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1 Introduction

Trading volume and return volatility in financial markets typically, but not always, move in tandem.

By studying the strength of this relationship around important public news announcements, we

shed new light on the way in which financial markets process new information and the key role

played by differences-of-opinion among investors. Our empirical investigations rely critically on the

use of high-frequency intraday data and new econometric procedures explicitly designed to deal

with complications that arise in the high-frequency data setting.

An extensive empirical literature has documented the existence of a strong contemporaneous

relation between trading volume and volatility; see Karpoff (1987) for a survey of some of the

earliest empirical evidence. The mixture-of-distributions hypothesis (MDH), originally developed

by Clark (1973) and later extended by Tauchen and Pitts (1983) and Andersen (1996) among others,

provides a possible explanation for this empirical relationship based on the idea of a common news

arrival process driving both the magnitude of returns and trading volume. The MDH, however,

remains silent about the underlying economic mechanisms that link the actual trades and price

adjustments to the news.

Meanwhile, a variety of equilibrium-based economic models have also been developed to help

understand how prices and volume respond to new information. This includes the rational-

expectations type models of Kyle (1985) and Kim and Verrecchia (1991) among many others,

in which investors agree on the interpretation of the news, but their information sets differ. Al-

though this class of models is able to account for the on-average positive correlation between volume

and volatility observed empirically, the models are unable to explain the occurrence of abnormally

large trading volumes that occasionally occur together with returns close to zero. Instead, models

that feature differences-of-opinion, including those by Harrison and Kreps (1978), Harris and Raviv

(1993), Kandel and Pearson (1995), Scheinkman and Xiong (2003) and Banerjee and Kremer (2010)

among others, in which investors agree to disagree, may help explain this oft observed empirical

phenomenon. In the differences-of-opinion class of models, the investors’ interpretation of the news

and their updated valuations of the assets do not necessarily coincide, thus allowing for the possibil-

ity of relatively small equilibrium price changes accompanied by relatively large aggregate trading

volumes.

Most of the existing empirical evidence related to the economic models discussed above, and
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the volume-volatility relationship in particular, has been based on daily or coarser frequency data.1

Meanwhile, another more recent strand of literature has emphasized the advantages of the use of

high-frequency intraday data for more accurately identifying “jumps” and studying the way in which

financial prices respond to public news announcements; see, for example, Andersen et al. (2003),

Andersen et al. (2007), Lee and Mykland (2008) and Lee (2012).2 This naturally suggests that

by “zooming in” and analyzing how not only prices but also trading volume and volatility evolve

around important news announcements, a deeper understanding of the economic mechanisms at

work and the functioning of markets may be forthcoming.

Set against this background, we provide new empirical evidence on the volume-volatility rela-

tionship around various macroeconomic news announcements based on high-frequency one-minute

data for the S&P 500 aggregate market portfolio. We begin by documenting the occurrence of large

increases in trading volume intensity around Federal Open Market Committee (FOMC) meetings

without accompanying large price jumps. As noted above, this presents a challenge for models in

which investors rationally update their beliefs based on the same interpretation of the news, and

instead points to the importance of models allowing for disagreements or, differences-of-opinion,

among investors.

To help further explore this thesis and guide our more in-depth empirical investigations, we

derive an explicit expression for the elasticity of expected trading volume with respect to price

volatility within the Kandel and Pearson (1995) differences-of-opinion model. We purposely focus

our analysis on the elasticity as it may be conveniently estimated with high-frequency data and,

importantly, has a clear economic interpretation in terms of model primitives. In particular, we

show theoretically that the volume-volatility elasticity is monotonically decreasing in a well-defined

measure of relative disagreement. Moreover, the elasticity is generally below one and reaches its

upper bound of unity only in the benchmark case without disagreement.

The theoretical model underlying these predictions is inevitably stylized, focussing exclusively

on the impact of public news announcements. As such, the theory mainly speaks to the “abnormal”

movements in volume and volatility observed around these news events. To identify the abnormal

movements, and thus help mitigate the effects of other confounding forces, we rely on the “jumps”

in the volume intensity and volatility around the news announcements. Our estimation of the

jumps is based on the differences between the post- and pre-event levels of the instantaneous

1One notable exception is Chaboud et al. (2008), who document large trading volume in the foreign exchange
market in the minutes immediately before macroeconomic announcements, even when the announcements are in line
with market expectations and the actual price changes are small.

2Related to this, Savor and Wilson (2013) also document higher average excess market returns on days with
important macroeconomic news releases compared to non-announcement days.
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volume intensity and volatility, which we recover nonparametrically using high-frequency data.

Even though the differencing step used in identifying the jumps effectively removes low-frequency

dynamics in the volatility and volume series (including daily and lower frequency trending behavior)

that might otherwise confound the estimates, the jump estimates are still affected by the well-

documented strong intraday periodic patterns that exist in both volume and volatility (for some

of the earliest empirical evidence, see Wood et al., 1985; Jain and Joh, 1988). In an effort to

remove this additional confounding influence we apply a second difference with respect to a control

group of non-announcement days. The resulting “doubly-differenced” jump estimates in turn serve

as our empirical analogues of the abnormal volume and volatility movements that we use in our

regression-based analysis of the theoretical predictions.

In its basic form, our empirical regression strategy may be viewed as a Differences-in-Differences

(DID) type estimator, as commonly used in empirical microeconomic studies; see, for example,

Ashenfelter and Card (1985). However, our setup is distinctly different from conventional settings,

and the usual justification for the use of DID regressions does not apply in the high-frequency data

setting. Correspondingly, our new econometric procedures and the justification thereof entail two

important distinctions. Firstly, to accommodate the strong dynamic dependencies in the volatility

and volume intensity, we provide a rigorous theoretical justification based on a continuous-time

infill asymptotic framework allowing for essentially unrestricted non-stationarity. Secondly, we

provide an easy-to-implement local i.i.d. bootstrap method for conducting valid inference. By

randomly resampling only locally in time (separately before and after each announcement), the

method provides a simple solution to the issue of data heterogeneity, which otherwise presents a

key complication for bootstrapping in the high-frequency data setting (see, e.g., Gonçalves and

Meddahi, 2009).

Our actual empirical findings are closely in line with the theoretical predictions derived from the

Kandel and Pearson (1995) model and the differences-of-opinion class of models more generally.

In particular, we first document that the estimated volume-volatility elasticity around FOMC

announcements is significantly below unity. This finding carries over to other important intraday

public news announcements closely monitored by market participants. Interestingly, the volume-

volatility elasticity estimates are lower for announcements that are released earlier in the monthly

news cycle (see Andersen et al., 2003), such as the ISM Manufacturing Index and the Consumer

Confidence Index, reflecting the importance of timing across the announcements and the effect of

learning.

Going one step further, we show that the intraday volume-volatility elasticity around news
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announcements decreases significantly in response to increases in measures of dispersions-in-beliefs

(based on the survey of professional forecasters as in, e.g., Van Nieuwerburgh and Veldkamp, 2006)

and economic uncertainty (based on the economic policy uncertainty index of Baker et al., 2015).

This again corroborates our theoretical predictions and the key role played by differences-of-opinion.

Our more detailed analysis of FOMC announcements, in which we employ an additional textual-

based measure for the negative sentiment in the accompanying FOMC statements (based on the

methodology of Loughran and McDonald, 2011), further underscores the time-varying nature of

the high-frequency volume-volatility relationship and the way in which the market processes new

information: when the textual sentiment in the FOMC statement is more negative, the relative

disagreement among investors also tends to be higher, pushing down the volume-volatility elasticity.

The rest of the paper is organized as follows. Section 2 presents the basic economic argu-

ments and theoretical model that guide our empirical investigations. Section 3 describes the high-

frequency intraday data and news announcements used in our empirical analysis. To help further

motivate and set the stage for our more detailed subsequent empirical investigations, Section 4

discusses some preliminary findings specifically related to FOMC announcements. Section 5 de-

scribes the new high-frequency inference procedures that we rely on for our more in-depth empirical

analysis. Section 6 presents our main empirical findings based on the full set of news announce-

ments, followed by our more detailed analysis of FOMC announcements. Section 7 concludes.

Technical details concerning the new econometric inference procedure are provided in Appendix A.

Appendix B contains further data descriptions. Additional empirical results and robustness checks

are relegated to a (not-for-publication) supplemental appendix.

2 Theoretical motivation

We rely on the theoretical volume-volatility relations derived from the differences-of-opinion model

of Kandel and Pearson (1995) to help guide our empirical investigations. We purposely focus on

a simplified version of the model designed to highlight the specific features that we are after, and

the volume-volatility elasticity around news arrivals in particular. To contrast the differences-

of-opinion and rational-expectations types of models, we also briefly outline the corresponding

empirical implications from a simplified version of the Kim and Verrecchia (1991) model. We begin

by discussing the basic setup and assumptions.
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2.1 New information and differences-of-opinion

Following Kandel and Pearson (1995), henceforth KP, we assume that a continuum of traders trade

a risky asset and a risk-free asset in a competitive market. The random payoff of the risky asset,

denoted ũ, is unknown to the traders. The risk-free rate is normalized to be zero. The traders’

utility functions have constant absolute risk aversion with risk tolerance r. Each trader receives a

noisy private signal about the payoff of the risky asset. Conditional on ũ, the private signals are

independent and normally distributed. There are only two types of traders, i ∈ {1, 2}, with the

proportion of type 1 traders denoted α. The precision of type-i trader’s signal is si.

The public signal is ũ+ ε̃, where the noise term ε̃ is normally distributed. After observing the

public signal, the traders update their beliefs about ũ and optimally re-balance their positions. The

key feature of the KP model is that the two types of traders agree to disagree on how to interpret

the public signal when updating their beliefs about the asset value: type i traders believe that

ε̃ is drawn from the N(µi, h
−1) distribution. Differences-of-opinion regarding the public signal is

present among the traders when µ1 6= µ2.

Following KP it is possible to show that in equilibrium3

Volume = |β0 + β1 · Price Change| , (2.1)

where

β0 = rα (1− α)h (µ1 − µ2) , β1 = rα (1− α) (s1 − s2) . (2.2)

We remark that the coefficient β0 is directly associated with the degree of differences-of-opinion (i.e.,

µ1 − µ2), whereas β1 depends on the dispersion in the precisions of prior beliefs. Both coefficients

are increasing in the degree of risk tolerance.

By way of contrast, we also consider the rational-expectations model of Kim and Verrecchia

(1991), in which rational traders agree on the interpretation of the public signal. In this setting,

only if the equilibrium price changes in response to the public signal, will the optimal positions of

the traders change. In particular, in parallel to the expression above it is possible to show that4

Volume = |β1 · Price Change| . (2.3)

Even though the economic mechanism of Kim and Verrecchia (1991) differs from that of the KP

model, the empirical implications from equation (2.3) are obviously nested in equation (2.1) with

β0 = 0, that is, the case without differences-of-opinion.

3See equation (5) in Kandel and Pearson (1995).
4See Proposition 2 of Kim and Verrecchia (1991).
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2.2 Expected volume and volatility

The implication of the KP model for the relationship between price adjustment and trading volume

in response to new information is succinctly summarized by equations (2.1) and (2.2). These

equations, however, depict an exact functional relationship between (observed) random quantities.

A weaker, but empirically more realistic, implication can be obtained by thinking of this equilibrium

relationship as only holding “on average.” Moment conditions corresponding to the stochastic

version (2.1) formally capture this idea.

Specifically, let m(σ) denote the expected volume as a function of the volatility σ (i.e., the

standard deviation of price change). Assuming that the price changes are normally distributed

with mean zero and standard deviation σ, it follows by direct integration of (2.1) that

m (σ) =

√
2

π
|β1|σ exp

(
− β2

0

2β2
1σ

2

)
+ |β0|

(
2Φ

(
|β0|
|β1|σ

)
− 1

)
, (2.4)

where Φ denotes the cumulative distribution function of the standard normal distribution.5 The

expected volume m(σ) depends on σ and the (β0, β1) coefficients in a somewhat complicated fashion.

However, it is straightforward to show that m(σ) is increasing and convex in σ.

In order to gain further insight regarding this (expected) volume-volatility relationship, Figure

1 illustrates how the m(σ) function varies with the “disagreement coefficient” β0. Locally, when

the volatility σ is close to zero, the expected volume is positive if and only if the opinions of the

traders differ (i.e., µ1 6= µ2). Globally, as β0 increases (from the bottom to the top curves in the

figure), the equilibrium relationship between the expected volume and volatility “flattens out.”

It is useful for our analysis below to further quantify this global feature in terms of the elasticity

of m(σ) with respect to σ. We will denote this elasticity by E , and refer to it as the volume-volatility

elasticity for short. A straightforward calculation yields

E ≡ ∂m(σ)/m(σ)

∂σ/σ
=

1

1 + ψ (γ/σ)
, (2.5)

where

γ ≡ |β0|
|β1|

=
h |µ1 − µ2|
|s1 − s2|

, (2.6)

and the function ψ is defined by ψ (x) ≡ x (Φ (x)− 1/2) /φ (x), with φ being the density function

of the standard normal distribution. The function ψ is strictly increasing on [0,∞), with ψ(0) = 0

and limx→∞ ψ(x) =∞.

5Similarly, for the Kim and Verrecchia (1991) rational-expectations type model and the expression in (2.3), m(σ) =√
2|β1|σ/

√
π.
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Figure 1: Equilibrium volume-volatility relations
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Notes: The figure shows the equilibrium relationship between expected trading volume m and price volatility σ in
the Kandel–Pearson model for various levels of disagreement, ranging from β0 = 0 (bottom) to 0.5, 1 and 1.5 (top).
β1 is fixed at one in all of the graphs.

