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Abstract

This paper studies inference on fixed effects in a linear regression model estimated
from network data. An important special case of our setup is the two-way regression
model, which is a workhorse method in the analysis of matched data sets. Networks
are typically quite sparse and it is difficult to see how the data carry information about
certain parameters. We derive bounds on the variance of the fixed-effect estimator
that uncover the importance of the structure of the network. These bounds depend
on the smallest non-zero eigenvalue of the (normalized) Laplacian of the network and
on the degree structure of the network. The Laplacian is a matrix that describes
the network and its smallest non-zero eigenvalue is a measure of connectivity, with
smaller values indicating less-connected networks. These bounds yield conditions for
consistent estimation and convergence rates, and allow to evaluate the accuracy of
first-order approximations to the variance of the fixed-effect estimator. The bounds
are also used to assess the bias and variance of estimators of moments of the fixed
effects.
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1 Introduction

Data on the interaction between economic agents are in increasing supply. Matched data,

where the interaction between two types of agents is observed, are one type of such network

data. Examples here include data that link workers to firms and students to teachers.

Such data can be used to study a variety of issues. Abowd, Kramarz and Margolis (1999)

investigate the sign and magnitude of assortative matching between workers and firms.

Card, Heining and Kline (2013) analyze the contribution of worker and firm heterogeneity

to the variance of earnings. Finkelstein, Gentzkow and Williams (2016) perform a similar

decomposition of health care utilization. Rockoff (2004) and Aaronson, Barrow and Sander

(2007) assess teacher effectiveness in the classroom.

The workhorse method used in all these studies is a linear regression model with fixed

effects. While such regressions are well studied in the conventional panel data context,

applications to networks are different for at least two reasons. Firstly, it are often the

fixed effects and their moments (rather than some slope coefficient that is common across

observations) that are of primary interest. Secondly, the structure of network data is quite

different from that of panel data. In typical applications, it will be quite sparse. In the

context of teacher effectiveness, for example, students necesarilly interact with only few

teachers and the size of any classroom is bounded from above. This implies that fixed

effects will be estimated from few observations, even though the total size of the data set

may be quite substantial. Relying on large-sample approximations may then be highly

misleading.

While it is intuitive that the network structure will be an important determinant of

the accuracy of statistical inference, the structure of a network becomes complex rather

fast. This implies that it is difficult to see how the data carry information about certain

parameters. In this paper we analyze this issue in a linear version of the Bradley and

Terry (1952) model on a general network; this setup encompasses the two-way fixed-effect

model for linked data. We do so by acknowledging that the data structure of a network

can be translated to a graph where agents are vertices and an edge between vertices is
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present if agents interact. The usefulness of graph theory in establishing existence of the

fixed-effect estimator was noted in Abowd, Creecy and Kramarz (2002) in the context

of matched employer-employee data. Here, we go beyond this observation to study the

statistical precision of the estimator of the fixed effects and of plug-in estimators of their

moments.

We show that the variance of the fixed-effect estimator is equal to the inverse of the

Laplacian matrix of the network. Like the adjacency matrix, this matrix fully summarizes

the network. However, the Laplacian considers the connectivity of the vertices in the

network. A bound on the variance of the fixed-effect estimator is obtained that depends

inversely on the smallest non-zero eigenvalue of the (normalized) Laplacian. This eigenvalue

is a measure of connectivity, with smaller values indicating less-connected networks.1 The

larger it is, the more dense is the network. One interesting consequence of this bound is

that consistent estimation is possible even if the network becomes less connected as the

sample grows.

We also refine the variance bound to uncover how the local structure of the network

around a given vertex influences the variance of the vertex-specific parameter estimator.

Clearly, the variance of such an estimator is decreasing in the degree of the vertex — which

is the number of neighbors of the vertex, and equals the total number of observations for

that vertex specific parameter. In addition, the improved bounds account for the sensitivity

of the variance with respect to the degree of the neighbors of the vertex, thus sharpening

the estimator’s convergence rates.

