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Abstract

We propose a framework to estimate earnings distributions and worker and firm un-

observed heterogeneity on matched panel data. We introduce two models: a static model

that allows for interaction effects between workers and firms, and a dynamic model that

allows in addition for Markovian earnings dynamics and endogenous mobility. We estab-

lish identification in short panels. We develop tractable two-step estimators where firms

are classified into heterogeneous classes in a first step. We apply our method to Swedish

matched employer employee panel data and report estimated earnings functions, sorting

patterns, and variance decompositions.
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1 Introduction

Identifying the contributions of worker and firm heterogeneity to earnings dispersion is an

important step towards answering a number of economic questions, such as the nature of sorting

patterns between heterogeneous workers and firms or the sources of earnings inequality.

Two influential literatures have approached these questions from different angles. The

method of Abowd, Kramarz, and Margolis (1999) (AKM hereafter) relies on two-way fixed-

effect regressions to account for unobservable worker and firm effects, and allows quantifying

their respective contributions to earnings dispersion and correlations between worker and firm

unobservables. The AKM method is widely used in labor economics and outside.1 A second

literature tackles similar issues from a structural perspective, by developing and estimating

fully specified theoretical models of sorting on the labor market.2

Reconciling these reduced-form and structural literatures has proven difficult, however.

While the AKM method provides a tractable way to deal with two-sided unobserved hetero-

geneity, the AKM model relies on substantive, possibly restrictive assumptions. The absence

of interaction terms between worker and firm attributes restricts complementarity patterns in

earnings. Since Becker’s work, numerous theories have emphasized the link between comple-

mentarity and sorting (Shimer and Smith, 2000, Eeckhout and Kircher, 2011). Moreover, the

AKM model is static in the sense that worker mobility may not depend on earnings directly

conditional on worker’s and firm’s fixed unobservables, and that earnings after a job move are

assumed not to depend on the previous firm’s attributes. These static aspects may conflict

with implications of dynamic economic models.3

On the other hand, attempts at structurally estimating dynamic models of sorting have

faced computational and empirical challenges. The dimensions involved are daunting: how to

estimate a model of workers’ mobility and earnings with hundreds of thousands of workers and

1Applications of the method to earnings data include Gruetter and Lalive (2009), Mendes, van den Berg,

and Lindeboom (2010), Woodcock (2008), Card, Heining, and Kline (2013), Goldschmidt and Schmieder (2015),

and Song, Price, Guvenen, and Bloom (2015), among others. The AKM method has been used in a variety of

other fields, for example to link banks to firms or teachers to schools or students, or to document differences

across areas in patients’ health care utilization (Kramarz, Machin, and Ouazad, 2008, Jackson, 2013, Finkelstein,

Gentzkow, and Williams, 2014).
2Many structural models proposed in the literature build on Becker (1973). Examples are De Melo (2009),

Lise, Meghir, and Robin (2008), Bagger, Fontaine, Postel-Vinay, and Robin (2011), Hagedorn, Law, and

Manovskii (2014), Lamadon, Lise, Meghir, and Robin (2013), and Bagger and Lentz (2014).
3For example, they may not be consistent with wage posting models with match-specific heterogeneity, or

with sequential auctions mechanisms as in Postel-Vinay and Robin (2002), as we discuss below.
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dozens of thousands of firms in the presence of both firm and worker unobserved heterogeneity?

And how informative are functional forms assumptions in these often tightly parameterized

models?

In this paper we take a step in the direction of building a bridge between these two ap-

proaches. We propose two empirical models, static and dynamic, which allow for several as-

pects that are absent in two-way fixed-effects regressions. In the static model we allow for

interaction effects between worker and firm unobservables. In the dynamic model we let job

mobility depend on earnings directly, in addition to worker and firm attributes. Moreover, we

allow earnings after a job move to depend on attributes of the previous firm, in addition to

those of the current one. The dynamic model exhibits first-order Markov dynamics. While we

do not take a structural route in this paper, we show that our static and dynamic models nest

several theoretical mechanisms that have been emphasized in structural work.

We provide formal conditions for identification, both under discrete and continuous worker

heterogeneity. For the static model we rely on two periods, while we use four periods to identify

the dynamic model. The ability of the method to deal with short panels is important, since

assuming time-invariant effects over long periods may be strong. This also opens the way to

document how earnings premia and sorting patterns vary over the business cycle. In addition,

although we focus on workers and firms in this paper, our framework could be useful in other

applications using matched data, such as teacher-student sorting, where long panels may not

be available. Our results emphasize that, in order to identify models with complementarities,

one requires worker types to differ between firms conditional on job mobility. This generalizes

the intuitive observation that worker/firm interaction effects would not be identified if workers’

allocation to firms was fully random.

In the models, the relevant level of firm unobserved heterogeneity is the class of the firm.

In principle, these classes could be the firms themselves, in applications with very large firms

or in sorting applications to other settings (e.g., across cities). However, in matched employer

employee panel data sets of typical sizes, implementing our approach requires reducing the

number of classes. This dimension reduction serves two purposes: it helps computation and,

importantly, it allows increasing statistical precision and alleviating the incidental parameter

bias caused by the presence of a very large number of firm-specific parameters.4 We use a

k-means clustering estimator to classify firms into classes based on how similar their earnings

distributions are. The clustering may also be based on mobility patterns or longitudinal earn-

4See Andrews, Gill, Schank, and Upward (2008, 2012) for illustrations of incidental parameter bias in two-way

fixed-effects regressions.
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ings information, and it could be modified to incorporate firm characteristics such as size or

value-added. We establish the asymptotic consistency of the classification under discrete firm

heterogeneity by verifying the conditions of the main theorems in Bonhomme and Manresa

(2015). Under these conditions, estimation error in classification does not affect inference on

parameters estimated in a second step. This provides a formal justification for clustering in our

models.5

We propose a two-step approach to estimate the models. In the first step we classify firms

into classes using clustering. The second step depends on the model considered. We first

consider static and dynamic extensions of the AKM regression model that allow for interac-

tion effects between firms and workers. In this case the second step takes the form of simple

linear instrumental variables and covariance-based estimation, conditional on the firm classes.

We then consider finite mixture models where worker types are assumed to be discrete, but

unrestricted interactions between workers and firms are allowed for, in which case the second

step may be performed by maximum likelihood. We verify in simulations that these estimators

perform well in data sets similar to the one of our application.

While clustering firms into classes in a first step makes the matched data problem tractable

in our setup, two-step methods could also be useful in structural models. An attractive feature

is that the classification does not rely on the entire model’s structure, solely on the fact that

unobserved firm heterogeneity operates at the class level. To illustrate the connection between

a structural approach and ours, we provide an explicit mapping between our model and an

extension of the model of Shimer and Smith (2000) with on-the-job search, and we document

the performance of our estimation method on data generated according to the theoretical model.

We take our approach to Swedish matched employer employee panel data for 1997-2006.

While the estimates suggest some departure from additivity between firm and worker hetero-

geneity, we find that additive models approximate the conditional mean of wages relatively

well. At the same time, we find substantial sorting of workers across firms, mostly in terms of

unobserved attributes. [IN PROGRESS]

5Similarly as in most of the literature on discrete estimation, this result is derived under the assumption that

the population of firms consists of a finite number of classes. In Bonhomme, Lamadon, and Manresa (2016) we

consider a more general setting where the discrete modelling is viewed as an approximation to an underlying,

possibly continuous, distribution of firm unobserved heterogeneity, and we provide consistency results and rates

of convergence. In this alternative asymptotic framework, estimation error in the classification generally affects

post-classification inference. These results provide further justification for the use of clustering methods.
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Literature and outline. The methods we propose contribute to a large literature on the

identification and estimation of models with latent heterogeneity. On the firm side, the k-means

clustering algorithm we rely on is widely used in a number of fields, and efficient computational

routines exist (Steinley, 2006). Discrete fixed-effects approaches have recently been proposed

in single-agent panel data analysis (Hahn and Moon, 2010, Lin and Ng, 2012, Bonhomme and

Manresa, 2015). Here we apply such an approach to models with two-sided heterogeneity.

On the worker side, we specify conditional mixture models, which allow distributions of

worker types to depend on the conditioning firm classes. Nonparametric identification and

estimation of finite mixtures have been extensively studied, see for example Hall and Zhou

(2003), Hu (2008), Henry, Kitamura, and Salanié (2014), Levine, Hunter, and Chauveau (2011),

or Bonhomme, Jochmans, and Robin (2016). Identification of continuous mixture models is

the subject of important work by Hu and Schennach (2008) and Hu and Shum (2012). Our

conditional mixture approach is also related to mixed membership models, which have become

popular in machine learning and statistics (Blei, Ng, and Jordan, 2003, Airoldi, Blei, Fienberg,

and Xing, 2008).

Compared to previous work, we propose a hybrid approach that treats the firm classes as

discrete fixed-effects and the worker types as (discrete or continuous) random-effects. This

approach is motivated by the structure of typical matched employer employee data sets. With

sufficiently many workers per firm, firm membership to the different classes will be accurately

estimated. In contrast, the number of observations for a given worker is typically small.

Lastly, two recent innovative contributions rely on methods for models with latent het-

erogeneity to study questions related to worker/firm sorting on the labor market. Abowd,

Schmutte, and McKinney (2015) propose a Bayesian approach where both firm and worker

heterogeneity are discrete. Their setup allows for latent match effects to drive job mobility, in

a way that is related to, but different from, our dynamic model. Unlike this paper they do not

study identification formally, and they rely on a joint (two-way random-effects) approach for

estimation. Hagedorn, Law, and Manovskii (2014) propose to recover worker types by ranking

workers by their earnings within firms, and aggregating those partial rankings across firms.

Their method relies on long panels, and it exploits the implications of a specific structural

model to identify firm heterogeneity.

The outline of the paper is as follows. In Section 2 we present the framework of analysis.

In Sections 3 and 4 we study identification and estimation, respectively. In Sections 5 and 6

we describe the data and show empirical results. Lastly, we conclude in Section 7.
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2 Framework of analysis

We consider an economy composed of N workers and J firms. We denote as jit the identifier

of the firm where worker i is employed at time t. Job mobility between a firm at t and another

firm at t+ 1 is denoted as mit = 1.

Firms are characterized by the class they belong to. We denote as kit in {1, ..., K} the

class of firm jit. The k’s represent a partition of the set of firms into K classes, and kit is

a shorthand for k(jit).
6 There could be as many classes as firms, in which case K = J and

kit = jit. Alternatively, firm classes could be defined in terms of observables such as industry

or size. In Section 4 we will describe a method to consistently estimate the latent classes kit

from the data, under the assumption that they have K points of support.

Workers are also heterogeneous, and we denote the type of worker i as αi. These types

could be discrete or continuous, depending on the model specification. In addition to their

unobserved types, workers may also differ in terms of their observable characteristics Xit.
7

Lastly, worker i receives log-earnings Yit at time t. The observed data for worker i is thus

a sequence of earnings (Yi1, ..., YiT ), firm and mobility indicators (ji1,mi1, ..., ji,T−1,mi,T−1, jiT ),

and covariates (Xi1, ..., XiT ). We consider a balanced panel setup for simplicity, and we focus

on workers receiving positive earnings in each period.8

We consider two different models: a static model where current earnings do not affect job

mobility or future earnings conditional on worker type and firm class, and a dynamic model

that allows for these possibilities. We now describe these two models in turn. Next we discuss

how our assumptions map to theoretical sorting models proposed in the literature. Throughout

we denote Zt
i = (Zi1, ..., Zit) the history of random variable Zit up to period t.

2.1 Static model

Model and assumptions. In period 1, the type of a worker i, αi, is drawn from a distribution

that depends on the class ki1 of the firm where she is employed and her characteristics Xi1.

The worker draws log-earnings Yi1 from a distribution that depends on αi, ki1, and Xi1.

At the end of every period t ≥ 1, the worker moves to another firm (that is, mit = 1 or 0)

with a probability that may depend on her type αi, her characteristics X t
i , the fact that she

6In other words, k : {1, ..., J} 7→ {1, ...,K} maps firm j to firm class k(j). In fact, classes could change over

time, in which case kit would be a shorthand for kt(jit); see Appendix B.
7Here we abstract from firm-level observable characteristics. We return to this issue in Section 4.
8Incorporating an extensive employment margin within our framework could be done by adding a “non-

employment” firm class kit = 0, associated with Yit = ∅.
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moved in previous periods mt−1
i , and current and past firm classes kti . This probability, like all

other probability distributions in the model, may depend on t unrestrictedly. Moreover, the

probability that the class of the firm she moves to is ki,t+1 = k′ may also depend on αi, X
t
i ,

mt−1
i , and kti (while also varying with k′). Lastly, covariates Xi,t+1 are drawn from a distribution

depending on αi, X
t
i , m

t
i, and kt+1

i .

If the worker changes firm (that is, when mit = 1), log-earnings Yi,t+1 in period t + 1 are

drawn from a distribution that depends on αi, Xi,t+1, and ki,t+1. If instead the worker remains

in the same firm between t and t + 1 (that is, mit = 0), Yi,t+1 are drawn from an unrestricted

distribution that may depend on Y t
i , αi, X

t+1
i , and kt+1

i .

There are thus two main assumptions in the static model. First, job mobility may depend

on the type of the worker and the classes of the firms, but not directly on earnings. As a result,

the firm and mobility indicators, and firm classes, are all strictly exogenous in the panel data

sense. In addition, covariates Xit are also strictly exogenous. Second, log-earnings after a job

move may not depend on previous firm classes or previous earnings, conditional on the worker

type and the new firm’s class. Formally these two assumptions are the following.

Assumption 1.

(i) (mobility determinants) mit, ki,t+1 and Xi,t+1 are independent of Y t
i conditional on αi,

kti, m
t−1
i , and X t

i .

(ii) (serial independence) Yi,t+1 is independent of Y t
i , kti, m

t−1
i and X t

i conditional on αi,

ki,t+1, Xi,t+1, and mit = 1.

