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Abstract

We develop inference methods about long-run comovement of two time series. The

parameters of interest are defined in terms of population second-moments of low-

frequency trends computed from the data. These trends are similar to low-pass fil-

tered data and are designed to extract variability corresponding to periods longer than

the span of the sample divided by 2, where  is a small number, such as 12. We

numerically determine confidence sets that control coverage over a wide range of po-

tential bivariate persistence patterns, which include arbitrary linear combinations of

(0), (1), near unit roots and fractionally integrated processes. In an application to

U.S. economic data, we quantify the long-run covariability of a variety of series, such

as those giving rise to the “great ratios”, nominal exchange rates and relative nominal

prices, unemployment rate and inflation, money growth and inflation, earnings and

stock prices, etc.
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1 Introduction

Economic theories often have stark predictions about the covariability of variables over long-

horizons: consumption and income move proportionally (permanent income/life cycle model

of consumption) as do nominal exchange rates and relative nominal prices (long-run PPP),

the unemployment rate is unaffected by the rate of price inflation (vertical long-run Phillips

curve), and so forth. But there is a limited set of statistical tools to investigate the validity

of these long-run propositions. This paper expands this set of tools.

Two fundamental problems plague statistical inference about long-run phenomena. First,

inference critically depends on the data’s long-run persistence. Random walks yield statistics

with different probability distributions than i.i.d. data, for example, and observations from

persistent autoregressions or fractionally integrated processes yield statistics with their own

unique probability distributions. The second problem is that there are few “long-run” obser-

vations in the samples typically used in empirical analyses of long-run relations, so sample

information is limited. Taken together these two problems conspire to make long-run infer-

ence particularly difficult: proper inference depends critically on the exact form of long-run

persistence, but there is limited sample information available to empirically determine this

form.

The most well-known example of faulty inference due to a mistaken assumption about

persistence is Granger and Newbold’s (1974) “spurious regression”, where standard OLS in-

ference leads to grossly misleading conclusions when applied to independent (1) variables.

The last 40 years has seen important progress developing inference for specific classes of sto-

chastic processes (most notably for (0) and integrated/cointegrated processes), but several

aspects of the resulting inference remains fragile. For example, while HAC standard errors

lead to reliable inference in (0) settings with limited serial correlation, the resulting hypoth-

esis tests exhibit substantial size distortions for stationary series with high serial correlation

(e.g., den Haan and Levin (1997), Kiefer, Vogelsang, and Bunzel (2000), and Müller (2014)).

Inference in cointegrated models is well-developed (e.g., Engle and Granger (1987), Johansen

(1988), Phillips (1991), Stock and Watson (1993)), but these models have knife-edge impli-

cations about long-run covariability (cointegrated variables have unit long-run correlations)

and efficient inference methods are not robust to small departures from the model’s assumed

exact unit autoregressive roots (Elliott (1998)). Variables that are highly but not perfectly

correlated in the long-run, or are highly persistent, but perhaps without exact unit roots,
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fall outside the standard cointegration framework.

This paper develops methods designed to provide reliable inference about long-run co-

variability for a wide range of persistence patterns (encompassing (0), (1), and many other

forms of long-run persistence) and that are applicable regardless of the degree of long-run

correlation. The methods rely on low-frequency averages of the data to measure the data’s

long-run variability and covariability. These long-run data summaries have proven useful for

constructing long-run covariance matrices and associated test statistics in (0) settings (e.g.,

Müller (2004, 2007), Phillips (2005), Sun (2013), and Lazarus, Lewis, and Stock (2016)),

but also for conducting inference about more general patterns of long-run persistence and

measuring uncertainty about long-run predictions (Müller and Watson (2008, 2016)). A key

simplification offered by these averages is that they are normally distributed in large samples

even though the stochastic process generating the data may exhibit substantial persistence

(Müller and Watson (forthcoming)). This allows large-sample inference about covariability

parameters to be transformed into a finite-sample problem involving a handful of normal

random variables and, while the inference problem is “non-standard,” it can be solved using

previously developed statistical methods paired with modern computing power.

The paper’s goal is to provide empirical researchers with an easy-to-use method for

constructing confidence intervals for long-run correlation coefficients, linear regression coeffi-

cients, and standard deviations of regression errors. These confidence intervals are both valid

over a wide range of persistence patterns and nearly optimal in the sense of having close to

shortest expected length (see Section 4 for details). As discussed in Section 3, the procedures

allow for (0), (1), near unit roots, fractionally integrated models, and linear combinations

of variables with these forms of persistence. Using a set of pre-computed “approximate least

favorable distributions”, the confidence intervals readily follow from the formulae discussed

in Section 4.1

The outline of the paper is as follows. The next section defines the notion of long-

run variability and covariability used throughout the paper. These are defined in terms of

population second moments of long-run projections, where these projections are similar to

low-pass filtered versions of the data (e.g., Baxter and King (1999)), Hodrick and Prescott

(1997)). The discussion is carried out in the context of two empirical examples, the long-

1The replication files contains a matlab function for computing these confidence intervals, available at

www.princeton.edu\~mwatson. The function uses the approximate least favorable distributions discussed in
Section 4 and the appendix, which are also available in the replication files.
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run relationship between consumption and GDP and between short- and long-term nominal

interest rates. In the long-run projections we employ, long-run variability and covariability

is equivalently captured by the covariability of a small number of trigonometrically weighted

averages of the data. Section 3 derives the large-sample normality of these averages and

introduces a flexible parameterization of the joint long-run persistence properties of the

underlying stochastic process. The large-sample framework developed in Section 3 reduces

the problem of inference about long-run covariability parameters into the problem of inference

about the covariance matrix of a low dimensional multivariate normal random vector. Section

4 reviews relevant methods for solving this finite sample problem. Section 5 uses the resulting

inference methods to empirically study several familiar long-run relations involving balanced

growth (GDP, consumption, investment, labor income, and productivity), the term structure

of interest rates, the Fisher correlation (inflation and interest rates), the Phillips correlation

(inflation and unemployment), PPP (exchange rates and price ratios), money growth and

inflation, consumption growth and real returns, and the long-run relationship between stock

prices, dividends and earnings. Section 6 examines the robustness of Section 5’s empirical

conclusions to changes in the periodicities defining the “long-run”, and to alternative choices

for the information set used for inference.

2 Long-run projections and covariability

2.1 Two empirical examples of long-run covariability

We begin by examining the long-run covariability of GDP and consumption and of short-

and long-term nominal interest rates. These data will motivate and illustrate the methods

developed in this paper.

Consumption and income: One of the most celebrated and studied long-run relation-

ship in economics concerns income and consumption. The long-run stability of consump-

tion/income ratio is one of economics’ “Great Ratios” (Klein and Kosobud (1961)); the

dynamic implications of this stability inspired early work on error-correction models (e.g.,

Sargan (1964) and Davidson, Hendry, Srba, and Yeo (1978)), and these in turn motivated

Granger’s formulation of cointegration (Granger (1981)). While early analysis provided em-

pirical support for the cointegration of consumption and income (e.g., Campbell (1987),

King, Plosser, Stock, and Watson (1991), Cochrane (1994)), more recent work has come
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to the opposite conclusion (see Lettau and Ludvigson (2013) for discussion and references).

Whether or not consumption and income are cointegrated (i.e., have an exact unit autore-

gressive root and exact unit long-run correlation), even a casual glance at the data suggests

the two variables move together closely in the long run.

Consider, for example, the evolution of U.S. real per-capita GDP and consumption over

the post-WWII period. In the 17 years from 1948 through 1964, GDP increased by 62%

and consumption increased by 52%. Over the next 17 years (1965-1981) both GDP and

consumption grew more slowly, by only 30%. Growth rebounded during 1982 to 1998, when

GDP grew by 43% and consumption increased 55%, but slowed again over 1999-2015 when

GDP grew by only 17% and consumption increased by only 23%. Over these 17-year periods,

there was substantial variability in the average annual rate of growth of GDP (2.9%, 1.4%,

2.1%, and 0.9% per year, respectively over the sub-samples), and these changes were roughly

matched by consumption (annual average growth rates of 2.5%, 1.5%, 2.6%, and 1.2%). In

this sense, GDP and consumption exhibited substantial long-run variability and covariability

over the post-WWII period.2

There are two distinct notions of “long-run” implicit in this calculation. The most obvious

is that each period makes up 17 years, approximately twice the length of the typical business

cycle. But another is that each period encompasses a large fraction (1/4) of the full 1948-

2015 sample period. Our statistical framework defines long-run in this latter way: long-run

statistical analysis involves inference about characteristics of stochastic processes that govern

the evolution of averages of the data over periods that are large relative to the available

sample.

With this is mind, the first two panels of Figure 1 plot the average growth rates of GDP

and consumption over six non-overlapping sub-samples in 1948-2015. Figure 1.a plots the

averages growth rates against time, and Figure 1.b is a scatterplot of the six average growth

rates for consumption against corresponding values for GDP. Each of the six sub-samples

contains 11.25 years (45 quarters), spans of history longer than the typical business cycle,

and arguably capture “long-run” variability in GDP and consumption. And, each represents

2Consumption is personal consumption expenditures (including durables) from the NIPA; Section 5 shows

results for non-durables, services, and durables separately. Both GDP and consumption are deflated by the

PCE deflator, so that output is measured in terms of consumption goods, and expressed in per-capita terms

using the civilian non-institutionalized population over the age of 16. The supplemental appendix contains

data sources and descriptions for all data used in this paper.
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a substantial fraction (1/6) of the sample and is a long-run observation in the statistical sense

discussed in the preceding paragraph. Average GDP and consumption growth over these

subsamples exhibited substantial variability and (from the scatter plot) roughly one-for-one

covariability.

Figure 1.c sharpens the analysis by plotting “low-pass” moving averages of the series

designed to isolate variation in the series with periods longer than 11 years.3 Sample variation

in these moving averages is much like the variation in the subsample averages of Figure 1.a,

but Figure 1.c captures the smooth transition of the series from high-growth to low-growth

periods. The scatterplot of these moving averages is plotted in Figure 1.d. Like Figure 1.b,

it shows the close relationship between long-run movements in consumption and GDP, but

it also shows the high degree of serial correlation in the moving averages.

