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Abstract

Information processing filters out the noise in data but it takes time. Hence, low
precision signals are available before high precision signals. To capture this feature,
we develop a model of securities trading in which investors can acquire signals
(about future cash flows) of increasing precision over time. As the cost of producing
low precision signals declines, prices are more likely to reflect these signals before
more precise signals become available. This effect increases price informativeness
in the short run but not necessarily in the long run, because it reduces the profit
from trading on more precise signals. We make additional predictions for trade and
price patterns.
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“Increasingly, there is a new technological race in which hedge funds and other well-

heeled investors armed with big data analytics analyze millions of twitter messages

and other non-traditional information sources to buy and sell stocks faster than

smaller investors can hit “retweet”.”

in “How investors are using social media to make money,” Fortune, December 7, 2015.

1 Introduction

Improvements in information technologies change how information is produced and dis-
seminated in financial markets. In particular, they enable investors to obtain huge amount
of data at lower costs.1 For instance, investors can now easily get on-line access to com-
panies reports, economic reports, or investors’ opinions (expressed on social medias) to
assess the value of a stock.2 Similarly, traditional data vendors like Reuters, Bloomberg,
or “Fintechs” (e.g., iSentium, Dataminr, or Eagle Alpha) use so-called news analytics to
extract signals from unstructured data (news reports, press releases, stock market an-
nouncements, tweets, satellite images etc.) and sell these signals to investors who feed
them into their trading algorithms.3

How does this evolution affect the informativeness of asset prices? This question is
important because, ultimately, more informative prices enhance the efficiency of capital
allocation (see Bond, Edmans, and Goldstein (2012) for a survey). Economists should
a-priori expect the decline in the cost of accessing information to enhance asset price infor-
mativeness. Indeed, extant models with endogenous information acquisition predict that
asset price informativeness increases when information costs decline, either because more
investors buy information (Grossman and Stiglitz (1980)) or because investors acquire
more precise signals (Verrechia (1982)).

However, being static, these models ignore the time dimension of information produc-
tion, namely, filtering out noise from data takes time. For this reason, less precise signals
become available before more precise signals, not the other way round. This timing is

1At the turn of the millennium, the cost of sending one trillion bits was already only $0.17 (versus
$150, 000 in 1970); see “The new paradigm”, Federal Reserve Bank of Dallas, 1999.

2For instance, websites such as StockTwits or Seeking Alphas allow investors to comment on stocks,
share investment ideas, and provide, in real time, raw financial information pulled off from other social
medias. For evidence that information exchanged on social medias contains value relevant information,
see Chen et al.(2014).

3For popular press articles on this evolution, see, for instance, “Rise of the news-reading machines”
(Financial Times, January 26, 2010); “How investors are using social medias to make money” (Fortune,
December 7, 2015); “Investors mine big data for cutting hedge strategies” (Financial Times, March 30,
2016); or “Big data is a big mess for hedge funds hunting signals” (Bloomberg, November 22, 2016).
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particularly relevant when considering on-line data such as tweets, newswires, companies
reports etc., which often are very noisy and requires accumulation of more data to gen-
erate precise signals. Thus, early signals produced with such data (e.g., using machine
learning or natural language processing) are less precise than later signals obtained with
a deeper analysis.4 In this paper, we show that, for this reason, a decline in the cost of ac-
cessing data can reduce the long run informativeness of asset prices about fundamentals,
in contrast to the prediction of existing models of information acquisition.

In our model, information sellers produce a “raw” (i.e., unfiltered) signal and a “pro-
cessed” (i.e., filtered) signal about the payoff of a risky asset and sell these to speculators
(for a fee specific to each signal). The raw signal is correct (reveals the asset payoff) with
probability θ or is just noise with probability (1− θ). Thus, θ characterizes the reliability
of the raw signal. The true type of the signal (information/noise) can only be discovered
after filtering out the noise from raw data, which requires some time. To account for this
delay, we assume that the processed signal (i.e., the raw signal and its type) is available
with a lag relative to the raw signal. Specifically, the raw signal is available in period 1
while the processed signal is only available in period 2.5 Thus, speculators who buy the
processed signal trade with a lag relative to speculators who buy the raw signal. When
they receive their signal, speculators can trade on it with a risk neutral market maker
and liquidity traders (as in Kyle (1985)).

Following Veldkamp (2006a,b), we assume that the costs of producing the raw and the
processed signals are fixed but, once produced, each signal can be replicated for free (the
marginal cost of providing a signal to an extra user is zero). Furthermore, the market for
information is competitive: (i) raw and processed signals are sold at competitive fees (i.e.,

4In line with this idea, examples of erroneous trading decisions and large price changes due to
misleading signals based on web data abound. For instance, on April 23, 2013 a fake tweet from a
hacked Associated Press twitter account announced that explosions at the White House had injured
President Barack Obama. The Dow Jones immediately lost 145 basis points but it recovered in less
than three minutes after the news proved to be false. Commenting this event, the Economist Magazine
writes: “human users must extract some sort of signal every day from the noise of innumerable tweets.
Computerised trading algorithms that scan news stories for words like “explosions” may have proved less
discerning and triggered the sell-off. That suggests a need for more sophisticated algorithms that look
for multiple sources to confirm stories.” (see The Economist, “#newscrashrecover”, April 27, 2013.).
See also “How investors are using social media to make money,” Fortune, December 7, 2015 for other
examples in the same vein.

5One possible interpretation of this timing is as follows. News (e.g., a new SEC filing or an earning
conference call by a firm) about the asset cash flows arrives just before date 1. Based on this news,
information sellers produce signals about the asset. For instance, the raw signal might be a buy/sell
recommendation for the asset based on linguistic analysis of the news regarding the asset while the
processed signal is a buy/sell recommendation based on a deeper analysis (e.g., financial statements
analysis) of the implications of the news for the asset value. As the processed signal requires human
intervention and accumulation of more data, it takes more time to produce than the raw signal.
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such that information sellers make zero profit) and (ii) speculators’ expected profit from
trading on one signal net of information fees is equal to zero. In this set-up, we analyze
how a decline in the cost of producing the raw signal affects equilibrium outcomes, in
particular the equilibrium demands for each signal (i.e., the number of speculators buying
it) and the informational content of the asset price in the short run (period 1) and the
long run (period 2).

We first show that a decrease in the cost of producing the raw signal can strengthen
or reduce the demand for the processed signal in equilibrium. Indeed, this decrease raises
the number of speculators who trade on the raw signal and therefore the likelihood that
the price of the asset reflects this signal in period 1, i.e., before speculators receive the
processed signal. When the raw signal is just noise, this effect is beneficial for those who
buy the processed signal. Indeed, they learn from their signal that the asset is mispriced,
due to the noise injected in the price by those who trade on the raw signal, and they can
exploit this mispricing. In contrast, when the raw signal is not noise, a more informative
price at date 1 makes those who buy the processed signal worse off since it reduces their
informational advantage relative to the market maker.

Thus, the net effect of a decrease in the cost of producing the raw signal on the
value of the processed signal and therefore the demand for this signal is ambiguous. It
strengthens the demand for the processed signal in equilibrium (i.e., after accounting for
the adjustment in the fees charged by information sellers to the decrease in the cost of the
raw signal) only if the raw signal is sufficiently unreliable (i.e., θ < θ̂ < 1/2). Otherwise,
a decrease in the cost of producing the raw signal reduces the demand for the processed
signal in equilibrium, as if “bad” signals were driving out “good” signals. In this case, a
decline in the cost of the raw signal makes prices more informative in the short run and
yet, paradoxically, less informative in the long run.6

This implication of the model is consistent with Weller (2016) who finds empirically
a negative association between the activity of algorithmic traders (a class of traders who
is likely to trade on relatively raw signals) and the informativeness of prices about future
earnings. It also offers a possible interpretation of the empirical findings in Bai, Phillipon,
and Savov (2015). For the entire universe of U.S. stocks, they find (see their Figure A.3)
that stock price informativeness has been declining over time (they obtain the opposite
conclusion for stocks in the S&P500 index). They attribute this trend to change in the

6There is at, least as much information available in period 2 than in period 1 and strictly more if, in
equilibrium, some speculators buy the processed signal. Thus, the informativeness of the price in period
2 is weakly higher than in period 1. Yet, when θ > θ̂ and the cost of producing the raw signal decreases,
the informativeness of the price in period 2 decreases, even though it increases in period 1.
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characteristics of public firms in the U.S. Our model suggests that the reduction in the
cost of producing raw signals might be another explanatory factor for this evolution.

Our model has additional testable implications for the trade patterns of various types
of investors. First the model predicts that the correlation between the order flow (the
difference between buys and sells) of speculators trading on the raw signal and that of
speculators trading on the processed signal should decline (and could even become nega-
tive) when the cost of producing the raw signal decreases. Indeed, speculators receiving
the processed signal trade in a direction opposite to that of speculators who trade on the
raw signal when (i) the raw signal is noise and (ii) it is reflected in the price before spec-
ulators receive the processed signal. Holding the precision of the raw signal (θ) constant,
this event occurs more frequently when more speculators trade on the raw signal, i.e.,
when its production cost is small. For this reason, when this cost declines, sell orders
(resp., buy orders) from speculators who trade on the raw signal are more likely to be
followed by buy orders (resp., sell orders) from speculators who trade on the processed
signal.

Second, the order flow from speculators who trade on the processed signal and past
returns are correlated.7 This correlation is negative when the raw signal is sufficiently un-
reliable (θ ≤ 1

2) and positive otherwise. Intuitively, price changes due to trades exploiting
the raw signal are more likely to be due to noise, and therefore subsequently corrected by
speculators who receive the processed signal, when the reliability of the raw signal, θ, is
low enough. Thus, in equilibrium, speculators who trade on the processed signal behave
either like contrarian traders (they trade against past returns) when the raw signal is
unreliable or momentum traders (they trade in the same direction as past returns) when
the raw signal is more reliable. The model also implies that, in absolute value, the cor-
relation between the order flow from speculators who trade on the processed signal and
past returns should be weaker when the cost of producing the raw signal declines.

Last, the direction of the order flow from speculators who trade on the raw signal
is positively correlated with future returns.8 However, this correlation becomes weaker
when the cost of producing the raw signal declines. Indeed, this decline increases the
demand for the raw signal and therefore the likelihood that the asset price fully reflects

7This prediction is non standard. Indeed, standard models of informed trading (e.g., Kyle (1985))
predicts a zero correlation between the trades of informed investors at a given date and lagged returns
(see Boulatov, Livdan and Hendershott (2012), Proposition 1, for instance.)

8This is not due to serial correlation in returns. In our model, the price of the asset at each date is
equal to its expected value conditional on all available public information, i.e., the history of trades as
in Kyle (1985). Hence, returns are serially uncorrelated in our model.
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this signal before the arrival of the processed signal. When this happens, speculators who
receive the processed signal can only profitably trade on the component of their signal
that is orthogonal to the raw signal. This effect reduces the predictive power of the order
flow from speculators trading on the raw signal about the order flow from speculators
trading on the processed signal, and therefore future returns.

All our predictions are about the effects of a decline in the cost of producing raw
signals. Empiricists could test these predictions by using shocks to the cost of accessing
raw financial data. For instance, in 2009, the SEC mandated that financial statements
be filed with a new language (the so called EXtensible Business Reporting Language or
XBLR) on the ground that it would lower the cost of accessing data for smaller investors.9

The implementation of this new rule or other similar shocks could therefore be used to
test some of our predictions.10

We discuss the literature related to our paper in the next section. Section 3 describes
the model. Section 4 derives equilibrium prices at dates 1 and 2, taking the demands for
the raw and the processed signals as given while Section 5 endogenizes these demands.
Section 6 derives the implications of the model for (i) asset price informativeness and
(ii) price and trade patterns. Section 7 presents an extension of the model in which
investors can make their decision to buy the processed signal contingent on the short
run evolution of asset prices. Section 8 concludes. Proofs of the main results are in the
appendix. Additional material is provided in a companion appendix available on the
authors’ website.

2 Related Theoretical Literature

Our paper contributes to the literature on costly information acquisition in financial
markets (e.g., Grossman and Stiglitz (1980), Verrechia (1982), Admati and Pfleiderer
(1986), Veldkamp (2006a,b), Cespa (2008), or Lee (2013); see Veldkamp (2011) for a

9See SEC (2009). In particular on page 129, the SEC notes that: “If [XBLR] serves to lower the
data aggregation costs as expected, then it is further expected that smaller investors will have greater
access to financial data than before. In particular, many investors that had neither the time nor financial
resources to procure broadly aggregated financial data prior to interactive data will have lower cost access
than before interactive data. Lower data aggregation costs will allow investors to either aggregate the
data on their own, or purchase it at a lower cost than what would be required prior to interactive data.
Hence, smaller investors will have fewer informational barriers that separate them from larger investors
with greater financial resources.”‘

10Interestingly, data vendors such as Dow Jones screen SEC filings by firms and release information
contained in these filings through specialized services (e.g., Dow Jones Corporate Filing Alert). Thus,
a reduction in the cost of accessing these filings for data vendors is similar to a reduction in the cost of
producing the raw signal in our model.
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survey). Some papers in this literature (e.g., Verrechia (1982) or Peress (2010)) have
considered the case in which investors can choose the precision of their signals, assuming
that the cost of a signal increases with its precision.

Our model differs from these models in two important dimensions. First, in the
extant literature, investors trade on their signals simultaneously while in our model,
traders who buy a signal with relatively low precision can trade before those who buy
a signal with higher precision, because information processing takes time. Second, in
extant models, the cost of precision is exogenously specified while it is endogenous in
our model. In particular, in equilibrium, the fee charged for the high precision signal
(its acquisition cost for investors) indirectly depends on the demand for the low precision
signal and thereby the production cost of this signal. As a result, we obtain different
implications, which highlights the importance of the time dimension in producing more
precise signals. In particular, in Verrechia (1982), a decline in the cost of precision
increases price informativeness (see Verrechia (1982), Corollary 4), whether this decrease
regards high or low precision signals (or both). In contrast, in our model, a decrease in
the cost of producing the low precision (raw) signal can reduce price informativeness.

