanation of Aggregate Stock Market Behavior,” Journal of Political Economy, 107(2),
205–51.

Chamberlain, G. (1987): “Asymptotic Efficiency in Estimation with Conditional Moment Re-
strictions,” Journal of Econometrics, 34, 305–34.

Chernov, M., and P. Mueller (2012): “The term structure of inflation expectations,” Journal
of Financial Economics, 106(2), 367 – 394.

32



Chetty, R., and A. Szeidl (2015): “Consumption Commitments and Habit Formation,” Work-
ing Paper.

Cochrane, J. H., and M. Piazzesi (2005): “Bond Risk Premia,” American Economic Review,
95(1), 138–160.

Constantinides, G. M. (1990): “Habit Formation: A Resolution of the Equity Premium Puzzle,”
Journal of Political Economy, 98(2), 519–43.

Csiszar, I. (1975): “I-Divergence Geometry of Probability Distributions and Minimization Prob-
lems,” Annals of Probability, 3, 146–158.

Daniel, K. D., and D. Marshall (1997): “The Equity Premium Puzzle and the Risk-Free Rate
Puzzle at Long Horizons,” Macroeconomic Dynamics, 1(2), 452–84.

Duffie, D., and R. Kan (1996): “A Yield-Factor Model Of Interest Rates,” Mathematical Fi-
nance, 6(4), 379–406.

Epstein, L. G., and S. E. Zin (1989): “Substitution, Risk Aversion, and the Temporal Behavior
of Consumption and Asset Returns: A Theoretical Framework,” Econometrica, 57, 937–968.

Fama, E. F., and K. R. French (1992): “The Cross-Section of Expected Stock Returns,” The
Journal of Finance, 47, 427–465.

(1993): “Common Risk Factors in the Returns on Stocks and Bonds,” The Journal of
Financial Economics, 33, 3–56.

Fama, E. F., and J. MacBeth (1973): “Risk, Return and Equilibrium: Empirical Tests,” Journal
of Political Economy, 81, 607–636.

Flavin, M. (1981): “The Adjustment of Consumption to Changing Expectations about Future
Income,” Journal of Political Economy, 89, 974–1009.

Gabaix, X., and D. Laibson (2001): “The 6D bias and the equity premium puzzle,” in N.B.E.R.
Macroeconomics Annual 2001, ed. by B. Bernanke, and K. Rogoff, pp. 257–311. Cambridge:
MIT Press.

Ghosh, A., C. Julliard, and A. Taylor (2013): “What is the Consumption-CAPM missing?
An Information-Theoretic Framework for the Analysis of Asset Pricing Models,” London
School of Economics Manuscript.

Gurkaynak, Refet, B. S., and J. H. Wright (2007): “The US treasury yield curve: 1961 to
the present,” Journal of Monetary Economics, 54(8), 2291–2304.

Hall, R. E., and F. S. Mishkin (1982): “The Sensitivity of Consumption to Transitory Income:
Estimates from Panel Data on Households,” Econometrica, 50, 461–481.

Hansen, L. P. (1982): “Large Sample Properties of Method of Moments Estimators,” Economet-
rica, 50, 1029–1054.

Hansen, L. P., J. Heaton, J. Lee, and N. Roussanov (2007): “Intertemporal Substitution
and Risk Aversion,” in Handbook of Econometrics, ed. by J. Heckman, and E. Leamer, vol. 6
of Handbook of Econometrics, chap. 61. Elsevier.

Hansen, L. P., J. Heaton, and A. Yaron (1996): “Finite-Sample Properties of Some Alterna-
tive GMM Estimators,” Journal of Business and Economic Statistics, 14(3), 262–80.

Hansen, L. P., J. C. Heaton, and N. Li (2008): “Consumption Strikes Back? Measuring
Long-Run Risk,” Journal of Political Economy, 116(2), 260–302.

Hansen, L. P., and T. J. Sargent (2010): “Fragile Beliefs and the Price of Uncertainty,”
Quantitative Economics, 1(1), 129–162.

33



Hansen, L. P., and K. J. Singleton (1983): “Stochastic Consumption, Risk Aversion, and the
Temporal Behavior of Asset Returns,” Journal of Political Economy, 91, 249–68.