A convenient device for handling this serial correlation is to use projections on low-

frequency periodic functions in place of the low-pass moving averages. To be specific, let ,

 = 1   denote a time series (e.g., growth rates of GDP or consumption). We use cosine

functions for the periodic functions; let Ψ() =
√
2 cos() denote the function with period

2 (where the factor
√
2 simplifies a calculation below), Ψ() = [Ψ1()Ψ2()    Ψ ()]

0

denote a vector of these functions with periods 2 through 2, and Ψ denote the  × 

matrix with ’th row given by Ψ ((− 12) )0, so the ’th column of Ψ has period 2.

Most of our empirical analysis uses  = 12 which captures periodicities longer than 6; this

defines the long-run variation in the data the analysis is designed to capture. The projection

of  onto Ψ ((− 12) ) for  = 1   yields the fitted values

b =  0
Ψ ((− 12) ) (1)

where  are the projection (linear regression) coefficients,  = (Ψ
0
Ψ )

−1Ψ0
1: , where

1: is the  × 1 vector with ’th element given by . The matrix Ψ has two properties

that simplify calculations and interpretation. First, Ψ0
  = 0 where  is a vector of ones,

so that b also corresponds to the projection of  − 1: onto Ψ ((− 12) ), where 1:
is the sample mean. Second, −1Ψ0

Ψ = , so  corresponds to simple cosine-weighted

3These were computed using an ideal low-pass filter for periods longer than 6 truncated after 2

terms. The series were padded with pre- and post-sample backcasts and forecasts constructed from an

AR(4) model.
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averages of the data (i.e., are the “cosine transforms” of {})

 = −1
X
=1

Ψ((− 12) ) (2)

Letting ( ) denote the growth rates of GDP and consumption, the long-run projec-

tions (b b) are plotted in Figure 2.a. Except for minor differences near the endpoints,
these long-run projections essentially coincide with the low-pass moving average plotted in

Figure 1.c, so both capture the same long-run sample variability in the data. An advantage

of the long-run projections is that they are fully summarized by the projection coefficients

(   ), a relatively small number of cosine-weighted averages of the sample data. Figure

2.b plots the projection coefficients, (   ) against the period of the corresponding co-
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sine term, 2. Evidently, there is substantial variation and covariation in the projection

coefficients. Indeed, the scatterplot of (   ) shown in Figure 2.c suggests a roughly

one-to-one relationship between the cosine transforms.

The orthogonality of the cosine regressors Ψ leads to a tight connection between the

variability and covariability in the long-run projections (b b) plotted in Figure 2.a and the
cosine transforms (   ) plotted in Figure 2.b and 2.c:

−1
X
=1

Ã bb
!³ b b ´ = −1

Ã
 0



 0


!
Ψ0
Ψ

³
 

´
=

"
 0

  0


 0
  0



#
 (3)

Thus, sample covariability in the time series projections coincides with sample covariability

in the cosine transforms.

Short-term and Long-term interest rates. The second empirical example involves short-

and long-term nominal interest rates, as measured by the rate on 3-month U.S. Treasury

bills, , and the rate on 10-year U.S. Treasury bonds, , from 1953 through 2015. The levels

of these interest rates are highly serially correlated, but the term spread, − , far less so.

Early cointegration work (e.g., Campbell and Shiller (1987)) modeled the level of interest

rates as (1), and short- and long-rates as cointegrated. Later empirical analysis of the term

structure (e.g., Dai and Singleton (2000), Diebold and Li (2006)) model the levels of interest

rates as a function of small number of dynamic common factors that lead to common, but

less than unit-root, long-run persistence.

Figure 3 plots the levels of short- and long-term interest rates, ( ), along with their

long-run projections, (b b), and cosine transforms, (   ). The long-run projections

capture the rise in interest rates from the beginning of the sample through the early 1980s

and then their subsequent decline (Figure 3.a). These long-swings in the level of interest

rates lead to relatively larger values in the long-period cosine transforms (Figure 3.b). The

projections for long-term interest rates closely track the projections for short-term rates and,

given the connection between between the projections and cosine transforms,  and 

are highly correlated (Figure 3.c).

These two datasets differ markedly in their persistence: GDP and consumption growth

rates are often modeled as low-order MA models, while nominal interest rates are highly

serially correlated. Yet, the variables in both data sets exhibit substantial long-run variation

and covariation which is readily evident in the long-run projections (b b) or equivalently
(from (3)) the projection coefficients (   ). This suggests that the covariance/variance

8



9



properties of (   ) are a useful starting point for defining the long-run covariability

properties of stochastic processes exhibiting a wide range of persistent patterns.

2.2 A measure of long-run covariability using long-run projections

A straightforward definition of long-run covariability is based on the population analogue

of the sample second moment matrices in (3). Let Σ denote the covariance matrix of (
0


 0
 )
0, partitioned as Σ , Σ , etc., and define

Ω = −1
X
=1



"Ã bb
!³ b b ´

#
(4)

=

X
=1



"Ã




!Ã




!0#
=

Ã
tr(Σ ) tr(Σ )

tr(Σ  ) tr(Σ  )

!

where the equalities directly follow from (3).

The 2× 2 matrix Ω is the average covariance matrix of the long-run projections (b b)
in a sample of length  , and provides a summary of the variability and covariability of

the long-run projections over repeated samples. Equivalently, by the second equality, Ω

also measures the covariability of the cosine transforms (   ). Corresponding long-run

correlation and linear regression parameters follow from the usual formulae

 = Ω
p
ΩΩ

 = ΩΩ

2| = Ω − (Ω )
2Ω

(5)

where (Ω Ω Ω ) are the elements of Ω . The linear regression coefficient  solves

the population least-squares problem

 = argmin




"
−1

X
=1

(b − b)2# ,
so that  is the coefficient in the population best linear prediction of the long-run projection

̂ by the long-run projection ̂,
4 2| is the average variance of the prediction error, and

2 is the corresponding population 2. These parameters thus measure the population

4The parameter  is closely related to a linear band-spectrum regression coefficient (Engle (1974)),

corresponding to periods longer than 2.
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comovement of the long-run variation of ( ). Equivalently, by the second equality in (4),

 also solves

 = argmin




"
X

=1

( −  )
2

#
with a corresponding interpretation 2| and 2 . Thus, these parameters equivalently

measure the (population) linear dependence in the scatter plots in Figures 2.c and 3.c.

The objective of the remaining analysis is to develop inference about the parameters

(    
2
| ).

3 Asymptotic approximations and parameterizing

long-run persistence and covariability

The long-run correlation and regression parameters are functions of Σ , the covariance ma-

trix of (   ). This section takes up two related issues. The first is the asymptotic nor-

mality of the cosine-weighted averages (   ), which serves as the basis for the inference

methods developed in Section 4 and provides large-sample approximation for the matrices

Σ and Ω , and thus for the parameters of interest  ,  , and 2| . The second issue

involves parameterizing the form of long-run persistence and comovement which determines

the large-sample value of Σ and Ω .

3.1 Large-sample properties of long-run sample averages

Because (   ) are smooth averages of ( ), a central limit theorem effect suggests

that these averages are approximately Gaussian under a range of primitive conditions about

( ) The set of assumptions under which asymptotic normality holds turns out to be

reasonably broad, and encompasses many forms of potential persistence. Specifically, let

 = ( )
0 and suppose that ∆ has moving average representation ∆ =  (), where

 is a martingale difference sequence with non-singular covariance matrix, the coefficients in

 () die out sufficiently fast that∆ has a spectral density ∆ , and  and  () satisfy

other moment and decay restrictions given in Müller and Watson (forthcoming, Theorem
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1).5 If the spectral density converges for all frequencies close to zero

 3−2∆ ( )→ ∆()

in a suitable sense, then

 1−
Ã





!
⇒
Ã





!
∼ N (0Σ), (6)

and the finite-sample second moment matrix correspondingly converges to its large-sample

counterpart (Müller and Watson (forthcoming, Lemma 2))

 2−2Var

Ã




!
=  2−2Σ → Σ. (7)

The limiting covariance matrix Σ in (6) and (7) is a function of the “local-to-zero”

spectrum ∆ and the cosine weights Ψ() that determine (   ); see Müller and Watson

(forthcoming) for additional details and an explicit formula. We make three comments about

these large-sample results. First, they hold when the first-difference of  has a spectral

density (and therefore has limited persistence); the level of  is more persistent than its

first difference and may have a (pseudo-) spectrum that diverges at frequency zero. In this

case Σ remains finite because the cosine averages sum to zero (Ψ0
  = 0), so they do not

extract zero-frequency variation in the data. If the level of  has a spectral density then this

restriction on the weights is not required and, for example, the sample mean of  also has a

large-sample normal limit. Second, in common parameterizations of persistence models, the

scale factor − depends on the form of persistence; for example, the factor is −12 for (0)

persistence and −32 for (1) persistence. However, we focus on inference procedures that

do not depend on the scale of  (due to invariance or equivariance), so 
− does not need

to be known. Third, because  2−2Σ → Σ, then  2−2Ω → Ω where Ω is defined as in

the last expression of (4) with Σ in place of Σ . Correspondingly, (    
2−22| )→

(  
2
|) with the limits defined by (5) with Ω in place of Ω . Thus, a solution to

the small-sample problem of inference about (  
2
|) from observing ( ) readily

translates into a large-sample solution to inference about (    
2
| ).

5The dependence of  and ∆ on the sample size  accommodates many forms of persistence that

require double arrays as data generating process, such as autoregressive roots of the order 1−  , for fixed

 We omit the corresponding dependence of  = ( ) on  to ease notation.
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3.2 Parameterizing long-run persistence and covariability

The limiting covariance matrix of the long-run projections, Ω, is a function of the covariance

matrix of the cosine projections, Σ, which in turn is a function of the local-to-zero spectrum

for the first-difference of , ∆ The corresponding local-to-zero (pseudo-) spectrum for the

level of  is () = −2∆(). In this section we discuss parameterizations of , Σ, and

Ω.

