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Abstract

This paper uses recently available data on the top of the wealth distribution to study the

relationship between asset prices and wealth inequality. I document three stylized facts: (1) the

share of wealth invested in equity increases sharply in the right tail of the wealth distribution,

(2) when stock market returns are high, wealth inequality increases and (3) higher wealth

inequality predicts lower future stock returns. These facts correspond to the basic predictions

of asset pricing models with heterogeneous agents. Quantitatively, however, standard models

with heterogeneous agents cannot fully capture the joint dynamics of asset prices and the wealth

distribution. Augmenting the model with additional sources of fluctuations in wealth inequality,

namely in the form of time-varying investment opportunities for wealthy households, is crucial

to match the observed fluctuations in wealth inequality and in asset prices.
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1 Introduction

Recent empirical studies have uncovered important fluctuations in wealth inequality over the last

century.1 Volatile stock market returns are a potential candidate to account for these fluctuations.

Conversely, a large theoretical literature in asset pricing examines the role of household heterogene-

ity in shaping asset prices, but seldom considers its implication for wealth inequality. In this paper,

I leverage recently available data on wealth inequality to examine empirically and theoretically the

interplay between asset prices and the wealth distribution.

I focus on the following mechanism. Risk-tolerant investors hold more risky assets, accumulate

more wealth, and disproportionately end up at the top of the wealth distribution. As a consequence,

in periods when stocks enjoy large realized returns, investors at the top of the wealth distribution

gain more than the rest, i.e. wealth inequality increases. In turn, as a larger share of wealth falls

into the hands of risk-tolerant households, the aggregate demand for risk increases, which lowers

risk premia and pushes up asset prices, i.e. higher wealth inequality predicts lower future returns. I

confirm empirically each step of this mechanism. Wealthy households own more equity: the average

household invests 40% of its wealth in equity, while the households in the top 0.01% invest 75%. In

line with these magnitudes, in response to a realized stock return of 10%, the wealth share of the

top 0.01% increases by 3.5% (7.5% minus 4%). Consistent with the last step of the mechanism, a

one standard deviation increase in the wealth share of the top 0.01% predicts lower future excess

returns by 5 percentage points.

I then evaluate whether this mechanism can quantitatively account for asset prices and the

wealth distribution in equilibrium. I use the reduced form evidence I documented earlier to esti-

mate a state-of-the-art asset pricing model with heterogeneous agents. I find that the standard

model cannot jointly match asset prices and the wealth distribution. Specifically, the model cannot

generate the high volatility of asset prices without implying an excessive level of inequality com-

pared to the data. To solve this tension, I propose a parsimonious deviation from the standard

model. More precisely, I augment the model with fluctuations in the investment opportunities of

the rich relative to the poor. These shocks amplify fluctuations in asset prices without changing

the average level of inequality, thereby resolving the tension put forth earlier. Furthermore, these

shocks can explain why inequality somtimes increases in time of low asset returns, like in the 2000s.

The paper proceeds in three stages. First, I present three new stylized facts on the relation-

ship between asset prices and the wealth distribution. Using the Survey of Consumer Finances,

1See, for instance, Kopczuk and Saez (2004), Piketty (2014), and Saez and Zucman (2016).
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I document a substantial heterogeneity in portfolio holdings within the right tail of the wealth

distribution. While the share of wealth invested in equity is essentially flat over the majority of the

wealth distribution, it increases sharply within the top percentiles. As noted above, the average

household invests 40% of his wealth in equity while the households in the top 0.01% invest 75%

of their wealth in equity. Importantly, the disproportional exposure of the households in the top

percentiles matters quantitatively for asset prices because these households hold a large fraction of

aggregate wealth. This variation is almost entirely driven by differences in the amount that stock-

holders invest, rather than by participation decisions. In the time series, this heterogeneity implies

that realized stock returns generate changes in wealth inequality. I use top wealth shares series

constructed from tax filings and from Forbes 400 to estimate the exposure of the top percentiles

to stock market returns.2 I find that this exposure is remarkably in line with the estimates from

portfolio holdings: in response to a realized stock return of 10%, the average wealth increases by

4%, while the average wealth for the top 0.01% increases by 7.5%. Therefore, the wealth share of

the top 0.01% increases by the difference of 3.5%.

The flip side of this relationship is that, in an economy where inequality is high, the share of

wealth owned by risk-tolerant investors is high, and therefore, in equilibrium, risk premia are low.

Thus, higher inequality should predict lower future returns. Indeed, in the data, the wealth share

of the top 0.01% is a robust predictor of stock market returns. A one standard deviation increase

in the wealth share of the top 0.01% predicts lower future excess returns by 5 percentage points

over the following year. In particular, the decrease in risk premia at the end of the 20th century

is concomitant with a large increase in wealth inequality. The predictive power of the top wealth

share is robust to the inclusion of other predictors put forward in the literature.

Second, I examine whether those facts are quantitatively consistent with a state-of-the-art

asset pricing model with heterogeneous agents. Specifically, I study a continuous-time, overlapping

generations framework where agents differ with respect to their risk aversion and intertemporal

elasticity of substitution, along the lines of Gârleanu and Panageas (2015). I study the dynamics

of asset prices and of the wealth distribution in the model. The model can qualitatively generate

my three stylized facts. Moreover, as in the data, the wealth distribution exhibits a Pareto tail,

shaped by the growth rate of the wealth of top investors relative to the rest of the economy.

Yet, quantitatively, the model cannot jointly match asset prices and the wealth distribution.

Specifically, the model cannot generate volatile asset prices without implying an excessive level

of inequality. This is because, to generate volatile asset prices, the model requires a high degree

2I use the series of top wealth shares constructed by Kopczuk and Saez (2004) and Saez and Zucman (2016).
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of heterogeneity. Intuitively, large variations in asset prices can come from large variations in the

relative wealth shares of different agents or large differences in their demand for assets. Both require

a high degree of preference heterogeneity. But this persistent heterogeneity in preferences gives rise

to an excessive level of inequality in the long run: calibrations that fit asset prices generate wealth

distributions close to Zipf’s law, i.e. with a power law exponent close to 1, whereas the wealth

distribution in the data exhibits a thinner tail, a power law exponent of 1.5. Importantly, this

tension arises independently of the source of preference heterogeneity: it is present whether one

considers heterogeneity in risk aversion, in intertemporal elasticity of substitution, or in subjective

discount rates.

Third, I propose a parsimonious deviation from the standard model. Specifically, I consider

the impact of low-frequency changes in the investment opportunities of the rich relative to the

poor. These shocks create exogenous changes in wealth inequality, thereby increasing fluctuations

in asset prices. However, the transitory nature of the shocks limits their impact on the long run

level of inequality. After incorporating these shocks in my framework, I show that the augmented

model can match quantitatively asset prices and wealth inequality. Furthermore, these shocks

help explain otherwise puzzling periods in the data, like the increase of wealth inequality in the

2000s, a period of low asset returns. During an episode when the wealthy have predictably better

investment opportunities — for instance because of the development of a new technology — there

is a persistent rise in wealth inequality. At the same time, because of these good future prospects,

wealthy households demand more assets today, which gives rise to low asset returns during the

episode.

Overall, these results suggest a strong link between asset prices and wealth inequality. While a

number of studies focus on the role of the risk-free rate of return in shaping the wealth distribution,

I document a more important role for the rate of return on risky assets.3 Moreover, I show

that a simple closed-circuit view, where aggregate endowment shocks feed through heterogeneous

preferences to asset prices, does not give the full picture. It is necessary to consider additional,

more specific, shocks to wealth inequality to understand asset prices.

Related Literature. This paper lies at the intersection of several strands of literature in finance

and macroeconomics. This paper relates to the large asset pricing literature of models with het-

erogeneous investors, in particular Dumas (1989), Wang (1996), Basak and Cuoco (1998), Gollier

(2001), Chan and Kogan (2002), Gomes and Michaelides (2008), Guvenen (2009), and Gârleanu

3See, for instance, Piketty (2014) and Acemoglu and Robinson (2015).
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and Panageas (2015). My contribution is to bring these models to the data using the recently

available data on the wealth distribution. I argue that the data suggest the existence of additional

shocks that redistribute investment opportunities across households. This ties my paper to a grow-

ing literature which examines the impact of re-distributive shocks on asset prices, either through

technology shocks (Kogan et al. (2013), Gârleanu et al. (2012)), fluctuating capital share (Lettau et

al. (2016), Greenwald et al. (2014)), tax rates (Pastor and Veronesi (2016)) or idiosyncratic shocks

(Constantinides and Duffie (1996), Storesletten et al. (2007), Schmidt (2016)).

The paper also relates to a growing literature in household finance which examines the het-

erogeneity in portfolio choice across the wealth distribution. Guiso et al. (1996), Carroll (2000),

Wachter and Yogo (2010), Calvet and Sodini (2014) and Bach et al. (2015) have documented that

the share of wealth invested in risky assets increases with wealth. I show that the increase is en-

tirely accounted for by the top percentiles, and that this heterogeneity generates large fluctuations

in wealth inequality over time. A number of papers have documented the heterogeneity in con-

sumption exposure between stockholders and non-stockholders (Mankiw and Zeldes (1991), Brav

et al. (2002), Malloy et al. (2009), Parker and Vissing-Jørgensen (2009)). This literature shows

that the disproportional exposure of stockholders, together with the high volatility of asset prices,

can explain the equity premium puzzle. My contribution is to focus on the heterogeneity within

stockholders and examine whether the heterogeneity can generate a high volatility of asset returns

in equilibrium to begin with.

This paper also contributes to the recent literature on wealth inequality. On the empirical side,

I rely critically on the recent wealth shares constructed by Kopczuk and Saez (2004) and Saez

and Zucman (2016). On the theoretical side, mechanisms generating the Pareto tail of the wealth

distribution have been studied in Gabaix (1999) and Gabaix (2009). The relationship between asset

prices and the wealth distribution in equilibrium models has been recently discussed in Benhabib et

al. (2011), Achdou et al. (2016), Jones (2015) and Cao and Luo (2016). In particular, Eisfeldt et al.

(2016) examine the joint equilibrium of asset prices and of the wealth distribution in an economy

populated with investors that differ with respect to their level expertise. Relative to this literature,

I explore the case of a stochastic economy, where households have different exposures to aggregate

shocks, and therefore, where the wealth distribution is stochastic.

In a contemporaneous working paper, Toda and Walsh (2016) use the series on top income shares

from Piketty and Saez (2003) to show that fluctuations in income inequality negatively predict

future excess stock returns. In contrast, I show that fluctuations in wealth inequality negatively

predicts future excess stock returns, using the series of top wealth shares from Kopczuk and Saez
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(2004). Fluctuations in income inequality are conceptually unrelated to fluctuations in wealth

inequality.4 Moreover, I examine this interplay between asset prices and wealth inequality within

a quantitative model. I also emphasize the importance of other moments regarding the wealth

distribution to estimate asset pricing models with heterogeneous agents: the exposure of top wealth

shares to stock market returns and the Pareto tail of the wealth distribution.

Road Map The rest of my paper is organized as follows. In Section 2, I document three styl-

ized facts consistent with heterogeneous agents models. In Section 3, I present a standard asset

pricing model with heterogeneous agents to interpret these findings. In Section 4, I show that the

standard model has difficulty matching asset prices and wealth moments. In Section 5, I propose

a parsimonious deviation from the standard model. Section 6 concludes.

2 Three Facts on Asset Prices and Wealth Inequality

I now analyze data about the top of the wealth distribution to document three stylized facts

predicted by heterogeneous agents models. In particular, I focus on the following mechanism.

Risk-tolerant investors hold more risky assets and disproportionately end up at the top of the

wealth distribution; thus, richer households own more risky assets. As a consequence, in periods

when stocks enjoy large realized returns, investors at the top of the wealth distribution gain more

than the rest; thus, inequality increases. In turn, as a larger share of wealth falls into the hands

of risk-tolerant households, the aggregate demand for risk increases, which lowers risk premia and

pushes up asset prices; thus, higher inequality predicts lower future returns.

After introducing the data, I document facts reflecting each step of this mechanism.

2.1 Data

In order to analyze the investments and the wealth dynamics of households across the wealth

distribution, I combine different data sources.

Equity Investment. I measure the heterogeneity in investment decisions across households using

the Survey of Consumer Finances (SCF). The survey is a repeated cross-section of about 4,000

households per survey year, including a high-wealth sample. The survey is conducted every three

years, from 1989 to 2013. The respondents provide information on their networth, including their

4In particular, business cycles fluctuations in income inequality are driven by fluctuations in the aggregate level

of realized capital gains, which partly reflects the amount of trades. See, for instance, Saez and Zucman (2016).
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investment in public and private equity. I define the equity share as the total investment in equity

over networth. I define the set of entrepreneurs as the households with equity held in an actively

managed business.5

It remains difficult for surveys to capture the very top households. In particular, by design, the

Survey of Consumer Finance excludes the households who appear on Forbes Magazine’s list of the

400 wealthiest Americans (Kennickell (2009), Saez and Zucman (2016)). Moreover, the SCF is only

available every three years since 1989 and it cannot be used to measure business cycle fluctuations

in the wealth distribution.

Wealth Share. I am interested in measuring changes in the wealth distribution and their rela-

tionship to stock returns. Therefore, I need yearly estimates of the wealth distribution that cover

several business cycles. I use two datasets that jointly cover most of the last 100 years.

The first wealth series is the annual series of top wealth shares constructed by Kopczuk and

Saez (2004). This series is constructed from estate tax returns, which report the wealth of deceased

households. The wealth distribution of the deceased is used to capture the wealth distribution

among the living using the mortality multiplier technique, which amounts to weighting each estate

tax return by the inverse probability of death (depending on age and gender). The series is con-

structed using the whole universe of estate tax returns during the 1916-1945 period, and a stratified

sample of micro-files for 1965, 1969, 1972, 1975 and 1982-2000.

I supplement the estate tax returns with the list of the wealthiest 400 Americans constructed

by Forbes Magazine every year since 1982, which offers an unparalleled view on the right tail

of the wealth distribution. The list is created by a dedicated staff of the magazine, based on a

mix of public and private information.6 The total wealth of individuals on the list accounts for

approximately 1.5% of total aggregate wealth. By combining the lists over time, I am able to track

the wealth of the same individuals over time.7

One data series that has continuous coverage between 1917 and 2012 is Saez and Zucman

(2016). The series is constructed from income tax returns. The series builds in smoothing over

5The definition follows Moskowitz and Vissing-Jørgensen (2002).
6Forbes Magazine reports: “We pored over hundreds of Securities Exchange Commission documents, court records,

probate records, federal financial disclosures and Web and print stories. We took into account all assets: stakes in

public and private companies, real estate, art, yachts, planes, ranches, vineyards, jewelry, car collections and more.

