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1 Introduction

Many theoretical models have been developed to explain the price dispersion of homogeneous prod-

ucts relying on the notion that search is costly for consumers; see the survey of Baye, Morgan and

Scholten (2005). Existing nonparametric identification results on an empirical model of search build

on the fixed sample search1 framework studied in Burdett and Judd (1983). The players in the games

are consumers (buyers) and firms (sellers). Consumers differ by their search costs. Firms have iden-

tical costs of production. In this model firms compete by setting prices in a complete information

environment. The price dispersion is generated by assuming that firms employ a mixed-strategy Nash

pricing rule in equilibrium. Hong and Shum (2006) exploit the indifference condition that defines a

mixed strategy and initiate a nonparametric approach to a structural search model by showing the

consumer’s search cost distribution can be identified from data on prices alone. When the dataset

available is limited to a single market only finite points of the cost distribution can be identified. A

suffi cient condition for identification of the cost distribution over the whole support is possible, for

instance, when we have more data of prices from different markets; see Moraga-González, Sándor

and Wildenbeest (2013).

We consider a more general model where firms have heterogeneous costs of production. Our model

build on the setting proposed in MacMinn (1980) where firms have independent private marginal

costs. This approach leads to a game of incomplete information played between firms that resembles a

procurement auction. The subsequent equilibrium solution concept is a Bayesian-Nash pure strategy.

However, MacMinn only presents a partial equilibrium result as he only studies the best response of

the firms’taking consumer search behaviour as given. We consider a full equilibrium model. The

goal of our work is to provide a general framework for an empirical analysis of such search model.

The contribution of our paper is to provide a theoretical, both economic and econometrics, treat-

ment for analyzing an empirical search model and give a corresponding estimation methodology. We

characterize the equilibrium of our search model. We provide conditions to identify the consumers’

search costs and firms’marginal costs. Finally, we propose nonparametric estimators for all of the

identified objects in the model and provide some asymptotic properties of these estimators when

appropriate data are available.

Our identification strategy differs from those employed to study models in the spirit of Burdett

and Judd (1983). The insight of Hong and Shum (2006) uses the constancy condition imposed

by a mixed strategy equilibrium to identify the distribution of consumer’s search over all possible

1In a fixed sample search consumers decide before hand how many firms to search from. This is in contrast to a

sequential search. Some recent studies have found support that nonsequential search models can better approximate

consumers’search behavior (De los Santos et al. (2012), Honka and Chintagunta (2014)).
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firms. We do not have such restriction to exploit with the pure strategy solution concept. Therefore,

in additional to price, we require observations of another variable other than price to identify the

proportions of consumer search. We then assume the regression of this variable on price to be related

to the proportions of consumer search through a particular semiparametric index restriction. The

index structure can be motivated from the model. These proportions are required as they appear

in the firm’s pricing problem. We subsequently use them to identify the distribution of the firm’s

marginal costs. Following our identification steps, we propose a companion two-step estimation

procedure:

Step 1 The proportions of consumer search are estimated. When the index specification is linear our

estimator can be computed in closed-form as an OLS estimator.

Step 2 The firms’marginal costs are estimated. These generated variables are then used to construct a

nonparametric estimator for the probability density function of the marginal costs in a similar

fashion to Guerre, Perrigne and Vuong (2000, hereafter GPV).

Despite its seemingly natural scope for applications2, we are not aware of any theoretical work that

considers our search model previously. We directly extend MacMinn’s partial equilibrium analysis

for a fixed sample search model to a full equilibrium one. We build on his insight that makes the

connection between the search and procurement auction models. The pricing problem of each firm

can be seen as a first price procurement auction problem with random participation; the number and

identity of bidders are stochastic. We characterize an equilibrium that generates a continuous price

distribution.

The model of search that is closest to the one we consider in this paper can be found in a recent

empirical study by Salz (2017). A version of our model can in fact be seen as a special case of

his3. However, as an econometric problem, our search problems are not nested. In particular his

identification strategy is not applicable to our model.

Salz studies the trade-waste market in New York City. In his model buyers (consumers) can

haggle (search) directly with carters (firms), or use a broker who has access to a group of carters.

The haggle part is the same as our search problem. A broker acts as a clearinghouse where a standard

procurement auction game with known number and identity of bidders is played. Salz assumes an

equilibrium exist in his model. Importantly Salz’s identification strategy relies on the assumption

2Our model generates price dispersion in a transparent manner through heterogenous marginal costs. A mixed

strategy solution is harder to interpret. We are not aware of any purified justification for it. Even then a purification

will impose some restrictions on the primitives of the game.
3The independent work of Salz precedes ours chronologically. We only became aware of his work during his

presentation at the London School of Economics in November 2016 when his 2015 version was circulated
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that a broker always exists; see his Assumption 1. He also assumes both carters that can be searched

and those who participate with brokers have the same cost distribution4. Therefore he can identify

the firm’s cost distribution using the procurement auction data from the brokers independently of

the search mechanism. The identification for the remaining components of his model subsequently

relies on this.

