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1. Introduction

High-frequency traders (HFTs) have become a potent force in many markets, representing between

40 and 70% of the trading volume in US futures and equity markets, and slightly less in European,

Canadian and Australian markets (see Biais and Woolley (2011)). HFTs develop and invest in a trading

infrastructure designed to analyze a variety of trading signals and send orders to the marketplace in

a fraction of a second. The potential profit from any single transaction resulting from an execution

may be very tiny, and be achieved ex ante with a probability only slightly above 50%, but HFTs rely

on this process being repeated thousands, if not more, times a day. As the law of large numbers and

the central limit theorem relentlessly take their hold, profits ensue and presumably justify the HFTs’

large investment in trading technology.

This significant amount of market activity has been accompanied by theoretical research addressing

some of issues raised by the rapid development of high frequency trading. In particular, Foucault et al.

(2016) extend Kyle’s model by incorporating heterogeneity in the speed of information processing.

Foucault et al. (2013) develop a model in which HFTs choose the speed at which to react to news,

based on a trade-off between the advantages of trading first compared to the attention costs of following

the news. Biais et al. (2015) analyze the arms race and equilibria arising in a model where traders

choose whether to invest in fast trading technologies. Jovanovic and Menkveld (2010) study the effect

of high frequency trading activity on welfare and adverse selection costs. Cvitanić and Kirilenko (2010)

study the distribution of prices in a market before and after the introduction of HFTs. Other relevant

papers include Pagnotta and Philippon (2011), Àlvaro Cartea and Penalva (2012), Jarrow and Protter

(2012) and Moallemi and Sağlam (2013).

As the market structure and technology evolved, liquidity to financial markets is now primarily

provided by high frequency trading firms as opposed to traditional market makers. We analyze in

this paper the implications of this change for liquidity provision. For this purpose, we employ the

model of a fully dynamically optimizing high frequency market maker developed in the companion

paper Aı̈t-Sahalia and Sağlam (2016), which we extend to allow for competition in the provision of

liquidity. The model is in the tradition of inventory control problems, which originated in Amihud

and Mendelson (1980) and Ho and Stoll (1981) for “traditional” market makers (see also Avellaneda

and Stoikov (2008), Guilbaud and Pham (2013), Guéant et al. (2013), Àlvaro Cartea et al. (2014)

and Hendershott and Menkveld (2014)). However, we depart from the classical models by endowing

the high frequency market makers with effectively all the advantages: instead of market makers trying

to protect themselves from a potentially better informed and faster order flow emanating from the

exchange’s customers, the market makers in our setup are both faster and better informed than the
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customers, whom we call low frequency traders (LFTs).

The present paper provides several new results. First, using various liquidity metrics, we find

that a faster market maker provides higher liquidity provision. This is largely consistent with the

view that has emerged out of both the academic literature on HFTs and many public policy and

industry analyses, namely that HFTs improve market quality by providing liquidity, contributing to

price discovery, improving market efficiency and easing market fragmentation. This prediction of the

model is compatible with the empirical findings in Hendershott et al. (2011), Hasbrouck and Saar

(2013), Chaboud et al. (2010) and Menkveld (2013).

Second, we analyze the HFT’s optimal provision of liquidity and equilibrium bid-ask spread as

a function of fundamental price volatility, over which the HFT holds no informational advantage.

One of the main theoretical predictions we make is that the HFT’s liquidity provision is U-shaped

as a function of volatility, first increasing as volatility attracts more LFTs, but then decreasing when

price volatility increases beyond a certain level. Since this is precisely when large unexpected orders

are likely to hit, markets can become fragile in volatile times, with imbalances arising because of

inventories that intermediaries used to, but are no longer willing to temporarily hold. This U-shaped

prediction of the model is consistent with the available empirical evidence. Brogaard et al. (2014)

and Anand and Venkataraman (2016) find that HFT participation is higher on more volatile days.

However, in extreme volatility events, such as flash crashes, Easley et al. (2011) and Kirilenko et al.

(2010) show that some HFTs withdrew from their market-making roles.

Third, we show that the ability of HFTs to (imperfectly) predict the types of LFTs they face leads

to a strategic widening of his quotes when an impatient trader is signaled to arrive, not unlike the ability

of airlines to price-discriminate against business travelers. This results in a time-varying equilibrium

bid-ask spread and is consistent with the common “unfairness” complaints of LFTs, whereby some

orders are executed a penny away from the best prices despite what the trading screen suggested at

the time the LFT submitted his order.

Fourth, we show that competition for order flow among HFTs results in splitting the rent extracted

from LFTs, but that the overall liquidity provision increases and equilibrium bid-ask spreads decrease

in the presence of competition, and LFTs tend to be better off. However, the HFT reduces his

own liquidity provision to the market when compared to a monopoly situation. In the presence of

competition, he may reduce his use of order flow signals to price discriminate against LFTs differing

in their urgency to trade.

Finally, we provide the first formal, model-based, analysis of the impact of four widely discussed,

and in some cases already implemented, HFT policies or regulations: imposing a transaction or Tobin

tax on each trade; setting minimum rest times before limit orders can be cancelled; taxing the can-
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cellations of limit orders; replacing price and time priority with a pro rata or random allocation. The

built-in advantages of the HFTs in terms of speed and information prove hard to undo using these

policies, and providing proper incentives to HFTs in terms of liquidity provision is also difficult. We

find that both a transactions tax and a pro rata allocation scheme reduce the provision of liquidity.

Imposing minimum rest times or cancellation taxes induces the HFT to quote more in low volatility

environments, but then reduce his provision of liquidity when volatility is high. These policies lead to

more liquidity when it is least needed, and less liquidity when it would be most needed. To summa-

rize, the model predicts that these four policies, despite the varying degree of support they enjoy from

regulators around the globe, are likely to be ineffective as far as making the provision of liquidity by

HFTs more robust, or countercyclical, across the volatility cycle.

The paper is organized as follows. Section 2 develops the model of market making with queueing

priority in the limit order book where the HFT is competing with a traditional market maker. Section

3 characterizes the optimal market making policy of the HFT. Section 4 develops the implications of

the model for market structure, while Section 5 analyzes in the context of the model the impact of

possible HFT policies. Section 6 concludes. Proofs and technical results are in the Appendix.

2. A Model of Market Making with Queueing Priority

We start by extending the model of high frequency market making with queueing priority based on

Aı̈t-Sahalia and Sağlam (2016) to include competition for order flow.

2.1. The Trading Environment

The market structure consists of a limit order book in which a single asset is traded in fixed lots of

size 1. The asset transacts at discrete price levels around its fundamental value, Xt, with a tick size in

the market 2C for some constant C > 0 (e.g., C = $0.005). We assume that the asset’s fundamental

price, starting from a value X0 which is a multiple of C, is subject over time to exogenous variability

in the form of pure compound Poisson jumps with arrival rate σ and a Binomial distribution of jump

sizes taking with equal probability values J and −J, where J is a multiple of C. Formally, we can

write Xt as

Xt = X0 +

Nσ
t∑

i=1

Zi, (2.1)

where Zi are the independent jump sizes with zero expectation. Since the variance of Xt is proportional

to σ, we will refer σ as the price volatility for brevity. The dynamics of Xt are illustrated in Figure 1.

There are two competing market makers: A traditional medium-frequency trader (MFT) and the
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HFT. We assume that the MFT is nonstrategic and places limit orders at the best bid (Xt − C) and

ask (Xt + C) at a Poisson rate of β.1 When she places an order at either side, her order stays in the

queue until it is met by an incoming market order. That is, the MFT never cancels an existing limit

order. On the other side, the HFT is strategic and posts limit orders at the best bid (Xt − C) and

ask (Xt + C) or one level removed from the best prices (Xt − 3C and Xt + 3C). The HFT’s trading

technology determine his timing ability to alter his quotes (post new ones or cancel existing ones)

upon the arrival of a Poisson process with arrival rate µ. Thus, the parameter µ is a measure of the

HFT’s speed.

We assume that both the MFT and the HFT offers at most one share to buy or sell. We use the

following notation to denote the quoting decisions of the HFT and the MFT: `at = 1 (resp. `bt = 1) will

imply that the HFT has an active quote at the best ask (resp. bid) at time t, and similarly, `at = 2

(resp. `bt = 2) will imply that the HFT has an active quote at the second-best ask (resp. bid) at time

t. Finally, ωat = 1 (resp. ωbt = 1) will imply that the MFT has an active quote at the best ask (resp.

bid) at time t.

When the HFT decides to quote at the second-best prices, he obviously runs the risk that he will

lose a transaction to the MFT even if the HFT had time priority, should the MFT places a limit order

at the best price. Finally, `at = 0 (resp. `bt = 0) means that the HFT either chooses not to quote to sell

(resp. buy) or his most recent active order has been filled by a market order but the HFT has not yet

submitted a new order due to the technological constraints. Figure 2 illustrates the possible quoting

decisions by the HFT and the state of the order book at the bid side. The last two cases highlight

the significance of the priority. If the MFT has a limit order in the best bid queue (ωb = 1) on top of

the HFT (the sixth case), the HFT must wait for the MFT’s order to be executed by a market order.

Similarly, if the HFT has a limit order in the best bid queue ahead of MFT (the seventh case), the

MFT will wait for the HFT’s order to be either executed or cancelled by the HFT.

We assume that the limit order book contains exogenous depth supplied by competing liquidity

providers at tick levels Xt + 5C and/or Xt − 5C. This assumption is needed only to define a valid

spread measure should the HFT completely withdraw from providing liquidity (`bt = 0 or `at = 0).

With this assumption, the bid-offer spread in the economy will be endogenously determined by the

HFT’s optimal quoting policy and can take values between 2C, 4C, 6C, 8C and 10C for all 49 states

of the order book.

