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Abstract

We develop inference methods about long-run comovement of two time series. The
parameters of interest are defined in terms of population second-moments of low-
frequency trends computed from the data. These trends are similar to low-pass fil-
tered data and are designed to extract variability corresponding to periods longer than
the span of the sample divided by ¢/2, where ¢ is a small number, such as 12. We
numerically determine confidence sets that control coverage over a wide range of po-
tential bivariate persistence patterns, which include arbitrary linear combinations of
I(0), I(1), near unit roots and fractionally integrated processes. In an application to
U.S. economic data, we quantify the long-run covariability of a variety of series, such
as those giving rise to the “great ratios”, nominal exchange rates and relative nominal
prices, unemployment rate and inflation, money growth and inflation, earnings and
stock prices, etc.

JEL classification: C22, C53, E17

Keywords: band-pass regression, cointegration, fractional integration, great ratios

*This work was presented as the Fisher-Schultz lecture at the 2016 European meetings of the Econometric
Society. We thank participants there and at several seminars for their comments. Support was provided by
the National Science Foundation through grant SES-1627660.



1 Introduction

Economic theories often have stark predictions about the covariability of variables over long-
horizons: consumption and income move proportionally (permanent income/life cycle model
of consumption) as do nominal exchange rates and relative nominal prices (long-run PPP),
the unemployment rate is unaffected by the rate of price inflation (vertical long-run Phillips
curve), and so forth. But there is a limited set of statistical tools to investigate the validity
of these long-run propositions. This paper expands this set of tools.

Two fundamental problems plague statistical inference about long-run phenomena. First,
inference critically depends on the data’s long-run persistence. Random walks yield statistics
with different probability distributions than i.i.d. data, for example, and observations from
persistent autoregressions or fractionally integrated processes yield statistics with their own
unique probability distributions. The second problem is that there are few “long-run” obser-
vations in the samples typically used in empirical analyses of long-run relations, so sample
information is limited. Taken together these two problems conspire to make long-run infer-
ence particularly difficult: proper inference depends critically on the exact form of long-run
persistence, but there is limited sample information available to empirically determine this
form.

The most well-known example of faulty inference due to a mistaken assumption about
persistence is Granger and Newbold’s (1974) “spurious regression”, where standard OLS in-
ference leads to grossly misleading conclusions when applied to independent (1) variables.
The last 40 years has seen important progress developing inference for specific classes of sto-
chastic processes (most notably for 7(0) and integrated/cointegrated processes), but several
aspects of the resulting inference remains fragile. For example, while HAC standard errors
lead to reliable inference in 1(0) settings with limited serial correlation, the resulting hypoth-
esis tests exhibit substantial size distortions for stationary series with high serial correlation
(e.g., den Haan and Levin (1997), Kiefer, Vogelsang, and Bunzel (2000), and Miiller (2014)).
Inference in cointegrated models is well-developed (e.g., Engle and Granger (1987), Johansen
(1988), Phillips (1991), Stock and Watson (1993)), but these models have knife-edge impli-
cations about long-run covariability (cointegrated variables have unit long-run correlations)
and efficient inference methods are not robust to small departures from the model’s assumed
exact unit autoregressive roots (Elliott (1998)). Variables that are highly but not perfectly

correlated in the long-run, or are highly persistent, but perhaps without exact unit roots,



fall outside the standard cointegration framework.

This paper develops methods designed to provide reliable inference about long-run co-
variability for a wide range of persistence patterns (encompassing 7(0), 7(1), and many other
forms of long-run persistence) and that are applicable regardless of the degree of long-run
correlation. The methods rely on low-frequency averages of the data to measure the data’s
long-run variability and covariability. These long-run data summaries have proven useful for
constructing long-run covariance matrices and associated test statistics in I(0) settings (e.g.,
Miiller (2004, 2007), Phillips (2005), Sun (2013), and Lazarus, Lewis, and Stock (2016)),
but also for conducting inference about more general patterns of long-run persistence and
measuring uncertainty about long-run predictions (Miiller and Watson (2008, 2016)). A key
simplification offered by these averages is that they are normally distributed in large samples
even though the stochastic process generating the data may exhibit substantial persistence
(Miiller and Watson (forthcoming)). This allows large-sample inference about covariability
parameters to be transformed into a finite-sample problem involving a handful of normal
random variables and, while the inference problem is “non-standard,” it can be solved using
previously developed statistical methods paired with modern computing power.

The paper’s goal is to provide empirical researchers with an easy-to-use method for
constructing confidence intervals for long-run correlation coefficients, linear regression coeffi-
cients, and standard deviations of regression errors. These confidence intervals are both valid
over a wide range of persistence patterns and nearly optimal in the sense of having close to
shortest expected length (see Section 4 for details). As discussed in Section 3, the procedures
allow for 7(0), I(1), near unit roots, fractionally integrated models, and linear combinations
of variables with these forms of persistence. Using a set of pre-computed “approximate least
favorable distributions”, the confidence intervals readily follow from the formulae discussed
in Section 4.

The outline of the paper is as follows. The next section defines the notion of long-
run variability and covariability used throughout the paper. These are defined in terms of
population second moments of long-run projections, where these projections are similar to
low-pass filtered versions of the data (e.g., Baxter and King (1999)), Hodrick and Prescott

(1997)). The discussion is carried out in the context of two empirical examples, the long-

IThe replication files contains a matlab function for computing these confidence intervals, available at
www.princeton.edu\ “mwatson. The function uses the approximate least favorable distributions discussed in

Section 4 and the appendix, which are also available in the replication files.



run relationship between consumption and GDP and between short- and long-term nominal
interest rates. In the long-run projections we employ, long-run variability and covariability
is equivalently captured by the covariability of a small number of trigonometrically weighted
averages of the data. Section 3 derives the large-sample normality of these averages and
introduces a flexible parameterization of the joint long-run persistence properties of the
underlying stochastic process. The large-sample framework developed in Section 3 reduces
the problem of inference about long-run covariability parameters into the problem of inference
about the covariance matrix of a low dimensional multivariate normal random vector. Section
4 reviews relevant methods for solving this finite sample problem. Section 5 uses the resulting
inference methods to empirically study several familiar long-run relations involving balanced
growth (GDP, consumption, investment, labor income, and productivity), the term structure
of interest rates, the Fisher correlation (inflation and interest rates), the Phillips correlation
(inflation and unemployment), PPP (exchange rates and price ratios), money growth and
inflation, consumption growth and real returns, and the long-run relationship between stock
prices, dividends and earnings. Section 6 examines the robustness of Section 5’s empirical
conclusions to changes in the periodicities defining the “long-run”, and to alternative choices

for the information set used for inference.

2 Long-run projections and covariability

2.1 Two empirical examples of long-run covariability

We begin by examining the long-run covariability of GDP and consumption and of short-
and long-term nominal interest rates. These data will motivate and illustrate the methods
developed in this paper.

Consumption and income: One of the most celebrated and studied long-run relation-
ship in economics concerns income and consumption. The long-run stability of consump-
tion/income ratio is one of economics’ “Great Ratios” (Klein and Kosobud (1961)); the
dynamic implications of this stability inspired early work on error-correction models (e.g.,
Sargan (1964) and Davidson, Hendry, Srba, and Yeo (1978)), and these in turn motivated
Granger’s formulation of cointegration (Granger (1981)). While early analysis provided em-
pirical support for the cointegration of consumption and income (e.g., Campbell (1987),
King, Plosser, Stock, and Watson (1991), Cochrane (1994)), more recent work has come



to the opposite conclusion (see Lettau and Ludvigson (2013) for discussion and references).
Whether or not consumption and income are cointegrated (i.e., have an exact unit autore-
gressive root and exact unit long-run correlation), even a casual glance at the data suggests
the two variables move together closely in the long run.

Consider, for example, the evolution of U.S. real per-capita GDP and consumption over
the post-WWII period. In the 17 years from 1948 through 1964, GDP increased by 62%
and consumption increased by 52%. Over the next 17 years (1965-1981) both GDP and
consumption grew more slowly, by only 30%. Growth rebounded during 1982 to 1998, when
GDP grew by 43% and consumption increased 55%, but slowed again over 1999-2015 when
GDP grew by only 17% and consumption increased by only 23%. Over these 17-year periods,
there was substantial variability in the average annual rate of growth of GDP (2.9%, 1.4%,
2.1%, and 0.9% per year, respectively over the sub-samples), and these changes were roughly
matched by consumption (annual average growth rates of 2.5%, 1.5%, 2.6%, and 1.2%). In
this sense, GDP and consumption exhibited substantial long-run variability and covariability
over the post-WWII period.?

There are two distinct notions of “long-run” implicit in this calculation. The most obvious
is that each period makes up 17 years, approximately twice the length of the typical business
cycle. But another is that each period encompasses a large fraction (1/4) of the full 1948-
2015 sample period. Our statistical framework defines long-run in this latter way: long-run
statistical analysis involves inference about characteristics of stochastic processes that govern
the evolution of averages of the data over periods that are large relative to the available
sample.

With this is mind, the first two panels of Figure 1 plot the average growth rates of GDP
and consumption over six non-overlapping sub-samples in 1948-2015. Figure 1.a plots the
averages growth rates against time, and Figure 1.b is a scatterplot of the six average growth
rates for consumption against corresponding values for GDP. Each of the six sub-samples
contains 11.25 years (45 quarters), spans of history longer than the typical business cycle,

and arguably capture “long-run” variability in GDP and consumption. And, each represents

2Consumption is personal consumption expenditures (including durables) from the NIPA; Section 5 shows
results for non-durables, services, and durables separately. Both GDP and consumption are deflated by the
PCE deflator, so that output is measured in terms of consumption goods, and expressed in per-capita terms
using the civilian non-institutionalized population over the age of 16. The supplemental appendix contains

data sources and descriptions for all data used in this paper.



Figure 1: Long-run average growth rates of GDP and consumption
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a substantial fraction (1/6) of the sample and is a long-run observation in the statistical sense
discussed in the preceding paragraph. Average GDP and consumption growth over these
subsamples exhibited substantial variability and (from the scatter plot) roughly one-for-one
covariability.

Figure 1.c sharpens the analysis by plotting “low-pass” moving averages of the series
designed to isolate variation in the series with periods longer than 11 years.® Sample variation
in these moving averages is much like the variation in the subsample averages of Figure 1.a,
but Figure 1.c captures the smooth transition of the series from high-growth to low-growth
periods. The scatterplot of these moving averages is plotted in Figure 1.d. Like Figure 1.b,
it shows the close relationship between long-run movements in consumption and GDP, but
it also shows the high degree of serial correlation in the moving averages.

A convenient device for handling this serial correlation is to use projections on low-
frequency periodic functions in place of the low-pass moving averages. To be specific, let x;,
t =1,...,T denote a time series (e.g., growth rates of GDP or consumption). We use cosine
functions for the periodic functions; let W;(s) = v/2 cos(js7) denote the function with period
2/j (where the factor /2 simplifies a calculation below), ¥(s) = [¥(s), Uy(s),..., ¥, (s)]’
denote a vector of these functions with periods 2 through 2/q, and V7 denote the T' X ¢
matrix with #’th row given by ¥ ((t — 1/2)/T)’, so the j’th column of W7 has period 27'/;.
Most of our empirical analysis uses ¢ = 12 which captures periodicities longer than 7'/6; this
defines the long-run variation in the data the analysis is designed to capture. The projection
of z; onto U ((t — 1/2)/T) for t = 1,...,T yields the fitted values

7= XpW ((t=1/2)/T) (1)

where X7 are the projection (linear regression) coefficients, X7 = (05 Wy) 10 2.7, where
x1.7 is the T' x 1 vector with t’th element given by x;. The matrix ¥, has two properties
that simplify calculations and interpretation. First, U/l = 0 where I is a vector of ones,
so that Z; also corresponds to the projection of x; — T1.p onto W ((t — 1/2)/T), where Ty.p

is the sample mean. Second, T, Wy = [, so X7 corresponds to simple cosine-weighted

3These were computed using an ideal low-pass filter for periods longer than 7/6 truncated after 7/2
terms. The series were padded with pre- and post-sample backcasts and forecasts constructed from an
AR(4) model.