In Lee (2013), investors can buy signals about one of two independent fundamentals
for an asset, say, A, and B. As all informed investors trade simultaneously, an increase in
the number of speculators trading on, say, A blurs market makers’ ability to learn (from
the order flow) about B while raising the price impact of all market orders. Interestingly,
the first effect enhances the expected profit of speculators who trade on B while the
second decreases it. For this reason, in Lee (2013), the number of investors informed
about one fundamental can increase or decrease with the number of investors informed
about the other one.

Similarly, in our model, the mass of investors informed about the processed signal can
increase or decrease with the mass of speculators informed about the raw signal. However,
the economic mechanisms in our model are different from those in Lee (2013). Indeed,
in our set-up, traders with different signals trade at different dates. Thus, their orders
are not batched and therefore do not have the same price impact. Moreover, speculators’
signals are correlated in our model. For this reason, an increase in the mass of speculators
trading on the raw signal at date 1 allows market makers to draw more, not less, precise
inferences from the order flow at this date about both the asset payoff and the signal
subsequently received by those trading on the processed signal.

Holden and Subrahmanyam (1996) and Brunnermeier (2005) consider models with two
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trading rounds (dates 1 and 2) in which investors receive signals about two independent
risk factors affecting the payoff of a risky asset. One factor is publicly released at date
2 while the other remains unknown until the asset pays off (date 3). In Holden and
Subrahmanyam (1996), investors are risk averse and can choose to trade either on a
signal about the factor revealed at date 2 (the short term signal) or a signal about the
factor revealed at date 3 (the long term signal). They show that more investors choose
to be informed about the short term signal when risk aversion increases. In our model,
investors are risk neutral and can buy both signals. Changes in the demand for a signal
are driven by variation in the cost of producing the raw signal and our novel predictions
pertain to changes in this cost. Brunnemeier (2005) shows that the asset price is more
informative at date 2 than when no investor is informed about the factor revealed at date
2. In contrast to Brunnemeier (2005), our results about price informativeness are not
driven by speculation on forthcoming public news. Instead, they reflect a change in the
relative demands for signals of low and high precisions (the number of informed investors
is exogenous in Brunnermeier (2005)).

As in Froot, Scharfstein and Stein (1992) and Hirshleifer et al.(1994), our model
features “early” (those who trade on the raw signal) and “late” (those who trade on
the processed signal) informed investors. In these models, the number of early and
late informed traders is exogenous. In contrast, in our model, the number of traders
trading on the early (raw) signal or the late (processed) signal is endogenous and late
traders have signals of higher precision.11 For these reasons, the implications of our
model are distinct from those in other models with early and late informed investors.12

For instance, in Hirshleifer et al.(1994), the trades of early and late informed investors
are always positively correlated (see their Proposition 2) while, instead, they can be
negatively correlated in our model. Moreover, in Hirshleifer et al.(1994), the trades of
late informed investors are not correlated with past returns (see their Proposition 3) while
they are in our model.

11In Holden and Subrahmanyam (2002), risk averse investors can choose to receive information at
dates 1 or 2. However, the precision of investors’ signals is the same at both dates. In contrast, in our
model, late informed investors receive a signal of higher precision.

12In Froot et al.(1992), there exist equilibria in which a fraction of speculators trade on noise. However,
there is no possibility for traders to correct price changes due to such trades. In contrast, in our model,
speculators correct price changes due to noise, after receiving the processed signal.
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3 Model

We consider the market for a risky asset. Figure 1 describes the timing of actions and
events. There are four periods (t ∈ {0, 1, 2, 3}). The payoff of the asset, V , is realized at
date t = 3 and can be equal to 0 or 1 with equal probabilities. Trades take place at dates
t = 1 and t = 2 among: (i) a continuum of liquidity traders, (ii) a continuum of risk
neutral speculators, and (iii) a competitive and risk neutral market-maker. We denote by
ᾱ the mass of speculators relative to the mass of liquidity traders (which we normalize to
one). At date 0, speculators can buy signals about the payoff of the asset. As explained
below, these signals are delivered by information sellers at date 1 or 2, depending on their
type.

t = 0

Markets for information :

- A mass α1 of speculators
decide to buy the raw
signal, which will be
available at date 1, at
price Fr .

- A mass α2 of speculators
decide to buy the
processed signal, which
will be available at date
2, at price Fp .

t = 1

- Speculators
observe the raw
signal s, then
submit buy or
sell orders for
one share.

- Liquidity traders
submit buy or
sell orders.

- The market
maker observes
the aggregate
order flow, f1,
and sets a price
p1.

t = 2

- Speculators
observe the
processed signal
(s, u), then they
submit buy or
sell orders for
one share.

- Liquidity traders
submit buy or
sell orders.

- The market
maker observes
the aggregate
order flow, f2,
and sets a price
p2.

t = 3

The asset pays
off, V ∈ {0, 1}.

Figure 1: Timing

The raw and the processed signals. Just before date 1, new data about the payoff
of the asset becomes available. These data are the raw material used by information sellers
to produce two types of signals: (i) an unfiltered signal (henceforth the “raw signal”) and
(ii) a filtered signal (henceforth the “processed signal”). The raw signal, s̃, is:

s̃ = ũ× Ṽ + (1− ũ)× ε̃, (1)

where ũ, ε̃, and Ṽ are independent and can be equal to 0 or 1. Specifically, ũ = 1 with
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probability θ while ε̃ = 1 with probability 1/2. Thus, with probability θ, the raw signal
is equal to the asset fundamental while with probability (1− θ), it is just noise.13

The processed signal is obtained after filtering out the noise from the new data avail-
able just before date 1 (e.g., by accumulating more data). Thus, the processed signal
is the pair (s, u), that is, the raw signal and its type (noise or fundamental). We say
that the processed signal “confirms” the raw signal if u = 1 and “invalidates” it if u = 0.
For the problem to be interesting, we assume that 0 < θ < 1 so that the raw signal is
informative but less reliable than the processed signal.

To capture the idea that information processing takes time, we assume that producing
the processed signal requires one more period than producing the raw signal. Thus, the
raw signal is delivered (by sellers of this signal) at date t = 1 while the processed signal
is delivered at date t = 2.

The market for information is opened at date 0. That is, at this date, information
sellers set their fee for each type of signal and speculators decide to subscribe or not to
their services. Each speculator can choose to (i) buy both types of signals, (ii) only one
type, or (iii) no signal at all. The mass of speculators buying the signal available at date
t is represented by αt.14 We denote by Fr and Fp the fees charged at date 0, respectively,
by the sellers of the raw signal and the sellers of the processed signal. We analyze how
they are related to the cost of producing each signal in Section 5 when we endogenize
these fees.

The asset market. Trading in the market for the risky asset takes place at dates 1
and 2. As in Glosten and Milgrom (1985), each speculator can buy or sell a fixed number
of shares–normalized to one–using market orders (i.e., orders that are non contingent on
the contemporaneous execution price). If he decides to trade, a speculator will optimally
submit an order of the maximum size (one share) because he is risk neutral and too small
to individually affect the equilibrium price. To simplify the analysis, we assume that
speculators who only buy the raw signal trade at date 1 but not at date 2 (traders who
buy both signals can trade at both dates).15

13The raw signal does not need to be construed as being completely unprocessed data. For instance,
firms (e.g., Reuters, Bloomberg, Dataminr, Thinknum, Orbital Insights etc.) selling signals extracted
from social medias (twitter etc.), companies reports, or satellite imagery use algorithms to process raw
data to some extent. This processing is faster but not as deep as that performed by securities analysts or
investment advisors who take the time to accumulate more information (e.g., by meeting firms’ managers,
forecast future cash flows, compute discount rates etc.) in order to sharpen the accuracy of their signals.

14As the mass of speculators is ᾱ, we have αt ≤ ᾱ for t ∈ {1, 2}. In a previous version of the paper,
we considered the case in which each speculator could buy only one type of signal. Results in this case
are identical to those obtained when we allow each speculator to buy both signals.

15This no retrade constraint for speculators who only buy the raw signal can be justified by the fact
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We denote by xit ∈ {−1, 0, 1}, the market order submitted by speculator i trading at
date t, with xit = 0 if speculator i chooses not to trade and xit = −1 (resp., +1) if he sells
(resp., buys) the asset. We focus on equilibria in pure strategies in which all speculators
play the same strategy at a given date (symmetric equilibria).16 Hence, we drop index
i when referring to the strategy of a speculator since, at a given date t, all speculators
follow the same strategy.

At each date t, liquidity traders buy or sell one share of the asset for exogenous reasons.
Their aggregate demand at date t, denoted l̃t, has a uniform distribution (denoted φ(·))
on [−1, 1] and l̃1 is independent from l̃2. Liquidity traders ensure that the order flow at
date t is not necessarily fully revealing (see below), which is a pre-requisite for speculators
to buy signals (e.g., as in Grossman and Stiglitz (1980)).

At date t, the market-maker absorbs the net demand (the “order flow”) from liquidity
traders and speculators at a price, pt, equal to the expected payoff of the asset conditional
on his information. As the market-maker does not observe s̃ and ũ until t = 3, the price
at date t only depends on the order flow history until this date (as in Kyle (1985)).
Formally, let ft be the order flow at date t:

ft = l̃t +
∫ αt

0
xitdi. (2)

The asset price at date t is:

pt = E[Ṽ |Ωt] = Pr[Ṽ = 1|Ωt], (3)

where Ωt is the market-maker’s information set at date t (Ω1 = {f1} and Ω2 = {f2, f1}).
At date 0, the asset price is p0 = E(V ) = 1/2. The highest and smallest possible
realizations of the order flow at date t are fmaxt

def= (1 + αt) (all investors are buyers at
date t) and fmint

def= −(1 + αt) (all investors are sellers at date t).
We solve for the equilibrium of the model backward. That is, in the next section, we

present speculators’ optimal trading strategies and equilibrium prices at dates 1 and 2, for

that their positions are riskier (their profit has a larger variance). Thus, in reality, they are likely to have
more stringent position limits than traders who also buy the processed signal. In any case, the no retrade
constraint is innocuous when the price at date 1 reveals the raw signal since, in this case, retrading on
this signal cannot be optimal. If the price at date 1 does not reveal the raw signal, retrading on this
signal at date 2 might sometimes be optimal. Allowing for this possibility however makes the analysis
of the equilibrium at date 2 more complex without adding insights.

16This restriction is innocuous because there are no other equilibria than symmetric equilibria in pure
strategies when speculators’ expected profits, gross of the fees paid for the signal, are strictly positive.
This condition is necessarily satisfied when α1 is endogenous because no speculator would buy a signal
if his gross expected trading profit is zero (see Lemma 2 in Section 5).
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given values of α1 and α2. This allows us to compute the ex-ante (date 0) expected profits
from trading on each type of signal. Armed with this result, we derive the equilibrium of
the market for information in Section 5, that is, the equilibrium fees (Fr and Fp) charged
by information sellers and the equilibrium demand (i.e., αe1 and αe2) for each type of
signal. We then study (in Section 6) how a reduction in the cost of producing the raw
signal affects the demands for each signal and asset price informativeness in equilibrium.

4 Equilibrium Trading Strategies and Prices

Let µ(s) be expected payoff of the asset at date 1 conditional on signal s ∈ {0, 1}. We
have:

µ(s) = E[V |s̃ = s] = Pr[V = 1|s̃ = s].

Hence:
µ(1) = 1 + θ

2 >
1
2 and µ(0) = 1− θ

2 <
1
2 .

At date 1, speculators who buy the raw signal observes s. Thus, we denote their trading
strategy by x1(s) and their expected profit per capita conditional on the realization of
the raw signal is:

π1(α1, s) = x1(s)(µ(s)− E[p1|s̃ = s]).

The next proposition provides the equilibrium of the market for the risky asset at date 1
and the ex-ante (date 0) expected trading profit for speculators who buy the raw signal.

Proposition 1. Let ω(x, α1) = φ(x−α1)
φ(x−α1)+φ(x+α1) . The equilibrium at date 1 is as follows:

1. Speculators receiving the raw signal buy the asset if s = 1 and sell it if s = 0
(x1(0) = −1 and x1(1) = 1). Other speculators do not trade.

2. The asset price is:

p∗1(f1) = E[Ṽ |f̃1 = f1] = ω(f1, α1)µ(1) + (1− ω(f1, α1))µ(0), (4)

for f1 ∈ [fmin1 , fmax1 ].

3. Thus, the ex-ante expected profit from trading on the raw signal is:

π̄1(α1) def= E(π1(α1, s)) = θ

2 max{1− α1, 0}. (5)
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Figure 2: Equilibrium at date 1

Panel A shows the distribution of the order flow at date 1. Panel B shows the equilibrium price
at date 1 for each possible realization of the order flow.

(A) Distribution of the Order Flow at Date t = 1 (f1)

Blue : s = 1

Red : s = 0

−1−2 1 2

1/2

−1− α1 1− α1−1 + α1 1 + α1

Total
Order Flow

(B) Equilibrium Price at Date t = 1 (p1)

−1 + α1 1− α1−1− α1 1 + α1

p1 = E [V |Order Flow at t = 1]

Order flow at t = 1 :
Liquidity Traders +
Raw Information
Speculators

p1 =
1
2

p1 =
1−θ
2

p1 =
1+θ
2

Order Flow contains no information

Figure 2 illustrates the proposition. Panel A shows the equilibrium distribution of
the aggregate order flow at date 1 for each realization of s, given speculators’ trading
strategy at this date (remember that the density of liquidity traders’ aggregate order,
φ(.), is uniform). Panel B shows the equilibrium price of the asset for each realization
of the order flow at date 1. When s = 0, speculators who receive the raw signal sell
the asset. Thus, their aggregate order is −α1 and the largest possible realization of the
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order flow in this case is (1 − α1) (when liquidity traders’ aggregate order is equal to
1). Thus, when the order flow at date 1 exceeds (1 − α1), the market maker infers that
s = 1 and sets a price equal to µ(1) (see Panel B in Figure 2). Symmetrically, if the order
flow at date 1 is smaller than −(1 − α1), the market maker infers that s = 0 and sets a
price equal to p1 = µ(0). Intermediate realizations of the order flow at date 1 (those in
[−1 +α1, 1−α1]) have the same likelihood whether s = 1 or s = 0 (see Panel A in Figure
2). Thus, they provide no information to the market marker and, for these realizations,
the market maker sets a price equal to the ex-ante expected value of the asset, 1/2.