Sampling noise in the fixed-effect estimator translates into bias in the estimator of their

moments. Rockoff (2004), for example, notes that the sample variance of his estimated

fixed effects will tend to overestimate the true variance of the teacher effects. Our variance

bounds on the fixed effects readily yield bounds on the bias and variance of estimators

of their moments. These bounds again depend on the smallest non-zero eigenvalue of the

1Eigenvalues and eigenvectors of network matrices have also been found of use in determining equilibrium

conditions in games on networks (Bramboullé, Kranton and D’Amours, 2014) and in (statistical) community

detection (Schiebinger, Wainwright and Yu, 2015).
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(normalized) Laplacian matrix, as well as on various weighted harmonic means of the degree

sequences of the network. Consistent estimation turns out to be possible only in sufficiently

dense networks. Even then, bias correction will be needed for inference to be size correct.

In Section 2 we introduce the basic version of the model and estimator under study. In

Section 3 we present our bounds. In Section 4 we discuss various extensions of our baseline

model. In Section 5 we discuss weighted graphs. Proofs and additional results are available

as supplementary material.

2 Model and estimator

Consider a graph G := G(V,E) where m := |E| edges are placed between n := |V | vertices.

For the largest part of the paper we will work with a simple undirected graph, without

loops (i.e., no edge connects a vertex with itself). Without loss of generality we label the

vertices by natural numbers, so V = {1, . . . , n}. The set E contains the m ≤ n(n − 1)/2

unordered pairs (i, j) from the product set V × V that are connected by an edge, where

we assume throughout that m > 0. Vertices i and j are said to be connected if G contains

a path from i to j, and the graph G is said to be connected if every pair of vertices in

the graph is connected. We will work under the convention that i < j for (i, j) ∈ E. Our

analysis is invariant to this choice of orientation.

2.1 A fixed-effect model

Our interest lies in estimating a linear regression model where outcomes are labelled by

elements of E. The simplest form of our setup is as follows. For each (i, j) ∈ E we observe

the outcome

yij = αi − αj + uij, uij ∼ i.i.d. N(0, σ2), (2.1)

where α1, . . . , αn ∈ R are vertex-specific parameters to be estimated and the uij ∈ R are

unobserved disturbances with unknown variance σ2. For notational convenience in the

sequel it is useful to define yji = −yij and uji = −uij. Equation (2.1) is overparametrized,
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so we impose that
n∑

i=1

αi = 0. (2.2)

Other normalizations on the αi could be chosen but (2.2) will prove convenient for our

purposes. A normalization can be dispensed with if the object of interest is changed to

parameter differences, i.e, to αi − αj. Corresponding results for such differences are given

in the supplementary material.

In the complete graph, where m = n(n − 1)/2, deriving the sampling behavior of the

maximum-likelihood estimator of the αi in (2.1) is rather standard. Here we are interested

in incomplete graphs. To motivate this we first recall the concept of a bipartite graph.

Example 1 (Bipartite graph). Partition V as V1∪V2 and consider a bipartite graph. That

is, suppose that E is a subset of the product set V1 × V2. Then edges are formed between

the vertex sets V1 and V2 but not within V1 and V2. So, for an edge (i, j) we necessarily have

that i ∈ V1 and j ∈ V2. In this case, our model (2.1) can be obtained from the specification

yij = µi + ηj + uij (2.3)

by setting

αi =

 µi if i ∈ V1,

−ηi if i ∈ V2.

Choosing the sign in front of ηi is without loss of generality because links are only formed

between, but never within, V1 and V2. �

Example 1 is a stripped-down version of the classical regression model with two-way fixed

effects. This is a workhorse model to capture unobserved heterogeneity across units in

matched data. One leading example are value-added models for measuring the effectiveness

of teachers in the classroom (Rockoff, 2004). Here, the (i, j) represent student-teacher pairs,

and the graph G is far from complete. Indeed, each student is only taught by a handful

of teachers and the size of a classroom cannot increase without bound. Therefore, even

though the data set may be very large, student and teacher effects are estimated from very

small subsamples.
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Relying on large-sample theory in an incomplete graph may be unwarranted. We focus

on variance bounds that are valid for small samples and shed light on how these bounds

depend on the structure of G. The model in (2.1) is convenient for these purposes, as it

allows to most easily convey our main points. Once this has been done we will show that

introducing edge-specific covariates or allowing for non-normal and heteroskedastic errors

does not alter our main findings.