Brokers do not exist in our model. We emphasize that we are not being critical of Salz’s approach.

His model captures well important features of many real world markets. Nevertheless brokers, or

other clearinghouse facilities, are not available in many other markets. For these pure search models

we show identification is possible with additional data. Our key identifying assumption involving the

semiparametric index restriction is empirically motivated. It contains as a special case the assumption

that some observable market outcomes are proportional to the probabilities of firms completing a sale

as consumers search in expectation. Natural candidates for such variable could be market shares or

sales figures. This idea is identical to linking market shares to the choice probabilities, which is the

starting point for the identification argument used in the study of differentiated products markets

from the IO literature (see Berry and Haile (2014)).

In terms of the econometrics, the estimation of the demand side is relatively straightforward. The

estimators for the demand parameters are smooth functionals of the empirical process of observed

prices and will converge at a parametric rate; cf. Sanches, Silva, Srisuma (2016). The estimation

of the distribution of the firm’s marginal cost is more challenging. We follow the tradition set by

GPV for an nonparametric analysis of auction models and focus on density estimation, and study

its uniform convergence rate. The firm’s density function is the hardest object to estimate in our

model.

We employ the same estimation strategy as GPV. We first use the observed prices to generate the

latent, or pseudo-, marginal costs and then perform nonparametric estimation using the generated

variables. To this end we establish some key relations between the density function of the observed

and latent variables in our model. These findings are not just for theoretical interests but have

important practical implications. The most crucial one is we show the density of the observed price

generally asymptotes to infinity as the price approaches its upper support. Estimating a density

function with a pole requires particular care as standard kernel estimation techniques are only suitable

when the underlying density is assumed to be bounded on its support. For this we characterize the

behavior of the price density at the upper boundary and suggest a transformation that eliminates

the boundary issue (cf. Marron and Ruppert (1994)). However, a slower uniform convergence rate

4Salz assumes there are two types of carters. H(igh) and L(ow) cost types. Both types are present in both the

broker and search markets. A carter that participates in both markets generally will bid differently during the auction

and haggling process.
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in the neighborhood of the pole than other part of the support is a necessary feature. We show

our estimator has the same convergence rate as the GPV estimator on any compact inner subset of

the support. Uniform convergence over appropriately expanding support will converge at a slower

rate depending on the speed of the support expansion. We can make the convergence rate to be

arbitrarily close to the optimal convergence rate derived in GPV’s auction problem.

The rest of the paper proceeds as follows. Section 2 presents the model and characterizes the

equilibrium of the game. Section 3 presents our constructive identification strategy. Section 4 contains

the theoretical results. Section 5 discusses ideas for extensions. Section 6 presents a simulation study.

2 Model

We consider a model where there are a continuum of consumers and a finite number of firms. Each

consumer has an inelastic demand for a single unit of good supplied by the firms. Consumers differ

by search costs and employ a non-sequential search strategy and purchase from the firms that sell at

the lowest price. We next formally introduce the elements of the game.

2.1 Supply Side

There are I firms. Let I ≡ {1, . . . , I}. Firm i draws a marginal cost of production Ri. Ri is assumed

to be a continuous random variable supported on
[
R,R

]
⊂ R. We denote its cumulative distribution

function (CDF) by H (·). The marginal costs of firms are independent from each other. Firm i then

faces the following decision problem:

max
p

Λ (p,Ri;q) , where

Λ (p,Ri;q) = (p−Ri)
I∑

k=1

qk
k

I
P
[
P(1:k−1) > p

]
.

Here q = (q1, . . . , qI)
> denotes a vector containing (qk)

I
k=1 where qk denotes the proportion of con-

sumers searching for k firms. For a given k, k
I
is the number of combinations that firm i gets included

when k firms are sampled5. We use P(k::k′) to denote the k−th order statistic from k′ i.i.d. random

variables of prices with some arbitrary distribution; P(1:k−1) denotes the minimum of such k − 1

prices. Here we implicitly assume that all firms have equal probability of being found thus the game

is symmetric. We discuss how this assumption can be relaxed in Section 5.2.

5Let CIk ≡ I!
(I−k)!k! denote the combinatorial number from choosing k objects from a set of I. Then CI−1k−1/CIk = k

I .
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Firm’s Best Response

We assume there exists a candidate for an optimal symmetric pricing strategy β :
[
R,R

]
→
[
P , P

]
⊂

R with the following properties: (i) β is strictly increasing; (ii) β
(
R
)

= R, which is the free-entry

condition imposing that P = R.

Let SI−1 denote a unit simplex in RI+. For any q ∈ SI−1, we can define Λ∗ (·;q) to be the value

function for a representative firm when all players are assumed to employ a strictly increasing optimal

pricing strategy that we denote by β (·;q). We denote β−1 (·;q) by ξ (·;q).