The expressions in (2.5) and (2.6) embody two important features of the volume-volatility

elasticity that we use to guide our empirical analysis. Firstly, E ≤ 1 with the equality and an

elasticity of unity obtaining if and only if γ = 0. Secondly, E only depends on and is decreasing in

γ/σ. This second feature provides a clear economic interpretation of the volume-volatility elasticity

E : it is low when differences-in-opinion is relatively high, and vice versa, with γ/σ serving as the

relative measure of the differences-of-opinion. This relative measure is higher when traders disagree

more on how to interpret the public signal (i.e., larger |µ1 − µ2|) and with more confidence (i.e.,

larger h), relative to the degree of asymmetric private information (i.e., |s1 − s2|) and the overall

price volatility (i.e., σ).

In our empirical investigations discussed below, we seek to directly quantify these relations based

on intraday high-frequency transaction data around well-defined public news announcements, along

with various proxies for the heterogeneity in beliefs and economic uncertainty associated with the

news events. We turn next to a discussion of the data that we use in doing so.
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Table 1: Summary statistics of high-frequency price returns and volume data

Mean Min 1% 25% 50% 75% 99% Max

Return (percent) 0.000 -2.014 -0.149 -0.021 0.000 0.021 0.149 2.542

Volume (1,000 shares) 289.5 0.0 2.4 55.4 147.6 350.7 2005 31153

Notes: The table reports summary statistics of the one-minute returns and one-minute trading vol-
umes for the SPY ETF during regular trading hours from April 10, 2001 to September 30, 2014.

3 Data description and summary statistics

Our empirical investigations are based on high-frequency intraday transaction prices and trading

volume, together with precisely timed macroeconomic news announcements. We describe our data

sets in turn.

3.1 High-frequency market prices and trading volume

Our primary data is comprised of intraday transaction prices and trading volume for the S&P

500 index ETF (ticker: SPY). In some of our robustness checks we also employ high-frequency

data of an ETF tracking the Dow Jones Industrial Average (ticker: DIA). All data are obtained

from the TAQ database. The sample covers all regular trading days from April 10th, 2001 through

September 30th, 2014. The raw data are cleaned and sampled at the one-minute frequency following

the procedures detailed in Brownlees and Gallo (2006) and Barndorff-Nielsen et al. (2009). In total,

there are 1,315,470 observations of one-minute return and trading volume.

Summary statistics for the SPY returns and trading volumes (number of shares) are reported

in Table 1. Consistent with prior empirical evidence (see, e.g., Bollerslev and Todorov (2011)), the

high-frequency one-minute returns appear close to be symmetrically distributed. The one-minute

volume series, on the other hand, is highly skewed to the right, with occasionally very large values.

To highlight the general dynamic dependencies inherent in the data, Figure 2 plots the daily

logarithmic trading volume (constructed by summing the one-minute trading volumes over each of

the different days) and the logarithmic daily realized volatilities (constructed as the sum of squared

one-minute returns over each of the days in the sample). As the figure shows, both of the daily

series vary in a highly predictable fashion. The volume series, in particular, seems to exhibit an

upward trend over the first half of the sample, but then levels off over the second half. Meanwhile,

consistent with the extensive prior empirical evidence discussed above, there are strong dynamic

commonalities evident in the two series.

In addition to the strong intertemporal dynamic dependencies, the volume and volatility series
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Figure 2: Time series of volume and volatility

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
0

2

4

6

8

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
1

2

3

4

5

Notes: The figure shows the daily logarithmic trading volume (top panel) and logarithmic realized volatility (bottom
panel) for the SPY ETF. The daily volume is constructed by accumulating the intraday volume. The daily realized
volatility is constructed as the sum of one-minute squared returns over the day.

also exhibit strong intraday patterns. To illustrate this, Figure 3 plots the square-root of the one-

minute squared returns averaged across each minute-of-the-day (as an estimate for the volatility

over that particular minute) and the average trading volume over each corresponding minute. In

order to prevent abnormally large returns and volumes from distorting the picture, we only include

non-announcement days that are discussed in Section 3.2 below. Consistent with the evidence in

the extant literature, there is a clear U-shaped pattern in the average volatility and trading activity

over the active part of the trading day.6

3.2 Macroeconomic news announcements

The Economic Calendar Economic Release section in Bloomberg includes the date and exact within

day release time for over one-hundred regularly scheduled macroeconomic news announcements.

Most of these announcements occur before the market opens or after it closes. We purposely focus

on announcements that occur during regular trading hours only.7 All-in-all, this leaves with 21

6See Wood et al. (1985), Harris (1986), Jain and Joh (1988), Baillie and Bollerslev (1990), and Andersen and
Bollerslev (1997) for some of the earliest empirical evidence on the intraday patterns in volatility and volume.

7To ensure that there is a 30-minute pre-event (resp. post-event) window before (resp. after) each announcement,
we exclude announcements that are released during the first and the last 30 minutes of the trading day.
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Figure 3: Intraday patterns of volatility and volume
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Notes: The figure shows the intraday volatility for the SPY ETF (left panel) constructed as the square root of
the one-minute squared returns averaged across all non-announcement days, along with the best quadratic fit. The
intraday trading volume for the SPY ETF (right panel) is similarly averaged across all non-announcement days.

different indicators for a total of 2,130 intraday public news announcements over the April 10, 2001

to September 30, 2014 sample period.

We identify four types of important announcements that comprise of the FOMC rate decision

(FOMC), ISM Manufacturing Index (ISMM), ISM Non-Manufacturing Index (ISMNM), and the

Consumer Confidence (CC) Index, based on prior empirical evidence.8 Table 2 provides the typical

release times and the number of releases over the sample for each of these important indicators.

The remaining announcements are categorized as Others, a full list of which is provided in Table

B.1 in Appendix B.

4 A preliminary analysis of FOMC announcements

To set the stage for our more in-depth subsequent empirical investigations, we begin by presenting a

set of simple summary statistics and illustrative figures related to the volume-volatility relationship

around FOMC announcements. We focus our preliminary analysis on FOMC announcements,

because these are arguably among the most important public news announcements that occur

during regular trading hours.9

8See, for example, Andersen et al. (2003), Boudt and Petitjean (2014), Jiang et al. (2011) and Lee (2012).
9The reaction of market prices to FOMC announcements has been extensively studied in the recent literature; see,

for example, Johnson and Paye (2015) and many references therein.
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Table 2: Macroeconomic news announcements

No.Obs. Time Source

FOMC 109 14:15† Federal Reserve Board

ISM Manufacturing (ISMM) 160 10:00 Institute of Supply Management

ISM Non-Manufacturing (ISMNM) 158 10:00 Institute of Supply Management

Consumer Confidence (CC) 160 10:00 Conference Board

Other Indicators (Others) 1682 Varies

Notes: The table reports the total number of observations, release time, and data source
for each of the news announcements over the April 10, 2001 to September 30, 2014 sample.
†The exact times mostly vary from 14:00 to 14:15.

For each announcement, let τ denote the pre-scheduled announcement time (typically at 14:15

EST). The time τ is naturally associated with the integer i(τ) such that τ = (i(τ) − 1)∆n, where

∆n = 1 minute is the sampling interval of our intraday data. We define the event window as

((i(τ)− 1) ∆n, i(τ)∆n]. Further, we define the pre-event (resp. post-event) window to be the

kn-minute period immediately before (resp. after) the event window. We denote the return and

trading volume over the jth intraday time-interval ((j − 1)∆n, j∆n] by rj and Vj∆n , respectively.

The volume intensity m (i.e., the instantaneous mean volume) and the spot volatility σ before and

after the announcement, denoted by mτ−, mτ , στ− and στ , respectively, may then be estimated by

m̂τ− ≡ 1
kn

∑kn
j=1 V(i(τ)−j)∆n

, m̂τ ≡ 1
kn

∑kn
j=1 V(i(τ)+j)∆n

,

σ̂τ− ≡
√

1
kn∆n

∑kn
j=1 r

2
i(τ)−j , σ̂τ ≡

√
1

kn∆n

∑kn
j=1 r

2
i(τ)+j .

(4.1)

These estimators are nonparametric, in the sense that they use data in local windows around

the event time, where the window size kn plays the role of the bandwidth parameter in usual

nonparametric analysis. Under some standard technical assumptions that we detail in Appendix

A, the validity of these nonparametric estimators can be justified. We set kn = 30 that corresponds

to a 30-minute window.

Figure 4 plots the resulting time series of estimated logarithmic volume intensities (top panel)

and logarithmic spot volatilities (bottom panel) before and after the FOMC announcements.10 We

observe marked bursts in the trading volume following each FOMC announcements, accompanied by

positive jumps in the volatility. These jumps in the volume intensity and volatility are economically

10The logarithmic transform is naturally motivated by our interest in the volume-volatility elasticity derived in
Section 2.2. The log-transformation also helps reduce the heteroskedasticity in both series. The heteroskedasticity
in the spot volatility estimates is directly attributable to estimation errors. Formally, the standard error of the σ̂τ
estimate equals σ̂τ/

√
2kn, so that by the delta-method the standard error of log(σ̂τ ) equals the constant 1/

√
2kn. In

addition, the logarithm effectively transforms the salient multiplicative trend in the volume series over the first half
of the sample to an additive trend, which as seen in Figure 2 is close to linear in time.
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Figure 4: Volume and volatility around FOMC announcements
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Notes: The figure plots the log-volume intensity (top panel) and log-volatility (bottom panel) around FOMC
announcements. The volume intensity and volatility are calculated using equation (4.1) with kn = 30.

large, with average jump sizes (in log) of 1.41 and 1.09, respectively.11 This suggests that traders

revise their beliefs about the stock market differently upon seeing the FOMC release. It is, of course,

possible that traders have asymmetric private information about the overall market, although it

seems much more likely that any differences are attributed to the traders’ different interpretation

of the news.12

In order to further buttress the importance of differences-of-opinion among investors, we con-

sider two additional empirical approaches. Firstly, as discussed in Section 2.1, if all investors agreed

on the interpretation of the FOMC announcements, the trading volumes observed around the news

releases should be approximately proportional to the price changes. Consequently, if there were no

disagreement we would expect to see large price changes accompanied by large changes in trading

volume and vice versa. To investigate this hypothesis, we sort all of the FOMC announcements

by the normalized one-minute event returns ri/σ̂τ−
√

∆n, and plot the resulting time series of pre-

and post-event volume intensity estimates.13 Consistent with the findings of KP (based on daily

11As discussed in Section 6, they are also highly statistically significant.
12It appears highly unlikely that there is any “insider information” pertaining to the actual FOMC release.
13The normalization with respect to the spot volatility serves as a scale adjustment to make the returns across

announcements more comparable. A similar figure based on the five-minute returns is included in the supplemental
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Figure 5: Sorted volume around FOMC announcements
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returns ri(τ)/σ̂τ−

√
∆n around FOMC announcements (dots). The normalized return (dash-dotted line) increases from

left to right. Announcements with normalized returns less than 1 (resp. 3) are highlighted by the dark (resp. light)
shaded area.

data), Figure 5 shows no systematic association between trading volumes and returns. Instead,

we observe many sizable jumps in the volume intensity for the absolute returns “close” to zero,

that is, when they are less than three instantaneous standard deviations (light shaded area) or one

instantaneous standard deviation (dark shaded area).

The empirical approach above mainly focuses on events with price changes close to zero and,

hence, is local in nature. Our second empirical approach seeks to exploit a more global feature of

the differences-of-opinion type models, namely that the volume-volatility elasticity should be below

unity. While this prediction was derived from the explicit solution for the KP model in equation

(2.4), the underlying economic intuition holds more generally: differences-of-opinion provides an

additional trading motive that is not tied to the traders’ average valuation of the asset.

In order to robustly examine this prediction for the volume-volatility elasticity, without relying

on the specific functional form in (2.5), we adopt a less restrictive reduced-form estimation strategy.

Further along those lines, we note that the models discussed in Section 2 are inevitably stylized

in nature, abstracting from other factors that might affect actual trading volume (e.g., liquidity

appendix.
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or life-cycle trading, reduction in trading costs, advances in trading technology, to name but a

few). As such, the theoretical predictions are more appropriately thought of as predictions about

“abnormal” variations in the volume intensity and volatility. In the high-frequency data setting,

abnormal movements around announcements conceptually translate into “jumps” of the variables

of interest. Below, we denote the log volatility jump by ∆ log (στ ) ≡ log(στ )− log(στ−) and define

∆ log (mτ ) similarly for the volume.

These considerations naturally suggest the following reduced-form specification for estimating

the volume-volatility elasticity E ,

∆ log (mτ ) = Intercept + E ·∆ log (στ ) . (4.2)

The estimation is carried out via a two-step semiparametric procedure. In the first step, we non-

parametrically estimate the jumps using

∆̂ logmτ ≡ log(m̂τ )− log(m̂τ−), ∆̂ log στ ≡ log(σ̂τ )− log(σ̂τ−). (4.3)

In the second step, we regress ∆̂ logmτ on ∆̂ log στ with an intercept. In Section 5, below, we

formally justify this two-step procedure and develop the rigorous inference tools for gauging the

nonparametric estimation error (which is nonstandard).

Figure 6 shows the corresponding scatter plot of the estimated FOMC log-volume intensity and

log-volatility jumps. There is a clear positive correlation between the two series, with a correlation

coefficient of 0.57. Moreover, the scatter plot does not reveal any obvious deviations from the

simple log-linear relationship seen in equation (4.2). Consistent with the theoretical predictions,

and the idea that traders interpret the FOMC announcements differently, the estimate of Ê = 0.66

is numerically less than unity.