Jagannathan, R., and Y. Wang (2007): “Lazy Investors, Discretionary Consumption, and the
Cross-Section of Stock Returns,” The Journal of Finance, 62(4), pp. 1623–1661.

Julliard, C., and A. Ghosh (2012): “Can Rare Events Explain the Equity Premium Puzzle?,”
Review of Financial Studies, 25(10), 3037–3076.

Kan, R. M., and C. Zhang (1999): “Two-pass Tests of Asset Pricing Models with Useless
Factors,” Journal of Finance, 54, 204–35.

Kitamura, Y. (2001): “Asymptotic Optimality of Empirical Likelihood for Testing Moment Re-
strictions,” Econometrica, 69, 1661–1672.

(2006): “Empirical Likelihood Methods in Econometrics: Theory and Practice,” Cowles
Foundation Discussion Papers 1569, Cowles Foundation, Yale University.

Kitamura, Y., and M. Stutzer (1997): “An Information-Theoretic Alternative To Generalized
Method Of Moments Estimation,” Econometrica, 65(4), 861–874.

Koijen, R. S., H. Lustig, and S. V. Nieuwerburgh (2010): “The Cross-Section and Time-
Series of Stock and Bond Returns,” NBER Working Papers 15688, National Bureau of Eco-
nomic Research, Inc.

Lettau, M., and J. A. Wachter (2011): “The term structures of equity and interest rates,”
Journal of Financial Economics, 101(1), 90–113.

Lewellen, J., S. Nagel, and J. Shanken (2010): “A skeptical appraisal of asset pricing tests,”
Journal of Financial Economics, 96(2), 175–194.

Ljung, G. M., and G. E. P. Box (1978): “On a measure of lack of fit in time series models,”
Biometrika, 65(2), 297–303.

Lustig, H. N., and S. G. V. Nieuwerburgh (2005): “Housing Collateral, Consumption In-
surance, and Risk Premia: An Empirical Perspective,” The Journal of Finance, 60(3), pp.
1167–1219.

Lynch, A. W. (1996): “Decision Frequency and Synchronization Across Agents: Implications for
Aggregate Consumption and Equity Return,” Journal of Finance, 51(4), 1479–97.

Malloy, C. J., T. J. Moskowitz, and A. Vissing-Jorgensen (2009): “Long-Run Stockholder
Consumption Risk and Asset Returns,” The Journal of Finance, 64(6), 2427–2479.

Mamaysky, H. (2002): “A Model For Pricing Stocks and Bonds,” Yale School of Management
Working Papers ysm279, Yale School of Management.

Mankiw, N. G., and M. D. Shapiro (1986): “Risk and Return: Consumption Beta Versus
Market Beta,” Review of Economics and Statistics, 68, 452–59.

Mehra, R., and E. C. Prescott (1985): “The Equity Premium: A Puzzle,” Journal of Monetary
Economics, 15(2), 145–61.

Menzly, L., T. Santos, and P. Veronesi (2004): “Understanding Predictability,” Journal of
Political Economy, 112(1), 1–47.

Newey, W., and R. Smith (2004): “Higher Order Properties of GMM and Generalized Empirical
Likelihood Estimators,” Econometrica, 72, 219–255.

Parker, J. A., and C. Julliard (2003): “Consumption Risk and Cross-Sectional Returns,”
NBER Working Papers 9538, National Bureau of Economic Research, Inc.

34



(2005): “Consumption Risk and the Cross-Section of Expected Returns,” Journal of
Political Economy, 113(1).

Piazzesi, M., M. Schneider, and S. Tuzel (2007): “Housing, consumption and asset pricing,”
Journal of Financial Economics, 83(3), 531–569.

Primiceri, G. E. (2005): “Time Varying Structural Vector Autoregressions and Monetary Policy,”
Review of Economic Studies, 72(3), 821–852.

Stutzer, M. (1995): “A Bayesian approach to diagnosis of asset pricing models,” Journal of
Econometrics, 68(2), 367 – 397.

Ulrich, M. (2010): “Observable Long-Run Ambiguity and Long-Run Risk,” Columbia University
Manuscript.