We also factored in debt. Of course, we don’t pretend to know what is listed on each billionaire’s private balance

sheet, although some candidates do provide paperwork to that effect.”
7This extends the construction of Capehart (2014) to the recent years. Recent empirical studies examining the

Forbes 400 list also include Klass et al. (2006) and Kaplan and Rauh (2013).
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time to focus on low-frequency fluctuations in wealth. Therefore, it is not the most adequate to

examine fluctuations in wealth at the business cycle frequency. Still, I show that my results hold

qualitatively with this dataset in Appendix A.2.

Asset Prices. I measure stock returns from the value-weighted CRSP index and risk-free rates

from the Treasury Bill rate after 1927. For the period before 1927, I obtain stock returns and

risk-free rates from Shiller (2015).8 I also use the set of predictors constructed in Welch and Goyal

(2008), which includes, in particular, the price-dividend ratio.

2.2 Investment in Equity Across the Wealth Distribution

The basic building block of heterogeneous agents models is that there is a group of investors that

disproportionately invests in equity. In contrast, if investment in equity were proportional to

wealth, movements in stock prices would not generate movements in the wealth distribution and,

conversely, movements in the wealth distribution would not generate movements in stock prices.

Figure 1a plots the average equity share within percentile bins across the wealth distribution.

The average equity share of 0.4 masks a substantial heterogeneity across households. The equity

share is essentially flat at 0.2 over the majority of the wealth distribution, but increases sharply

within the top 1%. Figure 1b plots the equity share with respect to the log top percentiles, showing

that the equity share is approximately linear in the log percentile at the top of the distribution.

The figure suggests that the bulk of the heterogeneity is concentrated within the top percentiles.

The top percentiles are likely to be important for asset prices because they own a large share of

wealth: the vertical red line in Figure 1a shows that half of the total net worth is owned by the

households in the top 3%.

Panel A of Table 1 reports the corresponding average equity share in four groups of households:

all households, households in the top 1%−0.1%, households in the top 0.1%−0.01%, and households

in the top 0.01%. The average equity share for households in the top 0.01% is 0.75, while the average

equity share for all households is 0.4; thus, wealthy households hold twice as much equity as the

average household.

A stylized fact in the household finance literature is that stock market participation increases

with wealth (Vissing-Jørgensen (2002b)). Therefore, the increase in the equity share within the

top percentiles could be driven by an increase in the proportion of stockholders (i.e. the extensive

margin). However, Panel B of Table 1 shows that the percentage of stockholders is constant within

8Available at http://aida.wss.yale.edu/~shiller/data/chapt26.xlsx.

8



the top percentiles (90%). The increase in the equity share is entirely driven by the increase

within stockholders. The heterogeneity between stockholders and non-stockholders generates a lot

of variations at the bottom of the wealth distribution, but these variations account for a small share

of total wealth.

Investment in risky assets comes mainly in two forms: public equity and private equity. Panel

A of Table 1 decomposes the increase in equity share across the top percentiles between the two

types of equity. The decomposition reveals that the increase in the equity share is mostly driven

by an increase in the share of wealth invested in private equity. Panel C of Table 1 shows that the

proportion of entrepreneurs increases sharply in the top percentile: the proportion of households

with an actively managed business is 78.5% in the Top 0.01%, compared to 10% in the general

population.9 The wealth of these entrepreneurs is mostly invested in their private business. A

potential concern is that, if entrepreneurs cannot trade or sell their firms easily, the heterogeneity

in private equity holdings may have no impact on stock market prices. However, Panel C of Table 1

shows that entrepreneurs hold large amounts of public equity (15%). Even with illiquid businesses,

entrepreneurs can adjust their overall risky holdings at the margin.

These results show that households at the top of the wealth distribution disproportionately

invest in equity. This suggest that they are disproportionately exposed to aggregate risk. An

important caveat is that we do not observe the details of the equity positions, public or private,

and they might have different characteristics, potentially correlated with wealth.10 To get around

this issue, I now turn to time series evidence on top wealth shares.

2.3 Wealth Exposure to the Stock Market Across the Wealth Distribution

Because households across the wealth distribution invest differently in equity, stock market returns

generate fluctuations in the wealth distribution. Following a positive return, wealthy households

gain more relative to other agents, and therefore wealth inequality increases. I now quantify this

mechanism.

To do so, I use wealth series from Kopczuk and Saez (2004) and Forbes 400. I measure the

exposure of top households to the stock market by regressing the growth of total wealth in a

9Similarly, Hurst and Lusardi (2004), using the Panel Study of Income Dynamics (PSID), show that the propensity

of entrepreneurship increases sharply with wealth in the top percentiles.
10For instance, Roussanov (2010) study preferences such that the exposure to idiosyncratic shocks increases with

wealth, but the exposure to aggregate shocks decreases with wealth
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percentile group on excess stock market returns, i.e.,

log
W p→p′
t+1

W p→p′
t−1

= α+ β(rMt − r
f
t ) + γrft + εt (1)

where W p→p′
t denotes the total wealth of households between the percentiles p and p′ in year t, rMt

is the stock market return, and rft is the risk-free rate.11

The first four columns in Table 2 (Panel A) report the estimates for β, the wealth exposure to

the stock market, for four groups of households: all households, households in the top 1 − 0.1%,

households in the top 0.1% − 0.01%, and households in the top 0.01%. The estimated exposure

β increases monotonically with the top percentiles, from β = 0.44 for the average household, to

β = 0.75 for the households in the top 0.01%. These estimates exactly match the equity shares

estimated in Table 1, even though the time periods are different. This is what we expect if a dollar

invested in equity has the same exposure as a dollar invested in the stock market.

The last two columns of Panel A in Table 2 report the wealth exposure of the Top 400 and of

the Top 100 from Forbes. The estimates for the households in the extreme tail of the distribution

are similar in magnitude to the estimates for the households in the top 0.01% from tax data.

Since top households are comparatively more exposed to the stock market, high stock market

returns increase inequality. Panel B of Table 2 confirms this relationship by regressing top wealth

shares on stock market returns. The estimate 0.31 corresponds to the difference of exposure between

households at the top and the average household (0.75− 0.44).

Some forces might drive a distinction between the exposure of top wealth shares and the relative

exposure of individuals in the top percentiles. This is because top percentiles do not necessary

include the same individuals over time. In particular, some fluctuations in top wealth shares may

be generated by fluctuations in the size of idiosyncratic shocks. Intuitively, when the variance of

idiosyncratic shocks increases, top wealth shares increase through a composition effect. If changes

in idiosyncratic variance are positively correlated with stock returns, this results in a positive bias.

I address this bias in two ways. First, I use the panel dimension of Forbes 400 to track the same

individuals over time. Appendix Table A1 compares the exposure of the wealth of households in the

Top 40 to the exposure of the individual households inside the Top 40. The estimates are similar

(0.71 vs 0.74). Second, to examine the magnitude of the bias in estate tax returns, I control in

regression (1) for changes in idiosyncratic variance, as measured by the changes in the idiosyncratic

11The L.H.S. is the growth of W p→p′ between t− 1 and t+ 1, to avoid overlapping time periods. This is because

W p→p′
t is the average of wealth owned by the group over the year, rather than the wealth at a given point in time.

See also the notes in Table 2.
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variance of firm level stocks.12 Appendix Table A2 shows that changes in idiosyncratic variance

have a positive, non-significant effect on top wealth shares. In particular, the inclusion of this

control does not impact the estimate for the exposure of top wealth shares to stock returns, β.

The reason why this composition effect turns out to be small empirically is that the wealth

distribution is very unequal. Intuitively, because wealth is so concentrated, fluctuations due to

entry and exit at the bottom of the percentile are small relative to fluctuations in the wealth of

households inside the percentile. Formally, for a wealth distribution Pareto-distributed with power

law exponent ζ, I show in Appendix B.3 that a rise in idiosyncratic variance ∆σ2 increases the

growth of top wealth shares by (ζ − 1)∆σ2/2 in the following year. Because ζ ≈ 1.5 for the wealth

distribution in the U.S., the formula says that a one standard deviation rise in the idiosyncratic

variance, ∆σ2 = 0.05, increases top wealth shares by 0.5% in the following year. This is much

smaller than the impact of a one standard deviation rise in stock prices, rMt = 0.17, which increases

top wealth shares by 6%, as measured in Table 2. Therefore the potential bias due to changes in

idiosyncratic volatility is small.13

2.4 Top Wealth Shares Predict Future Excess Returns

The previous evidence suggests that wealthy households are more willing to take on aggregate risk.

As top wealth shares increase, wealth is rebalanced from risk-averse households to risk-tolerant

households, and, therefore, the total demand for risk in the economy increases. In equilibrium,

the compensation for holding risk decreases. Hence, higher top wealth shares should predict lower

future excess returns.

I estimate the predictive power of top wealth shares by regressing excess stock returns on the

wealth share of the top 0.01%, i.e.,∑
1≤h≤H

rMt+h − r
f
t+h = α+ βHLog Wealth Share Top 0.01%t + εHt (2)

where h denotes the horizon.

The first line in Table 3 reports the results of the predictability regression at the one-year and

three-year horizons. The estimates are statistically and economically significant. A one standard

deviation increase in the log of the wealth share of the top 0.01% is associated with a decrease of

excess returns by 5 percentage points over the next year.

12To the best of my knowledge, there is no time series on the idiosyncratic variance of the wealth growth of

households.
13This result is consistent with Gabaix et al. (2016). They show that changes in idiosyncratic variance generate

slow transition dynamics.
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Figure 2 plots the wealth share of the top 0.01% along with a moving average of excess stock

returns over the following eight years. Fluctuations in the wealth share of the top 0.01% do a

particularly good job at tracking the low-frequency fluctuations in excess stock returns. Excess

stock returns were low when inequality was high in the 1920s. Excess stock returns increased

following the decrease in inequality in the 1930s, and decreased following the increase in inequality

in the 1980s.

The fact that wealth inequality mostly captures the low-frequency fluctuations in excess returns

is not surprising. This is because wealth inequality is persistent. Using the Dickey-Fuller generalized

least squares (DF-GLS) test, one cannot reject that the series of the wealth share of the top 0.01%

has a unit root. A natural concern is that, in this case, conventional t-statistics are misleading

(Elliott and Stock (1994), Stambaugh (1999)). To address this concern, I rely on a test developed

in Campbell and Yogo (2006), which is valid when the predictor variable has a largest root close to,

or even larger than, one. The results of this test, reported in Table A5, show that the wealth share

of the top 0.01% still significantly predicts returns, even though the evidence becomes thinner as

one allows for explosive dynamics in the predictor.

Finally, I assess whether the information in the wealth share of the top 0.01% is subsumed by

other predictors put forward in previous literature. I use the list of predictor variables constructed

in Welch and Goyal (2008). For each regressor, I report the β1, β2 as well as the R2 corresponding

to the following bivariate predictive regression∑
1≤h≤H

rMt+h − r
f
t+h = α+ βHLog Wealth Share Top 0.01%t + γHPredictort + εHt (3)

Table 3 summarizes the results. The first column reports the coefficient on the wealth share of the

top 0.01%, the second column reports the coefficient on the other predictor, and the last column

reports the adjusted R2 of the regression. While the first three columns report the results with

H = 1, the last three columns report the results with H = 3. To facilitate the comparison between

the different predictors, all regressors are normalized to have a standard deviation of one. The table

shows that the predictive power of the wealth share of the top 0.01% is robust to the inclusion of

other predictors. In particular, the estimate for β1 remains stable across the different specifications.

I have shown that households at the top of the wealth distribution invest disproportionately

in equity, that fluctuations in stock prices generate fluctuations in inequality, and, in turn, that

the level of inequality determines future excess returns. Those three facts are at the heart of asset

pricing models with heterogeneous agentss. I now examine the quantitative properties of these

models.
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3 An Asset Pricing Model with Heterogeneous Preferences

I consider a continuous-time pure-exchange economy. I present a model where overlapping gen-

erations of households differ in their preferences. The baseline model builds on Gârleanu and

Panageas (2015). I derive the behavior of asset prices and characterize the properties of the weatlh

distribution.

3.1 Structure

Endowment. I consider a continuous-time pure exchange economy. I assume that the aggregate

endowment exhibits i.i.d. growth. Its law of motion is

dYt
Yt

= µdt+ σdZt

where Zt is a standard Brownian motion.

Demographics. The specification of demographics follows Blanchard (1985). The economy is

populated by a mass one of agents. Each agent faces a constant hazard rate of death δ > 0

throughout his life. During a short time period dt, a mass δdt of the population dies and a new

cohort of mass δdt is born, so that the total population stays constant.

Labor Income. An agent i born at time s(i) is endowed with the labor income process Li =

{Lit : t ≥ s(i)}, given by

Lit = ωYt × ξi ×G(t− s(i)) (4)

The first term of this formula, ωYt, corresponds to the fraction of the aggregate endowment dis-

tributed as labor income. The second term, ξi, is an individual specific level of income. I assume

that it is i.i.d. across agents, with mean 1. The value of ξi is realized at birth. This component

captures the heterogeneity in labor income within a generation.

The third term, G(t− s), captures the life-cycle profile of earnings of households. The function

G is normalized so that aggregate earnings equal ωYt at each point in time, i.e.∫ t

−∞
δe−δ(t−s)G(t− s)ds = 1

The rest of the endowment (1− ω)Yt is paid by claims to the representative firm.
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Preferences. Agents have recursive preferences as defined by Duffie and Epstein (1992). They

are the continuous-time versions of the recursive preferences of Epstein and Zin (1989). For an

agent i with a consumption process Ci = {Cit : t ≥ 0}, his utility Ui = {Uit : t ≥ 0} is defined

recursively by:

Uit = Et

∫ +∞

t
fi(Ciu, Uiu)du

fi(C,U) =
ρ+ δ

1− 1
ψi

 C
1− 1

ψi

((1− γi)U)

γi−
1
ψi

1−γi

− (1− γi)U


These preferences are characterized by three parameters. The subjective discount factor is ρ, the

coefficient of relative risk aversion is γi and the elasticity of intertemporal substitution (EIS) is ψi.