The summary statistics and figures discussed above all corroborate the idea that differences-of-

opinion among investors play an important role in the way in which the market responds to FOMC

announcements. To proceed with a more formal empirical analysis involving other announcements

and explanatory variables, we need econometric tools for conducting valid inference, to which we

now turn.

5 High-frequency econometric procedures

The econometrics in the high-frequency setting is notably different from more conventional settings,

necessitating the development of new econometric tools properly tailored to our empirical analysis
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Figure 6: Volume and volatility jumps around FOMC announcements
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Notes: The figure shows the scatter of the jumps in the log-volume intensity versus the jumps in the log-volatility
around FOMC announcements. The line represents the least squares fit.

of the volume-volatility relationship.14 To streamline the discussion, we focus on the practical

implementation and heuristics for the underlying theory, deferring the technical details to Appendix

A.

Our baseline econometric problem concerns the estimation and inference for the coefficients in

a log-linear jump specification, like equation (4.2) in the preliminary descriptive analysis in the

previous section. In addition to this simple specification for E , we shall also investigate how other

explanatory variables (e.g., types of announcements and measures of disagreement) might affect

the volume-volatility elasticity. To do so, we parametrize both the intercept and the elasticity as

linear functions of some explanatory variable Xτ = (X0,τ , X1,τ ), that is,

∆ log (mτ ) = (a0 + b>0 X0,τ ) + (a1 + b>1 X1,τ ) ·∆ log (στ ) . (5.1)

This equation is best understood as an instantaneous moment condition, in which the volume

intensity process mt (resp. the spot volatility process σt) represents the latent local first (resp.

second) moment of the volume (resp. price return) process. Our goal is to conduct valid inference

14Aı̈t-Sahalia and Jacod (2014) provide a comprehensive review of recent development on the econometrics of
high-frequency data.
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about the parameter θ ≡ (a0, b0, a1, b1), especially the components a1 and b1 that determine the

volume-volatility elasticity.

Consider the group A comprised of a total of M announcement times.15 Further, define

Sτ ≡ (mτ−,mτ , στ−, στ , Xτ ) and S ≡ (Sτ )τ∈A, where the latter collects the information on all

announcements. Our estimator of S may then be expressed as Ŝn ≡ (Ŝτ )τ∈A, where Ŝτ ≡
(m̂τ−, m̂τ , σ̂τ−, σ̂τ , Xτ ) is formed using the nonparametric pre- and post-event volume intensity

and volatility estimators previously defined in (4.1). Correspondingly, summary statistics pertain-

ing to the jumps in the volume intensity and volatility for the group of announcement times A may

be succinctly expressed as f(Ŝ) for some smooth function f(·).16

Moreover, we may estimate the parameter vector θ ≡ (a0, b0, a1, b1) in (5.1) for the group A
using the following minimum-distance estimator

θ̂ ≡ argmin
θ

∑
τ∈A

(
̂∆ log (mτ )− (a0 + b>0 X0,τ )− (a1 + b>1 X1,τ ) · ̂∆ log (στ )

)2
. (5.2)

This estimator may similarly be expressed as θ̂ = f(Ŝ), albeit for a more complicated transform

f(·). It can be shown that Ŝ is a consistent estimator of S, which in turn implies that f(Ŝ)

consistently estimates f(S), provided f(·) is a smooth function of the estimated quantities. The

estimates that we reported in our preliminary analysis in Section 4 may be formally justified this

way.

The “raw” estimator defined above remains asymptotically valid under general technical con-

ditions. However, the nonparametric estimators ̂∆ log (στ ) and ̂∆ log (mτ ) underlying the simple

estimator in (5.2) do not take into account the strong intraday U-shaped patterns in trading vol-

ume and volatility documented in Figure 3. While the influence of the intraday patterns vanishes

asymptotically, they invariably contaminate our estimates of the jumps in finite samples, and our

use of the jump estimates as measures of “abnormal” volume and volatility movements, to which

the economic theory speaks. A failure to adjust for this may therefore result in a mismatch between

the empirical strategy and the economic theory.17

15Importantly, unlike conventional econometric settings, our asymptotic inference does not rely on an increasingly
large number of announcements. Indeed, we assume that the sample span and the number of announcements within
the span (i.e., M) are fixed. Our econometric theory exploits the fact that the high-frequency data are sampled at
(asymptotically increasingly) short intervals. Our econometric setting allows for essentially arbitrary heterogeneity
across the announcements and empirically realistic strong persistence in the volume intensity and volatility processes.

16For example, the average jump sizes in the logarithmic volatility and volume intensity around the announcements
are naturally measured by

f(Ŝ) =
1

M

∑
τ∈A

̂∆ log (στ ) and f(Ŝ) =
1

M

∑
τ∈A

̂∆ log (mτ ),

respectively.
17For instance, the ISM indices and the Consumer Confidence Index are all released at 10:00 when volume and
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To remedy this, we correct for the influence of the intraday pattern by differencing it out

with respect to a control group. Since this differencing step is applied to the jumps, which are

themselves differences between the post- and pre-event quantities, our empirical strategy may be

naturally thought of as a high-frequency DID type estimator, in which we consider the event-control

difference of the jump estimates as our measure for the abnormal movements in the volume intensity

and volatility.

Formally, with each announcement time τ , we associate a control group C (τ) of non-announcement

times. Based on this control group, we then correct for the intraday patterns in the “raw” jump esti-

mators by differencing out the corresponding estimates averaged within the control group, resulting

in the adjusted jump estimators

˜∆ log (mτ ) ≡ ̂∆ log (mτ )− 1

NC

∑
τ ′∈C(τ)

̂∆ log (mτ ′),

˜∆ log (στ ) ≡ ̂∆ log (στ )− 1

NC

∑
τ ′∈C(τ)

̂∆ log (στ ′),
(5.3)

where NC refers to the number of times in the control group.18 The DID counterpart to (5.2) is

then simply defined by,

θ̃ ≡ argmin
θ

∑
τ∈A

(
˜∆ log (mτ )− (a0 + b>0 X0,τ )− (a1 + b>1 X1,τ ) · ˜∆ log (στ )

)2
. (5.4)

Note that θ̃ depends not only on (Ŝτ )τ∈A but also on (Ŝτ ′)τ ′∈C , where C ≡ ∪τ∈AC (τ) contains the

times of all control groups. This estimator can be expressed as θ̃ = f(S̃) where S̃ ≡ (Ŝτ )τ∈T for

T ≡ A ∪ C.
In practice, θ̃ can easily be computed via an ordinary least square regression. However, the

econometric inference (including the computation of standard errors) is non-standard. The sampling

variability in θ̃ arises exclusively from the nonparametric estimation errors in the pre- and post-

event high-frequency-based volume intensity and volatility estimators, m̂τ± and σ̂±. While in

theory it would be possible to characterize the resulting asymptotic covariance matrix and use it

to design “plug-in” type standard errors, the control groups C (τ) for the different announcement

times often partially overlap, which severely complicates the formal derivation and implementation

of the requisite formulas.

volatility both tend to be decreasing even on non-announcement days, while FOMC announcements mostly occur at
14:15 when volume and volatility are generally increasing.

18In our empirical analysis below, C (τ) consists of the same time-of-day as τ over the previous NC = 22 non-
announcement days (roughly corresponding to the length of one trading month). We also experimented with the
use of other control periods, including periods comprised of future non-event days, resulting in the same general
conclusions as the DID results reported below.
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Instead, in order to facilitate the practical implementation, we rely on a novel easy-to-implement

local i.i.d. bootstrap procedure for computing the standard errors. This procedure does not require

the exact dependence of θ̃ on S̃ to be fully specified. Instead, it merely requires repeated estimation

over a large number of locally i.i.d. bootstrap samples for the pre-event and post-event windows

around each of the announcement and control times. The “localization” is important, as it allows

us to treat the conditional distributions as (nearly) constant, in turn permitting the use of an i.i.d.

re-sampling scheme.

The actual procedure is summarized by the following algorithm. The formal theoretical justifi-

cation is given in the technical Appendix A.

Bootstrap Algorithm

Step 1: For each τ ∈ T , generate i.i.d. draws (V ∗i(τ)−j , r
∗
i(τ)−j)1≤j≤kn and (V ∗i(τ)+j , r

∗
i(τ)+j)1≤j≤kn

from (Vi(τ)−j , ri(τ)−j)1≤j≤kn and (Vi(τ)+j , ri(τ)+j)1≤j≤kn , respectively.

Step 2: Compute ˜∆ log (mτ )
∗

and ˜∆ log (στ )
∗

the same way as ˜∆ log (mτ ) and ˜∆ log (στ ), respec-

tively, except that the original data (Vi(τ)−j , ri(τ)−j)1≤|j|≤kn is replaced with (V ∗i(τ)−j , r
∗
i(τ)−j)1≤|j|≤kn .

Similarly, compute θ̃∗ according to (5.4) using re-sampled data.

Step 3: Repeat steps 1 and 2 a large number of times. Report the empirical standard errors of

(the components of) θ̃∗ − θ̃ as the standard errors of the original estimator θ̃. �

Equipped with the new high-frequency DID estimator defined in equation (5.4) and the accom-

panying bootstrap procedure outlined above for calculating standard errors and conducting valid

inference, we now turn to our main empirical findings.

6 Volume-volatility relationship around public announcements

We begin our empirical investigations by verifying the occurrence of (on average) positive jumps

in both trading volume intensity and return volatility around scheduled macroeconomic announce-

ments. We document how these jumps, and the volume-volatility elasticity in particular, vary

across different types of announcements. We then show how the variation in the elasticities ob-

served across different announcements may be related to explanatory variables that serve as proxies

for differences-of-opinion and, relatedly, notion of economic uncertainty. A more detailed analysis

of FOMC announcements further highlights the important role played by the sentiment embedded

in the FOMC statements accompanying each of the rate decisions.
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Table 3: Volume and volatility jumps around public news announcements

Events All FOMC ISMM ISMNM CC Others

No.Obs. 2130 109 160 158 160 1682

No DID

Log Volatility 0.090** 1.088** 0.162** 0.072** 0.114** 0.023**

(0.004) (0.027) (0.017) (0.018) (0.015) (0.005)

Log Volume 0.034** 1.410** 0.056** -0.045** 0.049** -0.045**

(0.004) (0.023) (0.015) (0.013) (0.015) (0.005)

DID

Log Volatility 0.152** 1.037** 0.256** 0.165** 0.209** 0.087**

(0.006) (0.029) (0.017) (0.020) (0.017) (0.005)

Log Volume 0.204** 1.329** 0.335** 0.233** 0.328** 0.118**

(0.005) (0.025) (0.015) (0.015) (0.015) (0.006)

Notes: The table reports the average logarithmic volatility jumps and the average logarithmic
volume intensity jumps around all announcements (All), which are further categorized into
FOMC announcements (FOMC), ISM Manufacturing Index (ISMM), ISM Non-Manufacturing
Index (ISMNM), Consumer Confidence Index (CC), and other pre-scheduled macroeconomic
announcements (Others). The top panel reports the raw statistics. The bottom panel adjusts
for the intraday pattern via the DID method using the past 22 non-announcement days as the
control group. The sample period spans April 10, 2001 to September 30, 2014. Bootstrapped
standard errors are reported in parentheses. ** indicates significance at the 1% level.

6.1 Jumps and announcements

Consistent with the basic tenet of information-based trading around public news announcements,

the preliminary analysis underlying Figure 4 clearly suggests an increase in both volatility and

trading intensity from the thirty minutes before an FOMC announcement to the thirty minutes

after the announcement. In order to more formally corroborate these empirical observations and

extend them to a broader set of announcements, we report in Table 3 the average magnitudes of

the logarithmic volatility and volume intensity jumps observed around news announcements, using

the econometric inference procedure described in Section 5. We report the results for all of the

news announcements combined, as well as the five specific news categories explicitly singled out in

Table 2.

The top panel presents the “raw” jump statistics. The volatility jumps are always estimated to

be positive and highly statistically significant. This is true for all of the announcements combined,

as well as within each of the five separate categories. The volume jumps averaged across all news
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announcements are also significantly positive. However, the jumps in the volume intensities are

estimated to be negative for two of the news categories: ISM Non-Manufacturing and Others. This

is difficult to reconcile with any of the economic mechanisms and theoretical models discussed

in Section 2. Instead, these negative estimates may be directly attributed to the strong diurnal

pattern evident in Figure 3. The ISM indices and most of the economic news included in the Others

category are announced at 10:00am, when both volatility and trading volume tend to be falling,

thus inducing a downward bias in the jump estimation.

To remedy this, we apply the DID estimation and inference approach discussed in the previous

section, in which we rely on the previous 22 non-announcement days as the control group. As the

resulting estimates reported in the bottom panel of Table 3 show, applying the DID correction

results in significantly positive jumps for the spot volatility and trading intensity across all of

the different news categories, ISMNM and Others included. This contrast directly underscores

the importance of properly controlling for the intradaily features outside the stylized theoretical

models when studying volume and volatility at the high-frequency intraday level. At the same time,

the magnitude of the jump estimates associated with FOMC announcements, which mostly occur

between 14:00 and 14:15 when volatility and trading volume both tend to be rising, is actually

reduced by the DID correction. Nevertheless, FOMC clearly stands out among all of the different

news categories, as having the largest (by a wide margin) average jump sizes in both volume and

volatility.19

Having documented the existence of highly significant positive jumps in both volume and volatil-

ity around public announcements, we next turn to the joint relationship between the jumps, fo-

cussing on the volume-volatility elasticity and the implications of the theoretical models discussed

in Section 2.