In sum, the order flow at date 1, f̃1, is either completely uninformative about the raw
signal, s, or fully revealing. In the former case, the return from date 0 to date 1, denoted
r1 = (p1 − p0), is zero. Otherwise this return is strictly positive if s = 1 and strictly
negative if s = 0. Thus, the probability of a price movement at date 1 (p1 6= p0) is given by
the probability that the order flow is fully revealing, i.e., Pr(p1 6= p0) = min{α1, 1}. This
probability increases with the mass of speculators buying the raw signal, α1, because, as
their mass increases, their aggregate order size becomes larger relative to that of liquidity
traders. Thus, speculators trading on the raw signal account for a larger fraction of the
total order flow, which therefore becomes more informative. As a result, the price at date
1 becomes more responsive to trades at this date.

At t = 2, speculators who have purchased the processed signal observe (s, u) and the
price realized in period 1, p1. Hence, we denote their trading strategy by x2(s, u, p1) and
their expected trading profit (per capita) is:

π2(α1, α2, s, u, p1) = x2(s, u, p1)(E[V |s, u]− E[p2|s, u, p1]).

In the rest of the paper, we denote by πc2(α2) and πnc2 (α2), the expected profits of a
speculator who buys the processed signal conditional on (i) a change (‘c’) in the price at
date 1 (i.e., p1 6= p0) and (ii) no change (‘nc’) in the price at date 1 (i.e., p1 = p0 = 1/2),
respectively.

Proposition 2. The equilibrium at date t = 2 is as follows:

1. If the processed signal is (s, 0), speculators who receive this signal buy one share if
the price in the first period is smaller than 1

2 (i.e., x2(s, 0, p1) = 1 if p1 < 1/2);
sell one share if the price in the first period is greater than 1

2 (i.e., x2(s, 0, p1) =
−1 if p1 > 1/2); and do not trade otherwise (i.e., x2(s, 0, 1/2) = 0). If instead
the processed signal is (s, 1), speculators who receive this signal buy one share if
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s = 1 (i.e., x2(1, 1, p1) = 1) and sell one share if s = 0 (i.e., x2(0, 1, p1) = −1).
Speculators who do not receive the processed signal do not trade at date 2.

2. If p1 = µ(1) = 1+θ
2 then the asset price at date 2 is:

p∗2(f2) =



1
2 if f2 ∈ [fmin2 ,−1 + α2],
1+θ

2 if f2 ∈ [−1 + α2, 1− α2],

1 if f2 ∈ [1− α2, f
max
2 ].

3. If p1 = µ(0) = 1−θ
2 then the asset price at date 2 is:

p∗2(f2) =


0 if f2 ∈ [fmin2 ,−1],
1−θ

2 if f2 ∈ [−1 + α2, 1− α2],
1
2 if f2 ∈ [1− α2, f

max
2 ].

4. If p1 = 1
2 then the asset price at date 2 is:

p∗2(f2) =



0 if f2 ∈ [fmin2 ,−1],
1−θ
2−θ if f2 ∈ [−1,min{−1 + α2, 1− α2}],
1
2 if f2 ∈ [min{−1 + α2, 1− α2}],max{−1 + α2, 1− α2}]

1
2−θ if f2 ∈ [max{−1 + α2, 1− α2}, 1]

1 if f2 ∈ [1, fmax2 ].

5. The ex-ante expected profit of speculators who buy the processed signal, π̄2(α1, α2) def=
E[π2(α1, α2, s, u, p1)], is:

π̄2(α1, α2) = α1π
c
2(α2) + (1− α1)πnc2 (α2), (6)

where πc2(α2) = max{θ(1− θ)(1− α2), 0} and

πnc2 (α2) =



θ
2(2−θ) (2− θ − α2) if α2 ≤ 1
θ
2

1−θ
2−θ (2− α2) if 1 < α2 ≤ 1,

0 if α2 > 2,

(7)
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Figure 3: Equilibrium Price Dynamics

Panel A shows the possible equilibrium paths for the asset price when s = 1. Panel B shows
the distribution of the order flow at date 2 for each possible realization of the processed signal
when there is no change in the price at date 1 (p1 = p0 = 1/2).

(A) Equilibrium Price Dynamics when s=1

p0 =
1
2 p1 =

1
21− α1

p1 =
1+θ
2

α1

p2 =
1
21− α2

p2 =
1+θ
21− α2

p2 = 1

θα2

(1− θ)α2
p2 =

1
2−θ

1
2α2

p2 =
1−θ
2−θ

1
2 (1− θ)α2

1
2θα2

(B) Equilibrium Distribution of the Order Flow at Date t = 2 (f2),
when p1 = 1/2, and α2 < 1

Blue : u = 1, s = 1

Red : u = 1, s = 0

Green : u = 0

−1−2 1 2

1/2

−1− α2 1− α2−1 + α2 1 + α2

Total
Order Flow

Order Flow is non informative :
p2 = 1/2

Dealers learn that
u = 1 and s = 0 : p2 = 0

Dealers learn that
u = 1 and s = 1 : p2 = 1

Dealers learn that either
(u = 1, s = 0) or u = 0 :

p2 = 1−θ
2−θ

Dealers learn that either
(u = 1, s = 1) or u = 0 :

p2 = 1
2−θ

The trading decision of speculators who receive the processed signal at date 2 depends
on whether u = 1 or u = 0. When u = 1, the processed signal confirms the raw signal s.
Thus, speculators trade on the processed signal as they trade on the raw signal, i.e., they
buy the asset if s = 1 (the asset payoff is high) and sell it if s = 0 (the asset payoff is
zero). Hence, conditional on u = 1, speculators’ trading decision at date 2 is independent
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from the price of the asset at the end of the first period.
In contrast, when u = 0, the processed signal invalidates the raw signal and speculators

receiving the processed signal expect the payoff of the asset to be 1/2. Their trading
decision is then determined by the latest price of the asset, i.e., p1. If p1 > 1/2, they
optimally sell the asset because they expect that, on average, their sell orders will execute
at a price greater than their valuation for the asset (1/2). Symmetrically, if p1 < 1/2, they
optimally buy the asset. Finally, if p1 = 1/2 and u = 0, not trading is weakly dominant
for speculators who receive the processed signal because they expect their order to execute
at a price equal to their valuation for the asset, i.e., 1/2.17

Panel A of Figure 3 shows the possible equilibrium price paths when s = 1 (the case
in which s = 0 is symmetric) and the transition probabilities from the price obtained at
date 1 to the price at date 2 (when α1 ≤ 1 and α2 ≤ 1).18

When s = 1, speculators who receive the raw signal buy the asset at date 1 and, with
probability α1, the market maker infers from the order flow that s = 1 and sets a price
equal to p1 = µ(1) = 1+θ

2 > p0. In this case, after trading at date 1, the only remaining
source of uncertainty for the market maker is about u. At date 2, with probability θ,
the processed signal confirms the raw signal (i.e., (s, u) = (1, 1)). Hence, speculators
who receive this signal also buy the asset and, with probability α2, their demand is so
strong that the market maker infers that V = 1. In this case, the price goes up at date 2
relative to the price at date 1. The overall unconditional probability of two consecutive up
movements in the price is therefore (θα1α2)/2.19 Alternatively, with probability (1− θ),
the processed signal invalidates the raw signal (i.e., (s, u) = (1, 0)). Hence, speculators
sell the asset in period 2 because, given their information, it is overpriced. In this case,
with probability α2, their supply is strong enough to push the price back to its initial
level and they in fact correct the noise injected by speculators at date 1 into prices. Thus,
the unconditional probability of an up price movement followed by a down movement is
((1− θ)α1α2)/2. Finally, in either case, there is a probability (1−α2) that the order flow
at date 2 is uninformative. In this case, the price at date 2 is equal to the price at date
1.

When the market maker does not infer the raw signal, s, from trades at date 1, his
17The reason is that, in this case, speculators expect (i) liquidity traders’ aggregate demand for the

asset to be zero on average and (ii) other speculators’ demand for the asset to be zero as well. Hence,
a speculator expects the price at date 2 to be identical to the price at date 1 because his demand is
negligible compared to speculators’ aggregate demand.

18Transition probabilities are different when α2 > 1.
19The unconditional probability of a given price path in equilibrium is obtained by multiplying the

conditional likelihood of this path by 1/2 because s = 1 or s = 0 with equal probabilities.
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inference problem at date 2 is more complex since he then knows neither s, nor u. This
explains why there are more possible realizations for the equilibrium price at date 2 when
there is no price change at date 1. For instance, suppose that the market observes a
realization of the aggregate order flow at date 2 in the interval [−1,−1 + α2]. As Panel
B of Figure 3 shows, this realization is consistent with three possible realizations of the
processed signal (1, 0), (0, 0), or (0, 1). Thus, the market maker sets a price equal to
p2 = E(v | (s, u) ∈ {(1, 0), (0, 0), (0, 1)}) = (1− θ)/(2− θ) < 1/2. This explains why, even
though s = 1, the price might decrease from date 1 to date 2 when it has not changed at
date 1.

The expected profit from trading on a given signal (raw or processed) decreases with
the number of speculators buying this signal (that is, ∂π̄1(α1)

∂α1
≤ 0 and ∂π̄2(α1,α2)

∂α2
≤ 0).

Indeed, as more speculators trade on a signal, the order flow (or price) becomes more
informative about this signal and, as a result, expected profit from trading on this signal
drops. For instance, when α1 increases, the expected profit of trading on the raw signal
declines because, as explained previously, the likelihood that the order flow reveals spec-
ulators’ signal at date 1 becomes higher. This effect is standard in models of informed
trading (e.g., Grossman and Stiglitz (1980) or Kyle (1985)).20

More surprisingly, the next corollary shows that investors trading on the processed
signal can in fact benefit from a more informative price at date 1. That is, for some
parameter values, their expected profit is higher when the market maker learns the raw
signal at date 1 (and adjusts his price accordingly) than when he does not. Let denote
α̂2(θ) = (1−2θ)(2−θ)

2(2−3θ+θ2)−1 . Observe that α̂2(θ) > 0 iff θ < 1/2 and that α̂2(θ) goes to 2/3 as θ
goes to zero.

Corollary 1. The expected profit from trading on the processed signal is larger when the
market maker learns the raw signal (the order flow is fully revealing) at date 1 than when
he does not (i.e., πc2(α2) > πnc2 (α2)) when α2 < α̂2(θ) and θ ≤ 1/2. Otherwise it is
smaller.

The intuition for this finding is as follows. Suppose that the price reflects the raw
signal, s, at the end of period 1. If this signal is valid then speculators receiving the

20When α1 ≥ 1, the expected profit from trading on the raw signal, s, is nil because the mass of
speculators trading on signal is so large relative to the mass of liquidity traders that the order flow
at date 1 is always fully revealing (the interval [−1 + α1, 1 − α1] is empty). For a similar reason, the
expected profit from trading on the processed signal, (s, u), is zero when the mass of speculators trading
on the processed signal is twice the mass of liquidity traders, i.e., when α2 ≥ 2. The trading strategy
that exploits the processed signal has a larger “capacity” (break even for a larger number of speculators)
because it is more difficult for market makers to infer information about the processed signal from the
order flow.
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processed signal obtain a smaller expected profit than if the price had not changed since
the asset price already impounds part of their information about the asset payoff. This
is a standard logic in models of information acquisition. However, the logic is reversed if
the raw signal is noise. Indeed, if the price at date 1 reflects the raw signal, speculators
receiving the processed signal can make a profit by correcting the noise in the price,
either by selling the asset if the price increased in the last period or buying it if the
price decreased. This profit opportunity does not exist if the price has not changed at
date 1. For this reason, if the raw signal is noise, speculators receiving the processed
signal are better off when the price reflects the raw signal at date 1 than when it does
not. This second effect dominates if the likelihood that the signal is noise is large enough
(θ ≤ 1/2) and competition among speculators receiving the processed signal is not too
intense (α2 < α̂2(θ)). In this case, on average, speculators obtain a larger profit when
the first period price reflects the raw signal than when it does not.

The previous result implies that an increase in the demand for the raw signal can
have a positive effect on the expected profit of speculators who received the processed
signal. This effect again is non standard. Indeed, in standard models of trading with
asymmetric information, the expected profit of informed investors usually decrease with
the mass of informed investors. In contrast, in our setting, an increase in the mass of
speculators informed about the raw signal can in fact result in larger expected profits for
speculators who receive the processed signal.

To see this, observe that the marginal effect of an increase in the demand for the raw
signal on the unconditional expected profit of trading on the processed signal (given by
eq.(6)) is:

∂π̄2(α1, α2)
∂α1

= πc2(α2)− πnc2 (α2). (8)

Thus, if πc2(α2) > πnc2 (α2), an increase in the demand for the raw signal (α1) increases the
unconditional expected profit of trading on the processed signal. Intuitively, it raises the
likelihood that the price will reflect the raw signal in the first period. This is beneficial
for speculators who trade on the processed signal if their expected profit is higher when
the first period price reflects the raw signal, that is, if α2 < α̂2(θ) and θ ≤ 1/2. The next
corollary follows.