A simple example of the static model is the following log-earnings regression:

Yit = at(kit) + bt(kit)αi +X ′itct + εit, (1)

where E
(
εit |αi, kTi , XT

i

)
= 0. This model boils down to the one of Abowd, Kramarz, and

Margolis (1999) in the absence of interaction effects, i.e. when bt(k) = 1, and firms jit and

classes kit coincide.9

Statistical implications on two periods. Here we consider the static model on T = 2

periods, which we will show to suffice for identification. Let Fkα(y1) denote the cumulative

distribution function (cdf) of log-earnings in period 1, in firm class k, for worker type α. Let

9While Assumption 1 (i) and the independence of future earnings on the previous firm class in Assumption

1 (ii) are instrumental to ensure identification, restrictions on the dependence structure of earnings are not

needed to identify parameters such as at(k), bt(k) and ct in (1), as we will see below.
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Fm
k′α(y2) denote the cdf of log-earnings in period 2, for class k′ and type α, for job movers

between periods 1 and 2 (that is, when mi1 = 1). Let also pkk′(α) denote the probability

distribution of αi for job movers between a firm of class k and another firm of class k′. Finally,

let qk(α) denote the distribution of αi for workers in a firm of class k. All these distributions

may be conditional on Xi1 and Xi2, although we omit the conditioning for conciseness.

The model imposes the following restrictions on the bivariate log-earnings distribution for

job movers:

Pr [Yi1 ≤ y1, Yi2 ≤ y2 | ki1 = k, ki2 = k′,mi1 = 1] =

ˆ
Fkα(y1)F

m
k′α(y2)pkk′(α)dα. (2)

To see why (2) holds, note that Yi1 is independent of ki2 and mi1 conditional on αi and ki1.

This is due to the fact that, by Assumption 1 (i), mobility is unaffected by log-earnings Yi1,

conditional on type and classes (and conditional on exogenous covariates). Moreover, Yi2 is

independent of Yi1 and ki1, conditional on αi, ki2, and mi1 = 1. This is due to the lack of

dependence on the past after a job move in Assumption 1 (ii).

In addition, we have the following decomposition of the cdf of log-earnings in period 1:

Pr [Yi1 ≤ y1 | ki1 = k] =

ˆ
Fkα(y1)qk(α)dα. (3)

Our main identification results under discrete or continuous worker heterogeneity, which

we establish in Section 3, state that, under suitable rank conditions, Fkα, Fm
kα, and pkk′(α),

are identified from (2), and qk(α) are then identified from (3). Moreover, we will show how

to consistently estimate the partition of firms into classes based on the univariate or bivariate

log-earnings distributions on the left-hand sides of (2) and (3).

The parameters in (2) and (3) allow documenting the sources of earnings inequality and

the allocation of workers to firms. For example, the Fkα are informative about the presence of

complementarities in the earnings function. Differences of qk(α) across k are indicative of the

cross-sectional sorting of high-earning workers to high-paying firms. Moreover, from the pkk′(α)

and data on transitions between classes one can recover estimates of the transition probabilities

Pr (ki2 = k′ |αi, ki1 = k,mi1 = 1) between types, which are informative about dynamic sorting

patterns.

2.2 Dynamic model

Model and assumptions. There are two main differences between the dynamic model and

the static one. First, at the end of period t the worker moves to another firm with a probability

that depends on her current log-earnings Yit in addition to her type αi, Xit, and kit, and
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likewise the probability to move to a firm of class ki,t+1 = k′ also depends on Yit. A second

difference is that log-earnings Yi,t+1 in period t+ 1 are drawn from a distribution depending on

the previous log-earnings Yit and the previous firm class kit, in addition to αi, Xi,t+1, and ki,t+1.

Job movers and job stayers draw their log-earnings from different distributions conditional on

these variables. Formally we make the following assumptions.

Assumption 2.

(i) (mobility determinants) mit, ki,t+1 and Xi,t+1 are independent of Y t−1
i , kt−1i , mt−1

i and

X t−1
i conditional on Yit, αi, kit, and Xit.

(ii) (serial dependence) Yi,t+1 is independent of Y t−1
i , kt−1i , mt−1

i and X t
i conditional on Yit,

αi, ki,t+1, kit, Xi,t+1, and mit.

Assumption 2 consists of two first-order Markov conditions. In part (i), log-earnings Yit are

allowed to affect the probability to change job directly between t and t + 1, but the previous

earnings Yi,t−1 do not have a direct effect.10 Similarly, in part (ii) log-earnings Yi,t+1 may

depend on the first lag of log-earnings Yit, and on the current and lagged firm classes ki,t+1 and

kit, but this dependence rules out effects of the further past such as Yi,t−1 and ki,t−1. Also note

that, unlike in the static model, Assumption 2 (ii) restricts the evolution of log-earnings within

as well as between jobs.

As a simple dynamic extension of (1) one may consider the following specification for the

earnings of job movers between t− 1 and t:

Yit = ρtYi,t−1 + a1t(kit) + a2t(ki,t−1) + bt(kit)αi +X ′itct + εit, (4)

where here log-earnings after a job move may depend on the values of earnings and firm class

in the previous job.

Statistical implications on four periods. Here we describe the implications of the dynamic

model on T = 4 periods. Let Gf
y2,kα

(y1) (for “forward”) denote the cdf of log-earnings in period

1, in a firm class k, for a worker of type α who does not change firm between periods 1 and 2

and earns y2 in period 2. Let Gb
y3,k′α

(y4) (for “backward”) be the cdf of Yi4, in firm class k′, for

a worker of type α who does not change firm between periods 3 and 4 and earns y3 in period

3. Lastly, let py2y3,kk′(α) denote the type distribution of workers who stay in the same firm of

10Assumption 2 (i) allows Xi,t+1 to be drawn from a distribution that depends on Yit as well as αi, Xit,

mit, and ki,t+1. Our identification arguments apply to this case, and estimation can allow for predetermined

individual characteristics, such as job tenure. In the empirical analysis we will consider only time-invariant

covariates interacted with time effects, so we will not entertain this possibility.

9



class k between periods 1 and 2, move to another firm of class k′ in period 3, remain in that

firm in period 4, and earn y2 and y3 in periods 2 and 3, respectively. For conciseness we omit

the conditioning on covariates.

The bivariate cdf of log-earnings Yi1 and Yi4 is, for workers who change firm between periods

2 and 3:

Pr [Yi1 ≤ y1, Yi4 ≤ y4 |Yi2 = y2, Yi3 = y3, ki1 = ki2 = k, ki3 = ki4 = k′,mi1 = 0,mi2 = 1,mi3 = 0]

=

ˆ
Gf
y2,kα

(y1)G
b
y3,k′α(y4)py2y3,kk′(α)dα.

(5)

Assumption 2 is a first-order Markov assumption on the process (Yit, kit,mi,t−1), where in

addition mit can only depend on Yit and kit but not on mi,t−1. Equation (5) is a consequence

of this assumption. In particular, by Assumption 2 (ii), Yi4 is independent of past mobility,

firm classes, and earnings, conditional on Yi3, ki4, ki3 and mi3. Similarly, Yi1 can be shown to

be independent of future classes, earnings and mobility conditional on Yi2, ki1, ki2, and mi1.
11

In addition, let Fkα be the cdf of log-earnings Yi2 for workers in firm class k who remain in

the same firm in periods 1 and 2 (that is, mi1 = 0). Let also qk(α) denote the distribution of

αi for these workers. The joint cdf of log-earnings in periods 1 and 2 is:

Pr [Yi1 ≤ y1, Yi2 ≤ y2 | ki1 = ki2 = k,mi1 = 0] =

ˆ
Gf
y2,kα

(y1)Fkα(y2)qk(α)dα. (6)

The mathematical structure of (5) is analogous to that of (2). Intuitively, the conditioning

on log-earnings Yi2 and Yi3 immediately before and after the job move ensures conditional

independence of log-earnings Yi1 and Yi4, although in this model earnings have a direct effect

on job mobility and respond dynamically to lagged earnings and previous firm classes. Given

the mathematical similarity between static and dynamic models, we will be able to extend the

identification arguments to recover Gf
y2,kα

(y1), G
b
y3,k′α

(y4), and py2y3,kk′(α) based on (5) using

four periods data on workers moving between the second and third periods. Then, using only

the first two periods we will recover Fkα(y2) and qk(α) from (6).

2.3 Links with theoretical models

In this subsection we ask whether our assumptions are compatible with various theoretical

models of the labor market. We consider models that abstract from labor supply, so we refer

11To see this, note that, by Assumption 2 (i), Yi1 is independent of mi2 and ki3 conditional on Yi2, ki1, ki2,

and mi1; by Assumption 2 (ii), Yi1 is independent of Yi3 conditional on Yi2, ki1, ki2, ki3, mi1 and mi2; and, by

Assumption 2 (i), Yi1 is independent of mi3 and ki4 conditional on Yi2, Yi3, ki1, ki2, ki3, mi1 and mi2.
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to earnings and wages indistinctively.

Relevant state space is (α, kt). We first consider models where wages are a function, pos-

sibly non-linear or non-monotonic, of the worker type α, the firm class kt, and a time-varying

effect εt, where εt does not affect mobility decisions. This structure is compatible for instance

with models where the wage paid to a worker does not have any history dependence, and where

εt is classical measurement error or an i.i.d. match effect. In wage posting models (Burdett

and Mortensen, 1998; Delacroix and Shi, 2006; Shimer, 2001)12 workers climb a job ladder and

their wages exhibit path dependence. However, since firms commit to posted wages, wages are

independent of the worker history conditional on the firm class. This means that, while allowing

for rich mobility and earnings patterns, these models are compatible with the assumptions of

our static model, see Assumption 1.

Similarly, Assumption 1 is compatible with models where the wage is set as the outcome of

a bargaining process between the firm and the worker, provided the worker’s outside option is

set to unemployment. This is the case in Shimer and Smith (2000) and Hagedorn, Law, and

Manovskii (2014), where unemployment is a natural outside option since workers always go

through unemployment before finding a new job. In sorting models such as Shimer and Smith

(2000), specifying the wage function in a way that allows for interactions between worker

types and firm classes is key. Indeed, in those models earnings may be non-monotonic in firm

productivity, and workers rank identical firms differently. The static model can accommodate

both features.

Markovian match effects and past firm. A natural extension is to allow workers to

move based on the realization of the match effect εt, and to allow this match effect to be

serially correlated. This is the case of our dynamic model under the assumption that εt is first-

order Markov, see Assumption 2. The latter is compatible with a wage posting mechanism, or

bargaining with value of unemployment, in the presence of Markovian match-specific effects.

In those settings, a worker contemplating mobility compares the value at her current firm with

her current match value, to the value at a new encountered firm with its corresponding match-

specific draw. Hence the wage conditional on moving depends on the past wage and the past

12While the first two references do not explicitly allow for worker heterogeneity, one could pool segmented

markets by worker types. Abowd, Kramarz, Pérez-Duarte, and Schmutte (2015), Shephard (2011), and Engbom

and Moser (2015) have evaluated wage posting models empirically.
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firm. The assumptions of our dynamic model allow for these selection effects.13

Our assumptions allow for the past firm class to affect the wage after mobility, even beyond

the past wage, see Assumption 2 (ii). In Postel-Vinay and Robin (2002), when an employed

worker meets a new firm the two firms enter a Bertrand competition. The worker chooses to

work in the firm with the highest surplus, and she extracts the surplus of the old firm. If the

worker moves, her surplus and her earnings are functions of her type and both firms’ classes.

If she remains in the firm, the new wage realization depends on the worker type, the current

firm’s type, and the past wage, and is thus first-order Markov. In this setting, εt captures the

current bargaining position of the worker, which is Markovian and (together with worker type

and firm class) is a sufficient statistic for both the worker’s and the firm’s present values, and

in mobility and new earnings’ decisions. In addition, since mobility decisions are unrestricted

beyond the first-order Markov assumptions, mobility can be the result of an endogenous search

effort as in Bagger and Lentz (2014), where sorting happens because high-type workers benefit

more from mobility and choose to search more intensively.

In contract posting models (Burdett and Coles, 2003; Shi, 2008) firms post wage-tenure

contracts where payments are back-loaded to retain workers who are unable to commit to stay

within the firm when offers come. In this environment, the optimal contract is Markovian

conditional on worker type. The εt can be interpreted as the current level of utility promised to

the worker by the firm, which in this model maps one-to-one into the current wage conditional

on type. To nest these models it is crucial to allow the past firm to affect earnings after the

move. This is due to the fact that the worker’s value at the current firm depends on the firm

class in addition of the current wage, so the past firm will affect the new wage beyond the level

of the past wage.

Time effects. Our static and dynamic models allow distributions to depend unrestrictedly

on calendar time. Lise and Robin (2013) develop a model of sorting in a labor market with

sequential contracting and aggregate shocks. Present values and earnings are functions of worker

and firm heterogeneity, as well as of an aggregate state and the current bargaining position.

Assumption 2 of our dynamic model is satisfied in this setting. Also, note that our assumptions

allow for interactions between calendar time and unobserved worker type, thus allowing for

deterministic and type-specific wage profiles.

13Alternatively, the Markovian εt may be thought of as a one-dimensional human capital accumulation process.

This process can be deterministic or stochastic, as long as it is first-order Markov.
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Outside our framework. Non-Markovian earnings structures will violate the assumptions

of our dynamic model. This will happen if the structural model allows for permanent plus

transitory earnings dynamics conditional on worker types, as in Meghir and Pistaferri (2004)

for example. This will also happen in models that combine a sequential contracting mechanism

with a match-specific effect, as in Bagger, Fontaine, Postel-Vinay, and Robin (2011). In the

latter case the agents need to keep track of both the match quality and the bargaining position,

so we loose the one-to-one mapping between earnings and the value to the worker, making

mobility decisions dependent on past wage conditional on the current wage, and thus violating

our assumptions. Such environments are not nested in a framework that only allows, in addition

to observables Xit, for uni-dimensional time-varying effects εit.