6.2 Volume-volatility elasticities around public news announcements

The theoretical models that guide our empirical investigations are explicitly designed to highlight

how trading volume and return volatility respond to well-defined public news announcements. As

such, the models are inevitably stylized, with other influences (such as those underlying the intraday

patterns and long-term trends evident in Figures 3 and 4, respectively) deliberately abstracted away.

As discussed above, the DID estimation approach provides a way to guard against the influence of

the systematic intraday patterns. It also conveniently differences out other unmodeled nuisances,

like trends, which would otherwise contaminate the estimates. Consequently, we rely on the DID

estimation approach throughout.

19We devote Section 6.4 to a more detailed separate investigation of FOMC announcements.
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Table 4: Volume-volatility elasticities around public news announcements

FOMC ISMM ISMNM CC Others

Constant (a0) 0.586** 0.199** 0.119** 0.218** 0.050**

(0.078) (0.022) (0.020) (0.023) (0.006)

Elasticity (a1) 0.717** 0.529** 0.688** 0.521** 0.787**

(0.067) (0.064) (0.069) (0.075) (0.022)

R2 0.330 0.155 0.220 0.109 0.287

Notes: The table reports the results from the DID regression in equation (5.4) for the specifi-

cation ˜∆ log (mτ ) = a0 − a1 · ˜∆ log (στ ), using the past 22 non-announcement days as the control
group. The sample spans the period from April 10, 2001 to September 30, 2014. Bootstrapped
standard errors are reported in parentheses. ** indicates significance at the 1% level.

To begin, consider a basic specification of equation (5.4) without any explanatory variables (i.e.,

X0,τ and X1,τ are both absent). Table 4 reports the resulting estimates for each of the different

news categories. All of the estimated intercepts (i.e., a0) are positive and highly statistically

significant, indicative of higher trading intensities following public news announcements, even in

the absence of heightened return volatility.20 Put differently, abnormal bursts in trading volume

around announcements are not always associated with abnormal price changes. This, of course, is

directly in line with the key idea underlying the KP model that differences-of-opinion provides an

additional trading motive over explicit shifts in investors’ average opinion. Further corroborating

the rank of FOMC as the most important news category released during regular trading hours, the

estimated intercept is the largest for FOMC announcements.

Turning to the volume-volatility elasticities (i.e., a1), all of the estimates are below unity, and

significantly so.21 The theoretical derivations in (2.5) and (2.6) based on the KP model also predict

that in the presence of differences-of-opinion the volume-volatility elasticity should be below unity.

Our empirical findings are therefore directly in line with this theoretical prediction, and further

support the idea that disagreements among investors often provide an important motive for trading.

6.3 Volume-volatility elasticities and disagreement measures

In addition to the prediction that the volume-volatility elasticity should be less than unity, our

theoretical derivations in Section 2 also predict that the elasticity should be decreasing with the

20By contrast, the estimates obtained for a0 without the DID correction, reported in the supplementary appendix,
are significantly negative for ISMM, ISMNM and the Others news categories, underscoring the importance of properly
controlling for the strong intraday patterns in the volume intensity and volatility.

21The robust DID estimate for the elasticity around FOMC announcements reported in Table 4 is slightly larger
than the preliminary raw non-DID estimate discussed in Section 4.
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overall level of disagreement among investors. In order to examine this more refined theoretical

prediction, we include a set of additional explanatory variables (in the form of the X1,τ variable

in the specification in equation (5.4)) that serve as proxies for disagreement. To account for the

category-specific heterogeneity in the volume-volatility elasticity estimates reported in Table 4, we

also include a full set of category dummy variables (i.e., one for each of the FOMC, ISMM, ISMNM

and CC news categories).

We consider two proxies for the overall level of investors’ disagreement that prevails at the time of

the announcement. The first is the forecast dispersion of the one-quarter-ahead unemployment rate

from the Survey of Professional Forecasters (SPF).22 This measure has also been used in previous

studies to gauge the degree of disagreement; see, for example, Van Nieuwerburgh and Veldkamp

(2006) and Ilut and Schneider (2014) among others. Secondly, as an indirect proxy for differences-

of-opinion, we employ a weekly moving average of the economic policy uncertainty index developed

by Baker et al. (2015).23 There is a voluminous literature that addresses the relation between

disagreement and uncertainty, generally supporting the notion of a positive relation between the

two; see, for example, Acemoglu et al. (2006) and Patton and Timmermann (2010). Below, we

refer to these two proxies as Dispersion and Weekly Policy, respectively. To facilitate comparisons,

we scale both measures with their own sample standard deviations.

The estimation results for different specifications including these additional explanatory vari-

ables in the volume-volatility elasticity are reported in Table 5.24 As a reference, the first column

reports the results from a basic specification without any explanatory variables. The common

elasticity is estimated to be 0.733 which, not surprisingly, is close to the average value of the

category-specific estimates reported in Table 4. Underscoring the importance of disagreement

more generally, the estimate is also significantly below one.

The specification in the second column includes the full set of news category dummies in the

elasticity, with the baseline category being Others.25 The elasticity for the Others category, which

22The SPF is a quarterly survey. It is released and collected in the second month of each quarter. To prevent
any look-ahead bias, we use the value from the previous quarter. Additional results for other forecast horizons and
dispersion measures pertaining to other economic variables are reported in the supplemental appendix.

23The economic policy uncertainty index of Baker et al. (2015) is based on newspaper coverage frequency. We
use the weekly moving average so as to reduce the noise in the daily index. The averaging also naturally addresses
the weekly cycle in the media. Comparable results based on biweekly and monthly indices are available in the
supplemental appendix.

24We also include news-category dummies in the intercept X0,τ in all of the different specifications, so as to control
for the heterogeneity in the a0 estimates in Table 4. Since our main focus centers on the volume-volatility elasticity,
to conserve space we do not report these estimated b0 dummy coefficients.

25Although the full set of news-category dummy variables are included in both the intercept and the elasticity
specifications, the estimates in the second column in Table 5 are not exactly identical to those in Table 4, because
some of the announcements across the different news categories occur concurrently.
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Table 5: Volume-volatility elasticity estimates and disagreement measures

Baseline estimates:

Constant (a0) 0.044** 0.041** 0.040** 0.041** 0.041**

(0.006) (0.007) (0.007) (0.007) (0.007)

Elasticity (a1) 0.733** 0.776** 0.906** 0.921** 0.984**

(0.020) (0.024) (0.043) (0.036) (0.045)

Estimates for explanatory variables in elasticity (b1):

News-category dummy variables:

FOMC -0.060 -0.058 -0.048 -0.049

(0.072) (0.072) (0.072) (0.072)

ISMM -0.238** -0.238** -0.220** -0.222**

(0.070) (0.070) (0.070) (0.070)

ISMNM -0.090 -0.092 -0.082 -0.085

(0.077) (0.077) (0.077) (0.077)

CC -0.244** -0.244** -0.202** -0.207**

(0.073) (0.073) (0.073) (0.073)

Disagreement measures:

Dispersion -0.051** -0.031*

(0.013) (0.014)

Weekly Policy -0.079** -0.070**

(0.013) (0.014)

R2 0.481 0.482 0.483 0.486 0.486

Notes: The table reports the results from the DID regression in equation (5.4) for the specification
˜∆ log (mτ ) = a0 + b>0 X0,τ + (a1 + b>1 X1,τ ) · ˜∆ log (στ ) based on all of the public announcements,

using the past 22 non-announcement days as the control group. In all specifications, X0,τ include
category dummy variables for FOMC rate decision (FOMC), ISM Manufacturing Index (ISMM), ISM
Non-Manufacturing Index (ISMNM) and Consumer Confidence Index (CC); the estimates of these
dummies (i.e., b0) are not reported for brevity. The Dispersion variable is constructed as the latest
forecast dispersion of the one-quarter-ahead unemployment rate from the Survey of Professional
Forecasters before the announcement. The Weekly Policy variable is constructed as the weekly
moving average before the announcement of the economic policy uncertainty index developed by
Baker et al. (2015). Both variables are scaled by their own sample standard deviations. The
sample spans April 10, 2001 to September 30, 2014. Bootstrapped standard errors are reported in
parentheses. * and ** indicate significance at the 5% and 1% level, respectively.
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includes by far the largest number of announcements, is estimated to be 0.776 and close to the

value of 0.733 from the specification without any dummies. The estimates for FOMC and ISM

Non-Manufacturing announcements are also both statistically indistinguishable from this value of

0.776. On the other hand, the volume-volatility elasticities estimated around ISM Manufacturing

and Consumer Confidence announcements are both significantly lower, indicating that the levels of

disagreement among investors are higher for these events. To help understand this latter finding, we

note that ISM Manufacturing and Consumer Confidence announcements are both released early in

the macroeconomic news cycle, as described in Andersen et al. (2003). As documented in Andersen

et al. (2003, 2007), the first announcements in a given news cycle tend to have larger price impacts

than later related news announcements, as much of the information contained in the later releases

may have already been gleaned from the earlier news announcements. Our findings are in line with

this logic. The estimated elasticities indicate relatively high levels of disagreement around the two

early ISMM and CC announcements, and indirectly suggest that the release of these help resolve

some of the economic uncertainty and decrease the overall level of disagreement, as manifest in the

closer-to-one elasticity estimate for the later (in the news cycle) ISMNM releases.

The next two columns in the table report the results for specifications that include either Dis-

persion or Weekly Policy as an additional explanatory variable. Consistent with our theoretical

prediction, both of these disagreement proxies significantly negatively impact the volume-volatility

elasticity. Moreover, the estimated elasticities that obtain in the absence of any dispersion or eco-

nomic policy uncertainty (i.e., the a1 coefficients) are much closer to the no-disagreement benchmark

of unity implied by the theoretical expressions in (2.5) and (2.6), than the corresponding estimates

obtained without controlling for disagreement.

The last column shows that both of the disagreement measures remain statistically significant

when included jointly, although less so for Dispersion. Interestingly, the baseline elasticity of 0.984

for Others (i.e., a1) is no longer statistically different from unity, nor are the estimated elasticities

for FOMC and ISM Non-Manufacturing.

All-in-all, these results strongly corroborate the existence of a negative relationship between the

volume-volatility elasticity and the level of disagreement among investors. The results also suggest

that for a majority of the public news announcements, our two specific disagreement proxies,

involving measures of forecast dispersion and economic policy uncertainty, are able to explain the

deviation in the volume-volatility elasticity from the no-disagreement benchmark of unity.
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6.4 Further analysis of FOMC announcements

The results discussed in the previous section were based on the joint estimation involving all of

the macroeconomic news announcements that occur during regular trading hours. Meanwhile, as

documented in Table 3, the FOMC rate decisions rank supreme in inducing the on-average largest

jumps in both trading activity and return volatility over our sample. These large responses occur in

spite of the fact that the federal funds rate was fixed at the effective zero lower bound over much of

the later half of the sample. Moreover, economists also routinely disagree about the interpretation

of monetary policy. All of these unique features grant FOMC announcements of particular interest

for our analysis pertaining to the role of disagreement in financial markets.

Before diving into our more detailed empirical analysis of the volume-volatility elasticity es-

timated exclusively around the times of FOMC announcements, we want to stress some crucial

differences between our analysis and prior work related to FOMC announcements. In particular,

there is already an extensive literature devoted to the study of the impact of FOMC announcements

on equity returns (e.g., Bernanke and Kuttner, 2005), including more recent studies specifically re-

lated to the behavior of monetary policy and market reactions when the rate is at or near the zero

lower bound (e.g., Bernanke, 2012; Wright, 2012; van Dijk et al., 2014; Johnson and Paye, 2015).

Other recent studies have also documented that most of the equity risk premium is earned in specific

phases of the FOMC news release cycle (e.g., Savor and Wilson, 2014; Lucca and Moench, 2015;

Cieslak et al., 2015). It is not our intent to add to this burgeoning literature on the determinant

of the equity risk premium, and the functioning of monetary policy per se. Instead, we simply

recognize the unique position of FOMC announcements as the most important news category in

our sample. Motivated by this fact, we further investigate how the variation in the volume-volatility

elasticity more generally varies with measures of disagreement prevailing at the exact time of and

directly extracted from the FOMC news releases.

For ease of reference, the first column in Table 6 reports the DID estimation results for the

FOMC subsample and the benchmark specification that does not include any explanatory variables

in the elasticity, as previously reported in Table 4. The second column includes the previously

defined Dispersion measure as an explanatory variable. In parallel to the full-sample results in

Table 5, the estimates show that higher levels of forecast dispersions are generally associated with

lower volume-volatility elasticities. The estimate of -0.108 for the b1 coefficient is also highly

statistically significant. Moreover, after controlling for Dispersion, the baseline elasticity (i.e., a1)

is virtually one. This finding thus suggests that Dispersion alone, as a measure of differences-of-

opinion, is able to successfully explain much of the deviation from unity in the volume-volatility
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Table 6: Volume-volatility elasticity estimates around FOMC announcements

Baseline estimates:

Constant (a0) 0.586** 0.579** 0.583** 0.545** 0.550** 0.545**

(0.078) (0.079) (0.079) (0.078) (0.079) (0.079)

Elasticity (a1) 0.716** 0.996** 0.790** 0.913** 1.089** 1.055**

(0.067) (0.085) (0.082) (0.082) (0.092) (0.093)

Estimates for explanatory variables in elasticity (b1):

Dispersion -0.108** -0.088** -0.096**

(0.019) (0.020) (0.021)

Weekly Policy -0.037 0.046

(0.021) (0.028)

FOMC Sentiment -0.104** -0.077** -0.097**

(0.023) (0.024) (0.028)

R2 0.330 0.382 0.329 0.370 0.400 0.400

Notes: The table reports the results from the DID regression in equation (5.4) for the

specification ˜∆ log (mτ ) = a0 + (a1 + b>1 X1,τ ) · ˜∆ log (στ ) based on FOMC announce-
ments, using the past 22 non-announcement days as the control group. Dispersion and
Weekly Policy are constructed as in Table 5. FOMC Sentiment is a textual measure
constructed using financial-negative words in the FOMC press release. These variables
are scaled by their own sample standard deviations. The sample spans April 10, 2001
to September 30, 2014. Bootstrapped standard errors are reported in parentheses. *
and ** indicate significance at the 5% and 1% level, respectively.

elasticity at the times of FOMC announcements.