Λ∗ (r;q) = (β (r;q)− r)
I∑

k=1

qk
k

I
(1−H (ξ (β (r;q) ;q)))k−1 .

Then by the envelope theorem (Milgrom and Segal (2002)),

d

dr
Λ∗ (r;q)

∣∣∣∣
r=R

= −
I∑

k=1

qk
k

I
(1−H (R))k−1 , and

Λ∗
(
R;q

)
− Λ∗ (R;q) = −

I∑
k=1

qk
k

I

∫ R

s=R

(1−H (s))k−1 ds.

Thus for any r,

β (r;q) = r +

I∑
k=1

qkk
∫ R
s=r

(1−H (s))k−1 ds

I∑
k=1

qkk (1−H (r))k−1
. (1)

It is easy to verify that β (·;q) is non-decreasing. In particular β (·;q) is continuously differentiable

with the following derivative

β′ (r;q) =

h (r)

(
I∑

k=2

qkk (k − 1) (1−H (r))k−2
)(

I∑
k=1

qkk
∫ R
s=r

(1−H (s))k−1 ds

)
(

I∑
k=1

qkk (1−H (r))k−1
)2 , (2)

where h (·) denotes the probability density function (PDF) of Ri. The form of the derivative suggests

that: if q1 = 1 then β′ (r;q) = 0 for all r; otherwise β (·;q) will be strictly increasing almost

everywhere. We shall focus on the latter case as β (Ri;q) has a continuous distribution.

2.2 Demand Side

All consumers have the same valuation of the object but differ in search effort cost. Each draws

a search cost c from a continuous distribution with CDF G (·). She decides how many firms to

visit before conducting the search. Then a consumer with search cost c faces the following decision

problem:

min
k≥1

c (k − 1) + EF
[
P(1:k)

]
.

6



We use EF [·] to denote an expectation where the random prices have distribution described by the

CDF F (·). As standard we assume the is no cost for the first search. We assume a purchase is
always made and set the valuation of the object to be R.

Consumer’s Best Response

It is easy to verify that EF
[
P(1:k)

]
is non-increasing in k, and we have strict monotonicity when price

has a non-degenerate distribution. The marginal saving from searching one more store after having

searched k stores is:

∆k (F ) ≡ EF
[
P(1:k)

]
− EF

[
P(1:k+1)

]
.

∆k (F ) is also non-increasing in k. When price has a continuous distribution it can be shown that

∆k (F ) =

∫
F (p) (1− F (p))k dp. (3)

It then follows that the proportions of consumers searching optimally will satisfy this rule:

qk (F ) =

{
1−G (∆1 (F ))

G (∆k−1 (F ))−G (∆k (F ))

for k = 1

for k > 1
. (4)

The consumer’s search behavior on the demand side in our model is standard.

2.3 Equilibrium

For any q ∈ SI−1, β (·;q) in (1) gives an expression for the firm’s best response that induces a

price distribution. Conversely, given any price CDF, F (·), (4) gives the consumer’s best response
q (F ) = (qk (F ))Ik=1. Therefore we can define a symmetric equilibrium for our game as follows.

Definition (Symmetric Bayesian Nash equilibrium). The pair (q, β (·;q)) is a symmetric equi-

librium if:

(i) for every q when all firms apart from i use pricing strategy β (·;q), β (·;q) is a best response

for firm i;

(ii) given the price distribution induced by β (·;q), q is a vector of proportions of consumers’

optimal search.

For example the monopoly pricing strategy when all consumers search just once constitutes to an

equilibrium with: βM
(
r;qM

)
= R for all r, and qM such that qM = 1. However, (qM , βM

(
·;qM

)
)

does not generate any price dispersion. We will focus on an equilibrium where consumers search

more than once with a positive measure. In an equilibrium where β (·;q), it can be characterized by

q that satisfies (1) and (4) simultaneously. We state this as a proposition.
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Proposition 1. In an equilibrium with strictly increasing pricing strategy with an inverse func-

tion ξ (·;q), q satisfies the following system of equations:

qk =

 1−G
(∫

H (ξ (p,q)) (1−H (ξ (p,q))) dp
)
for k = 1 otherwise,

G
(∫

H (ξ (p,q)) (1−H (ξ (p,q)))k dp
)
−G

(∫
H (ξ (p,q)) (1−H (ξ (p,q)))k+1 dp

) . (5)

The characterization above states that an equilibrium can be summarized by a fixed-point of

some map, say T . It can be shown using the implicit function theorem that T is a continuous map

under some regularity conditions. It is clear that T maps SI−1 to some subset of SI−1. Therefore
a general proof for an existence of an equilibrium with a price dispersion may be shown by using a

fixed-point theorem, such as Brouwer’s, by showing that T maps certain subset of SI−1 onto itself.
However, it is diffi cult to show surjectivity in this general framework.