The HFT’s and the MFT’s quotes interact with the incoming orders of LFTs. LFTs are of three

types, characterized by a different willingness to wait to get a more desirable price: patient LFTs

are only willing to buy (resp. sell) at price Xt + C (resp. Xt − C). Impatient LFTs, on the other

1For increased complexity, the MFT can be also strategic but we expect the liquidity implications to be very similar.

5



hand, demand immediacy and are also willing to buy (resp. sell) at price Xt + 3C (resp. Xt − 3C).

Arbitrageurs are only willing to trade if they spot a particularly good deal, buying the asset below

Xt or selling it above Xt. Patient and impatient traders and arbitrageurs arrive at random times

according to Poisson processes with respective arrival rates λP , λI and λA; the sum of their arrivals

produces the aggregate demand and supply functions λB and λS faced by the HFT. Figure 3 provides

an illustration of these functions. In practice, if λA is sufficiently high, then arbitrageurs, although

formally classified as LFTs here, act more like high frequency traders themselves who are usually

referred as high frequency bandits (Menkveld (2016)): with high probability, someone will quickly

take liquidity from the HFT by buying at a price Y below X and selling at a price Y above X.

The HFT has an informational advantage in the sense that he receives, upon the arrival of a

Poisson process with rate θ, a pair of signals that are indicative of the direction of the next incoming

market order (buy or sell), and about the type of the trader submitting the market order (patient or

impatient). The two signals are i.i.d. Bernoulli random variable, Sdir ∈ {B,S}, imperfectly predicting

the direction of the next incoming market order: B corresponds to a LFT order to buy and S refers to

a LFT order to sell, and Stype ∈ {P, I}, with P and I refer to patient and impatient LFTs respectively.

The accuracy level of the two signals are p and q respectively, both in [1/2, 1). Each previous signal is

cancelled by the arrival of either a new signal or a LFT order. The HFT receives no signals regarding

the exogenous jumps in the asset’s fundamental value and consequently cannot predict the arrival of

the arbitrageurs either.

2.2. Objective Function of the HFT

The strategic HFT is risk-neutral, but controls his risk by penalizing inventory at a rate of Γ|xt| where

Γ is a constant parameter of inventory aversion and xt denotes his inventory. In practice, limiting or

penalizing inventory is one of the primary sources of risk mitigation by HFTs.

The HFT’s objective is to maximize his expected discounted rewards earned from transacting

against the incoming order flow from LFTs, which earns him the bid-ask spread, and the potential

penalty costs from holding an inventory. The HFT is also exposed to adverse selection costs when

his stale quote gets picked primarily by arbitrageurs. Figure 1 illustrates how the HFT’s quotes can

become stale after a price jump. When the fundamental price of the security jumps up by J = 4C,

the HFT’s earlier quote at the pre-jump Xt + C becomes stale and leads to an arbitrage opportunity

for LFTs. Patient, impatient and as well as arbitrageurs would certainly like to buy the asset at the

post-jump Xt − 3C. If they submit an order during this stale-quote period, a trade occurs, and the

HFT would lose 3C to the LFT that submitted the order.

Let π denote any feasible policy that chooses `b and `a at decision times, T qk , and T ai be the ith sell
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order submitted by LFT type yai ∈ {P, I} and T bj is the jth market buy order submitted by the LFT

type ybj ∈ {P, I} where i,j and k are positive integers. To track the most recent decision time by the

HFT before the arrival of market orders, we define τi ≡ max{k : T qk < T ai } and τj ≡ max{k : T qk < T bj }.
Finally, let f bi ∈ {0, 1} and faj ∈ {0, 1} be binary variables that show whether the HFT’s order has

execution priority at the arrival of market orders.

There are three potential outcomes in terms of the HFT’s reward function when an LFT submits

a buy or sell order. By symmetry, we focus on the bid side of the HFT’s quotes, i.e., the ith sell

order. The first case refers to a zero payoff due to no trade. If the HFT is not quoting at the bid side

(`bτi = 0), or the HFT’s limit order does not have execution priority (f bi = 0) or the fundamental price

has a positive jump after the most recent decision time (XTai
−Xτi > 3C), there will be no trade. If a

patient LFT sends the ith sell order (yai = P ) and the HFT’s quote is at the second-best bid (`bτi = 2),

then there is again no trade.

In the second case, the HFT gains C by trading with either a patient or an impatient LFT

(yai ∈ {P, I}) when he is quoting at the best bid (`bτi = 1), his limit order has execution priority

(f bi = 1) and the fundamental price has not changed since the HFT’s most recent decision time

(XTai
= Xτi). If there has been a negative jump during this period, the HFT would lose the jump

amount mJ despite his spread gain where XTai
−Xτi = −mJ with m = 0, 1, 2 . . ..

In the third case, the HFT gains 3C if the order is submitted by an impatient LFT (yai = I) when

he is quoting at the second-best bid (`bτi = 2), his limit order has execution priority (f bi = 1) and

the fundamental price has not changed since the HFT’s most recent decision time (XTai
= Xτi). If

there has been a negative jump during this period, the HFT would again lose the jump amount mJ

(XTai
−Xτi = −mJ).

We can summarize these cases with the following HFT gains function from LFTs’ sell orders:

G−(`, y, f,XT , X) =


C −mJ if ` = 1, XT −X = −mJ, f = 1

3C −mJ if ` = 2, y = I,XT −X = −mJ, f = 1

0 otherwise.

(2.2)

Similarly, we can obtain the symmetric G+(`, y, f,XT , X) function to accommodate the gains from

LFTs’ buy orders. Putting it all together, the HFT has the following formal objective function:

max
π

Eπ
 ∞∑
i=1

e−DT
a
i G−(`bτi , y

a
i , f

b
i , XTai

, Xτi) +

∞∑
j=1

e−DT
b
jG+(`aτj , y

b
j , f

a
j , XT bj

, Xτj ) − Γ

∫ ∞
0

e−Dt|xt|dt
]

(2.3)
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The first (resp. second) term is the HFT’s gain from an incoming sell (resp. buy) order crossed against

his existing limit order net of adverse selection costs due to stale quotes. The last term captures the

HFT’s inventory penalty costs.

3. Solution of the Model

The key advantage of the model’s Poisson-based setup is that we can convert the existing continuous-

time model to a discrete-time Markov Decision Process (MDP) by considering the arrival times of

the LFTs’ orders, signals, MFT’s quotes and the HFT’s decision time as the starting time of the new

period. This effectively merges the different Poisson clocks into a single chronologically-ordered one

(with arrival rate equal to the sum of the individual ones), and then performing a time change from

the (random) Poisson clock to the corresponding discrete-time event clock.

3.1. Action and State Space

The state space after the discrete-time transformation is (x, s, b, a, e, j) where x ∈ {. . . ,−1, 0, 1, . . .}
denotes the current holdings or inventory of the HFT. The second state variable consists of the order

direction and LFT type signals, s =
(
Sdir, Stype

)
∈ {BP, SP,BI, SI}. The next two states show the

available active quotes at the bid side and the ask side. Each side of the limit order book, bid or ask

queues, can be in one of seven states: b = 00, denoting that the bid queue is empty, with neither HFT

nor MFT currently quoting; b = 10, denoting that the HFT is quoting at the best bid and MFT is not

quoting; b = 20, denoting that the HFT is quoting at the second-best bid and MFT is not quoting;

b = 21, denoting that the MFT is quoting at the best bid and the HFT is quoting at the second-best

bid, but the MFT’s order has price priority; b = 11m, denoting that both the MFT and the HFT are

quoting at the best bid, but the MFT’s order has time priority; b = 11h, denoting that both the MFT

and the HFT are quoting at the best bid, but the HFT’s order has time priority; b = 01, denoting that

there is only an order by the MFT at the best bid, which has priority. The set of values in a is also

similarly defined with another 7 potential values. Thus, the order book can be in one of 49 states.

Recall that the HFT can only make quoting decisions after µ-events in the merged Poisson clock.

In the remaining Poisson arrivals, the HFT does not have the ability to change his existing quotes

but can only maintain his quotes initiated at the most recent decision time. The fifth state variable,

e ∈ {0, 1}, is therefore a binary state variable denoting when e = 1 that the discrete date in the

merged clock corresponds to a µ−event , in which case the HFT can revise his quotes; whereas e = 0

refers to the arrival of either a LFT order (λ), a signal event (θ) or a jump event (σ), in which cases

the HFT cannot revise his quotes in this state. Finally, The sixth and last state variable, j, keeps
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track of the jumps realized in the asset fundamental value since the HFT’s last quoting action, with

j ∈ {. . . ,−1, 0, 1, . . .}.
The action taken by the HFT at each state is whether to quote at the second-best or best available

prices, i.e., db(x, s, b, a, e, j) ∈ {0, 1, 2} and da(x, s, b, a, e, j) ∈ {0, 1, 2}. When e = 0, the corresponding

action taken by the HFT is determined by l so we can, as in the simplified model, consider these states

as fake decision epochs that force the HFT to continue with existing active quotes. For example,

if b = 11m, and a = 20, then db∗(x, s, 11m, 20, 0, j) = 1 and da∗(x, s, 11m, 20, 0, j) = 2. Thus, the

relevant state for the HFT is when e = 1 and in this case the existing active quotes given by b and a are

no longer binding. At this state, j also reverts to 0 as the HFT can now peg his quotes around the new

fundamental price. For this purpose, we can suppress the last two states when we refer to the optimal

market-making policy using `b∗(x, s, b, a) = db∗(x, s, b, a, 1, 0) and `a∗(x, s, b, a) = da∗(x, s, b, a, 1, 0).