The b1 estimate for the Weekly Policy variable reported in the third column of Table 6 is also

negative. However, it is not significant at conventional levels. This lack of significance of the Weekly

Policy variable in the FOMC subsample, stands in sharp contrast with its highly significant effect

in Table 5 based on the full sample of all announcements. This therefore suggests that the Weekly

Policy variable, which is constructed as a “catch-all” measure of economic uncertainty, is simply

too diverse (or noisy) to satisfactorily explain the variation in the volume-volatility relationship

observed exclusively around FOMC announcements.

To remedy this, we construct an alternative textual measure based on the actual FOMC press

releases. The FOMC statements, in addition to announcing the new target rates, also outline
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the longer-run goals of the Fed. In recent years, the statements also include brief summaries

of the state of the economy, providing additional context underlying the rate decisions.26 We

succinctly summarize this additional information by counting the number of negative words, in

accordance with the financial-negative (Fin-Neg) word list compiled by Loughran and McDonald

(2011). We refer to this textual measure as the FOMC Sentiment. A more detailed description

of the construction is provided in Appendix B.2.27 Assuming that the use of more negative words

provides additional room for investors to differ in their interpretation of the news, we consider this

alternative FOMC Sentiment measure a more direct proxy for the level of disagreement at the exact

times of the FOMC announcements.

From the theoretical relations derived in Section 2, we would therefore expect to see lower

volume-volatility elasticities in response to higher FOMC Sentiment measures. The estimation re-

sults reported in the fourth column of Table 6 supports this theoretical prediction. The estimated b1

coefficient for our FOMC Sentiment measure equals -0.104. It is also highly statistically significant.

Moreover, controlling for the FOMC Sentiment, the baseline elasticity (i.e., a1) is estimated to be

0.914, and this estimate is statistically indistinguishable from unity at conventional significance

levels. Interestingly, the b1 estimate of -0.104 for the FOMC Sentiment variable is also very close

to the -0.108 estimate for the Dispersion measure reported in the second column.

In order to further gauge the relative merits of the Dispersion and FOMC Sentiment measures,

the specification reported in the fifth column includes both as explanatory variables in the elasticity.

Both of the estimated coefficients are negative and statistically significant. The coefficient estimates

are also similar in magnitude, suggesting that the Dispersion and FOMC Sentiment measures are

equally important in terms of capturing the disagreements-in-beliefs that motivate the abnormal

trading at the times of FOMC announcements. Again, the estimate for the baseline elasticity a1

is also not statistically different from the theoretical prediction of unity that should obtain in the

absence of differences-of-opinion.

26This is especially important over the later half of our sample period, when the target rate was consistently stuck at
the zero lower bound and, hence, offered little new information by itself. Bernanke (2012) also explicitly emphasized
the important role of “public communications” as a nontraditional policy tool of the Fed.

27Loughran and McDonald (2011) originally constructed their Fin-Neg list for the purpose of analyzing corporate
10-K reports. Compared with negative words, positive words tend to be less informative due to their more frequent
negation. Along those lines, some Fin-Neg words detected in the FOMC statement may not actually have a negative
meaning. One example is the word “late” in the context “... are likely to warrant exceptionally low levels for the
federal funds rate at least through late 2014.” Another example is “unemployment,” which routinely appears in the
first two paragraphs of the statements over the later half of our sample. To examine the severity of this issue, we
manually checked every word that was classified as negative using Loughran and McDonald’s list, and then refined
this selection by only keeping words with an unambiguous negative meaning within their context. The regression
results based on this refined measure are very similar to those based on the FOMC Sentiment measure reported here,
and hence are omitted for brevity.
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Further augmenting the specification to include the Week Policy measure as an additional ex-

planatory variable in the elasticity does not change the key aspects of any of these findings, as shown

by the results reported in the last column of the table. Counter to the previous empirical results and

theoretical predictions, the estimated coefficient for the Weekly Policy variable in this expanded

DID regression is actually positive, albeit not significant at conventional levels. This therefore also

indirectly supports the idea that our textual-based FOMC Sentiment measure provides a much more

pointed and accurate characterization of the economic uncertainty and differences-in-opinion at the

exact times of the FOMC announcements, compared to the “catch-all” Weekly Policy measure.

7 Conclusion

We provide new empirical evidence concerning the behavior of financial market volatility and trad-

ing activity in response to public news announcements. Our results are based on intraday prices

and trading volume for the aggregate market portfolio, along with new econometric procedures

specifically designed to deal with the unique complications that arise in the high-frequency data

setting. Explicitly zooming in on the volume-volatility changes right around the exact times of

the announcements allows us to cast new light on the way in which financial markets process new

information and function more generally.

Consistent with the implications from theoretical models involving economic agents who agree-

to-disagree, we find that the sensitivity of abnormal volume changes with respect to those of

volatility estimated around the times of the most important public news announcements, as em-

bedded within the volume-volatility elasticity, is systematically below unity. Further corroborating

the important role played by differences-of-opinion among market participants, the elasticity tends

to be low during times of high economic policy uncertainty and high dispersion among professional

economic forecasters, and vice versa. A direct textual-based measure of the negative sentiment

in the FOMC statements accompanying the actual rate decisions also negatively impacts the elas-

ticity estimated at FOMC announcement times, lending additional empirical support to our key

theoretical predictions.
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Appendix A: Technical background for econometric procedures

This appendix presents the formal econometric theory behind our high-frequency econometric

estimation and inference procedures discussed in Section 5. Appendix A.1 describes the continuous-

time setup for modeling the high-frequency price and volume data used in our empirical analysis.

Appendix A.2 presents the main theoretical results, which we prove in Appendix A.3.

A.1 Continuous-time setup and definitions

Throughout, we fix a filtered probability space (Ω,F , (Ft)t≥0,P). Let (Pt)t≥0 denote the logarithmic

price process of an asset. As is standard in the continuous-time finance literature (see, e.g., Merton

(1992) and Duffie (2001)), we assume that P is a jump-diffusion process of the form

dPt = btdt+ σtdWt + dJt, (A.1)

where b is an instantaneous drift process, σ is a stochastic spot volatility process, W is a Brownian

motion, and J is a pure jump process. The price is sampled at discrete times {i∆n : 0 ≤ i ≤
[T/∆n]}, where T denotes the sample span and ∆n denotes the sampling interval of the high-

frequency data. We denote the corresponding high-frequency asset returns by ri ≡ Pi∆n−P(i−1)∆n
.

Our empirical analysis is justified using an infill econometric theory with ∆n → 0 and T fixed.

This setting is standard for analyzing high-frequency data (see, e.g., Aı̈t-Sahalia and Jacod (2014)

and Jacod and Protter (2012)) and it allows us to nonparametrically identify processes of interest

in a general setting with essentially unrestricted nonstationarity and persistence.

We denote the trading volume within the high-frequency interval ((i − 1)∆n, i∆n] by Vi∆n .

Unlike the price, the high-frequency volume data cannot be realistically modeled using the jump-

diffusion model. Following Li and Xiu (2016), we consider a general state-space model

Vi∆n = V(ζi∆n , εi∆n), (A.2)

where ζ is a latent state process, (εi∆n) are i.i.d. transitory shocks with distribution Fε, and V (·) is

a possibly unknown transform. The latent state process ζ captures time-varying conditioning infor-

mation such as the intensity of order arrival and the shape of the order size distribution. Technically,

this state-space model can be formally defined on an extension of the space (Ω,F , (Ft)t≥0,P); see

Li and Xiu (2016) for a formal construction.

This state-space model suits our empirical modeling of the trading volume well in two ways.

Firstly, it conveniently allows the observed volume data to be discretely valued, while still being
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completely flexible on the state space of the latent process ζ. This allows us to model ζ under

minimal statistical restrictions without introducing unintended model inconsistency. Secondly, the

setup does not restrict the dynamic persistence of the state process ζ. This is important as volume

data often exhibit nonstationary behavior.

Lastly, to complete the notation, let

mt =

∫
V(ζt, ε)Fε (dε) (A.3)

denote the instantaneous conditional mean process of V , that is, the volume intensity process. We

use this process as the instantaneous empirical analogue to the expected volume in the theoretical

models discussed in Section 2. Correspondingly, we use the spot volatility processes σ as the

instantaneous analogue of the return standard deviation. Empirically, we should and do allow

for general stochastic behavior in these instantaneous moments so as to accommodate essentially

arbitrary stochastic behaviors of time-varying conditioning information.

A.2 Estimation and inference

We now formally justify our inference procedures used in the main text. Below, we write θ̃n in

place of θ̃ and similarly for other estimators, so as to emphasize the asymptotic stage. We focus

on the DID estimator θ̃n defined by equation (5.4), which includes the “raw” estimator θ̂n as a

special case with the control group C set to be empty. We write θ̃n = f(S̃n), where f(·) is defined

implicitly by the definitions (5.3) and (5.4).

We assume the following regularity conditions for the underlying processes.

Assumption 1. (i) The price process P is given by (A.1) for Jt =
∫ t

0 ξsdNs+
∫ t

0

∫
R δ(s, z)µ(ds, dz),

where the processes b and σ are càdlàg (i.e., right continuous with left limit) and adapted; σt is

positive for t ∈ [0, T ] almost surely; the process ξ is predictable and locally bounded; N is a counting

process that jumps at the scheduled announcement times which are specified by the set A; δ is a

predictable function; µ is a Poisson random measure with compensator ν(ds, dz) = ds ⊗ λ(dz) for

some finite measure λ.

(ii) The volume process V satisfies (A.2). The process ζ is càdlàg and adapted. The error terms

(εi) take values in some Polish space, are defined on an extension of (Ω,F), i.i.d. and independent

of F .

(iii) For a sequence of stopping times (Tm)m≥1 increasing to infinity and constants (Km)m≥1,

we have E |σt∧Tm − σs∧Tm |
2 + E |ζt∧Tm − ζs∧Tm |

2 ≤ Km|t− s| for all t, s such that [s, t] ∩ A = ∅.
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Assumption 1 is fairly standard in the study of high-frequency data. Condition (i) allows the

price process to contain jumps at both scheduled times and random times. Condition (ii) separates

the conditional i.i.d. shocks (εi∆n) at observation times from the latent continuous-time state pro-

cess (ζt). This condition only mildly restricts the volume series, which can still exhibit essentially

unrestricted conditional and unconditional heterogeneity through the (typically highly persistent)

time-varying state process (ζt). Condition (iii) imposes a mild smoothness condition on σ and ζ

only in expectation, while allowing for general forms of jumps in their sample paths. This condition

is satisfied for any semimartingales with absolutely continuous predictable characteristics (possi-

bly with discontinuity points in A) and for long-memory type processes driven by the fractional

Brownian motion.

In addition, we need the following conditions for the nonparametric analysis, where we denote

Mp (·) ≡
∫
V (·, ε)p Fε (dε) for p ≥ 1.

Assumption 2. kn →∞ and k2
n∆n → 0.

Assumption 3. (i) The function M1(·) is Lipschitz on compact sets and the functions M2(·) and

M4(·) are continuous.

(ii) Almost surely, the function f is well-defined and continuously differentiable in a neighbor-

hood of S̃.

Assumption 2 specifies the growth rate of the local window size kn. As typical in nonparamet-

ric analysis, this condition features a type of undersmoothing, so as to permit feasible inference.

Assumption 3 imposes some smoothness conditions that are very mild.

We need some notations for stating the asymptotic results. For notational simplicity, we denote

vt = M2(ζt) − M2
1 (ζt). Consider variables (ητ−, ητ , η

′
τ−, η

′
τ )τ∈T which, conditionally on F , are

mutually independent, centered Gaussian with variances (vτ−, vτ , σ
2
τ−/2, σ

2
τ/2)τ∈T . We denote the

first differential of f at S̃ with increment dS̃ by F (S̃; dS̃). For a sequence Yn of random variables,

we write Yn
L-s−→ Y if Yn converges stably in law towards Y , meaning that (Yn, U) converges in

distribution to (Y, U) for any bounded F-measurable random variable U .

Theorem 1 characterizes the asymptotic distribution of the estimator θ̃n, and further shows that

the asymptotic distribution can be consistently approximated using Algorithm 1.

Theorem 1. (a) Under Assumptions 1, 2 and 3√
kn(θ̃n − θ)

L-s−→ F (S̃; (ητ−, ητ , η
′
τ−, η

′
τ , 0)τ∈T ). (A.4)

(b) Moreover, the conditional distribution function of
√
kn(θ̃∗n−θ̃n) given the original data converges

in probability to that of F (S̃; (ητ−, ητ , η
′
τ−, η

′
τ , 0)τ∈T ) under the uniform metric.
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Comment. Since the variables (ητ−, ητ , η
′
τ−, η

′
τ )τ∈T are jointly F-conditionally centered Gaussian,

so is the limiting distribution given by (A.4).

A.3 Proofs

Throughout the proofs, we use K to denote a generic constant which may change from line to line.