Lastly, although it nests a number of theoretical models, without further assumptions our

framework does not allow answering questions such as the efficiency or welfare consequences

of the allocation of workers to jobs, and how they are affected by policy. Nevertheless, as

they allow for complementarities and dynamics, the empirical methods we develop may help

inform structural models. In Appendix D we evaluate the performance of one of our estimators

to recover the contributions of worker and firm heterogeneity to earnings dispersion, when

the data generating process follows a calibrated version of the model of Shimer and Smith

(2000) with on-the-job search.14 We analyze two situations: with positive assortative matching

(PAM) and with negative assortative matching (NAM). We show that our approach recovers

the contributions of firms and workers to earnings dispersion and sorting patterns rather well,

even under NAM.

3 Identification

In this section we show how, for a given partition of firms into classes and under suitable con-

ditions, type-and-class-specific earnings distributions and class-specific distributions of worker

types are identified based on two periods in the static case, and four periods in the dynamic

case. We first provide intuition in a simple version of the interactive regression model (1). Next

we establish identification under an assumption that worker types are discretely distributed,

without making further functional form assumptions. Finally we provide a nonparametric iden-

tification result when worker types are continuously distributed. The analysis in this section is

conditional on a partition of firms into classes. In the next section we will show how to recover

class membership kit = k(jit), for each firm jit.

14See Moscarini (2005), Shimer (2006), and Flinn and Mabli (2008), for related contracting environments.

13



3.1 Intuition in an interactive regression model

To provide an intuition we start by considering a stationary specification of the interactive

model of equation (1) with T = 2 periods, where neither at(k) nor bt(k) depend on t, and

we abstract from observed covariates Xit. Consider job movers between two firms of classes k

and k′ 6= k, respectively, between period 1 and 2. Here we study identification in a population

where there is a continuum of workers moving between k and k′. This intuitively means that, in

practice, this analysis will be relevant for data sets with a sufficient number of workers moving

between firm classes. We will return to this issue in the estimation section, as this represents

a motivation for our grouping of firms into classes. We have:

Yi1 = a(k) + b(k)αi + εi1, Yi2 = a(k′) + b(k′)αi + εi2. (7)

where E(εit |αi, ki1 = k, ki2 = k′,mi1 = 1) = 0. In this sample of job movers, the ratio b(k′)/b(k)

is not identified without further assumptions.15

Consider now job movers from a firm in class k′ to another firm in class k. We have:

Yi1 = a(k′) + b(k′)αi + εi1, Yi2 = a(k) + b(k)αi + εi2.

It follows that:
b(k′)

b(k)
=

Ekk′(Yi2)− Ek′k(Yi1)
Ekk′(Yi1)− Ek′k(Yi2)

, (8)

provided that the following holds:

Ekk′(αi) 6= Ek′k(αi), (9)

where we have denoted Ekk′(Zi) = E(Zi | ki1 = k, ki2 = k′,mi1 = 1). This shows that, if (9)

holds, b(k′)/b(k) is identified from mean restrictions.

An intuition for (8) is that, by comparing differences in log-earnings between two different

subpopulations of workers in firm class k′ and in class k, the ratio is informative about the effects

of worker heterogeneity in the two firm classes. This requires the types of workers moving from

k to k′ and from k′ to k to differ. Note that, if b(k′)+b(k) 6= 0, the latter condition is equivalent

to:

Ekk′ (Yi1 + Yi2) 6= Ek′k (Yi1 + Yi2) , (10)

so it can be empirically tested.

15Model (7) is formally equivalent to a measurement error model where αi is the error-free regressor and Yi2

is the error-ridden regressor. It is well-known that identification fails in general. For example, b(k′)/b(k) is not

identified when εi1, εi2, and αi are independent Gaussian random variables (Reiersøl, 1950).
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An important implication is that, when (9) does not hold, additivity in worker and firm

attributes (that is, b’s being equal in all firms) is not testable. Graphical illustrations of mean

log-earnings around a job move event have become popular ways of providing suggestive evi-

dence for additivity, see for example Card, Heining, and Kline (2013). Our analysis emphasizes

a close link between the presence of non-random job mobility (and sorting) and the interpre-

tation of such graphs. In addition, by fully exploiting earnings information around a job move

we are able under (9) to identify worker/firm interaction effects as well.

The mean restrictions in (8) hold irrespective of the serial dependence properties of εit. In

addition, these restrictions are linear in parameters (in this case, the b(k)′s). In Appendix

C we show that both features are preserved in more general static and dynamic interactive

regression models such as (1) and (4). In interactive models it is thus possible to relax the

assumption that the log-earnings of job movers are serially independent conditional on worker

type and firm classes, and still identify the a’s, b’s, and means of αi. In contrast, to identify

the within-firm-class variances of worker types in finite-length panels, restrictions must be

imposed on the dependence structure of the ε’s, such as independence between εi1 and εi2 when

T = 2. In Appendix C we describe these interactive models in detail, and provide conditions

for identification.

3.2 Identification results

In this subsection we consider general static and dynamic models under Assumptions 1 and 2,

respectively. We make no functional form assumptions on earnings distributions, except that we

consider models where worker types αi have finite support. Relying on discrete types is helpful

for tractability, and we will use a finite mixture specification in our empirical implementation.

However, at the end of this subsection we also provide an identification result for continuously

distributed worker types.

We start by considering the static model on two periods. The dynamic model having

a similar mathematical structure as the static one, the identification arguments are closely

related (see below). Let L be the number of points of support of worker types, and let us

denote the types as αi ∈ {1, ..., L}. We assume that L is known.16 All distributions below may

be conditional on (Xi1, Xi2), although we omit the conditioning for conciseness.17

16Identifying and estimating the number of types in finite mixture models is a difficult question. Kasahara

and Shimotsu (2014) provide a method to consistently estimate a lower bound.
17Specifically, with time-varying covariates the identification argument goes through provided Fkαx1 and

Fmk′αx2
solely depend on period-specific covariates. With time-invariant covariates it is not possible to link type
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Figure 1: An alternating cycle of length R = 2

k1

k2

k̃1

k̃2

In this finite mixture model, (2) and (3) imply restrictions on the cdfs Fkα and Fm
k′α, and on

the probabilities pkk′(α) and qk(α). We now show that these objects are all identified subject

to suitable conditions. For this we start with a definition.

Definition 1. An alternating cycle of length R is a pair of sequences of firm classes (k1, ..., kR)

and (k̃1, ..., k̃R), with kR+1 = k1, such that pkr,k̃r(α) 6= 0 and pkr+1,k̃r
(α) 6= 0 for all r in {1, ..., R}

and α in {1, ..., L}.

Assumption 3. (mixture model)

(i) For any two firm classes k 6= k′ in {1, ..., K}, there exists an alternating cycle (k1, ..., kR),

(k̃1, ..., k̃R), such that k1 = k and kr = k′ for some r, and such that the scalars a(1), ..., a(L)

are all distinct, where:

a(α) =
pk1,k̃1(α)pk2,k̃2(α)...pkR,k̃R(α)

pk2,k̃1(α)pk3,k̃2(α)...pk1,k̃R(α)
.

In addition, for all k, k′, possibly equal, there exists an alternating cycle (k′1, ..., k
′
R), (k̃′1, ..., k̃

′
R),

such that k′1 = k and k̃′r = k′ for some r.

(ii) For a suitable finite set of values for y1 and y2, which includes (+∞,+∞), and for all r in

{1, ..., R}, the matrices A(kr, k̃r) and A(kr, k̃r+1) have rank K, where:

A(k, k′) = {Pr [Yi1 ≤ y1, Yi2 ≤ y2 | ki1 = k, ki2 = k′,mi1 = 1]}(y1,y2) .

Assumption 3 requires that any two firm classes k and k′ belong to an alternating cycle.

An example is given in Figure 1, in which case the presence of an alternating cycle requires

that there is a positive proportion of every worker type in the sets of movers from k1 to k̃1, k1

to k̃2, k2 to k̃1, and k2 to k̃2, respectively. Existence of cycles is related to, but different from,

probabilities across covariates values, due to a labelling problem. This issue echoes the impossibility to identify

the coefficients of time-invariant regressors in fixed-effects panel data regressions.
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that of connected groups in AKM (Abowd, Creecy, and Kramarz, 2002). As in AKM, in our

setup identification will fail in the presence of completely segmented labor markets where firms

are not connected between groups via job moves. One difference with AKM is that, in our

nonlinear setup, we need every firm class to contain job movers of all types of workers. Another

difference is that in our context the relevant notion of connectedness is between firm classes, as

opposed to between individual firms.

Assumption 3 (i) requires some asymmetry in worker type composition between different

firm classes. This condition requires either non-random cross-sectional sorting or non-random

mobility, as it fails when pkk′(α) does not depend on (k, k′). Another case where part (i) fails is

when cross-sectional sorting and sorting associated with job mobility exactly offset each other,

so pkk′(α) is symmetric in (k, k′). This exact offsetting happens in the model of Shimer and

Smith (2000) in the absence of on-the-job search, as we discuss in Appendix D. In the mixture

model analyzed here, the presence of asymmetric job movements between firm classes is crucial

for identification. This is similar to the case of the simple interactive model studied above, see

(10). In the empirical analysis we will provide evidence of such asymmetry. The requirements on

cycles can be relaxed, at the cost of loosing identification of some of the quantities of interest. In

Appendix B we illustrate this point in a model where worker types and firm classes are ordered,

there is strong positive assortative matching, and workers only move between “nearby” firm

classes.

Assumption 3 (ii) is a rank condition. It will be satisfied if, in addition to part i), for all r

the distributions Fkr,1, ..., Fkr,L are linearly independent, and similarly for Fk̃r,1, ..., Fk̃r,L, Fm
kr,1

,

..., Fm
kr,L

, and Fm
k̃r,1

, ..., Fm
k̃r,L

. Note that this assumption is in principle testable.

The next result shows that, with only two periods and given the structure of the static

model, both the type-and-class-specific earnings distributions and the proportions of worker

types for job movers can be uniquely recovered. The intuition for the result is similar to that

in the simple interactive regression model above. Due to the discrete heterogeneity setting,

identification holds up to a choice of labelling of the latent worker types. All proofs are in

Appendix A.

Theorem 1. Let T = 2, and consider the joint distribution of log-earnings of job movers. Let

Assumptions 1 and 3 hold. Suppose that firm classes kit are observed. Then, up to common

labelling of the types α, Fkα and Fm
k′α are identified for all (α, k, k′). Moreover, for all pairs

(k, k′) for which there are job moves from k to k′, pkk′(α) is identified for all α, up to the same

labelling.

The next corollary shows that the proportions of worker types α in each firm class k in
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period 1 are also identified.

Corollary 1. Let T = 2. Consider the distribution of log-earnings in the first period. Let

Assumptions 1 and 3 hold. Suppose that firm classes kit are observed. Then the type proportions

qk(α) are identified up to the same labelling as in Theorem 1.

Dynamic model. A similar approach allows us to establish identification of the dynamic

mixture model on four periods with discrete worker heterogeneity. Exploiting the link between

(2) and (5) on the one hand, and (3) and (6) on the other hand, we obtain the following

corollary to Theorem 1. The required assumptions, particularly on the existence of cycles, are

more stringent than in the static case, see Appendix A.18

Corollary 2. Let T = 4. Consider the joint distribution of log-earnings of job movers. Let

Assumption 2 hold. Let also Assumption 3 hold, with Yi2 replaced by Yi4, k replaced by (k, y2),

and k′ replaced by (k′, y3); see Appendix A for a precise formulation. Suppose that firm classes

kit are observed. Then, up to common labelling of the types α:

(i) Gf
y2,kα

and Gb
y3,k′α

are identified for all (α, k, k′). Moreover, for all (k, y2, k
′, y3) for which

there are job moves from (k, y2) to (k′, y3), py2y3,kk′(α) is identified for all α.

(ii) Fkα and qk(α), and log-earnings cdfs in periods 3 and 4, are also identified. Lastly,

transition probabilities between firm classes are identified.

Continuous worker types. Let worker types αi be continuously distributed. Here we focus

on the static model, but similar arguments apply to the dynamic model. As in Hu and Schen-

nach (2008) (HS hereafter) we assume bounded joint and conditional densities. We have, by

Assumption 1 and for all k, k′:

fkk′(y1, y2) =

ˆ
fkα(y1)f

m
k′α(y2)pkk′(α)dα, (11)

where the f ’s are densities corresponding to the cdfs in (2).

The structure of (11) is related to that in HS. Indeed, Assumption 1 implies that Yi1 and

Yi2 are independent conditional on αi, ki1, ki2,mi2 = 1. However, here independence holds be-

tween two outcomes only, while HS assume conditional independence between three outcomes.

Nevertheless, under conditions related to those in HS, by relying in addition on the network

structure of workers’ movements between firms it is possible to establish nonparametric identi-

fication using similar arguments as in the proof of Theorem 1.

18Identification here relies on within-job variation in earnings. An alternative approach to identification would

be to rely on multiple job moves per worker.
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Specifically, in Appendix B we formally show identification of earnings and type distributions

using an alternating cycle of length R = 2. There, we show that the model’s assumptions imply

restrictions on certain operators that mimic the matrix restrictions appearing in the proof

of Theorem 1. Identification then relies on nonparametric analogs to the rank conditions in

Assumption 3 (ii), also called completeness conditions. In particular, these conditions require

αi to be one-dimensional.

In addition, in order to identify the log-earnings densities fkα and fmk′α, the conditions we

borrow from HS and Hu and Shum (2012) involve a monotonicity assumption. For example, the

latter is satisfied if E [Yi1 |αi = α, ki1 = k] is monotone in α. This condition might be natural

if α represents a worker’s productivity type, for example, although it rules out non-monotonic

earnings profiles and multi-dimensional worker types. Note in contrast that, when worker types

are assumed to have a known finite support (as in Theorem 1), no such assumption is needed

and the only ambiguity lies in the arbitrary labelling of the latent types.