It is constructive to consider two leading examples. In the first,  is (0) with long-run

covariance matrix Λ. In this case () ∝ Λ, and straightforward calculations show that

Σ = Λ ⊗  and Ω ∝ Λ, so the covariance matrix associated with the long-run projections

corresponds to the usual long-run (0) covariance matrix. In this model, the cosine trans-

forms (   ) plotted in Figures 2 and 3 are, in large samples and up to a deterministic

scale, i.i.d. draws from a N (0Λ) distribution. Inference about Ω = Λ and (  
2
|) thus

follows from well-known small sample inference procedures for Gaussian data (see Müller

and Watson (forthcoming)). In the second example,  is (1) with Λ the long-run covari-

ance matrix for ∆. In this case () ∝ −2Λ, and a calculation shows that Σ = Λ⊗,

where  is a ×  diagonal matrix with ’th diagonal element  = ()
−2. In this model,

the cosine transforms (   ) plotted in Figures 2 and 3 are, in large samples and up to

a deterministic scale, independent but heteroskedastic draws from N (0 ()−2Λ) distribu-
tions. Thus Ω ∝ Λ, so the covariance matrix for long-run projections for  corresponds to

the long-run covariance matrix for its first differences, ∆. By weighted least squares logic,

inference for (1) processes follows after reweighting the elements of (   ) by the square

roots of the inverse of the diagonal elements of  and then using the same methods as in

the (0) model.

GDP, consumption, short-, and long-term interest rates: Table 1 presents estimates and

confidence sets for (    
2
| ) using (   ) with  = 12 for GDP and consumption

(panel a) and short- and long-term interest rates (panel b). Results are presented for (0)

and (1) models, and for a more general model of persistence introduced below. For now,

focus on the (0) and (1) results. The point estimates shown in the table are MLEs, and

confidence intervals for (  
2
| ) are computed using standard finite-sample normal linear

regression formulae (after appropriate weighting in (1) model), and confidence sets for 

are constructed as in Anderson (1984, section 4.2.2).

For GDP and consumption, there are only minor differences between the (0) and (1)
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estimates and confidence sets. The estimated long-run correlation is greater than 0.9, the

lower range of the 90% confidence interval exceeds 0.8 in both the (0) and (1) models.

Thus, despite the limited long-run information in the sample (captured here by the 12 ob-

servations making up (   )), the evidence points to a large long-run correlation between

GDP and consumption. The long-run regression of consumption onto GDP yields a regres-

sion coefficient that is estimated to be 0.76 in the (0) model and 0.84 in (1) model. This

estimate is sufficiently accurate that  = 1 is not included in the 90% (0) confidence set.

The results for long-term and short-term nominal interest rates are similarly informative –

for example, there is strong evidence that the series are highly correlated over the long-run

– although the (0) and (1) results differ more sharply than for GDP and consumption.

To take just one example, the 90% confidence interval for  ranges from 082 to 097 in the

(1) model but is narrower (093 to 099) in the (0) model.

As we show in Table 2 below, the (0) assumption yield confidence intervals with coverage

probability far below the nominal level when in fact the data were generated by the (1)

model, and vice versa. This raises the question of how to obtain valid inference in both

models, and, more generally, under a wider range of forms of persistence.

3.2.1 (  ) model

The shape of the local-to-zero spectrum determines the long-run persistence properties of

the data, and misspecification of this persistence leads to faulty inference about long-run

covariability. Thus, parameterizing  is a crucial issue for inference about long-run co-

variability. Addressing this issue faces a familiar trade-off: the parameterization needs to

be sufficiently flexible to yield reliable inference about long-run covariability for a wide

range of economically-relevant stochastic processes and yet be sufficiently constrained to be

tractable. (0) persistence generates a flat local-to-zero spectrum, and (1) persistence gen-

erates a local-to-zero spectrum proportional to −2. Both of these models are tractable, but

tightly constrain the spectrum. This limits their usefulness as general models for conducting

inference about long-run covariability.

With this trade-off in mind, we use a parameterization that nests and generalizes a range

of models previously used to model persistence in economic time series. The parameterization

is a bivariate extension of the univariate (  ) model used in Müller and Watson (2016)
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and yields a local-to-zero spectrum of the form

() ∝ 

Ã
(2 + 21)

−1 0

0 (2 + 22)
−2

!
0 +0 (8)

where  is unrestricted and  is lower triangular.6

This model generates the standard spectral shapes:  = 0 yields the (0) model;  = 0,

 = 0 and 1 = 2 = 1 yields the (1) model;  = 0, 1 = 2 = 1 yields a model with

two AR roots local-to-unity;  = 0 and  = 0 yields a bivariate fractional model. Other

choices of (  ) yield models that combine persistent and non-persistent components

(as in cointegrated or “local-level” models) but go beyond the usual (0)(1) or fractional

formulations. The cost of the (  ) model’s flexibility is that it contains 11 parameters

as opposed to just 3 in the (0) and (1) models. Yet, as we discuss in the next section, it

is still possible conduct valid inference even in the loosely parameterized (  ) model.

4 Constructing confidence intervals for , , and |

4.1 An overview

There are several approaches one might take to construct confidence intervals for the para-

meters    and |. As a general matter, the goal is to compute confidence intervals that

are as informative (“narrow”) as possible, subject to the coverage constraint that they con-

tain the true value of the parameter of interest with a pre-specified probability. We construct

confidence intervals by explicitly solving a version of this problem.

Generically, let  denote the vector of parameters characterizing the probability distri-

bution of ( ), and let Θ denote the parameter space. (In our context,  denotes the

(  )-parameters.) Let  = () denote the parameter of interest. ( = , , or

| for the problem we consider). Let ( ) denote a confidence interval for  and

vol( ( )) denote the length of the interval. The objective is to choose  so that it

has small expected length,  [vol(( )], subject to coverage,  ( ∈ ( )) ≥ 1− ,

where  is a pre-specified constant. Because the probability distribution of ( ) depends

6This is the spectrum of a bivariate Whittle-Matérn (c.f., Lindgren (2013)) process with time series

representation  =   + , where   = (1 2)
0 is a bivariate process with uncorrelated {1} and {2},

(1− )
  = −2,  = 1−  ,  ∼ (0) with long-run variance equal to 2,  ∼ (0) with

long-run variance equal to 0, and zero long-run covariance with .
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on , so will the expected length of ( ) and the coverage probability. By definition, the

coverage constraint must be satisfied for all values of  ∈ Θ, but one has freedom in choosing

the value of  over which expected length is to be minimized. As a general matter, let 

denote a distribution that puts weight on different values of , so the problem becomes

min


Z
(vol(( )) () (9)

subject to

sup
∈Θ

 ( ∈ ( )) ≥ 1−  (10)

where the objective function (9) emphasizes that the expected volume depends on the value

of , with different values of  weighted by  , and the coverage constraint (10) emphasizes

that the constraint must hold for all values of  in the parameter space Θ.

As noted by Pratt (1961), the expected length of confidence set for  can be expressed

in terms of the power of hypothesis tests of 0 :  = 0. The solution to (9)-(10) thus

amounts to the determination of a family of most powerful hypothesis tests, indexed by 0.

Elliott, Müller, and Watson (2015) suggest a numerical approach to compute corresponding

approximate “least favorable distributions” for . We implement a version of those methods

here; details are provided in the supplementary appendix. A key feature of the solution

is that, conditional on the weighting function  and the least favorable distribution, the

confidence sets have the familiar Neyman-Pearson form with a version of the likelihood ratio

determining the values of  included in the confidence interval.

While the resulting confidence intervals have (close to) smallest weighted expected length,

they can have unreasonable properties for particular realizations of ( ). Indeed, for some

values of ( ), the confidence intervals might be empty, with the uncomfortable implication

that, conditional on observing these values of ( ), one is certain that the confidence

interval excludes the true value. To avoid this, we follow Müller and Norets (2016) and

restrict the confidence sets to be supersets of 1−  Bayes credible sets.7

7Numerical calculations show that the Müller and Norets (2016) adjustment has a small (3%-8%) effect

on expected length of 95%, 90%, and 67% confidence intervals for all three parameters of interest.
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4.2 Some specifics

4.2.1 Invariance and equivariance

Correlations are invariant to the scale of the data. The linear regression of  onto  is

the same as the regression of  +  onto  after subtracting  from the latter’s regression

coefficient. It is sensible to impose the same invariance/equivariance on the confidence

intervals. Thus, letting , , and  denote confidence sets for , , and |, we restrict

these sets as follows:

 ∈ ( )⇔  ∈ (  ) for   0 (11)

 ∈ ( )⇔  + 


∈ (  +) for   6= 0 and all values of  (12)

| ∈ ( )⇔ ||| ∈ (  + ) for   6= 0 and all values of .
(13)

These invariance/equivariance restrictions lead to two modifications to the solution to

(9)-(10). First, they require the use of maximal invariants in place of the original ( ).

The density of the maximal invariants for each of these transformations is derived in the

supplementary appendix. Second, because the objective function (9) is stated in terms of

( ), minimizing expected length by inverting tests based on the maximal invariant leads

to a slightly different form of optimal test statistic. Müller and Norets (2016) develop these

modifications in a general setting, and the supplementary appendix derives the resulting

form of confidence sets for our problem.

4.2.2 Parameter space

The parameter space for  = (  ) is as follows:  and  are real, with  lower-

triangular and () chosen so that Ω is non-singular,  ≥ 0, and −04 ≤  ≤ 1, for

 = 1 2.8 Thus, the confidence intervals control coverage over a wide range of persistence

patterns including processes less persistent than (0), as persistent as (1), local-to-unity

autoregressions, and where different linear combinations of  and  may have markedly

different persistence (as, for example, in a cointegrated model).

The confidence sets we construct require three distributions over : the weighting func-

tion  for computing the average length in the objective (9), the Bayes prior associated

8See Appendix 3.2 for details.
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with the Bayes credible sets that serve as subsets for the confidence sets (Müller and Norets

(2016)), and the least favorable distribution for  that enforces the coverage constraint. The

latter is endogenous to the program (9)-(10) and is approximated using numerical methods

similar to those discussed in Elliott, Müller, and Watson (2015), with details provided in the

supplementary appendix. We use the same distribution for  and the Bayes prior. Specifi-

cally, the distribution is based on the bivariate () model (so that 1 = 2 = 0  = 0) with

1 and 2 independently distributed (−04 10). Because of the invariance/equivariance
restrictions, the scale of the matrix  is irrelevant and we set  = (1)() (2), where

() is a rotation matrix indexed by the angle , with 1 and 2 independently distributed

 [0 ]. The relative eigenvalues of  are determined by the diagonal matrix (), with

1122 = 15
 with  distributed  [0 1].