For a generic random sequence Yn, we write Yn
L|F−→ Y if the F-conditional distribution function

of Yn converges in probability to that of Y under the uniform metric. By a classical localization

procedure (see, e.g., Section 4.4.1 in Jacod and Protter (2012)), we can assume that the processes

σ and ζ are bounded, and piecewise (1/2)-Hölder continuous under the L2-norm (with possible

discontinuity points given by A) without loss of generality. We consider a sequence Ωn of events

given by

Ωn ≡ {the intervals [τ − 2kn∆n, τ + 2kn∆n], τ ∈ T , are mutually disjoint} .

Since T is finite, P (Ωn) → 1. Therefore, we can focus attention on Ωn, again without loss of

generality.

Proof of Theorem 1(a). We first show that√
kn(m̂n,τ− −mτ−, m̂n,τ −mτ )τ∈T

L|F−→ (ητ−, ητ )τ∈T . (A.5)

In restriction to Ωn, the estimators on the left-hand side of (A.5) are F-conditionally independent.

Therefore, it suffices to establish the convergence for the marginal distributions. We thus focus on
√
kn(m̂n,τ −mτ ), noting that the proof concerning

√
kn(m̂n,τ− −mτ−) is similar.

We decompose
√
kn(m̂n,τ −mτ ) = An +Rn, where

An ≡ 1√
kn

kn∑
j=1

(
V(i(τ)+j)∆n

−M1(ζ(i(τ)+j)∆n
)
)
,

Rn ≡ 1√
kn

kn∑
j=1

(
M1(ζ(i(τ)+j)∆n

)−M1(ζτ )
)
.

By Assumption 3, E |Rn| ≤ Kkn∆
1/2
n , which goes to zero by Assumption 2.

It remains to consider the convergence of An. Since (Vi∆n)i≥0 are F-conditionally independent,

E
[
A2
n|F

]
=

1

kn

kn∑
j=1

v(i(τ)+j)∆n
→ vτ , (A.6)
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where the convergence holds because the process v is càdlàg. Moreover, by the continuity of M4(·)
and the boundedness of ζ, we can verify a Lyapunov-type condition:

E
[∣∣V(i(τ)+j)∆n

−M1(ζ(i(τ)+j)∆n
)
∣∣4 |F] ≤ KM4

(
ζ(i(τ)+j)∆n

)
≤ K. (A.7)

By (A.6) and (A.7), we can apply the Lindeberg central limit theorem under the F-conditional

probability, resulting in
√
kn(m̂τ −mτ )

L|F−→ ητ as claimed.

Since the jumps of P are of finite activity, the returns involved in σ̂n,τ− and σ̂n,τ do not contain

jumps, with probability approaching one. By Theorem 13.3.3(c) of Jacod and Protter (2012), we

have √
kn(σ̂n,τ− − σn,τ−, σ̂n,τ − σn,τ )τ∈T

L-s−→
(
η′τ−, η

′
τ

)
τ∈T . (A.8)

By Proposition 5 of Barndorff-Nielsen et al. (2008) and the property of stable convergence in law,

we can combine (A.5) and (A.8), yielding√
kn(S̃n − S̃)

L-s−→
(
ητ−,ητ , η

′
τ−, η

′
τ , 0
)
τ∈T . (A.9)

The assertion (A.4) then follows from (A.9) and the delta method. Q.E.D.

Proof of Theorem 1(b). Step 1. We divide the proof into several steps. Denote G ≡ F ∨
σ {εi : i ≥ 0}. In this step, we show that, for each τ ∈ T ,√

kn(m̂∗n,τ− − m̂τ−, σ̂
∗
n,τ− − σ̂τ−)

L|G−→
(
ητ−, η

′
τ−
)
. (A.10)

Observe that

√
kn

 m̂∗τ− − m̂τ−

σ̂∗2τ− − σ̂2
τ−

 =
1√
kn

kn∑
j=1

 V ∗(i(τ)−j)∆n

r∗2i(τ)−j/∆n

− 1

kn

kn∑
j=1

 V(i(τ)−j)∆n

r2
i(τ)−j/∆n

 . (A.11)

By the construction of the bootstrap sample, the summands in the right-hand side of (A.11) are i.i.d.

with zero mean conditional on G. We denote the G-conditional covariance matrix of
√
kn(m̂∗τ− −

m̂τ−, σ̂
∗2
τ− − σ̂2

τ−) by

Σn,τ− =

 Σ
(11)
n,τ− Σ

(12)
n,τ−

Σ
(12)
n,τ− Σ

(22)
n,τ−

 ,

where
Σ

(11)
n,τ− = 1

kn

∑kn
j=1 V

2
(i(τ)−j)∆n

−
(

1
kn

∑kn
j=1 V(i(τ)−j)∆n

)2
,

Σ
(12)
n,τ− = 1

kn∆n

∑kn
j=1 V(i(τ)−j)∆n

r2
i(τ)−j −

(
1
kn

∑kn
j=1 V(i(τ)−j)∆n

)(
1

kn∆n

∑kn
j=1 r

2
i(τ)−j

)
,

Σ
(22)
n,τ− = 1

kn∆2
n

∑kn
j=1 r

4
i(τ)−j −

(
1

kn∆n

∑kn
j=1 r

2
i(τ)−j

)2
.
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In step 2, we shall show that(
Σ

(11)
n,τ−,Σ

(12)
n,τ−,Σ

(22)
n,τ−

)
P−→
(
vτ−, 0, 2σ

4
τ−
)
. (A.12)

For each subsequence N1 ⊆ N, we can find a further subsequence N2 ⊆ N1 such that the convergence

in (A.12) holds almost surely along N2. Moreover, on the paths for which this convergence holds, we

apply a central limit theorem under the G-conditional probability to deduce the convergence of the

conditional law of
√
kn(m̂∗τ− − m̂τ−, σ̂

∗
τ− − σ̂τ−) towards that of

(
ητ−, η

′
τ−
)

along the subsequence

N2. From here, we deduce (A.10) for the original sequence by reversing the subsequence argument.

Step 2. We show (A.12) in this step. We start with Σ
(11)
n,τ−. Consider the decomposition

1

kn

kn∑
j=1

V 2
(i(τ)−j)∆n

= A1,n +A2,n,

where

A1,n ≡ 1

kn

kn∑
j=1

(
V 2

(i(τ)−j)∆n
−M2(ζ(i(τ)−j)∆n

)
)
,

A2,n ≡ 1

kn

kn∑
j=1

M2(ζ(i(τ)−j)∆n
).

Note that the summands in A1,n are F-conditionally independent with zero mean. Therefore,

E
[
A2

1,n|F
]
≤ Kk−2

n

kn∑
j=1

M4(ζ(i(τ)−j)∆n
) ≤ Kk−1

n → 0,

which further implies that A1,n = op(1). In addition, since M2(·) is continuous and ζ is càdlàg,

A2,n →M2(ζτ−). From here and (A.9), it follows that

Σ
(11)
n,τ−

P−→M2(ζτ−)−M1(ζτ−)2 = vτ−.

Next, we consider the limiting behavior of Σ
(12)
n,τ−. We decompose

1

kn∆n

kn∑
j=1

V(i(τ)−j)∆n
r2
i(τ)−j = A3,n +A4,n +A5,n +A6,n,
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where

A3,n ≡ 1

kn∆n

kn∑
j=1

(
V(i(τ)−j)∆n

−M1(ζ(i(τ)−j)∆n
)
)
r2
i(τ)−j ,

A4,n ≡ 1

kn∆n

kn∑
j=1

(
M1(ζ(i(τ)−j)∆n

)−M1(ζ(i(τ)−j−1)∆n
)
)
r2
i(τ)−j ,

A5,n ≡ 1

kn∆n

kn∑
j=1

M1(ζ(i(τ)−j−1)∆n
)
(
r2
i(τ)−j − E

[
r2
i(τ)−j |Fi(τ)−j−1

])
,

A6,n ≡ 1

kn∆n

kn∑
j=1

M1(ζ(i(τ)−j−1)∆n
)E
[
r2
i(τ)−j |Fi(τ)−j−1

]
.

We now show that

Aj,n = op(1), for j = 3, 4, 5. (A.13)

We note that A3,n is an average of variables that are, conditionally on F , independent with

zero mean. Therefore, E
[
A2

3,n|F
]
≤ k−2

n ∆−2
n

∑kn
j=1M2(ζ(i(τ)−j)∆n

)r4
i(τ)−j , which further implies

E
[
A2

3,n

]
≤ Kk−1

n → 0. Turning to A4,n, we observe

E |A4,n| ≤
K

kn∆n

kn∑
j=1

E
[∣∣ζ(i(τ)−j)∆n

− ζ(i(τ)−j−1)∆n

∣∣ ∣∣ri(τ)−j
∣∣2]

≤ K

kn∆n

kn∑
j=1

(
E
[∣∣ζ(i(τ)−j)∆n

− ζ(i(τ)−j−1)∆n

∣∣2]E [r4
i(τ)−j

])1/2

≤ K∆1/2
n → 0,

where the first inequality holds because M1(·) is locally Lipschitz and ζ is bounded; the second

inequality follows from the Cauchy–Schwarz inequality; the third inequality is due to the (1/2)-

Hölder continuity of ζ and E[r4
i(τ)−j ] ≤ K∆2

n. Finally, we note that A5,n is an average of kn

martingale difference terms with bounded second moments. Therefore, E[A2
5,n] ≤ Kk−1

n → 0. The

proof for (A.13) is now finished.

We now consider A6,n. By Itô’s formula and some standard estimates for continuous Itô semi-

martingales (noting that ri(τ)−j does not contain jumps in restriction to Ωn),

E
[
r2
i(τ)−j |Fi(τ)−j−1

]
− σ2

(i(τ)−j−1)∆n
∆n

=

∫ (i(τ)−j)∆n

(i(τ)−j−1)∆n

E
[
σ2
s − σ2

(i(τ)−j−1)∆n
|F(i(τ)−j−1)∆n

]
ds+ opu(∆n),
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where opu(∆n) denotes a term that is op(∆n) uniformly in j. Hence,∣∣∣∣∣∣A6,n −
1

kn

kn∑
j=1

M1(ζ(i(τ)−j−1)∆n
)σ2

(i(τ)−j−1)∆n

∣∣∣∣∣∣
≤ K

kn

kn∑
j=1

1

∆n

∫ (i(τ)−j)∆n

(i(τ)−j−1)∆n

E
[∣∣∣σ2

s − σ2
(i(τ)−j−1)∆n

∣∣∣∣∣∣F(i(τ)−j−1)∆n

]
ds+ op(1).

We further note that the expectation of the first term on the majorant side of the above display is

bounded by KE
[
sups∈[τ−2kn∆n,τ) |σ2

s − σ2
τ−|
]
, which goes to zero since σ is càdlàg and bounded.

Therefore,

A6,n =
1

kn

kn∑
j=1

M1(ζ(i(τ)−j−1)∆n
)σ2

(i(τ)−j−1)∆n
+ op(1)

P−→M1(ζτ−)σ2
τ−.

From here, it readily follows that

Σ
(12)
n,τ−

P−→ 0.

We now turn to the limiting behavior of Σ
(22)
n,τ−. For each i ∈ {i (τ) − j : 1 ≤ j ≤ kn}, we can

decompose ri = r′i + r′′i in restriction to Ωn where

r′i = σ(i−1)∆n
(Wi∆n −W(i−1)∆n

),

r′′i =

∫ i∆n

(i−1)∆n

bsds+

∫ i∆n

(i−1)∆n

(
σs − σ(i−1)∆n

)
dWs.

We can then decompose

1

kn∆2
n

kn∑
j=1

r4
i(τ)−j = A7,n +A8,n, (A.14)

whereA7,n ≡ 1
kn∆2

n

∑kn
j=1 r

′4
i(τ)−j andA8,n is defined implicitly by (A.14). Note that E[r′4i /∆

2
n|F(i−1)∆n

] =

3σ4
(i−1)∆n

and the variance of the martingale difference sequence r′4i /∆
2
n − E

[
r′4i /∆

2
n|F(i−1)∆n

]
is

bounded. It is then easy to see that A7,n
P−→ 3σ4

τ−. Turning to the term A8,n, we first observe

|A8,n| ≤
K

kn∆2
n

kn∑
j=1

∣∣∣r′i(τ)−j

∣∣∣3 ∣∣∣r′′i(τ)−j

∣∣∣+
K

kn∆2
n

kn∑
j=1

∣∣∣r′′i(τ)−j

∣∣∣4 . (A.15)

By the Burkholder–Davis–Gundy inequality and Hölder’s inequality,

E
[∣∣∣r′′i(τ)−j

∣∣∣4] ≤ K∆4
n +K∆nE

[∫ (i(τ)−j)∆n

(i(τ)−j−1)∆n

(
σs − σ(i(τ)−j−1)∆n

)4
ds

]
. (A.16)
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Hence,

E

 1

kn∆2
n

kn∑
j=1

∣∣∣r′′i(τ)−j

∣∣∣4
 ≤ K∆2

n +K
1

kn∆n
E

[∫ (i(τ)−1)∆n

(i(τ)−kn−1)∆n

(
σs − σ(i(τ)−j−1)∆n

)4
ds

]

≤ K∆2
n +KE

[
sup

t∈[τ−2kn∆n,τ)
|σt − στ−|4

]
→ 0,

where the convergence follows from the bounded convergence theorem, because σ is càdlàg and

bounded. Therefore, the second term on the majorant side of (A.15) is op(1). Since A7,n = Op(1),

we can use Hölder’s inequality to show that the first term on majorant side of (A.15) is also op(1).