4 Estimation

The results in the previous section show that, provided that different types of workers make

transitions between firm classes, earnings distributions can be identified in the presence of sort-

ing and complementarities. These results hold at the firm class level kit, where in principle

the kit could coincide with the firm jit. However, in matched employer-employee panel data

sets of typical sizes, estimating models with worker/firm interactions, dynamics, and possibly

flexible distributional forms for earnings may be impractical due to the incidental parameter

biases caused by the large number of firm-specific parameters. For this reason, we introduce

a dimension-reduction method to partition firms into firm classes, which is consistent with

our static or dynamic models of earnings and mobility. Then we describe a two-step estima-

tion approach that takes estimated firm classes as inputs, and recovers earnings and mobility

parameters in a second stage.

4.1 Recovering firm classes using clustering

Clustering earnings distributions. In both the static and dynamic models described in

Section 2, the distributions of log-earnings Yit and characteristics Xit, and the probabilities

of mobility mit, are all allowed to depend on firm classes k, but not on the identity of the

firm within class k. In other words, unobservable firm heterogeneity operates at the level of
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firm classes in the model, not at the level of individual firms. This key observation motivates

classifying firms into classes in terms of their distributions of observables, as we now explain.

For example, in (3) the first period’s distribution of log-earnings in firm j does not depend

on j beyond its dependence on firm class k = k(j):

Pr [Yi1 ≤ y1 | ji1 = j] =

ˆ
Fkα(y1)qk(α)dα, (12)

where the left-hand side thus only depends on k = k(j).

Motivated by (12) we propose partitioning the J firms in the sample into classes by solving

the following weighted k-means problem:

min
k(1),...,k(J),H1,...,HK

J∑
j=1

nj

ˆ (
F̂j(y)−Hk(j) (y)

)2
dµ(y), (13)

where F̂j denotes the empirical cdf of log-earnings in firm j, nj is the number of workers in

firm j (both in period 1), and µ is a discrete or continuous measure. The minimization in

(13) is with respect to all possible partitions of the J firms into K groups (the k(j)’s), and to

class-specific cdfs (the Hk’s). Finding global minima is often challenging. However, k-means

algorithms are widely used in many fields, and efficient heuristic computational methods have

been developed (e.g., Steinley, 2006).

To provide a formal justification for the classification in (13), we consider a setting where

the model (either static or dynamic) is well-specified and there exists a partition of the J firms

into K classes in the population. We consider an asymptotic sequence where the number of

firms J may grow with the number of workers N and the numbers of workers per firm nj. We

make the following assumptions, where we take the measure µ to be discrete on {y1, ..., yD},
k0(j) denote firm classes in the population, H0

k denote the population class-specific cdfs, and

‖H‖2 =
∑D

d=1H(yd)
2.

Assumption 4. (clustering)

(i) Yi1 are independent across workers and firms.

(ii) For all k ∈ {1, ..., K}, plimJ→∞
1
J

∑J
j=1 1{k0(j) = k} > 0.

(iii) For all k 6= k′ in {1, ..., K}, ‖H0
k −H0

k′‖ > 0.

(iv) Let n = minj=1,...,J nj. There exists δ > 0 such that J/nδ → 0 as n tends to infinity.

Assumption 4 (i) could be relaxed to allow for weak dependence both across and within

firms, in the spirit of the analysis of Bonhomme and Manresa (2015) who focused on a panel data

context, i.e. they analyzed data on individuals over time as opposed to workers within firms.
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Parts 4 (ii) and (iii) require that the clusters be large and well-separated in the population.

We further discuss part (iii) below. Assumption 4 (iv) allows for asymptotic sequences where

the number of workers per firm grows polynomially more slowly than the number of firms. Note

that while it imposes conditions on the rate of growth of the minimum firm size, this condition

allows some firms to asymptotically represent a non-vanishing fraction of the sample.

Verifying the assumptions of Theorems 1 and 2 in Bonhomme and Manresa (2015), we now

show that the estimated firm classes, k̂(j), converge uniformly to the population ones up to an

arbitrary labelling. As a result, we obtain that the asymptotic distribution of the log-earnings

cdf Ĥk coincides with that of the empirical cdf of wages in the population class k (that is,

the true one). In practice this means that, provided Assumption 4 holds, one can treat the

estimated firm classes as known when computing standard errors of estimators based on them.

Here we prove a pointwise result for Ĥk, but the equivalence also holds uniformly in y. It also

holds for second-step estimates based on pre-estimated classes (see the next subsection).

Proposition 1. Let Assumption 4 hold. Then, up to labelling of the classes k:

(i) Pr
(
∃j ∈ {1, ..., J}, k̂(j) 6= k0(j)

)
= o(1).

(ii) For all y,
√
Nk

(
Ĥk(y)−H0

k(y)
)

d→ N (0, H0
k(y) (1−H0

k(y))), where Nk is the number

of workers in firms of class k; that is: Nk =
∑N

i=1 1 {k0(ji1) = k}.

Alternative clustering approaches. In practice, instead of cdfs one could cluster features

of earnings distributions such as means, variances, or other moments of the firm-specific dis-

tributions. One could also cluster more general firm-specific distributions in addition to cross-

sectional cdfs of earnings. For example, under the assumption that they are class-specific one

could add firm size, industry, output, profit or value added, as additional measurements to

the k-means classification (13). Proposition 1 then provides an asymptotic justification for the

method in settings where there is a finite number of latent firm classes in the population.19

A particular difficulty with identifying firm classes from cross-sectional observations only

is that it might be that two cross-sectional earnings distributions coincide between two firms,

one offering a higher earnings schedule but having low-type workers, the other one offering a

lower earnings schedule but having high-type workers. This possibility has been emphasized

in the theoretical sorting literature (e.g., Eeckhout and Kircher, 2011). It is reflected in the

violation of the separation condition in Assumption 4 (iii). So it may be impossible to separate

19In Bonhomme, Lamadon, and Manresa (2016) we study asymptotic properties of k-means clustering and two-

step methods in settings where the K clusters are viewed as approximating a possibly continuous heterogeneity

structure. This provides a justification of such discrete methods in continuous settings too.
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two different classes from the cross-section, even though their conditional earnings distributions

given worker types are different.

A different classification approach, which has the potential to address this issue, is to cluster

firms based on multivariate distributions of earnings in the panel. To see how this can be done,

consider the static model on two periods. We have, by (2) and due to the class-specific nature

of firm heterogeneity:

Pr [Yi1 ≤ y1, Yi2 ≤ y2 | ji1 = j, ji2 = j′,mi2 = 1] =

ˆ
Fkα(y1)F

m
k′α(y2)pkk′(α)dα, (14)

which does not depend on (j, j′) beyond its dependence on k = k(j) and k′ = k(j′).

This motivates the following bi-clustering method to classify firms into classes:

min
k(1),...,k(J),G11,...,GKK

Nm∑
i=1

ˆ ˆ (
1{Yi1 ≤ y1}1{Yi2 ≤ y2} −Gk(ji1),k(ji2) (y1, y2)

)2
dµ(y1, y2), (15)

for a bivariate measure µ, where the first Nm individuals in the sample are the job movers

between periods 1 and 2. Algorithms to solve (15) have been comparatively less studied than

k-means classification problems such as (13). At the same time, as we show in Appendix B

in the static mixture model with discrete types, the separation condition for consistency of

classification in (15) is weaker than in the cross-sectional case of Assumption 4 (iii).20

Finally, note that the clustering method in (13) estimates firm classes as “discrete fixed-

effects”, allowing them to be correlated to firm-specific covariates. In our application on short

panels we will assume that the firms’ classification is time-invariant, and correlate the estimated

classes ex-post to firm observables. In longer panels, the clustering method could be generalized

to account for time-varying classes, and one could document how the evolution of the classes

relates to time variation in observables such as firm size, as we outline in Appendix B.

4.2 Two-step estimation

Our estimation strategy consists of two steps. In the first step we compute estimated firm

classes, k̂(j), for all firms j in the sample, by solving a classification problem such as (13). In

the second step we impute a class k̂it = k̂(jit) to each worker-period observation in the sample,

and we estimate the model conditional on the k̂it’s.
21

20One could add job stayers in (15), under assumptions on within-job earnings dynamics. Also, the two

objective functions in (13) and (15) can be combined, thus incorporating both cross-sectional and longitudinal

information into the classification; see the next subsection.
21As a robustness check, in order to avoid biases due to overfitting (Abadie, Chingos, and West, 2014), we

have also used the following split-sample method: estimate firm classes using job stayers only, and then estimate

log-earnings distributions using job movers. We obtained similar results.
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The second step takes a different form, depending on the model considered (either static

or dynamic, interactive-based or mixture-based). Importantly, the classification step does not

rely on the model’s structure. In fact one could use a similar two-step approach in structural

settings, and estimate the structural model in a second step given the estimated k̂it’s. In

that case too, one would not need to impose the model’s structure in order to perform the

classification in the first step.

Consider a finite mixture specification of the static model on two periods. One possibility,

which we use in the empirical analysis, is to use a parametric model such as a Gaussian mixture

model with (k, α)-specific wage means and variances. We also experimented with a specification

where Fkα follows a mixture-of-normals with (k, α)-specific parameters. The log-likelihood

conditional on estimated firm classes takes the form:

Nm∑
i=1

K∑
k=1

K∑
k′=1

1{k̂i1 = k}1{k̂i2 = k′} ln

(
L∑
α=1

pkk′(α)fkα(Yi1; θ)f
m
k′α(Yi2; θ)

)
, (16)

where fkα(y; θ) and fmkα(y; θ) are parametric log-earnings densities indexed by θ, and the pro-

portions pkk′(α) are treated as parameters. We use the EM algorithm (Dempster, Laird, and

Rubin, 1977) for estimation.

Several methods have recently been proposed to estimate finite mixture models while treat-

ing the type-conditional cdfs nonparametrically. See for example Bonhomme, Jochmans, and

Robin (2016) and Levine, Hunter, and Chauveau (2011). These methods could also be used in

the present context.

Given estimates of the firm classes and the cdfs Fkα we estimate the type proportions based

on another, simpler, finite mixture problem. The first period’s log-likelihood is, given estimated

firm classes and distributions:

N∑
i=1

K∑
k=1

1{k̂i1 = k} ln

(
L∑
α=1

qk,Xi
(α)fkα(Yi1; θ̂)

)
, (17)

where qkx(α) denotes the proportion of type α workers in class k with covariate x. In practice

we use a second EM algorithm to maximize (17).22

We estimate the proportions qkx(α) in (17) by allowing them to depend on time-invariant

worker covariates, Xi, such as education or age in the first period. This specification allows us

to distinguish sorting in terms of x from sorting in terms of unobservables. For example, for all

22Type proportions could alternatively be estimated using a least squares regression, as can be seen from the

identification arguments in Section 3.
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(k, α) we can write:

qk(α) =
∑
x

p(x)qkx(α) +
∑
x

(pk(x)− p(x)) qkx(α), (18)

where px = Pr(Xi = x), and pk(x) = Pr(Xi = x | ki1 = k). The first term on the right-hand side

of (18), say q̃k(α), represents the type proportion in a counterfactual economy where covariates

x are equally distributed across firm classes. Hence the two terms on the right-hand side of

(18) reflect the contribution of unobservables and observables, respectively, to differences in

worker type composition across firm classes. Note that one also could introduce observable

characteristics in fkα, fmkα, and pkk′(α) in (16). Given the short length of the panel, in the

empirical analysis we will use a fully nonstationary specification, and account for time-invariant

covariates using (17).

We use a similar approach to estimate the dynamic finite mixture model on four periods,

based on two EM algorithms to estimate the earnings and type distributions and the mobility

probabilities. Specifically, we let the conditional mean of Yi4 given Yi3 and worker and firm

classes be µ4k′α + ρ4|3Yi3, where µ4kα is a (k, α)-specific intercept. Likewise, the conditional

mean of Yi1 given Yi2 and worker and firm classes is µ1kα + ρ1|2Yi2. The joint distribution of

(Yi2, Yi3) for job movers between classes k and k′ has means (µ2kα + ξ2(k
′), µ3k′α + ξ3(k)), and

(k, k′)-specific covariance matrix. We denote its density as fmkk′α(y2, y3). The distribution of

Yi2 for workers in class k has (k, α)-specific mean and k-specific variance. The two likelihood

maximizations are based on:

Nm∑
i=1

K∑
k=1

K∑
k′=1

1{k̂i2 = k}1{k̂i3 = k′} ln

(
L∑
α=1

pkk′(α)f fYi2,kα(Yi1; θ)f
b
Yi3,k′α

(Yi4; θ)f
m
kk′α(Yi2, Yi3; θ)

)
,

(19)

and:

N∑
i=1

K∑
k=1

1{k̂i2 = k} ln

(
L∑
α=1

qk,Xi
(α)f fYi2kα(Yi1; θ̂)fkα(Yi2; ν)

)
, (20)

where the second maximization delivers estimates of ν and qkx(α). The parameters ρ1|2, ρ23

and ρ4|3 are included in θ.23

This approach can handle models with discrete worker heterogeneity in general settings.

In addition, although we do not pursue this route here one could use a similar mixture-based

approach to estimate models with continuously distributed α’s. When additional structure is

23Note that one could alternatively maximize (19) and (20) jointly, and add periods 3 and 4 outcomes to (20).
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imposed on means and covariances of earnings, estimation can be based on simple restrictions

involving these moments. This is the case in the AKM model, and in interactive models such as

(1) and (4). As we show in Appendix C, two-step methods deliver computationally convenient

estimation algorithms in static and dynamic interactive regression models.

Lastly, in this section we have focused on short panels. In the empirical application we will

report estimation results based on two and four periods, relying on both job movers and job

stayers. In Appendix B we describe estimation on T periods.