We can reduce the state space for decision epochs further considering the fact that the existing

quotes in the order book submitted by the HFT are irrelevant if they have no execution priority. So

out of 7 possible states in each side of the book, the HFT needs to know whether the MFT is quoting

or not and whether her orders have execution priority. These three cases are identified in the following

subsets of the order book at each side: We let lb = 0 (la = 0) to denote the case in which the MFT

does not quote, i.e., b = 00, b = 10 and b = 20 (a = 00, a = 10 and a = 20). Similarly, we let lb = 1

(la = 1 if the MFT quotes but the HFT has the execution priority, i.e., b = 11h (a = 11h). Finally, we

let lb = 2 (la = 2) if b = 01, b = 11m and b = 21 (a = 01, a = 11m and a = 21) i.e., MFT quotes with

execution priority. Finally, we let lb = 2 (la = 2 if the MFT quotes but the HFT has the execution

priority, i.e., b = 11h (a = 11h). Thus, only 9 different cases are relevant for the HFT’s quoting

decisions from the complete 49 states of the order book. These states can be identified by l ≡ lb × la.
Using this reduction, we will use `b∗(x, s, l) and `a∗(x, s, l) to characterize the optimal market making

policy.

3.2. Optimal Market Making

We use two value functions to differentiate between quoting epochs from the rest. Let V (x, s, b, a, e, j)

denote the value function of the HFT. We can suppress some of the states in the case of e = 1 with

h(x, s, b, a) = V (x, s, b, a, 1, 0), as the HFT can revise his quotes at this time. Using the reduction in

states in decision epochs, we can further concisely express this value function by differentiating between

the state of the best bid or the ask. Using our earlier definition of l ≡ lb × la, the value function at

decision epochs can be written as h(x, s, l) where l is in {00, 01, 02, . . . , 20, 21, 22}. Finally, we let

v(x, s, b, a, j) be the value function in the no-decision event types, i.e., a LFT order, signal, volatility

or the MFT quoting events (i.e., when e = 0). In the Appendix, we derive the HJB equations that
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the optimal value functions need to satisfy for optimality.

We can now characterize the optimal quoting policy of the HFT, showing that, it is based on

asymmetric thresholds as a function of inventory, signal and the MFT’s relevant quoting states. We

provide the optimal quoting policy for the bid side of the market as the other case is symmetric.

Theorem 1. The optimal quoting policy π∗ of the HFT consists in quoting at the available bid and

the ask prices according to a threshold policy, i.e., there exists state-dependent limits for both the bid

and the ask side such that the optimal policy is monotonic with respect to inventory:

`b∗(x, SP, l) =


1 x ≤ U1

P,l

2 U1
P,l < x < U0

P,l

0 x ≥ U0
P,l

, `b∗(x,BP, l) =


1 x ≤ L1

P,l

2 L1
P,l < x < L0

P,l

0 x ≥ L0
P,l

,

`b∗(x, SI, l) =


1 x ≤ U1

I,l

2 U1
I,l < x < U0

I,l

0 x ≥ U0
I,l

, `b∗(x,BI, l) =


1 x ≤ L1

I,l

2 L1
I,l < x < L0

I,l

0 x ≥ L0
I,l

.

where l is in {00, 01, 02, 10, 11, 12, 20, 21, 22}.

The optimal quoting policy in the complete model can be interpreted as follows. The limits U0
P,l

and U0
I,l are the relevant limits for the HFT to stop quoting for inventory considerations when the

direction signal is aligned with the direction of quoting. The limits L0
P,l and L0

I,l are the relevant limits

for the HFT to stop quoting for inventory considerations when the direction signal is opposite to the

direction of quoting. These limits depend on the anticipated type of the LFT (patient or impatient)

and the MFT’s quotes and priority in the order book.

The additional set of limits, U1
P,l, U

1
I,l, L

1
P,l and U1

I,l, that lets the HFT to decide between quoting

at the best bid or at the second best bid. These limits are driven by the economic consideration based

on the likelihood of trade given the accuracy of the signals and the relative ratio of patient LFTs to

impatient LFTs, and the additional gain from transacting away from the best prices with an impatient

LFT and the MFT’s existing quotes in the order book.

Note that the presence of a monotonic structure in the optimal policy can greatly reduce the

computational effort by using a structured algorithm to solve the MDP (see e.g., monotone policy

iteration algorithm in Puterman (1994)).
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3.3. Example

For illustrative purposes, we use the following realistic parameter values: the HFT will be able to make

decisions in every 100 milliseconds which implies that µ = 600 per minute; C = $0.005 which makes

the tick-size and the minimum spread to be $0.01; the arrival rate of impatient LFTs on each side of

the market is set to be λI = 7.5 per minute while the arrival rate of patient LFTs is given λP = 22.5

per minute which then implies that total arrival rate of LFTs on both sides of the market is 1 order per

second; the arrival rate of arbitrageurs is given by, λA = 300 per minute on each side, which implies

the same rate of arrivals as the HFT’s decision events in aggregate. The discount rate is 10% per year

which corresponds to roughly 10−6 per minute. For the accuracy of the signals, we set p = 0.7 and

q = 0.6, i.e., the signal will predict the correct sign of the next market order with 70% chance and

the type of the LFT submitting the next order with 60% chance. The signal will be subject to change

θ = 30 times per minute on average. The fundamental price will be subject to a jump occurring 10

times per minute, i.e., σ = 10. Each jump will be in the amount $0.04 in either positive or negative

direction with equal probability. Given µ� σ, we use a truncated state space for the number of jumps

since the HFT’s last quoting action with letting j ∈ {−1, 0, 1}. We choose β = 60 for the speed of

the MFT. Finally, Γ = 0.05 so that HFT is paying $0.05 per minute for each non-zero inventory he

is holding. This is of course a high value, necessary only to obtain tight inventory limits in order to

illustrate the role these limits play.

With these parameters, the quoting limits are computed as:

MFT States (l)

Limits 00 01 02 10 11 12 20 21 22

U1
P,l 0 0 0 0 0 0 0 0 -1

U0
P,l 3 3 3 1 1 1 1 1 0

U1
I,l 0 0 -1 0 0 0 0 0 -1

U0
I,l 4 4 4 1 1 1 1 1 0

L1
P,l 0 0 0 1 0 0 -1 -1 -1

L0
P,l 2 2 2 2 1 1 0 0 0

L1
I,l 0 0 0 1 0 0 -1 -1 -1

L0
I,l 3 3 3 2 1 1 0 0 0

(3.1)

This example cleanly shows the impact of competition and execution priority on the HFT’s order

aggressiveness. Recall that U0 and L0 are the limits for the HFT to stop quoting to buy the asset for
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inventory considerations. We observe that these limits decrease as soon as the MFT has a quote at

the bid side (see e.g., U0
P,l). The limits may drop further if the MFT’s order has execution priority

(see e.g., L0
P,l). Interestingly, if the MFT has an order with execution priority at the ask side, this may

also affect the HFT’s quoting decision at the bid side. This is intuitive as the HFT may not offload a

potential inventory quickly in the presence of existing MFT quotes at the ask side.

We can also compare the limits to those of the case without competition, i.e., β = 0. In this case,

the quoting limits are computed as U1
P = 0, U0

P = 4, U1
I = −1, U0

I = 5, and L1
P = 0, L0

P = 2, L1
I = −1,

L0
I = 4. Note that since there is no MFT quote, l drops from being a state variable. Comparing

the limits for U0 and L0, we observe that in the presence of competition, the HFT’s inventory limits

tighten. The difference between U1 and U0 or L1 and L0 also imply that the HFT’s ability to price

discriminate via quoting at second-best prices is lower in the presence of competition. We examine

these implications further in Section 4.4 by comparing the long-run expected bid-offer spread in both

regimes.

4. Implications of the Model for Market Structure

In this section, we consider the implications of the model for the HFT’s liquidity provision, cancellation

or modification of orders, and how liquidity provision is affected by fundamental price volatility. We

use the same parameter values given in Section 3.3. We use a monopoly model by setting β = 0 in

Sections 4.1, 4.2 and 4.3, and a duopoly model by setting β = 60 in Section 4.4.

We first compute the optimal inventory limits and characterize the optimal policy of the trader

according to Theorem 1. Under this optimal policy, the inventory of the trader will be in a finite set,

[−N∗, N∗]. Therefore, under the optimal policy, the model is governed by a finite-state Markov Chain.

Let Popt be the probability transition matrix defined on this finite state space under the optimal policy.

Since the Markov Chain is aperiodic and irreducible, a stationary distribution π exists for this Markov

Chain, which solves πPopt = π.

We then compute the long-run liquidity metrics resulting from the equilibrium between the HFT’s

(or HFT’s plus MFT’s) quotes and the LFTs’ orders under the Markov stationary distribution, π.

We focus on the following three liquidity measures: the expected bid-offer spread, the fill rate of LFT

orders and the probability that the HFT will quote at the best bid and ask prices, i.e., the probability

of a one-tick market, which given the fixed quantity of one in the model captures the market depth

provided by the HFT at the best prices.
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4.1. HFT’s Liquidity Provision and HFT’s Speed

Does the HFT’s speed have a positive impact on the market liquidity? Figure 5 illustrates that as

the HFT gets faster (µ), market liquidity as measured by the three liquidity metrics is higher. This

result is consistent with the empirical literature on HFT, which tends to suggest that HFTs have had

a generally positive effect on spreads and depths (see, e.g., Hendershott et al. (2011), Hasbrouck and

Saar (2013), Chaboud et al. (2010) and Menkveld (2013).)

In the model, as the HFT becomes faster, the various risks he is facing (getting caught with an

out-of-date signal, getting caught with stale quotes, etc.) are reduced. Furthermore, getting faster

also improves the likelihood that the HFT will be able to exploit signals that allow him to price-

discriminate. Figure 6 illustrates that if the HFT’s second signal accuracy (q) improves, then the

average bid-offer spread in long-run equilibrium increases. This reflects the fact that the HFT is

better able to price discriminate among types of LFTs and exploits this ability to engage in predatory

trading against impatient LFTs. This result is consistent with the often-expressed complaints from

LFTs regarding “phantom or fleeting liquidity”, i.e., liquidity provided at the best bid or ask prices

that suddenly disappears, leading to an execution one tick away from the best prices.