Weil, P. (1989): “The Equity Premium Puzzle and the Risk-Free Rate Puzzle,” Journal of Mon-
etary Economics, 24, 401–421.

Yogo, M. (2006): “A Consumption-Based Explanation of Expected Stock Returns,” Journal of
Finance, 61(2), 539–580.

35



A Appendix

A.1 State Space Estimation and Generalisations

Let Π′ := [µ,H] , x′t := [1, z′t]. Under a (diffuse) Jeffreys’ prior the likelihood of the data in

equation (20) implies the posterior distribution

Π′|Σ, {zt}Tt=1 , {yt}
T
t=1 ∼ N

(
Π̂′OLS; Σ⊗ (x′x)

−1
)

where x contains the stacked regressors, and the posterior distribution of each element on

the main diagonal of Σ is given by

σ2
j

∣∣ {zt}t=1 ∼ Inv-Γ
(
(T −mj − 1) /2, T σ̂2

j,OLS/2
)

where mj is the number of estimated coefficients in the j-th equation. Moreover, F and Ψ

have a Dirac posterior distribution at the points defined in equation (17). Therefore, the

missing part necessary for taking draws via MCMC using a Gibbs sampler, is the conditional

distributions of zt. Since

yt

zt

∣∣∣∣∣ It−1,H,Ψ,Σ ∼ N

([
µ

Fzt−1

]
;

[
Ω H

H′ Ψ

])
,

where Ω := V art−1 (yt) = HΨH′ + Σ, this can be constructed, and values can be drawn,

using a standard Kalman filter and smoother approach. Let

zt|τ := E [zt|yτ ,H,Ψ,Σ] ; Vt|τ := V ar (zt|H,Ψ,Σ) .

where yτ denotes the history of yt until τ. Then, given z0|0 and V0|0, the Kalman filer

delivers:

zt|t−1 = Fz′t−1|t−1; Vt|t−1 = FVt−1|t−1F
′ + Ψ; Kt = Vt|t−1H

′ (HVt|t−1H
′ + Σ

)−1

zt|t = zt|t−1 + Kt

(
yt − µ−Hzt|t−1

)
; Vt|t = Vt|t−1 −KtHVt|t−1.

The last elements of the recursion, zT |T and VT |T , are the mean and variance of the normal

distribution used to draw zT . The draw of zT and the output of the filter can then be used

for the first step of the backward recursion, which delivers the zT−1|T and VT−1|T values

necessary to make a draw for zT−1 from a gaussian distribution. The backward recursion

can be continued until time zero, drawing each value of zt in the process, with the following
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updating formulae for a generic time t recursion:

zt|t+1 = zt|t + Vt|tF
′V−1

t+1|t
(
zt+1 − Fzt|t

)
; Vt|t+1 = Vt|t −Vt|tF

′V−1
t+1|tFVt|t.

Hence parameters and states can be drawn via Gibbs sampler using the following algo-

rithm:

1. Take a guess Π̃′ and Σ̃−1 (e.g. freq. estimate), and use it to construct initial draws for

µ and H. Using also F and Ψ, draw the zt history using the Kalman recursion above

with (Kalman step)

zt ∼ N
(
zt|t+1; zt|t+1

)
.

2. Conditioning on {zt}Tt=1 (drawn at the previous step) and {yt}Tt=1 run OLS imposing

the zero restrictions and get Π̂′OLS and Σ̂OLS, and draw Π̃′ and Σ̃−1 from the N-i-Γ.

Use the draws as the initial guess for the previous point of the algorithm (N-i-Γ step),

and repeat.

Computing posterior confidence intervals for the cross-sectional performance of the model,

conditional on the data, is relatively simple since, conditional on a draw of the time series

parameters, estimates of the risk premia (λ’s in equations (21) and (22)) are just a mapping

obtainable via the linear projection of average returns on the asset loadings in H. Hence, to

compute posterior confidence intervals for the cross-sectional analysis, we repeat the cross-

sectional estimation for each posterior draw of the time series parameters, and report the

posterior distribution of the cross-sectional statistics across these draws..