4.2.3 Empirical results for GDP, consumption, and interest rates

Table 1 in Section 3.2 above shows estimates for (    | ) and confidence sets using the

(  )model. The estimated value of (    | ) is the median of the posterior using

the ()-model prior, and the table also shows Bayes credible sets for this prior for comparison

with the frequentist confidence intervals. For GDP and consumption, the (  ) results

look much like the results obtained for the (0) model. For most entries, the Bayes credible

sets are slightly larger than the (0) sets, presumably reflecting the possibility of persistence

greater than (0), as was evident in Figure 4. The frequentist confidence intervals often

coincide with Bayes intervals, but occasionally are somewhat wider. The results indicate

that GDP and consumption are highly correlated in the long-run (the 90% confidence set is

071 ≤  ≤ 097) and the long-run regression coefficient of consumption onto GDP is large,
but less than unity (the 90% confidence set is 048 ≤  ≤ 095). The results for interest
rates are somewhat different. The confidence intervals (and Bayes credible sets) are roughly

in-between the (0) and (1) intervals. Substantively, the results indicate that long-run

movements in short- and long-rates are highly correlated, and that a unit long-run response

of long-rates to short-rates is consistent with these data.
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4.3 Coverage properties of restricted versions of the (  )

model

In this subsection we investigate the coverage distortions for confidence intervals constructed

using misspecified models of persistence. Specifically we consider five models of persistence,

and for each model we both generate data and construct confidence intervals for . The data

are generated using  = 0 and Table 2 shows the fraction of the confidence sets that include

the true value  = 0.9 The models considered are the (0) model (() ∝ 0), the (1)

model (() = −20), a bivariate “local-level” that includes (0) and (1) components

(() ∝ −20 + 0), the fractional  () model (() ∝ 0,  diagonal with

 = −2) and the general (  ) model with () given by (8). Because data

were generated by and confidence intervals constructed for each of these five models, the

table contains 25 entries. The columns indicate the model used to generate the data, the

rows shows the model used to construct the confidence set, and the entries are fraction

of confidence sets that contain the true value of , minimized over the other parameters

used to generate the data. The diagonal entries of the table are 0.90 indicating that each

method has coverage 90% under its assumed data generating process. The off-diagonal differ

from 0.90 and show the coverage distortions. For example, 90% (0) confidence sets have

coverage of just 1% when the data are generated by the other four models. (1) confidence

sets have similarly bad coverage when the data are not generated by the (1) model. The

(0) + (1) model encompasses both the (0) and (1) models, so the associated confidence

9Results are shown for confidence sets that do not incorporate the Müller-Norets Bayes superset adjust-

ment. Including this adjustment yields similar results.
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intervals has good coverage for these models, but has coverage of only 68% in the () and

(  ) models. The () model encompasses the (0) and (1) models, and so has good

coverage for these models. It does not encompass the the (0) + (1) or (  ) models,

but exhibits only a small coverage distortion in these cases. Finally, the general (  )

model encompasses all of the other models, and so controls coverage uniformly across these

models.

Table 2 highlights the large coverage distortions associated with confidence intervals based

on (0), (1), or (0) + (1) models. These results echo results in the earlier literature on

the fragility of (0) and (1) inference (e.g., den Haan and Levin (1997) for HAC inference

in (0) models and Elliott (1998) for inference in cointegrated models). Table 2 suggests

that inference based on the () model is much less fragile; indeed it offers near nominal

coverage in Table 2. However, the () model does not fare as well in other contexts; for

example Müller andWatson (2016) show that ()model yields long-run prediction sets with

significant undercoverage when data are generated by a univariate analogue of the (  )

model.

5 Empirical Analysis

The last section showed results for the long-run covariation between GDP and consumption

and between short- and long-term nominal interest rates. In this section we use the same

methods to investigate other important long-run correlations. We focus on two questions:

first, how much information does the sample contain about the long-run covariability, and

second, what are the values of the long-run covariability parameters. A knee-jerk reaction to

investigating long-run propositions in economics using, say, 68-year spans of data is that little

can be learned, particularly so using analysis that is robust to a wide range of persistence

patterns. In this case, even efficient methods for extracting relevant information from the

data will yield confidence intervals that are so wide that they rule out few plausible parameter

values. We find this to be true for some of the long-run relationships investigated below. But,

as we have seen from the consumption-income and interest rate data, confidence intervals

about long-run parameters can be narrow and informative, and this is true for several of the

relationships that we now investigate.
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5.1 Balanced growth correlations

In the standard one-sector growth model, variations in per-capita GDP, consumption, invest-

ment, and in real wages arise from variations in total factor productivity (TFP). Balanced

growth means that the consumption-to-income ratio, the investment-to-income ratio, and

labor’s share of total income are constant over the long run. This implies perfect pairwise

long-run correlations between the logarithms of income, consumption, investment, labor

compensation, and TFP. In this model, the long-run regression of the logarithm of consump-

tion onto the logarithm of income has a unit coefficient, as do the same regressions with

consumption replaced by investment or labor income. A long-run one-percentage point in-

crease in TFP leads a long-run increase of 1(1−) percentage points in the other variables,
where (1 − ) is labor’s share of income. Of course, these implications involve the evolu-

tion of the variables over the untestable infinite long-run. That said, empirical analysis can

determine how well these implications stand-up as approximations to below business cycle

frequency variation in data spanning the post-WWII period. We use data for the U.S. and

the methods discussed above to investigate these long-run balance growth propositions. The

supplemental appendix contains a description of the data that are used.
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Figure 4 plots the long-run projections of the growth rates of GDP, consumption, invest-

ment, labor income and TFP. (The long-run projections for consumption and GDP were

shown previously in Figure 2.a.) The figure indicates substantial long-run covariability over

the post-WWII period, but less so for investment than the other variables. Table 3 sum-

marizes the results on the long-run correlations. The values above the main diagonal show

point estimates constructed as the posterior median using the ()-model with prior dis-

cussed above, together with 67% confidence intervals using the general (  ) model

(shown in parentheses). The values below the main diagonal are the corresponding 90% con-

fidence intervals using the (  ) model. Table 4 reports results from selected long-run

regressions.

As reported in the previous section, the long-run correlation between GDP and consump-

tion is large. Labor income and GDP are highly correlated with a tightly concentrated 90%

confidence interval of 0.94 to 0.99. The estimated long-run correlation of TFP and GDP

is also high, although the correlation of TFP and the other variables appears to be some-

what lower. Investment and GDP are less highly correlated; the upper bound of the 90%

confidence interval is only 0.8 and the lower bound is close to zero.

Table 4 shows results from long-run regressions of the growth rates of consumption, in-

vestment, and labor income onto the growth rate of GDP, and the corresponding regression of

GDP onto TFP. Labor compensation appears to vary more than one-for-one with GDP and

(as reported above) consumption less than one-for-one. The long-run investment-GDP re-

gression coefficient is imprecisely estimated. Disaggregating consumption into nondurables,

durables, and services, suggests that durable consumption responds more to long-run vari-
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ations in GDP than do services and non-durables. These long-run regression results are

reminiscent of results using business cycle covariability, and in Section 6 we investigate their

robustness to the periodicities incorporated in the long-run analysis.

In summary, what has the 68-year post WWII sample been able to say about the

balanced-growth implications of the simple growth model? First, that several of the variables

are highly correlated over the long-run (labor income and GDP, consumption and GDP),

and second that the long-run regression coefficient on GDP is different from unity for some

variables (consumption and labor income). There is less information about the long-run

covariability of investment with the other variables, although even here there are things to

learn, such as the long-run correlation of investment and GDP is unlikely to much larger

than 0.8.

5.2 Other long-run relations

Figure 5 and Table 5 summarize long-run covariation results for an additional dozen pair of

variables, using post-WWII U.S. data. (See the supplemental appendix for description and

sources of the data.) We discuss each in turn.

CPI and PCE inflation. We begin with two widely-used measured of inflation, the first

based on the consumer price index (CPI) and the second based on the price deflator for per-

sonal consumption expenditures (PCE). The Boskin Commission Report and related research

(Boskin, Dulberger, Gordon, Griliches, and Jorgenson (1996), Gordon (2006)) highlights im-

portant methodological and quantitative differences in these two measures of inflation. For

example, the CPI is a Laspeyres index, while the PCE deflator uses chain weighting, and

this leads to greater substitution bias in the CPI. Differences in these inflation measures

may change over time both because of the variance of relative prices (which affects substitu-

tion bias) and because measurement methods for both price indices evolved over the sample

period.

Panel a of Figure 5 presents two plots; the first shows a time series plot of the long-run

projections for PCE and CPI inflation, and the second shows the corresponding scatterplot of

the projection coefficients, where the scatterplot symbols are the periods (in years) associated

with the coefficients. For instance, the outlier “68.8” corresponds to the large negative

coefficient on the first cosine function cos(( − 12) ), which has a U-shape, and both
inflation rates have a pronounced inverted U-shape in the sample. Long-run movements

25



26



27



28



in PCE and CPI inflation track each other closely and the 90% confidence interval shown

in Table 5 suggests that the long correlation is greater than 0.95. The long-run regression

of CPI inflation on PCE inflation yields an estimated slope coefficient that is 1.13 (90%

confidence interval: 098 ≤  ≤ 124) suggesting a larger bias in the CPI during periods of
high trend inflation.

Long-run Fisher correlation and the real term structure: The next two entries in the

figure and table show the long-run covariation of inflation and short- and long-term nominal

interest rates. The well-known Fisher relation (Fisher (1930)) decomposes nominal rates into

an inflation and real interest rate component making it interesting to gauge how much of the

long-run variation in nominal rates can be explained by long-run variation in inflation. The

long-run correlation of nominal interest rates and inflation is estimated to be approximately

0.5, although the confidence intervals indicate substantial uncertainty. A unit long-run re-

gression coefficient of nominal rates onto inflation is consistent with data, but the confidence

intervals are wide.10 The next entry in the figure and table shows the long-run covariation

in short- and long-term real interest rates (constructed as nominal rates minus the PCE

inflation rate). Like their nominal counterparts, short- and long-term real rates are highly

correlated over the long-run (90% confidence interval: 080 ≤  ≤ 098) with a near unit
regression coefficient of long rates onto short rates.