Figure 2: Long-run projections of GDP and consumption growth rates
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Notes: Panel (a) plots the projections of the data onto the low-frequency cosine terms discussed in
the text, where sample means have been added to projections so they are consistent with the low-
pass moving averages plotted in Figure 1(c). Panel (b) plots the projection coefficients (Xjr, ¥;7)
against period 27/j (in years). Panel (¢c) is a scatterplot of the variables from (b).

averages of the data (i.e., are the “cosine transforms” of {z;})

T
Xp =T W((t —1/2)/T)z,. (2)

t=1
Letting (z¢,v;) denote the growth rates of GDP and consumption, the long-run projec-
tions (74, y;) are plotted in Figure 2.a. Except for minor differences near the endpoints,
these long-run projections essentially coincide with the low-pass moving average plotted in
Figure 1.c, so both capture the same long-run sample variability in the data. An advantage
of the long-run projections is that they are fully summarized by the projection coefficients
(X1, Yr), a relatively small number of cosine-weighted averages of the sample data. Figure

2.b plots the projection coefficients, (X;r, Y;r) against the period of the corresponding co-



sine term, 27'/j. Evidently, there is substantial variation and covariation in the projection
coefficients. Indeed, the scatterplot of (X;r,Y;r) shown in Figure 2.c suggests a roughly
one-to-one relationship between the cosine transforms.

The orthogonality of the cosine regressors Ur leads to a tight connection between the
variability and covariability in the long-run projections (7, y;) plotted in Figure 2.a and the

cosine transforms (X, Yjr) plotted in Figure 2.b and 2.c:

T ~
() (w o) =T ) (X0 o )=
~ t Yt v TYT T Yr
t=1 Yt T

Thus, sample covariability in the time series projections coincides with sample covariability

XXy X,Yr

Y. Xy YiYr | )
T<\T TLT

in the cosine transforms.

Short-term and Long-term interest rates. The second empirical example involves short-
and long-term nominal interest rates, as measured by the rate on 3-month U.S. Treasury
bills, x;, and the rate on 10-year U.S. Treasury bonds, y;, from 1953 through 2015. The levels
of these interest rates are highly serially correlated, but the term spread, y; — x;, far less so.
Early cointegration work (e.g., Campbell and Shiller (1987)) modeled the level of interest
rates as (1), and short- and long-rates as cointegrated. Later empirical analysis of the term
structure (e.g., Dai and Singleton (2000), Diebold and Li (2006)) model the levels of interest
rates as a function of small number of dynamic common factors that lead to common, but
less than unit-root, long-run persistence.

Figure 3 plots the levels of short- and long-term interest rates, (z¢,%;), along with their
long-run projections, (7, ¥:), and cosine transforms, (X7, Yr). The long-run projections
capture the rise in interest rates from the beginning of the sample through the early 1980s
and then their subsequent decline (Figure 3.a). These long-swings in the level of interest
rates lead to relatively larger values in the long-period cosine transforms (Figure 3.b). The
projections for long-term interest rates closely track the projections for short-term rates and,
given the connection between between the projections and cosine transforms, X7 and Yjr
are highly correlated (Figure 3.c).

These two datasets differ markedly in their persistence: GDP and consumption growth
rates are often modeled as low-order MA models, while nominal interest rates are highly
serially correlated. Yet, the variables in both data sets exhibit substantial long-run variation
and covariation which is readily evident in the long-run projections (Zy,7;) or equivalently

(from (3)) the projection coefficients (X7, Y7). This suggests that the covariance/variance



Figure 3: Short- and long-term interest rates
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properties of (Xr,Yr) are a useful starting point for defining the long-run covariability

properties of stochastic processes exhibiting a wide range of persistent patterns.

2.2 A measure of long-run covariability using long-run projections

A straightforward definition of long-run covariability is based on the population analogue
of the sample second moment matrices in (3). Let ¥ denote the covariance matrix of (X7,

Y})', partitioned as X xx.r, Yxv.r, etc., and define
a z
o = T E ) (% 9 ) (4)
t=1 Yt
!
_ zq:E ( XjT > ( XjT > _ ( tI‘(EXXJ“) tr(EXY,T> )
j=1 Yjr Yir

tr<ZYX,T) tr(Zyy’T)
where the equalities directly follow from (3).

The 2 x 2 matrix Qr is the average covariance matrix of the long-run projections (7, 4;)
in a sample of length 7', and provides a summary of the variability and covariability of
the long-run projections over repeated samples. Equivalently, by the second equality, 2r
also measures the covariability of the cosine transforms (Xr, Yr). Corresponding long-run

correlation and linear regression parameters follow from the usual formulae

p:vy,T = wa,T/ V QII:TnyvT
BT = Q:ry,T/sz T (5)
ny, ( zy, T ) /me T

where (7, Quz 1, 0y 1) are the elements of 7. The linear regression coefficient ;- solves

ylw T

the population least-squares problem

B = arg mbin E

T
Zyt_bxt ]7

so that [ is the coefficient in the population best linear prediction of the long-run projection

gr by the long-run projection #;,* 02 . is the average variance of the prediction error, and

2
ylz,

piny is the corresponding population R%. These parameters thus measure the population

4The parameter 3, is closely related to a linear band-spectrum regression coefficient (Engle (1974)),

corresponding to periods longer than 27'/q.
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comovement of the long-run variation of (z;,y;). Equivalently, by the second equality in (4),

B also solves

B = arg mbin E

j=1
with a corresponding interpretation U;u,T and piy,T‘ Thus, these parameters equivalently
measure the (population) linear dependence in the scatter plots in Figures 2.c and 3.c.

The objective of the remaining analysis is to develop inference about the parameters

(/Oacy,T7 ﬁTa O;‘x’T)'

3 Asymptotic approximations and parameterizing

long-run persistence and covariability

The long-run correlation and regression parameters are functions of ¥, the covariance ma-
trix of (Xr,Yr). This section takes up two related issues. The first is the asymptotic nor-
mality of the cosine-weighted averages (Xr, Yr), which serves as the basis for the inference
methods developed in Section 4 and provides large-sample approximation for the matrices
Y7 and {7, and thus for the parameters of interest p,, , 87, and Uzlx,T' The second issue
involves parameterizing the form of long-run persistence and comovement which determines

the large-sample value of ¥ and Qr.

3.1 Large-sample properties of long-run sample averages

Because (X7,Yr) are smooth averages of (x;,y:), a central limit theorem effect suggests
that these averages are approximately Gaussian under a range of primitive conditions about
(x4,y;). The set of assumptions under which asymptotic normality holds turns out to be
reasonably broad, and encompasses many forms of potential persistence. Specifically, let
2z = (x4, y;)" and suppose that Az; has moving average representation Az; = Cr(L)e;, where
¢ is a martingale difference sequence with non-singular covariance matrix, the coefficients in
Cr(L) die out sufficiently fast that Az, has a spectral density Fa, r, and £, and Cp(L) satisfy

other moment and decay restrictions given in Miiller and Watson (forthcoming, Theorem
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1).5 If the spectral density converges for all frequencies close to zero

T372'{FAZ7T(W/T) — S, (w)

1-kK XT X
T (YT>¢<Y)~N<0,2), (6)

and the finite-sample second moment matrix correspondingly converges to its large-sample

in a suitable sense, then

counterpart (Miiller and Watson (forthcoming, Lemma 2))

722 Var ( Az ) S )y ) (7)
Yr

The limiting covariance matrix ¥ in (6) and (7) is a function of the “local-to-zero”
spectrum Sx, and the cosine weights ¥;(s) that determine (Xr, Y7); see Miiller and Watson
(forthcoming) for additional details and an explicit formula. We make three comments about
these large-sample results. First, they hold when the first-difference of z; has a spectral
density (and therefore has limited persistence); the level of z; is more persistent than its
first difference and may have a (pseudo-) spectrum that diverges at frequency zero. In this
case Y remains finite because the cosine averages sum to zero (U7.ly = 0), so they do not
extract zero-frequency variation in the data. If the level of z; has a spectral density then this
restriction on the weights is not required and, for example, the sample mean of z; also has a
large-sample normal limit. Second, in common parameterizations of persistence models, the
scale factor 77" depends on the form of persistence; for example, the factor is 7-/2 for 1(0)
persistence and T—3/2 for I(1) persistence. However, we focus on inference procedures that

do not depend on the scale of z; (due to invariance or equivariance), so 7" does not need
to be known. Third, because 7% 2*¥; — X, then T?72°Qp —  where  is defined as in
the last expression of (4) with X in place of ¥7. Correspondingly, (p,, 7, B, TQ_Q*””J;'M) —
(pxy,ﬁ,az‘x) with the limits defined by (5) with © in place of Qr. Thus, a solution to
the small-sample problem of inference about (ny757‘7§|x) from observing (X,Y) readily

translates into a large-sample solution to inference about (p,, 7, Bz, O’imT).

®The dependence of Cr and Fa, 7 on the sample size T accommodates many forms of persistence that
require double arrays as data generating process, such as autoregressive roots of the order 1 — ¢/T, for fixed

c. We omit the corresponding dependence of z; = (z4,y:) on T to ease notation.
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3.2 Parameterizing long-run persistence and covariability

The limiting covariance matrix of the long-run projections, €2, is a function of the covariance
matrix of the cosine projections, >, which in turn is a function of the local-to-zero spectrum
for the first-difference of z, Sa,. The corresponding local-to-zero (pseudo-) spectrum for the
level of z; is S, (w) = w™2Sa.(w). In this section we discuss parameterizations of S, ¥, and
Q.

It is constructive to consider two leading examples. In the first, z; is 1(0) with long-run
covariance matrix A. In this case S,(w) o« A, and straightforward calculations show that
Y =A®I; and Q2 o< A, so the covariance matrix associated with the long-run projections
corresponds to the usual long-run 7(0) covariance matrix. In this model, the cosine trans-
forms (X, Yjr) plotted in Figures 2 and 3 are, in large samples and up to a deterministic
scale, i.i.d. draws from a N(0, A) distribution. Inference about Q = A and (p,,, 53, Oftlx) thus
follows from well-known small sample inference procedures for Gaussian data (see Miiller
and Watson (forthcoming)). In the second example, z; is (1) with A the long-run covari-
ance matrix for Az;. In this case S,(w) oc w™?A, and a calculation shows that ¥ = A ® D,
where D is a ¢ X q diagonal matrix with j’th diagonal element D;; = (jm)~2. In this model,
the cosine transforms (X7, Y;r) plotted in Figures 2 and 3 are, in large samples and up to
a deterministic scale, independent but heteroskedastic draws from N(0, (j7)~2A) distribu-
tions. Thus €2 oc A, so the covariance matrix for long-run projections for z; corresponds to
the long-run covariance matrix for its first differences, Az;. By weighted least squares logic,
inference for /(1) processes follows after reweighting the elements of (X, Yjr) by the square
roots of the inverse of the diagonal elements of D and then using the same methods as in
the 7(0) model.