A.2 The Moving Average Representation of The Long Run Risk

Process

We we assume the same data generating process as in Bansal and Yaron (2004), with the only

exception that we introduce a square-root process for the variance, as in Hansen, Heaton,

Lee, and Roussanov (2007), that is:

∆ct,t+1 = µ+ xt + σtηt+1; xt+1 = ρxt + φeσtet+1; σ2
t+1 = σ2(1− ν1) + ν1σ

2
t + σwσtwt+1,

where ηt, et, wt, ∼ iidN (0, 1). The calibrated monthly parameter values are: µ = 0.0015,

ρ = 0.979, φe = 0.044, σ = 0.0078, ν1 = 0.987, σw = 0.00029487. To extract the quarterly

frequency moving average representation of the process, we proceed in two steps. First,

we simulate a long sample (five million observations) from the above system treating the
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given parameter values as the truth. Second, we aggregate the simulated data into quarterly

observation and we use them to estimate, via MLE, the moving average representation of

consumption growth in equation (8).
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A.3 Additional Empirical Results
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Figure A1: Autocorrelation structure of consumption growth.

Note. Left panel: autocorrelation function of consumption growth (∆ct,t+1+S) with 95% and 99% confidence
bands. Right panel: p−values of Ljung and Box (1978) (triangles) and Box and Pierce (1970) (circles) tests.
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Figure A2: Slow Consumption Adjustment response to the common factor (ft) shock.

Note. Posterior means (continuous line with circles) and centred posterior 90% (dashed line) and 68% (dotted
line) coverage regions. Triangles denote Bansal and Yaron (2004) implied values.
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Table A1: Expected Excess Returns and Consumption Risk, 1967:Q3-2013:Q4

Empirical Likelihood Generalised Method of Moments

Horizon S R2
adj(%) αb αs φ J-test R2

adj(%) αb αs φ J-test

(Quarters) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Panel A: 9 Bonds and Fama-French 6 portfolios

0 -6 0.0001 0.0162 -74 59.7497 71 0.0003 0.0137 33 38.3181
(0.0002) (0.0045) (21.2) [0.0003] (0.0003) (0.0069) (42.1) [0.0001]

10 54 0.0004 0.0105 22 24.2148 29 0.0006 0.0132 28 17.3421
(0.0003) (0.0046) (3.9) [0.6184] (0.0004) (0.0046) (6.9) [0.1372]

11 51 0.0005 0.0099 24 24.2189 44 0.0008 0.0131 30 17.6300
(0.0003) (0.0047) (3.7) [0.6181] (0.0003) (0.0048) (8.3) [0.1274]

12 52 0.0005 0.0093 22 22.1532 53 0.0009 0.0136 32 18.6997
(0.0003) (0.0049) (3.5) [0.7295] (0.0003) (0.0050) (9.0) [0.0960]

Panel B: 9 Bonds and Fama-French 25 portfolios

0 50 -0.0006 0.0130 60 62.3266 61 0.0011 0.0125 50 226.2077
(0.0002) (0.0045) (21.2) [0.0007] (0.0001) (0.0038) (15.3) [0.0000]

10 72 -0.0002 0.0104 19 23.1802 26 0.0019 0.0063 37 44.4437
(0.0003) (0.0038) (3.9) [0.8425] (0.0003) (0.0018) (5.9) [0.0558]

11 79 -0.0002 0.0096 18 20.8589 56 0.0020 0.0052 39 33.7601
(0.0002) (0.0039) (3.9) [0.9156] (0.0003) (0.0020) (6.5) [0.3355]

12 78 -0.0001 0.0096 17 20.4496 64 0.0018 0.0065 42 28.8556
(0.0002) (0.0040) (3.7) [0.9257] (0.0002) (0.0015) (7.2) [0.5768]

Panel C: 9 Bonds, Fama-French 6, and Industry 12 portfolios

0 64 0.0000 0.0119 -14 59.4323 -33 0.0006 0.0239 31 124.6547
(0.0002) (0.0041) (22.3) [0.0001] (0.0001) (0.0027) (18.4) [0.0000]

10 72 0.0003 0.0131 14 21.9269 -77 0.0016 0.0140 32 44.9201
(0.0003) (0.0039) (4.3) [0.5836] (0.0003) (0.0024) (6.3) [0.0060]