Corollary 2. The expected profit from trading on the processed signal, π̄2(α1, α2), in-
creases with the demand for the raw signal, α1, if and only if α2 < α̂2(θ) and θ ≤ 1/2.

In sum, an increase in the demand for the raw signal (α1) can either strengthen or
lower the value of the processed signal (i.e., the expected profit from trading on this
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signal). Thus, an increase in the equilibrium demand for the raw signal could either
increase or reduce the demand for the processed signal (see Figure 4). To study this
issue, we analyze the equilibrium of the market for information (the prices and demands
for the raw and the processed signals at date 0) in the next section.

An increase in the demand

for the raw signal reduces 

the value of the processed 

signal

An increase in

the demand for the 

raw signal increases the 
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Figure 4: This figure shows the sets of values of θ and α2 for which a marginal increase
in the demand for the raw signal (α1) increases or decreases the value of the processed
signal for speculators. The red curve is the threshold α̂2(θ) defined in Corollary 2.

5 Equilibrium in the Market for Information

In this section, we derive the fees charged by information sellers and the resulting equilib-
rium demands (αe2 and αe1) for each type of signal. Producing information goods involves
large fixed costs but negligible marginal costs (see, for instance, Shapiro and Varian
(1999) or Veldkamp (2011), Chapter 8 and references therein). For instance, Shapiro
and Varian (1999) write (on page 21): “Information is costly to produce but cheap to
reproduce [...]. This cost structure leads to substantial economies of scale.” Thus, as in
Veldkamp (2006a,b), we assume that information sellers bear a fixed cost to produce
their signal (denoted Cp for the seller of the processed signal and Cr for seller of the raw
signal) and zero cost to distribute it. For instance, Cr represents the cost of collecting
data and designing an algorithm to extract the raw signal s from these data. This cost
is independent from the number of speculators buying the raw signal and the marginal
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cost of distributing this signal to an extra buyer is zero.21

As in Veldkamp (2006a,b), we also assume that markets for information are com-
petitive and perfectly contestable. This means that, in equilibrium, the buyers and the
seller of a given signal make zero expected profits. We first derive the equilibrium in the
market for the processed signal, holding the demand for the raw signal (α1) fixed. This
is without loss of generality because the equilibrium value of α1 is independent of the
equilibrium value of α2 (while the reverse is not true; see below). Thus, α1 can be treated
as a parameter in the analysis of the equilibrium of the market for the processed signal.

The demand for a signal is capped by the (relative) mass of speculators, ᾱ. As shown
below, this upper bound on the demand for a given signal is never binding when ᾱ ≥ 2.
To simplify the exposition, we assume that this is the case. In this way, we eliminate
corner cases in which the demand for a given signal hits the upper bound ᾱ and becomes
therefore insensitive to a change in parameters (e.g., Cr). This reduces the number
of cases to discuss when presenting the equilibrium of the market for each signal. For
completeness, we show in Section 2 of the on-line appendix that the results are unchanged
when ᾱ < 2.

From the viewpoint of each speculator, the cost of acquiring the processed signal is
the fee, Fp, charged by seller of this signal. Each speculator takes this fee as given.
Let π̄net2 (α1, α2, Fp) def= π̄2(α1, α2) − Fp be the expected profit from trading on the pro-
cessed signal in equilibrium net of the fee paid to obtain this signal. Moreover, let
Π̄seller

2 (α2, Fp) def= α2×Fp−Cp be the expected profit of the seller of the processed signal.
Finally let (F e

p , α
e
2) be the equilibrium fee and the equilibrium demand for the processed

signal. We say that the market for the processed signal is active if αe2 > 0.
If the market for the processed signal is active, in a competitive equilibrium, the

demand for the processed signal and the fee charged for this signal must be such that
the speculators buying the processed signal and the seller of this signal just break even.
That is, when αe2 > 0, (F e

p , α
e
2) solve:

Zero profit for speculators: π̄net2 (α1, α
e
2, F

e
p ) = π̄2(α1, α

e
2)− F e

p = 0. (9)
21Consider a firm like iSentium (see http://www.iSENTIUM.com/) that specializes in selling invest-

ment signals extracted from social medias, like tweeter. For this firm, the total cost of producing a
signal will comprise the cost of subscribing to the complete Twitter stream ($30,000 a month; see “How
investors are using social medias to make money”, Fortune, December 2015)) and developing algorithms
to extract signals from this stream. These costs are fixed, i.e., they do not depend on the number of
investors buying iSentium’s signals. They correspond to Cr in our model. iSentium charges a fee of
$15, 000 per month to each subscriber buying its signals. This corresponds to the fee Fr in our model.
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and

Zero profit for the information seller: Π̄seller
2 (αe2, F e

p ) = αe2 × F e
p − Cp = 0.22 (10)

Condition (9) implies that, at equilibrium, a speculator is indifferent between buying
the processed signal or not trading at date 2 (taking other speculator’s decisions and
the fee for the processed signal as given). If this was not the case then αe2 would not
be the equilibrium demand for the processed signal since either additional speculators
would benefit from buying the signal or some buyers of the signal would be better off
not buying it. Condition (10) is necessary to preclude profitable entry by another seller
of the processed signal and sufficient if F e

p is the smallest possible fee among all possible
equilibrium fees. Thus, when there are multiple solutions (F e

p , α
e
2) to eq.(9) and (10),

we select the one with the smallest fee, since other fees could profitably be undercut by
another information seller.

When the market for the processed signal is active (αe2 > 0), Condition (9) implies
that the aggregate net expected profit (denoted π̄net,a2 (α1, α

e
2)) of speculators buying the

processed signal is zero. Thus, using eq.(10), we deduce that when αe2 > 0 then:

π̄net,a2 (α1, α
e
2) = αe2π

net
2 (α1, α

e
2, F

e
p ) = πgross,a2 (α1, α

e
2)− Cp = 0, (11)

where πgross,a2 (α1, α2) def= α2π̄2(α1, α2) denotes the aggregate gross expected profit for
speculators trading on the processed signal, for given values of α1 and α2. Condition (11)
is equivalent to:

πgross,a2 (α1, α
e
2) = Cp. (12)

Thus, when the market for the processed signal is active, the equilibrium demand for this
signal is such that the aggregate gross expected profit of speculators buying this signal
is equal to its production cost.

22Information sellers have rational expectations about the demand for the signal they sell. That is,
they expect this demand to be equal to the actual equilibrium demand, αe

2.
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Figure 5: This figure represents speculators’ aggregate gross expected profit from trading
on the processed signal as a function of the demand for this signal, α2.

Speculators’ aggregate gross expected profit, πgross,a2 (α1, α2), is hump-shaped in the
demand for the processed signal, α2, holding α1 fixed (see Figure 5). We denote by
αmax2 (α1, θ) the demand for the processed signal that maximizes the aggregate gross
expected trading profit from trading on this signal. Using eq.(6), we obtain:

αmax2 (α1, θ) = (2− θ)(1− (2θ − 1)α1)
2(1 + (2(2− θ)(1− θ)− 1)α1) ≤ 1. (13)

We deduce from eq.(6) that the maximum aggregate gross expected trading profit from
trading on the processed signal, denoted Cmax(θ, α1), is:

Cmax(θ, α1) def= πgross,a2 (α1, α
max
2 ) = θ(1− (2θ − 1)α1)αmax2

4 . (14)

First, consider the case in which Cp < Cmax(θ, α1), as assumed in Figure 5. For α2 ∈
[αmax2 , 2], speculators’ aggregate gross expected profit decreases in α2 from Cmax(θ, α1)
to zero. Thus, there is a unique α∗2 ∈ (αmax2 , 2) solving eq.(12) for 0 < Cp < Cmax. In
general, as Figure 5 shows, there is another value of α2, denoted α∗∗2 , solving eq.(12). This
value is necessarily on the increasing segment of speculators’ aggregate gross expected
profit (see Figure 5) since α∗2 is the unique solution on the decreasing segment, as we just
explained. Thus, α∗∗2 < αmax2 < α∗2 < 2.

Therefore, either αe2 = α∗2 or αe2 = α∗∗2 when the market for processed information
is active. In the former case, the zero expected profit condition for the information
seller imposes F e

2 = Cp/α
∗
2 while in the latter it imposes F e

2 = Cp/α
∗∗
2 . Hence, the
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information seller’s fee is smaller in the first case since α∗∗2 < α∗2. Thus, when the market
for the processed signal is active, the unique competitive equilibrium of this market is
(αe2, F e

2 ) = (α∗2, Cp/α∗2). As α∗2 < 2 ≤ ᾱ, the constraint αe2 < ᾱ is never binding.
Now consider the case in which Cp ≥ Cmax(θ, α1). In this case, eq.(12) has no solution

because, for any α2, the gross aggregate profit from trading on the processed signal
is smaller than Cp (see Figure 5). Thus, there is no fee for the processed signal at
which transactions between the buyers and the seller of the processed signal are mutually
profitable. Consequently, when Cp ≥ Cmax(θ, α1), the market for the processed signal is
inactive, i.e., αe2 = 0.

The next lemma summarizes the previous discussion by providing the closed form
solution for the equilibrium demand for the processed signal, αe2, and the corresponding
fee charged by the seller of this signal.

Lemma 1. Let Cmin(θ, α1) = θ(1−θ)(1−α1)
2(2−θ) . The competitive equilibrium of the market for

the processed signal is unique.

1. If Cp < Cmax(θ, α1), the equilibrium demand for the processed signal is:

αe2(θ, α1, Cp) =


αmax2 (θ, α1)

(
1 +

(
1− Cp

Cmax(θ,α1)

) 1
2
)

if Cmin(θ, α1) ≤ Cp ≤ Cmax(θ, α1),

1 +
(
1− Cp

Cmin(θ,α1)

) 1
2 if 0 ≤ Cp < Cmin(θ, α1),

and the equilibrium fee for the processed signal is F e
p = Cp

αe
2
.

2. If Cp > Cmax(θ, α1), there is no fee at which the seller and the buyers of the processed
signal can trade in a mutually beneficial way. Thus, the processed signal is not
produced in equilibrium and therefore αe2 = 0.

Not surprisingly, as the fixed cost of producing the processed signal declines (starting
from Cmax), the fee charged by the seller of the processed signal falls and, therefore, the
mass of speculators buying this signal increases ( ∂α

e
2

∂Cp
≥ 0; see Figure 5).

We derive the equilibrium of the market for the raw signal in a similar way (see Section
1 of the on-line appendix). We obtain the following.

Lemma 2. The competitive equilibrium of the market for the raw signal is unique.

1. If Cr < θ
8 , the equilibrium demand for the raw signal is:

αe1(θ, Cr) = 1
2 +

(1
4 −

2Cr
θ

) 1
2

(15)
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and the equilibrium fee for the raw signal is F e
r = Cr

αe
1
.

2. If Cr ≥ θ
8 , there is no fee at which the seller and the buyers of the raw signal

can trade in a mutually beneficial way. Thus, the raw signal is not produced in
equilibrium and therefore αe1 = 0.

Thus, in equilibrium, the demand for the raw signal, αe1, increases when the cost of pro-
ducing this signal decreases.23 Through this channel, a decrease in the cost of producing
the raw signal, Cr, has also an effect on the equilibrium demand for the processed signal
since the latter is influenced by the demand for the raw signal (see Corollary 2). The next
proposition analyzes this effect. Let C̄r(θ) = θ

2

(
1
4 −max

(
(1−θ)2+θ2

(1−2θ)[2(1−θ)(2−θ)−1] −
1
2 , 0

)2)
and C̄p(θ) = θ(1−θ)2(2−θ)(1−2θ)

(2(1−θ)(2−θ)−1)2 .

Proposition 3. 1. For θ >
√

2−1√
2 , a decrease in the cost of producing the raw signal

reduces the equilibrium demand for the processed signal ( ∂α
e
2

∂Cr
> 0).

2. For θ ≤
√

2−1√
2 , a decrease in the cost of the raw signal increases the equilibrium

demand for the processed signal (i.e., ∂αe
2

∂Cr
< 0) if Cr < C̄r(θ) and Cp > C̄p(θ).

Otherwise, a decrease in the cost of producing the raw signal reduces the equilibrium
demand for the processed signal.

As shown in Corollary 2, an increase in the demand for the raw signal can either reduce
or increase the gross expected profit from trading on the processed signal. It increases
this profit if and only if αe2 < α̂2(θ) (see Corollary 2). In the proof of Proposition 3, we
show that this condition is equivalent to θ ≤

√
2−1√

2 , Cr < C̄r(θ), and Cp > C̄p(θ). In
this case, a decrease in the cost of producing the raw signal triggers, directly, an increase
in the equilibrium demand for the raw signal and thereby, indirectly, an increase in the
expected profit from trading on the processed signal, holding the demand for this signal
constant. As a result, the demand for the processed signal increases.

Otherwise (e.g., when θ >
√

2−1√
2 ), an increase in the demand for the raw signal un-

dermines the expected gross profit from trading on the processed signal. Consequently,
in this case, the demand for the processed signal declines when the cost of producing the
raw signal decreases, as shown in Figure 6.

23The largest possible demand for the raw signal is obtained when Cr = 0 and is equal to 1. Thus,
the constraint αe

1 < ᾱ is never binding since ᾱ ≥ 2.
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Figure 6: This figure represents speculators’ aggregate profit from trading on the pro-
cessed signal as a function of the demand for this signal for two different levels of the
demand for the raw signal: (i) High (α1,high) and (ii) Low (α1,low). The former case is
obtained when the cost of producing the raw signal is lower than in the latter case. The
corresponding equilibrium demands for the processed signal in each case are, respectively,
αe2(α1,high) and αe2(α1,low).

As the next proposition shows, this crowding out of “good” signals by “bad” signals
can lead to a complete disappearance of the market for the processed signal (a discon-
tinuous drop to zero of the demand for this signal), even though this market would be
viable in the absence of a market for the raw signal.