I assume there are two types of agents, labeled A and B, that differ with respect to their

coefficient of relative risk aversion γi and their elasticity of intertemporal substitution ψi. I denote

A the risk-tolerant agent, i.e. γA > γB. At every point in time a proportion πA of newly born

agents are of type A.

Markets. Households can trade two assets. First, they can trade claims to the representative

firm. They can also trade instantaneous risk-free claims in zero net supply. The price of both of

those claims is determined in equilibrium. Denote rt the risk-free rate and dRt the return of a

dollar invested in the representative firm:

dRt = µRtdt+ σRtdZt

Household Problem. Denote Wit the financial wealth of agent i at time t. As in Blanchard

(1985), agents can access a market for annuities. There are life insurance companies that collect

the agents’ financial wealth when they die. In exchange, agents receive an income stream equal to

δWit per unit of time.

The problem of households is as follows. An household i born at time s(i) chooses a consumption

path Ci = {Cit : t ≥ s} and an amount of dollars invested in the representative firm θi = {θit : t ≥ s}

to maximize his lifetime utility

Vit = max
Ci,θi

Uit(Ci)

subject to the dynamic budget constraint

dWit = (Lit − Cit + (rt + δ)Wit + θit(µRt − rt))dt+ θitσRtdZt for all t ≥ s

14



I now make a useful change of variables. Because markets are dynamically complete, there is a

unique stochastic discount factor ηt:

dηt
ηt

= −rtdt− κtdZt

where rt is the risk free interest rate and κt is the price of aggregate risk. The expected return of

a dollar invested in the representative firm can be written:

µRt = rt + κtσRt

Households are not subject to liquidity constraints; hence, they can sell their future labor income

stream and invest the proceeds in financial claims. Define Nit, the total wealth of household i as

the sum of his financial wealth and his human capital, i.e. the present value of his labor income:

Nit = Wit + Et[

∫ +∞

u=t
e−δ(u−t)

ηu
ηt
Lts(i)]

In particular, denote ξiφtYt the wealth of a newborn agent, i.e.,

φt = Et[

∫ +∞

t
e−δ(u−t)

ηu
ηt
ω
Yu
Yt
G(u− t)]

The household problem can now be reformulated as follows. Household i chooses a consumption

rate ci = {cit = Cit/Nit : t ≥ s(i)} and a wealth exposure to aggregate shocks σi = {σit : t ≥ s(i)}

such that for all t ≥ s(i)

Vit = max
ci,σi

Uit(ciNi) (5)

s.t.
dNit

Nit
= µitdt+ σitdZt

with µit = rt + δ + κtσit − cit (6)

and Nis(i) = ξiφs(i)Ys(i) (7)

Equilibrium. Informally, an equilibrium is characterized by a map from shock histories Zt to

prices and asset allocations such that, given prices, agents maximize their expected utilities and

markets clear. Denote IA = [0, πA] the set of agents in group A and IB = [1− πA, 1] the set of all

agents in group B.

Denote ptYt the total wealth in the economy. It is the sum of the firm valuation and the human

capital of existing agents. Conjecture that pt follows an Ito process:

dpt
pt

= µptdt+ σptdZt
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Definition 1. An equilibrium is a set of stochastic processes for the interest rate r = {rt; t ≥ 0},

market price of risk κ = {κt : t ≥ 0}, consumption and investment decisions ci = {cit : t ≥ 0}, σi =

{σit : t ≥ 0} such that

1. (ci, σi) solve (5) given (r, κ)

2. Markets clear ∫
i∈IA

Nitcitdi+

∫
i∈IB

Nitcitdi = Yt (Consumption) (8)∫
i∈IA

Nitσitdi+

∫
i∈IB

Nitσitdi = ptYt(σ + σpt) (Risky asset) (9)

By Walras’s law, the market for risk-free debt clears automatically.

3.2 Solving the Model

Solution Method. All households with the same preference parameters face the same trade-off,

irrespective of their wealth or age. This is because their utility function is homogeneous and their

death rate is constant over time. In particular, the consumption rate cit and the wealth exposure

σit are the same for all agents with the same preferences. For the purpose of determining prices,

we can abstract from the distribution of wealth within each group: we only need to keep track of

the share of aggregate wealth that belongs to the agent in group A:

xt =

∫
i∈IA Nitdi∫

i∈IA Nitdi+
∫
i∈IB Nitdi

(10)

I restrict my attention to Markov equilibrium where all processes are functions of xt only. We

have four policy functions cjt, σjt, j ∈ {A,B}, two value functions, two prices κt and rt, and two

valuations (firm value and human capital) to solve for. The four first order conditions, the two HJB

equations, the two market clearing condition, and the no arbitrage condition for the firm value and

for human capital are enough to derive the equilibrium. In the Appendix Appendix B.2, I reduce

the system to a system of PDEs. I solve this system of PDEs using an implicit time-stepping

scheme.14

I now turn to two particular parts of the equilibrium.

Evolution of Household Wealth. I first characterize the law of motion of households’ wealth.

This law of motion will determine the law of motion of the wealth distribution, which I observe

14More details about the solution method can be found at https://github.com/matthieugomez/EconPDEs.jl.
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in the data. Denote pjt the wealth-to-consumption ratio of an agent in group j ∈ {A,B}. In

equilibrium, the process pjt follows an Ito process

dpjt
pjt

= µpjtdt+ σpjtdZt

The following proposition characterizes the law of motion of the wealth of households within each

group:

Proposition 1 (Law of Motion for Households Wealth). The wealth of households in group j ∈

{A,B} follows the law of motion

dNjt

Njt
= µjtdt+ σjtdZt

where µjt and σjt are given by

σjt =
κt
γj

+
1− γj

γj(ψj − 1)
σpjt︸ ︷︷ ︸

Hit

(11)

µjt = ψj(rt − ρ) +
1 + ψj

2γj
κ2
t +

1− γj
γj(ψj − 1)

κtσpjt +
1− γjψj

2(ψj − 1)γj
σ2
pjt + µpjt︸ ︷︷ ︸

Φit

(12)

The volatility of wealth, σjt, has two components: a myopic demand and a demand due to

time-varying investment opportunities. The myopic demand equals the ratio of the market price of

risk to the risk aversion. The lower the risk aversion, the higher the myopic demand. The hedging

demand Hit captures deviations from the mean-variance portfolio due to variations in investment

opportunities. In the calibrations explored below, this term will be positive because expected

returns are countercyclical.

The drift of wealth, µjt has three components. The first term is the standard term due to

intertemporal substitution, determined by the EIS ψi and the difference between the interest rate

rt and the subjective discount factor ρ: ψj(rt − ρ). The second term comes from risky assets.

Agents with a lower risk aversion invest disproportionately in risky assets and therefore earn higher

returns. Hence, their wealth grows at a faster rate than the rest of the economy. The third term

Φit captures changes in investment opportunities.

In short, the proposition suggests that agents with a lower risk aversion invest more in risky

assets and grow faster than the rest of the households. Therefore, we naturally obtain my first two

stylized facts: agents at the top of the distribution buy more risky assets and households at the

top are more exposed to aggregate shocks compared to the rest of the households.
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In particular, because agents in group A choose a different wealth exposure compared to agents

in group B, the share of wealth owned by agents in group A, xt, is stochastic. The next proposition

characterizes the law of motion of xt:

Proposition 2. The law of motion of x is

dxt
xt

= µxtdt+ σxtdZt

where µxt and σxt are given by

σxt = (1− xt)(σAt − σBt) (13)

µxt = (1− xt)(µAt − µBt) + (1− x)
φt
pt
δ(
πA
xt
− 1− πA

1− xt
)− (σ + σpt)σxt (14)

The volatility of xt is directly related to the difference between the wealth volatility of the

agents in group A and the wealth volatility of the agents in group B.

The drift of xt is the sum of three terms. The first term is the difference between the wealth

drift of the agents in group A and the wealth drift of the agents in group B. The second term

corresponds to the birth of individuals in group A compared to the birth of individuals in group

B. The third term corresponds to an Ito correction term.

Market price of risk. The third step of our basic mechanism is that, when more wealth falls

into the hands of risk tolerant households, stock prices increase and future returns are lower. To

gain some intuition on this relationship in the model, I now consider the determination of the

equilibrium price of risk κt.

Because all agents within the same group choose the same exposure to aggregate shocks, the

market clearing for risky assets (9) can be written:

xtσAt + (1− xt)σBt = σ + σpt (15)

This market clearing simply says that the volatility of aggregate wealth is the wealth-weighted

average of the volatility of the wealth of individual agents.

Substituting out the optimal choice σjt for households in group j ∈ {A,B} given by (11), we

obtain the market price of risk κt:

κt = Γt(σ + σpt −Ht) (16)
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where Γt corresponds to the aggregate risk aversion and Ht corresponds the total hedging demand

Γt ≡ 1/(
xt
γA

+
1− xt
γB

)

Ht = xtHAt + (1− xt)HBt

The market price of risk κt is the product of the aggregate risk aversion Γt times the total quantity

of risk σ + σpt, minus the total demand for risk due to the hedging Ht.

The aggregate risk aversion Γt is a wealth-weighted harmonic mean of individual risk aversions.

The higher the share of wealth owned by the agents in group A, x, the lower the aggregate risk

aversion Γt. Therefore, ignoring for a moment the hedging demand, an increase in the fraction

hold by xt decreases the market price of risk κt. This corresponds to the predictive regression of

Section 2.4.

3.3 The Wealth Distribution

The model has sharp implications on the wealth distribution. In this section, I analyze the distri-

bution of relative wealth. Denote households’ relative wealth nit, i.e.

nit =
Nit

ptYt

By Ito’s lemma, the law of motion of the relative wealth nit is

dnit
nit

= µ̃itdt+ σ̃itdZt

where µ̃it and σ̃it are given by

σ̃it = σit − σ − σpt

µ̃it = µit − µ− µpt − σσpt − (σ + σpt)σ̃it

Law of Motion of Wealth Density. I first characterize the dynamics of the wealth density in

the model. Denote ψt the wealth distribution of newborn agents.15

15It corresponds to the distribution of human capital. Denote ψ the density for ξi in (4). The expression for ψt is:

ψt(n) =
pt
φt
ψ(
pt
φt
n)
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Proposition 3 (Kolmogorov Forward Equation with Aggregate Shocks). Denote gjt the density

of relative wealth within each group of agent j ∈ {A,B}. The law of motion of gjt is given by

dgjt(n) = −∂n ((µ̃jtdt+ σ̃jtdZt)ngjt(n)) +
1

2
∂2
n(σ̃2

jtn
2gjt(n))dt+ δ(ψt(n)− gjt(n))dt

Denote gt the density of relative wealth. We have

gt(n) = πAgAt(n) + (1− πA)gBt(n)

Given gjt, the wealth distribution within each group j ∈ {A,B}, and the evolution of individual

wealth (µ̃jtdt, σ̃jtdZt), the Kolmogorov Forward equation gives the wealth distribution tomorrow

gj,t+dt. The drift and volatility of individual wealth (µ̃jt, σ̃jt) jointly determine the law of motion of

the wealth distribution. In particular, because households choose different exposures to aggregate

shocks, their relative wealth is stochastic, (i.e. σ̃jt 6= 0), and therefore the wealth distribution is

stochastic.

Law of Motion of Top Wealth Shares. I now integrate the Kolmogorov Forward equation

to obtain the law of motion of top wealth shares. While the Kolmogorov Forward equation gives

the law of motion of the wealth density, I now obtain the law of motion of top wealth shares. This

makes it easier to relate the model to the data, because I only observe the dynamics of top wealth

shares over time.

Let α a number between 0 and 1. Denote qt the α−quantile, i.e.,

α =

∫ +∞

qt

gt(n)dn

and denote Tt the wealth share of the top α, i.e.,

Tt =

∫ +∞

qt

ngt(n)dn

For instance, for α = 1%, qt is the wealth of an agent exactly at the 1% percentile of the distribution

and Tt is the wealth share of the top 1%.

The following proposition characterizes the dynamics of Tt:

Proposition 4 (Law of Motion of Top Wealth Shares). The law of motion of the top wealth share

Tt is

dTt
Tt

= µTtdt+ σTtdZt
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where µTt and σTt are given by

σTt =

∫ +∞

n=qt

(σAtπAgAt(n) + σBt(1− πA)gBt(n))ndn

µTt =

∫ +∞

n=qt

(µAtπAgAt(n) + µBt(1− πA)gBt(n))ndn

+
1

2

q2
t gt(qt)

Tt

 ∑
j∈{A,B}

σ2
jtπjgjt(qt)/gt(qt)−

 ∑
j∈{A,B}

σjtπjgjt(qt)/gt(qt)

2
︸ ︷︷ ︸

Heterogeneous Exposure

− δ(1− αqt
Tt

)︸ ︷︷ ︸
Death

+
δ

Tt

∫ ∞
n=qt

(n− qt)ψt(n)dn︸ ︷︷ ︸
Birth

The volatility of the top wealth share, σTt, is the average, wealth-weighted, volatility of indi-

viduals in the top percentile.

The drift of the top wealth share, µTt, is the sum of four terms. The first term corresponds to

the average, wealth-weighted, drift of individuals at the top. The second term is due to the death

of individuals at the top. The third term is due to the birth of individuals at the top. The last

term is due to the heterogeneous exposure of households at the threshold.

I now give an heuristic derivation for the death term. During a short time period dt, a mass

αδdt of households in the top percentile die, which decreases the total wealth in the top percentile

by Ttδdt. Because the population size in the top percentile is held constant, an equal mass of

households at the threshold enter the top percentile, with a wealth qt. Therefore, the total change

in top wealth share Tt due to death is −δdt(Tt − αqt).

I now give an heuristic derivation for the birth term. During a short time period dt, a mass∫ +∞
qt

ψt(n)dndt of households are born in the top percentile, which increases the total wealth in

the top percentile by
∫ +∞
qt

nψt(n)dndt. Because the population size in the top percentile is held

constant, an equal mass of households at the threshold exit the top percentile, with a wealth qt.

Therefore, the total change in top wealth share Tt due to birth is δdt(
∫ +∞
qt

(n− qt)ψt(n)dn).

The fourth term depends on the variance of risk exposures across households at the quantile

qt. When a negative shock hits the economy, top wealth shares decrease a little bit less than the

wealth of households inside the top percentile, because some households from group B enter the

top. Conversely, when a positive shock hits the economy, top wealth shares increase a little bit

more than the wealth of households inside the top percentile, because some households from group

A enter the top. As seen empirically in Section 2, because wealth is so concentrated, the impact of

these fluctuations due to entry and exit is small.
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The point I emphasize is that death is a key stabilizing force for top wealth shares. Because,

agents at the top grow faster than the rest of the economy (i.e. µ̃At ≥ 0), a model without death

would feature explosive dynamics for top wealth shares.16

Pareto Tail. While a full characterization of the entire wealth distribution is not feasible, one

can characterize relatively simply its right tail. In particular, I give certain conditions under which

the stationary wealth distribution has a Pareto tail.