4.2. Quote Cancellations by the HFT

Limit order cancellations are widely observed empirically in high frequency data. Hasbrouck and Saar

(2009) note that over one third of limit orders are cancelled within two seconds and term those “fleeting

orders”. Baruch and Glosten (2013) show that quote cancellations can emerge as an equilibrium

strategy in a trading game. Angel et al. (2015) document that the ratio of quotes to trades, which was

relatively stable at about 2 between 1993 and 2001, started increasing and is over 25 by 2013. Our

model makes predictions that are consistent with this empirical fact: a high number of cancellations

will occur as the HFT changes his quotes in responses to changes in the fundamental value, his

inventory and the signals he receives.

Figure 7 and Figure 8 illustrate the HFT’s quote revisions and cancellations while following his

optimal policy (recall (3.1)). Since the optimal limits may be different for each possible signal, en-

dogenous quote cancellations may occur for instance when the HFT receives a different signal than

the one that was previously in effect. For example, when his inventory is zero or close to it, the HFT

makes his quoting decision depending upon the signal predicting the type of incoming LFT. Figure

7 shows that if the HFT is expecting a patient LFT, he quotes at the best bid and ask but if the

signal suggests that an impatient LFT is next to arrive, he quotes at the wider price levels. From the

perspective of the LFTs, these lead to cancellations and a widening of the spread. Similarly, the signal
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providing information about the likely direction of the next LFT order may induce the HFT to cancel

his quotes to minimize the probability of a stale quote. The left panel in Figure 8 illustrates that if

the signal changes to BP when the HFT is expecting to buy from a patient LFT, the HFT decides

to cancel his quote at the second-best bid in order to lower the risk of leaving a stale quote. Similar

withdrawal of an ask quote happens in the right panel of Figure 8.

4.3. Implications of Asset Price Volatility for the Provision of Liquidity

One fundamental issue regarding the HFT’s provision of liquidity concerns not its quantity but its

“quality”. Possible definitions of that quality vary, but most include the notion that this liquidity is to

be provided in a stable manner over time and over different market environments, consistent with the

requirement to provide a “fair and orderly market” that is imposed on regulated specialists and market

makers. Are unregulated HFTs fair weather liquidity providers ready to provide plenty of liquidity

when the market is calm and doesn’t really need it, only to remove it whenever the market becomes

turbulent (and it would be needed)? This question is of central importance for market stability, and to

understand the potential for systemic risk should HFTs suddenly suspend their provision of liquidity

in response to a market shock, contributing to an amplification of that shock.

We quantify the change in the equilibrium bid-offer spread as a function of asset price volatility,

measured by σ: see Figure 9. We find that the rate of liquidity provision by the HFT decreases

as the fundamental price becomes more volatile, resulting in a higher spread in equilibrium. The

model predicts that the HFT protects himself against unanticipated price jumps (over which he has

no informational advantage) by quoting less frequently. The conclusion that it is optimal for the HFT

to decrease his provision of liquidity when the price volatility risk increases has obvious consequences

for the way markets can be expected to operate in times of stress, and for the potential need to regulate

the provision of liquidity by market makers.

On the other hand, since λB and λS described in Section 2 aggregate the demand for and supply

of the asset emanating from many different traders, who are likely to have heterogenous beliefs,

trading motives and propensities, it is possible and even plausible for λB and λS to depend on the

fundamental price volatility σ; if volatility leads to a higher intensity of trading, then ∂λB/∂σ ≥ 0

and ∂λS/∂σ ≥ 0. The resulting effect on the HFT’s optimal quoting, and hence the equilibrium

spread, is illustrated in Figure 9 in the case where λB (Y −X,σ) and λS (Y −X,σ) are both linearly

increasing in σ, corresponding to a linear positive correlation between volatility and LFTs’ supply

and demand. Other cases are possible depending upon the assumptions made outside the model

regarding the LFTs’ motives for trading (portfolio rebalancing, limits reached, directional bets, etc.)

that ultimately determine the dependence of λB and λS on σ.
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Any positive dependence of λB and λS on σ makes it more attractive for the HFT to continue

quoting, and in some cases increase his quoting in times of market stress, although as we see in Figure

9 the increase in the provision of liquidity is short-lived: as σ begins to increase, the HFT starts

by providing more liquidity, resulting in a lower spread, but as σ keeps increasing the HFT starts

to withdraw liquidity. The HFT’s objective value is increasing, due both to the increase in trading

opportunities with LFTs owing to the increased volatility, and to the higher profitability of each trade

even when the HFT quotes less.

This U-shaped dependence of the equilibrium spread (or inverse U-shaped dependence of liquidity)

on volatility is consistent with recent empirical evidence. Brogaard et al. (2014) and Anand and

Venkataraman (2016) find that HFT participation is higher on more volatile days. However, in the

presence of extreme volatility events, such as flash crashes, Easley et al. (2011) and Kirilenko et al.

(2010) show that some HFTs may withdraw from their market-making roles.

4.4. Competition for Order Flow and Liquidity Provision

We next investigate the impact on liquidity of competition between the HFT and MFT, as they queue

in the limit order book. We quantify this impact by comparing the equilibrium spread in the presence

(β = 60) and absence (β = 0) of competition.

Figure 10 illustrates the impact of queueing on the HFT’s value due to the presence of the MFT,

as a function of the HFT speed in the monopoly and duopoly models. In the presence of the MFT,

the HFT splits the rent by losing some of his profits to the MFT, as some of the LFTs’ orders are

now executed by the MFT. Comparing the slopes in the value function in both regimes, we see that

lower speed is more detrimental when the HFT is extracting monopolistic rents in the absence of the

MFT: with the MFT present, not being as fast is less costly for the HFT. This suggests that with

competition, the HFT’s incentive to increase his speed is lower.

We next study how the presence of the MFT affects market liquidity. Figure 11 shows that LFTs are

better off when market makers compete, compared to the monopolistic HFT situation: the equilibrium

bid-offer spread decreases. In the duopoly case, the HFT quotes less: after making a trade, either a

sale or a buy, the HFT is now less likely to trade in the opposite side of the market immediately due

to the presence of the MFT. Although the HFT provides less liquidity than he did as a monopolist,

the total provision of liquidity facing the LFTs is higher in the duopoly situation. Also, competition

with the MFT decreases the HFT’s ability to price-discriminate, since removing his quotes at the best

bid and ask prices to quote one tick away from them causes the HFT’s to potentially lose his time

priority in the best bid and ask queues to the MFT. This induces the HFT to quote more often at the

best bid and ask, reducing the equilibrium spread and increasing the probability of a one-tick market.
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5. Implications of The Model for HFT Regulations

Regulators worldwide are paying increasing attention to the impact of HFTs on the markets they

supervise, and have started debating, developing and in some cases implementing policies designed

primarily to limit any negative consequences stemming from the rise of HFTs. The basic premise is

that markets should remain platforms to trade risk among investors with different needs and beliefs,

and not become primarily race tracks with the potential to ultimately discourage slower users from

participating, due to the perception of a lack of fairness.

In this section, we use the model to make predictions about the impact of some frequently pro-

posed, and in some cases already enacted, regulatory policies. We analyze their impact on the HFT’s

objective value and provision of liquidity to the market. Although welcome, additional liquidity in

good times when markets are already very liquid may not be particularly useful, and may even be

counterproductive if it lulls agents into complacency only to dry up when markets experience volatility.

So we view as a desirable outcome of a policy a reduced provision of liquidity by HFTs in good (low

volatility) times, in exchange for an increased provision of liquidity in bad (high volatility) times. Such

a countercyclical impact would be desirable for some of the same reasons that advocate for banks’

capital requirements to increase in booms, in order to limit the provision of speculative credit, and

decrease in recessions, in order to speed up the economic recovery.

We specifically examine the impact of four widely discussed HFT policies through the prism of our

model: imposing a transaction tax on each trade, setting minimum-time limits before orders can be

cancelled, taxing the cancellations of limit orders, and replacing time priority with a pro rata allocation

of shares to all quotes in the book at that price level.

These policies, or combinations thereof, capture the main elements that have been proposed in

various countries, and in some cases already implemented. In 2012, France introduced a 0.2% tax

on transactions in large stocks, and a 0.01% tax on HFTs penalizing them for a high rate of order

cancellations within a half-second2,3. Similarly, in Italy, a tax of 0.02% on orders issued and then

cancelled within half a second, once above a threshold, has been introduced4. The Deutsche Börse

introduced a tax in 2012 that charges HFTs for high “order-to-trade” ratios5 as does the London Stock

Exchange6. Norwegian regulators too consider taxing traders who submit a large number of orders

relative to their actual executions7. The CME Group, the world’s largest futures exchange, has had for

2“Paris traders brace for financial transactions tax”, Reuters, July 31, 2012.
3Somewhat predictably, many investors in France have avoided the tax by trading “contracts for difference” which

allow them to profit from an asset’s gain or loss without actuallys owning the shares.
4“All eyes on Italy’s high-frequency rules”, The Financial Times, February 19, 2013.
5“D Börse to charge for ‘stupid algos’”, The Financial Times, February 28, 2012.
6“Bourses play nice cop to head off speed-trade rules”, Reuters, April 10, 2012.
7“Oslo Bors to charge for excessive orders”, The Financial Times, May 24, 2012.
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a number of years message volume caps, designed to prevent excessive numbers of orders from being

placed8, while Nasdaq and DirectEdge, two of the largest US stock exchanges have introduced fines to

discourage excessive order placement9. Canadian regulators too began increasing the fees charged to

HFTs that flood the market with orders10, while Indian regulators are studying ways to curb HFTs11.

On the other hand, Brazil appears more open to the influx of HFTs12. Australian regulators want

HFTs to implement a “kill switch” to prevent future flash crashes, and are considering a tax charge,

although they appear to take a more benevolent view of HFTs than some of their counterparts in

Europe13.