In subsequent sections we shall assume an existence of an equilibrium characterized by Proposition

1. We henceforth drop the indexing arguments of equilibrium objects that are made explicit in this

Section for the purpose of discussions on best response; e.g. β (·;q) becomes β (·), EF [·] becomes
E [·] etc.

3 Identification

We identify the demand side first then proceed to the supply side. Our identification of the demand

side focuses on q. We assume another variable is that is related to price is available. Once we can

identify q, identification of the firm’s cost distribution follows analogously to GPV.

3.1 Demand Side

Suppose we know the equilibrium price distribution of a search model. This is expected if we a

random sample {Pim, }I,Mi=1,m=1 of prices for I firms from M markets, and we let M → ∞. By

assumption Pim = β (Rim). Here Yim denotes an observable variable that is assumed to satisfy

Assumption I below. The main identifying assumption we introduce in this paper links Yim to the

expected probability firm i winning the sale of the object conditioning on setting price to be Pim.

Assumption I. There exists a finite and positive λ such that

E [Yim|Pim] = λ
I∑

k=1

qk
k

I
(1− F (Pim))k−1 . (6)

The expression above says: Yim is proportional to the probability firm i wins with price Pim.

Assumption I is analogous to the well-known assumption in the demand estimation literature in IO
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that equates the observed market share with the choice probabilities; e.g. as used in Berry, Levinsohn

and Pakes (1995). In our case, depending on the context, candidates for Yim could be market share

or sales volume. The unknown λ does not prevent identification since we have the restriction that
I∑

k=1

qk must be 1. It is important to note that unlike in a discrete choice model, where the choice

probabilities sums to 1, the ex-post probability
I∑

k=1

qk
k
I

(1− F (Pim))k−1 will almost surely not sum

to one across i. The role of λ in equation (6) ensures q can be interpreted independently from this

scale. For simplicity we assume λ to be the same for all m but this is not necessary.

Let Y m = (Y1m, . . . , YIm)> and Xm be a I × I matrix such that (Xm)ik = k
I

(1− F (Pim))k−1.

We vectorize Y m and Xm across m to form: Y =
[
Y>1 : · · · : Y>M

]>
and X =

[
X>1 : · · · : X>M

]>
.

Then under Assumption I, we have

q =
E
[
X>X

]−1 E [X>Y]
ι>E [X>X]−1 E [X>Y]

, (7)

where ι denotes a IM × 1 vector of ones. Note that X has full rank almost surely when Pim

has a continuous distribution as columns in Xm form a polynomial basis of
{

(1− F (Pim))l−1
}I
l=1
.

Generally q is overidentified in the sense that it can be identified using (Ym,Xm) for any m when

F (·) is known.

3.2 Supply Side

The optimal strategy derived in (1) relates the optimal price in terms of the latent variable. Although

such expression is intuitive and natural from the theoretical analysis, it is not immediately useful

for empirical purposes. (It is, however, useful for generating data in simulation studies!) We instead

consider defining β (·) as a maximizer of the following function:

Λ (p, r) = (p− r)
I∑

k=1

qk
k

I
(1−H (ξ (p)))k−1 .

Taking a (partial) derivative of the above with respect to p gives,

∂

∂p
Λ (p, r) =

I∑
k=1

qk
k

I
(1−H (ξ (p)))k−1

+ (p− r) ξ′ (p)h (ξ (p))
I∑

k=1

qk
k (k − 1)

I
(1−H (ξ (p)))k−2 .

We next use the insight from GPV by relating the distributions between the observed and unobserved

variables. Particularly:

F (p) = H (ξ (p)) and f (p) = ξ′ (p)h (ξ (p)) ,
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so that the first order condition implies

I∑
k=1

qkk (1− F (p))k−1 = (p− ξ (p)) f (p)
I∑

k=2

qkk (k − 1) (1− F (p))k−2 .

We then obtain the explicit form for β−1 (·) as,

ξ (p) = p−

I∑
k=1

qkk (1− F (p))k−1

f (p)
I∑

k=2

qkk (k − 1) (1− F (p))k−2
. (8)

We can identify Ri from Pi, f (·), F (·) and {qk}Ik=1. Thus we can identify {Ri}Ii=1 through {ξ (Pi)}Ii=1,
and subsequently identify h (·) with data from multiple markets.

3.3 Constructive Identification

Suppose we have a random sample for firms from multiple markets {(Pim, Yim)}I,Mi,=1m=1. There is
a natural corresponding estimation strategy by replacing unknown population quantities by sample

analogs.

Estimation of q

We first construct an estimator for F (·), such as the empirical CDF. We can estimate q using
the sample counterpart of (7); by removing the expectation operators and replace X by its estimate

X̂ that replaces the unknown F (·) by some estimator F̂ (·). Then

q̂ =

(
X̂>X̂

)−1
X̂>Y

ι>
(
X̂>X̂

)−1
X̂>Y

.