Definition 2. The distribution of a relative wealth ñ has a Pareto tail if there exists C > 0 and

ζ > 0 such that

P (ñ ≥ x) ∼ Cx−ζ as x→ +∞

ζ is called the power law exponent.

Pareto Tail in case of Homogeneous Risk Aversions. To build intuition on the Pareto

tail of the wealth, I first consider a special case of the model in which agents have the same risk

aversion (i.e. γA = γB).17 In this case, the economy is deterministic and the share of wealth owned

by agents in group A, x0, is constant.

Proposition 5 (Pareto Tail in case of Homogeneous Risk Aversions). Assume γA = γB. Denote

ζ =
δ

µ̃A0
(17)

If the following conditions are satisfied:

1. Agents in group A grow faster than the economy: µ̃A0 ≥ 0,18

2. The stationary distribution of human capital has a tail thinner than ζ.19

Then the stationary wealth distribution has a Pareto tail with power law exponent ζ and the fraction

of agents that are of type B tends to zero in the right tail of the distribution.

The power law exponent of the wealth distribution does not depend on the distribution of

human capital as long as the distribution for human capital has a right tail thinner than the wealth

16See Gomez (2016) for a closer examination of the wealth dynamics of top households in the last fourty years.
17Agents are still heterogeneous with respect to their EIS (i.e. ψA 6= ψB).
18Formal conditions in term of parameters are given in the proof of the Proposition
19Formally, there exists ∆ > 0 such that E[ξζ+∆] < +∞. This is the case empirically: the power law exponent of

ζ ≈ 1.5 for wealth while ζ ∈ (2, 3) for labor income.
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distribution. This is the case empirically: the wealth distribution has a power law exponent of

1.5 while the distribution of labor income has a power law exponent between 2 and 3. Therefore,

concentrating on the Pareto tail of the wealth distribution as a measure of wealth inequality allows

to abstract from labor income inequality. 20

Equation (17) says that the power law exponent of the wealth distribution ζ is the ratio of the

death rate of households, δ, to the relative wealth growth of the agents in group A, µ̃A0A(x0). This

equation can be rewritten as a balance equation for top wealth shares:

0 = µ̃A0 −
δ

ζ

As pointed out in Proposition 4, top wealth shares increase because agents at the top grow faster

than the rest of the economy (µ̃A0 ≥ 0). On the other hand, top wealth shares are pulled down

because agents at the top die and are replaced by households at the bottom threshold. For a Pareto

distribution with tail ζ, this force is exactly given by −δ/ζ.21

The steady state is characterized by µx0 = 0. Using the expression for µx0 given in Proposition 2,

0 = µ̃A0 + δ

(
πA
x0

φ0

p0
− 1

)
(18)

One can combine this equation with the equation (17) for the power law exponent ζ to obtain:

ζ =
1

1− πA
x0

φ0

p0

(19)

This formula expresses the power law exponent ζ as a function of two terms. The first term, φ0/p0,

is the ratio of the average wealth of newborn agents to the average wealth of existing agents. The

second term, x0/πA, is the ratio of the share of wealth held by the agents in group A to their

population share. This ratio measures the overall representation of the group A in term of wealth.

When agents in group A overtake the economy, i.e. x0/πA >> 1, the Pareto tail thickens and the

power law exponent ζ converges to an exponent of 1, i.e. Zipf’s law.

Pareto Tail in General Case. I now study the right tail of the wealth distribution in the

general case where agents have heterogeneous risk aversions. I show that, under certain conditions,

20See also Gabaix et al. (2016).
21For a distribution with a Pareto tail, top wealth shares follow T (α) ∼ α1− 1

ζ . Therefore, applying Proposition 4,

the negative force due to death equals

−δ(1− αq(α)

T (α)
) = −δ(1− αT ′(α)

T (α)
) = − δ

ζ
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the wealth distribution has a Pareto tail and that its power law exponent can be characterized

analytically.

Proposition 6 (Pareto Tail in General Case). For j ∈ {A,B} and a nonnegative real number s,

denote Aj,s the operator defined as

Aj,sφ(x) =

(
sµ̃j(x) +

s(s− 1)

2
σ̃j(x)2 − δ

)
φ(x)− ∂x ((µ(x) + sσ̃j(x)σ(x))φ(x)) +

1

2
∂xx(σ(x)2φ(x))

If the following conditions are satisfied:

1. There exists ζ > 0 such that the principal eigenvalue of AA,ζ is 0,

2. The principal eigenvalue of AB,ζ is negative

3. The stationary distribution of human capital has a tail thinner than ζ.22

Then the stationary wealth distribution has a Pareto tail with power law exponent ζ.

This proposition gives sufficient conditions for the wealth distribution to have a Pareto tail.

Moreover, when the wealth distribution has a Pareto tail, the proposition allows to characterize

analytically its power law exponent as the unique root of the function that associates to a real

numbers s the principal eigenvalue of AA,s. Importantly, this characterization allows to compute

the power law exponent associated to a particular model without resorting to simulations.

This proposition extends Proposition 5 to the case where agents have heterogeneous risk aver-

sions. When agents have homogeneous risk aversions, the derivative terms of Ai,ζ evaluate to zero

and we obtain the familiar expression for the power law exponent given in Proposition 5. In partic-

ular, the discussion seen above remains valid here. The Pareto tail of the wealth distribution does

not depend on the distribution of human capital as long as the distribution for human capital has

a right tail thinner than the wealth distribution. The higher the wealth drift of households at the

top, the lower the power law exponent of the wealth distribution.

4 Estimating the Model on Asset Prices and on the Wealth Dis-

tribution

I now bring the model to the data. I find that the model qualitatively generates the three stylized

facts documented in Section 2. However, to generate volatile asset prices, the model requires

22Formally, there exists ∆ > 0 such that E[ξζ+∆] < +∞. This is the case empirically: the power law exponent of

ζ ≈ 1.5 for wealth while ζ ∈ (2, 3) for labor income.
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a wealth distribution with a tail much thicker than the data. There is a key tension between

matching quantitatively asset prices and the wealth distribution.

4.1 Estimation Approach

Method. I estimate the parameters of the model by the simulated method of moments (SMM),

which minimizes the distance between moments from real data and simulated data. I proceed as

follows. I select a vector of moments m computed from the actual data. Given a candidate set of

parameters Θ, I solve the model, and compute the moments m̂(Θ). I search the set of parameters

Θ̂ that minimizes the weighted deviation between the actual and simulated moments

Θ̂ = arg min
Θ
{(m− m̂(Θ))′W (m− m̂(Θ)) (20)

where the weight matrix W adjusts for the fact that some moments are more precisely estimated

than others.23 Details on the simulation method are given in Appendix C.

I use the following set of moments.

Asset Prices Moments. I use four asset prices moments, corresponding to the average and stan-

dard deviation of the risk-free rate and of stock market returns, following Gârleanu and Panageas

(2015). The data for the average equity premium, the volatility of returns, and the average interest

rate are from Shiller (2015). The volatility of the real risk-free rate is inferred from the yields of

5-year constant maturity TIPS, as reported by Gârleanu and Panageas (2015).

Wealth Moments. I consider three moments about the wealth distribution. The first two mo-

ments capture the joint dynamics of the wealth distribution and asset returns, which corresponds

to the stylized facts of Section 2. The third moment captures the average shape of the wealth

distribution. As explained in Section 3.3, I focus on the right tail of the distribution.

The first moment is the elasticity of top wealth shares to stock market returns. It is estimated

as the slope coefficient obtained by regressing the share of wealth owned by the top 0.01% on stock

returns. The moment was estimated to be βExposure = 0.35 in Table 2. The moment will discipline

the heterogeneity in risk aversion of top households γA

The first moment is the elasticity of top wealth shares to stock market returns. It is estimated

as the slope coefficient obtained by regressing the share of wealth owned by the top 0.01% on stock

23I use as the weight matrix W the variance covariance of the moments in the baseline calibration of the model.
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returns. The moment was estimated to be βExposure = 0.35 in Table 2. The moment will discipline

the heterogeneity in risk aversion of top households γA

The third moment is the Pareto tail of the wealth distribution. I use the slope coefficient in a

regression of log percentile on log networth for the households within the top 0.01%. Figure 3 plots

the log percentile as a function of the log net worth for the U.S. distribution, in the SCF and in

Forbes 400 data. The linear slope is characteristic of a distribution with a Pareto tail. I measure

a power law exponent of ζ = 1.5, consistent with previous studies.24 This moment will displicine

the average wealth growth of top households relative to the economy.

Calibrated Parameters. The choice of calibrated parameters follows Gârleanu and Panageas

(2015). The law of motion of the endowment process is µ = 2% and σ = 4.1%. The rate of death

is δ = 2%. The share of endowment distributed as capital income is 1−ω = 8%. It corresponds to

the share of total household income received as interest income or dividend income. The life cycle

income of households G(u) is a sum of two exponentials approximating the hump shaped pattern

of earnings observed in the data:

G(u) = B1e
−δ1u +B2e

−δ2u

with B1 = 30.72, B2 = −30.29.

Following the approach of Barro (2006), I report the stock market returns for a firm with a

debt-equity ratio equal to the historically observed debt-equity ratio for the U.S. non financial

corporate sector.25

Estimated Parameters. The model has 7 remaining parameters. 3 parameters correspond to

the preference parameters of each households in group A (ρA, γA, ψA) and 3 parameters correspond

to the preference parameters in group B (ρB, γB, ψB)). The remaining parameter is the population

share of the agents in group A, πA.

4.2 Estimation Results

For each estimation, I report the parameters and the moments in Table 4. I plot the equilibrium

functions in Figure 4.

24See, for instance, Klass et al. (2006).
25As Barro (2006), I choose a debt-equity ratio equal to λ ≈ 0.5.
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Baseline I first examine whether a model estimated exclusively on asset prices generates the

relationship between asset returns and the wealth distribution measured in Section 2. To do so, I

first report in Column (1) of Table 4 the original calibration of the model by Gârleanu and Panageas

(2015), which exclusively targets asset price moments. Qualitatively, the model generates the two

stylized facts described in Section 2.

First, households in the top percentile are disproportionately invest in the stock market. There-

fore, following large stock returns, top wealth shares increase. The model predicts that the exposure

of top wealth shares βexposure to the stock market is 0.50, while it is slightly lower, 0.35, in the data.

Second, when a larger share of wealth falls into the hands of risk-tolerant households, the

aggregate demand for risk increases, which lowers risk premia and pushes up asset prices. Thus,

a higher top wealth share predicts lower future excess returns. The model yields a predictive

coefficient βPredictability equal to −0.03 while it is −0.05 in the data, well into the standard error in

Table 3. Therefore, the calibrated model appears to be consistent with the mechanism outlined in

Section 2.

Does the model also generate a realistic level of inequality? Figure 3 compares the log-log

relationship between top percentiles and financial wealth in the simulated model and in the data.

The red curve represents the wealth distribution in the model. The curve is approximately linear.

Therefore, the wealth distribution in the model has approximately a Pareto tail, as discussed in

Section 3. However, the distribution has a much thicker tail than in the data. I estimate ζ equal

to 1.0 in the model compared to ζ equal to 1.5 in the data. The model overestimates the level of

inequality.

Re-estimating the Model In Column (2), I therefore re-estimate the model, targeting jointly

asset returns and the wealth moments. The model now generates a realistic Pareto tail, with a

power exponent of 1.4. The exposure of top wealth shares is also lower, equal to 0.38, as in the data.

However, the model now misses asset prices. The model completely underestimates the volatility

of returns and the equity premium. The volatility of returns in the model, 10.5%, is roughly half

of the volatility of returns in the data, 18.2%. Similarly, the equity premium in the model, 2.8%, is

roughly half of the equity premium in the data, 5.2%. These two failures suggest a tension between

matching the volatility of asset returns and the level of wealth inequality in the data.

To emphasize the conflict between these two moments, Column (3) re-estimates the model,

adding exclusively the Pareto tail of the distribution to asset price moments. Similarly to the

previous results, the model broadly fits the other distributional moment and the properties of the
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risk-free rate. However, it still underestimates the volatility of returns, 11.1%, and the equity

premium, 2.3%.

4.3 Estimation Results

For each estimation, I report the parameters and the moments in Table 4. I plot the equilibrium

functions in Figure 4.

Baseline I first examine whether a model estimated exclusively on asset prices generates the

relationship between asset returns and the wealth distribution measured in Section 2. To do so, I

first report in Column (1) of Table 4 the original calibration of the model by Gârleanu and Panageas

(2015), which exclusively targets asset price moments. Qualitatively, the model generates the two

stylized facts described in Section 2.

First, households in the top percentile are disproportionately invest in the stock market. There-

fore, following large stock returns, top wealth shares increase. The model predicts that the exposure

of top wealth shares βexposure to the stock market is 0.50, while it is slightly lower, 0.35, in the data.

Second, when a larger share of wealth falls into the hands of risk-tolerant households, the

aggregate demand for risk increases, which lowers risk premia and pushes up asset prices. Thus,

a higher top wealth share predicts lower future excess returns. The model yields a predictive

coefficient βPredictability equal to −0.03 while it is −0.05 in the data, well into the standard error in

Table 3. Therefore, the calibrated model appears to be consistent with the mechanism outlined in

Section 2.

Does the model also generate a realistic level of inequality? Figure 3 compares the log-log

relationship between top percentiles and financial wealth in the simulated model and in the data.

The red curve represents the wealth distribution in the model. The curve is approximately linear.

Therefore, the wealth distribution in the model has approximately a Pareto tail, as discussed in

Section 3. However, the distribution has a much thicker tail than in the data. I estimate ζ equal

to 1.0 in the model compared to ζ equal to 1.5 in the data. The model overestimates the level of

inequality.

Re-estimating the Model In Column (2), I therefore re-estimate the model, targeting jointly

asset returns and the wealth moments. The model now generates a realistic Pareto tail, with a

power exponent of 1.4. The exposure of top wealth shares is also lower, equal to 0.38, as in the data.