In January 2013, European Union finance ministers approved a transaction tax in Germany, France,

Italy, Spain and seven other Eurozone countries14; the UK, concerned about the impact on the City,

is opposed15. It seems unlikely at present that the initially far-reaching package will get implemented

as proposed, if ever16. The German government has advanced legislation that would, among other

things, force HFTs to register as such with the government17 and limit their ability to rapidly place

and cancel orders18. The European Parliament has voted to require HFTs to honor the quotes they

submit for at least half a second; imposes a minimum half-second delay on executing orders in a bid;

possible use of circuit breakers to interrupt a sudden market plunge; and fee structures that would

discourage excessive algorithmic trades19. These rules could potentially apply to all 27 member states

of the European Union if governments were to give their approval. In the US, the SEC and CFTC are

discussing similar kinds of regulatory actions20, while transaction tax legislation has been introduced

in the Senate, although with little prospects of passage. Not surprisingly, many trade associations

representing trading firms are opposing these proposals21. Other alternative policies involve bunching

together incoming orders every few milliseconds, or randomizing their allocation (“scrambling”), so a

HFT would face queuing risk, as well as a minimum rest time before a cancellation. EBS, one of the

major trading platforms in the foreign exchange market, has discussed such a proposal with its users.

8CME Messaging Efficiency Program: http://www.cmegroup.com/globex/resources/cme-globex-messaging-efficiency-
program.html

9“US bourses to fine HFT data-cloggers”, The Financial Times, March 7, 2012.
10“Canada’s ‘hot’ traders attract regulatory heat”, The Financial Times, October 16, 2012.
11“India takes steps to rein in algos”, The Financial Times, May 22, 2013.
12“Despite Risks, Brazil Courts the Millisecond Investor”, The New York Times, May 22, 2013.
13“Australia finds HFT fears ‘overstated’”, The Financial Times, March 18, 2013.
14“Brussels proposes 30bn ‘Tobin tax’”, The Financial Times, February 14, 2013.
15“Britain challenges EU over ‘Tobin tax’”, The Financial Times, April 19, 2013.
16“Europe plans major scaling back of financial trading tax”, Reuters, May 30, 2013.
17“Berlin forges ahead with trading controls”, The Financial Times, September 25, 2012.
18“German Bundestag Passes Bill to Regulate High-frequency Trading”, The Wall Street Journal, February 28, 2013.
19“EU Lawmakers Call for Enforced Delay on High-Frequency Trades”, The Wall Street Journal, September 26, 2012.
20“High speed trading a stiff challenge for U.S. regulators”, Reuters, May 19, 2013.
21“Traders see Europe’s Tobin tax hurting savers”, Reuters, October 11, 2012 and “Trading Clamps Spur Lobby

Effort”, The Wall Street Journal, March 24, 2013.

17



Pro rata matching is employed for instance at the Chicago Mercantile Exchange for Eurodollar

futures contracts as an alternative to time priority. The objective is to reduce the value of being at

the top of the queue for execution, an objective shared with the proposal for batch auctions (see, e.g.,

Budish et al. (2015)).

In all cases, we assume that the HFT continues to optimize taking into account the full regulatory

environment, and we extend the model accordingly. We use the same parameter values as in Section

3.3 to facilitate the comparison with earlier applications. We use the monopoly model by setting β = 0

in Sections 5.1, 5.2 and 5.3, and the duopoly model by setting β = 60 in Section 5.4. This analysis

remains dependent on the assumptions of the model, and excludes alternative responses by HFTs, such

as simply moving their trading to an alternative non-regulated venue, instead of optimizing under the

new constraints imposed by the regulation.

5.1. Tobin Tax: Taxing High Frequency Trades

The first policy we consider consists in taxing each trade that a HFT executes. Leaving aside the

question of identifying HFT trades (perhaps by requiring HFT firms to register with the regulators,

as has been proposed in Germany), a financial transactions tax is nothing new. Originally known as a

“stamp duty,” it was first implemented at the London Stock Exchange in the 17th century, was later

advocated by Keynes on the grounds that speculation by uninformed traders increased volatility, and

then by Tobin as a means of reducing currency fluctuations.

The argument in favor of a transactions tax is that financial trading is under-taxed relative to

the rest of the economy; this encourages excessive trading, by HFTs in particular, which in turn

undermines financial stability as the ability of HFTs to get out of the market quickly undermines the

market’s liquidity when it is most needed.

Of course, sophisticated traders may simply move their trading to financial instruments or juris-

dictions not subject to the tax. Sweden for instance introduced a tax on the purchase or sale of stocks

in 1984; the tax was repealed in 1990 after the country experienced a large displacement of trades.22

A second argument often made against the tax is that it will depress economic activity by imposing

a large burden on the financial sector. These two arguments are somewhat self-contradictory: either

the tax is easily avoided so as to be inconsequential, or it imposes a large economic penalty, but not

both together23.

In the framework of our model, a transactions tax is straightforward to analyze. Suppose that the

22“Financial Transactions Taxes: The International Experience and the Lessons for Canada”, by Marion G. Wrobel,
Parliament of Canada Report, June 1996.

23“Europe should embrace a financial transaction tax”, The Financial Times, May 28, 2013.

18



HFT pays κ dollars each time an LFT order crosses one of his limit orders. From the perspective of

the HFT, the transaction tax, κ, merely reduces the gain that the HFT earns from each trade. We

can analyze the impact of the tax policy on the objective value of the HFT and liquidity provision

using our complete model.

Figure 12 displays three graphs illustrating objective value, equilibrium bid-offer spread with re-

spect to the Tobin tax rate and equilibrium bid-offer spread as a function of volatility in the presence

and absence of tax regulation. Figure 12 illustrates that the HFT’s objective value is decreasing with

higher taxes, i.e., with a maximum κ considered of 25 bps in line with the proposals being considered or

already implemented in Europe. We observe that in the long-run transaction taxes do not incentivize

the HFT to quote more on both sides of the market. If the taxes are high enough, in fact, the HFT’s

liquidity provision actually decreases, as seen in the top panel of Figure 12.

These predictions of the model are consistent with what has been observed in Italy following the

introduction of the Tobin tax: the average daily trading volume for Italian-domiciled stocks has fallen

by nearly 40% in March compared to January and February 2013.24. Lastly, we investigate how market

liquidity, measured by the equilibrium bid-offer spread, changes with respect to volatility when the

Tobin tax is implemented. The HFT’s quoting has higher sensitivity to volatility compared to the

absence of a Tobin tax, so the tax produces no improvement on that front either.

5.2. Speed Bumps for HFTs: Imposing a Minimum Rest Time Before a Quote Can Be Can-

celled

Another possible policy consists in imposing a minimum time before a quote can be cancelled by

the HFT. This minimum “rest time” is a widely discussed policy among regulators and exchanges,

including European and Australian ones. The objective is to improve the provision of liquidity by

HFTs by effectively forcing them to stand behind their quotes for at least a brief period. One concern

about the reported higher liquidity due to HFT activity is that the provided liquidity is very short-

lived, or “phantom”, i.e., HFTs cancel many of their quotes before LFTs get a chance to trade with

it.

We analyze the effect of minimum rest limits in our model as follows. Although the policy proposals

all suggest a fixed waiting time, typically 500 milliseconds, it will come as no surprise in the context

of the model that it is actually more convenient to analyze a version of the policy where the waiting

time before a cancellation is random, itself derived from a Poisson process, with an expected value

of 500 milliseconds. The arrival rate of that Poisson process controls the expected amount of waiting

24“Tax blow to Italian stock trading”, The Financial Times, March 13, 2013.
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time before a quote can be cancelled. That is, we suppose that each active quotes cannot be cancelled

before a random time amount, τ cancel, which is exponentially distributed with mean duration 1/θ.

Figure 13 illustrates the objective value of the HFT as a function of the average rest time, 1/θ,

expressed in milliseconds. The limiting case θ →∞, meaning that the minimum rest time is zero for

active quotes, reverts to the base model. As the rest time increases, we observe in the upper left panel

that the objective value of the HFT decreases: like any other constraint, a rest time does reduce the

maximum achievable value.

Importantly, we find that this form of regulation is good for the overall liquidity as measured

by equilibrium bid-offer spread. When the HFT has active quotes on both sides of the market, the

minimum rest time comes into effect and forces the HFT not to cancel as frequently as before due

to signal changes, including signals about the next incoming LFT’s type. As he internalizes this

constraint when optimizing his quoting policy, the HFT ends up initiating fewer quotes but they stay

active sufficiently longer to result in a higher probability that he will have a quote active at any given

point in time, and in a higher fill rate for the incoming LFTs’ orders.

This policy fails however to result in a countercyclical improvement to liquidity: as shown in the

bottom-panel graph in Figure 13, with rest times in effect, the HFT becomes more sensitive to market

volatility, i.e., when a rest time is imposed, equilibrium bid-offer spread is lower when volatility is low,

but higher when volatility is high, compared to the situation without one. The reason is that as σ

increases, the potential risk from being caught with stale quotes increases, and is compounded by the

imposition of a rest time which forces the HFT to honor a quote that he would rather not. The HFT

then optimally reduces his quoting. In other words, rest times lead HFTs to provide more liquidity

when the market does not really need it (more rain in a monsoon) but less when the market would

really benefit from it (less rain in a drought).

5.3. Taxing Limit Order Cancellations

The third policy we consider consists in taxing the HFT whenever he cancels an existing quote. Unlike

rest times, which make cancellations impossible within a certain time interval, this policy simply makes

them costlier. The two are not directly comparable in that rest times are effectively an infinite tax

on cancellations but only for a brief period, whereas a cancellation tax is a small tax that is in effect

permanently. We assume that the HFT must pay ε percent as a penalty for each cancelled limit order.

For example, if the HFT chooses action `b = 0 or `a = 1 when his existing quotes are l = 11, he will

pay a cancellation tax of ε as he cancelled his existing quote on the bid side.