We will also show how our results extend to weighted graphs. One important situation

where such graphs arise is with panel data, that is, when we observe multiple outcomes

for each (i, j) ∈ E. This is frequently the case with linked data sets and, in fact, variation

across time may be needed to be able to disentangle parameters. In student-teacher data

it may allow to separate teacher effects from classroom effects. The wage regressions of

Abowd, Kramarz and Margolis (1999) are another case in point. There, the (i, j) represent

pairs of workers and firms, and workers need to be employed at different firms over time to

separately estimate worker and firm effects. Even then, the worker effects will be difficult to

estimate precisely due to limited mobility of workers over time (Andrews, Gill, Schank and

Upward 2008) and one may decide to focus on the estimation of firm effects. A weighted

graph naturally arises as a consequence of this profiling out, as we show in the next example.

Example 1 (cont’d) (Bipartite graph). As before, consider the two-way fixed-effect model

yij = µi + ηj + uij

for a bipartite graph on V = V1∪V2. Suppose that our main focus is on the parameters ηj.

For each i, j ∈ V2, let [i, j] := {k ∈ V1 : (k, i) ∈ E and (k, j) ∈ E}. Then mij := |[i, j]| is

the number of vertices in V1 that connect to both i and j. Differencing the above equation

gives

yijk = ηi − ηj + uijk, k = 1, . . . ,mij,

where yijk := yki − ykj and uijk := uki − ukj. Thus, the original two-way model can be

translated to a setup as in (2.1) that involves only pairs of vertices from V2 where, possibly,

multiple outcomes are observed for each pair. �
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2.2 Estimation and inference

Under our convention that i < j for (i, j) ∈ E the (oriented) incidence matrix of G is the

m× n matrix B with entries

(B)ei :=


1 if the eth edge is given by (i, j) ∈ E for some j ∈ V ,

−1 if the eth edge is given by (j, i) ∈ E for some j ∈ V ,

0 otherwise.

The incidence matrix fully describes G. Note that the oriented incidence matrix is unique

up to negation of any of the columns, since negating the entries of a row corresponds to

reversing the orientation of an edge. Moreover, the analysis to follow is invariant to our

choice of orientation. Indeed, changing the orientation of the edge (i, j) jointly with the

sign of yij leaves model (2.1) invariant. Throughout, the network structure is treated as

fixed, that is, B is conditioned on.

Let α := (α1, . . . , αn)′. Collect all outcomes in the m-vector y and all regression errors

in the m-vector u. Write ιn for the n-vector of ones and Im for the m×m identity matrix.

Equations (2.1)–(2.2) can then be written as

y = Bα+ u, u ∼ N(0, σ2 Im), α′ιn = 0.

Because of normality of u, the maximum-likelihood estimator of α is equal to the (ordinary)

least-squares estimator, that is,

α̂ := (α̂1, . . . , α̂n)′ = arg min
a∈{a∈Rn:a′ιn=0}

‖y −Ba‖2, (2.4)

where ‖·‖ denotes the Euclidean norm.

We first address existence and uniqueness of α̂. Here and later, we let M † denote the

Moore-Penrose pseudoinverse of matrix M .

Lemma 1 (Existence). Let G be connected. Then

α̂ = (B′B)†B′y

and is unique.
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The need for a pseudoinverse arises because B′B is singular, as Bιn = 0. The use of the

Moore-Penrose pseudoinverse follows from our normalization choice on α, that is, α′ιn = 0.

The result of the lemma is intuitive and in line with results in the literature on matched

employer-employee data (Abowd, Creecy and Kramarz 2002).

The following theorem is immediate.