Additional steps. Once the model’s parameters have been estimated, one can re-classify

firms into classes. As an example, given estimates Ĝkk′ one can re-classify firms as follows:

min
k(1),...,k(J)

Nm∑
i=1

ˆ ˆ (
1{Yi1 ≤ y1}1{Yi2 ≤ y2} − Ĝk(ji1),k(ji2) (y1, y2)

)2
dµ(y1, y2). (21)

This classification may be performed using a Gibbs sampling algorithm, as in Choi, Wolfe,

and Airoldi (2012) for example. When combined with information from job stayers in the first

period and iterated, (21) may be interpreted as a minimum-distance version of the iteration

scheme studied in Bonhomme, Lamadon, and Manresa (2016). As shown in this work, it may be

advantageous to use a bias reduction method together with the two-step or iterative estimators

in order to improve finite-sample performance.

Remark. The estimators in this section involve a fairly large number of parameters. For

example, type proportions may be poorly estimated for workers moving between classes k and

k′, when the total number of workers making this transition, say Nm
kk′ , is small. In practice

interest often centers on class-specific parameters such as type-and-class-specific mean log-

earnings, or type proportions in a firm class. A simple approach is then to trim out (k, k′) cells

when Nkk′ is smaller than a threshold (e.g., 20 or 50). Alternatively, one may treat (k, k′)-

specific parameters as “random-effects” and integrate them out using a prior distribution. The

latter approach is widely used in text analysis and machine learning, see for example Blei, Ng,

and Jordan (2003). We have experimented with both approaches and found minor effects on

the empirical results.

5 Data

We use a match of four different databases from Friedrich, Laun, Meghir, and Pistaferri (2014)

covering the entire working age population in Sweden between 1997 and 2006. The Swedish
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data registry (ANST), which is part of the register-based labor market statistics at Statistics

Sweden (RAMS), provides information about individuals, their employment, and their employ-

ers. This database is collected yearly from the firm’s income statements. The other databases

provide additional information on worker and firm characteristics, as well as unemployment sta-

tus of workers: LOUISE/LINDA contains information on the workers, SBS provides accounting

data and balance sheet information for all non-financial corporations in Sweden, and the Un-

employment Register contains spells of unemployment registered at the Public Employment

Service.

The RAMS dataset allows constructing individual employment spells within a year, as it

provides the first and last remunerated month for each employee in a plant as well as firm and

plant identifier. In this paper we define firms through firm identifiers. We define the main

employment of each individual in a year as the one providing the highest earnings in that year.

The main employer determines the employer of a worker in a given year. RAMS provides pre-

tax yearly earnings for each spell. We use the ratio between total earnings at the main employer

and the number of months employed as our measure of monthly earnings. We compute real

earnings in 2007 prices.

Sample selection. Following Friedrich, Laun, Meghir, and Pistaferri (2014) we perform a

first sample selection by dropping all financial corporations and some sectors such as fishery

and agriculture, education, health and social work. In addition, all workers from the public

sector or self-employed are discarded.

We focus on workers employed in years 2002 and 2004. These two years correspond to

periods 1 and 2 in the static model. We restrict the sample to males. We choose not to include

female workers in the analysis in order to avoid dealing with gender differences in labor supply,

since we do not have information on hours worked. We keep firms which have at least one

worker who is fully employed in both 2002 and 2004 (“continuing firms”), where fully employed

workers are those employed in all twelve months in a year in one firm. From this 2002-2004

sample we define the sub-sample of movers as workers whose firm identifier changes between

2002 and 2004.24

Restricting workers to be fully employed in 2002 and 2004, and firms to be present in both

periods, is not innocuous, and we will see that this results in a substantial reduction of the

number of workers whose firm identifier changes in the course of 2003. The reason for this

24If a worker returns in 2004 to the firm he worked for in 2002 we do not consider this worker to be a mover.

This represents 4.3% of the 2002-2004 sample.
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conservative sample selection is that we want to capture, as closely as possible, individual job

moves between existing firms. In particular, a firm may appear in only one period because of

a merger or acquisition, entry or exit, or due to a re-definition of the firm identifier over time.

Although we conduct robustness checks, in our preferred specification we do not include these

job moves as we do not think that they map naturally to our model.

For the dynamic model we consider a subsample that covers the years 2001 to 2005. In

addition to the criteria used to construct the 2002-2004 sample, we require that workers be

fully employed in the same firm in 2001 and 2002, and in 2004 and 2005.

Descriptive Statistics We now report descriptive statistics on the 2002-2004 and 2001-2005

samples, as well as on the subsamples of job movers. Results can be found in Table 1.

The 2002-2004 sample contains about 600,000 workers and 44,000 firms. Hence the average

number of workers per firm is 13.7. The mean firm size as reported by the firm is higher, 37.6,

due to our sample selection that focuses on fully employed male workers. In the 2001-2005

sample, the mean number of workers and mean reported size are 12.3 and 37.1, respectively.

The distribution of firm size is skewed, and medians are smaller. At the same time, reported

firm sizes in the subsamples of movers are substantially higher. This implies that classification

accuracy, in the first step of the algorithm, will be higher for those firms, who are key in order

to estimate earnings distributions. In the next section we will report the results of several

simulation exercises aimed at assessing the accuracy of our classification given this distribution

of firm size.

Identification relies on workers moving between firms over time. In the 2002-2004 sample,

the mobility rate, which we define as the fraction of workers fully employed in 2002 and 2004

whose firm identifiers are different in these two years, is 19557/599775 = 3.3%. In the 2001-2005

sample the rate is 2.4%. These numbers are lower than the ones calculated by Skans, Edin,

and Holmlund (2009), who document between-plant mobility rates ranging between 4% and

6% between 1986 and 2000.25 To understand how our sample selection influences the mobility

rate, we have computed similar descriptive statistics on the entire 2002-2004 sample, without

imposing that workers are fully employed in 2002 and 2004 or that firms exist in the two periods,

see Table E2 in Appendix E. Removing the requirements of full-year employment in both 2002

and 2004 and continuously existing firms results in a considerably less restrictive definition of

mobility, as the mobility rate is 11.2% in this case.26 Although we prefer to focus on a more

25See their Figure 7.14. Skans, Edin, and Holmlund (2009) report the fraction of workers employed in plants

with more than 25 employees in years t− 1 and t who changed plant between t− 1 and t.
26As a comparison, for Germany Fitzenberger and Garloff (2007) report yearly between-employers transition
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Table 1: Data description

years: 2002-2004 2002-2004 2001-2005 2001-2005

all movers all movers

number of workers 599,775 19,557 442,757 9,645

number of firms 43,826 7,557 36,928 4,248

number of firms ≥ 10 23,389 6,231 20,557 3,644

number of firms ≥ 50 4,338 2,563 3,951 1,757

mean firm reported size 37.59 132.33 39.67 184.77

median firm reported size 10 28 11 36

firm reported size for median worker 154 159 162 176

firm actual size for median worker 72 5 64 3

% high school drop out 20.6% 14% 21.5% 14.7%

% high school graduates 56.7% 57.3% 57% 59%

% some college 22.7% 28.7% 21.4% 26.3%

% workers younger than 30 16.8% 28% 13.9% 23.8%

% workers between 31 and 50 57.2% 59% 59.4% 62.1%

% workers older than 51 26% 13% 26.7% 14.2%

% workers in manufacturing 45.4% 35.1% 48.5% 40.4%

% workers in services 25.3% 33.7% 22.4% 27.8%

% workers in retail and trade 16.7% 20.3% 16.3% 20.8%

% workers in construction 12.6% 10.9% 12.8% 11%

mean log-earnings 10.18 10.17 10.19 10.17

variance of log-earnings 0.124 0.166 0.113 0.148

between-firm variance of log-earnings 0.0475 0.1026 0.0441 0.0947

mean log-value-added per worker 15.3 16.35 15.37 16.63

Notes: Swedish registry data. Males, fully employed in the same firm in 2002 and 2004 (columns 1 and 2), and

fully employed in the same firm in 2001-2002 and 2004-2005 (columns 3 and 4), continuously existing firms.

Figures for 2002. Mean log value-added per worker reported for firms with positive value-added (98.7% of firms

in the 2002-2004 sample).

rates of 7.5% in the period 1976 to 1996 for male workers.
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restrictive definition in the baseline estimation, as a robustness check we have also estimated

the models on this larger sample, finding comparable results.

The between-firm log-earnings variance represents 38.3% of total log-earnings variance in

2002. This number is higher than the 31% percentage explained between plants in 2000, as

reported by Skans, Edin, and Holmlund (2009). However, despite growing steadily over the past

decades, the between-firm (or plant) component is still lower compared with other economies

such as Germany, Brazil, or the US. In Germany and Brazil, between components are closer

to 50%, see Baumgarten, Felbermayr, and Lehwald (2014) or Akerman, Helpman, Itskhoki,

Muendler, and Redding (2013), for example. In the US, Barth, Bryson, Davis, and Freeman

(2014) report a between-establishment log-earnings component of 46% to 49% in 1996-2007.

While differences across countries need to be interpreted cautiously due to differences in

earnings definition or data collection, lower levels of between-firm earnings dispersion in Sweden

are often attributed to historically highly unionized labor market and the presence of collective

wage bargaining agreements. In particular, after World War II the introduction of the so-called

solidarity wage policy, which had as guiding principle “equal pay for equal work”, significantly

limited the capacity of firms to differentially pay their employees. However, several reforms

over the last two decades have contributed to an increase in between-firm wage variation due

to a more informal coordination in wage setting (see Skans, Edin, and Holmlund, 2009, and

Akerman, Helpman, Itskhoki, Muendler, and Redding, 2013). It will be important to keep these

features of the Swedish labor market in mind when interpreting the results.

Finally, comparing the first two columns (or the last two columns) of Table 1 shows that job

movers are on average younger and more educated than workers who remain in the same firm.

They also tend to work more in service sectors as opposed to manufacturing. In the last row

we also see that firms with a non-zero fraction of job movers seem more productive, as their

value added per worker is higher.

6 Empirical results (in progress)

We now present results for static and dynamic models on the Swedish data. We start by

describing the firm classes that estimated using k-means clustering.

6.1 Firm classes

As described in Section 4, we estimate firm classes using a weighted k-means algorithm to firms’

log-earnings cdfs in 2002. To implement this estimator in practice we compute cdfs on a grid
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of 40 percentiles of the overall log-earnings distribution. We use the Hartigan-Wong algorithm,

with 50, 000 random starting values.27

Table 2: Data description, by estimated firm classes

class: 1 2 3 4 5 6 7 8 9 10 all

number of workers 16,141 52,526 48,153 66,756 76,870 60,720 84,929 91,820 70,288 31,572 599,775

number of firms 5,569 6,507 5,193 3,935 4,750 2,864 3,748 4,051 3,752 3,457 43,826

number of firms ≥ 10 1,681 3,221 2,553 2,642 2,699 1,963 1,979 2,346 2,325 1,980 23,389

number of firms ≥ 50 113 463 293 688 501 506 371 510 517 376 4,338

mean firm reported size 12.41 23.04 20.88 52.28 32.99 64.85 45.54 51.82 59.32 48.76 37.59

median firm reported size 7 9 9 15 11 15 10 11 13 11 10

firm reported size for median worker 9 32 38 120 120 249 652 575 343 103 154

firm actual size for median worker 4 15 21 55 67 110 367 292 141 34 72

% high school drop out 28.3% 27.6% 27.9% 25% 26.3% 20.9% 21.5% 17.8% 8.4% 3.7% 20.6%

% high school graduates 61.6% 63.1% 64.1% 61.4% 62.9% 57.8% 62% 56.4% 40% 28% 56.7%

% some college 10.2% 9.3% 8% 13.7% 10.8% 21.3% 16.5% 25.9% 51.6% 68.3% 22.7%

% workers younger than 30 24.4% 19.9% 17.7% 20.7% 16.9% 17.8% 15% 13.6% 14.5% 15% 16.8%

% workers between 31 and 50 53.8% 54.3% 56.1% 55.2% 56.4% 56.5% 57.6% 58.4% 60.1% 62.7% 57.2%

% workers older than 51 21.8% 25.8% 26.3% 24.1% 26.7% 25.7% 27.4% 28.1% 25.4% 22.3% 26%

% workers in manufacturing 23.8% 40.5% 44.3% 50% 53.9% 50.8% 51.3% 50.8% 37.9% 10.6% 45.4%

% workers in services 39.7% 32.4% 28% 18.6% 16.9% 13.6% 14.6% 18.8% 41.8% 69.4% 25.3%

% workers in retail and trade 26.6% 19.5% 11.7% 28.4% 11.5% 31.6% 7.6% 11.3% 14.5% 18.8% 16.7%

% workers in construction 9.9% 7.6% 16% 3.1% 17.7% 4% 26.5% 19.1% 5.8% 1.2% 12.6%

mean log-earnings 9.68 9.91 10.01 10.04 10.1 10.17 10.19 10.27 10.44 10.7 10.18

variance of log-earnings 0.101 0.061 0.044 0.096 0.053 0.112 0.062 0.079 0.108 0.154 0.124

between-firm variance of log-earnings 0.0459 0.0044 0.0019 0.0034 0.0013 0.0035 0.0013 0.0021 0.0051 0.0373 0.0475

mean log-value-added per worker 14.47 15.04 15.05 15.65 15.36 15.82 15.36 15.58 15.78 15.78 15.3

Notes: Males, fully employed in the same firm 2002 and 2004, continuously existing firms. Figures for 2002.

Table 2 provides summary statistics on the estimated firm classes, for K = 10. In the

table we have ordered firm classes according to mean log-earnings in each class (although the

ordering of the classes is arbitrary in our setting). Firm classes capture substantial heterogeneity

between firms. The between-firm-class log-earnings variance is 0.0418, that is, 88% of the overall

between-firm variance. This is important as this suggests that assuming homogeneity within

each of the 10 classes does not result in major losses of information, at least in terms of variance

of log-earnings.

There are also substantial differences between classes in terms of observables. While the

lower classes (in terms of their mean log-earnings) show high percentages of high school dropouts

27We use the code “kmeansW” in the R package “FactoClass”.
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and low percentages of workers with some college, the higher classes show the opposite pattern.