GDP, consumption, short-, and long-term interest rates: Table 1 presents estimates and
confidence sets for (p;, BT,ailx_T) using (Xr, Yr) with ¢ = 12 for GDP and consumption
(panel a) and short- and long-term interest rates (panel b). Results are presented for 7(0)
and I(1) models, and for a more general model of persistence introduced below. For now,
focus on the I(0) and I(1) results. The point estimates shown in the table are MLESs, and
confidence intervals for (5, U?,\:;:,T) are computed using standard finite-sample normal linear
regression formulae (after appropriate weighting in /(1) model), and confidence sets for p,
are constructed as in Anderson (1984, section 4.2.2).

For GDP and consumption, there are only minor differences between the 7(0) and /(1)

13



Table 1: Long-run covariability estimates and confidence intervals from the /(0), /(1), and

(4, B,c,d) models
a. GDP and consumption

p p Gl

Estimate 0.93 0.76 0.35
1(0) 67% CI 0.87, 0.96 0.67, 0.85 0.30, 0.46
90% ClI 0.81, 0.97 0.60, 0.92 0.26, 0.55

Estimate 0.93 0.84 0.35
(1) 67% CI 0.88, 0.96 0.74, 0.94 0.29, 0.45
90% ClI 0.82, 0.97 0.66, 1.01 0.26, 0.54

Estimate 0.91 0.77 0.41
67% CI 0.83, 0.96 0.66, 0.87 0.32, 0.54
(4,B,c,d) 90% CI 0.71, 0.97 0.48, 0.95 0.28, 0.67
67% Bayes CS 0.83, 0.96 0.66, 0.87 0.32, 0.54
90% Bayes CS 0.71, 0.97 0.58, 0.95 0.28 0.67

b. Short- and long-term interest rates

P p Ot

Estimate 0.97 0.96 0.63
1(0) 67% CI 0.95,0.98 0.89, 1.03 0.53,0.81
90% CI 0.93, 0.99 0.84,1.08 0.47,0.97

Estimate 0.94 0.85 0.48
11) 67% CI 0.88, 0.96 0.76, 0.95 0.40, 0.62
90% CI 0.82, 0.97 0.68,1.03 0.36,0.74

Estimate 0.96 0.92 0.70
67% Cl 0.92, 0.98 0.83, 1.06 0.53, 0.92
(4.B,c.d) 90% CI 0.89, 0.98 0.75, 1.15 0.47, 1.36
67% Bayes CS 0.92, 0.97 0.83, 1.00 0.53, 0.92
90% Bayes CS 0.89 0.98 0.75 1.07 047 1.13

Notes: The rows labeled "Estimate" are the maximum likelihood estimates using the large-

sample distribution of the cosine transforms for the 7(0) and /(1) models, and are the posterior
median based on the /(d) model for the (4, B,c,d) model. "CI" denotes confidence interval, which
is calculated as described in the text. "Bayes CS" are Bayes equal-tailed credible sets based on
the posterior from the /(d) model.
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estimates and confidence sets. The estimated long-run correlation is greater than 0.9, the
lower range of the 90% confidence interval exceeds 0.8 in both the /(0) and /(1) models.
Thus, despite the limited long-run information in the sample (captured here by the 12 ob-
servations making up (X7, Y7)), the evidence points to a large long-run correlation between
GDP and consumption. The long-run regression of consumption onto GDP yields a regres-
sion coefficient that is estimated to be 0.76 in the /(0) model and 0.84 in /(1) model. This
estimate is sufficiently accurate that 5 = 1 is not included in the 90% I(0) confidence set.
The results for long-term and short-term nominal interest rates are similarly informative —
for example, there is strong evidence that the series are highly correlated over the long-run
— although the 7(0) and I(1) results differ more sharply than for GDP and consumption.
To take just one example, the 90% confidence interval for p ranges from 0.82 to 0.97 in the
I(1) model but is narrower (0.93 to 0.99) in the 7(0) model.

As we show in Table 2 below, the I(0) assumption yield confidence intervals with coverage
probability far below the nominal level when in fact the data were generated by the I(1)
model, and vice versa. This raises the question of how to obtain valid inference in both

models, and, more generally, under a wider range of forms of persistence.

3.2.1 (A, B,c,d) model

The shape of the local-to-zero spectrum determines the long-run persistence properties of
the data, and misspecification of this persistence leads to faulty inference about long-run
covariability. Thus, parameterizing S, is a crucial issue for inference about long-run co-
variability. Addressing this issue faces a familiar trade-off: the parameterization needs to
be sufficiently flexible to yield reliable inference about long-run covariability for a wide
range of economically-relevant stochastic processes and yet be sufficiently constrained to be
tractable. 1(0) persistence generates a flat local-to-zero spectrum, and 7(1) persistence gen-
erates a local-to-zero spectrum proportional to w=2. Both of these models are tractable, but
tightly constrain the spectrum. This limits their usefulness as general models for conducting
inference about long-run covariability.

With this trade-off in mind, we use a parameterization that nests and generalizes a range
of models previously used to model persistence in economic time series. The parameterization

is a bivariate extension of the univariate (b, ¢, d) model used in Miiller and Watson (2016)
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and yields a local-to-zero spectrum of the form

(W? + 2)~h 0
0 (W? + c2)~%

S.(w) x A ( > A + BB (8)
where A is unrestricted and B is lower triangular.’

This model generates the standard spectral shapes: A = 0 yields the 7(0) model; B = 0,
¢ =0and d; = dy = 1 yields the I(1) model; B = 0, d; = dy = 1 yields a model with
two AR roots local-to-unity; B = 0 and ¢ = 0 yields a bivariate fractional model. Other
choices of (A, B, ¢,d) yield models that combine persistent and non-persistent components
(as in cointegrated or “local-level” models) but go beyond the usual 1(0)/1(1) or fractional
formulations. The cost of the (4, B, ¢, d) model’s flexibility is that it contains 11 parameters
as opposed to just 3 in the 7(0) and 7(1) models. Yet, as we discuss in the next section, it

is still possible conduct valid inference even in the loosely parameterized (A, B, ¢, d) model.

4 Constructing confidence intervals for p, 5, and o,

4.1 An overview

There are several approaches one might take to construct confidence intervals for the para-
meters p, 3, and oy,. As a general matter, the goal is to compute confidence intervals that
are as informative (“narrow”) as possible, subject to the coverage constraint that they con-
tain the true value of the parameter of interest with a pre-specified probability. We construct
confidence intervals by explicitly solving a version of this problem.

Generically, let 6 denote the vector of parameters characterizing the probability distri-
bution of (X,Y’), and let © denote the parameter space. (In our context,  denotes the
(A, B, c,d)-parameters.) Let v = ¢g(0) denote the parameter of interest. (y = p, 3, or
oye for the problem we consider). Let H(X,Y) denote a confidence interval for v and
vol(H (X,Y)) denote the length of the interval. The objective is to choose H so that it
has small expected length, E [vol(H (X, Y)], subject to coverage, P (y € H(X,Y)) > 1—a,
where « is a pre-specified constant. Because the probability distribution of (X,Y") depends

6This is the spectrum of a bivariate Whittle-Matérn (c.f., Lindgren (2013)) process with time series
representation z; = ATy + e;, where 74 = (714, T2:)' is a bivariate process with uncorrelated {71;} and {72:},
(1= ¢ pL)i7iy = T~% e, ¢y p = 1 — ¢;/T, & ~ I(0) with long-run variance equal to Iz, e; ~ I(0) with

long-run variance equal to BB’, and zero long-run covariance with &;.
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on 6, so will the expected length of H(X,Y") and the coverage probability. By definition, the
coverage constraint must be satisfied for all values of 6 € ©, but one has freedom in choosing
the value of 6 over which expected length is to be minimized. As a general matter, let W

denote a distribution that puts weight on different values of 6, so the problem becomes

min / Ey(vol(H(X,Y))dW (8) )
subject to
2ugP9(7€H(X,Y))Zl—Oz (10)

where the objective function (9) emphasizes that the expected volume depends on the value
of 6, with different values of 6 weighted by W, and the coverage constraint (10) emphasizes
that the constraint must hold for all values of # in the parameter space ©.

As noted by Pratt (1961), the expected length of confidence set for v can be expressed
in terms of the power of hypothesis tests of Hy : v = 7,. The solution to (9)-(10) thus
amounts to the determination of a family of most powerful hypothesis tests, indexed by 7.
Elliott, Miiller, and Watson (2015) suggest a numerical approach to compute corresponding
approximate “least favorable distributions” for . We implement a version of those methods
here; details are provided in the supplementary appendix. A key feature of the solution
is that, conditional on the weighting function W and the least favorable distribution, the
confidence sets have the familiar Neyman-Pearson form with a version of the likelihood ratio
determining the values of v included in the confidence interval.

While the resulting confidence intervals have (close to) smallest weighted expected length,
they can have unreasonable properties for particular realizations of (X, Y’). Indeed, for some
values of (X, Y), the confidence intervals might be empty, with the uncomfortable implication
that, conditional on observing these values of (X,Y’), one is certain that the confidence
interval excludes the true value. To avoid this, we follow Miiller and Norets (2016) and

restrict the confidence sets to be supersets of 1 — a Bayes credible sets.”

"Numerical calculations show that the Miiller and Norets (2016) adjustment has a small (3%-8%) effect

on expected length of 95%, 90%, and 67% confidence intervals for all three parameters of interest.
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4.2 Some specifics
4.2.1 Invariance and equivariance

Correlations are invariant to the scale of the data. The linear regression of y; onto z; is
the same as the regression of y; + bz, onto x; after subtracting b from the latter’s regression
coefficient. It is sensible to impose the same invariance/equivariance on the confidence
intervals. Thus, letting H?, H?, and H° denote confidence sets for p, 3, and Oy|z, We Testrict

these sets as follows:

pe H(X,Y) = pe HP(bX,b,Y) for byb, > 0 (11)
b, + by

oy € H'(XY) & |byloy. € H (b, X,b,Y + by, X) for by, b, # 0 and all values of by,.
(13)

These invariance/equivariance restrictions lead to two modifications to the solution to

pe H(X)Y) & € H°(b,X,b,Y +b,,X) for b,,b, # 0 and all values of b,, (12)

(9)-(10). First, they require the use of maximal invariants in place of the original (X,Y).
The density of the maximal invariants for each of these transformations is derived in the
supplementary appendix. Second, because the objective function (9) is stated in terms of
(X,Y), minimizing expected length by inverting tests based on the maximal invariant leads
to a slightly different form of optimal test statistic. Miiller and Norets (2016) develop these
modifications in a general setting, and the supplementary appendix derives the resulting

form of confidence sets for our problem.

4.2.2 Parameter space

The parameter space for § = (A, B,c,d) is as follows: A and B are real, with B lower-
triangular and (A, B) chosen so that € is non-singular, ¢; > 0, and —04 < d; < 1, for
i = 1,2.% Thus, the confidence intervals control coverage over a wide range of persistence
patterns including processes less persistent than 7(0), as persistent as I(1), local-to-unity
autoregressions, and where different linear combinations of z; and 13 may have markedly
different persistence (as, for example, in a cointegrated model).