Theorem 1 (Sampling distribution). Let G be connected. Then

α̂ ∼ N(α, σ2 (B′B)†)

for any n.

The main implication of Theorem 1 is that, for an n× r matrix R of maximal column rank

that is linearly independent of ιn,

m− (n− 1)

r

(α̂−α)′R (R′(B′B)†R)−1R′ (α̂−α)

(y −Bα̂)′(y −Bα̂)
∼ Fr,m−n+1, (2.5)

which can be used to test the null hypothesis that Rα = 0 against the alternative that

Rα 6= 0.

While Theorem 1 ensures size-correct inference it does not aid in understanding when

the F -statistic in (2.5) will have low power or when the corresponding confidence sets will

be wide. In the sequel we aim to understand how the structure of the network affects the

standard error of the least-squares estimator. Such an analysis also yields conditions for

consistent estimation and asymptotically-valid inference under non-normality for sequences

of growing networks.

3 Network structure and variance bounds

Theorem 1 shows that, up to the scalar factor σ2, the variance of α̂ is completely determined

by the n× n Laplacian matrix of G,

L := B′B = D −A,
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whereD := diag(d1, . . . , dn) = diag (B′B) is the degree matrix andA is the n×n adjacency

matrix of G, with entries

(A)ij :=

 1 if (i, j) ∈ E or (j, i) ∈ E,

0 otherwise.

Note that di, the degree of i, equals the number of vertices that vertex i is connected to.

It will be convenient to work with the normalized Laplacian

S := D−
1
2LD−

1
2 = In −D−

1
2AD−

1
2 .

We have (L†)ii = d−1i (S†)ii, and so

var(α̂i) = E((α̂i − αi)
2) =

σ2

di
(S†)ii. (3.1)

Equation (3.1) highlights the importance of the degree di, which is the effective number of

observations that are used to infer αi. However, (3.1) does not imply that var(α̂i) shrinks

as di → ∞, nor would it give a convergence rate if it did, as the normalized Laplacian

matrix of G also changes when n grows.

3.1 Zero-order bound

To make progress on bounding the variance, let λi denote the ith eigenvalue of S, arranged

in increasing order; so, λ1 ≤ λ2 ≤ · · · ≤ λn. The following results on those eigenvalues are

from Chung (1997, Lemma 1.7). We have mini λi = 0 and maxi λi ≤ 2. Zero is always an

eigenvalue of S because Bιn = 0, but, if G is connected, it has multiplicity one. That is,

λ2 > 0 is the smallest non-zero eigenvalue of the normalized Laplacian when G is connected.

For the complete graph G (i.e., when m = n(n− 1)/2) we have λ2 = n/(n− 1), and for any

G that is not complete we have λ2 ≤ 1.

The following result bounds the variance of α̂ as a function of λ2.
2

2We equally have var(α̂i) ≤ σ2/λ̃2, where λ̃2 is the smallest non-zero eigenvalue of the (unnormalized)

Laplacian L. The spectrum of L has been the subject of more study than that of S in the graph literature.

However, λ̃2 ≤ n/(n− 1) mini∈V di. Thus, λ̃2 may be very small (and the corresponding bound on var(α̂i)

very large) as soon as a single vertex in V has a small degree, making it an unattractive quantity for our

purposes.
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Theorem 2 (Global bound). Let G be connected. Then

var(α̂i) ≤
1

di

σ2

λ2
.

To interpret the bound it is useful to connect it to the Cheeger constant,

C := min
U∈{U⊂V : 0<

∑
i∈U di≤m}

∑
i∈U
∑

j /∈U(A)ij∑
i∈U di

.

The constant C ∈ [0, 1] reflects how difficult it is to disconnect G by removing edges.

Moreover, a larger value of C implies a more strongly-connected graph. From Chung

(1997, Theorems 2.1 and 2.3),

2C ≥ λ2 ≥ 1−
√

1− C2 ≥ 1

2
C2. (3.2)

Thus, λ2 ∈ (0, 1 + 1/n] is a measure of global connectivity of the graph, and Theorem 2

implies that inference will be more precise when the graph is more strongly connected.