We also observe that lower classes tend to have higher percentages of workers less than 30

years old, and lower percentages of workers between 30 and 50, while higher classes have more

workers between 30 and 50. This relationship broadly reflects the life cycle pattern of earnings

in these data. Workers above 51 years old are more evenly distributed between firm classes.

We observe that firm size tends to increase with firm class. In particular, firm sizes appear

very small in class 1. This suggests that misclassification may be more likely in this case.

There is also evidence of both between- and within-sector variation between classes, which is

not monotonic in earnings levels. Lastly, log valued-added per worker tends to increase in firm

class, suggesting that the ordering based on mean log wages broadly agrees with an ordering

in terms of productivity. However, it is worth noting that the classes explain only 22.5% of the

between-firm variance in log value-added per worker, suggesting that productivity differences

within classes are substantial.

We next describe some patterns of mobility across firm classes. In Table E3 in Appendix

E we report the number of movers between all pairs of classes. There is substantial worker

mobility between firm classes. Moreover, there is evidence that log-earnings of job movers

differ substantially, depending on the classes they come from and the classes they move to.

This is important, as our identification analysis above shows that heterogeneity in worker types

across job movements is key for identification. In Figure E3 we report means of log-earnings

for workers moving between class k and k′ (x-axis) and for those moving from k′ to k (y-axis),

over 2002 and 2004 and for each pair of firm classes (k, k′) with k < k′ (that is, on average k′

firms have higher earnings than k firms). We see large differences in average earnings between

upward and downward moves, with the latter being almost uniformly higher. Our results below

will suggest that this pattern is mostly due to the strong sorting of high-earning workers in

high-paying firms, which implies that workers moving downward (respectively, upward) are

predominantly higher (resp., lower) types.

6.2 Results

In this version of the paper we report results from static interactive models estimated on 2002-

2004, finite mixture models estimated on the same period, and dynamic interactive models

estimated on 2001-2005.

Static model. In Figure 2 we report results from the static interactive model. On the left

panel we show the estimates of mean log-earnings by worker type and firm class. Different lines
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Figure 2: Static interactive model
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Notes: Static interactive model, 2002-2004. The left graph plots mean log-earnings, by worker type and firm

class. The K = 10 firm classes (on the x-axis) are ordered by mean log earnings. On the y-axis we report mean

log-earnings for worker types αi ∈ {−2.5,−1.5,−0.5, 0.5, 1.5, 2.5}, where the mean and standard deviation of αi

are normalized to 0 and 1. The grey band shows the mean of log-earnings plus or minus three times the standard

deviation, for each firm class. The right plot shows the following proportions of worker types in each firm class:

Pr (αi < −2 | ki1 = k),..., Pr (αi ∈ (1, 2) | ki1 = k), and Pr (αi > 2 | ki1 = k).

correspond to different worker types, specifically for αi ∈ {−2.5,−1.5,−0.5, 0.5, 1.5, 2.5}, where

the mean and standard deviation of αi are normalized to 0 and 1. On the x-axis, firm classes are

ordered by mean log-earnings. The results show substantial heterogeneity of mean wages across

workers within a firm class. At the same time, earnings variation across firm classes conditional

on worker type seems more limited. An exception is at the bottom of the distribution, where

earnings are substantially higher in firm class 10 compared to class 1. This finding points

towards larger complementarity between low type workers and firm classes. Overall, however,

the graph does not show strong evidence against an additive worker/firm specification.

On the right hand panel of Figure 2 we report following proportions of worker types in each

firm class: Pr (αi < −2 | ki1 = k),..., Pr (αi ∈ (1, 2) | ki1 = k), and Pr (αi > 2 | ki1 = k). For the

purpose of this graph we have assumed normality of αi within each from class, an assumption

that is not needed to estimate the static interactive model. The results show strong evidence

that high worker types (that is, high-earning workers) are matched to high firm classes (that

is, high-paying firms).
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Figure 3: Static mixture model
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Notes: Static finite mixture model, 2002-2004. The left graph plots mean log-earnings, by worker type and firm

class. The K = 10 firm classes (on the x-axis) are ordered by mean log earnings. On the y-axis we report mean

log-earnings for L = 6 worker types. The grey band shows the mean of log-earnings plus or minus three times

the standard deviation, for each firm class. The right plot shows the proportions of worker types in each firm

class.

In Figure 3 we report the estimates from a static finite mixture models with L = 6 worker

types. The results are quantitatively very close to the ones for the static interactive regression

model.

We next report the results of variance decompositions according to the static interactive

model. The decompositions correspond to linear regressions of log-earnings on worker type

indicators and firm class indicators. We compute the components of the log-earnings vari-

ance explained by worker types (that is, the variance of the type-specific fixed-effects, which

we denote as α) and firm classes (the variance of the class-specific fixed-effects ψ), and the

contribution of the association between the two (twice the covariance of α and ψ).

The first row in Table 3 shows that worker heterogeneity explains substantially more than

firm heterogeneity according to our estimates. Indeed, the variance of the firm class coefficients

is only 5.4% of that of worker type coefficients. Moreover, the correlation between worker and

firm coefficients is 44%, which is in line with the strong evidence of sorting documented on the

right panel of Figure 2.

The R-squared of the linear regression is 72.4%. It is of interest to compare it to the
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Table 3: Variance decompositions on Swedish data and simulated data

V ar(α)
V ar(α+ψ)

V ar(ψ)
V ar(α+ψ)

2Cov(α,ψ)
V ar(α+ψ)

Corr(α, ψ)

Data (K = 10)

estimate 79.6% 4.3% 16.1% 0.436

Monte-Carlo (K = 10, 100 reps)

mean 80.3% 3.4% 16.3% 0.489

0.025 quantile 79% 3% 15% 0.455

0.975 quantile 82% 3.9% 17.4% 0.526

Varying the number of classes

K = 5 81.5% 3.6% 14.9% 0.437

K = 15 79% 4.5% 16.5% 0.436

K = 20 79.2% 4.7% 16.2% 0.42

Mixture model

estimate 77% 5.2% 17.8% 0.443

Notes: Static interactive model, 2002-2004. α is the worker type fixed-effect, ψ is the firm class fixed-effect.

R-squared of a regression with interactions between worker types αi and firm class indicators,

which is virtually identical (72.8%). This suggests that an additive specification provides a good

approximation to the conditional mean of log wages, further supporting the visual evidence on

the left panel of Figure 2.

In the second to fifth rows of Table 3 we report the results of a Monte Carlo experiment

where we generate data sets from the estimated static interactive model and re-estimate the

model’s parameters.28 In particular, we re-cluster firm classes in each simulated data set. We

report the mean and 2.5%-97.5% quantiles across 100 simulations. the results are reasonably

well reproduced, suggesting that the model provides a good fit to the data in the dimensions

relevant to the variance decomposition exercise. At the same time there is some evidence of bias.

We checked that the bias is mostly due to the fact that some firms are very small in the data

(we impose no restriction on firm size). We also experimented with the bias reduction method

advocated in Bonhomme, Lamadon, and Manresa (2016) and found clear improvements.29

28To simulate observations from the static interactive model we assume that αi and εit are normally distributed

given firm classes.
29In a previous version of the paper we estimated two-way fixed-effects regressions on simulated data. We

found very large incidental parameter biases. For example, the estimated correlation was negative (around
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Figure 4: Dynamic interactive model
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Notes: Dynamic interactive model, 2001-2005. See notes to Figure 2.

In the last three rows of Table 3 we vary the number of classes K and report the variance

decomposition results on the Swedish sample, taking K = 5, 15, 20. The shares explained by

workers and firms, as well as the association between worker and firm heterogeneity, are very

stable and comparable to the results obtained when K = 10. This suggests that the choice of

K is not crucial on these data.

Overall, these exercises suggest that an additive specification may not be quantitatively

misleading on these data. Our method seems to provide a reliable way to document the amount

of sorting, and more generally the contributions of worker and firm heterogeneity to log-earnings

dispersion, even in a short panel that contains relatively few job movers per firm. At the same

time, the results so far rely on the assumptions of the static model. We now turn to dynamic

specifications.

Dynamic Model. In Figure 4 we report results from the dynamic interactive model estimated

on 2001-2005. As in Figure 2, the left panel shows mean log-earnings by worker type and firm

class, and the right panel shows moments of worker types by firm class. The mean log-earnings

results mostly differ from the static ones in the first firm class, where the estimated b(1) is very

−25%), compared to a population parameter of 44%. At the same time, the biases disappeared when multiplying

the number of job movers per firm tenfold and increasing the lengths of employment spells.
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Table 4: Variance decompositions on Swedish data and simulated data

V ar(α)
V ar(α+ψ)

V ar(ψ)
V ar(α+ψ)

2Cov(α,ψ)
V ar(α+ψ)

Corr(α, ψ) ρ1|2 ρ4|3

Data (K = 10)

estimate 79.9% 5.4% 14.8% 0.357 0.2452 0.6603

Monte-Carlo (K = 10, 100 reps)

mean 77.6% 5.9% 16.5% 0.389 0.2138 0.6639

0.025 quantile 69.9% 4% 13.6% 0.33 0.205 0.6601

0.975 quantile 81.8% 9.4% 21% 0.441 0.2219 0.6675

Varying the number of classes

K = 5 81.8% 3.9% 14.3% 0.4 0.2674 0.6565

K = 15 76.3% 6.4% 17.3% 0.391 0.2469 0.6582

K = 20 74.8% 7.3% 17.9% 0.382 0.2476 0.6566

Notes: Dynamic interactive model, 2001-2005. α is the worker type fixed-effect, ψ is the firm class fixed-effect.

large compared to the other b’s. The mean worker type on the right panel increases with firm

class, however less so than in the static case, suggesting less sorting.

The variance decomposition shown on the first row of Table 4 shows moderate differences

compared to the static case. The share explained by firms is slightly higher, the variance of the

firm class coefficients being 6.8% of that of worker type coefficients. The correlation between

worker and firm coefficients is 36%, compared to 44% in the static case. Here the R-squared

of the linear regression is 84.2%, compared to 86% for the regression with interactions between

worker types and firm class indicators.

The remaining rows in Table 4 show that the estimates are very stable when simulating

and re-estimating the model. We also see that estimates remain rather stable when varying the

number of classes. However, when K = 20 the variance of the firm class coefficients becomes

9.8% of that of worker type coefficients, suggesting that the number of classes tends to matter

more in the dynamic case than in the static one.

In the last two columns in Table 4 we report the estimates of the persistence parameters ρ1|2

and ρ4|3. We observed that conclusions based on the dynamic model estimates are sensitive to

the values of these parameters. This suggests that a careful modelling of earnings dynamics is

needed in order to assess the respective contributions of workers and firms to earnings dispersion

and the amount of sorting.
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7 Conclusion

In this paper we propose a framework designed for matched employer-employee datasets. Our

aim is to build a bridge between reduced-form and structural approaches. We introduce em-

pirical models which allow for interaction effects and dynamics, hence capturing mechanisms

that have been emphasized in theoretical work. We characterize conditions for identification in

these models, and develop estimators for finite mixtures and interactive regression models.

Our two-step estimation approach could be useful in structural settings, where joint esti-

mation of the distribution of two-sided heterogeneity and the structural parameters may be

computationally prohibitive. In companion work (Bonhomme, Lamadon, and Manresa, 2016),

we further study the theoretical properties of such approaches based on an initial clustering

step, viewing discrete estimation as an approximation to individual or firm heterogeneity.

Finally, our application to Swedish earnings data supports additivity as a reasonable speci-

fication, while at the same time showing evidence of a strong association between worker and

firm heterogeneity. Our methods may reveal interesting patterns of sorting and complemen-

tarities in other studies of workers and firms, including in relatively small samples such as a

particular occupation or a short period of time where dimension reduction is likely to be partic-

ularly helpful. More generally, we expect our methods to be useful in other contexts involving

matched panel data, for example in economics of education, urban economics, or finance.
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APPENDIX

A Proofs

Proof of Theorem 1. Let k ∈ {1, ...,K}, and let (k1, ..., kR), (k̃1, ..., k̃R) as in Assumption 3, with

k1 = k. From (2) we have, considering workers who move between kr and k̃r′ for some r ∈ {1, ..., R}
and r′ ∈ {r − 1, r}:

Pr
[
Yi1 ≤ y1, Yi2 ≤ y2 | ki1 = kr, ki2 = k̃r′ ,mi1 = 1

]
=

L∑
α=1

p
kr,k̃r′

(α)Fkr,α(y1)F
m
k̃r′ ,α

(y2). (A1)

Consider a set of M values for y1, and the same set of values for y2, that satisfy Assumption 3 ii).

Writing (A1) in matrix notation we obtain:

A(kr, k̃r′) = F (kr)D(kr, k̃r′)F
m(k̃r′)

ᵀ, (A2)

where A(kr, k̃r′) is M ×M with generic element:

Pr
[
Yi1 ≤ y1, Yi2 ≤ y2 | ki1 = kr, ki2 = k̃r′ ,mi1 = 1

]
,

F (kr) is M ×K with element Fkr,α(y1), F
m(k̃r′) is M ×K with element Fm

k̃r′ ,α
(y2), and D(kr, k̃r′) is

K ×K diagonal with element p
kr,k̃r′

(α).

Note that A(kr, k̃r′) has rank K by Assumption 3 ii). Consider a singular value decomposition of

A(k1, k̃1):

A(k1, k̃1) = F (k1)D(k1, k̃1)F
m(k̃1)

ᵀ = USV ᵀ,

where S is K ×K diagonal and non-singular, and U and V have orthonormal columns. We define the

following matrices:

B(kr, k̃r′) = S−
1
2UᵀA(kr, k̃r′)V

ᵀS−
1
2 ,

Q(kr) = S−
1
2UᵀF (kr).