Money growth and inflation: An important implication of the quantity theory of money

is the close relationship between money growth and price inflation over the long-run. Lucas

(1980) investigated this implication using time series data on money (M1) growth and (CPI)

inflation for the U.S. over 1953-1977. After using an exponential smoothing filter to isolate

long-run variation in the series, he found a nearly one-for-one relationship between money

growth and inflation. The next entry in the figure and table examines this long-run relation

using the same M1 and CPI data used by Lucas, but over the longer sample period, 1947-

2015. Figure 5 shows the close long-run relationship between money growth and inflation

from the mid-1950s through late 1970s documented by Lucas, but shows a much weaker (or

non-existent) relationship in the post-1980 sample period, and over the entire sample period

the estimated long-run correlation is only 0.12 with a 67% confidence interval that ranges

10These estimates measure the long-run Fisher “correlation,” not the long-run Fisher “effect”. The long-

run Fisher correlation considers variation from all sources, while the Fisher effect instead considers variation

associated with exogenous long-run nominal shocks (e.g., Fisher and Seater (1993), King and Watson (1997)).

A similar distinction holds for the Phillips correlation and the Phillips curve (King and Watson (1994)).
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from -0.17 to 0.54.

Long-run Phillips correlation: The next entry summarizes the long-run correlation be-

tween the unemployment and inflation. The estimated long-run Phillips correlation and

slope coefficient are positive, but  =  = 0 is contained in the 67% confidence interval.

That said, the confidence intervals are wide so that, like the Fisher correlation, the data are

not very informative about the long-run Phillips correlation.

Unemployment and productivity: Panel (g) of the figure investigates the long-run co-

variation of the unemployment rate and productivity growth. The large negative in-sample

long-run correlation evident in the figure has been noted previously (e.g., Staiger, Stock,

and Watson (2001)); the confidence intervals reported in Table 5 show that the correlation

is unlikely to be spurious. There is a statistically significant negative long-run relationship

between the variables. A long-run one percentage point increase in the rate of growth of

productivity is associated with an estimated one percentage point decline in the long-run

unemployment rate. We are unaware of an economically compelling theoretical explanation

for the large negative correlation.

Real returns and consumption growth: Consumption-based asset pricing models (e.g.,

Lucas (1978)) draw a connection between consumption growth (as an indicator of the in-

tertemporal marginal rate of substitution) and asset returns. A large literature has followed

Hansen and Singleton (1982, 1983) investigating this relationship, with varying degrees of

success. Rose (1988) discusses the puzzling long-run implications of the model when con-

sumption growth follows and (0) process and real returns are (1) (also see Neely and

Rapach (2008)), but moving beyond the (0) and (1) models, it is clear from the empirical

results reported above that both consumption growth and real interest rates exhibit substan-

tial long-run variability. The next two entries in the figure and table investigate the long-run

covariability between consumption growth and and real returns; first using real returns on

short-term treasury bills and then using real returns on stocks. Both suggest a moderate

positive long-run correlation between real returns and consumptions growth rates, although

the confidence interval is wide (90% confidence range from just below zero to 0.80).

Stock Prices, Dividends, and Earnings: Present value models of stock prices imply a close

relationship between long-run values of prices, dividends, and earnings (e.g., Campbell and

Shiller (1987)). An implication of this long-run relation in a cointegration framework is that

dividends, earnings, and stock prices share a common (1) trend, so that their growth rates

are perfectly correlated in the long-run and the dividend-price or price-earning ratio is useful
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for predicting future stock returns. This latter implication has been widely investigated

(see Campbell and Yogo (2006) for analysis and references). The next two entries show

the long-run correlation of stock prices with dividends and with earnings.11 While there

is considerable uncertainty about the value of the long-run correlation between prices and

dividends or earnings, the data suggest that the correlation is not strong. For example,

values above  = 043 are ruled out by the 67% confidence set and values above 0.72 are

ruled out by the 90% sets.

Long-run PPP: The final entry shows results on the long-run correlation between nominal

exchange rates (here the U.S. dollar/British pound exchange rate from 1971-2015) and the

ratio of nominal prices (here the ratio of CPI indices for the two countries). Long-run PPP

implies that the nominal exchange rate should move proportionally with the price ratio over

long time spans, so the long-run growth rates of the nominal exchange rate and price ratios

should be perfectly correlated. A large literature has tested this proposition in a unit-root

and cointegration framework and obtained mixed conclusions. (See Rogoff (1996) and Taylor

and Taylor (2004) for discussion and references). From the final row of Table 5, the growth

rate of nominal exchange rates and relative nominal prices are positively correlated over

the long-run, statistically significantly so at the 33% significance level, but the correlation

is far from perfect (  072 based on the 90% confidence set). We highlight two caveats.

First, we use the post-Bretton Woods sample period, so the sample includes only 45 years,

and using  = 12 cosine terms the long-run projections capture variability with periods of

(approximately) 7 years or higher. This 7-year period may be sufficiently short that long-run

adjustments have not occurred, something we investigate in the next section. Second, the

price ratio uses relative CPIs, a large component of which includes non-traded goods which

may be less tightly linked to exchange rates than prices of traded goods.

6 Alternative measures of long-run covariability

The empirical results in the last section relied on covariance measures associated with pro-

jections of the data onto  = 12 cosine functions capturing periodicities of 6 or higher,

where  is the length of the sample. Using data from 1948-2015 ( = 68 years) this analysis

used periods longer than 11 years to define “long-run” variation and covariation. While 11

11The data are for the S&P, and are updated updated versions of the data used in Shiller (2000) available

on Robert Shiller’s webpage.
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years is longer than typical business cycles, it does incorporates periods corresponding to

what some researchers refer to as the “medium run” (Blanchard (1997), Comin and Gertler

(2006)). In this section we consider measures of long-run covariability that focus on a subset

of the  periods. This allows a comparison of, say, results from periods corresponding to the

“medium-long run” and to those from the “longer-long run.”

To motivate the new measures, look again at Figure 2.a which plots the projections of

GDP and consumption growth rates onto  = 12 cosine regressors with periods that range

from 6 (≈ 11 years) to 2 (136 years). Figures 6.b and 6.c show the corresponding

projections onto the first 1 = 6 of these cosine terms (with periods from 3 ≈ 23 years to
2 = 136 years) and last 2 = 6 cosine terms (with periods 12 ≈ 11 years to 27 ≈ 19
years). The first of these captures the longer-long-run variation in the data, and the second
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captures the medium-long-run variability. Each can be studied separately. To differentiate

these periodicities, we replace equation (4) with

Ω: = −1
X
=1



"Ã b:b:
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"
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#
(14)

where the subscript “ : ” notes that the projection is computed using the  through 

cosine terms (i.e., the  through  columns of Ψ ) corresponding to periods 2 through

2. Thus the longer-long-run periodicities shown in Figure 6.a correspond to the covariance

matrix Ω1:6 (the first 6 cosine terms) and the medium-long-run periodicities in Figure 6.b

correspond to Ω7:12 (the 7-12th cosine terms).

Throughout the paper we have used  to denote the number of low-frequency cosine

terms that define the long-run periods of interest (perhaps divided further into longer-long

and medium-long). But  plays another important role in the analysis. The value of Ω (or

now Ω:) ultimately depends on the variability and persistence in the stochastic process as

exhibited in the local-to-zero (pseudo-) spectrum . This spectrum is parameterized by

(  ); see equation (8). We learn about the value of these parameters (and therefore

the value of Ω) using the data (1:  1: ). Thus,  also denotes the sample variability in

the data that is used to infer the value of the long-run covariance matrix Ω. So, while our

interest might lie in the longer-long-run covariability captured in Ω1:6, the sample variability

in (1:12  1:12 ) might be used to learn about Ω1:6. While it is arguably most natural to

match the variability in the data used for inference to the variability of interest, for example

using (1:  1: ) to learn about Ω1:, if the (  ) model accurately characterizes the

spectrum over a wider frequency band, then variability over this wider band can improve

inference. But of course using a wider frequency band runs the risk of misspecification if

the (  ) model is a poor characterization of the spectrum over this wider range of

frequencies. This is the standard trade-off of robustness and efficiency.

With these ideas in mind, Table 6 shows results for long-run correlation and regression

parameters from Ω1:12, Ω1:6, and Ω7:12, corresponding the periods 6 and higher, 3 and

higher, and 6 through 27. Results are shown using inference based on the same  = 12

cosine transforms used in the sections above, but also using  = 6, so only lower frequency

variability in the data is used to learn about (  ), and with  = 18, so higher frequency

variability is also used. Table 6.a shows results for long-run covariability of GDP, consump-

tion, investment, labor compensation, and TFP. Table 6.b shows results for selected long-run
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relationships involving the other variables. (Results for all the pairs of variables shown in

Table 5 are available in the supplementary appendix.)

The first block of results in Table 6.a are for consumption and GDP. The first row repeats

earlier results using the  = 12 cosine terms to learn about Ω: with  = 1 and  = 12 The

other rows are for other values of , , and . The results suggest remarkable stability across

the different values of , , and . Figures 6.c and 6.d provides hints at this stability. It

shows the scatter plot of (1:6  1:6 ) and (7:12  7:12 ) corresponding to the projections

plotted in panels 6.a and 6.b. The scatter plots corresponding to the different periodicities

are quite similar, and this is reflected in the stability of the results shown in Table 6. This

same stability across , , and  is evident for the other pairs of variables in Table 6.a. Looking

closely at Table 6.a, there are subtle differences in the rows. For example, the confidence

intervals for the parameters from Ω1:12 tend to be somewhat narrower using  = 18 than

using  = 12, consistent with a modest amount of additional information using a larger value

of . The same result holds for results for Ω1:6 computed using  = 6 and  = 12.