The confidence sets we construct require three distributions over : the weighting func-

tion W for computing the average length in the objective (9), the Bayes prior associated

8See Appendix 3.2 for details.
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with the Bayes credible sets that serve as subsets for the confidence sets (Miiller and Norets
(2016)), and the least favorable distribution for # that enforces the coverage constraint. The
latter is endogenous to the program (9)-(10) and is approximated using numerical methods
similar to those discussed in Elliott, Miiller, and Watson (2015), with details provided in the
supplementary appendix. We use the same distribution for W and the Bayes prior. Specifi-
cally, the distribution is based on the bivariate I(d) model (so that ¢; = co = 0, B = 0) with
d; and dy independently distributed U(—0.4,1.0). Because of the invariance/equivariance
restrictions, the scale of the matrix A is irrelevant and we set A = R(A\;)G(s)R (\2), where
R()) is a rotation matrix indexed by the angle A, with A\; and Ay independently distributed
U0, 7]. The relative eigenvalues of A are determined by the diagonal matrix G(s), with
G11/Gay = 15° with s distributed UJ0, 1].

4.2.3 Empirical results for GDP, consumption, and interest rates

Table 1 in Section 3.2 above shows estimates for (o7, B, 0y»,r) and confidence sets using the
(A, B, c,d) model. The estimated value of (p;, B7, 0yjz7) is the median of the posterior using
the I(d)-model prior, and the table also shows Bayes credible sets for this prior for comparison
with the frequentist confidence intervals. For GDP and consumption, the (A, B, ¢, d) results
look much like the results obtained for the 7(0) model. For most entries, the Bayes credible
sets are slightly larger than the I(0) sets, presumably reflecting the possibility of persistence
greater than I(0), as was evident in Figure 4. The frequentist confidence intervals often
coincide with Bayes intervals, but occasionally are somewhat wider. The results indicate
that GDP and consumption are highly correlated in the long-run (the 90% confidence set is
0.71 < p < 0.97) and the long-run regression coefficient of consumption onto GDP is large,
but less than unity (the 90% confidence set is 0.48 < 5 < 0.95). The results for interest
rates are somewhat different. The confidence intervals (and Bayes credible sets) are roughly
in-between the 7(0) and /(1) intervals. Substantively, the results indicate that long-run
movements in short- and long-rates are highly correlated, and that a unit long-run response

of long-rates to short-rates is consistent with these data.
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Table 2: Coverage rates for efficient 90% confidence intervals with data generated by
different stochastic processes

Efficient Data generated by:
confidence set for
1(0) I(1) 1(0)+1(1) 1(d) (4,B,c,d)

1(0) 0.90 0.01 0.01 0.01 0.01
1(1) 0.00 0.90 0.00 0.00 0.00

1(0)+1(1) 0.91 0.91 0.90 0.68 0.68
1(d) 0.90 0.90 0.87 0.90 0.87

(4,B,c,d) 0.91 0.90 0.90 0.90 0.90

4.3 Coverage properties of restricted versions of the (A, B,c,d)

model

In this subsection we investigate the coverage distortions for confidence intervals constructed
using misspecified models of persistence. Specifically we consider five models of persistence,
and for each model we both generate data and construct confidence intervals for p. The data
are generated using p = 0 and Table 2 shows the fraction of the confidence sets that include
the true value p = 0. The models considered are the I(0) model (S (w) oc BB’), the I(1)
model (S,(w) = w2AA’), a bivariate “local-level” that includes I(0) and I(1) components
(S, (w) oc w2AA" + BB'), the fractional I (d) model (S,(w) o« ADA’, D diagonal with
D;; = w™2%) and the general (4, B,c,d) model with S,(w) given by (8). Because data
were generated by and confidence intervals constructed for each of these five models, the
table contains 25 entries. The columns indicate the model used to generate the data, the
rows shows the model used to construct the confidence set, and the entries are fraction
of confidence sets that contain the true value of p, minimized over the other parameters
used to generate the data. The diagonal entries of the table are 0.90 indicating that each
method has coverage 90% under its assumed data generating process. The off-diagonal differ
from 0.90 and show the coverage distortions. For example, 90% I(0) confidence sets have
coverage of just 1% when the data are generated by the other four models. I(1) confidence
sets have similarly bad coverage when the data are not generated by the I(1) model. The
I(0) + I(1) model encompasses both the I(0) and /(1) models, so the associated confidence

9Results are shown for confidence sets that do not incorporate the Miiller-Norets Bayes superset adjust-

ment. Including this adjustment yields similar results.
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intervals has good coverage for these models, but has coverage of only 68% in the I(d) and
(A, B, c,d) models. The I(d) model encompasses the I(0) and /(1) models, and so has good
coverage for these models. It does not encompass the the 1(0) 4+ I(1) or (A, B, ¢,d) models,
but exhibits only a small coverage distortion in these cases. Finally, the general (A, B, ¢, d)
model encompasses all of the other models, and so controls coverage uniformly across these
models.

Table 2 highlights the large coverage distortions associated with confidence intervals based
on I(0), I(1), or 1(0) + I(1) models. These results echo results in the earlier literature on
the fragility of 1(0) and I(1) inference (e.g., den Haan and Levin (1997) for HAC inference
in 7(0) models and Elliott (1998) for inference in cointegrated models). Table 2 suggests
that inference based on the I(d) model is much less fragile; indeed it offers near nominal
coverage in Table 2. However, the I(d) model does not fare as well in other contexts; for
example Miiller and Watson (2016) show that /(d) model yields long-run prediction sets with
significant undercoverage when data are generated by a univariate analogue of the (A, B, ¢, d)

model.

5 Empirical Analysis

The last section showed results for the long-run covariation between GDP and consumption
and between short- and long-term nominal interest rates. In this section we use the same
methods to investigate other important long-run correlations. We focus on two questions:
first, how much information does the sample contain about the long-run covariability, and
second, what are the values of the long-run covariability parameters. A knee-jerk reaction to
investigating long-run propositions in economics using, say, 68-year spans of data is that little
can be learned, particularly so using analysis that is robust to a wide range of persistence
patterns. In this case, even efficient methods for extracting relevant information from the
data will yield confidence intervals that are so wide that they rule out few plausible parameter
values. We find this to be true for some of the long-run relationships investigated below. But,
as we have seen from the consumption-income and interest rate data, confidence intervals
about long-run parameters can be narrow and informative, and this is true for several of the

relationships that we now investigate.
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Figure 4: Long-run projections for GDP, consumption, investment, labor income
and TFP growth rates
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5.1 Balanced growth correlations

In the standard one-sector growth model, variations in per-capita GDP, consumption, invest-
ment, and in real wages arise from variations in total factor productivity (TFP). Balanced
growth means that the consumption-to-income ratio, the investment-to-income ratio, and
labor’s share of total income are constant over the long run. This implies perfect pairwise
long-run correlations between the logarithms of income, consumption, investment, labor
compensation, and TFP. In this model, the long-run regression of the logarithm of consump-
tion onto the logarithm of income has a unit coefficient, as do the same regressions with
consumption replaced by investment or labor income. A long-run one-percentage point in-
crease in TFP leads a long-run increase of 1/(1 — «a) percentage points in the other variables,
where (1 — «) is labor’s share of income. Of course, these implications involve the evolu-
tion of the variables over the untestable infinite long-run. That said, empirical analysis can
determine how well these implications stand-up as approximations to below business cycle
frequency variation in data spanning the post-WWII period. We use data for the U.S. and
the methods discussed above to investigate these long-run balance growth propositions. The

supplemental appendix contains a description of the data that are used.
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Table 3: Long-run correlations of GDP, consumption, investment,
labor compensation, and TFP

GDP Cons. Inv. wWXn TFP
GDP 0.91 ( 0.83, 0.96) 0.53 (0.29, 0.72) 0.98 (0.96, 0.99) 0.78 (0.64, 0.89)
Cons. | (0.71,0.97) 0.53 (0.30,0.72) 0.90 ( 0.83, 0.96) 0.70 (0.49, 0.82)
Inv. (0.02,0.81) (0.02, 0.81) 0.57 (0.34,0.74) 0.38 (0.05, 0.60)
wxn (0.94, 0.99) (0.60,0.97) (0.06,0.82) 0.71 (0.53, 0.84)
TFP (0.46,0.95) (0.29, 0.89) (-0.08, 0.72) (0.36,0.92)

Notes: All variables are measured in growth rates. The entries above the diagonal show the
median of the posterior distribution followed by the 67% confidence interval. The entries below
the diagonal show the 90% confidence interval.

Figure 4 plots the long-run projections of the growth rates of GDP, consumption, invest-
ment, labor income and TFP. (The long-run projections for consumption and GDP were
shown previously in Figure 2.a.) The figure indicates substantial long-run covariability over
the post-WWII period, but less so for investment than the other variables. Table 3 sum-
marizes the results on the long-run correlations. The values above the main diagonal show
point estimates constructed as the posterior median using the I(d)-model with prior dis-
cussed above, together with 67% confidence intervals using the general (A, B, ¢, d) model
(shown in parentheses). The values below the main diagonal are the corresponding 90% con-
fidence intervals using the (A, B, ¢,d) model. Table 4 reports results from selected long-run
regressions.

As reported in the previous section, the long-run correlation between GDP and consump-
tion is large. Labor income and GDP are highly correlated with a tightly concentrated 90%
confidence interval of 0.94 to 0.99. The estimated long-run correlation of TFP and GDP
is also high, although the correlation of TFP and the other variables appears to be some-
what lower. Investment and GDP are less highly correlated; the upper bound of the 90%
confidence interval is only 0.8 and the lower bound is close to zero.

Table 4 shows results from long-run regressions of the growth rates of consumption, in-
vestment, and labor income onto the growth rate of GDP, and the corresponding regression of
GDP onto TFP. Labor compensation appears to vary more than one-for-one with GDP and
(as reported above) consumption less than one-for-one. The long-run investment-GDP re-
gression coefficient is imprecisely estimated. Disaggregating consumption into nondurables,

durables, and services, suggests that durable consumption responds more to long-run vari-
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Table 4: Selected long-run regressions involving GDP, consumption, investment, labor
compensation, and TFP

Y X A 5 e
B 67% CI 90% CI

Consumption GDP 0.77 0.66, 0.87 0.48, 0.95 0.41

Investment GDP 1.24 0.64,1.79 0.21,2.21 2.18

Labor comp. (wxn) GDP 1.28 1.20, 1.36 1.14,1.42 0.31

GDP TFP 1.22 0.92,1.48 0.72,1.72 0.74

Cons. (Nondurable) GDP 0.35 0.13, 0.57 -0.07,0.76 0.88

Cons. (Services) GDP 0.83 0.66, 0.99 0.54,1.24 0.60

Cons. (Durables) GDP 1.86 1.46,2.25 1.15,2.56 1.52

Inv. GDP 0.97 0.41,1.46 -0.09, 1.90 2.18
(Nonresidential)

Inv. (Residential) GDP 2.15 0.77,3.53 -0.27, 4.56 5.63

Inv. (Equipment) GDP 0.81 0.12,1.57 -0.41,2.11 2.75

Notes: All variables are measured in growth rates, in percentage points at an annual rate. The
entries were constructed from the long-run regression of the variable labeled ¥ onto the variable

labeled X.
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ations in GDP than do services and non-durables. These long-run regression results are
reminiscent of results using business cycle covariability, and in Section 6 we investigate their
robustness to the periodicities incorporated in the long-run analysis.