However, the model now misses asset prices. The model completely underestimates the volatility
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of returns and the equity premium. The volatility of returns in the model, 10.5%, is roughly half

of the volatility of returns in the data, 18.2%. Similarly, the equity premium in the model, 2.8%, is

roughly half of the equity premium in the data, 5.2%. These two failures suggest a tension between

matching the volatility of asset returns and the level of wealth inequality in the data.

To emphasize the conflict between these two moments, Column (3) re-estimates the model,

adding exclusively the Pareto tail of the distribution to asset price moments. Similarly to the

previous results, the model broadly fits the other distributional moment and the properties of the

risk-free rate. However, it still underestimates the volatility of returns, 11.1%, and the equity

premium, 2.3%.

Tension Between Matching the Volatility of Returns and the Tail of the Distribution.

The previous results suggest a trade-off between the volatility of stock returns and the Pareto tail

of the distribution. To better understand this trade-off, I examine more precisely the mechanism

generating volatile stock returns in the model. Applying Ito’s lemma, the volatility of returns can

be written

σR = σ +
∂ logP/D

∂ log x
σx (21)

To generate the high volatility of returns, the model must have either large fluctuations in the

share of wealth owned by agents A, σx, or a large elasticity of the price-dividend ratio to the share

of wealth owned by agent A, ∂ logP/D
∂ log x . Heterogeneity in preferences may increase the volatility of

stock returns by impacting these two terms.

Column (4) re-estimates the model using asset price moments together with the exposure of

top wealth shares to stock returns. The latter moment limits the heterogeneity in risk aversion

between the two groups.26 Still, the model can generate volatile stock returns, with σR equal to

17.6%. Because the supplementary moment decreases the volatility of x, σx, relative to the baseline

calibration, the model, in order to generate volatile returns, must feature a high elasticity of the

price-dividend ratio to x, ∂ logP/D
∂ log x . The high elasticity of the price-dividend ratio is obtained by

a high heterogeneity in EIS: the estimation yields ψA/ψB = 50. The agents in group A have a

much higher propensity to save compared to the households in group B. Because of these large

differences in saving decisions, the tail of the distribution is much thicker than the data, with a

power law exponent of 1.2.

26If risk aversion differs too much between the two groups, the rich and the poor differ twoo much in their risk

exposure (Equation (11)), and therefore top wealth shares move too much with stock returns (Equation (13)).
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In contrast, Column (5) re-estimates the model by imposing a lower bound on the EIS ψB ≥

0.2.27 This constraint limits the heterogeneity in EIS between the two groups. Still, the model can

generate volatile returns, with σR equal to 17.4%. Because the new constraint decreases ∂ logP/D
∂ log x

relative to the baseline calibration, the model, in order to generate volatile returns, must feature a

high volatility of x, σx. The high volatility σx is obtained by a high heterogeneity in risk aversion:

the estimation yields γB/γA = 50. This heterogeneity generates large differences in the demand

for risky assets between A and B, yielding a counter-factually high exposure of top wealth shares

to stock returns (1.9, compared to 0.35 in the data). Moreover, the agents in group A earn much

higher returns on their wealth compared to the agents in group B. Because of these large differences

in investment returns, the tail of the distribution is much thicker than the data, with a power law

exponent of 1.0.

The last two estimations show that a high degree of preference heterogeneity, whether it comes

from differences in EIS or from differences in risk aversion, generates too much wealth inequality

compared to what is found in the data. Intuitively, large differences in preferences imply substantial

and permanent differences between the wealth growth of the agents in the economy. In the long-

run, these differences in growth rates contribute to a thicker right tail of the wealth distribution, as

shown in Proposition 6. To generate volatile stock returns, the model requires a degree of preference

heterogeneity so large that the wealth distribution has a power law exponent very close to one. This

corresponds to the thickest tail accommodated by the model, Zipf’s law.

5 The Role of Heterogeneity in Investment Opportunities

The previous section shows that there is tension in the standard heterogeneous agents model be-

tween asset prices and the wealth distribution. The high degree of heterogeneity necessary to

generate large fluctuations in asset prices implies more inequality than there is in the data.

I now suggest a parsimonious deviation from the standard model to resolve this tension. I

consider the impact of low-frequency changes in the investment opportunities of the rich relative to

the poor. These shocks create low-frequency fluctuations in wealth inequality, thereby increasing

fluctuations in asset prices. At the same time, since these shocks average to zero, they do not

increase the average wealth growth of households at the top. Therefore, these shocks help resolve

the tension present in the standard model.

Section 5.1 presents the augmented model. Section 5.2 estimates the model on asset prices and

27This lower bound corresponds to the empirical results of Vissing-Jørgensen (2002a).
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the wealth distribution. Section 5.3 examines additional predictions of the model.

5.1 Augmented Model

I now consider a parsimonious departure from the heterogeneous agents model presented in Sec-

tion 4.

In particular, I examine a process νt, which generates differences between the financial returns

available to the agents in group A and the financial returns available to the agents in group B. I

introduce these shocks in a way that does not affect the aggregate endowment, i.e. they are purely

redistributive. Specifically, I assume that the financial return available to the agents in group

j ∈ {A,B} is increased by a group specific term νjt, i.e. that the budget constraint of an agent in

group j ∈ {A,B} becomes

µjt = rt + δ + νjt + κσjt − cjt (22)

νAt and νBt are chosen so that the difference between νAt and νBt equals νt (νAt− νBt = νt) and so

that the total return on wealth in the economy is left unchanged (xtνAt + (1− xt)νBt = 0), that is

νAt = (1− xt)νt

νBt = −xtνt

While I do not take a stand on the origin of these differential investment opportunities νt, the

literature suggests some potential origins. These fluctuations could be generated by changes in

technology (Gârleanu et al. (2012), Kogan et al. (2013)), changes in financial frictions (Kiyotaki

and Moore (1997)), or changes in taxes (Piketty and Zucman (2015), Pastor and Veronesi (2016)).

For instance, the following tax policy would exactly generate the specification in my model: the

government levies a wealth tax −νt on agents in group A and redistribute the proceeds to all agents

in proportion to their wealth.

I assume that νt is a mean reverting process which fluctuates around zero. More specifically,

its law of motion is

dνt = −κννtdt+ σνdZt (23)

where κν is the mean reversion parameter and σν is the exposure to aggregate shocks.28 When

σν = 0, the model reverts to the baseline model in Section 3.

28In particular I assume that the same shocks drive the aggregate endowment Yt and νt in the economy. This

assumption simplifies the presentation. The model can also match asset prices and the wealth distribution when

fluctuations in νt are uncorrelated with aggregate endowment shocks.
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For the agents in group j ∈ {A,B}, fluctuations in νjt have the same effects as fluctuations in

the risk-free rate. Hence, the law of motion of their wealth is is the same as in baseline model, after

substituting rt − νjt for the risk-free rate.

Proposition 7 (Law of Motion for Households Wealth with Fluctuating νt). Denote pjt the wealth

consumption ratio of each agent, i.e. pjt = 1/cjt. The wealth of households in group j ∈ {A,B}

follows the law of motion

σjt =
κt
γj

+
1− γj

γj(ψj − 1)
σpjt (24)

µjt = ψj(rt + νjt − ρ) +
1 + ψj

2γj
κ2
t +

1− γj
γj(ψj − 1)

κtσpjt +
1− γjψj

2(ψj − 1)γj
σ2
pjt + µpjt (25)

The direct impact of an increase in νjt on µjt, the wealth growth of the agents in group j ∈

{A,B}, is given by ψjνjt. It is the sum of a mechanical increase of their wealth growth (νjt) and

of an adjustment in their consumption rate ((ψj − 1)νjt).

In equilibrium, fluctuations in νt generate fluctuations in the price-dividend ratio. First, because

the agents have different EISs (ψA 6= ψB), a rise in νt increases the aggregate demand for assets,

which pushes up the price-dividend ratio. This is true even though fluctuations in νt are purely

redistributive (xνAt + (1 − x)νBt = 0). Second, a rise in νt also increases the relative growth rate

of the agents in group A, and is therefore associated with an increase in xt, the share of wealth

owned by the agents in group A. This further pushes up asset prices.

Stock returns react both to news about the level of inequality xt and to news about the future

growth of inequality νt:

σR = σ +
∂ logP/D

∂ log x
σx +

∂ logP/D

∂ log ν
σν (26)

In the baseline model, there is a tension between the high volatility of returns σR and the average

tail of the wealth distribution. The first requires a high degree of preference heterogeneity while

the second is associated with a low degree of preference heterogeneity. In the augmented model,

fluctuations in νt generate additional fluctuations in stock returns, through the additional term
∂ logP/D
∂ log ν σν in (26). These fluctuations do not change the average tail of the wealth distribution,

because they do not change the average value of µAt. Therefore, fluctuations in νt help resolve the

central tension at the baseline model.

To solve the augmented model, I look for a Markov equilibrium with two state variables (xt, νt).

The law of motion for xt is the same as Proposition 2 while the law of motion for νt is exogenously

given by (23). Given the law of motion for xt, νt, one can express the drift and the volatility of all
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processes through Ito’s lemma and proceed similarly to the baseline model. I discuss more precisely

the solution method in Appendix B.2.

5.2 Estimation Results

I now estimate the model to assess whether it can qualitatively match the stylized facts presented

in Section 2, but also whether it can generate asset prices and a wealth distribution consistent with

the data.

Parameters. The model has two new parameters compared to the baseline model, the persistence

κν and the volatility σν of the process νt.

Moments. I introduce a new moment to discipline the law of motion of νt. As seen in Proposi-

tion 7, fluctuations in νt generate fluctuations in the wealth growth of top households in excess of

the observable fluctuations in asset returns.

To capture these fluctuations, I examine, in the data and in the model, the residuals in the

regression of top wealth shares on asset returns:

logWealth Share Top 0.01%t+1

= α+ ρ log Wealth Share Top 0.01%t + β(rMt+1 − r
f
t+1) + γrft+1 + εt+1 (27)

Intuitively, low-frequency fluctuations in these residuals help capture fluctuations in νt (Proposi-

tion 7). Specifically, I add as a new moment the standard deviation of a five-year moving average

of these residuals:29

std(
∑

1≤i≤5

εt+1/5) ≈ 2.1%

Results. Figure 5 plots asset prices as a function of the two state variables x and ν. Corresponding

to the intuition put forth earlier, a high difference in the investment opportunities of the agents in

group A compared to the agents in group B, ν, is associated with a low interest rate (Figure 5b)

and also with a high drift of households in group A relative to other agents (Figure 5e). For both

of these reasons, a high ν is associated with a high price-dividend ratio (Figure 4c).

29I use the five year averages to smooth out the yearly fluctuations of top wealth shares in the data (which also

include measurement errors, etc). Averaging residuals at a longer horizon allows to concentrate on the low-frequency

fluctuations driven by νt. An alternative would be to estimate a state space model.
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The last column of Table 4 demonstrates that the augmented model can jointly match asset

prices and the wealth distribution. In particular, the model can generate a high volatility of returns

σR = 17.2% together with a low power law exponent ζ = 1.5. In contrast, the baseline model could

not jointly match these moments. In the baseline model, there was a tension between the high

volatility of returns σR and the average tail of the wealth distribution ζ. The first required a high

degree of preference heterogeneity while the second required a low degree of preference heterogeneity.

The augmented model solves this tension through fluctuations in ν. On the one hand, hese

fluctuations increase the volatility of returns. Applying the decomposition (26), I obtain that 45%

of the fluctuations in the price-dividend ratio are driven by fluctuations in the level of inequality

xt, while 55% are driven by fluctuations in νt, the relative investment opportunities of the agents

in group A compared to the agents in group B. On the other hand, these fluctuations do not

impact the average level of inequality, because they do not change the average wealth growth of

top households µAt. Therefore, fluctuations in νt allow the model to match a higher volatility of

stock returns σR together with a lower power law exponent ζ.

5.3 Further evidence

I now examine whether the augmented model can explain additional dimensions of the data.

The Price-dividend Ratio and the Growth of Wealth Inequality. I start by examining

the relationship between the price-dividend ratio and the future growth of wealth inequality.

On the one hand, in the model, fluctuations in xt, the share of wealth owned by the households

in group A, generate a negative comovement between the price-dividend ratio and the future growth

of wealth inequality. The intuition is as follows. When xt is high, the aggregate demand for assets

is high. In equilibrium, the price-dividend ratio is high and future returns are low. These low

returns decrease the growth rate of the agents in group A relative to other agents, and therefore,

wealth inequality slowly decreases.

On the other hand, fluctuations in νt generate a positive comovement between the price-dividend

ratio and the future growth of wealth inequality. A rise in νt simultaneously increases the relative

wealth growth of households in group A (Figure 4e) and the price-dividend ratio (Figure 5c).

Therefore, the correlation between price-dividend ratio and the future growth of inequality

depends on the relative importance of fluctuations in xt and νt. Examining this relationship offers

both a qualitative and quantitative test for the augmented model. To do so, I regress the future
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growth of the share of wealth owned by the top 0.01% on the price-dividend ratio, i.e.

log
Wealth Share Top 0.01%t+4

Wealth Share Top 0.01%t+1

= α+ β logP/Dt + εt (28)

Table 5 reports the result of this regression. In the data, I obtain an estimate for β equal to 0.03

with estate tax returns and equal to 0.11 with income tax returns: the price-dividend ratio tends

to forecast positively the future growth of wealth inequality. In simulated data from the augmented

model, I obtain a similar positive estimate for β equal to 0.12. In contrast, in the baseline model

of Section 4, I obtain a strongly negative estimate for β equal to −0.10: the price-dividend ratio

forecasts negatively the future growth of wealth inequality. This is because fluctuations in xt can

only generate a negative relationship between the price dividend and the future growth of inequality.

One needs fluctuations in νt to explain the positive comovement between the price-dividend ratio

and the future growth of wealth inequality.

Episodes of Disconnect. An additional way to relate the model to the data is to compare the

time series of top wealth shares and a running sum of lagged asset returns.

In the baseline model, the differences between the two series are small : fluctuations in top

wealth shares are entirely driven by fluctuations in past asset returns. In contrast, in the augmented

model, fluctuations in νt generate periods of disconnect between top wealth shares and past asset

returns (Proposition 7).

Figure 6 measures the difference between the two series in the data by comparing the evolution

of the share of wealth owned the top 0.01% and the predicted values from the regression (27).

The figure shows large and persistent fluctuations in top wealth shares that cannot be explained

by asset returns. In particular, asset returns alone cannot explain the long term decline in inequality

in the 1930s. Symmetrically, asset returns cannot explain the increase of inequality after the 2000s,

a period of low interest rate and low stock returns. These periods are inconsistent with the baseline

model In the augmented model however, the latter period could be rationalized by a high νt — a

rise in νt jointly increases wealth inequality and decreases asset returns.