Theorem 2 also allows to derive some asymptotic properties under sequences of growing

networks G. Firstly, we find the pointwise consistency result

(α̂i − αi)
p→ 0 if λ2 di →∞.

This result allows λ2 → 0 as n → ∞. Secondly, letting h be the harmonic mean of the

sequence d1, . . . , dn, we have
E(‖α̂−α‖2)

n
≤ 1

h

σ2

λ2
,

and so

‖α̂−α‖√
n

p→ 0 if λ2 h→∞ as n→∞, (3.3)

by an application of Markov’s inequality.

Example 2 (Erdős-Rényi graph). Consider the Erdős and Rényi (1959) random-graph

model, where edges between n vertices are formed independently with probability pn. The

threshold on pn for G to be connected is ln(n)/n (Hoffman, Kahle and Paquette 2013).

That is, if pn = c ln(n)/n for a constant c, then, as n → ∞, with probability approaching

one, G is disconnected if c < 1 and connected if c > 1. In the former case, λ2 → 0 while,

in the latter case, λ2 → 1, almost surely. �
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3.2 First-order bound

A refinement of Theorem 2 takes into account the connectivity of the direct neighbors of

i. Here, we call a direct neighbor, or a path-one neighbor, a vertex to which i is connected

via a path of length one. Similarly, we will call those vertices that have geodesic distance

equal to two from i path-two neighbors of i. The collection of direct neighbors of vertex i

is

[i] := {j ∈ V : (i, j) ∈ E or (j, i) ∈ E};

note that |[i]| = di. Let

hi :=

 1

di

∑
j∈[i]

1

dj

−1 , (3.4)

the harmonic mean of the degrees of all j ∈ [i]. Note that, for a given vertex i, hi is

increasing in the degree of its direct neighbors.

Theorem 3 (First-order bound). Let G be connected. Then

σ2

di

(
1− 2

n

)
≤ var(α̂i) ≤

σ2

di

(
1− 2

n
+

1

λ2hi

)
.

Theorem 3 states that, for a given degree di and global connectivity measure λ2, the upper

bound on the variance of α̂i is smaller if the direct neighbors of vertex i are themselves more

strongly connected to other vertices in the network. Another implication of the theorem is

the rate refinement

var(α̂i) =
σ2

di
+ o(d−1i ), (3.5)

provided that λ2hi → ∞ as n → ∞. Furthermore, the parametric rate is achievable even

if λ2 is not treated as fixed.

In the supplementary material we present a refinement of Theorem 3 that accounts

for the dependence on hi in the lower bound as well, and also adjusts the upper bound

for overlap between [i] and the sets [j1], . . . , [jdi ] for j1, . . . , jdi ∈ [i], that is, for common

neighbors. These bounds can be particularly useful when hi is small, but are vacuous when
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all path-two neighbors of vertex i are also path-one neighbors. This is the case, for example,

in the complete graph.

We illustrate the usefulness of improving on Theorem 2 in a random graph.

Example 2 (cont’d). Consider the Erdős and Rényi (1959) random-graph model with

pn = c ln(n)/n for c > 1. Let i be a randomly chosen vertex. Then, as n → ∞, we have,

almost surely,

λ2 → 1,
di

lnn
→ c,

hi
lnn
→ c.

Consequently,

var(α̂i) =
σ2

di
+O(d−2i )

follows from Theorem 3. �

Additional examples that illustrate our results in analytically-tractable cases where λ2 → 0

as n→∞ are provided in the supplementary material.

3.3 Moments

Moments of the αi may be of interest. Plug-in estimators of such moments are biased,

in general, and inconsistent in sparse graphs. Here, we provide results for the plug-in

estimator

ϑ̂ := n−1
n∑

i=1

α̂2
i

of the variance ϑ := n−1
∑n

i=1 α
2
i , which is arguably the most popular such parameter.3

Results for higher-order moments are available in the supplementary material.

The variance estimator is upward biased, which is intuitive. A small calculation gives

E(ϑ̂− ϑ) = σ2 tr(L†)

n
.