Our estimator of q is a smooth functional of an estimator of F (·). Therefore q̂ is expected to converge
at the parametric rate of

√
M .

Estimation of h (·).
We first contruct an estimate for Rim by:

R̂im = Pim −

I∑
k=1

q̂kk
(

1− F̂ (Pim)
)k−1

f̂ (Pim)
I∑

k=1

q̂kk (k − 1)
(

1− F̂ (Pim)
)k−2 , (9)
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here f̂ (·) and F̂ (·) are some estimators for f (·) and F (·) respectively. We can then perform non-

parametric density estimation for h (·) with
{
R̂im

}I,M
i=1,m=1

. When we estimate f (·) and F (·) non-

parametrically it is expected that the rate of convergence of R̂im (and subsequently the estimator of

h (·)) will be determined by f̂ (·); both q̂ and F̂ (·) converge at a faster rate.

4 Main Results

We present two Theorems. Theorem 1 shows that the theoretical search model imposes testable

restrictions on the distribution of the observed prices. Theorem 2 gives a convergence rate for ĥ (·).

4.1 Nonparametric Restrictions on the Data

Let P denote the set of strictly increasing CDFs with support in R. Let F (·) denote the joint CDF
of equilibrium prices.

Theorem 1. Let I ≥ 2. Let F (·) ∈ PI with support
[
P , P

]I
. There exists a distribution of

marginal cost with CDF H (·), with an increasing CDF H (·) ∈ P such that F (·) is the joint CDF
of the equilbrium prices in the search model if and only if:

C1. F(p1, ..., pK) =
I∏
i=1

F (pi);

C2. The function ξ (·) defined in (8) is strictly increasing on [P , P ], and its inverse is differ-

entiable on [R,R] =
[
ξ (P ) , ξ

(
P
)]
.

Moreover, when H (·) exists, it is unique with support [R,R] and satisfies H (r) = F
(
ξ−1 (r)

)
for all r ∈ [R,R]. In addition, ξ (·) is the quasi-inverse of the equilibrium strategy in the sense that

ξ (p) = β−1 (p) for all r ∈ [P , P ].

Our Theorem 1 is analogous to Theorem 1 in GPV.

4.2 Large Sample Properties

In order to study the rate of convergence of our estimators we need to know some regularity properties

of the objects to be estimated. We begin with some regularity assumptions on the distribution of

the underlying cost.

Assumption A.
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(i) For any observe price P : there exists R such that

P = R +

I∑
k=1

qkk
∫ R
s=R

(1−H (s))k−1 ds

I∑
k=1

qkk (1−H (R))k−1
,

for q that satisfies Proposition 1, and there is an observable Y that satisfies Assumption I;

(ii) H (·) admits upto τ + 1 continuous derivatives on
[
R,R

]
.

The equilibrium restrictions imply the following properties for the observed price distribution.

Proposition 2. Under Assumption A:

(i) f (p) = 1
p−ξ(p)


I∑
k=1

qkk(1−F (p))k−1

I∑
k=1

qkk(k−1)(1−F (p))k−2

;
(ii) infp∈[P ,P ] f(p) > 0;

(iii) limp→P f(p) =∞, furthermore 0 < limp→P
f(p)

(P−p)
−1 <∞;

(iv) F (·) admits upto τ + 1 continuous derivatives on
[
P , P

]
;

(v) f(·) admits upto τ + 1 continuous derivatives on
(
P , P

)
.

The findings we want to highlight here are (iii) and (v). The former reveals that f(·) has a pole
at the upper boundary. Kernel density estimation in a neighborhood of a pole has to be treated with

care (e.g. see Section 5 in Marron and Ruppert (1994)). We suggest a transformation to deal with

this issue below.6 The latter suggests that the implied observed PDF is smoother than the latent

PDF; similar findings are also found in GPV based on the same rationale by an inspection of (i).

Suppose we have data {(Pim, Yim)}I,Mi=1,m=1. We assume to have some preliminary estimators for
q, F (·), and f (·) that converge to zero at some rates as M → ∞. Let η0,M =

(
logM
M

) τ+1
2τ+3 . So that

η0,M is the optimal rate of convergence for density estimation with τ + 1 continuous derivatives (see

Stone (1982)).

Assumption B. Suppose {(Pim, Yim)}I,Mi=1,m=1 satisfies Assumption A. There exists estimators:
q̂, F̂ (·), and f̂ (·) such that:
(i) ‖q̂− q‖ = O

(
1/
√
M
)
a.s.;

(ii) supp∈[P ,P ]

∣∣∣F̂ (p)− F (p)
∣∣∣ = O

(
1/
√
M
)
a.s.;

(iii) For any positive sequence ε′M that decreases to 0 there exists some positive sequence δ′M
that decreases to zero such that supp∈[P+δ′M ,P−δ′M ]

∣∣∣f̂ (p)− f (p)
∣∣∣ = o

(
η0,M
ε′M

)
a.s.;

6There are also other auction models that have unbounded densities. E.g. in a first price auction with a reserve

price (see GPV) and in models with selective entry (see Gentry, Li and Lu (2015)).