6 Conclusion

The results of this paper depict a strong interplay between asset prices and wealth inequality.

Because rich households hold more risky assets, realized stock returns generate fluctuations in

wealth inequality over time. Conversely, in periods of high inequality, more wealth is in the hands

of rich households, the risk-tolerant investors. Therefore, risk premia are low: a high level of
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inequality predicts low future returns. This interplay is at the heart of heterogeneous agents asset

pricing models. I have shown that these models can qualitatively account for these facts. However,

the standard models tend to overestimate the thickness of the tail of the wealth distribution.

This difficulty suggests that, while important, heterogeneity in preferences is not sufficient to

understand the interplay of inequality and prices. Differences in investment opportunities offer

a direction for progress. Augmenting standard models with this feature allows to simultaneously

explain the volatility of asset prices and the level of inequality. Further, this approach provides an

explanation for temporary disconnects between inequality and asset prices.

To make this point clearly, I use a parsimonious representation of these shocks. But it appears

important to go further in understanding the precise source of these differences. The literature

suggests promising avenues to answer this question: embodied capital shocks (Papanikolaou (2011),

Gârleanu et al. (2012)), changes in the capital share (Karabarbounis and Neiman (2014), Lettau

et al. (2016)), or taxes and regulation (Lampman (1962)).

The implications of my analysis extend beyond asset pricing. The interplay I put forward can

have effects on real quantities as well, through two channels. First, because the level of inequality

affects the cost of capital, this can lead to changes in corporate investment policies. Second, a

recent literature has also emphasized the role of inequality for aggregate demand (Mian et al.

(2013), Kaplan et al. (2016)). Exploring these channels requires moving away from an endowment

economy, which I leave for future research.
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Table 1: The Equity Share Increases Across the Wealth Distribution

Groups of Households Defined by Wealth Percentiles

All Households 1%− 0.1% 0.1%− 0.01% Top 0.01%

Panel A: All Sample

Equity Share 40.8% 55.8% 65.8% 73.9%

Public Equity 20.2% 22.0% 21.1% 19.6%

Private Equity 20.6% 33.9% 44.6% 54.4%

Non Actively Managed 2.4% 4.5% 6.3% 7.8%

Actively Managed 18.2% 29.4% 38.4% 46.6%

Panel B: Stockholders

Is Stockholder 45.9% 90.7% 91.2% 91.0%

Equity Share among Stockholders 44.7% 56.0% 65.9% 76.0%

Panel C: Entrepreneurs

Is Entrepreneur 10.5% 62.1% 69.8% 78.5%

Equity Share among non-Entrepreneurs 26.8% 40.7% 50.0% 57.9%

Panel D: Stock Options Holders

Received Stock Options 6.4% 11.2% 11.5% 6.1%

Equity Share among non Stock Options Holders 44.7% 56.0% 65.9% 76.0%

Share of Total Wealth 20.7% 7.7% 3.8%

Labor Income / Wealth 12.6% 2.9% 1.6% 0.7%

Notes. Data from SCF 1989-2013. The variable Equity Share is defined as private equity + public equity over networth:

(equity + bus) / networth. Stockholders are defined as the households that hold public equity. Entrepreneurs are defined as

the households with an active management role in one of the company they invest in.
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Table 2: The Exposure to Stock Returns Increases Across the Wealth Distribution

Groups of Households Defined by Wealth Percentiles

Flow of Funds Kopczuk and Saez (2004) Series Forbes 400

All Households 1− 0.1% 0.1− 0.01% Top 0.01% Top 400 Top 100

(1) (2) (3) (4) (5) (6)

Panel A: Wealth

Excess Stock Returns 0.44∗∗∗ 0.52∗∗∗ 0.66∗∗∗ 0.75∗∗∗ 0.67∗∗∗ 0.71∗∗∗

(0.13) (0.18) (0.17) (0.23) (0.18) (0.21)

R2 0.49 0.45 0.58 0.40 0.34 0.29

Period 1917-1999 1917-1999 1917-1999 1917-1999 1983-2014 1983-2014

N 54 54 54 54 32 32

Panel B: Wealth Shares

Excess Stock Returns 0.09∗ 0.22∗∗∗ 0.31∗∗ 0.34∗ 0.37

(0.05) (0.07) (0.14) (0.19) (0.23)

R2 0.20 0.33 0.14 0.18 0.15

Period 1917-1999 1917-1999 1917-1999 1983-2013 1983-2013

N 54 54 54 31 31

Notes. The table reports the results of the regression of the wealth growth of households in a given percentile group on the

excess stock returns and the risk free rate, i.e. Equation (1):

log
W p→p′
t+1

W p→p′
t−1

= α+ β(rMt − r
f
t ) + γrft + εt

The dependent variable is the growth of wealth in Panel A and the growth of wealth shares in Panel B. To avoid overlapping

time periods between the regressor and the dependent variable, the timing is as follows:

t− 1 t t+ 1 t+ 2 Year

Top Wealtht−1 rMt − r
f
t Top Wealtht+1

Each column corresponds to a different group of households. The first column corresponds to all U.S households ; to measure

the wealth of U.S. households, I use data from the Financial Accounts of the United States (Flow of Funds) after 1945. For the

period before 1945, I use Kopczuk and Saez (2004). Columns (2) to (4) corresponds to increasing top percentiles in the wealth

distribution, using data from Kopczuk and Saez (2004). Columns (5) to (6) correspond to the Top 0.0003% and 0.00008% ; the

percentiles are chosen so that the group include the 400 wealthiest individuals and the 100 individuals in 2014.

Estimation via OLS. Standard errors in parentheses and estimated using Newey-West with 3 lags. ∗,∗∗ ,∗∗∗ indicate significance

at the 0.1, 0.05, 0.01 levels, respectively.
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Table 3: The Share of Wealth Owned by the Top 0.01% Predicts Future Excess Returns

∑
1≤h≤H rMt+h − r

f
t+h = α+ βHLog Top Wealth Sharest + γHPredictort + εtH

Excess Returns at Horizon H = 1 Excess Returns at Horizon H = 3

β1 γ1 Adjusted R2 β3 γ3 Adjusted R2

(1) (2) (3) (4) (5) (6)

Log Top Share −0.053∗∗ 0.051 −0.114∗∗ 0.078

Dividend Price −0.077∗∗∗ 0.056∗ 0.089 −0.198∗∗∗ 0.196∗∗∗ 0.265

cay −0.044∗ 0.046∗ 0.072 −0.106∗ 0.114∗∗ 0.153

Dividend Payout −0.066∗∗ 0.031 0.054 −0.153∗∗ 0.094 0.113

Long Term Yield −0.066∗∗ −0.034 0.053 −0.128∗∗ −0.055 0.062

Default Yield Spread −0.068∗∗ 0.031 0.047 −0.179∗∗∗ 0.146∗∗ 0.156

Treasury Bill Rate −0.054∗ −0.037 0.040 −0.127∗∗ −0.081 0.080

Stock Variance −0.058∗∗ 0.02 0.045 −0.129∗∗ 0.055 0.084

Inflation −0.054∗∗ −0.013 0.039 −0.116∗∗ −0.021 0.066

Default Return Spread −0.058∗∗ −0.001 0.035 −0.161∗∗∗ 0.014 0.130

Term Spread −0.037 0.019 0.017 −0.079 0.066 0.065

Linear Trend −0.112∗∗∗ −0.075∗ 0.083 −0.254∗∗∗ −0.178∗ 0.144

Notes. The table reports the result of the regressions of future excess returns on the share of wealth owned by the Top 0.1%

(row 1), along with other predictors from the literature (row 2-11). Each row corresponds to a different set of regressors.

Columns (1) (2) (3) report the results when the dependent variable is the one year excess return. Columns (4) (5) (6) report

the results when the dependent variable is the three-year excess return.

I construct cay in the period 1917-1999 by mirroring the construction in Lettau and Ludvigson (2001) on historical data: wage

income from Piketty and Saez (2003), consumption from Shiller (2015), financial wealth from Kopczuk and Saez (2004). All

other predictors come from Welch and Goyal (2008).

To facilitate the comparison between the different predictors, all regressors are normalized to have a standard deviation of one.

Estimation via OLS. Standard errors in parentheses and estimated using Newey-West with 3 lags. ∗,∗∗ ,∗∗∗ indicate significance

at the 0.1, 0.05, 0.01 levels.
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Table 4: Matching the Wealth Distribution and Asset Prices

Type Description Data Baseline Model Estimated on Asset Prices and . . . Augm. Model

{} {Wealth Dist} {ζ} {βExp} {ψB ≥ 0.2} {Wealth Dist}

(1) (2) (3) (4) (5) (6)

Parameters Risk aversion of type-A agents γA 1.5 2.2 1.6 2.7 0.1 2.5

Risk aversion of type-B agents γB 10.0 13.0 9.0 8.8 4.65 9.0

EIS of type-A agents ψA 0.7 0.4 0.4 0.5 1.0 0.4

EIS of type-B agents ψB 0.05 0.01 0.05 0.01 0.2 0.07

Discount rate ρA 0.1% 0.1% 0.1% 0.1% 0.1% 0.1%

Discount rate ρB ρA 5% 1.5% 5% 3% ρA

Population share πA 1% 20% 20% 0.1% 0.1% 20%

Persistence κν — — — — — 0.1

Volatility σν — — — — — 0.5%

Asset Prices Equity Premium 5.2% 5.3% 2.8% 2.3% 5.0% 3.0% 5.2%

Volatility of returns 18.2% 19.0% 10.5% 11.1% 17.6% 17.4% 17.5%

Average interest rate r 2.8% 1.2% 2.9% 4.0% 3.1% 2.4% 2.5%

Standard deviation interest rate r 0.92% 0.4% 1.1% 0.7% 0.7% 1.2% 1.4%

Wealth Distribution Exposure Top Wealth Shares βExposure† 0.35 0.50 0.38 0.50 0.35 1.9 0.31

Predictability Regression βPredictability‡ −0.05 −0.03 −0.03 −0.03 −0.01 −0.01 −0.02

Power Law Exponent ζ 1.5 1.1 1.4 1.5 1.1 1.1 1.5

Other Standard dev. Residuals (5-year horizon) 2.1% 0.8% 2.2%

Notes. Columns (1) to (5) correspond to different estimations of the baseline model presented in Section 3. All estimations include asset price moments but differ with

respect to the choice of other moments. Column (1) reports the model estimated on asset prices only. Column (2) reports the model estimated on asset prices and the

wealth distribution. Column (3) reports the model estimated on asset prices and the power law exponent ζ. Column (4) reports the model estimated on asset prices and

the exposure of top wealth shares βExposure. Column (5) reports the model estimated an asset prices with a lower bound on ψB . Column (6) reports the augmented of

Section 5 estimated on asset prices, the wealth distribution, and a moment corresponding to the long run standard deviation of the residuals of the regression (27).

Moments in bold and in red highlight the dimensions of the data that are missed by the model.

† βExposure is the coefficient obtained by regressing the growth of the share of wealth owned by the top 0.01% on stock returns (Table 2).

‡ βPredictability is the coefficient obtained by regressing the future excess stock returns on the log of the share of wealth owned by the top 0.01%, normalized to have a

standard deviation of one (Table 3).
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Table 5: The Price-Dividend Ratio and the Future Growth of the Wealth Share of the Top 0.01%

Future Growth of the Wealth Share of the Top 0.01%

Kopczuk and Saez (2004) Saez and Zucman (2016) Baseline Model Augmented Model

Series Series

(1) (2) (3) (4)

logP/D 0.03 0.11∗∗ −0.10∗∗ 0.12∗∗

(0.07) (0.05) (0.07) (0.05)

R2 0.00 0.07 0.10 0.09

Notes. The table reports the results of the regression of the future growth of the wealth share of the top 0.01% on the

price-dividend ratio, i.e. Equation (28):

log
Wealth Share Top 0.01%t+4

Wealth Share Top 0.01%t+1

= α+ β logP/Dt + εt

Each column corresponds to a different dataset. Column (1) corresponds to the wealth share of the Top 0.01% according to

Estate Tax Returns (Kopczuk and Saez (2004)). Column (2) corresponds to the wealth share of the top 0.01% according to

Income Tax Returns (Saez and Zucman (2016)). Column (3) corresponds to simulated data from the baseline model (parameters

in Column (1) of Table 4). Column (4) corresponds to simulated data from the augmented model (parameters in Column (6)

of Table 4).

Estimation via OLS. Standard errors in parentheses and estimated using Newey-West with 3 lags. ∗,∗∗ ,∗∗∗ indicate significance

at the 0.1, 0.05, 0.01 levels.
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Figure 1: The Equity Share Increases Across the Wealth Distribution
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Notes. Figure 1a plots the average equity share within 20 linearly spaced percentile bins in the wealth distribution.

Figure 1b plots the average equity share within 20 logarithmically spaced percentile bins in the wealth distribution.

The horizontal line represents the average equity share. The vertical line splits the set of households in two:

households on either side of the vertical line own half of total wealth (this corresponds to top percentile ≈ 3%). Alls

average are wealth-weighted.

Data from the Survey of Consumer Finance (SCF), a cross sectional survey of US households from 1989 to 2013.

The equity share is constructed as (equity + bus) / networth.
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Figure 2: The Wealth Share of the Top 0.01% and Average Excess Returns
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Notes. The figure plots the wealth share of the top 0.01% (log) and the 8-year sum of future excess returns (opposite of). All

series are normalized to have a standard deviation of one.

Figure 3: The Pareto Tail of the Wealth Distribution in the Data and in the Baseline Model
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Notes. The figure compares the log networth (relative to the average networth) to the log percentile in SCF, Forbes, and in

the simulated model corresponding to Column (1) of Table 4. More precisely, the figure plots the average log networth within

40 logarithmically spaced percentile bins in SCF. The figure plots the average log networth for each position in Forbes 400.

The (opposite of) the slope gives ζ ≈ 1.5 for SCF and for Forbes 400 but ζ ≈ 1.1 for the baseline model.
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Figure 4: Asset Prices in the Baseline Model
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Notes. The figure plots equilibrium objects as a function of x, the share of wealth owned by the agents in group A, for

three different estimations of the baseline model. The baseline model, the model with {βexposure, the model with {ψB > 0.2}
correspond respectively to Column (1), Column (4) and Column(5) of Table 4.