In summary, what has the 68-year post WWII sample been able to say about the
balanced-growth implications of the simple growth model? First, that several of the variables
are highly correlated over the long-run (labor income and GDP, consumption and GDP),
and second that the long-run regression coefficient on GDP is different from unity for some
variables (consumption and labor income). There is less information about the long-run
covariability of investment with the other variables, although even here there are things to
learn, such as the long-run correlation of investment and GDP is unlikely to much larger
than 0.8.

5.2 Other long-run relations

Figure 5 and Table 5 summarize long-run covariation results for an additional dozen pair of
variables, using post-WWII U.S. data. (See the supplemental appendix for description and
sources of the data.) We discuss each in turn.

CPI and PCE inflation. We begin with two widely-used measured of inflation, the first
based on the consumer price index (CPI) and the second based on the price deflator for per-
sonal consumption expenditures (PCE). The Boskin Commission Report and related research
(Boskin, Dulberger, Gordon, Griliches, and Jorgenson (1996), Gordon (2006)) highlights im-
portant methodological and quantitative differences in these two measures of inflation. For
example, the CPI is a Laspeyres index, while the PCE deflator uses chain weighting, and
this leads to greater substitution bias in the CPI. Differences in these inflation measures
may change over time both because of the variance of relative prices (which affects substitu-
tion bias) and because measurement methods for both price indices evolved over the sample
period.

Panel a of Figure 5 presents two plots; the first shows a time series plot of the long-run
projections for PCE and CPI inflation, and the second shows the corresponding scatterplot of
the projection coefficients, where the scatterplot symbols are the periods (in years) associated
with the coefficients. For instance, the outlier “68.8” corresponds to the large negative
coefficient on the first cosine function cos(w(t — 1/2)/T"), which has a U-shape, and both

inflation rates have a pronounced inverted U-shape in the sample. Long-run movements
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in PCE and CPI inflation track each other closely and the 90% confidence interval shown
in Table 5 suggests that the long correlation is greater than 0.95. The long-run regression
of CPI inflation on PCE inflation yields an estimated slope coefficient that is 1.13 (90%
confidence interval: 0.98 < 3 < 1.24) suggesting a larger bias in the CPI during periods of
high trend inflation.

Long-run Fisher correlation and the real term structure: The next two entries in the
figure and table show the long-run covariation of inflation and short- and long-term nominal
interest rates. The well-known Fisher relation (Fisher (1930)) decomposes nominal rates into
an inflation and real interest rate component making it interesting to gauge how much of the
long-run variation in nominal rates can be explained by long-run variation in inflation. The
long-run correlation of nominal interest rates and inflation is estimated to be approximately
0.5, although the confidence intervals indicate substantial uncertainty. A unit long-run re-
gression coefficient of nominal rates onto inflation is consistent with data, but the confidence
intervals are wide.!® The next entry in the figure and table shows the long-run covariation
in short- and long-term real interest rates (constructed as nominal rates minus the PCE
inflation rate). Like their nominal counterparts, short- and long-term real rates are highly
correlated over the long-run (90% confidence interval: 0.80 < p < 0.98) with a near unit
regression coefficient of long rates onto short rates.

Money growth and inflation: An important implication of the quantity theory of money
is the close relationship between money growth and price inflation over the long-run. Lucas
(1980) investigated this implication using time series data on money (M1) growth and (CPI)
inflation for the U.S. over 1953-1977. After using an exponential smoothing filter to isolate
long-run variation in the series, he found a nearly one-for-one relationship between money
growth and inflation. The next entry in the figure and table examines this long-run relation
using the same M1 and CPI data used by Lucas, but over the longer sample period, 1947-
2015. Figure 5 shows the close long-run relationship between money growth and inflation
from the mid-1950s through late 1970s documented by Lucas, but shows a much weaker (or
non-existent) relationship in the post-1980 sample period, and over the entire sample period

the estimated long-run correlation is only 0.12 with a 67% confidence interval that ranges

10These estimates measure the long-run Fisher “correlation,” not the long-run Fisher “effect”. The long-
run Fisher correlation considers variation from all sources, while the Fisher effect instead considers variation
associated with exogenous long-run nominal shocks (e.g., Fisher and Seater (1993), King and Watson (1997)).
A similar distinction holds for the Phillips correlation and the Phillips curve (King and Watson (1994)).
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from -0.17 to 0.54.

Long-run Phillips correlation: The next entry summarizes the long-run correlation be-
tween the unemployment and inflation. The estimated long-run Phillips correlation and
slope coefficient are positive, but p = § = 0 is contained in the 67% confidence interval.
That said, the confidence intervals are wide so that, like the Fisher correlation, the data are
not very informative about the long-run Phillips correlation.

Unemployment and productivity: Panel (g) of the figure investigates the long-run co-
variation of the unemployment rate and productivity growth. The large negative in-sample
long-run correlation evident in the figure has been noted previously (e.g., Staiger, Stock,
and Watson (2001)); the confidence intervals reported in Table 5 show that the correlation
is unlikely to be spurious. There is a statistically significant negative long-run relationship
between the variables. A long-run one percentage point increase in the rate of growth of
productivity is associated with an estimated one percentage point decline in the long-run
unemployment rate. We are unaware of an economically compelling theoretical explanation
for the large negative correlation.

Real returns and consumption growth: Consumption-based asset pricing models (e.g.,
Lucas (1978)) draw a connection between consumption growth (as an indicator of the in-
tertemporal marginal rate of substitution) and asset returns. A large literature has followed
Hansen and Singleton (1982, 1983) investigating this relationship, with varying degrees of
success. Rose (1988) discusses the puzzling long-run implications of the model when con-
sumption growth follows and I(0) process and real returns are /(1) (also see Neely and
Rapach (2008)), but moving beyond the 7(0) and /(1) models, it is clear from the empirical
results reported above that both consumption growth and real interest rates exhibit substan-
tial long-run variability. The next two entries in the figure and table investigate the long-run
covariability between consumption growth and and real returns; first using real returns on
short-term treasury bills and then using real returns on stocks. Both suggest a moderate
positive long-run correlation between real returns and consumptions growth rates, although
the confidence interval is wide (90% confidence range from just below zero to 0.80).

Stock Prices, Dividends, and Farnings: Present value models of stock prices imply a close
relationship between long-run values of prices, dividends, and earnings (e.g., Campbell and
Shiller (1987)). An implication of this long-run relation in a cointegration framework is that
dividends, earnings, and stock prices share a common /(1) trend, so that their growth rates

are perfectly correlated in the long-run and the dividend-price or price-earning ratio is useful
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for predicting future stock returns. This latter implication has been widely investigated
(see Campbell and Yogo (2006) for analysis and references). The next two entries show
the long-run correlation of stock prices with dividends and with earnings.!! While there
is considerable uncertainty about the value of the long-run correlation between prices and
dividends or earnings, the data suggest that the correlation is not strong. For example,
values above p = 0.43 are ruled out by the 67% confidence set and values above 0.72 are
ruled out by the 90% sets.

Long-run PPP: The final entry shows results on the long-run correlation between nominal
exchange rates (here the U.S. dollar/British pound exchange rate from 1971-2015) and the
ratio of nominal prices (here the ratio of CPI indices for the two countries). Long-run PPP
implies that the nominal exchange rate should move proportionally with the price ratio over
long time spans, so the long-run growth rates of the nominal exchange rate and price ratios
should be perfectly correlated. A large literature has tested this proposition in a unit-root
and cointegration framework and obtained mixed conclusions. (See Rogoff (1996) and Taylor
and Taylor (2004) for discussion and references). From the final row of Table 5, the growth
rate of nominal exchange rates and relative nominal prices are positively correlated over
the long-run, statistically significantly so at the 33% significance level, but the correlation
is far from perfect (p < 0.72 based on the 90% confidence set). We highlight two caveats.
First, we use the post-Bretton Woods sample period, so the sample includes only 45 years,
and using ¢ = 12 cosine terms the long-run projections capture variability with periods of
(approximately) 7 years or higher. This 7-year period may be sufficiently short that long-run
adjustments have not occurred, something we investigate in the next section. Second, the
price ratio uses relative CPls, a large component of which includes non-traded goods which

may be less tightly linked to exchange rates than prices of traded goods.

6 Alternative measures of long-run covariability

The empirical results in the last section relied on covariance measures associated with pro-
jections of the data onto ¢ = 12 cosine functions capturing periodicities of 7'/6 or higher,
where T is the length of the sample. Using data from 1948-2015 (7" = 68 years) this analysis

used periods longer than 11 years to define “long-run” variation and covariation. While 11

"'The data are for the S&P, and are updated updated versions of the data used in Shiller (2000) available
on Robert Shiller’s webpage.
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Figure 6: Long-run projections for GDP and consumption growth rates for different periodicities

(a) Periods greater than 23 years 4 (b) Periods between 11 and 20 years
—GDP

0 s T 0l o
1950 1960 1970 1980 1990 2000 2010 2020 1950 1960 1970 1980 1990 2000 2010 2020
(c) Long-run projection coefficients (d) Long-run projection coefficients
0.6 0.6 16.9
5 04 452 1355 & 04 |
a a
E 02 £ 02 19.4
3 226 2 13.6
[} [} »
c 0 67.8 c 0 12.3
3 271 ' 8
O 9o ] 02 113
33.9 15.1
0.4 : : 0.4 ‘ : ‘
0.4 -0.2 0 0.2 0.4 0.6 -0.4 -0.2 0 0.2 0.4 0.6
GDP GDP

Notes: Panel (a) plots the projections of the data onto six cosine terms with periods 23-136 years. Panel
(b) shows the projections onto six low-frequency terms with periods 11-19 years. Sample means have
been added to both sets of projections. Panels (c¢) and (d) are scatterplots of the coefficients (cosine
transforms) from panels (a) and (b) where the plot symbols are the periods (in years) of the associated
cosine function.

years is longer than typical business cycles, it does incorporates periods corresponding to
what some researchers refer to as the “medium run” (Blanchard (1997), Comin and Gertler
(2006)). In this section we consider measures of long-run covariability that focus on a subset
of the ¢ periods. This allows a comparison of, say, results from periods corresponding to the
“medium-long run” and to those from the “longer-long run.”

To motivate the new measures, look again at Figure 2.a which plots the projections of
GDP and consumption growth rates onto ¢ = 12 cosine regressors with periods that range
from T/6 (=~ 11 years) to 27" (136 years). Figures 6.b and 6.c show the corresponding
projections onto the first ¢; = 6 of these cosine terms (with periods from 7'/3 ~ 23 years to
2T = 136 years) and last g2 = 6 cosine terms (with periods 7'/12 ~ 11 years to 27'/7 ~ 19

years). The first of these captures the longer-long-run variation in the data, and the second
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captures the medium-long-run variability. Each can be studied separately. To differentiate

these periodicities, we replace equation (4) with

Lt ~ ~ o
~ Tigt Yigt =
Yijt

where the subscript “i : ;7 notes that the projection is computed using the i through j

! !
XiirXijr XijrYijr

Y X Y! Y (14)
iig, 7>y, T g, T4 g, T

T
Qjr=T"'> E
t=1

cosine terms (i.e., the ¢ through j columns of ¥7) corresponding to periods 27'/j through
2T /i. Thus the longer-long-run periodicities shown in Figure 6.a correspond to the covariance
matrix Q.6 (the first 6 cosine terms) and the medium-long-run periodicities in Figure 6.b
correspond to €27.10 7 (the 7-12th cosine terms).