3Card, Heining and Kline (2013) decompose the variance of log wages to back out the contributions of

worker and firm effects. Similarly, the contribution of the variance in teacher effects to variation in test

scores, the teacher’s value added (Rockoff, 2004), is a key parameter in the study of educational outcomes.
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Thus, the magnitude of the bias is driven by the Laplacian of the graph. In the complete

graph, for example, we have tr(L†) = (n−1)/n so that the bias is of order n−1. This is the

usual bias order in nonlinear estimators. Simple bounds that are valid more generally are

σ2

h

(
1− 2

n

)
≤ E(ϑ̂− ϑ) ≤ σ2

h

(
1− 2

n
+

1

λ2H

)
,

where we introduce the weighted harmonic mean of the hi,

H :=

(
n∑

i=1

(h/n)/di
hi

)−1
, with weights satisfying

n∑
i=1

(h/n)/di = 1.

These bounds reveal that, E(ϑ̂− ϑ) = σ2/h+ o(h−1) if λ2H →∞. Therefore, for the bias

to vanish asymptotically we need that the degrees of the individual vertices grow with n

for an increasing fraction of the vertices.

Moving on, under normality we have

var(ϑ̂) = 4σ2α
′L†α

n2
+ 2σ4‖L†‖2

n2
,

where ‖.‖ is the Frobenius norm. A simple (but conservative) upper bound on this variance

can be obtained that is O(h−1) if ϑ is bounded and λ2H is bounded away from zero. We

thus have that

(ϑ̂− ϑ)
p→ 0 if h→∞ as n→∞,

under the same condition on λ2H.

To assess whether the bias is important for the accuracy of inference we require a more

precise rate for the variance. The order of the variance turns out to depend on the data

generating process of the graph and of the fixed effects. In the supplementary material we

provide regularity conditions under which var(ϑ̂) is at most of order λ−12 /(nh) and at least

of order 1/(nh). The bias will therefore dominate sampling noise unless λ2 n/h or n/h,

respectively, converges to a finite constant.4 Note that n/h will tend to diverge in sparse

4If the αi are draws from a distribution P and we wish to estimate θ :=
∫
α2 dP (α), then ϑ − θ will

typically be of order n−1/2, and so the noise induced by sampling from P dominates the noise in ϑ̂ − ϑ

under our familiar condition λ2 h → ∞. The asymptotic bias of order h−1 then dominates the standard

deviation of order n−1/2 if n/h2 is not close to zero, which again will often be the case in sparse networks.
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networks, so that ϑ̂ may fail to have a properly centered limit distribution in that case.

Even in more dense networks, where n and h grow at the same rate, bias correction will

typically be needed for test statistics to have correct size.

4 Extensions

4.1 Introducing covariates

Let us augment (2.1) with a set of p edge-specific covariates xij (again with xji = −xij),

which we will treat as fixed for simplicity of notation. Collecting the covariates in the m×p

matrix X and denoting by β the associated vector of regression slopes our model becomes

y = Xβ +Bα+ u, u ∼ N(0, σ2Im).

By standard results on partitioned regression, the maximum-likelihood estimator of α now

is

α̃ := (B′MXB)†B′MXy, MX := Im −X(X ′X)−1X ′,

provided that the regressors are not perfectly collinear.5 In contrast, the (now infeasible)

estimator to which the results from the previous section apply assumes β to be known and

is

α̂ := (B′B)†B′(y −Xβ).

Theorem 4 bounds the difference in the variance between these two estimators in terms of

ρ :=
∥∥(X ′X)−1X ′MBX

∥∥
2
, MB := Im −B(B′B)†B′,

where ‖·‖2 denotes the spectral norm. ρ ∈ [0, 1] is a measure of non-collinearity between the

columns of X and B, with ρ close to zero indicating near-collinearity. Indeed, while X ′X

measures the total variation in X, X ′MBX captures the residual variation in X, after

its linear dependence on B has been partialled out. To state the result we also introduce

xi := d−1i

∑
j∈[i] xij, and Ω := X ′X/m.