11 70 0.0004 0.0119 11 24.8752 -53 0.0018 0.0140 34 37.2377
(0.0002) (0.0040) (3.9) [0.4126] (0.0003) (0.0023) (7.0) [0.0414]

12 72 0.0004 0.0115 10 24.4976 2 0.0019 0.0107 38 29.5539
(0.0002) (0.0041) (3.7) [0.4335] (0.0003) (0.0024) (7.7) [0.2000]

Panel D: 9 Bonds, Fama-French 25, and Industry 12 portfolios

0 54 0.0005 0.0124 23 78.2258 36 0.0007 0.0146 58 269.4971
(0.0002) (0.0036) (16.7) [0.0008] (0.0002) (0.0027) (13.4) [0.0000]

10 61 -0.0002 0.0114 6 55.7091 -29 0.0018 0.0093 36 71.4739
(0.0003) (0.0034) (2.5) [0.0926] (0.0003) (0.0013) (4.7) [0.0041]

11 62 -0.0002 0.0112 6 53.6016 8 0.0020 0.0090 37 60.1299
(0.0002) (0.0034) (2.4) [0.1289] (0.0003) (0.0013) (4.8) [0.0430]

12 62 -0.0002 0.0111 6 51.8898 25 0.0019 0.0082 42 47.2360
(0.0002) (0.0034) (2.2) [0.1659] (0.0003) (0.0012) (5.4) [0.3036]

Note. The table reports the pricing of excess returns of stocks and bonds, allowing for separate asset class-

specific intercepts. Standard errors are reported in parentheses and p-values in brackets. Estimation is done

using EL and GMM.
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Table A2: Expected Excess Returns and Consumption Risk, 1967:Q3-2013:Q4

Empirical Likelihood Generalised Method of Moments

Horizon S R2
adj(%) α φ ELR-test R2

adj(%) α φ J-test

(Quarters) (1) (2) (3) (4) (5) (6) (7) (8)

Panel A: B Bonds and Fama-French 6 portfolios

0 -30 0.0002 -16 30.1955 73 0.0007 73 35.0646
(0.0002) (25.0) [0.0044] (0.0003) (27.1) [0.0008]

10 94 0.0008 23 11.5946 91 0.0009 29 24.9738
(0.0003) (6.0) [0.5611] (0.0004) (6.8) [0.0233]

11 95 0.0006 24 10.4758 94 0.0011 32 24.4029
(0.0003) (6.7) [0.6546] (0.0003) (8.5) [0.0276]

12 92 0.0005 23 11.1154 96 0.0012 34 25.2110
(0.0003) (6.5) [0.6011] (0.0003) (9.3) [0.0217]

Panel A: B Bonds and Fama-French 25 portfolios

0 54 -0.0004 52 78.6597 60 0.0018 61 321.3738
(0.0002) (18.2) [0.0000] (0.0001) (15.3) [0.0000]

10 74 -0.0001 19 68.5008 38 0.0025 38 48.0606
(0.0002) (3.7) [0.0002] (0.0003) (5.7) [0.0340]

11 76 0.0000 20 67.9188 62 0.0024 40 35.1659
(0.0002) (3.7) [0.0002] (0.0003) (6.0) [0.3205]

12 70 0.0000 18 71.0791 67 0.0029 44 30.5687
(0.0002) (3.4) [0.0001] (0.0002) (7.4) [0.5390]

Panel C: 9 Bonds, Fama-French 6, and Industry 12 portfolios

0 -6 0.0001 -6 63.2328 61 0.0017 55 273.0204
(0.0002) (21.9) [0.0002] (0.0002) (15.2) [0.0000]

10 56 0.0009 14 56.6896 -24 0.0037 35 51.9830
(0.0003) (4.0) [0.0003] (0.0003) (6.4) [0.0012]

11 51 0.0009 12 58.4329 -9 0.0042 37 38.4378
(0.0002) (3.7) [0.0002] (0.0003) (6.9) [0.0419]

12 52 0.0009 12 58.0225 10 0.0039 41 29.1776
(0.0002) (3.6) [0.0002] (0.0003) (6.5) [0.2566]