Throughout the paper we have used ¢ to denote the number of low-frequency cosine
terms that define the long-run periods of interest (perhaps divided further into longer-long
and medium-long). But ¢ plays another important role in the analysis. The value of Q (or
now £;.;) ultimately depends on the variability and persistence in the stochastic process as
exhibited in the local-to-zero (pseudo-) spectrum S,. This spectrum is parameterized by
(A, B, c,d); see equation (8). We learn about the value of these parameters (and therefore
the value of €2) using the data (Xi., 1, Y1.qr). Thus, ¢ also denotes the sample variability in
the data that is used to infer the value of the long-run covariance matrix €2. So, while our
interest might lie in the longer-long-run covariability captured in €2;., the sample variability
in (X127, Y1.127) might be used to learn about §2;.6. While it is arguably most natural to
match the variability in the data used for inference to the variability of interest, for example
using (X1..7, Y1.7) to learn about €2y, if the (A, B, ¢, d) model accurately characterizes the
spectrum over a wider frequency band, then variability over this wider band can improve
inference. But of course using a wider frequency band runs the risk of misspecification if
the (A, B,¢,d) model is a poor characterization of the spectrum over this wider range of
frequencies. This is the standard trade-off of robustness and efficiency.

With these ideas in mind, Table 6 shows results for long-run correlation and regression
parameters from €y.12, 1.6, and §27.12, corresponding the periods 7'/6 and higher, 7'/3 and
higher, and 7'/6 through 27'/7. Results are shown using inference based on the same ¢ = 12
cosine transforms used in the sections above, but also using ¢ = 6, so only lower frequency
variability in the data is used to learn about (A, B, ¢, d), and with ¢ = 18, so higher frequency
variability is also used. Table 6.a shows results for long-run covariability of GDP, consump-

tion, investment, labor compensation, and TFP. Table 6.b shows results for selected long-run
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relationships involving the other variables. (Results for all the pairs of variables shown in
Table 5 are available in the supplementary appendix.)

The first block of results in Table 6.a are for consumption and GDP. The first row repeats
earlier results using the ¢ = 12 cosine terms to learn about €);.; with ¢ = 1 and j = 12. The
other rows are for other values of ¢, 7, and j. The results suggest remarkable stability across
the different values of ¢, i, and j. Figures 6.c and 6.d provides hints at this stability. It
shows the scatter plot of (X167, Y1.61) and (X727, Y7.12,1) corresponding to the projections
plotted in panels 6.a and 6.b. The scatter plots corresponding to the different periodicities
are quite similar, and this is reflected in the stability of the results shown in Table 6. This
same stability across ¢, 7, and j is evident for the other pairs of variables in Table 6.a. Looking
closely at Table 6.a, there are subtle differences in the rows. For example, the confidence
intervals for the parameters from {21.15 tend to be somewhat narrower using ¢ = 18 than
using ¢ = 12, consistent with a modest amount of additional information using a larger value
of q. The same result holds for results for 2;.¢ computed using ¢ = 6 and ¢ = 12.

The results summarized in Table 6.b show much of the same stability as Table 6.a, but
there are some notable differences. For example, the point estimates suggest a somewhat
larger Fisher correlation over longer periods (greater than 23 years) than over shorter periods
(11 to 19 years), and the same holds for stock prices and dividends. In both cases however,
the confidence intervals remain wide. And, the puzzling negative correlation between the
unemployment rate and TFP appears to be stronger over the longer-long run than over the

medium-long run.

7 Concluding remarks

This paper has focused on inference about long-run covariability of two time series. Just as
with previous frameworks, such as cointegration analysis, it is natural to consider a gener-
alization to a higher dimensional setting. For example, this would allow one to determine
whether the significant long-run correlation between the unemployment rate and productiv-
ity is robust to including a control for, say, some measure of human capital accumulation.
Many elements of our analysis generalize to n time series in a straightforward manner:
The analogous definition of €21 is equally natural as a second-moment summary of the covari-
ability of n series, and gives rise to corresponding regression parameters, such as coefficients

from a n — 1 dimensional multiple regression, corresponding residual standard deviations
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and population R?s.'> Multivariate versions of {27 can also be used for long-run instrumen-
tal variable regressions. As shown in Miiller and Watson (forthcoming), the Central Limit
Theorem that reduces the inference question to one about the covariance matrix of a mul-
tivariate normal holds for arbitrary fixed n. The (A, B, ¢, d) model of persistence naturally
generalizes to a n dimensional system. And, confidence sets for multiple regression para-
meters satisfy natural invariance and equivariance constraints, which reduces the number of
effective parameters.

Having said that, our numerical approach for constructing (approximate) minimal-length
confidence sets faces daunting computational challenges in a higher order system: The
quadratic forms that determine the likelihood require O(n?q?) floating point operations.
Worse still, even for n as small as n = 3, the number of parameters in the (A, B, ¢,d) model
is equal to 21. So even after imposing invariance or equivariance, ensuring coverage requires
an exhaustive search over a high dimensional nuisance parameter space.

At the same time, it would seem to be relatively straightforward to determine Bayes
credible sets also for larger values of n: Under our asymptotic approximation, the (A, B, ¢, d)
parameters enter the likelihood through the covariance matrix of a ng x 1 multivariate
normal, so with some care, modern posterior samplers should be able to reliably determine
the posterior for any function of interest. Of course, such an approach does not guarantee
frequentist coverage, and the empirical results will depend on the choice of prior in a non-
trivial way. In this regard, our empirical results in the bivariate system show an interesting
pattern: Especially at a lower nominal coverage level, for many realizations, there is no
need to augment the Bayes credible set computed from the bivariate fractional model. This
suggests that the frequentist coverage of the unaltered Bayes intervals is not too far below
the nominal level, so these Bayes sets wouldn’t be too misleading even from a frequentist
perspective.’?  While this will be difficult to exhaustively check, this pattern might well

generalize also to larger values of n.

2Miiller and Watson (forthcoming) provide the details of inference in the I(0) model.
13In fact, a calculation analogous to those in Table 2 shows that the 67% Bayes set contains the true value

of p =0 at least 64% of the time in the bivariate (A, B, ¢, d) model, and the 95% Bayes set has coverage of
83%.
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Supplementary Appendix to
Long-Run Covariability
by Ulrich K. Miiller and Mark W. Watson

This appendix provides supplemental material. Section 1 discusses the form of the con-
fidence sets; section 2 derives the necessary densities; section 3 discusses the numerically
determined approximate least favorable distributions; the data are described in section 4,

and section 5 includes an expanded version of the paper’s Table 6.

1 Form of Confidence Sets

For each of the three sets H?, H? and H?, we exogenously impose that they contain the
(1 — a) equal-tailed invariant credible set relative to the prior F', as suggested by Miiller
and Norets (2016). Denote this credible set by Hj, i € {p,3,0}. Specializing Theorem 3
of Miiller and Norets (2016) to the three problems considered here yields the following form
for the three type of confidence sets:

H?: Let X* = X/VX'X and Y* = Y/VY'Y, and let (2% y°|f) be the density of
(X*,Y*) under 6 € ©.* Then

[ 1[g7(8) < )@,y 19)dF (9)
7@,y |9)dF (@)

Ho(z,y) = { [ e oave) > [ re o >}UH5<x,y>

He(z,y) = {r:a/2§ gl—a/z} (A.1)

where W is the weighting function over which expected length is minimized and the family
of positive measures A? on ©, indexed by r € (—1,1), are such that A?({f : ¢g”() # r or
Py(g”(0) € H(X,Y)) >1—a}) =0 and Py(g°(d) € H*(X,Y)) >1—« for all f € O.

4Here and in the following, we distinguish between random variables and generic real numbers by the
usual upper case / lower case convention. We also implicitly assume the same functional relationship between
the random variables and their corresponding real variables, if appropriate. For example, (z°,3°) on the
right hand side of (A.1) is implicitly thought of as a function of (z,y).



HP: Let the ¢ — 2 vectors X* and Y*, and X, Ui, Ur2, Uxe € R be such that
1 1 U U
x)=|| xz |, o ( e ) ,
0 U
X* Y*

that is, perform the LDU decomposition of the upper 2 x 2 block of the ¢ x 2 matrix (X, Y).
Let Z* = (X, X*,Y*)". Then

Ho(r.y) — {b:a/2§ff [l < w] fy (7, w|9)dwdF(9)§1_a/2}

BRGLIR0
H(z.y) = &w/%%ﬂmﬁ<WdW > [

“ =200 (0) | U A o)
U2z
where f7(2*|0) is the density of Z* under 0, h?(2*|0) = Ep[|Use/Uni||Z* = 2*], f2(2*,w|0)
is the density of the 2¢ — 2 vector (Z*, (U119 (0) — Uya)/Usz)’ under 0, and A? is a positive
measure on © such that A°({0 : Pp(¢?(0) € HP(X,Y)) > 1 —a}) = 0 and Pp(g°(0) €
HP(X,Y)) >1—aforall § € O.
He:

T (= 10aF )
H%w)z{a/MMWﬂ 0avo) > [ 6= wwﬁu%mm

where h?(2*|0) = E[|Us||Z* = 2z*] under 6, f§(z*,w|f) is the density of the 2¢ — 2 vector
(Z*,9°(0)/|Uss|) under 6, and A? is a positive measure on © such that A7({0 : Py(g7(0) €
H?(X,Y))>1—a})=0and P(¢°(f) € H(X,Y)) > 1—aforall § € O.

It remains to derive f*, ff, fih®, fih°, foﬁ and f¢, and to determine A?, A® and A°.

Hf(z,y) = {s caf2 < ffl[“” < wlfs (2, wlf)dwdF(6) <1 —04/2}

2 Densities of Maximal Invariants and Related Results

2.1 Preliminaries

As we show below, most densities of interest involve integrals of the form

1 [ [*® s / a®>  abr s
- P1P2 _1 dsdt
W/o/os eXp[2<t><abr 62><t>]5

2



1 [ [
=t [ el (6t —arst - )asad
T Jo 0

_ am—lbpz—l/ tpqu(‘/l _ 7~2t)/ splgb(s — ’I“t)dsdt
0 0

for nonnegative integers p; and ps, positive reals a,b, and —1 < r < 1, with ¢ the p.d.f. of

a standard normal distribution. Note that

/ / s[P[t[P? exp|—3 ( ) ( 5; abb; ) ( i >]dsdt

r) + 2Q(—r).

We initially discuss how to obtain closed-form expressions for Q(r). The resulting explicit
formulae for densities, even after simplification with a computer algebra system, are long

and uninformative, and they are relegated to the replication files.

Lemma B.1 Let ® be the c.d.f. of a standard normal random variable.
(a) With By(m) = [°._¢(s —m)sPds, we have By(m) =1, Bi(m) = m and

Bp+2(m) =(p+ 1)Bp(m) + me+1(m),'

(b) With Li(h) = g ["_ é(s)s'ds,

/ : é(s + h)sPds = ®(h) :O <Z;> (—h)P~1,(h)

and Io(h) =1, I,(h) = =¢(h)/®(h) and I,(h) = =h*~'¢(h)/®(h) + (p — 1)Ip-2(h);

(0) VI J° 6T T Es)svds = 8T (1 + p/2)(1 + )2/,

(d) With Ay(r) = 2m [;° gb(s)fb(\/l’"_ﬁs)spds, Ag(r) = m—arccos(r), Ay (r) = /7/2(1+7),
and

Apia(r) = (p+ 1A, (r) +T(1 + p/2)2P2r(1 — 1%)3+P)/2,

Proof. (a) By integration by parts and ¢'(s) = —sa(s)

/Z ¢(s —m)sds = /Z(S —m)p(s —m) ey

p+1

and the result follows.
(b) See Dhrymes (2005).