Hence, A8,n = op(1) and k−1
n ∆−2

n

∑kn
j=1 r

4
i(τ)−j

P−→ 3σ4
τ−. Recall that 1

kn∆n

∑kn
j=1 r

2
i(τ)−j

P−→ σ2
τ−.

Hence, Σ
(22)
n,τ−

P−→ 2σ4
τ− as asserted. The proof for (A.12) is now complete.

Step 3. We finish the proof of part (b) of Theorem 1 in this step. By essentially the same

argument for (A.10), we can show that√
kn(m̂∗n,τ − m̂n,τ , σ̂

∗
n,τ − σ̂n,τ )

L|G−→
(
ητ , η

′
τ

)
. (A.17)

Moreover, since the variables in (A.10) and (A.17) are G-conditionally independent between the

pre- and post-event windows and across τ ∈ T (by the construction of the local i.i.d. resampling

scheme), the joint convergence holds as well. Therefore,√
kn(S̃∗n − S̃n)

L|G−→
(
ητ−, ητ , η

′
τ−, η

′
τ , 0
)
τ∈T . (A.18)

Note that, with probability approaching one, S̃n falls in the neighborhood of S̃ on which f is con-

tinuously differentiable. The assertion of the theorem then follows from the delta method.Q.E.D.
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Appendix B: Additional data description

B.1 Macroeconomic news announcements

Table B.1: Other macroeconomic announcements

Category by Bloomberg Index No.Obs. Time†

Labor Market JOLTS Job Openings 47 10:00

Retail and Wholesale Wards Total Vehicle Sales 10 14:41

Retail and Wholesale Wholesale Inventories 160 10:00

Cyclical Indicators Chicago Purchasing Manager 69 10:00

Cyclical Indicators Dallas Fed Manf Activity 68 10:30

Cyclical Indicators ISM Milwaukee 58 10:00

Cyclical Indicators Kansas City Fed Manf Activity 37 11:00

Cyclical Indicators Leading Index 161 10:00

Cyclical Indicators Philadelphia Fed Business Outlook 162 10:00

Cyclical Indicators Richmond Fed Manufact Index 108 10:00

Cyclical Indicators U of Mich Sentiment 78 10:00

Personal Household Sector Consumer Credit 159 15:00

Housing and Real Estate Existing Home Sales 116 10:00

Housing and Real Estate FHFA House Price Index 56 10:00

Housing and Real Estate House Price Purchase Index 16 10:00

Housing and Real Estate NAHB Housing Market Index 138 13:00

Housing and Real Estate New Home Sales 160 10:00

Housing and Real Estate One Family Home Resales 47 10:00

Housing and Real Estate Pending Home Sales 114 10:00

Government Finance And Debt Monthly Budget Statement 155 14:00

Notes: The table lists all of the intraday news announcements included in the “Others” category.
†Some of these release times vary over the sample. To ensure that the pre- and post-event windows
both have 30 observations, we only keep announcements between 10:00 and 15:30. The times indicated
in the table refer to the most common release times.

B.2 A detailed description for the FOMC sentiment measure

Our detailed analysis of the volume-volatility relationship around FOMC announcements in Section

6.4 uses a textual measure of the negative sentiment in the actual written statements accompanying
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Table B.2: Word counts in FOMC Sentiment

Word unemployment slow weak decline against depressed downward diminish concern persist

Count 73 65 53 39 23 23 21 18 16 16

Notes: The table reports the counts of the ten most frequently occurring financial-negative words in the FOMC
statements over the April, 2001 to September, 2014 sample period.

each of the FOMC rate decisions. Our construction of this sentiment measure closely follows

Loughran and McDonald (2011), henceforth LM.

Specifically, we begin by extracting the actual text for each of the FOMC statements in our

sample, excluding the paragraph detailing the voting decisions and the paragraph stating the new

target funds rate. The individual words in each of the statements are then compared with the

Fin-Neg list of LM, resulting in a total of 79 different negative words. Table B.2 provides a count

of ten such words that occur most frequently over the full sample. The count of words that are of

different forms of the same word (i.e., inflections) are summed up. For example, the 65 count for

the word “slow” also includes occurrences of “slow,” “slowed,” “slower,” “slowing,” and “slowly.”

Following LM, we then construct a weighted measure for the ith negative word in the jth

statement according to the following formula:

wi,j ≡


1 + log(tfi,j)

1 + log(aj)
log(

N

dfi
), tfi,j ≥ 1,

0, tfi,j ≤ 1,

(B.1)

where tfi,j refers to the raw count of the ith word in the jth statement, aj denotes the total

number of words in the jth statement, and dfi is the number of statements out of the total number

of statements N containing at least one occurrence of the ith word. Importantly, this non-linear

weighting scheme implies that negative words that seldom occur will receive a higher weight than

more commonly used negative words. The overall negative sentiment for the jth statement is then

simply obtained by summing these individual weights over all of the 79 negative words that occurred

over the full sample, that is,

FOMC Sentimentj =

79∑
i=1

wi,j . (B.2)

The words included in the Fin-Neg list are, of course, somewhat subjective. Also, certain words

do not necessarily have a negative meaning in the context of FOMC announcements. For example,

the most frequently used word “unemployment,” which may sound negative in the 10-K filings

analyzed by LM, may be a neutral word in the FOMC statements, simply used to summarize the

economic conditions, whether good or bad. Similarly, the word “late” does not have a negative
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meaning when used in a sentence like:“... are likely to warrant exceptionally low levels for the federal

funds rate at least through late 2014.” To guard against such ambiguities, we explicitly checked the

usage of each of the words on the Fin-Neg list in the FOMC statements, and then select only those

occurrences whose meaning were unambiguously negative. The resulting “selective” measure based

on a total of 67 different words is highly correlated with FOMC Sentiment (correlation coefficient

= 0.73). All of the results based on this more selective sentiment measure are very close to those

based on the original FOMC Sentiment measure reported in Section 6.4 of the main text. These

additional results are available upon request.
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S.1 Volume intensity sorted by five-minute normalized returns

Figure S.1, below, shows that the patterns seen in Figure 5 in the main text is robust to changing
the sampling frequency from one minute to five minutes.

Figure S.1: Sorted volume around FOMC announcements
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Note: The figure shows the pre- and post-event log volume intensities sorted on the basis of the 5-minute normalized
returns ri(τ)/σ̂τ−

√
∆n, ∆n = 5 minutes, around FOMC announcements (dots). The normalized return (dash-dotted

line) increases from left to right. Announcements with normalized returns less than 1 (resp. 3) are highlighted by
the dark (resp. light) shaded area.
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S.2 Raw estimates without using the DID method

Tables S.1, S.2 and S.3, below, are the “no-DID” counterparts of Tables 4, 5 and 6 in the main
text, respectively. Here, we report the “raw” estimates θ̂ (see (5.2)), instead of θ̃ obtained using
the DID method. We note that the raw estimates of the intercept terms in Tables S.1 and S.2 often
become (counterintuitively) negative, which re-affirms the pattern reported in Table 3 of the main
text, and further highlights the importance of correcting the intraday U-shape pattern using the
DID approach as we did in the main text.

Table S.1: Volume-volatility elasticities around public news announcements (no DID)

FOMC ISMM ISMNM CC Others

Constant (a0) 0.689** -0.043** -0.096** -0.029 -0.065**

(0.077) (0.018) (0.016) (0.018) (0.005)

Elasticity (a1) 0.662** 0.614** 0.704** 0.681** 0.857**

(0.063) (0.062) (0.069) (0.074) (0.022)

R2 0.317 0.216 0.256 0.185 0.313

Notes: The table reports the results from the “no-DID” regression in equation (5.2) for the specifica-

tion ̂∆ log (mτ ) = a0 − a1 · ̂∆ log (στ ). The sample spans the period from April 10, 2001 to September
30, 2014. Bootstrapped standard errors are reported in parentheses. ** indicates significance at the
1% level.
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Table S.2: Volume-volatility elasticity estimates and disagreement measures (no DID)

Baseline estimates:

Constant (a0) -0.067** -0.068** -0.069** -0.070** -0.070**

(0.005) (0.005) (0.005) (0.005) (0.005)

Elasticity (a1) 0.800** 0.858** 0.964** 0.952** 1.010**

(0.018) (0.022) (0.041) (0.034) (0.044)

Estimates for explanatory variables in elasticity (b1):

News-category dummy variables:

FOMC -0.196** -0.199** -0.191** -0.194**

(0.065) (0.065) (0.066) (0.065)

ISMM -0.238** -0.237** -0.233** -0.233**

(0.067) (0.067) (0.068) (0.068)

ISMNM -0.153* -0.153* -0.149* -0.150*

(0.073) (0.073) (0.073) (0.073)

CC -0.171* -0.177* -0.160* -0.166*

(0.073) (0.073) (0.073) (0.074)

Disagreement measures:

Dispersion -0.041** -0.030*

(0.013) (0.014)

Weekly Policy -0.052** -0.042**

(0.013) (0.014)

R2 0.539 0.54 0.541 0.541 0.542

Notes: The table reports the results from the “no-DID” regression in (5.2) for the specification
̂∆ log (mτ ) = a0 + b>0 X0,τ + (a1 + b>1 X1,τ ) · ̂∆ log (στ ) based on all of the public announcements.

In all specifications, X0,τ include category dummy variables for FOMC rate decision (FOMC), ISM
Manufacturing Index (ISMM), ISM Non-Manufacturing Index (ISMNM) and Consumer Confidence
Index (CC); the estimates of these dummies (i.e., b0) are not reported for brevity. The Dispersion
variable is constructed as the latest forecast dispersion of the one-quarter-ahead unemployment rate
from the Survey of Professional Forecasters before the announcement. The Weekly Policy variable
is constructed as the weekly moving average of the economic policy uncertainty index developed by
Baker et al. (2015) before the announcement. Both variables are scaled by their own sample standard
deviations. The sample spans April 10, 2001 to September 30, 2014. Bootstrapped standard errors
are reported in parentheses. * and ** indicate significance at the 5% and 1% level, respectively.
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Table S.3: Volume-volatility elasticity estimates around FOMC announcements (no DID)

Baseline estimates:

Constant (a0) 0.689** 0.692** 0.690** 0.641** 0.653** 0.642**

(0.076) (0.075) (0.076) (0.075) (0.075) (0.076)

Elasticity (a1) 0.662** 0.897** 0.712** 0.865** 1.011** 0.976**

(0.063) (0.077) (0.074) (0.077) (0.086) (0.086)

Estimates for explanatory variables in elasticity (b1):

Dispersion -0.095** -0.075** -0.085**

(0.018) (0.018) (0.019)

Weekly Policy -0.027 0.055*

(0.019) (0.024)

FOMC Sentiment -0.105** -0.084** -0.106**

(0.022) (0.022) (0.025)

R2 0.317 0.362 0.314 0.363 0.388 0.392

Notes: The table reports the results from the “no-DID” regression in equation (5.2)

for the specification ̂∆ log (mτ ) = a0 + (a1 + b>1 X1,τ ) · ̂∆ log (στ ) based on FOMC
announcements. Dispersion and Weekly Policy are constructed as in Table 5. FOMC
Sentiment is a textual measure constructed using financial-negative words in the FOMC
press release. These variables are scaled by their own sample standard deviations. The
sample spans April 10, 2001 to September 30, 2014. Bootstrapped standard errors
are reported in parentheses. * and ** indicate significance at the 5% and 1% level,
respectively.
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S.3 Results for DIA ETF

Tables S.4 and S.5, below, are counterparts of Tables 5 and 6 in the main text, but with the SPY
ETF replaced by the DIA ETF, which tracks the Dow Jones Industrial Average index. Our main
findings using the SPY are re-affirmed using the DIA data, which we summarize as follows. Firstly,
the volume-volatility elasticity is significantly below unity when we do not control for the level
of disagreement. Secondly, the proxies of disagreement impact negatively the volume-volatility
elasticity, although the Dispersion variable does not have a significant effect for the DIA data.
Thirdly, after controlling for disagreement in the elasticity specification, the baseline elasticity
is not statistically different from the no-disagreement benchmark of unity. Finally, for FOMC
announcements, the FOMC sentiment measure negatively impacts the volume-volatility elasticity,
and shows better performance than the “catch-all” Weekly Policy measure.
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Table S.4: Volume-volatility elasticity estimates and disagreement measures (DIA)

Baseline estimates:

Constant (a0) 0.056** 0.057** 0.057** 0.057** 0.057**

(0.010) (0.010) (0.010) (0.010) (0.010)

Elasticity (a1) 0.786** 0.775** 0.853** 0.948** 0.956**

(0.026) (0.031) (0.062) (0.052) (0.068)

Estimates for explanatory variables in elasticity (b1):

News-category dummy variables:

FOMC 0.086 0.087 0.091 0.091

(0.096) (0.097) (0.097) (0.097)

ISMM 0.265** 0.262** 0.281** 0.281**

(0.101) (0.101) (0.100) (0.100)

ISMNM -0.128 -0.128 -0.121 -0.121

(0.102) (0.102) (0.102) (0.102)

CC -0.114 -0.109 -0.087 -0.087

(0.106) (0.106) (0.107) (0.107)

Disagreement measures:

Dispersion -0.030 -0.004

(0.019) (0.020)

Weekly Policy -0.096** -0.095**

(0.019) (0.020)