5Verdier (2016) provides limit theory for the estimator of β in two-way fixed-effect regressions.
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Theorem 4 (Covariates). Let G be connected, rank(X) = p, and rank((X,B)) = p+n−1.

Then

|var (α̃i)− var (α̂i)| ≤
2σ2

ρ

(
1− ρ
λ2 di hi

+
x′iΩ

−1xi

m

)
for all i ∈ V .

Thus, if ρ is bounded away from zero, the first term appearing in the bound is of the same

order as the last term in Theorem 3, and the second term is O(m−1). Consequently, all

results on α̂i from the previous section straightforwardly extend to α̃i.

4.2 Non-normal and heteroskedastic errors

Inference based on Theorem 1 presumes normality of the errors. In contrast, the bounds

in Theorem 3 continue to hold when the errors in (2.1) are non-normal, as the variance of

α̂i depends only on the first and second moments of the data. The asymptotic statements

obtained in the previous section also carry over. We now discuss how the results can further

be extended to additionally allow for heteroskedasticity and correlation in the error term.

If we only assume that

E(u) = 0, ‖E(uu′)‖2 ≤ σ2, (4.6)

we have the following result.

Theorem 5 (Generalized first-order approximation). Suppose that (2.1) is weakened by

imposing only (4.6). Let G be connected. Then√
di (α̂i − αi) =

1√
di

∑
j∈[i]

uij + εi ,

where E(εi) = 0 and E(ε2i ) ≤ σ2/(λ2hi).

It follows that

α̂i
a∼ N(αi, ω

2
i /di)
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if d
−1/2
i

∑
j∈[i] uij

d→ N(0, ω2
i ) for finite ω2

i , provided E(ε2i ) = o(1), which follows from

λ2hi → ∞ and σ2 < ∞. The key asymptotic condition that λ2hi → ∞ thus remains as

before. All discussion and examples from the previous section are thus also applicable to

the more general situation of heteroscedastic and weakly correlated errors, now with ω2
i

featuring in the asymptotic variance.

5 Weighted graphs

So far we have considered simple graphs. Our variance bounds generalize to weighted

graphs. Let G be an undirected weighted graph with associated (weighted) adjacency

matrix A. A simple example is a multigraph, which differs from a simple graph in that

multiple edges may exist between vertices. In this case, (A)ij equals the number of edges

between i and j. More generally, A is symmetric, has diagonal entries equal to zero, and

has off-diagonal entries that are non-negative.

Our variance bounds generalize to situations where an estimator α̌, constructed from

G, has variance L† for

L = D −A,

where, as before, D is a diagonal (weighted) degree matrix with entries di =
∑n

j=1(A)ij.

A symmetric matrix L is such a Laplacian matrix if and only if

(i) All off-diagonal elements of L are negative;

(ii) All column sums of L are equal to zero;

(iii) rank (L) = n− 1.

The variance bounds in Theorems 2 and 3 continue to apply to var(α̌) = L† after setting

σ = 1 and redefining the harmonic mean of the neighboring degrees to its weighted variant

hi :=

(
1

di

∑
j∈V

(A)ij d
−1
j

)−1
.
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The proofs of our theorems fully cover the weighted-graph case. We now give some examples

of weighted graphs and corresponding estimators.

Example 3 (Panel data and weighted least squares). Consider a situation where (i, j) ∈ E

interact on mij ≥ 1 occasions and errors are heteroskedastic across meetings. Using obvious

notation, the weighted least-squares estimator of α equals

α̌ := arg min
a∈{a∈Rn:a′ιn=0}

∑
(i,j)∈E

mij∑
k=1

(
yijk − (ai − aj)

σk

)2

.

Let A be the weighted adjacency matrix with entries

(A)ij :=


∑mij

k=1 σ
−2
k if (i, j) ∈ E or (j, i) ∈ E,

0 otherwise.

and let L be the associated Laplacian matrix. Then Theorem 1 can be suitably extended

to yield α̌ ∼ N(α,L†). �

Example 1 (cont’d) (Bipartite graph). As before, consider a bipartite graph G where V

is partitioned as V1∪V2 and edges are formed between V1 and V2 but not within these sets.