Panel D: 9 Bonds, Fama-French 25, and Industry 12 portfolios

0 26 -0.0003 22 146.685 54 0.0016 69 356.9325
(0.0002) (15.2) [0.0000] (0.0002) (13.5) [0.0000]

10 38 -0.0002 8 141.4802 -25 0.0039 39 77.4115
(0.0002) (2.5) [0.0000] (0.0003) (4.8) [0.0014]

11 38 -0.0002 8 140.6384 16 0.0041 39 66.0979
(0.0002) (2.3) [0.0000] (0.0003) (4.9) [0.0172]

12 37 -0.0002 8 140.8904 29 0.0041 43 51.9741
(0.0002) (2.2) [0.0000] (0.0003) (5.6) [0.1912]

Note. The table reports the pricing of excess returns of stocks and bonds, allowing for a common intercept.

Standard errors are reported in parentheses and p-values in brackets. Estimation is done using EL and

GMM.
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Table A3: Expected Excess Returns and Consumption Risk, 1967:Q3-2013:Q4

Empirical Likelihood Generalised Method of Moments

Horizon S R2
adj(%) α φ ELR-test R2

adj(%) α φ J-test

(Quarters) (1) (2) (3) (4) (5) (6) (7) (8)

0 -30 0.0002 -16 30.1955 73 0.0007 73 35.0646
(0.0002) (25.0059) [0.0044] (0.0003) (27.1) [0.0008]

1 50 0.0005 55 19.8352 64 0.0006 50 26.7987
(0.0003) (16.5936) [0.0994] (0.0003) (16.4) [0.0133]

2 3 0.0008 50 15.9515 39 0.0008 45 20.5230
(0.0004) (11.4430) [0.2517] (0.0004) (11.3) [0.0829]

3 27 0.0007 45 14.3198 55 0.0007 40 20.5313
(0.0004) (9.3960) [0.3517] (0.0004) (9.4) [0.0827]

4 -33 0.0004 40 12.6842 16 0.0004 36 18.8278
(0.0003) (7.8412) [0.4725] (0.0003) (7.7) [0.1285]

5 58 0.0004 29 11.8102 42 0.0005 31 19.6120
(0.0003) (6.5887) [0.5433] (0.0003) (6.7) [0.1053]

6 67 0.0004 27 12.0794 53 0.0005 29 20.0162
(0.0003) (6.0256) [0.5211] (0.0003) (6.2) [ 0.0948]

7 61 0.0002 26 11.9012 43 0.0004 28 22.5791
(0.0003) (5.8619) [0.5358] (0.0003) (6.0) [0.0470]

8 89 0.0003 25 12.3113 74 0.0006 29 23.9049
(0.0003) (5.8866) [0.5023] (0.0003) (6.3) [0.0320]

9 95 0.0003 25 13.0312 92 0.0009 29 24.9160
(0.0003) (5.9862) [0.4454] (0.0003) (6.4) [0.0237]

10 94 0.0008 23 11.5946 91 0.0009 29 24.9738
(0.0003) (5.9595) [0.5611] (0.0004) (6.8) [0.0233]

11 95 0.0006 24 10.4758 94 0.0011 32 24.4029
(0.0003) (6.7275) [0.6546] (0.0003) (8.5) [0.0276]

12 92 0.0005 23 11.1154 96 0.0012 34 25.2110
(0.0003) (6.5436) [0.6011] (0.0003) (9.3) [0.0217]

13 86 0.0004 22 11.8978 96 0.0012 35 26.5862
(0.0003) (6.3313) [0.5360] (0.0003) (9.6) [0.0142]

14 85 0.0004 23 11.7044 97 0.0013 42 18.5716
(0.0003) (6.5983) [0.5520] (0.0005) (13.2) [0.1370]

15 79 0.0005 21 13.4734 96 0.0021 43 32.4073
(0.0003) (6.1575) [0.4120] (0.0004) (12.7) [0.0021]

Note. The table reports the pricing of 9 excess bond holding returns and 6 Fama-French portfolios, sorted

on size and book-to-market. We report the results for various values of the horizon parameters S and allow

for a common intercept. Standard errors are reported in parentheses and p-values in brackets. Estimation

is done using EL and GMM.
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