The results summarized in Table 6.b show much of the same stability as Table 6.a, but

there are some notable differences. For example, the point estimates suggest a somewhat

larger Fisher correlation over longer periods (greater than 23 years) than over shorter periods

(11 to 19 years), and the same holds for stock prices and dividends. In both cases however,

the confidence intervals remain wide. And, the puzzling negative correlation between the

unemployment rate and TFP appears to be stronger over the longer-long run than over the

medium-long run.

7 Concluding remarks

This paper has focused on inference about long-run covariability of two time series. Just as

with previous frameworks, such as cointegration analysis, it is natural to consider a gener-

alization to a higher dimensional setting. For example, this would allow one to determine

whether the significant long-run correlation between the unemployment rate and productiv-

ity is robust to including a control for, say, some measure of human capital accumulation.

Many elements of our analysis generalize to  time series in a straightforward manner:

The analogous definition of Ω is equally natural as a second-moment summary of the covari-

ability of  series, and gives rise to corresponding regression parameters, such as coefficients

from a  − 1 dimensional multiple regression, corresponding residual standard deviations
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and population 2s.12 Multivariate versions of Ω can also be used for long-run instrumen-

tal variable regressions. As shown in Müller and Watson (forthcoming), the Central Limit

Theorem that reduces the inference question to one about the covariance matrix of a mul-

tivariate normal holds for arbitrary fixed . The (  ) model of persistence naturally

generalizes to a  dimensional system. And, confidence sets for multiple regression para-

meters satisfy natural invariance and equivariance constraints, which reduces the number of

effective parameters.

Having said that, our numerical approach for constructing (approximate) minimal-length

confidence sets faces daunting computational challenges in a higher order system: The

quadratic forms that determine the likelihood require (22) floating point operations.

Worse still, even for  as small as  = 3, the number of parameters in the (  ) model

is equal to 21. So even after imposing invariance or equivariance, ensuring coverage requires

an exhaustive search over a high dimensional nuisance parameter space.

At the same time, it would seem to be relatively straightforward to determine Bayes

credible sets also for larger values of : Under our asymptotic approximation, the (  )

parameters enter the likelihood through the covariance matrix of a  × 1 multivariate
normal, so with some care, modern posterior samplers should be able to reliably determine

the posterior for any function of interest. Of course, such an approach does not guarantee

frequentist coverage, and the empirical results will depend on the choice of prior in a non-

trivial way. In this regard, our empirical results in the bivariate system show an interesting

pattern: Especially at a lower nominal coverage level, for many realizations, there is no

need to augment the Bayes credible set computed from the bivariate fractional model. This

suggests that the frequentist coverage of the unaltered Bayes intervals is not too far below

the nominal level, so these Bayes sets wouldn’t be too misleading even from a frequentist

perspective.13 While this will be difficult to exhaustively check, this pattern might well

generalize also to larger values of .

12Müller and Watson (forthcoming) provide the details of inference in the (0) model.
13In fact, a calculation analogous to those in Table 2 shows that the 67% Bayes set contains the true value

of  = 0 at least 64% of the time in the bivariate (  ) model, and the 95% Bayes set has coverage of

83%.
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Supplementary Appendix to

Long-Run Covariability

by Ulrich K. Müller and Mark W. Watson

This appendix provides supplemental material. Section 1 discusses the form of the con-

fidence sets; section 2 derives the necessary densities; section 3 discusses the numerically

determined approximate least favorable distributions; the data are described in section 4,

and section 5 includes an expanded version of the paper’s Table 6.

1 Form of Confidence Sets

For each of the three sets ,  and , we exogenously impose that they contain the

(1 − ) equal-tailed invariant credible set relative to the prior  , as suggested by Müller

and Norets (2016). Denote this credible set by 
0,  ∈ {  }. Specializing Theorem 3

of Müller and Norets (2016) to the three problems considered here yields the following form

for the three type of confidence sets:

: Let  = 
√
 0 and   = 

√
 0 , and let  ( |) be the density of

(  ) under  ∈ Θ.14 Then



0 ( ) =

½
 : 2 ≤

R
1[() ≤ ] ( |) ()R

 ( |) () ≤ 1− 2

¾
(A.1)

( ) =

½
 :

Z
 ( |) () ≥

Z
( |)Λ

()

¾
∪

0 ( )

where  is the weighting function over which expected length is minimized and the family

of positive measures Λ
 on Θ, indexed by  ∈ (−1 1), are such that Λ

({ : () 6=  or

(
() ∈ ( ))  1− }) = 0 and (

() ∈ ( )) ≥ 1−  for all  ∈ Θ

14Here and in the following, we distinguish between random variables and generic real numbers by the

usual upper case / lower case convention. We also implicitly assume the same functional relationship between

the random variables and their corresponding real variables, if appropriate. For example, ( ) on the

right hand side of (A.1) is implicitly thought of as a function of ( ).
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: Let the  − 2 vectors ∗ and  ∗, and ∗
0 , 11 12 22 ∈ R be such that

( ) =

⎛⎜⎝
⎛⎜⎝ 1

∗
0

∗

⎞⎟⎠ 

⎛⎜⎝ 1

0

 ∗

⎞⎟⎠
⎞⎟⎠Ã 11 12

0 22

!


that is, perform the LDU decomposition of the upper 2×2 block of the ×2 matrix ( ).

Let ∗ = (∗
0 

∗0  ∗0)0. Then



0 ( ) =

(
 : 2 ≤

R R
1[11−12

22
≤ ]


0 (

∗ |) ()R
∗1 (∗|) ()

≤ 1− 2

)

( ) =

½
 :

Z
(∗|)∗1 (∗|) () ≥

Z


0 (

∗
11− 12

22
|)Λ()

¾
∪

0 ( )

where ∗1 (
∗|) is the density of ∗ under , (∗|) = [|2211||∗ = ∗], 0 (

∗ |)
is the density of the 2 − 2 vector (∗0 (11()− 12)22)

0 under , and Λ is a positive

measure on Θ such that Λ({ : (
() ∈ ( ))  1 − }) = 0 and (

() ∈
( )) ≥ 1−  for all  ∈ Θ

:


0 ( ) =

(
 : 2 ≤

R R
1[ 

22
≤ ]0 (

∗ |) ()R
∗1 (∗|) ()

≤ 1− 2

)

( ) =

½
 :

Z
(∗|)∗1 (∗|) () ≥

Z
0 (

∗


22
|)Λ()

¾
∪

0 ( )

where (∗|) = [|22||∗ = ∗] under , 0 (
∗ |) is the density of the 2 − 2 vector

(∗0 ()|22|)0 under , and Λ is a positive measure on Θ such that Λ({ : (
() ∈

( ))  1− }) = 0 and (
() ∈ ( )) ≥ 1−  for all  ∈ Θ

It remains to derive  , ∗1  
∗
1

, ∗1
, 


0 and 0 , and to determine Λ


, Λ

 and Λ.

2 Densities of Maximal Invariants and Related Results

2.1 Preliminaries

As we show below, most densities of interest involve integrals of the form

() =
1

2

Z ∞

0

Z ∞

0

12 exp[−1
2

Ã




!0Ã
2 

 2

!Ã




!
]

2



= 1−12−1
1

2

Z ∞

0

Z ∞

0

12 exp[−1
2
(2 − 2+ 2)]

= 1−12−1
Z ∞

0

2(
√
1− 2)

Z ∞

0

1(− )

for nonnegative integers 1 and 2, positive reals  , and −1    1, with  the p.d.f. of

a standard normal distribution. Note that

1

2

Z ∞

−∞

Z ∞

−∞
||1 ||2 exp[−1

2

Ã




!0Ã
2 

 2

!Ã




!
]

= 2() + 2(−)

We initially discuss how to obtain closed-form expressions for (). The resulting explicit

formulae for densities, even after simplification with a computer algebra system, are long

and uninformative, and they are relegated to the replication files.

Lemma B.1 Let Φ be the c.d.f. of a standard normal random variable.

(a) With () =
R∞
−∞ (−), we have 0() = 1, 1() =  and

+2() = (+ 1)() ++1();

(b) With () =
1

Φ()

R 
−∞ (),Z 0

−∞
(+ ) = Φ()

X
=0

µ




¶
(−)−()

and 0() = 1, 1() = −()Φ() and () = −−1()Φ() + (− 1)−2();
(c)
√
2
R∞
0

(
√
1 + 2)+1 = 2


2Γ(1 + 2)(1 + 2)−2−1;

(d) With () = 2
R∞
0

()Φ( √
1−2 )

, 0() = −arccos(), 1() =
p
2(1+),

and

+2() = (+ 1)() + Γ(1 + 2)22(1− 2)(1+)2

Proof. (a) By integration by parts and 0() = −()Z ∞

−∞
(−) =

Z ∞

−∞
(−)(−)

+1

+ 1


and the result follows.

(b) See Dhrymes (2005).
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(c) Immediate after substituting 2 →  from the definition of the Gamma function.

(d) Define ̃() = 2
R∞
0

()Φ(), so that () = ̃(
√
1− 2) Note

that ̃(0) = 
R∞
0

(), and ̃0() = ̃() = 2
R∞
0

()()+1 =√
2
R∞
0

(
√
1 + 2)+1. Now ̃() = ̃(0) +

R 
0
̃0(). The results for 0() and

1() now follow by applying (c) and a direct calculation. For the iterative expression, by

integration by parts and 0() = −()

̃() =

∙
2()Φ()

+1

+ 1

¸∞
0

− 2
Z ∞

0

+1

+ 1
(()()− ()Φ())

=
1

+ 1

µ
̃+2()− 

√
2

Z ∞

0

(
√
1 + 2)+1

¶
,

and the result follows from applying part (c).

Now by Lemma B.1 (a),

1√
2

Z ∞

0

1 exp[−1
2
(− )2] = 0()−

Z 0

−∞
(− )1

for some polynomial 0 whose coefficients may be determined explicitly by the formula in

Lemma B.1 (a). Furthermore,Z 0

−∞
(− )1 = ()1() + Φ()2()

for some polynomials 1 and 2 that may be determined explicitly by the formula in Lemma

B.1 (b). The remaining integral over  is of the formZ ∞

0

2(
√
1− 2)[0()− ()1()−Φ()2()]

= (1− 2)22−1
Z ∞

0

()20(
√
1− 2

)− 1√
2

Z ∞

0

()21()

−(1− 2)22−1
Z ∞

0

()Φ(
√
1− 2

)22(
√
1− 2

)

which can be determined explicitly by applying Lemma B.1 (c)-(d).