Figure 14 considers the impact of such cancellation taxes. We consider cases where ε is as high

as 10 bps for each quote cancellation. We observe that the objective value of the HFT decreases in

20



the presence of cancellation taxes. The HFT tries to quote more at the best bid and the ask to avoid

cancellation fees, which lowers the equilibrium bid-offer spread. A cancellation tax shares the same

drawback as a minimum rest time: it improves market liquidity when volatility is low but when there

is high volatility, the cancellation tax causes the HFT to quote less compared to the benchmark case.

5.4. Pro Rata or Random Allocation

The last policy we consider is pro rata allocation: as an alternative to price and time priority, or

first in first out, pro rata allocation matches incoming orders against quotes by allocating shares

proportionately to all quotes at the best price according to their size. This form of matching, employed

for instance at the Chicago Mercantile Exchange for Eurodollar futures contracts, enables all liquidity

providers to join the queue at a particular price level and have an opportunity to compete for the

next fill at that price level, independently of their order’s time priority. A closely-related alternative

matching algorithm is one where, among the quotes in the book at the prevailing best price, the one

to be executed is selected at random.

In our duopoly model with time priority, if both the HFT and the MFT have limit orders at the

best price, the execution priority belongs to the liquidity provider who first submitted the order. Since

quantities in the model are set at one share per transaction, we model pro rata/random allocation

as follows. Instead of the first quote to enter the book being automatically selected for execution, an

independent Bernoulli random variable is drawn and the order with the highest time-priority is selected

with probability η ∈ [0.5, 1]. When η = 1, this reverts to our original model, i.e., pure time priority,

whereas η = 0.5 completely eradicates time priority and corresponds to a fully random allocation. We

also consider intermediary values for completeness.

Figure 15 considers the impact this policy on liquidity metrics. We find that the objective value of

the HFT decreases in the presence of pro rata allocation. In the absence of this policy, HFT’s orders

often enjoy higher priority over the MFT’s orders due to the HFT’s speed advantage, which results in

more trades for the HFT. However, once the pro rata policy in place, the HFT’s speed advantage loses

(part of) its significance and his objective value drops. Although this is indeed the objective of the

policy, it results in less liquidity provision. Figure 15 illustrates that the HFT lowers his total liquidity

provision under pro rata allocation, as it is now less likely for the HFT to trade with an LFT even

if his order had time-priority. Since the HFT’s objective is to make round-trip trades in minimum

time, keeping the same quoting policy under pro rata allocation is now costly due to inventory risk.

Consequently, the HFT is less willing to quote under a policy that diminishes his speed advantage.

Specifically, the HFT will now find quoting at the second-best prices more attractive relative to the

time-priority case as the HFT’s probability of trading with a LFT at the best price is lower. A higher
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incentive to quote at the second-best prices leads to higher equilibrium bid-offer spreads as shown in

Figure 15. Finally, the bottom panel in Figure 15 illustrates that the HFT’s quoting, although lower

across the volatility range, has similar sensitivity to volatility compared to time priority, so pro rata

matching produces no improvement in terms of making the provision of liquidity countercyclical with

respect to volatility.

Aside from the model, note that if quantities were not fixed, we would expect the HFT to quote

larger quantities under pro rata matching; this incentive creates a separate risk, that of liquidity

providers quoting larger quantities than what they can safely absorb since pro rata allocation makes

it less likely that they would be forced to do so. In the case of extreme market moves, such book

padding strategies, although harmless in normal times, could result in large losses (see McPartland

(2015)).

6. Conclusions

We propose a theoretical model of high frequency market making. We superpose different Poisson

processes running on different time clocks to represent the arrival of different elements of market

information and orders, resulting in a tractable and flexible framework where the optimal market

making strategy of the HFT and the equilibrium between the HFT quotes and incoming LFTs’ orders

is fully characterized. The model reproduces many important stylized facts about HFTs. We find

that the HFT’s liquidity provision increases when he gets faster. We find that the optimal quoting

policy of the HFT also leads to cancellation rates of his orders in the presence of informative signals

about the order flow. The model also quantifies the impact of higher volatility on liquidity provision.

We find that the HFT will provide less liquidity when volatility increases if the arrival rate of LFTs is

independent of price volatility. In the presence of positive correlation between the arrival rates of the

LFTs and fundamental price volatility, the model predicts an inverse U-shaped pattern of liquidity

provision: a small increase in volatility leads to more liquidity, followed by a decrease as volatility

increases further. When analyzing competition for order flow with a second market maker, we find

that competing market makers split the rent extracted from LFTs, liquidity provision increases and

LFTs tend to be better off.

Finally, we provide the first model-based analysis of the impact of four widely discussed HFT

policies: imposing a transactions tax, setting minimum-time limits before orders can be cancelled,

taxing the cancellations of limit orders, and replacing time priority with pro rata or random allocation.

We assess these regulatory policies on the basis of their potential to induce the HFT to provide liquidity

that is more resilient to increases in volatility, i.e., countercyclical with respect to volatility. We find
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that none of the four policies result in an improvement. A transactions tax and pro rata matching

result in less liquidity altogether. Minimum rest times and a cancellation tax result in more liquidity

in good (low volatility) environments but less in bad (high volatility) environments, the opposite of

the desired effect. Ultimately, our conclusion is that the microstructure-based speed and informational

advantages of the HFT are difficult to even out.
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Fig. 5. Liquidity measures in long-run equilibrium as a function of the HFT’s speed.
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Fig. 12. Impact of a Tobin Tax

Notes: The top panels plot the effect of taxing transactions on the HFTs’ value and his provision of

liquidity. The bottom panel displays the sensitivity of the equilibrium bid-offer spread to volatility (in

the form of price jumps) before and after the Tobin tax.
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Fig. 13. Impact of a Mandatory Minimum Rest Time on HFT Quotes

Notes: The top panels plot the effect of minimum rest times on the HFTs’ value and his provision of

liquidity. The bottom panel displays the sensitivity of the equilibrium bid-offer spread to volatility (in

the form of price jumps) before and after the minimum rest time.
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Fig. 14. Impact of a Cancellation Tax

Notes: The top panels plot the effect of taxing cancellations on the HFTs’ value and his provision of

liquidity. The bottom panel displays the sensitivity of the equilibrium bid-offer spread to volatility (in

the form of price jumps) before and after the cancellation tax.
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Fig. 15. Impact of Pro Rata Allocation

Notes: The top panels plot the effect of various pro rata levels on the HFTs’ value and his provision

of liquidity. The bottom panel displays the sensitivity of the equilibrium bid-offer spread to volatility

(in the form of price jumps) before and after the pro rata policy with 50%.
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Appendix for “High Frequency Market Making:

Implications for Liquidity”

Technical Results and Proofs

A. Discrete-time Transformation of the Model

We start by recalling the definition of a discounted infinite horizon Markov Decision Process (MDP),

before showing that our continuous-time HFT optimization problem can be represented as such. A

MDP is defined by a 4-tuple, (I, Ai,P(.|i, a),R(.|i, a)), in which I is the state space, Ai is the action

space, i.e., the set of possible actions that a decision maker can take when the state is i ∈ I, P(.|i, a)

is the probability transition matrix determining the state of the system in the next decision time, and

finally R(.|i, a) is the reward matrix, specifying the reward obtained using action a when the state is

in i. The HFT seeks a quoting policy that maximizes the expected discounted reward

v(i) = max
π

E

[ ∞∑
t=0

αtR(it+1|it, π(it))|i0 = i

]
, (A.1)

where α is the discount rate. An admissible stationary policy π maps each state i ∈ I to an action in

Ai. Under mild technical conditions, we can guarantee the existence of optimal stationary policies (see

Puterman (1994)). Conditioning on the first transition from i to i′, we obtain the Hamilton-Jacobi-

Bellman optimality equation

v(i) = max
π

{∑
i′

P(i′|i, π(i))

(
R(i′|i, π(i)) + αE

[ ∞∑
t=1

αt−1R(it+1|it, π(it))|i1 = i′
])}

= max
π

{∑
i′

P(i′|i, π(i))

(
R(i′|i, π(i)) + αE

[ ∞∑
k=0

αkR(ik+1|ik, π(ik))|ik = i′
])}

= max
a∈Ai

{∑
i′

P(i′|i, a)
(
R(i′|i, a) + αv(i′)

)}
.

(A.2)

B. Transition Probabilities

We will calculate the transition probabilities at each state of the HFT in the presence of a competing

MFT. First, note that the state transitions occur at a rate of µ + λ + θ + σ + 2β where λ ≡ 2(λP +

λI +λA) and using uniformization we can have the same transition rate for all states and actions. Let

P((x′, s′, b′, a′, e′, j′)|(x, s, b, a, e, j), (`b, `a)) be the probability of reaching state (x′, s′, b′, a′, e′, j′) when

the system is in state (x, s, b, a, e, j) and the trader takes the actions of `b and `a. Here b (a) is the
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current state of the bid (ask) market.

First, we define our auxiliary variables. Let pr(s) denote the unconditional probability of receiving

signal s =
(
Sdir, Stype

)
right after the arrival of a market order or a signal.

pr(s) =
∑

i∈{P,I}

∑
j∈{B,S}

P(M type = i,Mdir = j)P(s|M type = i,Mdir = j)

=
∑

i∈{P,I}

∑
j∈{B,S}

(0.5/λ) (p11{s1 = i}+ (1− p)11{s1 6= i}) (q11{s2 = j}+ (1− q)11{s2 6= j})

(
λI11{i = I}+ λP 11{i = P}

)
=

0.5pλI/λ+ 0.5(1− p)λP /λ if s1 = I,

0.5(1− p)λI/λ+ 0.5pλP /λ if s1 = P.