50



Figure 5: Asset Prices in Augmented Model
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Notes. The figure plots equilibrium objects as a function of x, the share of wealth owned by the agents in group A, and ν, the

difference between the investment opportunities of the rich relative to the poor.
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Figure 6: Time Series of the ̂Top 0.01% vs the Top 0.01%

−4

−3.5

−3

−2.5

−2

1920 1940 1960 1980 2000

Year

Estate Tax Returns Forbes 400

Model Implied

Notes. The figure plots the logarithm of the wealth share of the top 0.01%, as well as the “synthetic” values constructed as

predicted values by the linear model given in Equation (27). More precisely, I estimate the linear model on the series of the

wealth share of the top 0.01% and I then construct a synthetic series ̂Top 0.01% as

̂Top 0.01%t+1 = α̂+ ρ̂ log ̂Top 0.01% + β̂(rMt+1 − r
f
t+1) + γ̂rft+1 + εt+1
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A Empirical Appendix

A.1 Data Sources

A direct comparison of estate tax returns and Forbes data by researchers from the IRS Statistics of Income

Division (Raub et al. (2010)) finds that actual estates correspond to only about 50 percent of reported

Forbes values. This suggests that estate tax returns may underestimate wealth (potentially due to the tax

avoidance effect) while Forbes may overestimate wealth (potentially because debts are harder to track than

assets). These findings suggest that the main difficulties with measuring top wealth shares primarily pertain

to getting the level right. My principal measure, the stock market exposure of the top households, is similar

across the two datasets (Table 2).

I refer the reader to Kopczuk and Saez (2004) for a detailed descriptions of construction of top wealth

shares from estate tax returns.

A.2 Measuring the Exposure of Top Households

Table A1: The Exposure to Stock Returns Across the Wealth Distribution:

Controlling for the Composition Effect

Forbes 40

Top 40 Within Top 40

(1) (2)

Excess Stock Returns 0.71∗∗∗ 0.74∗∗∗

(0.21) (0.25)

Risk Free Rate 1.89 0.54

(1.16) (1.15)

R2 0.29 0.27

Notes. This table reports the stock market exposure of the total wealth of the households in the Top 40 vs the wealth exposure

of the households within the Top 40.

Only 4 households in the Top 40 directly exit Forbes 400 (Daniel E. Smith, Gururaj Deshpande, David Huber in 2001 and

Robert Pritzker in 2004). I do not know the wealth of these households after they exit the top. I assume that they are just

under the threshold for Forbes 400. Quantitatively, the imputation does not matter since the drop already corresponds to a

negative return of −90% (i.e. there is more much more variation between the Top 40 and the Top 400 than between the top

400 and 0)

Robustness w.r.t. Human Capital. Table 2 measures the exposure of financial wealth. One may

be interested in the exposure of total wealth. However, because human capital is not observable. I now argue

that, for households at the top of the wealth distribution, the bias between the exposure of total wealth and

the exposure of financial wealth is quantitatively small.
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Table A2: The Exposure to Stock Returns Across the Wealth Distribution:

Controlling for Idiosyncratic Volatility

Group of Households Defined by Wealth Percentiles

Kopczuk and Saez (2004) Series

1− 0.1% 0.1− 0.01% Top 0.01%

(1) (2) (3)

Excess Stock Returns 0.58∗∗∗ 0.71∗∗∗ 0.77∗∗∗

(0.19) (0.18) (0.24)

σ2 idiosyncratic (firm level) 0.12 0.13 0.27∗∗

(0.08) (0.11) (0.12)

R2 0.51 0.62 0.56

Period 1928-1999 1928-1999 1928-1999

N 43 43 43

Notes. The table reports the results of a regression of the wealth growth of households in a given percentile group on the

excess stock returns, the risk free rate, and the yearly idiosyncratic variance

log
W p→p′
t+1

W p→p′
t−1

= α+ β(rMt − r
f
t ) + γrft + δσ2 + εt

Idiosyncratic variance σ2 is measured as the cross sectional variance of the residual epsilonit of a regression on firm level stock

returns on factors

rit − r
f
t = αi + βiFt + εit

where Ft includes the three Fama-French factors.

Estimation via OLS. Standard errors in parentheses and estimated using Newey-West with 3 lags. ∗,∗∗ ,∗∗∗ indicate significance

at the 0.1, 0.05, 0.01 levels, respectively.

Formally, for a given agent in the economy, denote w his financial wealth, h his human capital and ω =

w/(w+h) the ratio of financial wealth over total wealth. Following the log linearization in Campbell (1996),

the return on total wealth can be written as

log
wt+1 + ht+1

wt + ht
≈ κ+ ω log

wt+1

wt
+ (1− ω) log

ht+1

ht

Projecting this approximation on stock returns, we obtain the exposure of total wealth as a weighted sum

of the exposure of financial wealth and human capital

βw+h ≈ ωβw + (1− ω)βh

This allows to express the bias due to the omition of human capital

βw+h − βw
βw

= (1− ω)(
βh − βw
βw

)

The bias depends on ω the share of financial wealth in total wealth, and βh−βw
βw

the difference between the

exposure of financial wealth and of human capital. I now give an order of magnitude for these two terms.
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Labor income represents a very small share of total income for households in the top of the distribution

(8.5% for the Top 40030). Assuming the same capitalization rate for human capital and financial capital,

this suggests that human capital represents approximately one tenth of financial wealth for the top 400

households.

I proxy the exposure of human capital to the stock market βh as the covariance of labor income growth

to stock returns. The approximation is exact when the discount rate associated with human capital are

constant over time. Table A3 reports the result: I find β = 0.21, which is smaller than the exposure of

financial wealth. Parker and Vissing-Jørgensen (2009) show that the exposure of labor income to aggregate

shocks was low before 1982, and increased thereafter.

Joining the estimates for ω and βh, I conclude that the bias is in average negative and represents 0.085 ∗
(0.2/0.75− 1) = −6% of the estimated exposure β, which is much smaller than the standard errors.

Table A3: The Exposure of Labor Income Growth Across the Wealth Distribution:

Group of Households Defined by Wealth Percentiles

1− 0.1% 0.1− 0.01% Top 0.01%

(1) (2) (3)

Excess Stock Returns 0.15 0.20∗ 0.35∗∗

(0.09) (0.11) (0.16)

R2 0.16 0.12 0.18

Period 1918-2010 1918-2010 1918-2010

N 93 93 93

Notes. The table reports the resuls of the regression of the growth of labor income on asset returns

log
Y p→p

′

t+1

Y p→p
′

t−1

= α+ β1(rMt − r
f
t ) + β2r

f
t + εt

The total labor income received received by within a top percentile is obtained from Saez and Zucman (2016).

Estimation is via OLS. Standard errors in parentheses and estimated using Newey-West with 3 lags. ∗,∗∗ ,∗∗∗ indicate signifi-

cance at the 0.1, 0.05, 0.01 levels, respectively.

Robustness w.r.t. Saez and Zucman (2016) series. Saez and Zucman (2016) have recently

proposed a new series for top wealth shares, which relies on Income Tax Returns. Table A4 estimates the

stock market exposure of the top wealth percentiles by replacing the series of Kopczuk and Saez (2004) by

the series of Saez and Zucman (2016). I find that the estimates are now uniformally lower. For instance, the

stock market exposure of the Top 0.01% is 0.4 using Income Tax Returns, compared to 0.75 using estate tax

returns or Forbes. This suggests that the methodology in Saez and Zucman (2016) may not track well the

business cycle frequencies of wealth shares, even though they track more accurately the long run fluctuations

30See https://www.irs.gov/pub/irs-soi/13intop400.pdf.
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in inequality, as argued in Saez and Zucman (2016). A certain number of wealth categories are constructed

using trends and interpolations across years, which may bias down the estimate.

Table A4: The Exposure to Stock Returns Across the Wealth Distribution:

Saez and Zucman (2016) Series

Group of Households Defined by Wealth Percentiles

Saez and Zucman (2016) Series (Income Tax)

1− 0.1% 0.1− 0.01% Top 0.01%

(1) (2) (3)

Panel A: 1960-2011

Excess Stock Returns 0.31∗∗∗ 0.38∗∗∗ 0.40∗∗∗

(0.06) (0.07) (0.08)

R2 0.38 0.31 0.27

Period 1960-2011 1960-2011 1960-2011

N 52 52 52

Panel B: 1960-1982

Excess Stock Returns 0.23∗∗∗ 0.26∗∗∗ 0.30∗∗

(0.05) (0.09) (0.12)

R2 0.48 0.33 0.29

Period 1960-1981 1960-1981 1960-1981

N 22 22 22

Panel C: 1982-2011

Excess Stock Returns 0.38∗∗∗ 0.47∗∗∗ 0.46∗∗∗

(0.08) (0.10) (0.10)

R2 0.43 0.41 0.38

Period 1982-2011 1982-2011 1982-2011

N 30 30 30

Notes. The table reports the resuls of the regression of the growth of the wealth growth of households in a given percentil

group on asset returns.

Estimation is via OLS. Standard errors in parentheses and estimated using Newey-West with 3 lags. ∗,∗∗ ,∗∗∗ indicate signifi-

cance at the 0.1, 0.05, 0.01 levels, respectively.
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Table A5: Accounting for the Persistence of Top Wealth Shares (Campbell and Yogo (2006) test)

Confidence Interval for β ∈ [β, β] in the Predictability Regression (2)

Case with ρ = 0.92 Case with ρ = 1.06

β β β β

Log Top Share −0.22 −0.04 −0.19 −0.01

Notes. The time period is 1917-1945, the longest period where the wealth share of the top 0.01% is available without missing

years. This table does a Bonferroni test based on the test developped Campbell and Yogo (2006). The test jointly takes into

account the persistence of the predictor as well as its correlation with stock returns to compute the confidence interval for β.

The autoregressive lag length for top wealth share is estimated by the Bayes information criterion (BIC), with maximum length

equal to four.
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B Theoretical Appendix

B.1 Characterization of the Equilibrium

Proof of Proposition 1. Given the homotheticity assumptions, the value function of the households in group

j ∈ {A,B} with wealth N can be written:

Vjt(N) =
N1−γj

1− γj
p

1−γ
ψ−1

jt (ρ+ δ)

1−γj
1− 1

ψj

The HJB equation associated with household’s problem is

0 = max
cjt,σjt

{f(cjtNjt, U) + E[
N1−γj

1− γj
p

1−γ
ψ−1

jt (ρ+ δ)
1−γ
1− 1

ψ ]

Applying Ito’s lemma

0 = max
cjt,σjt

{ (ρ+ δ)(1− γj)
1− 1

ψj

(
c
1− 1

ψj

jt

ρp
1
ψj

jt N
1− 1

ψi
jt

− 1) + (1− γj)µi

+
1− γj
ψj − 1

µpj −
(1− γj)γj

2
σ2
j +

(1− γj)(2− γj − ψj)
2(ψj − 1)2

σ2
pj +

(1− γj)2

ψj − 1
σiσpj

Substituting the expression for the wealth drift µj using the budget constraint and dividing by 1− γj

0 = max
cjt,σjt

{ 1

1− 1
ψj

(
c
1− 1

ψj

jt

p
1
ψj

jt

− ρ− δ) + rt + δ + σjtκt − cjt

+
1

ψj − 1
µpjt −

γj
2
σ2
j +

2− γj − ψj
2(ψj − 1)2

σ2
pjt +

1− γj
ψj − 1

σjσpjt}

The FOC for aggregate risk exposure σjt gives

σjt =
κt
γj

+
1− 1

γj

1− ψj
σpjt

The FOC for consumption gives

cjt = 1/pjt

that is, pjt is the wealth / consumption ratio of the household.

Plugging the expression in the HJB equation, we obtain an expression for the wealth drift

µjt = rt + δ + σjtκt − cjt

= ψj(rt − ρ) + µpjt +
1 + ψj

2γj
κ2
t +

1− γj
γj(ψj − 1)

κtσpjt +
1− γjψj

2(ψj − 1)γj
σ2
pjt

Proof of Proposition 2. Denote NAts the average wealth at time t of all agents in group A born at time s.

The total wealth owned by agents in group A is∫
i∈IA

Nitdi =

∫ t

−∞
δe−δ(t−s)NAtsds
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Its law of motion is

d[πA

∫ t

−∞
δe−δ(t−s)NAtsds] = πA

∫ t

−∞
δe−δ(t−s)dNAtsds+ πAδNAtt − πA

∫ t

−∞
δ2e−δ(t−s)NA,tsds

Therefore

d[πA
∫ t
−∞ δe−δ(t−s)NAt,sds]∫ t

−∞ πAδe−δ(t−s)NAt,sds
= µAtdt+ σAtdZt + δ(

πA
xt

φt
pt
− 1)dt

Similarly

d[(1− πA)
∫ t
−∞ δe−δ(t−s)NBt,sds]∫ t

−∞(1− πA)δe−δ(t−s)NBt,sds
= µBtdt+ σBtdZt + δ(

1− πA
1− xt

φt
pt
− 1)dt

Applying Ito’s lemma on the definition of x (10), we obtain

dxt
xt

= µxtdt+ σxtdZt

with

σxt = (1− xt)(σAt − σBt)

µxt = (1− xt)(µAt − µBt) + (1− x)
φt
pt
δ(
πA
xt
− 1− πA

1− xt
)− (σ + σpt)σxt

B.2 Solving for the Equilibrium

Specifying Life Cycle Function G. First, I specify G(u) as a sum of K exponential

G(u) =
∑

1≤k≤K

Bke
−δku

where the coefficients (Bk)1≤k≤K are normalized so that total aggregate earnings equal ωYt

1 =
∑

1≤k≤K

Bk
δ

δ + δk

Define pLk as the price dividend of a claim with exponentially decreasing endowment at rate δ + δk, for

1 ≤ k ≤ K. In particular, φ, the human capital of a newborn agent normalized by total endowment Yt, can

be written:

φ = ω
∑

1≤k≤K

Bkp
l
k

I now write the equilibrium as a system of PDES for the function pA, pB , (p
l
k)1≤k≤K .