B(kr, k̃r′) and Q(kr) are non-singular by Assumption 3 ii). Moreover, we have, for all r ∈ {1, ..., R}:

B(kr, k̃r)B(kr+1, k̃r)
−1 = S−

1
2UᵀA(kr, k̃r)V

ᵀS−
1
2

(
S−

1
2UᵀA(kr+1, k̃r)V

ᵀS−
1
2

)−1
= S−

1
2UᵀF (kr)D(kr, k̃r)

(
S−

1
2UᵀF (kr+1)D(kr+1, k̃r)

)−1
= Q(kr)D(kr, k̃r)D(kr+1, k̃r)

−1Q(kr+1)
−1.

Let Er = B(kr, k̃r)B(kr+1, k̃r)
−1. We thus have:

E1E2...ER = Q(k1)D(k1, k̃1)D(k2, k̃1)
−1...D(kR, k̃R)D(k1, k̃R)−1Q(k1)

−1.
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The eigenvalues of this matrix are all distinct by Assumption 3 i), so Q(k1) = Q(k) is identified up to

multiplication by a diagonal matrix and permutation of its columns.

Now, note that F (k) = UUᵀF (k), so:

F (k) = US
1
2Q(k)

is identified up to multiplication by a diagonal matrix and permutation of its columns. Hence

Fkα(y1)λα is identified up to a choice of labelling, where λα 6= 0 is a scale factor. Taking y1 = +∞,

λα is identified, so Fkα(y1) is identified up to labelling. As a result, Fk,σ(α)(y1) is identified for some

permutation σ : {1, ..., L} → {1, ..., L}. To identify Fk,σ(α) at a point y different from the grid of M

values considered so far, simply augment the set of values with y as an additional (i.e., (M + 1)th)

value, and apply the above arguments.

Let now k′ 6= k, and let (k1, ..., kR), (k̃1, ..., k̃R), be an alternating cycle such that k1 = k and

k′ = kr for some r, by Assumption 3 i). We have:

A(k, k̃1) = F (k)D(k, k̃1)F
m(k̃1)

ᵀ.

As Fk,σ(α) is identified and F (k) has rank K:

p
k,k̃1

(σ(α))Fm
k̃1,σ(α)

(y2)

is identified, so by taking y2 = +∞, both p
k,k̃1

(σ(α)) and Fm
k̃1,σ(α)

are identified. Next we have:

A(k2, k̃1) = F (k2)D(k2, k̃1)F
m(k̃1)

ᵀ,

so, using similar arguments, p
k2,k̃1

(σ(α)) and F
k̃2,σ(α)

are identified. By induction, p
kr,k̃r′

(σ(α)),

Fkr,σ(α), and Fm
k̃r′ ,σ(α)

are identified for all r and r′ ∈ {r− 1, r}. As k′ = kr, it follows that Fk′,σ(α) and

Fmk′,σ(α) are identified. Note that the same argument implies that Fmk,σ(α) is identified.

Lastly, let (k, k′) ∈ {1, ...,K}2. Then, from:

A(k, k′) = F (k)D(k, k′)Fm(k′)ᵀ,

and from the fact that Fk,σ(α) and Fmk′,σ(α) are both identified, and that F (k) and Fm(k′) have rank

K by Assumption 3 ii), it follows that pkk′(σ(α)) is identified.

Proof of Corollary 1. By Theorem 1 there exists a permutation σ : {1, ..., L} → {1, ..., L} such

that Fk,σ(α) is identified for all k, α. Now we have, writing (3) for the K worker types and the M

values of y1 given by Assumption 3 ii) in matrix form:

H(k) = F (k)P (k),
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where H(k) has generic element Pr [Yi1 ≤ y1 | ki1 = k], the L × 1 vector P (k) has generic element

qk(σ(α)), and the columns of F (k) have been ordered with respect to σ. By Assumption 3 ii), F (k)

has rank K, from which it follows that:

P (k) = [F (k)ᵀF (k)]−1 F (k)ᵀH(k)

is identified. So qk(σ(α)) is identified.

Proof of Corollary 2. We start by listing the required assumptions.

Definition A1. An augmented alternating cycle of length R is a pair of sequences of firm classes and

log-earnings values (k1, y1, ..., kR, yR) and (k̃1, ỹ1, ..., k̃R, ỹR), with kR+1 = k1 and yR+1 = y1, such that

p
yr,ỹr,kr,k̃r

(α) 6= 0 and p
yr+1,ỹr,kr+1,k̃r

(α) 6= 0 for all r in {1, ..., R} and α in {1, ..., L}.

Assumption A1. (mixture model, dynamic)

i) For any two firm classes k 6= k′ in {1, ...,K} and any two log-earnings values y 6= y′, there exists an

augmented alternating cycle (k1, y1, ..., kR, yR) and (k̃1, ỹ1, ..., k̃R, ỹR), such that (k1, y1) = (k, y), and

(kr, yr) = (k′, y′) for some r, and such that the scalars a(1), ..., a(L) are all distinct, where:

a(α) =
p
y1,ỹ1,k1,k̃1

(α)p
y2,ỹ2,k2,k̃2

(α)...p
yR,ỹR,kR,k̃R

(α)

p
y2,ỹ1,k2,k̃1

(α)p
y3,ỹ2,k3,k̃2

(α)...p
y1,ỹR,k1,k̃R

(α)
.

In addition, for all k, k′ and y, y′, possibly equal, there exists an augmented alternating cycle (k′1, y
′
1, ..., k

′
R, y

′
R),

(k̃′1, ỹ
′
1, ..., k̃

′
R, ỹ

′
R), such that k′1 = k, y′1 = y, and k̃′r = k′, ỹ′r = y′ for some r.

ii) For a suitable finite set of values for y1 and y4, which includes (+∞,+∞), and for all r in {1, ..., R},
the matrices A(yr, ỹr, kr, k̃r) and A(yr, ỹr+1, kr, k̃r+1) have rank K, where:

A(y, y′, k, k′) =
{

Pr
[
Yi1 ≤ y1, Yi4 ≤ y4 |Yi2 = y, Yi3 = y′, ki2 = k, ki3 = k′,mi2 = 1

]}
(y1,y4)

.

We are now in position to prove Corollary 2.

Part (i) is a direct application of Theorem 1, under Assumption A1.

For part (ii) we have, from (6):

Pr [Yi1 ≤ y1 |Yi2 = y2, ki1 = ki2 = k,mi1 = 0] =

L∑
α=1

Gfy2,kα(y1)πy2,k(α),

where:

πy2,k(α) =
qk(α)fkα(y2)∑L
α̃=1 qk(α̃)fkα̃(y2)

are the posterior probabilities of worker types given Yi2 = y2, ki2 = k, and mi1 = 0, with fkα denoting

the distribution function of log-earnings given αi = α, ki2 = k, and mi1 = 0, and qk(α) denoting the

proportion of workers of type α with ki2 = k and mi1 = 0.
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Given the rank condition on the M×K matrix with generic element Gfy2,kα(y1), which is identified

up to labelling of α, πy2,k(α) are thus identified up to the same labelling. Hence:

qk(α) = Pr [αi = α | ki2 = k,mi1 = 0] = E [πYi2,k(α) | ki2 = k,mi1 = 0]

is also identified up to labelling. By Bayes’ rule, the second period’s log-earnings cdf:

Fkα(y2) = Pr [Yi2 ≤ y2 |αi = α, ki2 = k,mi1 = 0] = E
[
πYi2,k(α)

qk(α)
1{Yi2 ≤ y2}

∣∣∣∣ ki2 = k,mi1 = 0

]
is thus also identified up to labelling. Similarly, the log-earnings cdfs in all other periods can be

uniquely recovered up to labelling, the period-3 and period-4 ones by making use of the bivariate

distribution of (Yi3, Yi4). Transition probabilities associated with job change are identified as:

Pr
[
ki3 = k′ |αi = α, Yi2 = y2, ki2 = k,mi2 = 1

]
=

´
py2y3,kk′(α)qkk′(y2, y3)dy3∑K

k̃=1

´
p
y2y3,kk̃

(α)q
kk̃

(y2, y3)dy3
,

where qkk′(y2, y3) is defined by:ˆ y

−∞
qkk′(y2, y3)dy3 = Pr

[
Yi3 ≤ y, ki3 = k′ |Yi2 = y2, ki2 = k,mi2 = 1

]
.

Finally, note that qk(α) and fkα are conditional on the worker not moving between periods 1 and

2 (i.e., mi1 = 0). One could recover unconditional probabilities by also using job movers in the first

periods (mi1 = 1), although we do not provide details here.

Proof of Proposition 1. Note that (13) is equivalent to the following k-means problem:

min
k(1),...,k(J),H1,...,HK

N∑
i=1

ˆ (
1{Yi1 ≤ y1} −Hk(ji1) (y1)

)2
dµ(y1).

We now verify Assumptions 1 and 2 in Bonhomme and Manresa (2015). Note that their setup allows

for unbalanced structures (that is, different nj across j) provided the assumptions are formulated in

terms of the minimum firm size in the sample: n = minj nj . Assumptions 1a and 1c are satisfied

because 1{Yi1 ≤ y1} is bounded. Assumptions 1d, 1e, and 1f hold because of Assumption 4 (i).

Assumptions 2a and 2b hold by Assumptions 4 (ii) and (iii). Finally, Assumptions 2c and 2d are also

satisfied by Assumption 4 (i) and boundedness of 1{Yi1 ≤ y1}. Theorems 1 and 2 in Bonhomme and

Manresa (2015) and Assumption 4 (iv) imply the result.

B Complements

B.1 Identification of log-earnings distributions: an example

Here we consider a setting where worker types and firm classes are ordered (e.g., by their productivity)

and their is strong positive assortative matching in the economy. Formally, we suppose that K = L,
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that qk(α) 6= 0 if and only if |k−α| ≤ 1, and that pkk′(α) 6= 0 if and only if (|k−α| ≤ 1, |k′−α| ≤ 1).

Borrowing the notation from the proof of Theorem 1, assume that all matrices F (k) and Fm(k′) have

full-column rank K, for all k, k′.

Then rankA(1, 2) = rankA(2, 1) = 2. It follows as in the proof of Theorem 1 that (F11, F12),

(F21, F22), (Fm11 , F
m
12), and (Fm21 , F

m
22), are identified up to a choice of labelling.

Likewise, rankA(2, 3) = rankA(3, 2) = 3. It follows that, for some (α1, α2, α3), (F2α1 , F2α2 , F2α3)

and (F3α1 , F3α3 , F3α3) are identified, and similarly for the corresponding Fm’s.

As F (2) has full column rank, one can pin down which one of the types (α1, α2, α3) are equal to

1 or 2. Without loss of generality, let α1 = 1 and α2 = 2. Set α3 = 3. Then (F21, F22, F23) and

(F31, F32, F33) are identified, and similarly for the corresponding Fm’s.

Continuing the argument we identify: (F11, F12), (Fm11 , F
m
12), (F12, F22, F32), (Fm12 , F

m
22 , F

m
32), and so

on, until (FK−1,K−2, FK−1,K−1, FK−1,K), (FmK−1,K−2, F
m
K−1,K−1, F

m
K−1,K), (FK,K−1, FKK), and finally

(FmK,K−1, F
m
KK).

The other Fkα’s are not identified. These correspond to the (k, α) combinations such that qk(α) =

0. In this example, without additional structure one cannot assess the earnings effects of randomly

allocating workers to jobs, for instance.

B.2 Nonparametric identification for continuous worker types

The analysis here is closely related to Hu and Schennach (2008). Let us define the following operators:

Lkk′g(y1) =

ˆ
fkk′(y1, y2)g(y2)dy2,

Akh(y1) =

ˆ
fkα(y1)h(α)dα,

Bm
k′ g(α) =

ˆ
fmk′α(y2)g(y2)dy2,

Dkk′h(α) = pkk′(α)h(α).

In operator form, (11) becomes:

Lkk′ = AkDkk′B
m
k′ . (B3)

Consider an alternating cycle of length R = 2. Suppose that Ak are Bm
k′ are injective, and that

pkk′(α) > 0, for all (k, k′) ∈ {k1, k2} × {k̃1, k̃2}. Lastly, suppose for all α 6= α′:

p
k1k̃1

(α)p
k2k̃2

(α)

p
k1k̃2

(α)p
k2k̃1

(α)
6=
p
k1k̃1

(α′)p
k2k̃2

(α′)

p
k1k̃2

(α′)p
k2k̃1

(α′)
. (B4)

A condition similar to (B4) arises in the analysis of Hu and Shum (2012). Operator injectivity is

related to completeness in the literature on nonparametric instrumental variables estimation. It is a

nonparametric analogue of a rank condition. However, injectivity or completeness may be difficult
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to test formally, and they are high-level conditions (Canay, Santos, and Shaikh, 2013). With T = 2,

injectivity requires αi to be one-dimensional.

Under these assumptions the operators Lkk′ , Ak, B
m
k′ , and Dkk′ are invertible. Moreover, analo-

gously to Hu and Schennach (2008) one can show that the following spectral decomposition is unique:

L
k1k̃1

L−1
k2k̃1

L
k2k̃2

L−1
k1k̃2

= Ak1

[
D
k1k̃1

D−1
k2k̃1

D
k2k̃2

D−1
k1k̃2

]
A−1k1 .

This implies that the density fkα(y1) is identified up to an arbitrary one-to-one transformation of

α. A possible scaling is obtained if there is a known functional F such that Ffkα is monotone in α.

The functional F may depend on k. As an example, identification is achieved if E [Yi1 |αi = α, ki1 = k]

is monotone in α. In that case one may normalize worker types as αi = E [Yi1 |αi, ki1 = k].

B.3 Separation condition in bi-clustering

We consider the static mixture model with discrete worker types. Let Gkk′ denote the bivariate cdf on

the left-hand side of (14). In (14) the separation condition is the following: for all k, k′ there exists k′′

such that Gkk′′ 6= Gk′k′′ or Gk′′k 6= Gk′′k′ . The following result shows that this separation condition is

weaker than the one in the cross-sectional case, see Assumption 4 (iii).