Let ms′
s denote the conditional probability of receiving a market order with type s′ (e.g., buy order

submitted by an impatient LFT will be denoted by s′ = IB) when the last signal appeared is s.

ms′
s =

P(M type = s′1,M
dir = s′2)P(Stype = s1, S

dir = s2|M type = s′1,M
dir = s′2)∑

i∈{P,I}
∑

j∈{B,S} P(M type = i,Mdir = j)P(Stype = s1, Sdir = s2|M type = i,Mdir = j)

=
(
p11{s1 = s′1}+ (1− p)11{s1 6= s′1}

) (
q11{s2 = s′2}+ (1− q)11{s2 6= s′2}

)
(
λI11{s′1 = I}+ λP 11{s′1 = P}

)
/(λpr(s))

Suppose that the current state of the HFT is (x, s, b, a, e, j). Let r = (λ+µ+ θ+σ+ 2β). In order

to illustrate our methodology, we will provide a few examples of the transition probabilities.

If the HFT does not quote in either side of the market, the inventory level cannot change. Suppose

that the MFT does not have any active quotes either so let the state be (x, s, 00, 00, 1, j). If a new

decision event arrives before the arrival of an LFT order, a signal or jump, the state for tracking

jumps, j, reverts to zero. The MFT may send a limit order at the best bid or the ask during this time

with probability β/r. Since the arrival of arbitrageurs will not change the state of the system, we also

have the additional self-transition at the rate of 2λA/r to uniformize the model. Formally, we have

38



the following transition probabilities for P ((x, s′, b′, a′, e′, j′)|(x, s, 00, 00, 1, j), (0, 0)):



(λPI+θ)pr(s′)
r if x = x′, e′ = 0, b′ = 00, a′ = 00

σ
2r if x = x′, e′ = 0, b′ = 00, a′ = 00, j′ = j + 1

σ
2r if x = x′, e′ = 0, b′ = 00, a′ = 00, j′ = j − 1

µ
r if x = x′, e′ = 1, s = s′, b′ = 00, a′ = 00, j′ = 0

β
r if x = x′, e′ = 0, s = s′, b′ = 00, a′ = 01, j′ = j

β
r if x = x′, e′ = 0, s = s′, b′ = 01, a′ = 00, j′ = j

2λA
r if x = x′, e′ = e, s = s′, b′ = b, a′ = a, j′ = j

0 otherwise,

where λPI ≡ 2(λP + λI).

If the only quote at the bid side is from the MFT, the MFT will have priority for execution at the

bid side. For example, suppose that the state is (x, s, 01, 00, 1, j) and the HFT decides to take action

(1, 0). Since the MFT order has a priority, in the next epoch, this order can be executed and the HFT’s

order will now have the highest priority. Thus, there will be no possibility of an inventory increase

compared to the monopoly model. Since the ask side is empty, the MFT can submit a new order at the

ask side as well. In this case the stale quote risk still applies and will be applicable if j < 0. Formally,

we have the following transition probabilities for P ((x, s′, b′, a′, e′, j′)|(x, s, 01, 00, 1, j), (1, 0)):

(λsell+θ)pr(s′)
r if x = x′, e′ = 0, b′ = 11m, a′ = 00, j ≤ 0

(λsell+λbuy+θ)pr(s′)
r if x = x′, e′ = 0, b′ = 11m, a′ = 00, j > 0

λbuypr(s′)
r if x = x′, e′ = 0, b′ = 10, a′ = 00, j = 0(

λA
2 +λbuy

)
pr(s′)

r if x = x′, e′ = 0, b′ = 10, a′ = 00, j < 0

σ
2r if x = x′, e′ = 0, s = s′, b′ = 11m, a′ = 00, j′ = j + 1

σ
2r if x = x′, e′ = 0, s = s′, b′ = 11m, a′ = 00, j′ = j − 1

µ
r if x = x′, e′ = 1, s = s′, b′ = 11m, a′ = 00, j′ = 0

β
r if x = x′, e′ = 0, s = s′, b′ = 11m, a′ = 01, j′ = j

2λA+β
r if x = x′, e′ = e, s = s′, b′ = b, a′ = a, j′ = j ≥ 0

λA+β
r if x = x′, e′ = e, s = s′, b′ = b, a′ = a, j′ = j < 0

0 otherwise,

where λbuy = λPI(mIS
s + mPS

s ) and λsell = λPI(mIB
s + mPB

s ) denotes the corresponding intensity for

HFT’s buy and sell trade in absence of any jumps, respectively.
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We now analyze the trade scenarios for one-sided quoting when HFT is quoting at the bid side with

execution priority. For example, suppose that the state is (x, s, 00, 00, 1, j) and the HFT decides to

take action (1, 0). The remaining one-sided HFT actions are also very similar. When the HFT’s action

is (1, 0) he may increase his inventory by trading with the incoming market-sell order submitted by a

patient or an impatient LFT, which occurs with probability mIS
s +mPS

s . We also need to account for

the existence of stale quotes. Since the HFT is quoting at the bid side in this case, the stale quotes can

only appear if j < 0. The MFT may submit a new order at the bid and the ask side as well. Formally,

we have the following transition probabilities for P ((x, s′, b′, a′, e′, j′)|(x, s, 01, 00, 1, j), (1, 0)):

(λsell+θ)pr(s′)
r if x = x′, e′ = 0, b′ = 10, a′ = 00, j ≤ 0

(λP+λI+θ)pr(s
′)

r if x = x′, e′ = 0, b′ = 10, a′ = 00, j > 0

λbuypr(s′)
r if x+ 1 = x′, e′ = 0, b′ = 00, a′ = 00, j = 0

(λA+λbuy)pr(s′)
r if x+ 1 = x′, e′ = 0, b′ = 00, a′ = 00, j < 0

σ
2r if x = x′, e′ = 0, b′ = 10, a′ = 00, j′ = j + 1

σ
2r if x = x′, e′ = 0, b′ = 10, a′ = 00, j′ = j − 1

µ
r if x = x′, e′ = 1, s = s′, b′ = 10, a′ = 00, j′ = 0

β
r if x = x′, e′ = 0, s = s′, b′ = 10, a′ = 01, j′ = j

β
r if x = x′, e′ = 0, s = s′, b′ = 11h, a′ = 00, j′ = j

2λA
r if x = x′, e′ = e, s = s′, b′ = b, a′ = a, j′ = j ≥ 0

λA
r if x = x′, e′ = e, s = s′, b′ = b, a′ = a, j′ = j < 0

0 otherwise,

If the system is observed at the arrival time of a market order or signal event, that is e = 0, the

HFT cannot revise his quotes. We can accommodate these states in our model using fake decisions

that merely sets the action to the existing quotes. In this case,

P
(

(x′, s′, b′, a′, e′, j′)|(x, s, b, a, 0, j), (`b, `a)
)

=

P
(
(x′, s′, b′, a′, e′, j′)|(x, s, b, a, 1, j), (`b, `a)

)
if `b = hft(b), `a = hft(a)

0 otherwise.

where hft is a mapping that extracts the HFT’s action from 7 possible states with the following
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definition:

hft(l) =



1 if l = 11h, 11m, 10,

2 if l = 21, 20,

0 if l = 01, 00.

C. HFT’s Reward Function

Let R
(
(x′, s′, b′, a′, e′, j′)|(x, s, b, a, e, j), (`b, `a)

)
be the probability of reaching state (x′, s′, b′, a′, e′, j′)

when the system is in state (x, s, b, a, e, j) and the trader takes the actions of `b and `a. We decompose

this reward matrix into two parts: R = Rtrade + Rinv. The first part includes the rewards due to

transactions which also include the adverse selection costs and the latter part denotes the inventory

costs.

We would like to write the HFT’s objective in (2.3) in the form of an MDP objective function as

in (A.1). We first introduce the following notation. Let tk be the time of the kth state transition due

to a decision, signal or market order arrival (by convention t0 = 0) and let τk be the length of this

cycle, i.e., τk = tk − tk−1. The sum of discounted rewards due to transactions can be tracked by

∞∑
k=1

e−DtkRtrade
(

(x′tk , s
′
tk
, b′tk , a

′
tk
, e′tk , j

′
tk

)|(xtk−1
, stk−1

, btk−1
, atk−1

, etk−1
, jtk−1

), (`btk−1
, `atk−1

)
)
.

We define Rtrade as follows. Let the execution priority states of the HFT be given by P = {10, 20, 11h}.
Then, let

Rtrade
(

(x′, s′, b′, a′, e′, j′)|(x, s, b, a, e, j), (`b, `a)
)

= 11
(
x+ 1 = x′

) (
(C − Jj−)11

(
`b = 1, b ∈ P

)
+ (3C − Jj−)11

(
`b = 2, b ∈ P

))
+ 11

(
x− 1 = x′

) (
(C − Jj+)11 (`a = 1, b ∈ P) + (3C − Jj+)11 (`a = 2, b ∈ P)

)
where j+ ≡ max(j, 0), j− ≡ max(−j, 0). For simplicity in notation, let

Rtrade
tk

≡ Rtrade
(

(x′tk , s
′
tk
, b′tk , a

′
tk
, e′tk , j

′
tk

)|(xtk−1
, stk−1

, btk−1
, atk−1

, etk−1
, jtk−1

), (`btk−1
, `atk−1

)
)
.

We can take the expectation of the HFT’s discounted earnings using the independence of each
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cycle length, τi, which is an exponentially distributed random variable with mean 1/r:

E
[∑∞

k=1 e
−DtkRtrade

tk

]
=
∑∞

k=1 E
[
e−D

∑k
i=1 τi

]
E
[
Rtrade
tk

]
=
∑∞

k=1 E
[
e−Dτ1

]k E [Rtrade
tk

]
=
∑∞

k=1

(∫∞
0 re−(r+D)tdt

)k E [Rtrade
tk

]
=
∑∞

k=1

(
r

r+D

)k
E
[
Rtrade
tk

]
= δ

∑∞
k=0 δ

kE
[
Rtrade
tk+1

]
.

where δ is the “adjusted discount”factor given by r
r+D .