Proposition 4. Suppose θ >
√

2−1√
2 and θ(1−θ)

4 < Cp <
θ(2−θ)

8 . There exists a threshold
Ĉr(θ, Cp) (defined in the proof of the proposition) such that if Cr ≥ Ĉr, αe2 ≥ αmax2 > 0
while if Cr < Ĉr, αe2 = 0.

Thus, when θ >
√

2−1√
2 , the demand for the processed signal discontinuously drops to

zero when Cr passes below Ĉr(θ, Cp). Indeed, in this case, as the cost of producing the raw
signal declines, more speculators choose to buy this signal, which reduces the expected
return from trading on the processed signal. If the cost of producing the raw signal is just
equal to the threshold Ĉr, the largest possible value for the gross expected trading profit
of speculators trading on the processed signal is just equal to the cost of producing this
signal, Cp. At this point, any further decrease in the production cost of the raw signal
implies that the aggregate gross expected trading profit for speculators trading on the
processed signal is smaller than the cost of producing this signal. Thus, there is no fee at
which the sellers and buyers of the processed signal can find profitable to trade together.
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Hence, the market for the process signal is not viable when Cr < Ĉr(θ, Cp) and therefore
ceases to exist.

Figure 7 illustrates this result. As the cost of producing the raw signal, Cr declines,
the demand for this signal increases in equilibrium (dotted line) while the demand for the
processed signal declines (plain line). At Cr = Ĉr ≈ 0.06, the demand for the processed
signal discontinuously drops from αe2 ≈ 0.6 to zero.
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Figure 7: Equilibrium demands for the raw signal (red dotted line) and the processed
signal (blue thick line) as a function of the cost of producing the raw signal, Cr (X-axis).
Other parameters are θ = 0.75 and Cp = 0.06.

6 Implications

6.1 Price Informativeness

We now study how a change in the cost of producing the raw signal affects price infor-
mativeness. In the absence of informed trading at dates 1 and 2 (α1 = α2 = 0), the asset
price at each date is constant (p0 = p1 = p2 = 1/2) and is therefore completely uninfor-
mative about the asset payoff. In this benchmark case, the average squared pricing error
(the difference between the asset payoff and its price) is therefore E[(Ṽ − p0)2] = 1/4 at
dates 1 and 2. We measure price informativeness at date t, denoted Et(Cr, Cp), by the
difference between the average pricing error in the benchmark case (completely uninfor-
mative prices) and the average pricing error at date t in equilibrium, i.e., by:

Et(Cr, Cp) = 1
4 − E[(Ṽ − p∗t )2] (16)

The more informative is the price at date t in equilibrium, the higher is Et(Cr, Cp). The
highest possible value for Et(Cr, Cp) is obtained if the price at date t is fully informative
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(pt = V ) and is therefore equal to 1/4. The smallest possible value is equal to zero and is
obtained when the price at date t is uninformative.24 Thus, Et(Cr, Cp) belongs to [0, 1/4].

We refer to the informativeness of the price in the first period, E1(Cr, Cp), as “short
run price informativeness” and to the informativeness of the price in the second period,
E2(Cr, Cp), as “long run price informativeness” (the notion of short and long run is relative
to the moment at which new data for assessing the asset payoff becomes available, i.e.,
date 1).

The next corollary studies how a change in the cost of producing the processed signal
(Cp) affects price informativeness in equilibrium (i.e., accounting for the effects of a change
in this cost on equilibrium fees and demands for the processed and the raw signals).

Corollary 3. A reduction in the cost of producing the processed signal has no effect on
short run price informativeness (∂E1(Cr,Cp)

∂Cp
= 0) while it (weakly) increases long run price

informativeness (∂E2(Cr,Cp)
∂Cp

≤ 0).

A decrease in the cost of producing the processed signal raises the demand for the
processed signal in equilibrium and therefore leads to more informative prices at date 2.
This effect is standard in models with endogenous information acquisition (e.g., Grossman
and Stiglitz (1980)): when the cost of producing information declines, the demand for
information increases and prices become more informative.

Our main new result regarding price informativeness is that this logic does not nec-
essarily apply when one considers a decline in the cost of producing the raw signal, Cr,
i.e., signals that can be produced and delivered before the, more precise, processed signal
is delivered. Indeed, even though a decline in this cost improves price informativeness
in the short run, it can impair long run price informativeness, as shown by the next
proposition.

Proposition 5. A reduction in the cost of producing the raw signal (weakly) increases
short run price informativeness (∂E1(Cr,Cp)

∂Cr
≤ 0). However, if Cp ≤ Cmin(θ, αe1) then it

reduces long run price informativeness.

Short run price informativeness increases when the cost of producing the raw sig-
nal declines because it leads more speculators to buy this signal. As the raw signal is
sometimes truly informative (θ > 0, as otherwise no investor buys the raw signal), the
increase in the mass of speculators trading on the raw signal makes the asset price more

24As pt = E[V |Ωt], we have E[(Ṽ −p∗
t )2] = E[V ar[V |Ωt]]. Thus, Et(Cr, Cp) = V ar(V )−E[V ar[V |Ωt]].

Hence, price informativeness at date t is higher when, on average, the price at this date provides a more
accurate estimate of the asset payoff.
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informative at date 1. However, when Cp ≤ Cmin(θ, αe1), this effect triggers a drop in the
demand for the processed signal because it reduces the expected profit from trading on
this signal (see Corollary 3 and Figure 7). This indirect effect of a reduction in the cost
of producing the raw signal tends to decrease long run price informativeness.

In Section 5 of the on-line appendix, we show that this result can hold even when
Cmin(θ, αe1) < Cp < Cmax(θ, α1) (that is, the condition on Cp in Proposition 5 is sufficient
but not necessary). However, in this case, there are also parameter values for which a
reduction in the cost of producing the raw signal improves long run price informativeness
because it raises the expected trading profit from trading on the processed signal and
thereby the demand for this signal (see Corollary 3). Last, when Cp > Cmax(θ, α1), the
market for the processed signal is inactive. Thus, information production stops after date
1. In this case, the informativeness of the price at date 2 is equal to that at date 1 and
therefore it increases when the cost of producing the raw signal, Cr, declines.
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Figure 8: Price informativeness in the short run (red dotted line) and the long run
(blue thick line) as a function of the cost of producing the raw signal Cr (X-axis). Other
parameters are θ = 0.75 and Cp = 0.06

Figure 8 illustrates these effects for specific parameter values. When the cost of
producing the raw signal, Cr, is large (0.095 for the parameter values used in Figure 8),
no investor buys this signal (αe1 = 0) and the demand for the processed signal is relatively
high. As the cost of producing the raw signal declines, the demand for this signal starts
increasing and consequently the demand for the processed signal, αe2, decreases (see Figure
7). Short run price informativeness increases but long run price informativeness declines
(see Figure 8).25 When Cr = Ĉr ' 0.06, the gross aggregate expected profit from trading

25Long run price informativeness is at least equal to short run price informativeness because the
market maker has at least as much information at date 2 than he has at date 1 (Ω1 ⊂ Ω2). It is strictly
higher (i.e., E2(Cr, Cp) > E1(Cr, Cp)) when αe

2 > 0 because trades at date 2 contain new information
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on the processed signal is just equal to the cost of producing this signal. At this point, if
Cr decreases further, the demand for the processed signal discontinuously drops to zero
(as implied by Corollary 4) and long run price informativeness drops discontinuously as
well and becomes just equal to short run price informativeness. As Cr keeps declining,
the demand for the raw signal increases. Hence, short run price informativeness improves
and long run price informativeness does as well. Indeed, short run and long run price
informativeness are now equal because there is no further investment in discovering the
payoff of the asset after date 1.

Interestingly, even if Cr = 0 (i.e., αe1 = 1), price informativeness at date 2 is smaller
than when the cost of producing the raw signal is so high (Cr ≥ θ

8) that there is no
demand for the raw signal (αe1 = 0). For instance, for the parameter values considered
in Figure 8, E2(0, Cp) = 0.14 while E2(Cr, Cp) = 0.17 for Cr ≥ θ

8 . The next proposition
shows that this conclusion holds more generally.

Proposition 6. When 0 < Cp ≤ Ĉp(θ), long run price informativeness is always smaller
when the raw signal is free (Cr = 0) than when it is so costly that no investor buys it in
equilibrium (Cr > θ

8), where Ĉp(θ) is defined in the appendix.

Arguably, progress in information technologies have reduced both production costs
for both low and high precision signals, i.e., both Cr and Cp in our model. However, as
Proposition 6 shows, this evolution does not imply that long run price informativeness
should improve. Indeed, for any level of the cost of producing the processed signal, if
θ < 1, there is always a sufficiently low value of the cost of producing the raw signal such
that long run price informativeness is smaller than if there were no trading on the raw
signal.26

The arrival of public news in financial markets (e.g., earnings announcements) offer
trading opportunities for speculators because news often need to be interpreted and
processed (see, for instance, Engelberg et al.(2012) for supporting evidence). One way
to test our predictions is therefore to consider the evolution price informativeness after
news arrival for a firm.

For instance, suppose public news arrives about the asset just before date 1. The prior
distribution of V represents market participants’ beliefs about the payoff of the asset just

if some speculators trade on the processed signal. Otherwise, if αe
2 = 0, long run price informativeness

is equal to short run price informativeness because there is no information production after date 1 and
therefore p∗

2 = p∗
1 with certainty.

26This follows from Proposition 6 and the continuity of E2(Cr, Cp) in Cr for Cr sufficiently close to
zero. The condition θ < 1 is required because for θ = 1, the condition on Cp in Proposition 6 can never
be satisfied.

30



after the arrival of this news. The raw signal s could be, for instance, a signal distributed
by information sellers (such as Thomson-Reuters or Ravenpack) that use news analytics
to extract information from the news while (s, u) could be a signal produced by buy-side
securities analysts after carefully analyzing the implications of the news for a firm. In
this context, one could test the implications of our model for price informativeness (and
other implications developed in the next section) by considering the effect of a decline
in the cost of producing the raw signal (e.g., due to lower access costs to raw data) on
the informativeness of stock prices at various dates after news arrival about, say, future
earnings (a proxy for V ). The model predicts that a decline in the cost of producing the
raw signal should make prices more informative shortly after news arrival (say, one day;
t = 1 in the model) and prices at dates further away from the news (say, one week; t = 2
in the model) less informative.

One problem with this approach is that one must take a stand on what are short and
long run prices. One way to circumvent this empirical issue is to measure the effect of
a reduction in the cost of producing the raw signal on the average price observed over
some period of time, after the arrival of news. For instance, consider the average price
over periods 1 and 2 in our model: p̄∗ = p∗

1+p∗
2

2 . The informativeness of the average price
is measured by:

Eaverage(Cr, Cp) = 1
4 − E[(Ṽ − p̄∗)2] (17)

Using the fact that (V − p∗2) is orthogonal to (p∗2 − p∗1), we obtain:27

Eaverage(Cr, Cp) = 0.75× E2(Cr, Cp) + 0.25× E1(Cr, Cp). (18)

Thus, as one could expect, the informativeness of the average price over periods 1 and 2 is
a weighted average of long run price informativeness and short run price informativeness.

A decline in the cost of producing the raw signal improves short run price informa-
tiveness but it can reduce long run price informativeness. Hence, eq.(18) implies that this
decline should have a non monotonic effect on the informativeness of the average price
over a given period of time. Specifically, numerical simulations show that as Cr declines,
the informativeness of the average price first increases (the positive effect on short run
price informativeness dominates the negative effect on long run price informativeness)

27Indeed, we have E[(Ṽ − p̄∗)2] = E[(Ṽ − p∗
2)2] + 0.25 E[(p∗

2 − p∗
1)2] because (V − p∗

2) is orthogonal to
p∗

2− p∗
1. Moreover, for the same reason, we also have E[(Ṽ − p∗

1)2] = E[(V − p∗
2)2] + E[(p∗

2− p∗
1)2]. Hence,

E[(p∗
2−p∗

1)2] = E[(Ṽ −p∗
1)2]−E[(V −p∗

2)2]. We deduce that E[(Ṽ − p̄∗)2] = 0.75 E[(Ṽ −p∗
2)2]+0.25 E[(V −

p∗
1)2], which yields eq.(18).
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and then decreases (the negative effect on long run price informativeness dominates).
Figure 9 illustrates this pattern for specific parameter values (the informativeness of the
average price is given by the green curve). It also shows that the informativeness of the
average price when Cr = 0 is strictly smaller than the informativeness of the average price
when Cr is so large that no speculator buys the raw signal, as implied by Proposition 6.
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Figure 9: Price informativeness at date t = 1 (red dotted line), at date t = 2 (blue
thick line), and Average price informativeness (green line) as a function of the cost of
producing the raw signal, Cr (X-axis). The black line gives the level of Average price
informativeness when the cost of producing the raw signal is nil. Other parameters are
θ = 0.63 and Cp = 0.066

6.2 Price and Trade Patterns

In this section, we analyze in more detail the return and trade patterns induced by spec-
ulators’ equilibrium behavior. Our goal is to derive additional predictions of our model
for the effects of a decrease in the cost of producing the raw signal on the relationships
between (i) the trades of speculators at different dates, (ii) past returns and the trades
of speculators trading on the processed signal, (iii) future returns and the trades of spec-
ulators trading on the raw signal. These predictions could be tested with data on trades
by each type of speculators. For instance, discretionary long-short equity hedge funds
rely on fundamental analysis of stocks while other hedge funds (or trading desks within
these funds) specialize in trading on very high frequency signals (see Pedersen (2015),
Chapters 7 and 9). The former trade on processed signals while the latter trade on raw
signals according to our terminology.

Corollary 4. In equilibrium, the covariance between the trades of speculators who buy
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the raw signal (x1) and the trades of speculators who buy the processed signal (x2) is:

Cov(x1, x2) =


θ − (1− θ)αe1(θ, Cr) if Cr < θ

8 and Cp < Cmax(θ, αe1(θ, Cr)),

0 if Cr > θ
8 or Cp > Cmax(θ, αe1(θ, Cr)),

This covariance declines when the cost of producing the raw signal declines and becomes
negative if θ < 1

2 and Cr < θ2(2θ−1)
2(1−θ) .