12



(iv) There exist some positive sequences {δM} and {ηM} that decrease to zero such that
η0M = o (ηM), supp∈[P+δM ,P−δM ]

∣∣∣f̂ (p)− f (p)
∣∣∣ = O (ηM) a.s.

Estimators for q and F (·) that converge at a parametric rate are going to be available under
weak conditions. We will focus on the uniform convergence properties of a kernel estimator for f̂ (·).
Studying uniformity over the entire support of Pim is diffi cult as it has a compact support. It is

well-known that kernel estimators have problems at (and near) the boundaries; e.g. see Chapter 2.11

in Wand and Jones (1990). On the other hand if we consider any fixed inner subset of
[
P , P

]
then

a kernel density estimator can achieve the convergence rate η0,M under standard constructions. For

example by using a τ + 1 order kernel and set bandwidth to be proportional to b0,M ≡
(
logM
M

) 1
2τ+3 ;

see Härdle (1991). But these rates cannot be maintained when we allow the support to expand to[
P , P

]
as sample size grows. Existing results on the uniform convergence rates for kernel estimators

over expanding supports assume densities are bounded (e.g. see Masry (1996) and Hansen (2008)).

They are therefore not immediately applicable to us due to the pole at P .

Assumption B(iii) says that any decreasing function ofM converging to zero slower than η0,M can

serve as an upper bound for supp∈[P+δ′M ,P−δ′M ]

∣∣∣f̂ (p)− f (p)
∣∣∣ for some δ′M = o (1). This is possible, for

instance, with a kernel estimator using a transformation method. From Proposition 2(iii) we know

f (p) behaves similarly to
(
P − p

)−1
for p close to P . Then let us consider P †im ≡ − ln

(
P − Pim

)
.

The support of P †im is [− ln
(
P − P

)
,∞). Denote the PDF of P †im by f

† (·). By a change of variable,
we have,

f (p) =
f †
(
− ln

(
P − p

))
P − p

.

Then it follows that f † (·) is bounded and, in particular, f †
(
− ln

(
P − p

))
is flat as p→ P . Further-

more it has the same smoothness as f (·)7. Consider the following estimators,

f̂ (p) =
f̂ †
(
− ln

(
P − p

))
P − p

, where

f̂ †
(
p†
)

=
1

MIb†M

M∑
m=1

I∑
i=1

K

(
P †im − p†

b†M

)
for any p†,

and K (·) is a kernel function with a bandwidth b†M . Thus it can be shown that f̂ † (·) converges
uniformly at rate η0,M over some expanding support when we use a τ + 1 higher order kernel coupled

with bandwidth b0,M . The division by P −p slows down the rate of convergence for f̂ (·) at the upper
boundary. This can be controlled to be as slow as we like by letting δ′M go to zero slowly. There is

also a bias issue at the lower boundary. This can be avoided by setting b†M = o (δ′M).

7For any p† ∈ [− ln
(
P − P

)
,∞), f†

(
p†
)
= exp

(
−p†

)
f
(
P − exp

(
−p†

))
.
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Assumption B(iv) then assumes an existence of an estimator for f (·) that converges uniformly
over

[
P + δM , P − δM

]
at an achievable rate ηM . We can extend the argument given for B(iii) and

make ηM arbitrarily close to η0,M . More specifically, we can set δM = P − εM for some decreasing

positive sequence {εM} such that b0,M = o (δM). Then B(iv) holds with ηM = η0M
εM
.

Now that we have some estimators that satisfy Assumption B, we turn to R̂im as defined in

equation (9). We shall use a modified version of R̂im for the second stage estimation since we only

have the desired uniform convergence rate for f̂ (·) over an expanding support. For some positive
sequence {δM} that decrease to zero, let

R̃im =

{
R̂im for Pim ∈

[
P + δM , P − δM

]
+∞ otherwise

. (10)

When R̃im < ∞, R̃im is a smooth function of q̂, F̂ (·) and f̂ (·). Therefore we can obtain its
convergence rate that is determined by supp∈[P+δM ,P−δM ]

∣∣∣f̂ (p)− f (p)
∣∣∣.

Lemma 1. Under Assumptions A and B, for the same {δM} and {ηM} in B(d),

sup
i,m s.t. R̃im<∞

∣∣∣R̃im −Rim

∣∣∣ = O (ηM) a.s .

We define explicitly a kernel estimator for h (·) here:

ĥ (r) =
1

MIbM

M∑
m=1

I∑
i=1

K

(
R̃im − r
bM

)
for any r.

As before, K (·) is a kernel function with a bandwidth bM . We can use Lemma 1 to quantify the
estimation error that arises from using R̃im instead of Rim, and obtain the convergence rate for ĥ (·).