In the following, we simply write Σ for the covariance matrix of vec( ), keeping the

dependence on  implicit. If not specified otherwise, all integrals are over the entire real line.

Also, denote the four  ×  blocks of the inverse of Σ as

Σ−1 =

Ã
Σ− Σ−
Σ− Σ−

!


4



2.2 Derivation of  

Let  =
√
 0 and  =

√
 0 . Write  for Lebesgue measure on R

, and  for the

surface measure of a  dimensional unit sphere. For  ∈ R, let  = , where 
 is a point

on the surface of a  dimensional unit sphere, and  ∈ R+. By Theorem 2.1.13 of Muirhead
(1982), () = −1 (

)1(). We thus can write the joint density of (
    )

with respect to  ×  × 1 × 1 as

(2)−| detΣ|−12 exp[−1
2

Ã




!0
Σ−1

Ã




!
]−1 −1

= (2)−| detΣ|−12 exp[−1
2

Ã




!0Ã
0Σ−

 0Σ−


0Σ−
 0Σ−



!Ã




!
]−1 −1

and the marginal density of (0  0)0 with respect to  ×  is

(2)−|detΣ|−12
Z ∞

0

Z ∞

0

exp[−1
2

Ã




!0Ã
0Σ−

 0Σ−


0Σ−
 0Σ−



!Ã




!
]−1 −1 

2.3 Derivation of ∗1

With † = (1 ∗
0  

∗0)0,  † = (1 0  ∗0)0 and  =

Ã
11 12

0 22

!
, we have

( ) = (†  †)

=

⎛⎜⎝ 11 12

11
∗
1 12

∗
1 + 22

11
∗ 12

∗ + 22
∗

⎞⎟⎠ 

This equation, viewed as a R2 → R2 function of  ∗ = (∗  ∗ ∗
0  11 12 22) has

Jacobian determinant 
−1
11 

−2
22 , so that the density of 

∗ is

∗(
∗) = (2)−(detΣ)−12|11|−1|22|−2 exp[−12(vec †)0Σ−1(vec †)] (A.2)

with † = († †), and we are left to integrate out 11, 12 and 22. Using vec(
†) =

(2 ⊗ †) vec(), we have

vec(†)0Σ−1 vec(†) = vec()0[(2 ⊗ †)0Σ−1(2 ⊗ †)] vec()
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=

⎛⎜⎜⎜⎜⎝
11

0

12

22

⎞⎟⎟⎟⎟⎠
0Ã

† 0

0 †

!0Ã
Σ− Σ−
Σ− Σ−

!Ã
† 0

0 †

!⎛⎜⎜⎜⎜⎝
11

0

12

22

⎞⎟⎟⎟⎟⎠

=

⎛⎜⎝ 11

22

12

⎞⎟⎠
0⎛⎜⎝ †0Σ−

† · ·
†0Σ−

† †0Σ−
† ·

†0Σ−
† †0Σ−

† †0Σ−
†

⎞⎟⎠
⎛⎜⎝ 11

22

12

⎞⎟⎠
=

Ã
̂

12

!0Ã
 

0 20

!Ã
̂

12

!

where ̂ = (11 22)
0,  =

Ã
†0Σ−

† †0Σ−
†

†0Σ−
† †0Σ−

†

!
, 0 = (†0Σ−

† †0Σ−
†) and 20 =

†0Σ−
†. Furthermore, by “completing the square”,Z
exp[−1

2

Ã
̂

12

!0Ã
 

0 20

!Ã
̂

12

!
]12 =

√
2−10 exp[−1

2
̂0( − 00)̂]

and with ̃ =  − 00, we obtain

∗1 (
∗) = (2)−+12(detΣ)−12−10

Z Z
|11|−1|22|−2 exp[−12

Ã
11

22

!0
̃

Ã
11

22

!
]1122

2.4 Derivation of ∗1


We have

(∗|) = [|2211||∗ = ∗]

=

R R R |22
11
|∗(∗)121122
∗1 (∗)



Thus, proceeding as in the derivation of ∗1 yields

(∗|)∗1 (∗|)
=

Z Z Z
|22
11
|∗(∗)121122

= (2)−+12(detΣ)−12−10

Z Z
|11|−2|22|−1 exp[−12

Ã
11

22

!0
̃

Ã
11

22

!
]1122

6



2.5 Derivation of ∗1


Proceeding analogously to the derivation of ∗1
, we obtain

(∗|)∗1 (∗|)
=

Z Z Z
|22|∗(∗)121122

= (2)−+12(detΣ)−12−10

Z Z
|11|−1|22|−1 exp[−12

Ã
11

22

!0
̃

Ã
11

22

!
]1122

2.6 Derivation of 

0

With   = (11
()− 12)22, we have⎛⎜⎝ 11

22

12

⎞⎟⎠ =

⎛⎜⎝ 11

22

11
()− 22



⎞⎟⎠ =

Ã
̂

0 ̂

!

with ̂ = (11 22)
0 and  = (()− )0. This equation, viewed as R3 7→ R3 function

of (11 22
), has Jacobian determinant equal to −22. Thus, with  =

Ã
11 0̂

0 22

!
,

the joint density of (∗ ) can be written asZ Z
(2)−(detΣ)−12|11|−1|22|−1 exp[−12(vec †)0Σ−1(vec †)]1122.

Now similar to the derivation of ∗1 ,

(vec †)
0Σ−1(vec †) =

Ã
̂

0̂

!0Ã
 

0 20

!Ã
̂

0̂

!

= ̂0
Ã

2

0

!0Ã
 

0 20

!Ã
2

0

!
̂

Thus, with  =

Ã
2

0

!0Ã
 

0 20

!Ã
2

0

!
,



0 (

∗ |) = (2)−(detΣ)−12
Z Z

|11|−1|22|−1 exp[−12
Ã

11

22

!0


Ã
11

22

!
]1122
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2.7 Derivation of 0

Let ̃  = ()22, so that 
 = |̃ |. Let ̃0 (∗ ̃|) be the joint density of (∗ ̃ ).

Then 0 (
∗ |) = ̃0 (

∗ |) + ̃0 (
∗−|), so it suffices to derive an expression for

̃0 .

We have ⎛⎜⎝ 11

22

12

⎞⎟⎠ =

⎛⎜⎝ 11

()̃ 

12

⎞⎟⎠ 

This equation, viewed as R3 7→ R3 function of (11 12 ̃ ), has Jacobian determinant

equal to −()̃ 2. From (A.2), with  =

Ã
11 12

0 ()̃

!
, the joint density of

(∗ ̃ ) can thus be written as

(2)−(detΣ)−12|̃|−|()|−1
Z Z

|11|−1 exp[−12(vec †)0Σ−1(vec †)]1211.

Now similar to the derivation of ∗1 ,

(vec †)
0Σ−1(vec †) =

⎛⎜⎝ 11

()̃

12

⎞⎟⎠
0Ã

 

0 20

!⎛⎜⎝ 11

()̃

12

⎞⎟⎠
and

Z
exp[−1

2

⎛⎜⎝ 11

()̃

12

⎞⎟⎠
0Ã

 

0 20

!⎛⎜⎝ 11

()̃

12

⎞⎟⎠]12
=
√
2−10 exp[−1

2

Ã
11

()̃

!0
( − 00)

Ã
11

()̃

!
]

so that

̃0 (
∗ ̃|) = (2)−+12(detΣ)−12|()|−1|̃|−−10

×
Z
|11|−1 exp[−12

Ã
11

()̃

!0
̃

Ã
11

()̃

!
]11
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Furthermore, with ̃2 the  th element of ̃ ,  = ̃12
()(̃̃11) and ̃ =

̃22(
()̃)2 Z

|11|−1 exp[−12
Ã

11

()̃

!0
̃

Ã
11

()̃

!
]11

=

Z
|11|−1 exp[−12(̃211211 + 2̃1111 + 2)]11

= ̃
−
11

Z
||−1 exp[−1

2
(2 + 2 + 2)]

= ̃
−
11 exp[−12(2 − 2)]

Z
||−1 exp[−1

2
( + )

2]

For  − 1 even, a closed-form expression for the integral follows from Lemma B.1 (a). For

 − 1 odd, note thatZ ∞

−∞
||−1 exp[−1

2
(+)

2] =

Z ∞

−∞
−1 exp[−1

2
(+)

2]−2
Z 0

−∞
−1 exp[−1

2
(+)

2]

so that a closed-form expression can be deduced from Lemma B.1 (a) and (b).

3 Determination of Approximate Least Favorable Dis-

tributions

3.1 Overview

The algorithm is a modified version of what is suggested in Elliott, Müller, and Watson

(2015). Let the set Θ = {1     } ⊂ Θ be a candidate support for the least favorable

measure Λ, which is fully characterized by the nonnegative values  it assigns to  ∈ Θ.

Denote by Λ the corresponding confidence set of the form described in Section 1.15 We

determine  by an iterative procedure, starting with equal mass on all  points, and then

adjusting  as a function of (() ∈ Λ( )). In each iteration,  is increased if

(() ∈ Λ( ))   −  and decreased if (() ∈ Λ( ))   − , until

numerical convergence to the measure Λ∗. The parameter   0 induces slight overcoverage

of Λ∗ on Θ, so that even with an imperfect candidate Θ (and numerically determined Λ
∗
),

15Here and below, we omit the superscripts ,  and  if the statement applies to all three types of

confidence sets.
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it is possible that Λ∗ has coverage uniformly on Θ. This is checked by a numerical search

for the maximum of the Θ 7→ [0 1] non-coverage function  () = (() ∈ Λ∗ ( )).

To this end, it is particularly convenient to employ an importance sampling approximation

to  (), which generates a continuously differentiable approximation, so that standard

gradient search algorithms can be employed. If these searches (using random starting points)

do not yield a maximum above , a nearly (up to the paramter   0) optimal least favorable

measure Λ∗ has been determined. If the searches yield a 0 for which  (0)  , then this

0 is added to the candidate set Θ, and the algorithm iterates.