Let n1 := |V1| and n2 := |V2|. The Laplacian is

L = D −A =

 D1 0

0 D2

−
 0 C

C ′ 0

 ,

where D1 and D2 are n1 × n1 and n2 × n2 diagonal degree matrices and C is the n1 × n2

upper-right block of the adjacency matrix of the graph. Decompose α accordingly as

α = (α′1,α
′
2)
′. The corresponding estimator α̂ is defined in (2.4) for the case of a simple

graph, but the following construction works for any estimator that satisfies var(α̂) = σ2L†,

with L being the Laplacian matrix of a simple, weighted or multigraph, as described above

(we may simply set σ = 1). We also define

α̌2 := α̂2 − α̂2 , α̂2 :=
1

n2

∑
i∈V2

α̂i ,
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corresponding to the natural normalization ι′n2
α̌2 = 0. By the block matrix inversion

formula we find

var(α̌2) = Ľ†, Ľ := σ−2
(
D2 −C ′D−11 C

)
. (5.7)

This is the variance formula after profiling-out all the parameters corresponding to vertices

in V1. It can be verified that Ľ satisfies the conditions (i)–(iii) above. The adjacency

matrix of the corresponding graph, say Ǧ, that involves only the vertices in V2 is given by

the off-diagonal part of σ−2C ′D−11 C. Thus, even when starting with a simple bipartite

graph G we naturally obtain a weighted graph Ǧ when profiling out some of the parameters.

Moreover, two vertices in Ǧ are connected if and only if they are path-two neighbors in the

original graph G. �

To illustrate, consider the simple wage regression of Abowd, Kramarz and Margolis

(1999) with panel data where, now, the log wage of worker i in firm j at time t is equal to

yijt = µi + ηj + uijt, t = 1, . . . ,mij.

To maintain focus, assume that the uijt are i.i.d. Then, with α = (µ′,−η′)′ as discussed

before, the pooled (ordinary) least squares estimator satisfies

var(α̂) = σ2L†,

where L is the Laplacian associated with the adjacency matrix

(A)ij = (A)ji =

 mij if (i, j) ∈ E,

0 otherwise.

This illustration is interesting because, here, the µi cannot be estimated precisely, because

the number of observations per worker is usually small. It therefore makes sense to focus

on the ηj, that is, on estimating the firm effects. Profiling-out µ and letting

η̌ := η̂ − η̂ , η̂ :=
1

n2

∑
i∈V2

η̂i ,
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Figure 1: A simple bipartite graph G (left) with links between V1 (red vertices) and V2 (yellow vertices),

and the induced weighted graph Ǧ (right) on V2 alone resulting from profiling out the parameters associated

with V1.

where n2 := |V2| is the number of firms, we find as an application of (5.7) that

var(η̌) = Ľ†,

where Ľ is the n2 × n2 Laplacian matrix associated with the weighted n2 × n2 adjacency

matrix

(Ǎ)jk :=


σ−2

∑
i∈[j]∩[k]

mij mik

di
for j 6= k,

0 for j = k,

where di =
∑

j∈V mij is the degree of i ∈ V1, that is, the total number of observations for

that worker, and [j]∩ [k] is the set of all workers for which wages are observed both in firm

j and in firm k. In this example the vertex set of of the weighted graph Ǧ are the firms.

Two firms are connected by an edge if there is at least one worker who has worked in both

firms. The weight (Ǎ)jk of the edge is larger the more workers there are connecting firms

j and k, and the longer these workers have worked in both firms. Figure 1 provides an

illustration of a simple bipartite graph (with all mij = 1) for workers (red vertices) and

firms (yellow vertices), given in the left plot, and the induced weighted graph featuring

only firms, given in the right plot. The thickness of the edge between (j, k) in the plot of

Ǧ reflects the magnitude of the weight (Ǎ)jk.
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