Theorem 2. Under Assumptions A and B, and for the same {δM} and {ηM} as in B(d), let:
(i) K (·) be a symmetric (τ + 1)−order kernel with support [−1, 1]; (ii) K (·) is twice continuously
differentiable on [−1, 1]; (iii) {bM} for some positive real numbers decreasing to zero such that δM =

O (bM). Then for any sequence {ςM} of positive real numbers decreasing to zero such that bM =

o (ςM),

sup
r∈[R+ςM ,R−ςM ]

∣∣∣ĥ (r)− h (r)
∣∣∣ = O

(
ηM
bM

)
a.s .

Theorem 2 shows that ĥ (·) converges at a slower rate than f̂ (·) by a factor of b−1M . We have
argued that the convergence rate for the latter can be made arbitrarily close to η0,M . Therefore

choosing an appropriate choice of bM will ensure ĥ (·) converge uniformly at a rate arbitrarily close
to

η0,M
b0M

=
(
logM
M

) τ
2τ+3 , which is the optimal rate of convergence for a related density function derived

in Theorem 3 of GPV.
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5 Possible Extensions

We briefly discuss how to extend our model and methodology. First we generalize Assumption I

by allowing for possibly nonparametric relation between Yi and the probability that firm i wins the

sale with price Pi. Then we consider an asymmetric game where firms have different probabilities of

being found.

5.1 Relaxing Assumption I

We anticipate that Assumption I will be the most convenient in applications. However, the math-

ematical structure of the search problem is conducive for a nonparametric generalization. In what

follows let xim be a I × 1 vector such that (xim)k = k
I

(1− F (Pim))k−1.8

Assumption I’. There exists a function φ : R→ R such that

E [Yim|Pim] = φ
(
x>imq

)
. (11)

Assumption I is a parametric special case of Assumption I’when φ (·) is an identity function
multiplied by an unknown scale. More generally Assumption I’only imposes that: Yi is a (possi-

bly unknown) function of the probability firm i wins with price Pim. When φ (·) is parametrically
specified, whether q is identifiable depends on the parametric specification. A suffi cient, but not

necessary, condition for identification is strict monotonicity of φ (·).9 When φ (·) is unknown (11)
imposes a semiparametric index restriction. Ichimura (1993, Theorem 4.1) provides a set of condi-

tions for identification of an index model like ours. Note that we cannot apply, at least without any

modification, the average derivative argument of Powell, Stock and Stoker (1989) to identify q as

our model does not satisfy their boundary conditions (see their Assumption 2). When q is identified,

regardless whether φ (·) is known or not, we would expect the estimator for q to converge suffi ciently
fast to not affect the convergence rate for f̂ (·) and subsequently ĥ (·) under general conditions.

8In principle we can also allow wim to be other known functions of {Pim}Ii=1. But q has a structural meaning so
it is natural to use powers of the price hazard functions as in Assumption I.

9Let φ−1 (·) denote the inverse of φ (·). Given that E
[
ximx

>
im

]
has full rank a suffi cient we can write x>imq =

φ−1 (E [Yim|Pim]), so that

q =
E
[
ximx

>
im

]−1 E [ximφ−1 (E [Yim|Pim])]
ι>E

[
ximx>im

]−1 E [ximφ−1 (E [Yim|Pim])] .
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5.2 Asymmetric Search Probabilities

Consider a situation when firms have different probabilities of being searched. When a consumer sets

out to visit k firms, for `i ∈ {1, . . . , I}, we denote the probability that the set of firms {`1, . . . , `k} get
visited by ω`1...`k . Since there is no need to keep track of different permutations of the same combina-

tion of firms, we only define ω`1...`k for `1 < . . . < `k. Let Ik ≡ {{`1, . . . , `k} : `j ∈ I and `j < `j+1 for all j},
and I ik ≡ {{`1, . . . , `k} ∈ Ik : `j = i for some j}. I.e. Ik is the set of indices for all combinations of
k firms. I ik is the set of indices for all combinations of k firms that always include firm i. Let

CIk ≡ I!
(I−k)!k! denote the combinatorial number from choosing k objects from a set of I. Note that Ik

and I ik have cardinality CIk and CIk−1 respectively. Note that:

ω`1...`i−1`i+1...`k =

I∑
{`1,...,`k}∈Iik

ω`1...`k for all i, k.

Using a similar argument to previously, in equilibrium it can be shown that the optimal pricing

strategy for firm i, βi (·) becomes:

βi (r) = r +

I∑
k=1

qk
∑

{`1,...,`k}∈Iik

ω`1...`k
∫ R
s=r

∏
j:1≤j≤k, `j 6=i

(
1−H

(
ξ`j (βi (s))

))
ds

I∑
k=1

qk
∑

{`1,...,`k}∈Iik

ω`1...`k
∏

j:1≤j≤k, `j 6=i

(
1−H

(
ξ`j (βi (r))

)) ,

over the region of r where βi (·) is strictly increasing10. Here ξj (·) denotes the inverse of βj (·). It is
clear that we have asymmetric pricing functions that have been induced by differing probabilities of

being searched.