Market Clearing for Consumption. Market clearing for consumption (8) gives the function p in

term of pA and pB

x

pA
+

1− x
pB

=
1

p

In particular, this allows to express the derivatives of p in term of the derivatives of pA and pB
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Market Clearing for Risk. Market clearing for risk (9) gives

xσA + (1− x)σB = σ + σp

Plugging the FOC for σj from (11), one obtains the market price of risk (16)

Solve for σx. By Ito we have

σpj =
∂xpj
pj

σx +
∂νpj
pj

σν for j ∈ {A,B}

σp =
∂xp

p
σx +

∂νp

p
σν

Substituting the expression for κ in (16) in Proposition 2, we can solve for σx:

σx =

x(1−x)Γ
γAγB

((γB − γA)σ + 1−γA
ψA−1

∂νpA
pA

σν − 1−γB
ψB−1

∂νpB
pB

σν)

1− x(1−x)Γ
γAγB

((γB − γA)pxp + 1−γA
ψA−1

∂xpA
pA
− 1−γB

ψB−1
∂xpB
pB

)

Solve for µx. The law of motion Proposition 2 yields µx in term of previously computed quantities:

µx = µA − µ− µp + δ(
πA
x

φ

p
− 1) + (σ + σp)σx

=
1

p
− 1

pA
+ κσx + δ

φ

p
(
πA
x
− 1) + (σ + σp)σx

By Ito, we have

µpj =
∂xpj
pj

µx +
∂νpj
pj

µν +
1

2

∂xxpj
pj

σ2
x +

1

2

∂ννpj
pj

σ2
ν +

∂xνpj
pj

σxσν for j ∈ {A,B}

µp =
∂xp

p
µx +

∂νp

p
µν +

1

2

∂xxp

p
σ2
x +

1

2

∂ννp

p
σ2
ν +

∂xνp

p
σxσν

Solve for risk free rate Combining the market pricing for the price dividend ratio and the market

pricing for human capital, we obtain the market pricing for p, the total wealth in the economy

1− δφ
p

+ µ+ µp + σσp = r + κ(σ + σp)

This gives r.

System of PDEs. Given r and κ, we are left with the following system of PDEs

µj = r + δ − νj + κσj −
1

pj
for j ∈ {A,B}

1

plk
+ µ− δ − δk + σplkσ = r + κ(σ + σplk) for 1 ≤ k ≤ K

B.3 The Wealth Distribution

For the sake of generality, I study the distribution of a process with both aggregate and idiosyncratic shocks
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Lemma 1 (Kolmogorov Forward). Suppose xt is a process evolving according to

dxt = µt(x)dt+ σt(x)dZt + νt(x)dWit

where Zt is a standard aggregate Brownian Motion and Wit is a standard idiosyncratic Brownian motion.

Assume that xt has death rate δ and is re-injected according to the distribution ψt The pdf of xt, gt, follows

the law of motion

dgt
dt

(x) = −∂x(µt(x)gt(x) + σt(x)gt(x)
dZt
dt

) +
1

2
∂2
x((σ2

t (x) + ν2
t (x))gt(x)) + δ(ψt(x)− gt(x))

Proof for Lemma 1. I extend the proof in Kredler (2014) for the case of aggregate shocks. For any function

f , we have ∫ +∞

−∞
f(x)gt+dt(x)dx =

∫ +∞

−∞
[(f(x) + df(x))gt(x) + f(x)δdt(ψt(x)− gt(x))]dx

Assume that f is a twice differentiable and use Ito’s lemma to obtain∫ +∞

−∞
f(x)dgt(x)dx =

∫ +∞

−∞
(µt(x)∂xf(x) +

1

2
(σt(x)2 + ν(x)2)∂xxf(x) + σt(x)∂xf(x)dZt)gt(x)dx

+

∫ +∞

−∞
f(x)δdt(ψt(x)− gt(x))dx

Assume that f decays fast enough as |x| → +∞ and use integration by parts to obtain∫ +∞

−∞
f(x)dgt(x)dx =

∫ +∞

−∞
f(x)[(−∂x(µt(x)gt(x)) +

1

2
∂2
x((σt(x)2 + ν(x)2)gt))dt− ∂x(σt(x)gt)dZt]dx

+

∫ +∞

−∞
f(x)δdt(ψt(x)− gt(x))dx

This equality must hold for all f satisfying the conditions above. Therefore, we obtain

dgt
dt

(x) = −∂x(µt(x)gt(x) + σt(x)gt(x)
dZt
dt

) +
1

2
∂2
x((σ2

t (x) + ν2
t (x))gt) + δ(ψt(x)− gt(x))

I now derive the evolution of top wealth shares deriving a version of the Kolmogorov Forward equation

with both aggregate risk and idiosyncratic risk.

Lemma 2 (Dynamics of Top Wealth Shares). For a top percentile α ∈ (0, 1), denote qt(α) the α−quantile,

i.e.

α =

∫ +∞

qt

gt(n)dn (A1)

and denote Tt(α) the share of wealth owned by the households in the top percentile α, i.e.,

Tt =

∫ +∞

qt

ngt(n)dn (A2)
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Suppose xt is a process evolving, for x higher than qt(α), according to

dxt
xt

= µtdt+ σtdZt + νtdWit

where Zt is a standard aggregate Brownian Motion and Wit is a standard idiosyncratic Brownian Motion.

xt has a death rate δ and is re-injected according to the distribution ψt.

Tt follows the law of motion

dTt
Tt

= µtdt+ σtdZt − δ(1−
qtα

Tt
) +

δ

Tt

∫ +∞

qt

(x− qt)ψt(x)dx+
ν2
t

2

q2
t gt(qt)

Tt

Proof of Lemma 2. Applying Ito’s lemma on (A1) gives the law of motion of the quantile qt

0 = −gt(qt)
dqt
dt

+

∫ +∞

qt

dgt(x)

dt
dx− σ[dgt(qt)]σ[dqt]

where σ[dgt(qt)] and σ[dqt] denote respectively the volatility of gt(qt) and qt Applying Ito’s lemma on (A2)

gives the law of motion of the top share Tt

dTt = −qtgt(qt)dqt +

∫ ∞
qt

xdgt(x)dx− qtσ[dgt(qt)]σ[dqt]dt−
1

2
gt(qt)σ[dqt]

2dt

Injecting the law of motion for qt, we obtain the law of motion for Tt:

dTt =

∫ ∞
qt

(x− qt)dgt(x)dx− 1

2
gt(qt)σ[dqt]

2dt

=

∫ ∞
qt

(x− qt)dgt(x)dx− 1

2

1

gt(qt)
(

∫ ∞
qt

σ[dgt(x)]dx)2dt (A3)

Substituting the law of motion for dgt from the Kolmogorov Forward equation Lemma 1 and integrating by

parts:

dTt =

∫ ∞
qt

(x− qt)(−∂x((µtdt+ σtdZt)xgt(x)) + ∂2
x(
σ2
t + ν2

t

2
dtx2gt(x))

+ δ(ψt(x)dt− gt(x)dt))dx

− 1

2

1

gt(qt)
(

∫ +∞

qt

∂x(σtxgt(x)dx))2dt

=−
∫ +∞

qt

(−(µtdt+ σtdZt)xgt(x) + ∂x(
σ2
t + ν2

t

2
dtx2gt(x)))dx

− δ
∫ ∞
qt

(x− qt)gt(x)dtdx+ δdt

∫ ∞
qt

(x− qt)ψt(x)dtdx

− 1

2

1

gt(qt)
(

∫ +∞

qt

∂x(σtxgt(x)dx))2dt

= µtTtdt+ σtTtdtdZt − δdt(Tt − qtα) + δ

∫ +∞

qt

(x− qt)ψt(x)dtdx+
ν2
t

2
q2
t gt(qt)
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Proof of Proposition 4. The proof proceeds similarly to Lemma 2 up to equation (A3):

dTt =

∫ ∞
qt

(x− qt)dgt(x)dx− 1

2

1

gt(qt)
(

∫ ∞
qt

σ[dgt(x)]dx)2dt

Now, dgt(x) is given by the Kolmogorov Forward equation in Proposition 3. We obtain:

dTt =
∑

j∈{A,B}

πj

∫ ∞
qt

(x− qt)

(
−∂x((µjtdt+ σjtdtdZt)xgjt(x)) + ∂2

x(
σ2
jt

2
dtx2gjt(x))

)
dx

+
∑

j∈{A,B}

πj

∫ ∞
qt

δ(ψt(x)dt− gjt(x)dt)dx

− 1

2

1

gt(qt)
(

∫ +∞

qt

∂x(−
∑

j∈{A,B}

πjσjtxgjt(x)dx))2dt

Integrating by parts

dTt
Tt

=
∑

j∈{A,B}

πj

∫ +∞

qt

(µjtdx+ σjtdx)xgjt(x)dZt

− δdt(1− qtα

Tt
) +

δdt

Tt

∫ +∞

qt

(x− qt)ψt(x)dx

+
1

2

q2
t gt(qt)

Tt

 ∑
j∈{A,B}

σ2
jtπjgjt(qt)/gt(qt)−

 ∑
j∈{A,B}

σjtπjgjt(qt)/gt(qt)

2
 dt

Proposition 8. Suppose nt, xt evolve according to

dnt
nt

= µn(x)dt+ σn(x)dZt + νn(x)dWit

dxt = µ(x)dt+ σ(x)dZt

where Zt is a standard aggregate Brownian Motion and Wit is an idiosyncratic Brownian Motion. The

process has death rate δ and is re-injected according to the distribution ψ(x, n).

Denote As the operator defined as

Asφ(x) =

(
sµn(x) +

s(s− 1)

2
(σn(x)2 + νn(x)2)− δ

)
φ(x)− ∂x ((µ(x) + sσn(x)σ(x))φ(x)) +

1

2
∂xx(σ(x)2φ(x))

If the following conditions are satisfied:

1. There exists ζ > 0 such that the principal eigenvalue of Aζ is 0,

2. The stationary distribution of human capital has a tail thinner than ζ.31

Then the stationary wealth distribution has a Pareto tail with power law exponent ζ.

31Formally, there exists ∆ such that E[ξζ+∆] < +∞.
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Proof of Proposition 8. The derivation roughly follows Gabaix (2010) and Moll (2012).32 Denote g(n, x) the

stationary joint distribution of n and x. Kolmovorov Forward equation gives

0 = δ(ψ(n, x)− g(n, x))− ∂x(µ(x)g(n, x))− ∂n(nµn(x)g(n, x)) (A4)

+
1

2
∂nn((σn(x)2 + νn(x)2)n2g(n, x)) +

1

2
∂xx(σ(x)2g(n, x)) + ∂nx(σn(x)nσ(x)g(n, x))

Let us guess that

g(n, x) ∼ Cn−ζ−1φ(x) as n→ +∞

Plugging into (A4)

0 = −δn−ζ−1φ(x)− ∂x(µ(x)n−ζ−1φ(x))− ∂n(nµn(x)n−ζ−1φ(x))

+
1

2
∂nn((σn(x)2 + νn(x)2)n2n−ζ−1φ(x)) +

1

2
∂xx(σ(x)2n−ζ−1φ(x)) + ∂nx(σn(x)nσ(x)n−ζ−1φ(x))

Dividing by n−ζ−1

0 =

(
ζµn(x) +

ζ(ζ − 1)

2
(σn(x) + νn(x))2 − δ

)
φ(x)− ∂x ((µ(x) + ζσn(x)σ(x))φ(x)) +

1

2
∂xx(σ(x)2φ(x))

(A5)

Define for a nonegative real number s the operator As as

Asφ(x) =

(
sµn(x) +

s(s− 1)

2
(σn(x)2 + νn(x)2)− δ

)
φ(x)− ∂x ((µ(x) + sσn(x)σ(x))φ(x)) +

1

2
∂xx(σ(x)2φ(x))

(A5) means that 0 is an eigenvalue of Aζ associated with the eigenvector φ, i.e.

Aζφ(x) = 0

For any s > 0, −As is an elliptic operator (degenerate on the boundary with σ(0) = σ(1) = 0). We know that

there is one and only one eigenfunction of As that is positive everywhere.33 The corresponding eigenvalue

is called the principal eigenvalue of As, and it is real. The problem is therefore equivalent to finding ζ such

that the principal eigenvalue of Aζ is 0.

I now prove that there is only one ζ > 0 such that the principal eigenvalue of Aζ is 0. From Gabaix

(2010), that relies on a result by Hansen and Scheinkman (2009), the principal eigenvalue of As, denoted

η(s), equals the average growth rate of nst

η(s) = lim
t→+∞

1

t
lnE[nst ]

In particular, this means that the function η is convex. Since η(0) = −δ, there is at most one ζ > 0 such

that η(ζ) = 0.

32A formal derivation can be found in Saporta (2005) for the case of discrete time processes.
33See Strauss (1992) for the case of uniformly elliptic operators. This is the analog of Perron Frobenius’s theorem

for continuous dimensions.
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Proof of Proposition 6. The proposition can be obtained by applying Proposition 8 on gA and on gB . Since

the principal eigenvalue of AB,ζ is negative, this means that the principal eigenvalue of AB,s is negative for

s ∈ (0, ζ), and that gB has a thinner tail than gA. Therefore, g has a Pareto tail and its power law exponent

is the power law exponent of gA.

Proof of Proposition 5. The proposition is a special case of Proposition 6 with µ(x) = σ(x) = σ̃A = 0.

I now solve the model in this special case. Households’ FOC from Proposition 1 give:

µj0 = ψj(r − ρ)

Market clearing gives

x0µ̃A0 + (1− x0)µ̃B0 + δ(
φ0

p0
− 1) = 0

Substituting out µA0, µB0 from the households’ FOC, we obtain the interest rate r0

r0 − ρ =
µ− δ(φ0

p0
− 1)

x0ψA + (1− x0)ψB
(A6)

The steady state condition µx(x0) = 0 gives, using Proposition 2:

µA0 − µB0 =
φ0

p0
δ(
πA
x0
− 1− πA

1− x0
)

Substituting out µA0, µB0 from the households’ FOC:

(ψA − ψB)(r0 − ρ) = δ
φ0

p0

πA − x0

x0(1− x0)
(A7)

Finally, the no arbitrage condition for total wealth and human capital gives:

φ0 = ω

∫ +∞

0

e−(r+δ+γσ2−µ)uG(u)du (A8)

p0 =
1− δφ0

r0 + γ σ
2

2 − µ
(A9)

We are left with a system of 4 unknowns (r0, x0, φ0, p0). and 4 equations ((A6), (A7), (A8), (A9)). The

system can be solved numerically.

C Model Simulation

I simulate the model over 10000-year long samples, in which I only keep the last 5000 years.

The parametric form of the labor income distribution does not matter for the right tail of the wealth

distribution, as shown in Section 3.3. Still, I use a realistic labor income distribution. I use the generalized

beta of the second kind, i.e. GB(2), with parameters estimated in SCF: a = 3.65, p = 0.3, q = 0.8346.
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