Figure 10, Panel A, illustrates Corollary 4. It plots the covariance between trades of
speculators at dates 1 and 2 against the reliability of the raw signal, θ, for various values of
the cost of producing this signal. This covariance is zero when this cost is so large relative
to the reliability of information, θ, that no speculator buys the raw signal (Cr > θ

8) or
so small that no speculator buys the processed signal (Cp > Cmax(θ, αe1(θ, Cr)), which
happens for θ large enough, holding Cr constant. For intermediate values of θ, the
covariance increases with θ and can be positive or negative. Moreover, holding θ fixed,
it decreases as the cost of producing the raw signal declines.

The intuition for Corollary 4 is as follows. The processed and raw signals command
trades in the same direction if the raw signal is valid, i.e., when u = 1. Instead, when the
raw signal is noise, speculators trade on the raw and the processed signals in opposite
directions when the price at date 1 reflects the raw signal. Indeed, in this case, speculators
who trade on the processed signal correct the noise injected in prices by those trading
on the raw signal. Holding θ constant, the probability of the latter event is small when
the mass of speculators trading on the raw signal is small (see Figure 2), i.e., the cost of
producing the raw signal is large. Hence, for sufficiently high values of Cr, speculators who
trade on the raw and the processed signals often trade in the same direction and therefore
Cov(x1, x2) > 0. As the cost of producing the raw signal declines, the likelihood that
speculators who trade on the raw signal move prices is higher because more speculators
trade on this signal. This effect raises the likelihood that speculators who receive the
processed signal trade in a direction opposite to that of speculators who trade on the raw
signal and therefore the covariance between the orders of speculators trading at dates
1 and 2 becomes weaker. It can even become negative if the raw signal is sufficiently
unreliable (i.e., if θ < 1/2).
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Figure 10: Panel A shows the covariance between speculators’ orders at dates 1 and
2 (Cov(x1, x2)) as a function of θ. Panel B shows the covariance between the return in
period 1 (r1 = p∗1 − p0) and speculators’ orders in period 2 as a function of θ. Panel C
shows the covariance between speculators’ orders in period 1 and the return in period 2
(p∗2 − p∗1) as a function of θ. In each case, various values of Cr are considered: Cr = 0.1
(dotted lines), Cr = 0.05 (dashed lines), Cr = 0.01 (thick lines). In all cases Cp = 0.02.

Corollary 5. In equilibrium, the covariance between the first period return (r1 = p∗1−p0)
and the trade of speculators who receive the processed signal (x2) is:

Cov(r1, x2) =


θ(2θ − 1)αe1 if Cr < θ

8 and Cp < Cmax(θ, αe1(θ, Cr)),

0 if Cr > θ
8 or Cp > Cmax(θ, αe1(θ, Cr)),

Hence, the trades of speculators who receive the processed signal are negatively correlated
with the first period return if and only if θ < 1

2 . Furthermore, a decline in the cost of
producing the raw signal, Cr, raises the absolute value of the covariance between their
trade and the first period return.

Figure 10 (Panel B) illustrates this result. Conditional on a price change at date 1, the
likelihood that speculators trade against this change after receiving the processed signal
increases with the likelihood, (1− θ), that the raw signal is noise. This explains why, for
θ < 1

2 , Cov(r1, x2) < 0. Thus, speculators who trade on the processed signal behave like
momentum traders when θ > 1

2 (the direction of their trades is positively related to the
lagged return) and contrarian traders (the direction of their trades is negatively related
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to lagged return) when θ < 1
2 . Moreover, holding θ constant, the relationship between

past returns and their trades becomes stronger when the cost of producing the raw signal
declines. Indeed, this decline triggers an increase in the demand for the raw signal and
therefore the likelihood that the price at date 1 will adjust to reflect the raw signal.

Corollary 6. In equilibrium, the covariance between the trade of speculators who receive
the raw signal (x1) and the second period return, r2 = p∗2 − p∗1, is positive and equal to:

Cov(x1, r2) =


0 when Cp > Cmax(θ, αe1),
θ(1−αe

1)αe
2

2(2−θ) , when Cmin(θ, αe1) ≤ Cp ≤ Cmax(θ, αe1),
θ(1−αe

1)(1−(1−θ)(1−αe
2))

2(2−θ) , when Cp ≤ Cmin(θ, αe1).

(19)

This covariance decreases when the cost of producing the raw signal declines if (i) θ >
√

2−1√
2 or (ii) θ ≤

√
2−1√

2 and Cr ≥ C̄r(θ), or (iii) θ ≤
√

2−1√
2 and Cp ≤ C̄p(θ). In contrast, it

always increases when the cost of producing the processed signal declines.

When the cost of producing the raw signal declines, the demand for this signal in-
creases and it becomes increasingly likely that the price at the end of the first period, p1,
reveals the raw signal, s. In this case, speculators receiving the processed signal in the
second period can only trade on the component of their signal, (s, u), that is orthogonal
to the raw signal (i.e., the innovation in their expectation of the asset payoff due to the
observation of u). This effect lowers the covariance between the trade of speculators in
the first period and the second period return (see Figure 10, Panel C) because the latter
is increasingly determined by factors independent from the raw signal (the realization of
u and liquidity traders’ orders in the second period).

In contrast, a decline in the cost of producing the processed signal strengthens the
covariance between speculators’ trade in the first period and the second period return.
The reason is that this decrease raises the mass of speculators trading on the processed
signal and thereby the likelihood that the return in the second period reveals their signal.
As this signal is correlated with the raw signal, s, the predictive power of the trade of
speculators using the raw signal for future returns increases.

7 Price Contingent Information Acquisition

In our baseline model, speculators must decide to acquire the processed signal at date
0, i.e., before observing the price at date 1. As the processed signal is delivered only
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at date 2, another possibility is that speculators wait until observing the realization of
the price at date 1 to decide whether or not to buy the processed signal.28 We have
analyzed whether our results were robust to this change in the timing of decisions in our
model. For brevity, we report the detailed analysis of this case in Section 3 of the on-line
companion appendix.

In this case, the equilibrium demand and the fee for the processed signal vary with the
price of the asset at date 1, p1, because the expected profit from trading on the processed
signal is different when the asset price at date 1 reflects the raw signal and when it does
not (Corollary 1). However, the implications of the baseline model regarding the effect of
a decrease in the cost of producing the raw signal on (i) asset price informativeness and
(ii) the relationships between returns and order flows still hold when the decision to buy
the processed signal is contingent on the price realized at date 1. In fact, in this case,
the negative effect of a reduction in the cost of producing the raw signal on asset price
informativeness holds for a broader set of parameters than in our baseline model.

8 Conclusion

Information processing filters out the noise in data but it takes time. Hence, when new
data about an asset become available, early signals extracted from these data have a lower
precision than later signals. In this paper, we analyze theoretically some implications of
this feature of the information production process in financial markets. In particular, we
show that a decrease in the cost of producing low precision signals (due, for instance, to
lower costs of accessing vast amount of on-line data) can reduce the value of trading on
high precision signals because these are available after low precision signals. When this
happens, a reduction in the cost of producing low precision signals reduces long run price
informativeness, even though it makes prices more informative in the short run (i.e., close
to the date at which new data are released).

Our model also predicts that a decline in the cost of producing low precision signals
should affect correlations between (i) the trades of speculators trading on low precision
signals and those trading on high precision signals, (ii) the trades of speculators trading
on high precision signals and past returns, and (iii) the trades of speculators trading on
low precision signals and future returns.

28This possibility does not seem to have been considered in the literature, even in models featuring
multiple trading periods. To our knowledge, researchers have focused on the case in which information
acquisition decisions are made ex-ante, i.e., before the realizations of prices, as we do in the baseline
version of our model.
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Future research could test the implications of our model by considering technological
changes that reduce the cost of access to raw data. We believe that recent improvements
in technologies to disseminate information in digital form offer many opportunities in this
respect.

Our analysis is silent on the welfare effects of a drop in the cost of producing low
precision signals. In our model, trading is a zero sum game and therefore information has
no social value. In this setting, the total fixed cost of producing signals is a deadweight
loss. Thus, a reduction in the cost of producing low precision signals is welfare improving
since it reduces this deadweight cost, both directly and indirectly by possibly crowding
out investment in the production of more precise signals.29 However, a complete welfare
analysis should also account for possible social gains of more informative prices. In
particular, there is growing evidence (see Bond, Edmans, and Goldstein (2012) for a
survey) that firms use information in asset prices for their investment decisions. In this
case, less informative prices lead to less efficient investment decisions (see, for instance,
Dessaint et al.(2016)). Hence, the social benefit of a reduction in information production
costs (due to lower access costs to data) should be balanced with the social cost of less
efficient decisions for firms due to less informative asset prices. A detailed welfare analysis
of this trade off is an interesting venue for future research.

29When some investors buy the raw and the processed signals, the total cost of information production
is (Cr + Cp) in our model. As the cost of producing the raw signal, Cr, declines, the total cost of
information production goes down. Moreover, if the decline in Cr is sufficiently large, the processed
signal stops being produced (see Proposition 4) so that the total cost of information production is only
Cr.
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Appendix A

Proof of Proposition 1.

Step 1: Stock price at date 1. The equilibrium price at date 1 satisfies (see eq.(3)):

p∗1(f1) = Pr[V = 1|f̃1 = f1] = Pr[f̃1 = f1|V = 1]Pr[V = 1]
Pr[f̃1 = f1]

. (20)

Speculators buy the asset at date 1 when they observe s = 1. Hence, conditional on V = 1,

aggregate speculators’ demand at date 1 is α1 with probability (1+θ)/2 and−α1 with probability

(1− θ)/2. Thus:

Pr[f̃1 = f1|V = 1] = (1 + θ

2 )φ(f1 − α1) + 1− θ
2 φ(f1 + α1). (21)

Furthermore, by symmetry:

Pr[f̃1 = f1] = 1
2φ(f1 − α1) + 1

2φ(f1 + α1). (22)

Substituting (21) and (22) in (20) and using the fact that Pr[V = 1] = 1/2, we obtain eq.(4).

Step 2: Speculators’ trading strategy at date 1. For a given trade x1, a speculator’s

expected profit when he observes signal s is:

π1(α, s) = x1(µ(s)− E[p1|s]).

As p∗1(f1) = E[V |f̃1] and the market-maker’s information set at date 1 is coarser than specula-

tors’ information set, we have:

µ(0) ≤ p∗1 ≤ µ(1),

with a strict inequality when f1 ∈ [−1 + α1, 1− α1] because in this case the order flow at date

1 contains no information (all realizations of the order flow in this interval are equally likely

conditional on V = 0 or V = 1; see Panel A of Figure 2). Therefore:

µ(0) < E[p∗1|s] < µ(1),
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when α1 < 1. Thus, in this case, it is a strictly dominant strategy for a speculator to buy the

asset when s = 1 and sell it when s = 0. It follows that the equilibrium at date 1 is unique

when α1 < 1. When α1 ≥ 1, the order flow is fully revealing (see Panel A of Figure 2) and

p∗1(f1) = µ(s) for all values of f1. Hence, a speculator obtains a zero expected profit for all x1

whether s = 1 or s = 0. Buying the asset when s = 1 and selling the asset when s = 0 is then

weakly dominant.

Step 3: The expected profit of trading on the raw signal. Suppose that s = 1,

so that speculators’ valuation for the asset after receiving the raw signal is µ(1). Given their

equilibrium strategy, speculators’ aggregate demand at date 1 is then α1. Thus, the aggregate

demand for the asset at date 1 is above the threshold −1 + α1. Accordingly, the price at date

1 is either 1/2 if f1 ∈ [−1 + α1, 1− α1] or µ(1) if f1 ≥ 1− α1 (see Panel B of Figure 2). In the

former case, speculators earn a zero expected profit on the raw signal while in the later case,

their expected profit is µ(1)− 1/2 = θ/2. Now we have:

Pr(f1 ∈ [−1 + α1, 1− α1] | s = 1) = Pr(l1 ∈ [−1, 1− 2α1]) = max{1− α1, 0}.

Thus, conditional on s = 1, speculators’ expected profit is θ
2 max{1−α1, 0}. By symmetry, this

is also the case when s = −1. Thus, π̄1(α1) = θ
2 max{1− α1, 0}.

Proof of Proposition 2.

Step 1. Asset price at date 2. We first derive the equilibrium asset price when specu-

lators behave as described in part 1 of Proposition 2.

Case 1. Suppose first that p1 = µ(1). In this case, the market maker knows that s = 1. Hence,

the remaining uncertainty is about u. If u = 1, speculators who receive the processed signal buy

the asset at date 2 and, therefore, their total demand for the asset belongs to [−1 + α2, f
max
2 ].

If u = 0, these speculators sell the asset since p1 > 1/2 and therefore their total demand for the

asset belongs to [fmin2 , 1−α2]. For α2 ≤ 1, we have 1−α2 > −1+α2. Thus, if f2 ∈ [fmin2 ,−1+α2],

market makers infer that u = 0 and set p∗2 = E(V | s = 1, u = 0) = 1/2. Symmetrically if

f2 ∈ [1−α2, f
max
2 ], they infer that u = 1 and they set p∗2 = E(V | s = 1, u = 1) = 1. Intermediate

realizations of f2 (those in [−1+α2, 1−α2]) are equally likely when u = 1 or when u = 0. Thus,

they convey no information on u. Hence, for these realizations: p∗2 = E(V | s = 1) = µ(1). For
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α2 > 1, the reasoning is unchanged but the intermediate case never occurs. This yields Part 2

of the proposition.

Case 2. When p1 = µ(0), the reasoning is symmetric to that followed when p1 = µ(1) (Case

1). Part 3 of the proposition follows.