We can also write down the inverse function for p that corresponds to where βi (·) is strictly
increasing,

ξi (p) = p−

I∑
k=1

qk
∑

{`1,...,`k}∈Iik

ω`1...`k
∏

j:1≤j≤k, `j 6=i

(
1− F`j (p)

)
I∑

k=2

qk
∑

{`1,...,`k}∈Iik

ω`1...`k

(∑
j:1≤j≤k, `j 6=i f`j (p)

∏
j′:1≤j′≤k, `j′ 6=i, `j′ 6=j

(
1− F`j′ (p)

)) .

We can extend Assumption I (and I’) accordingly and replicate our earlier identification strategies.

Particularly, we will need

E [Yi|Pi] =
I∑

k=1

qk
∑

{`1,...,`k}∈Iik

ω`1...`k

∫ ∏
j:1≤j≤k, `j 6=i

(
1− F`j (p)

)
dFi (p) .

10The support of optimal prices now differ between (some) firms.
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Figure 1:

6 Simulation

We consider a simple design for a game of search with three firms. Consumers draw search costs

from a distribution with CDF G (c) =
√
c for c ∈ [0, 1]. Firms draw marginal costs from a uniform

distribution on [0, 1]. We use the system of equations in (5) to solve for the equilibrium of the game.

We generate the data by drawing prices from (1) with q = (0.7852, 0.0455, 0.1693). We generate

Yi according to Assumption I with λ = 1. We generate the data for 333 markets, so IM = 999. We

follow the estimation strategy described in Section 3.3. In particular we the empirical price CDF to

estimate F̂ (·). We employ different bias correction and transformation techniques to estimate the
densities. For the bias correction we use the procedure proposed in Karunamuni and Zhang (2008,

henceforth KZ) that have recently been shown to be effective when applied to auction models (see

Hickman and Hubbard (2015), and Li and Liu (2015)). We use the Epanechnikov kernel along with

the forms of the plug-in bandwidths suggested in KZ. Since KZ’s technique does not accommodate

unbounded densities we also use the transformation we suggested in Section 4.2 to address the upper

support. We combine it with the KZ’s estimator to correct the lower support. We repeat the

experiment 10000 times. The parametric estimators work extremely well. We only show the graphs

for the density estimation.

Figure 1 shows the true price density, and the mean, 2.5th and 97.5th percentiles (percentiles

using dotted lines) of the boundary corrected kernel estimator of KZ (in blue) and the kernel esti-

mator that transforms the data to deal with the pole (in red). It is clear that standard boundary

correction procedure will not be suffi cient to deal with unbounded densities. On the other hand the

transformation method seems to serve the purpose very well.

17



mc
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

h(
.)

0

0.5

1

1.5
Marginal Cost Density

Figure 2:

mc
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

h(
.)

0

0.5

1

1.5
Marginal Cost Density

mc
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

h(
.)

0

0.5

1

1.5
Marginal Cost Density

18



We next consider three similar plots of the density estimation of marginal cost PDF (using KZ).

In Figure 2 - 4, we use the true Rim to estimate the density (in blue) as the benchmark. The other

density estimators (in red) in other figures contain estimated components. Those in Figures 2 and 3

are also infeasible as they estimate Rim using the unknown f(·): the former only estimates q and the
latter in addition estimates F (·). The result for the feasible estimator using R̃im as defined in (10)

is in Figure 4. Again, we plot the mean and the percentiles using solid and dotted lines respectively.

Note that the boundary correction method of KZ does not completely eliminate the bias at the

boundary even for the estimator that uses Rim. This is expected. There is in fact some improvements

since density estimation without any bias correction will, in this case, converge to 0.5 at both bound-

aries. The mean of the bandwidth use in these figures is around 0.17, and the estimator performs

much better in the interior of the support away from the boundary by at least a bandwidth. Figures

2 - 4 also show that the main source of estimation error can be traced to the estimation of the price

PDF. This is not unexpected given that the PDF is the most diffi cult object to estimate in the entire

problem.

7 Concluding Remarks

Hong and Shum (2006) and a series of papers by Moraga-González et al. show that we can identify

the demand side of the market using just observed prices alone. We show when other market data,

such as market shares, are available we can allow firms to be heterogenous and identify the supply

side as well.

We characterize the equilibrium in a search game with heterogenous consumers and firms that

supports price dispersion. We provide conditions to identify the model and propose a way to estimate

the model primitives. We show that the density of the unobserved marginal cost can be estimated

to converge at an arbitrary close to, but not achieving, the optimal rate derived in related auction

models (such as Guerre, Perrigne and Vuong (2000)). The reason can be traced to the fact that the

density of the equilibrium price has a pole at the upper support.
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