(c) Immediate after substituting s* — w from the definition of the Gamma function.

(d) Define A,(c) = 2r J o (s)@(cs)spds, so that A,(r) = A,(r/v/1—72). Note
that A,(0) = 7 [ ¢(s)sPds, anNd Ale) = dAy(c)/de = 2 [[° ¢(s)d(cs)sPHids =
V2T fo \/1 + s )sp“ds. Now A,(c) = A,(0) + fo Al(u)du. The results for Ay(r) and
A;(r) now follow by applying (c) and a direct calculation. For the iterative expression, by

integration by parts and ¢'(s) = —sd(s)

Ae) = [zm(s)q)(cs);pﬂh _on /O T o(es)0(s) — s6(s)D(es))ds

+1 p+1
1

— g (At = evar [ oI @)

p+1

and the result follows from applying part (c). =
Now by Lemma B.1 (a),

\/% /00 Pt exp[—1(s — rt)?*]ds = Cy(rt) — /0 (s —rt)sPds
m™Jo —00

for some polynomial Cy whose coefficients may be determined explicitly by the formula in

Lemma B.1 (a). Furthermore,

/_ (s —rt)sPrds = ¢(rt)Cy(rt) + (rt)Co(t)

for some polynomials C'; and C5 that may be determined explicitly by the formula in Lemma

B.1 (b). The remaining integral over dt is of the form

/ T (VTS0 [Colrt) — G(rt) O (rt) — B(rt)Ca(t)dt

0

- (- // o0 o=

5/2-1
R / #(t) \/1—7“2

which can be determined explicitly by applymg Lemma B.1 (c)-(d).

dt——/ o)t C (rt)d
t)dt

)tpz 02 (

In the following, we simply write 3 for the covariance matrix of vec(X,Y’), keeping the
dependence on  implicit. If not specified otherwise, all integrals are over the entire real line.

Also, denote the four ¢ x ¢ blocks of the inverse of ¥ as

»l= ( e Sy ) :
Ye Ty



2.2 Derivation of f*
Let S, = VX'X and S, = VY'Y. Write y,; for Lebesgue measure on R', and v, for the

surface measure of a ¢ dimensional unit sphere. For z € RY, let x = 2°s,., where x® is a point
on the surface of a ¢ dimensional unit sphere, and s, € R*. By Theorem 2.1.13 of Muirhead
(1982), dp,(x) = s dvg(2*)dp, (sz). We thus can write the joint density of (X*, Y, S,,5,)

with respect to v, X vy X (1 X p1; as

!/
(2m) 7 det |2 exp[—4 [ T ) = T st tse !
Y Sy Y Sy

!
Sy D U e D D T Sy
— (27) | det £/ exp[—1 Tt E gl Jsg g0
Sy (TR e VD SR Sy

and the marginal density of (X*,Y*)" with respect to v, X v, is

/
(e ] oo . s/zf S s/zf S .
(27T)_q| det E|_1/2 / / exp[—% ( S > < xs,z‘imxs xs/za_jyys > ( S ) ]Sg_lsg_ldsxdsy-
0 0 Sy Yy yxx Yy yyy Sy

2.3 Derivation of f;

Un U
With XT = (1, X7, X*), YT =(1,0,Y*"Y and U= | = ' |, we have
(X,Y) = (xtyhu
Ull U12
= Un Xy UpX] + U
UHX* U12X* + UQQY*

This equation, viewed as a R* — R2?? function of T* = (X*,Y* X}, Uiy, Ups, Uy) has

Jacobian determinant U% U, ?, so that the density of T* is

fr(t*) = (2m)79(det )72 |y |7 uge| 972 exp[— 1 (vee 2Tu) 27 (vec 2fu)] (A.2)

1
2

with 2T = (2f,y"), and we are left to integrate out w;;, uio and ugy. Using vec(zfu) =

(I, ® z') vec(u), we have

vec(zlu) S vec(zu) = vec(u)[(Io ® 2') S NI, ® 21)] vec(u)



Ui U1

] oo A0\ (5 o5, \ [ Ao 0
U12 0 zf Zgj:c E;y 0 zf U12

U22 U2
/

Ui L Yl . : U1y

U12 xT’Z;;ExT yT’Ey’yﬂ xT’Zy’yxT U192

/
B U V v U
U1y vovR Up2
LA Ymitcll yT’Z;x:CT ) o
)

x Ey_yxT. Furthermore, by “completing the square”,

/GXP[—% B . U2 “ Jduis = v2muy* exp[—%ﬁ'(V — v’ /g l]
U12 (OO U12

and with V = V — v/ /v, we obtain

/
F:7) = ) 1ot 52 [ [t ual? expl-4 ( o ) 4 ( . >1dundu22.
22 22

2.4 Derivation of f;h”

where @ = (upr,u), V = = (aV%,, 2", y"S, 2") and of =

We have
hﬁ(Z*m) = Ep[|Us/Un||Z" = 27]
- fff|2ﬁ’fT t* dulgdulldu22
fi(z)
Thus, proceeding as in the derivation of f; yields

2'10) f7 (2710)

U
= ///| 22|fT* dU12du11dU22

!
= (2m) "2 (det £)" 0y //!Un!q ul expl—4 [ ) V() Jdusiduns.
U2 U2



2.5 Derivation of f{h°

Proceeding analogously to the derivation of f;h”, we obtain

Z'10) 11 (2710)

= ///|U22’fT* dU12dU11dU22

/
= Cry e ) gt [ [ Nl el () (s
U2 U2

2.6 Derivation of foﬁ

With Wﬁ = (U1196<9) — Ulg)/UQQ, we have

gn - gn - U
22 = , 22 , = A%;V(Af
Uiz Ung (9) — UpW

with U = (Uyy, Usy) and Ay = (¢°(0), —=W¥)'. This equation, viewed as R? — R3 function

pYR7
of (U1, Usa, W5), has Jacobian determinant equal to —Us,. Thus, with u,, = ( di Ayt > ,

0 U22
the joint density of (Z*,W#) can be written as

/ /(27r)q(det 2) 2 gy |7 uge |1 exp[— 3 (vee 2wy, ) S (vee 2wy, ) dus s duss.

Now similar to the derivation of f},

!/
) . )
(vee ztu, )57 (vee 21uy) = ( ;“) ( ' 1;)( ?)
wl v Uy )\wu
LY [V I
Thus, with V,, = [ 2 § 2,
A\ vl AL

£5 (2", wlf) = (2m)79(det E)_w// 1| uge| " exp[—3 ( o ) Vi ( o )]dulldU2z-

U22



2.7 Derivation of f{

Let W7 = ¢7(0)/Usy, so that W7 = |W°|. Let fg(z*,%7|6) be the joint density of (Z*, W).

Then fJ(z*,w’|0) = fS(2*,w?|0) + fo(2*, —w’|0), so it suffices to derive an expression for

g
We have
Ui Uit
Uy | = g”(@)/VV"
Utz Uiz

This equation, viewed as R® +— R3 function of (Uyy, Uje, W), has Jacobian determinant
U1 Uy

equal to —g%(0)/W°2. From (A.2), with uf = 2
0 g7(0)/u”

), the joint density of
(Z*,W?) can thus be written as
(27)9(det E)1/2|U~JU|q\g”(9)1q1//\u11\q1 exp|—1 (vec zTug) S (vec 2'ug, )| duraduss.

Now similar to the derivation of f;,

!/

U1 U1
1%
(vec 2Tul )Y (vec 2Tug) = | ¢7(0)/u” ( . v2 > 9°(0)/w°

v g
U12 U2
and
U1 v U1
/exp[—% g°(0)/w°’ ( R ) g’ (0)/uw° |]duis
v g
U192 U2
= V2mv, ! exp|—3 i (V — o' Jug) uu ]
" 2\ g7 0)/ar g7 (0) /@
so that

f5 (%, 0710) = (2m) T2 (det £) 7127 ()| @7~y

X/WW“w‘<f@mw>v<f@mw)m”



Furthermore, with ¢ the 4,jth element of V, by = 012¢°(0)/(070y) and G, =
U9a(g°(0) /7)?

!
_ U1 ~ U1
|11 |? 1exp[—1 - vV N ]dull
/ 2\ g7(0)/a° 9°(0) /@
= / |U11|q71 exp[—%(ﬁflufl + waﬁnun + afv)]dun
= 0 / |w| exp[—1(w® + 2b,w + al)]dw
— iexpl-d(ad — 82)] [ ful expl-4(w+ b e

For ¢ — 1 even, a closed-form expression for the integral follows from Lemma B.1 (a). For
q — 1 odd, note that
0

/ |w|q1exp[—%(w+bw)2]dw:/ Wit exp[—%(w+bw)2]dw—2/ wi ™ exp[—1 (w+by, )?]dw

o0 —00 —00

so that a closed-form expression can be deduced from Lemma B.1 (a) and (b).

3 Determination of Approximate Least Favorable Dis-

tributions

3.1 Overview

The algorithm is a modified version of what is suggested in Elliott, Miiller, and Watson
(2015). Let the set ©. = {01,...,0,,} C O be a candidate support for the least favorable
measure A., which is fully characterized by the m nonnegative values \; it assigns to 0; € O..
Denote by H,, the corresponding confidence set of the form described in Section 1.1> We
determine \; by an iterative procedure, starting with equal mass on all m points, and then
adjusting \; as a function of Py, (g(0;) ¢ Hy.(X,Y)). In each iteration, ); is increased if
Py, (g(0;) &€ Ha(X,Y)) > a — € and decreased if Py, (g9(0;) ¢ Hp (X,Y)) < a — ¢, until
numerical convergence to the measure A’. The parameter € > 0 induces slight overcoverage

of Hy» on O, so that even with an imperfect candidate ©. (and numerically determined A),

5Here and below, we omit the superscripts p,  and o if the statement applies to all three types of

confidence sets.



it is possible that H. has coverage uniformly on ©. This is checked by a numerical search
for the maximum of the © — [0, 1] non-coverage function RP(0) = Fy(g(0) ¢ Ha:(X,Y)).
To this end, it is particularly convenient to employ an importance sampling approximation
to RP(0), which generates a continuously differentiable approximation, so that standard
gradient search algorithms can be employed. If these searches (using random starting points)
do not yield a maximum above «, a nearly (up to the paramter ¢ > 0) optimal least favorable
measure A’ has been determined. If the searches yield a 6 for which RP(6y) > «, then this
0y is added to the candidate set ©., and the algorithm iterates.

For the confidence set H”, we seek a family of measures A? that, for each r € (—1,1),
have support on the subspace of ©, = {0 : ¢g*(d) = r}. We discretize this problem into a
finite number of values of r. For each given r, we apply the above algorithm, except that
the non-coverage function RP(#) now only needs to be searched over ©,..

We discuss details in the following subsections.