Case 3. Now consider the case in which p1 = 1/2. In this case, the market outcome at date 1

conveys no information to the market maker. Thus, from his viewpoint, there are three possible

states at date 2: (s, u) = (1, 1), u = 0, and (s, u) = (0, 1). Given speculators’ trading strategy

at date 2, the corresponding total demand for the asset at date 2 has the following support:

[−1 + α2, f
max
2 ] if (u, s) = (1, 1), [−1, 1] if u = 0, and [fmin2 , 1− α2] if (s, u) = (0, 1).

Thus, if f2 > 1, the market maker infers that (s, u) = (1, 1) and if f2 < −1, he infers that

(s, u) = (0, 1). Hence, in the first case p∗2 = 1 and in the second case p∗2 = 0. Now, consider

intermediate realizations for f2, i.e., f2 ∈ [−1, 1]. First, suppose f2 ∈ [−1,min{−1+α2, 1−α2}].

Such a realization is possible only if u = 0 or if (s, u) = (0, 1). Thus, in this case:

p∗2 = Pr[u = 0|f2 ∈ [−1,min{−1 + α2, 1− α2}]×
1
2 .

Now,

Pr[u = 0|f2 ∈ [−1,min{−1 + α2, 1− α2}] = Pr[f2 ∈ [−1,min{−1 + α2, 1− α2}]|u = 0](1− θ)
Pr[f2 ∈ [−1,min{−1 + α2, 1− α2}]

,

that is

Pr[u = 0|f2 ∈ [−1,min{−1 + α2, 1− α2}] = 2(1− θ)
2− θ .

Thus, for f2 ∈ [−1,min{−1 + α2, 1 − α2}], p∗2 = 1−θ
2−θ . The case, in which f2 ∈ [max{−1 +

α2, 1 − α2}, 1] is symmetric: such a realization of the order flow is possible only if u = 0 or if

(s, u) = (1, 1). Thus, in this case,

p∗2 = Pr[(s, u) = (1, 1)|f2 ∈ [max{−1+α2, 1−α2}, 1]]+Pr[u = 0|f2 ∈ [max{−1+α2, 1−α2}, 1]]12 .

(23)

Using the fact that speculators who receive the processed signal buy the asset if (s, u) = (1, 1)

and stay put if u = 0 (since we are in the case in which p∗1 = 1/2), we deduce from eq.(23):

p∗2 = 1
2− θ .
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Finally, realizations of f2 ∈ [min{−1 + α2, 1− α2},max{−1 + α2, 1− α2}] are equally likely in

each possible state when p1 = 1/2. Thus, observations of f2 in this range are uninformative and

the equilibrium price in this case is p∗2 = 1/2. This achieves the proof of Part 4 of the proposition.

Step 2. Speculators’ trading strategy at date 2. Let µ(s, u) be the expected payoff of

the asset conditional on the processed signal (s, u). This is the valuation of the asset for the

speculators who receive the processed signal at date 2.

Case 1. Suppose that p∗1 = µ(1). In this case s = 1 and either µ(1, 1) = 1 or µ(1, 0) = 1/2.

Moreover, in this case, the equilibrium price of the asset at date 2 is such that:

µ(1, 0) ≤ p∗2 ≤ µ(1, 1),

with a strict inequality when f2 ∈ [−1 + α2, 1]. This interval is never empty for α2 ≤ 2. Thus,

we can proceed exactly as in the proof of Proposition 1 to show that it is a dominant strategy

for speculators receiving the processed signal to (i) buy the asset if their expectation of the

value of the asset is µ(1, 1) and p1 = µ(1) and (ii) sell the asset if their expectation of the value

of the asset is µ(1, 0) and p1 = µ(1).

Case 2. Now suppose that p∗1 = µ(0). In this case, a similar reasoning implies that it is a

dominant strategy for the speculators receiving the processed signal to (i) sell the asset if their

expectation of the value of the asset is µ(0, 1) and (ii) buy the asset if their expectation of the

value of the asset is µ(1, 0).

Case 3. Now consider the case in which p∗1 = 1/2 and u = 1. In this case, we have:

µ(0, 1) ≤ p∗2 ≤ µ(1, 1),

with a strict inequality for some realizations of f2. Thus, again, we conclude that it is a dominant

strategy for speculators receiving the processed signal to (i) sell the asset if their expectation

of the value of the asset is µ(0, 1) and (ii) buy the asset if their expectation of the value of the

asset is µ(1, 1).

Case 4. The remaining case is the case in which p∗1 = 1/2 and u = 0. In this case, a speculator

who receive the processed signal expects other speculators to stay put in equilibrium. Suppose

that one speculator deviates from this strategy by trading x2 shares in [−1, 1]. His effect on
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aggregate demand is infinitesimal. Hence, he expects f2 = l2 and therefore he expect f2 to be

uniformly distributed on [−1, 1]. Therefore, using the expression for p∗2 when p∗1 = 1/2, the

speculator expects to trade at:

E(p∗2 | p1 = 1/2, f2 ∈ [−1, 1]) = 1/2− θ(min{−1 + α2, 1− α2}+ max{−1 + α2, 1− α2})
4(2− θ) = 1/2.

As the speculator expects the asset payoff to be µ(0, 0) = 1/2, his expected profit is therefore

x2(µ(0, 0)−E(p∗2 | p1 = 1/2, f2 ∈ [−1, 1]) = 0. Thus, the deviation yields a zero expected profit

and therefore not trading is weakly dominant for the speculator when p∗1 = 1/2 and u = 0.

In sum we have shown that the trading strategy described in Part 1 of Proposition 2 is

optimal for a speculator who receives the processed signal, if he expects other traders to follow

this strategy and if prices at date 2 are given as in Parts 2, 3, and 4 of Proposition 2.

Step 3. Expected profit from trading on the processed signal.

Case 1: p1 = µ(1). In this case, a speculator receiving the processed signal buys the asset

if u = 1 and sells it if u = 0. Thus, he makes a profit if and only if p∗2 = p∗1 = µ(1), i.e., if

f2 ∈ [−1 +α2, 1−α− 2]. The likelihood of this event is max{1−α2, 0} whether u = 1 or u = 0.

Thus, the expected profit of a deep information speculator if p∗1 = µ(1) is:

πc2(α2) = max{1− α2, 0}(θ × (1− µ(1)) + (1− θ)× (µ(1)− 1/2)) = max{1− α2, 0}θ(1− θ).

Case 2: p∗1 = µ(0). The case is symmetric to Case 1 and a speculator receiving the processed

signal also earns an expected profit equal to πc2(α2).

Case 3: p∗1 = 1/2. In this case a speculator trades the asset only if u = 1. Suppose first that

s = 1. Using Parts 2, 3, and 4 of Proposition 2, Table 1 gives the probability of each possible

realization for the equilibrium price at date 2 conditional on {s, u, p∗1} = {1, 1, 1/2} and the

associated profit for a speculator who receives the processed signal (taking into account that

speculators buy the asset at date 2 if (s, u) = (1, 1)).

We deduce that if {s, u, p1} = {1, 1, 1/2}, the expected profit of as speculator who receives
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Table 1

Equilibrium price at date 2: p∗2 Prob if α2 ≤ 1 Prob if 1 < α2 ≤ 2 Speculator’s profit

0 0 0 1

1−θ
2−θ 0 0 1

2−θ

1
2 1− α2 0 1

2

1
2−θ

α2
2

(2−α2)
2

1−θ
2−θ

1 α2
2

α2
2 0

the processed signal is:

πnc2 (α2) =



θ
2(2−θ) (2− θ − α2) if α2 ≤ 1

θ
2

1−θ
2−θ (2− α2) if 1 < α2 ≤ 2,

0 if α2 > 2,

(24)

The case in which (s, u) = (0, 1), and p∗1 = 1/2 is symmetric and therefore yields the same

expected profit for a deep information speculator. Thus, when p∗1 = 1/2, the expected profit for

a speculator who receives the processed signal is given by πnc2 (α2).

Cases 1 and 2 happen with probability α1/2 each while Case 3 happens with probability

(1 − α1). We deduce that the expected profit of a speculator receiving the processed signal is

as given by eq.(6).

Proof of Corollary 1 Using the expressions for πnc2 (α2) and πc2(α2) in Proposition 2, it is

direct to show that πnc2 (α2) < πc2(α2) iff α2 < α̂2(θ) and θ ≤ 1/2.

Proof of Corollary 2. It follows directly from Corollary 1 and eq.(8).

Proof of Lemma 1. As explained in the text, αe2 = 0 when Cp ≥ Cmax and αe2 ∈ (αmax2 , 2)

when 0 < Cp < Cmax. Let Cmin(θ, α1) be the value of Cp such that αe2 = 1. Thus, Cmin

solves πgross,a2 (α1, 1) = Cmin. Using eq.(6) and the definition of πgross,a2 (α1, α2), we deduce that
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Cmin(θ, α1) = θ
2
θ(1−θ)(1−α1)

2(2−θ) . As πgross,a2 (α1, α2) decreases continuously in α2 for α2 ∈ (αmax2 , 2),

we deduce from eq.(12) that αe2 ≤ 1 for Cp > Cmin (case 1) and αe2 ≥ 1 for Cp ≤ Cmin (case 2).

Case 1: Cp > Cmin so that αe2 ≤ 1. In this case, using eq.(6) and eq.(12), we deduce that

αe2 solves:

αe2π̄2(α1, α
e
2)− Cp = θ

2α2

[
1− (2θ − 1)α1 −

( 1
2− θ +

(
2(1− θ)− 1

2− θ

)
α1

)
α2

]
− Cp = 0.

(25)

This equation has two roots in α2 but only one is larger than αmax2 , as required in equilibrium.

This root is:

αe2 = αmax2 (θ, α1)
(

1 +
√

1− Cp
Cmax(θ, α1)

)
.

Case 2: (Cp ≤ Cmin) so that αe2 ≥ 1. In this case, using eq.(6) and eq.(12), we deduce that

αe2 solves:

αe2π̄2(α1, α
e
2)− Cp = θ(1− θ)

2(2− θ)(1− α1)α2(2− α2)− Cp = 0. (26)

This equation again has two roots in α2 but only one is larger than 1 (as required). This root

is:

αe2 = 1 +
√

1− Cp
Cmin(θ, α1) .

Proof of Proposition 3. As Cr affects αe2 only through its effect on αe1, we have:

∂αe2
∂Cr

=
(
∂αe2
∂α1

)(
∂αe1
∂Cr

)
. (27)

It is immediate from Lemma 2 that ∂αe
1

∂Cr
≤ 0. Thus, eq.(27) implies that ∂αe

2
∂Cr
≥ 0 iff ∂αe

2
∂α1

< 0.

Thus, in the rest of this proof, we sign ∂αe
2

∂α1
.

Remember that αe2 solves:

πgross,a2 (α1, α
e
2) = αe2π̄2(α1, α

e
2) = Cp.

Thus, using the implicit function theorem, we have

∂αe2
∂α1

= −
∂
∂α1

[α2π̄2(α1, α2)]α2=αe
2

∂
∂α2

[α2π̄2(α1, α2)]α2=αe
2

. (28)
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For Cp < Cmax, αe2 > αmax2 . Thus, we have:

∂

∂α2
[α2π̄2(α1, α2)]α2=αe

2
< 0. (29)

We deduce from eq.(28) that ∂αe
2

∂α1
> 0 iff ∂

∂α1
[α2π̄2(α1, α2)]α2=αe

2
< 0.

Case 1: θ > 1/2 or Cp < Cmin(θ, α1). If θ > 1/2, we deduce from Corollary 2 that the

expected profit of a speculator who trades on the processed signal, π̄2, decreases with α1. If

Cp < Cmin(θ, α1), we deduce from Proposition 1 that αe2 > 1. Therefore, using Corollary 2

again, π̄2, decreases with α1. Hence, for θ > 1/2 or Cp < Cmin(θ, α1), we have:

∂[α2π̄2(α1, α
e
2)]

∂α1
< 0.

We deduce from eq.(28)and eq.(29) that if θ > 1/2 or Cp < Cmin(θ, α1) then ∂αe
2

∂α1
< 0 and

therefore ∂αe
2

∂Cr
> 0.

Case 2: θ ≤ 1/2 and Cmin(θ, α1) < Cp < Cmax(θ, α1). Using Corollary 2, we deduce that

the expected profit of a speculator who trades on the processed signal, π̄2, increases with α1

iff αe2(α1) < α̂2(θ). Thus, if this condition is satisfied then ∂
∂α1

[α2π̄2(α1, α2)]α2=αe
2
> 0 and

therefore ∂αe
2

∂α1
> 0. Thus, in this case, ∂αe

2
∂Cr

< 0. The rest of the proof consists in showing that

the conditions (i) θ <
√

2−1√
2 , (ii) Cr < C̄r(θ), and (iii) Cp > C̄p(θ) are necessary and sufficient

for αe2(α1) < α̂2(θ). For brevity, we provide the proof of this result in Section 4 of the on-line

appendix. As
√

2−1√
2 < 1/2, the proposition follows.

Proof of Proposition 4. When θ >
√

2−1√
2 , we show in Section 6 of the on-line appendix that

Cmax(θ, α1) decreases with α1. Moreover, using eq.(14), we obtain Cmax(θ, 1) = θ(1−θ)
4 and

Cmax(θ, 0) = θ(2−θ)
8 . Thus, for each Cp ∈ [ θ(1−θ)4 , θ(2−θ)8 ], there exists a unique αc1(θ, Cp) such

that:

Cp = Cmax(θ, αc1).