Discounted inventory costs in Rinv can be also computed by

E
[
Γ
∫∞

0 e−Dt|xt|dt
]

= Γ
∑∞

k=0 E
[∫ tk+1

tk
e−Dt|xt|dt

]
= Γ

∑∞
k=0 E

[∫ tk+1

tk
e−Dtdt

]
E [|xtk |]

= Γ
D

∑∞
k=0 E

[
e−Dtk

] (
1− E

[
e−Dτk+1

])
E [|xtk |]

= Γ
D

∑∞
k=0 δ

k
(

D
λ+µ+D

)
E [|xtk |]

= Γ
r+D

∑∞
k=0

(
r

r+D

)k
E [|xtk |] .

We are now ready to define the total reward matrix. Let

R
(

(x′, s′, b′, a′, e′, j′)|(x, s, b, a, e, j), (`b, `a)
)

= 11
(
x+ 1 = x′

) (
(c− φj−)11

(
`b = 1, b ∈ P

)
+ (3c− φj−)11

(
`b = 2, b ∈ P

))
+ 11

(
x− 1 = x′

) (
(c− φj+)11 (`a = 1, b ∈ P) + (3c− φj+)11 (`a = 2, b ∈ P)

)
− γ|x|

where c, φ, and γ are defined as the “adjusted spread” “adjusted jump sizes ” and “adjusted inventory

aversion” parameters for the resulting discrete-time formulation of the model and given by

δ ≡ r

r +D
, c ≡ δC, φ ≡ δJ and γ ≡ Γ

r +D
. (C.1)

Then, the HFT choose π to maximize the value function V (x, s, b, a, e, j) which equals to

Eπ
[ ∞∑
k=0

δkR
(

(x′tk , s
′
tk
, b′tk , a

′
tk
, e′tk , j

′
tk

)|(xtk−1
, stk−1

, btk−1
, atk−1

, etk−1
, jtk−1

), (`btk−1
, `atk−1

)
)]

, (C.2)

starting from his initial state, (x, s, b, a, e, j). This derivation illustrates that our model can be cast in
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the desired MDP form.

D. HFT’s Value Function

We have now transformed our continuous-time problem into an equivalent discrete-time MDP. Us-

ing the Hamilton-Jacobi-Bellman optimality equations, V (x, s, b, a, e, j) in (C.2) can be computed by

solving the following set of equations:

V (x, s, b, a, e, j) = max
`b, `a

{ ∑
(x′,s′,b′,a′,e′,j′)

P
(

(x′, s′, b′, a′, e′, j′)|(x, s, b, a, e, j), (`b, `a)
)
×

[
R
(

(x′, s′, b′, a′, e′, j′)|(x, s, b, a, e, j), (`b, `a)
)

+ δV (x′, s′, b′, a′, e′, j′)
]}
.

(D.1)

By substituting the expressions for P and R, we can obtain the implicit equations for the value functions

of each state.

E. Optimal Market Making Solution

Proof Sketch of Theorem 1. Since the model is symmetric around the bid and ask side of the market,

we can first eliminate the order direction signal from our state space. We have the following reduction

for each s2 ∈ {P, I}.
V (−x, Ss2, b, a, e, j) = V (x,Bs2, a, b, e,−j)

Using this result, we let v(x, P, b, a, j) ≡ V (x, PS, b, a, 0, j), v(x, I, b, a, j) ≡ V (x, IS, b, a, 0, j) and

h(x, P, rel(b, a)) ≡ V (x, PS, b, a, 1, 0), h(x, I, rel(b, a)) ≡ V (x, IS, b, a, 1, 0) where rel(b, a) is a map-

ping that extracts the relevant information regarding the quoting of the MFT at both sides of the

market. Recall that at both sides of the market, the HFT needs to know whether the MFT is quoting

or not and with or without priority. So out of 7 possible states in each side of the book, the HFT

needs to know whether the MFT is quoting or not and whether her orders have execution priority.

These three cases are identified in the following subsets of the order book at each side: We let lb = 0

(la = 0) to denote the case in which the MFT does not quote, i.e., b = 00, b = 10 and b = 20 (a = 00,

a = 10 and a = 20). Similarly, we let lb = 1 (la = 1 if the MFT quotes but the HFT has the execution

priority, i.e., b = 11h (a = 11h). Finally, we let lb = 2 (la = 2) if b = 01, b = 11m and b = 21 (a = 01,

a = 11m and a = 21) i.e., MFT quotes with execution priority. Finally, we let lb = 2 (la = 2 if the

MFT quotes but the HFT has the execution priority, i.e., b = 11h (a = 11h). Thus, only 9 different
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cases are relevant for the HFT’s quoting decisions from the complete 49 states of the order book and

rel(b, a) can be given by

Ask (a)

Bid (b) 00 10 20 21 01 11m 11h

00 00 00 00 02 02 02 01

10 00 00 00 02 02 02 01

20 00 00 00 02 02 02 01

21 20 20 20 22 22 22 21

21 20 20 20 22 22 22 21

21 20 20 20 22 22 22 21

21 10 10 10 12 12 12 11

(E.1)

Using the value iteration algorithm, we first establish by induction that value functions are concave

in x. We also need to show that as inventory gets larger (smaller), less quoting at the bid (ask) side

will be more and more attractive. Formally, we need to show that v(x, s, 00, a, j) − v(x, s, 20, a, j),

v(x, s, 01, a, j)− v(x, s, 21, a, j), v(x, s, 21, a, j)− v(x, s, 11m, a, j) and v(x, s, 21, a, j)− v(x, s, 11h, a, j)

will be nondecreasing in x for any fixed state a and the symmetric conditions for the ask side. We will

refer to this condition as the “nondecreasing property.” The threshold policy in Theorem 1 follows

using this non-decreasing property by defining the appropriate limits.

Let v(0)(x, s, b, a, j) = 0 for all (x, s, b, a, j). Then, in the base case, all value functions will include

γ|x| and an appropriate constant term that equals to the expectation of earning the spread plus

the potential adverse selection cost as implied by the Rtrade. Therefore, the base case will satisfy the

concavity and non-decreasing property. Assume that v(n)(x, s, b, a, j) satisfies the induction hypothesis.

We will show the inductive step of the nondecreasing property using an illustrative example. The

remaining cases are very similar.

First, we show that v(n+1)(x, P, 20, 00, j)− v(n+1)(x, P, 10, 00, j) is nondecreasing in x. If j 6= 0,

v(n+1)(x, P, 20, 00, j) − v(n+1)(x, P, 10, 00, j) = δ
{λsell + θ

r

(
pr(PS)

(
v(n)(x, P, 20, 00, j) − v(n)(x, P, 10, 00, j)

)
+ pr(IS)

(
v(n)(x, I, 20, 00, j) − v(n)(x, I, 10, 00, j)

)
+ pr(PB)

(
z(n)(x, I, 20, 00, j) − z(n)(x, I, 10, 00, j)

)
+ pr(IB)

(
z(n)(x, I, 20, 00, j) − z(n)(x, I, 10, 00, j)

))
+

σ

2r

(
v(n)(x, P, 20, 00, j − 1) − v(n)(x, P, 10, 00, j − 1)

)
+
β

r

(
v(n)(x, P, 21, 00, j) − v(n)(x, P, 11h, 00, j + 1)

)
+
β

r

(
v(n)(x, P, 20, 01, j) + v(n)(x, P, 10, 01, j)

)
+

σ

2r

(
v(n)(x, P, 20, 00, j + 1) − v(n)(x, P, 10, 00, j + 1)

)
+
λA
r

(
v(n)(x, P, 20, 00, j) + v(n)(x, P, 10, 00, j)

)}
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is also nondecreasing in x as each term satisfies the non-decreasing property via the induction hypoth-

esis. If j = 0, we have the following additional terms:

λPImPS
s

r

(
pr(PS)

(
v(n)(x, P, 20, 00, j) − v(n)(x+ 1, P, 00, 00, j)

)
+ pr(IS)

(
v(n)(x, I, 20, 00, j) − v(n)(x+ 1, I, 00, 00, j)

)
+ pr(PB)

(
z(n)(x, I, 20, 00, j) − z(n)(x+ 1, I, 00, 00, j)

)
+ pr(IB)

(
z(n)(x, I, 20, 00, j) − z(n)(x+ 1, I, 00, 00, j)

))
which equals to

λPImPS
s

r

(
pr(PS)

(
v(n)(x, P, 20, 00, j) − v(n)(x, P, 00, 00, j)

)
+ pr(IS)

(
v(n)(x, I, 20, 00, j) − v(n)(x, I, 00, 00, j)

)
+ pr(PB)

(
z(n)(x, I, 20, 00, j) − z(n)(x, I, 00, 00, j)

)
+ pr(IB)

(
z(n)(x, I, 20, 00, j) − z(n)(x, I, 00, 00, j)

)
+ pr(PS)

(
v(n)(x, P, 00, 00, j) − v(n)(x+ 1, P, 00, 00, j)

)
+ pr(IS)

(
v(n)(x, I, 00, 00, j) − v(n)(x+ 1, I, 00, 00, j)

)
+ pr(PB)

(
z(n)(x, I, 00, 00, j) − z(n)(x+ 1, I, 00, 00, j)

)
+ pr(IB)

(
z(n)(x, I, 00, 00, j) − z(n)(x+ 1, I, 00, 00, j)

))
which is also nondecreasing in x as the first four terms satisfies the non-decreasing property via the

induction hypothesis, and the last four terms satisfy the concavity in x via the induction hypothesis.

Finally, we can conclude that each v(n+1) is concave in x by showing that h(n) is concave. This holds as

h(n) can be expressed as the maximum of 9 value function of v(n) corresponding to the HFT’s quoting

actions. In each inventory region h(n) stays concave in x as we can write h(n)(x, s, l)− h(n)(x+ 1, s, l)

as positive sum of nondecreasing functions.
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