3.2 Parameterization

Since the algorithm involves optimization over © (or ©,), it is convenient to introduce a
reparameterization so that this search can be conducted in a unit hypercube. The (A, B, ¢, d)
model is described by 11 parameters. The restriction to invariant sets reduces the number of
effective parameters to 11 —3 = 8 for H% and H°, and the combination of the bivariate scale
invariance and the restriction ©, = {6 : g?(0) = r} also makes O, effectively 8 dimensional.
The effective parameter space can hence be covered by a [0, 1]® — © function. In particular,

given n = (1, ...,ng) € [0,1]3, we set

¢ = 2(200)"%7' d; = —0.4+ 1.4n,,,
™ = (275 — 1) min(\/n6n7, \/(1 — 1) (L —147)), % = TTg

B = Rchol ( Te o ) , A= Rchol(I, — BB)O(¢,)Sea

Ty N7

where chol(-) is the Choleski decomposition of a matrix, O(¢,) is the 2 x 2 rotation matrix
for the angle ¢,, and S.q = diag(\/q/ tr Sx(c1, dy), \/q/ tr Xx(ca, d2)), with Xx (co, do) the
q X q covariance matrix of X in the (A, B,¢,d) model when A = I,, B = 0, ¢; = ¢y and

dy = dy (so Xx(co,dp) is the covariance matrix in the scalar ¢, d model employed in Miiller
and Watson (2016) without additional white noise). For H” and H?, we set R = I,. For

10



1
H? we enforce 6 € O, by setting R = chol . The lower and upper bounds for c¢;
r

and ¢, of 0.01 and 400 are such that the distribution of (X,Y") from the resulting X x(c;, do)s
is nearly indistinguishable from the distribution under the limits ¢; — 0 and ¢; — oo.

The rationale of this parameterization is that under the equivariance governing H” and
H?, it is without loss of generality to consider the case where Q(f) = ¢ls. Now both
A = O(¢,)Sca and B = 0, as well as A = 0 and B = I, induce Q(f) = ¢l with (27)*
as the factor of proportionality for the local-to-zero spectrum S, (w) given in the text. The
parameterization of BB’ in terms of (75,74, 1)7) exhaustively describes all decompositions of
I, = BB' + (I, — BB') into two positive semidefinite matrices BB’ and (I, — BB’). Under
the bivariate scale invariance governing H”, it is without loss of generality to consider the

1 14
g°(0) ), and on ©,, g?(0) = r.

case where Q(0) =
g°(0) 1

3.3 Computation of (0)

Gradient methods require fast evaluation of the likelihood for generic €, which depends
on X(6). We initially compute and store the ¢ x ¢ matrices ¥ x(co, dp) introduced in the
last subsection for all combinations of the values ¢y € {2(200)%/0~1}2° and dy € {—0.4 +
1.41/40}%, using the algorithm developed in Miiller and Watson (2016). For a general 6, we
then compute Xy (c¢;,d;) and Y x(c,ds) by two-dimensional quadratic interpolation of the

matrix elements, and construct 3(6) via

Ex(cl,dl) 0

E(0) =(A® 1) < Yx(ca, da)

) (A 1,) + (BB'®1,).

3.4 Importance Sampling

For H”, the approach is exactly as described in Elliott, Miiller, and Watson (2015), that is

we employ the importance sampling approximation

) Y 0
Pg(6) ¢ Hj.(X,Y) 12 7 Xsf(')) 9°(60) & HE (X0, V)l (A3)

for some proposal density f;, where (X( ),Y(z)) are i.i.d. draws from f;. For given r, this

obviously induces a smooth approximating function on ©,., since for all 6 € ©,, g(0) = r,
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so that the indicator function does not vary with 6. In fact, for given H X:" it suffices to
compute the sum over those i where r ¢ H{. (X} (i Y(3)), no matter the value of 0 € O,.

For H”, note that by equivariance, the event ¢°(0) € H A : (X,Y) is equivalent to W# =
(Ung?(0) — Ura) /Uny € Hy, (X1, YT), where Xt = (1, X5, X*) and YT = (1,0,Y*). Thus,
given that (XT,YT) are functions of Z*, we have

fO Z(z B|)
0 (25, W)

W, & Hy. (X[, Y]

(0 Yiiy)] (Ad)

Pi(g°(0) ¢ HY.(X.Y)) ~ N~ Z

for some proposal density ff , where (Zé), Wg)) are i.i.d. draws from ff . Analogously, for
HO'

S5 (20, W 10)

Pa(g°(0) ¢ HF.(X,Y)) = N_IZ To(Z5y, W)

WG & HL.(X[), Y1)l (A5)
with W7 = ¢7(3)/|Uss|. These approximation functions are again continuously differentiable

in 0, and for given H)j\*, it suffices to perform the summation over those ¢ where Wé) o
H, (XJWYT) j€{B,o}.

For the importance sampling approximations to work well, it is crucial that the proposal
density f, is never much smaller than f; for all § € © (or never much smaller than f* over
O, in the case of H”). Otherwise, the importance sampling weights fo(Z*, W|0)/f,(Z*, W)
have a large variance Var[fo(Z*, W10)/f,(Z*,W)] with (Z*,W) drawn from f,, leading to
imprecise approximations. It is not a prior: obvious how to construct such a proposal,
though, since the densities depend on the fairly high dimensional ¢ in a complicated way.

To overcome this difficulty, we employ the following iterative scheme to construct a
suitable f, that is a mixture of 400 values of §. For simplicity, we describe it only in the

notation that is relevant for H? and H°:

1. Select 100 initial points 6; based on a low-discrepancy sequence for n € [0,1]® of
subsection 3.2. For each 0, draw 200 ii.d. draws (Z(;), W(;) from fo(z*, w[f;).

2. While the number 6;-vectors is no larger than 400:

(a) Set f, to the equal probability mixture of the current set of ;s.

(b) Use a gradient search algorithm to find # that maximizes the empirical coun-

terpart of the importance sampling weight variance based on the current f, and

12



draws (ZE*Z.), W)). We use the larger of 2 BFGS searches starting from random

starting values.

(¢) Draw 200 iid. draws (Z7;), W) from fo(2*, w[fh), and add 6 to the set of 0;s.

To ensure unbiased importance sampling estimates, we discard the 400 x 200 draws of
(ZE"Z.), W) that were generated in this determination of f,, and redraw N = 250,000 i.i.d.
draws from f, for the actual computation of non-coverage probabilities via (A.3), (A.4) and

(A.5).

3.5 Computation of Credible Sets and Integrals over F'
F

70
uniformly distributed random variables are approximated by a low-discrepancy sequence. To

We approximate integrals over F' by a discrete sum over 1000 points 6., where jointly
ensure that (X,Y) and (X, —Y") have the exact same distribution under our approximation
of [ f(X,Y|0)dF(0), the 1000 points are split into 500 corresponding pairs.

Note that it is not necessary to compute the credible sets Hy for each realization of
(XG): (i) or Zj). Rather, it suffices to determine whether r € H{(XF,),Y;) or W) €
Hy(X (Tz.), Y(Jg)), respectively. Under the discrete approximation to [, it hence suffices to check
whether or not 1000 - -

Zj:l 1[9p(9j ) < T]f8<X(Sz‘)= Y(?)Wj )
S FXG) Y107)

(A.6)
and, for j € {3,0},
1000 j *
Y5 e < Wi foZy, wlb; )dw
SV FH(Z5,167)

take on values in the interval [a/2,1 — «/2], respectively. We compute the integral in (A.7)

(A7)

by numerical quadrature.

Since all three type of confidence sets always contain Hj, the realizations of (X (i) Y(j))
and (Zp, W(JZ)) for which (A.6) and (A.7) take on values between [a/2,1 — /2] never enter
the sums (A.3), (A.4) and (A.5) that approximate the non-rejection probabilities. The effec-
tive number of terms in the sums is thus greatly reduced, which correspondingly facilitates
computations. With this in mind, we modify the determination of the importance sampling
proposal by maximizing the (empirical analogue of the) variance of the importance sampling

weights conditional on the event g(0) ¢ Ho.

13



3.6 Approximate Least Favorable Distributions and Size Control

The initial candidate set ©,. consists of 10 randomly selected points in © (or in O, in the
case of H"). For given ©,, A% is computed by the algorithm described in Elliott, Miiller, and
Watson (2015), using a target value the level of 1 —a + €. We set € to 0.3%, 0.6% and 1.0%
for a = 5%, 10% and 33%, respectively. We search for coverage violating points by BFGS
maximizations over the importance sampling approximation to the non-coverage probability
function RP(#), using numerical derivatives and random starting values. We collect up to 10
coverage violating points in up to 100 BFGS searches before augmenting ©. and recomputing
A%, which is fairly time consuming, especially if ©, consists of many points. Once 100 BFGS
searches with up to 30 iterations each did not yield a violating point, we switch to BFGS
searches with up to 100 iterations. The algorithm stops once 500 consecutive BFGS searches

with up to 100 iterations each do not yield a coverage violating point.

3.7 Quality of Approximation and Time to Compute

With N = 250,000 importance sampling draws and the baseline case of ¢ = 12, the Monte
Carlo standard errors of non-coverage probabilities are approximately 0.1%-0.25% at the
5% level, 0.1%-0.35% at the 10% level, and 0.3%-0.5% at the 33% level. Using results in
Elliott, Miiller, and Watson (2015) and Miiller and Watson (2016), it is straightforward to
use the approximately least favorable distributions to obtain lower bounds on the F-weighted
average expected length of any confidence set of nominal level. We find that our sets are
within approximately 3% of this lower bound, so they come reasonably close to being as
short as possible under that criterion.

For ¢ = 12, a specific level a and problem, the determination of the approximately least
favorable measure A* takes approximately 10-20 minutes using a Fortran implementation on
a dual 10-core PC, and yields an approximate least favorable measure A* with approximately
30-100 points of support. Running times are roughly quadratic in ¢ due the 4¢® elements in
the quadratic forms of the likelihoods. Larger ¢ also lead to bigger Monte Carlo standard
errors of rejection probabilities, as the importance sampling now must cover an effectively
larger set of distributions of (X* Y*) and (Z*, W), respectively.

14



Table A.1: Data series used

Series

Sources and Notes (FRED Codes)

GDP, consumption,
investment, and

NIPA nominal values (GDP, PCDG, PCND, PCESV, GDPI, PNFI,
PRFI, Y033RC1QO027SBEA, COE) deflated by the price index for

employee personal consumer expenditures (PCECTPI). The variables are
compensation expressed in per-capita terms using the ¢ = 12 low-frequency
projection of civilian non-institutionalized population (CNP160V).
TFP Growth rate for TFP from Fernald (2014), updated from his

webpage.

Interest rates

3-Month Treasury bill rate (TB3MS) and 10-Year Treasury bond
rate (GS10)

Inflation Inflation from the personal consumption deflator (PCECTPI) and
consumer price index (CPIAUCSL)
Money supply M1 money supply (M1) from FRB beginning in 1959:M1. This is

linked to M1 (currency + demand deposits) from Friedman and
Schwartz (1963, Table A-1, Col. 7)

Unemployment rate

Bureau of Labor Statistics (UNRATE)

Stock returns

CRSP Nominal Monthly Returns are from WRDS. Monthly real
returns were computed by subtracting the change in the logarithm in
the CPI from the nominal returns, which were then compounded to
yield quarterly returns. Values are 400xthe logarithm of gross
quarterly real returns.

Stock prices, S&P composite prices, dividends, and earnings from Robert Shiller's
dividends, and webpage (file [E.XLS).
carnings

Exchange rates and
relative CPIs

Nominal exchange rate (EXUSUK) from the FRB, CPI for the UK
from the Bank of England (CPIUKQ) and U.S. CPI (CPIAUCSL)
from the BLS.

4 Data Used

The data and sources are listed in Table A.1.

5 Additional Empirical Results

An extended version of Table 6 is given below.
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