R2 0.364 0.365 0.365 0.368 0.367

Notes: The table reports the results from the DID regression in equation (5.4) for the specification
˜∆ log (mτ ) = a0 + b>0 X0,τ + (a1 + b>1 X1,τ ) · ˜∆ log (στ ) based on all of the public announcements,

using the past 22 non-announcement days as the control group. In all specifications, X0,τ include
category dummy variables for FOMC rate decision (FOMC), ISM Manufacturing Index (ISMM),
ISM Non-Manufacturing Index (ISMNM) and Consumer Confidence Index (CC); the estimates of b0
are not reported for brevity. The Dispersion variable is constructed as the latest forecast dispersion
of the one-quarter-ahead unemployment rate from the Survey of Professional Forecasters before
the announcement. The Weekly Policy variable is constructed as the weekly moving average of the
economic policy uncertainty index developed by Baker et al. (2015) before the announcement. Both
variables are scaled by their own sample standard deviations. The sample spans April 10, 2001 to
September 30, 2014. Bootstrapped standard errors are reported in parentheses. * and ** indicate
significance at the 5% and 1% level, respectively.
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Table S.5: Volume-volatility elasticity estimates around FOMC announcements (DIA)

Baseline estimates:

Constant (a0) 0.621** 0.617** 0.623** 0.597** 0.598** 0.592**

(0.098) (0.098) (0.099) (0.099) (0.099) (0.099)

Elasticity (a1) 0.861** 1.004** 0.903** 1.013** 1.081** 1.060**

(0.089) (0.119) (0.108) (0.106) (0.126) (0.123)

Estimates for explanatory variables in elasticity (b1):

Dispersion -0.055 -0.034 -0.039

(0.030) (0.030) (0.032)

Weekly Policy -0.023 0.029

(0.032) (0.042)

FOMC Sentiment -0.085** -0.074* -0.086*

(0.032) (0.032) (0.038)

R2 0.298 0.300 0.293 0.310 0.306 0.301

Notes: The table reports the results from the DID regression in equation (5.4)

for the specification ˜∆ log (mτ ) = a0 + (a1 + b>1 X1,τ ) · ˜∆ log (στ ) based on FOMC
announcements, using the past 22 non-announcement days as the control group.
Dispersion and Weekly Policy are constructed as in Table 5. FOMC Sentiment is
a textual measure constructed using financial-negative words in the FOMC press
release. These variables are scaled by their own sample standard deviations. The
sample spans April 10, 2001 to September 30, 2014. Bootstrapped standard errors
are reported in parentheses. * and ** indicate significance at the 5% and 1% level,
respectively.
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S.4 Alternative dispersion and uncertainty measures

In this section, we provide robustness checks by replacing the disagreement proxies with similar
alternatives as follows: (i) we use the one-year-head unemployment and GDP growth rates in place
of the one-quarter-ahead unemployment rate when constructing the Dispersion measure; (ii) we
use the Monthly Policy measure in place of the Weekly Policy measure. As the tables below show,
our findings in the main text are robustness to these changes.
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Table S.6: Volume-volatility elasticity estimates and disagreement measures based on one-year-
ahead unemployment dispersion

Baseline estimates:

Constant (a0) 0.044** 0.041** 0.041** 0.041** 0.041**

(0.007) (0.007) (0.007) (0.007) (0.007)

Elasticity (a1) 0.733** 0.776** 0.921** 0.921** 0.990**

(0.020) (0.024) (0.043) (0.035) (0.046)

Estimates for explanatory variables in elasticity (b1):

News-category dummy variables:

FOMC -0.060 -0.065 -0.048 -0.053

(0.073) (0.072) (0.073) (0.073)

ISMM -0.238** -0.244** -0.220** -0.226**

(0.067) (0.067) (0.067) (0.067)

ISMNM -0.090 -0.086 -0.082 -0.081

(0.073) (0.073) (0.072) (0.073)

CC -0.244** -0.248** -0.202** -0.210**

(0.077) (0.078) (0.078) (0.078)

Disagreement measures:

Dispersion -0.055** -0.033*

(0.013) (0.014)

Weekly Policy -0.079** -0.069**

(0.013) (0.014)

R2 0.481 0.482 0.484 0.486 0.486

Notes: The table reports the results from the DID regression in equation (5.4) for the specification
˜∆ log (mτ ) = a0 + b>0 X0,τ + (a1 + b>1 X1,τ ) · ˜∆ log (στ ) based on all of the public announcements,

using the past 22 non-announcement days as the control group. In all specifications, X0,τ include
category dummy variables for FOMC rate decision (FOMC), ISM Manufacturing Index (ISMM),
ISM Non-Manufacturing Index (ISMNM) and Consumer Confidence Index (CC); the estimates of b0
are not reported for brevity. The Dispersion variable is constructed as the latest forecast dispersion
of the one-year-ahead unemployment rate from the Survey of Professional Forecasters before the
announcement. The Weekly Policy variable is constructed as the weekly moving average of the
economic policy uncertainty index developed by Baker et al. (2015) before the announcement. Both
variables are scaled by their own sample standard deviations. The sample spans April 10, 2001 to
September 30, 2014. Bootstrapped standard errors are reported in parentheses. * and ** indicate
significance at the 5% and 1% level, respectively.
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Table S.7: Volume-volatility elasticity estimates around FOMC announcements based on one-year-
ahead unemployment dispersion

Baseline estimates:

Constant (a0) 0.586** 0.592** 0.583** 0.545** 0.557** 0.555**

(0.076) (0.076) (0.076) (0.075) (0.076) (0.076)

Elasticity (a1) 0.716** 0.911** 0.790** 0.913** 0.986** 0.960**

(0.065) (0.083) (0.081) (0.081) (0.088) (0.089)

Estimates for explanatory variables in elasticity (b1):

Dispersion -0.077** -0.044* -0.049*

(0.019) (0.021) (0.022)

Weekly Policy -0.037 0.032

(0.021) (0.028)

FOMC Sentiment -0.104** -0.084** -0.096**

(0.022) (0.024) (0.027)

R2 0.330 0.354 0.329 0.370 0.373 0.37

Notes: The table reports the results from the DID regression in equation (5.4) for the

specification ˜∆ log (mτ ) = a0 + (a1 + b>1 X1,τ ) · ˜∆ log (στ ) based on FOMC announce-
ments, using the past 22 non-announcement days as the control group. Dispersion and
Weekly Policy are constructed as in Table S.6. FOMC Sentiment is a textual measure
constructed using financial-negative words in the FOMC press release. These variables
are scaled by their own sample standard deviations. The sample spans April 10, 2001
to September 30, 2014. Bootstrapped standard errors are reported in parentheses. *
and ** indicate significance at the 5% and 1% level, respectively.
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Table S.8: Volume-volatility elasticity estimates and disagreement measures based on one-year-
ahead GDP dispersion

Baseline estimates:

Constant (a0) 0.044** 0.041** 0.040** 0.041** 0.041**

(0.007) (0.007) (0.007) (0.007) (0.007)

Elasticity (a1) 0.733** 0.776** 0.938** 0.921** 0.973**

(0.020) (0.023) (0.061) (0.037) (0.061)

Estimates for explanatory variables in elasticity (b1):

News-category dummy variables:

FOMC -0.060 -0.056 -0.048 -0.048

(0.069) (0.069) (0.069) (0.069)

ISMM -0.238** -0.238** -0.220** -0.221**

(0.071) (0.071) (0.071) (0.071)

ISMNM -0.090 -0.083 -0.082 -0.080

(0.075) (0.075) (0.075) (0.075)

CC -0.244** -0.246** -0.202** -0.206**

(0.076) (0.076) (0.076) (0.076)

Disagreement measures:

Dispersion -0.040** -0.015

(0.014) (0.015)

Weekly Policy -0.079** -0.074**

(0.014) (0.015)

R2 0.481 0.482 0.483 0.486 0.485

Notes: The table reports the results from the DID regression in equation (5.4) for the specification
˜∆ log (mτ ) = a0 + b>0 X0,τ + (a1 + b>1 X1,τ ) · ˜∆ log (στ ) based on all of the public announcements,

using the past 22 non-announcement days as the control group. In all specifications, X0,τ include
category dummy variables for FOMC rate decision (FOMC), ISM Manufacturing Index (ISMM),
ISM Non-Manufacturing Index (ISMNM) and Consumer Confidence Index (CC); the estimates of b0
are not reported for brevity. The Dispersion variable is constructed as the latest forecast dispersion
of the one-year-ahead GDP growth rate from the Survey of Professional Forecasters before the
announcement. The Weekly Policy variable is constructed as the weekly moving average of the
economic policy uncertainty index developed by Baker et al. (2015) before the announcement. Both
variables are scaled by their own sample standard deviations. The sample spans April 10, 2001 to
September 30, 2014. Bootstrapped standard errors are reported in parentheses. * and ** indicate
significance at the 5% and 1% level, respectively.
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Table S.9: Volume-volatility elasticity estimates around FOMC announcements based on one-year-
ahead GDP dispersion

Baseline estimates:

Constant (a0) 0.586** 0.582** 0.583** 0.545** 0.546** 0.539**

(0.078) (0.077) (0.078) (0.078) (0.078) (0.078)

Elasticity (a1) 0.716** 1.016** 0.790** 0.913** 1.148** 1.154**

(0.067) (0.102) (0.080) (0.083) (0.108) (0.108)

Estimates for explanatory variables in elasticity (b1):

Dispersion -0.073** -0.061** -0.078**

(0.021) (0.021) (0.024)

Weekly Policy -0.037 0.058

(0.020) (0.031)

FOMC Sentiment -0.104** -0.096** -0.121**

(0.022) (0.023) (0.027)

R2 0.33 0.349 0.329 0.37 0.382 0.385

Notes: The table reports the results from the DID regression in equation (5.4) for the

specification ˜∆ log (mτ ) = a0 + (a1 + b>1 X1,τ ) · ˜∆ log (στ ) based on FOMC announce-
ments, using the past 22 non-announcement days as the control group. Dispersion and
Weekly Policy are constructed as in Table S.8. FOMC Sentiment is a textual measure
constructed using financial-negative words in the FOMC press release. These variables
are scaled by their own sample standard deviations. The sample spans April 10, 2001
to September 30, 2014. Bootstrapped standard errors are reported in parentheses. *
and ** indicate significance at the 5% and 1% level, respectively.
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Table S.10: Volume-volatility elasticity estimates and disagreement measures based on Monthly
Policy

Baseline estimates:

Constant (a0) 0.044** 0.041** 0.040** 0.041** 0.041**

(0.007) (0.006) (0.006) (0.007) (0.007)

Elasticity (a1) 0.733** 0.776** 0.906** 0.945** 1.001**

(0.020) (0.024) (0.043) (0.038) (0.046)

Estimates for explanatory variables in elasticity (b1):

News-category dummy variables:

FOMC -0.060 -0.058 -0.056 -0.055

(0.072) (0.072) (0.072) (0.072)

ISMM -0.238** -0.238** -0.217** -0.219**

(0.070) (0.070) (0.070) (0.070)

ISMNM -0.090 -0.092 -0.086 -0.088

(0.076) (0.076) (0.077) (0.077)

CC -0.244** -0.244** -0.227** -0.229**

(0.072) (0.072) (0.072) (0.072)

Disagreement measures:

Dispersion -0.051** -0.029*

(0.013) (0.014)

Monthly Policy -0.083** -0.074**

(0.013) (0.014)

R2 0.481 0.482 0.483 0.486 0.486

Notes: The table reports the results from the DID regression in equation (5.4) for the specification
˜∆ log (mτ ) = a0 + b>0 X0,τ + (a1 + b>1 X1,τ ) · ˜∆ log (στ ) based on all of the public announcements,

using the past 22 non-announcement days as the control group. In all specifications, X0,τ include
category dummy variables for FOMC rate decision (FOMC), ISM Manufacturing Index (ISMM),
ISM Non-Manufacturing Index (ISMNM) and Consumer Confidence Index (CC); the estimates of b0
are not reported for brevity. The Dispersion variable is constructed as the latest forecast dispersion
of the one-quarter-ahead unemployment rate from the Survey of Professional Forecasters before the
announcement. The Monthly Policy variable is constructed as the monthly moving average of the
economic policy uncertainty index developed by Baker et al. (2015) before the announcement. Both
variables are scaled by their own sample standard deviations. The sample spans April 10, 2001 to
September 30, 2014. Bootstrapped standard errors are reported in parentheses. * and ** indicate
significance at the 5% and 1% level, respectively.
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Table S.11: Volume-volatility elasticity estimates around FOMC announcements based on Monthly
Policy

Baseline estimates:

Constant (a0) 0.586** 0.579** 0.586** 0.545** 0.550** 0.539**

(0.080) (0.078) (0.079) (0.078) (0.078) (0.079)

Elasticity (a1) 0.716** 0.996** 0.799** 0.913** 1.089** 1.059**

(0.068) (0.087) (0.076) (0.080) (0.092) (0.090)

Estimates for explanatory variables in elasticity (b1):

Dispersion -0.108** -0.088** -0.099**

(0.021) (0.021) (0.023)

Monthly Policy -0.040* 0.052

(0.019) (0.027)

FOMC Sentiment -0.104** -0.077** -0.103**

(0.022) (0.022) (0.027)

R2 0.33 0.382 0.331 0.37 0.4 0.402

Notes: The table reports the results from the DID regression in equation (5.4) for the

specification ˜∆ log (mτ ) = a0 + (a1 + b>1 X1,τ ) · ˜∆ log (στ ) based on FOMC announce-
ments, using the past 22 non-announcement days as the control group. Dispersion and
Monthly Policy are constructed as in Table S.10. FOMC Sentiment is a textual measure
constructed using financial-negative words in the FOMC press release. These variables
are scaled by their own sample standard deviations. The sample spans April 10, 2001
to September 30, 2014. Bootstrapped standard errors are reported in parentheses. *
and ** indicate significance at the 5% and 1% level, respectively.
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