For the confidence set , we seek a family of measures Λ
 that, for each  ∈ (−1 1),

have support on the subspace of Θ = { : () = }. We discretize this problem into a

finite number of values of . For each given , we apply the above algorithm, except that

the non-coverage function  () now only needs to be searched over Θ.

We discuss details in the following subsections.

3.2 Parameterization

Since the algorithm involves optimization over Θ (or Θ), it is convenient to introduce a

reparameterization so that this search can be conducted in a unit hypercube. The (  )

model is described by 11 parameters. The restriction to invariant sets reduces the number of

effective parameters to 11−3 = 8 for  and , and the combination of the bivariate scale

invariance and the restriction Θ = { : () = } also makes Θ effectively 8 dimensional.

The effective parameter space can hence be covered by a [0 1]8 7→ Θ function. In particular,

given  = (1     8) ∈ [0 1]8, we set

 = 2(200)2−1  = −04 + 142+
 = (25 − 1)min(

√
67

p
(1− 6)(1− 7)),  = 8

 =  chol

Ã
6 

 7

!
,  =  chol(2 −0)()

where chol(·) is the Choleski decomposition of a matrix, () is the 2× 2 rotation matrix
for the angle , and  = diag(

p
 trΣ(1 1)

p
 trΣ(2 2)), with Σ(0 0) the

 ×  covariance matrix of  in the (  ) model when  = 2,  = 0, 1 = 0 and

1 = 0 (so Σ(0 0) is the covariance matrix in the scalar   model employed in Müller

and Watson (2016) without additional white noise). For  and , we set  = 2. For

10



, we enforce  ∈ Θ by setting  = chol

Ã
1 

 1

!
. The lower and upper bounds for 1

and 2 of 001 and 400 are such that the distribution of ( ) from the resulting Σ( 0)s

is nearly indistinguishable from the distribution under the limits  → 0 and  →∞

The rationale of this parameterization is that under the equivariance governing  and

, it is without loss of generality to consider the case where Ω() = 2. Now both

 = () and  = 0, as well as  = 0 and  = 2, induce Ω() = 2 with (2)
−1

as the factor of proportionality for the local-to-zero spectrum () given in the text. The

parameterization of 0 in terms of (5 6 7) exhaustively describes all decompositions of

2 = 0 + (2 −0) into two positive semidefinite matrices 0 and (2 −0). Under

the bivariate scale invariance governing , it is without loss of generality to consider the

case where Ω() =

Ã
1 ()

() 1

!
, and on Θ, 

() = .

3.3 Computation of Σ()

Gradient methods require fast evaluation of the likelihood for generic , which depends

on Σ(). We initially compute and store the  ×  matrices Σ(0 0) introduced in the

last subsection for all combinations of the values 0 ∈ {2(200)250−1}50=0 and 0 ∈ {−04 +
1440}40=0 using the algorithm developed in Müller and Watson (2016). For a general , we
then compute Σ(1 1) and Σ(2 2) by two-dimensional quadratic interpolation of the

matrix elements, and construct Σ() via

Σ() = (⊗ )

Ã
Σ(1 1) 0

0 Σ(2 2)

!
(⊗ )

0 + (0 ⊗ ).

3.4 Importance Sampling

For , the approach is exactly as described in Elliott, Müller, and Watson (2015), that is

we employ the importance sampling approximation

(
() ∈ 


Λ∗
( )) ≈ −1

X
=1

 (
() 


()|)

 (

()
  
()
)
1[() ∈ 


Λ∗
(

() 

())] (A.3)

for some proposal density   , where (

() 


()) are i.i.d. draws from   . For given , this

obviously induces a smooth approximating function on Θ, since for all  ∈ Θ, () = ,
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so that the indicator function does not vary with . In fact, for given 

Λ∗
, it suffices to

compute the sum over those  where  ∈ 

Λ∗
(

() 

()), no matter the value of  ∈ Θ.

For , note that by equivariance, the event () ∈ 

Λ∗
( ) is equivalent to   =

(11
() − 12)22 ∈ 


Λ∗
(†  †), where † = (1 ∗

0 
∗0)0 and  † = (1 0  ∗0)0. Thus,

given that (†  †) are functions of ∗, we have

(
() ∈ 


Λ∗
( )) ≈ −1

X
=1



0 (

∗
()



()
|)



 (∗()



()
)
1[



()
∈ 


Λ∗
(

†
()
 

†
()
)] (A.4)

for some proposal density  , where (
∗
()



()
) are i.i.d. draws from  . Analogously, for

,

(
() ∈ 

Λ∗ ( )) ≈ −1
X
=1

0 (
∗
()


()|)

 (
∗
()
 

()
)
1[ 

() ∈ 
Λ∗ (

†
()
 

†
()
)] (A.5)

with  = ()|22|. These approximation functions are again continuously differentiable
in , and for given 


Λ∗
, it suffices to perform the summation over those  where 



()
∈



Λ∗
(

†
()
 

†
()
),  ∈ { }.

For the importance sampling approximations to work well, it is crucial that the proposal

density  is never much smaller than 0 for all  ∈ Θ (or never much smaller than   over

Θ in the case of 
). Otherwise, the importance sampling weights 0(

∗ |)(∗ )
have a large variance Var[0(

∗ |)(∗ )] with (∗ ) drawn from , leading to

imprecise approximations. It is not a priori obvious how to construct such a proposal,

though, since the densities depend on the fairly high dimensional  in a complicated way.

To overcome this difficulty, we employ the following iterative scheme to construct a

suitable  that is a mixture of 400 values of  For simplicity, we describe it only in the

notation that is relevant for  and :

1. Select 100 initial points  based on a low-discrepancy sequence for  ∈ [0 1]8 of

subsection 3.2. For each , draw 200 i.i.d. draws (
∗
()()) from 0(

∗ |)

2. While the number -vectors is no larger than 400:

(a) Set  to the equal probability mixture of the current set of s.

(b) Use a gradient search algorithm to find 0 that maximizes the empirical coun-

terpart of the importance sampling weight variance based on the current  and
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draws (∗()()). We use the larger of 2 BFGS searches starting from random

starting values.

(c) Draw 200 i.i.d. draws (∗()()) from 0(
∗ |0), and add 0 to the set of s.

To ensure unbiased importance sampling estimates, we discard the 400 × 200 draws of
(∗()()) that were generated in this determination of , and redraw  = 250 000 i.i.d.

draws from  for the actual computation of non-coverage probabilities via (A.3), (A.4) and

(A.5).

3.5 Computation of Credible Sets and Integrals over 

We approximate integrals over  by a discrete sum over 1000 points  , where jointly

uniformly distributed random variables are approximated by a low-discrepancy sequence. To

ensure that ( ) and (− ) have the exact same distribution under our approximation
of
R
( |) (), the 1000 points are split into 500 corresponding pairs.
Note that it is not necessary to compute the credible sets 0 for each realization of

(
() 


()) or 

∗
(). Rather, it suffices to determine whether  ∈ 


0 (


() 


()) or () ∈

0(
†
()
 

†
()
), respectively. Under the discrete approximation to  , it hence suffices to check

whether or not P1000

=1 1[
( ) ≤ ] (

() 

()| )P1000

=1 
(

()
  
()
| )

(A.6)

and, for  ∈ { }, R P1000

=1 1[ ≤


()
]0(

∗
() | )P1000

=1 
∗
1 (

∗
()
| )

(A.7)

take on values in the interval [2 1− 2], respectively. We compute the integral in (A.7)

by numerical quadrature.

Since all three type of confidence sets always contain 0, the realizations of (

() 


())

and (∗()


()
) for which (A.6) and (A.7) take on values between [2 1− 2] never enter

the sums (A.3), (A.4) and (A.5) that approximate the non-rejection probabilities. The effec-

tive number of terms in the sums is thus greatly reduced, which correspondingly facilitates

computations. With this in mind, we modify the determination of the importance sampling

proposal by maximizing the (empirical analogue of the) variance of the importance sampling

weights conditional on the event () ∈ 0.
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3.6 Approximate Least Favorable Distributions and Size Control

The initial candidate set Θ consists of 10 randomly selected points in Θ (or in Θ in the

case of ). For given Θ, Λ
∗
 is computed by the algorithm described in Elliott, Müller, and

Watson (2015), using a target value the level of 1−+ . We set  to 0.3%, 0.6% and 1.0%

for  = 5%, 10% and 33%, respectively. We search for coverage violating points by BFGS

maximizations over the importance sampling approximation to the non-coverage probability

function  (), using numerical derivatives and random starting values. We collect up to 10

coverage violating points in up to 100 BFGS searches before augmenting Θ and recomputing

Λ∗ , which is fairly time consuming, especially if Θ consists of many points. Once 100 BFGS

searches with up to 30 iterations each did not yield a violating point, we switch to BFGS

searches with up to 100 iterations. The algorithm stops once 500 consecutive BFGS searches

with up to 100 iterations each do not yield a coverage violating point.

3.7 Quality of Approximation and Time to Compute

With  = 250 000 importance sampling draws and the baseline case of  = 12, the Monte

Carlo standard errors of non-coverage probabilities are approximately 0.1%-0.25% at the

5% level, 0.1%-0.35% at the 10% level, and 0.3%-0.5% at the 33% level. Using results in

Elliott, Müller, and Watson (2015) and Müller and Watson (2016), it is straightforward to

use the approximately least favorable distributions to obtain lower bounds on the  -weighted

average expected length of any confidence set of nominal level. We find that our sets are

within approximately 3% of this lower bound, so they come reasonably close to being as

short as possible under that criterion.

For  = 12, a specific level  and problem, the determination of the approximately least

favorable measure Λ∗ takes approximately 10-20 minutes using a Fortran implementation on

a dual 10-core PC, and yields an approximate least favorable measure Λ∗ with approximately

30-100 points of support. Running times are roughly quadratic in  due the 42 elements in

the quadratic forms of the likelihoods. Larger  also lead to bigger Monte Carlo standard

errors of rejection probabilities, as the importance sampling now must cover an effectively

larger set of distributions of (  ) and (∗ ), respectively.

14



4 Data Used

The data and sources are listed in Table A.1.

5 Additional Empirical Results

An extended version of Table 6 is given below.
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