Moreover, for αe1 > αc1, Cp < Cmax(θ, αe1) while for αe1 < αc1, Cp > Cmax(θ, αe1). We deduce from

Lemma 1, that for αe1 > αc1, αe2(θ, αe1) > αmax2 while for αe1 < αc1, αe2(θ, αe1) = 0. The proposition

follows by defining Ĉr as the value of Cr such that αe1(θ, Ĉr) = αc1(θ, Cp).
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Proof of Corollary 3. Using Proposition 1 (or Figure 2), we obtain that:

E1(Cr, Cp) =


0 if Cr ≥ θ

8 ,

αe
1(θ,Cr)θ2

4 if Cr ≤ θ
8 ,

(30)

and

E2(Cr, Cp) =



E1(Cr, Cp) if Cp ≥ Cmax(θ, αe1),

θ
4

[
1− (1− αe1)

(
1− αe

2
2−θ

)
− (1− θ)αe1(1− αe2)

]
if Cmin(θ, αe1) ≤ Cp ≤ Cmax(θ, αe1),

θ
4

[
1− 1−θ

2−θ (1− αe1)(2− αe2)
]

if Cp ≤ Cmin(θ, αe1),
(31)

where to simplify notations we have omitted the arguments of functions αe2 and αe1. As αe1 does

not depend on the cost of producing the processed signal, we deduce from eq.(30) that price

informativeness at date 1 is not affected by a change in Cp.

For Cp < Cmax(θ, αe1), it is immediate from eq.(31) that price informativeness at date 2

increases with αe2. As αe2 declines when Cp decreases, we deduce that price informativeness

at date 2 increases when Cp declines for Cp < Cmax(θ, αe1). For Cp > Cmax(θ, αe1), price

informativeness at date 2 is equal to price informativeness at date 1 and therefore independent

of Cp.

Proof of Proposition 5.

Part 1: Effect of Cr on short run price informativeness. We know from Proposition 2

that αe1 weakly increases when Cr decreases. Hence, we deduce from eq.(30) that E1(Cr, Cp)

weakly decreases when Cr decreases.

Part 2: Effect of Cr on long run price informativeness. Suppose that Cp < Cmin(θ, αe1).

In this case, αe2 ≥ 1 (Lemma 1). Using eq.(6) and eq.(31), we have:

E2(Cr, Cp) = θ

4 −
1
2 π̄2(αe1, αe2), (32)

where we omit the arguments of functions αe1 and αe2 to simplify notations. Now, as αe2 > 0, in
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equilibrium, αe2π̄e2 = Cp (see eq.(11)). Thus, we deduce from (32) that:

E2 = θ

4 −
1
2
Cp
αe2
. (33)

As Cp < Cmin(θ, αe1), we deduce from the analysis of Case 1 in the proof of Proposition 3

that αe2 decreases when Cr decreases. Hence, from eq.(33), we deduce that if Cp < Cmin(θ, αe1)

then E2(Cr, Cp) decreases when Cr decreases.

Proof of Proposition 6. Note that αe1 = 0 for all Cr ≥ θ
8 . Thus, E2(Cr, Cp) = E2( θ8 , Cp) for

Cr ≥ θ
8 . We denote the difference in price informativeness at date 2 when Cr = 0 and when

Cr ≥ θ
8 , for a given Cp, by ∆E2(Cp). That is:

∆E2(Cp) ≡ E2(θ8 , Cp)− E2(0, Cp) (34)

Observe that:

Cmax(θ, 0) = θ(2− θ)
8 > Cmin(θ, 0) = θ(1− θ)

2(2− θ) > Cmax(θ, 1) = θ(1− θ)
4 > Cmin(θ, 1) = 0,

(35)

Case 1. First, consider the case in which Cp ∈ [0, Cmax(θ, 1)]. In this case, using Lemma 1,

and eq.(35), we obtain that if Cr = 0 then

αe2 = 1
2

(
1 +

√
1− Cp

Cmax(θ, 1)

)
< 1,

because αe1 = 1 when Cr = 0 and in this case αmax2 (θ, 0) = 12). Similarly, if Cr ≥ θ
8 then

αe2 = 1 +
√

1− Cp
Cmax(θ, 0) > 1,

because αe1 = 0 if Cr ≥ θ
8 and Cp < Cmax(θ, 1) < Cmin(θ, 0). Hence, using eq.(31), eq.(34), and

eq.(35), we obtain

∆E2(Cp) = θ

4

[
(1− θ)

2

(
1−

√
1− Cp

Cmax(θ, 1)

)
− (1− θ

2− θ )
(

1−
√

1− Cp
Cmax(θ, 0)

)]
.
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Using the expressions for Cmax(θ, 0) and Cmax(θ, 1), we deduce after some algebra that:

4
θ

∂∆E2
∂Cp

= 1
θ

 1√
1− Cp

Cmax(θ,1)

− 1√
1− Cp

Cmax(θ,0)

 .
This is always positive since Cmax(θ, 0) > Cmax(θ, 1). Thus, for Cp ∈ [0, Cmax(θ, 1)], ∆E2(Cp)

increases with Cp. As ∆E2(0) = 0 and ∆E2(Cmax(θ, 1)) > 0, we obtain that ∆E2(Cp) > 0 when

Cp ∈ [0, Cmax(θ, 1)].

Case 2. Now, consider the case in which Cp ∈ [Cmax(θ, 1), Cmin(θ, 0)]. In this case, using

Lemma 1, we obtain that if Cr ≥ θ
8 then

αe2 = 1 +
√

1− Cp
Cmin(θ, 0) > 1,

because αe1=0 when Cr ≥ θ
8 . Similarly, if Cr = 0 then

αe2 = 0,

because αe1=1 when Cr = 0 and Cp ≥ Cmax(θ, 1). Hence, using eq.(31) and eq.(34), we obtain

∆E2(Cp) = θ

4

[
1− θ − 1− θ

2− θ

(
1−

√
1− Cp

Cmin(θ, 0)

)]
= θ

4

[
(1− θ)3

(2− θ)2

√
1− Cp

Cmin(θ, 0)

]
> 0.

Case 3. Finally suppose that Cp ∈ [Cmin(θ, 0), Cmax(θ, 0)]. In this case, using Lemma 1, we

obtain that if Cr ≥ θ
8 then

αe2 =
(

1− θ

2

)(
1 +

√
1− Cp

Cmax(θ, 0)

)
< 1,

because αe1 = 0 if Cr ≥ θ
8 and in this case αmax2 (θ, 0) = (1− θ

2). Similarly, if Cr = 0 then

αe2 = 0,

because αe1=1 when Cr = 0 and Cp ≥ Cmax(θ, 1) (which is the case since Cmax(θ, 1) <

Cmin(θ, 0) < Cp). Hence, using eq.(31) and eq.(34), and the fact that αe1 = 1 if Cr = 0,
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we obtain that

∆E2 = θ

4

[
1
2 − θ + 1

2

√
1− 8

θ(2− θ)Cp

]
,

which is positive if Cp ≤ Ĉp(θ) where Ĉp(θ) = (1− (2θ − 1)2) θ(2−θ)8 .

Proof of Corollary 4. Using the first parts of Propositions 1 and 2, we deduce that:

x1 = Is=1 − Is=0, with s = u× V + (1− u)× ε, (36)

x2 = u× [IV=1 − IV=0] + (1− u)× [Ip1=(1−θ)/2 − Ip1=(1+θ)/2], (37)

where I denotes the indicator function, which is equal to one when the statement in brackets

holds. As E[x1] = E[x2] = 0, we deduce from eq. (36) and eq.(37) that:

Cov(x1, x2) = E[x1x2] = 1
2 E[x2|s = 1]− 1

2 E[x2|s = 0],

= θ

2 E [x2|V = 1, u = 1] + 1
2(1− θ)α

e
1
Q

E
[
x2|ε = 1, u = 0, p1 = 1 + θ

2

]
,

− θ

2 E [x2|V = 0, u = 1]− 1
2(1− θ)α

e
1
Q

E
[
x2|ε = 0, u = 0, p1 = 1− θ

2

]
,

= θ − (1− θ)αe1.

As αe1 increases when Cr declines, we deduce that Cov(x1, x2) decreases when Cr decreases.

Moreover, Cov(x1, x2) < 0 iff:

αe1(θ, Cr) ≥
θ

1− θ .

Substituting αe1(θ, Cr) by its expression in eq.(15), we deduce that Cov(x1, x2) < 0 iff θ < 1/2

and Cr <
θ2(2θ−1)
2(1−θ) .

Proof of Corollary 5. Using the second part of Proposition 1 and the first part of Proposition

2, we deduce that:

p1 = 1
2 + θ

2If1>1−αe
1
− θ

2If1<−1+αe
1

(38)

x2 = U × [IV=1 − IV=0] + (1− u)× [Ip1=(1−θ)/2 − Ip∗
1=(1+θ)/2]. (39)
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As E[x2] = 0 and E[p1] = 1/2, we deduce from (38) and (39) that:

Cov(p1, x2) = E[(p∗1 − 1/2)x2] = θαe1
4

{
E
[
x2|s = 1, p∗1 = 1 + θ

2

]
− E

[
x2|s = 0, p1 = 1− θ

2

]}
= θ2

4 α
e
1 E
[
x2|V = 1, u = 1, p∗1 = 1 + θ

2

]
+ θ(1− θ)

4 αe1 E
[
x2|ε = 1, u = 0, p∗1 = 1 + θ

2

]
− θ2

4 α
e
1 E
[
x2|V = 0, u = 1, p∗1 = 1− θ

2

]
− θ(1− θ)

4 αe1 E
[
x2|ε = 0, u = 0, p∗1 = 1− θ

2

]
= θ(2θ − 1)αe1.

As αe1 increases when Cr declines, we deduce that |Cov(p1, x2)| increases when Cr decreases.

Proof of Corollary 6.

We first compute the expression for Cov(x1, r2) given in eq.(19). As E[x1] = 0,

Cov(x1, r2) = E[(p∗2 − p∗1)x1]− E[p∗2 − p∗1] E[x1] = E[(p∗2 − p∗1)x1]. (40)

Now:

E[p∗1x1] = 1
2(E[p∗1x1|s = 1] + E[p∗1x1|s = 0]) = 1

2(E[p∗1|s = 1]− E[p1|s = 0])

= 1
2

(
(1− αe1)1

2 + αe1
1 + θ

2

)
− 1

2

(
(1− αe1)1

2 + αe1
1− θ

2

)
= θαe1

2 . (41)

Similarly , we have that:

E[p∗2x1] = 1
2(E[p∗2|s = 1]− E[p∗2|s = 0]). (42)

We first compute E[p∗2|s = 1]. We have:

E[p∗2|s = 1] = αe1 E
[
p2

∣∣∣∣s = 1, p∗1 = 1 + θ

2

]
+ (1− αe1) E

[
p∗2

∣∣∣∣s = 1, p∗1 = 1
2

]
. (43)

The event p1 = 1+θ
2 implies that s = 1. Thus,

E
[
p∗2

∣∣∣∣s = 1, p∗1 = 1 + θ

2

]
= E

[
p2

∣∣∣∣p∗1 = 1 + θ

2

]
= p∗1 = 1 + θ

2 ,

where the third equality follows from the fact that the equilibrium price is a martingale. More-
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over, using Proposition 2, we deduce that if αe2 < 1:

E
[
p∗2

∣∣∣∣s = 1, p∗1 = 1
2

]
= 1

2(1− θ)αe2 ×
1− θ
2− θ + (1− αe2)× 1

2 + 1
2α

e
2 ×

1
2− θ + 1

2θα
e
2 × 1

= 1
2 + αe2

(
−1

2 + (1− θ)2

2(2− θ) + 1
2(2− θ) + θ

2

)

= 1
2 + θαe2

2(2− θ) .

and if αe2 ≥ 1,

E
[
p∗2

∣∣∣∣s = 1, p∗1 = 1
2

]
= (1− θ)1

2 + θ

[
αe2
2 × 1 +

(
1− αe2

2

)
× 1

2− θ

]
= 1

2 + θ

[
αe2
2

(
1− 1

2− θ

)
+ 1

2− θ −
1
2

]
= 1

2 + θ

[
θ

2(2− θ) + 1− θ
2(2− θ)α

e
2

]
= 1

2 + θ

2(2− θ) [1 + (1− θ)(αe2 − 1)].

We deduce from these expressions and eq.(43) that:

E[p∗2|s = 1] =


1+θαe

1
2 + θ(1−αe

1)αe
2

2(2−θ) if αe2 ≤ 1,

1+θαe
1

2 + θ(1−αe
1)

2(2−θ) [1− (1− θ)(1− αe2)] if αe2 > 1.
(44)

Proceeding in a similar way, we obtain after some algebra that

E[p∗2|s = 1] =


1−θαe

1
2 − θαe

2
2(2−θ) if αe2 ≤ 1,

1−θαe
1

2 − θ
2(2−θ) [1− (1− θ)(1− αe2)] if αe2 > 1.

(45)

After some algebra, we deduce from equations (40), (41), (42), (44), and (45) that:

Cov(x1, r2) =


θ(1−αe

1)αe
2

2(2−θ) if αe2 ≤ 1,

(1−αe
1)θ

2(2−θ) [1− (1− θ)(1− αe2)] if αe2 > 1,
(46)

which is equivalent to eq.(19) because αe2 > 1 iff Cp < Cmin(θ, αe1) and αe2 ≤ 1 iff Cmin(θ, αe1) ≤

Cp ≤ Cmax(θ, αe1).

As αe2 decreases with Cp and αe1 does not depend on Cp, it is immediate from eq.(19) that
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Cov(x1, r2) increases when Cp decreases. Moreover, if (i) θ >
√

2−1√
2 or (ii) θ ≤

√
2−1√

2 and

Cr ≥ C̄r(θ), or (iii) θ ≤
√

2−1√
2 and Cp ≤ C̄p(θ) then αe2 decreases when Cr decreases. Thus, as

αe1 increases when Cr decreases, we deduce that Cov(x1, r2) decreases when Cr decreases if i)

θ >
√

2−1√
2 or (ii) θ ≤

√
2−1√

2 and Cr ≥ C̄r(θ), or (iii) θ ≤
√

2−1√
2 and Cp ≤ C̄p(θ).
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