Corollary B1. Let k 6= k′ such that, for all k′′, Gkk′′ = Gk′k′′ and Gk′′k = Gk′′k′. Suppose that F (k′′)

and Fm(k′′) have rank K for all k′′, and that there exists k1, k2 such that pk,k2(α) > 0 and pk1,k(α) > 0

for all α. Then, Fkα = Fk′α and Fmkα = Fmk′α for all α ∈ {1, ..., L}.

Proof. Using similar notations as in the proof of Theorem 1, we have:

F (k)D(k, k′′)Fm(k′′)ᵀ = F (k′)D(k′, k′′)Fm(k′′)ᵀ.

Take k′′ = k2. By assumption, Fm(k2) has rank K. So:

F (k)D(k, k2) = F (k′)D(k′, k2).

We thus get Fkα(y1)pk,k2(α) = Fk′α(y1)pk′,k2(α), so taking y1 = +∞ we have pk′,k2(α) = pk,k2(α) > 0

and Fkα = Fk′α, for all α ∈ {1, ..., L}. Similarly, from Gk′′k = Gk′′k′ and the assumption that F (k1)

has rank K we obtain that Fmkα = Fmk′α.

Corollary B1 shows that, provided that type-specific earnings distributions differ, information from

the earnings sequences of job movers can allow identifying firm classes even when the cross-sectional

earnings information is insufficient. Note that the assumptions in the corollary are weaker than those

in Theorem 1.
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B.4 Time-varying firm classes

To outline how to estimate time-dependent firm classes kt(j), note that the classes in period 1 can

be consistently estimated using (13). In the second period, one can estimate the period-specific

classification by solving the following k-means problem:

min
k2(1),...,k2(J),H11,...,HKK

J∑
j=1

nj

ˆ (
F̂2j(y)−H

k̂1(j),k2(j)
(y)
)2
dµ(y), (B5)

where F̂2j denotes the log-earnings cdf in period 2, and k̂1(j) are estimates from (13). This may be

iterated until the last period of the panel.30

B.5 Estimation on T periods

Here we outline estimation in models with T periods. The static model being a special case of the

dynamic one, we focus on the latter.

Consider the dynamic model with a finite mixture specification for worker types. The estimation

first step is as in (13). In practice one may sum the objective function over the T periods. With

the class estimates k̂it at hand, in the second step we estimate the mixture model using maximum

likelihood. The pieces of the likelihood function are as follows, where for simplicity we assume that

observed characteristics Xit are strictly exogenous. Also, we explicitly indicate t as a conditioning

variable, to emphasize that all distributions may depend on calendar time.

• Initial condition, types: Pr [αi = α | ki1, Xi1; θ1].

• Initial condition, log-earnings: Pr [Yi1 ≤ y1 |αi, ki1, Xi1; θ2].

• Transitions, mobility: Pr [mit = m |Yit, αi, kit, Xit, t; θ3].

• Transitions, classes: Pr [ki,t+1 = k′ |Yit, αi, kit, Xit,mit = 1, t; θ4].

• Transitions, log-earnings: Pr [Yi,t+1 ≤ yt+1 |Yit, αi, ki,t+1, kit, Xi,t+1,mit = m, t; θ5].

C Interactive regression models

C.1 Models and identification

Static model. Consider the nonstationary static model (1) on T = 2 periods. Note that multiplying

(1) by τt(kit) = 1/bt(kit), taking means for job movers, and taking time differences yields:

E
[
Zi
(
τ2(ki2)Yi2 − τ1(ki1)Yi1 − ã2(ki2) + ã1(ki1)−X ′i2c̃2(ki2) +X ′i1c̃1(ki1)

)
|mi1 = 1

]
= 0,

(C6)

30Alternatively, a multi-clustering approach may be used, as in (15).
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where ãt(k) = τt(k)at(k), and c̃t(k) = τt(k)ct. The vector Zi stacks together Xi1, Xi2, as well as all

ki1 and ki2 dummies and their interactions, the interactions between Xi1 and ki1 dummies, and those

between Xi2 and the ki2 dummies.31

Note that (C6) is linear in parameters. Linearity is an important property in order to develop a

practical estimator. Let us fix, without loss of generality, a1(1) = 0 and b1(1) = 1. Our estimator

in the next subsection will be invariant to the choice of normalization. Let A be the (2dxK +K2)×
(2dxK+4K−2) matrix that corresponds to the linear system in (C6), with dx denoting the dimension

of Xit. The order condition for identification in (C6) requires K ≥ 4. We have the following result.

Theorem C1. Consider model (1) with T = 2 and E (εit |αi, ki1, ki2, Xi,mi1) = 0, where Xi =

(Xi1, Xi2). Suppose that bt(k) 6= 0 for all t, k.

(i) If A has maximal rank then the bt(k), at(k), and ct are all identified. Moreover, the means

E (αi | ki1 = k, ki2 = k′,mi1 = 1) and E (αi | ki1 = ki2 = k,mi1 = 0) are identified.

(ii) If, in addition to (i), Cov (εi1, εi2 | ki1, ki2,mi1 = 1) = 0, then Var (αi | ki1 = k, ki2 = k′,mi1 = 1)

are identified.

(ii) If, in addition to (i) and (ii), E
(
ε2i1 | ki1, ki2,mi1

)
= E

(
ε2i1 | ki1

)
and E

(
ε2i2 | ki1, ki2,mi1

)
=

E
(
ε2i2 | ki2

)
, then Var (αi | ki1 = ki2 = k,mi1 = 0), Var (εi1 | ki1 = k), and Var (εi2 | ki2 = k) are identi-

fied.

Proof. Part (i). If A has maximal rank then (C6) identifies the τt(k), ãt(k) and c̃t(k). Hence the bt(k),

at(k), and ct, are identified.32 Identification of the means of αi conditional on mi1 = 0 or mi1 = 1

then follows directly. For example, we have:

E (αi | ki1, ki2,mi1) = E
(
τ1(ki1)Yi1 − ã1(ki1)−X ′i1c̃1(ki1) | ki1, ki2,mi1

)
.

Part (ii). Let Ỹit = Yit −X ′itct. If Cov (εi1, εi2 | ki1, ki2,mi1 = 1) = 0 then:

Var
(
αi | ki1 = k, ki2 = k′,mi1 = 1

)
= τ1(k)τ2(k

′) Cov
(
Ỹi1, Ỹi2 | ki1 = k, ki2 = k′,mi1 = 1

)
is identified.

Part (iii). If E
(
ε2i1 | ki1, ki2,mi1

)
= E

(
ε2i1 | ki1

)
then:

Var (εi1 | ki1 = k) = Var
(
Ỹi1 | ki1 = k, ki2 = k′,mi1 = 1

)
− b1(k)2 Var

(
αi | ki1 = k, ki2 = k′,mi1 = 1

)
is identified, and likewise for Var (εi2 | ki2 = k). Lastly:

Var (αi | ki1 = ki2 = k,mi1 = 0) = τ21 (k)
[
Var

(
Ỹi1 | ki1 = ki2 = k,mi1 = 0

)
−Var (εi1 | ki1 = k)

]
is thus identified.

31An even richer set of instruments would also include interactions between X’s and interactions of ki1 and

ki2 dummies.
32By the same token one could also identify firm-class-specific coefficients ct(k).
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Dynamic model. An interactive dynamic model on four periods is as follows, where we abstract

from covariates for simplicity. We write:

Yit = ast (k) + bt(k)αi + εit, t = 1, ..., 4,

if mi1 = 0, mi2 = 0, mi3 = 0, (C7)

for workers who remain in the same firm of class k in all periods, where “s” stands for “stayers”.

Next, we consider workers who remain in the same firm of class k in periods 1 and 2 and move to

a firm of class k′ in periods 3 and 4. We specify their log-earnings as follows:

Yi1 = as1(k) + ρ1|2(a
m
2 (k)− as2(k)) + ρ1|2ξ2(k

′) + b1(k)αi + εi1,

Yi2 = am2 (k) + ξ2(k
′) + b2(k)αi + εi2,

Yi3 = am3 (k′) + ξ3(k) + b3(k
′)αi + εi3,

Yi4 = as4(k
′) + ρ4|3(a

m
3 (k′)− as3(k′)) + ρ4|3ξ3(k) + b4(k

′)αi + εi4,

if mi1 = 0, mi2 = 1, mi3 = 0, (C8)

where “m” stands for “movers”. In (C7) and (C8) we assume that:

E (εit |αi, ki1, ki2, ki3, ki4,mi1,mi2,mi3) = 0, t = 1, ..., 4.

In order to ensure first-order Markov restrictions as in Assumption 2, we take the parameters

ρ1|2 and ρ4|3 to be features of the covariance matrix of the ε’s. Specifically, we take ρ1|2 to be the

population regression coefficient of εi1 on εi2 for workers who remain in the same firm in periods 1

and 2. Similarly, we take ρ4|3 to be the regression coefficient of εi4 on εi3 for workers who remain

in the same firm in periods 3 and 4. For simplicity, neither ρ1|2 nor ρ4|3 depend on the class of the

firm, although this dependence may be allowed for (see below). Likewise, one could let the bt’s differ

between stayers in (C7) and movers in (C8), see below.

The restrictions that ρ1|2 and ρ4|3 affect both the mean effects of firm classes on earnings for job

movers and the covariance structure of earnings are consistent with Assumption 2. To see this in

the case of ρ4|3 (the argument for ρ1|2 being similar), note that a mean independence counterpart to

Assumption 2 (ii) is the following “backward” dynamic restriction:

E (Yi4 |Yi1, Yi2, Yi3, αi, ki2, ki3,mi1 = 0,mi2,mi3 = 0) = E (Yi4 |Yi3, αi, ki3,mi3 = 0) ,

which holds in model (C7)-(C8), for both movers and stayers (that is, whether mi2 = 1 or mi2 = 0),

provided that:

E (εi4 | εi1, εi2, εi3, αi, ki2, ki3,mi1 = 0,mi2,mi3 = 0) = ρ4|3εi3.

The structure of the dynamic model restricts how the effect of the previous firm class on log-

earnings decays over time. Indeed, in (C8), log-earnings Yi3 after a job move may depend on the
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previous firm class k via the term ξ3(k). Log-earnings one period further apart from the move, Yi4,

still depend on k but the effect is ρ4|3ξ3(k). In the special case where the ε’s are uncorrelated, Yi4 does

not depend on k, although Yi3 does. Analogously, as the probability of a job move between periods 2

and 3 (that is, that mi2 = 1) depends on Yi2, conditional on mobility log-earnings Yi1 and Yi2 before

the move may depend on the class k′ of the future firm. At the same time, the effect on first period’s

log-earnings is ρ1|2ξ2(k
′), compared to ξ2(k

′) in period 2.

In addition, the model restricts how the effects of firm classes for job movers relate to those for

job stayers. As an example, the effect of k′ on Yi4 is a combination of the effect on Yi4 for job

stayers (as4(k
′)), and of the difference between the effects of k′ on Yi3 for job movers and job stayers

(am3 (k′)−as3(k′)). In the absence of serial correlation in ε’s this effect coincides with as4(k
′). In contrast,

in the presence of serial correlation log-earnings of job movers and job stayers generally differ from

each-other in all periods. This is again due to the fact that in this model mobility mit depends on

log-earnings Yit directly.

From (C8) we have, for job movers between periods 2 and 3:

Yi1 − ρ1|2Yi2 = as1(k)− ρ1|2as2(k) +
[
b1(k)− ρ1|2b2(k)

]
αi + εi1 − ρ1|2εi2,

Yi4 − ρ4|3Yi3 = as4(k
′)− ρ4|3as3(k′) +

[
b4(k

′)− ρ4|3b3(k′)
]
αi + εi4 − ρ4|3εi3. (C9)

Equation (C9) has a similar structure as the static model on two periods. As a result, one can

derive moment restrictions analogous to (C6). For given ρ1|2 and ρ4|3, those restrictions are linear in

parameters. It is therefore possible to adapt the results of the static model to identify the intercept

and slope coefficients in (C9), as well as the means of αi for job movers, under suitable rank conditions.

Specifically, we have the following result, where for simplicity we omit the conditioning on mi1 = 0,

mi3 = 0, ki1 = ki2, and ki3 = ki4, all of which are true for both stayers (that is, mi2 = 0) and movers

(mi2 = 1). For simplicity we abstract away from covariates Xit.

Theorem C2. Suppose that ρ1|2 and ρ4|3 are known. Suppose also that the bt(k) coefficients are

identical for job movers and job stayers (that is, that they are independent of mi2).

(i) Suppose that the conditions of Theorem C1 hold, with Yi1, Yi2, εi1 and εi2 being replaced by

Yi1−ρ1|2Yi2, Yi4−ρ4|3Yi3, εi1−ρ1|2εi2, and εi4−ρ4|3εi3, respectively. Then as1(k)−ρ1|2as2(k), as4(k
′)−

ρ4|3a
s
3(k
′), b1(k) − ρ1|2b2(k), b4(k

′) − ρ4|3b3(k′), as well as E (αi | ki2, ki3,mi2), Var (αi | ki2, ki3,mi2),

Var
(
εi1 − ρ1|2εi2 | ki2 = k

)
, and Var

(
εi4 − ρ4|3εi3 | ki3 = k

)
, are all identified.

(ii) If, in addition to (i), the indicators 1{ki2 = k}, 1{ki3 = k′}, and the products 1{ki2 = k} ×
E (αi | ki2, ki3,mi2 = 1) are linearly independent conditional on mi2 = 1, and the indicators 1{ki2 = k},
1{ki3 = k′}, and the products 1{ki3 = k′}×E (αi | ki2, ki3,mi2 = 1) are linearly independent conditional

on mi2 = 1, then am2 (k), ξm2 (k), b2(k), am3 (k), ξm3 (k), and b3(k), are identified.

(iii) If, in addition to (i) and (ii), the 1{ki2 = k} and b2(ki2) × E (αi | ki2,mi2 = 0) are linearly

independent conditional on mi2 = 0, and the 1{ki3 = k} and b3(ki3)E (αi | ki3,mi2 = 0) are linearly
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independent conditional on mi2 = 0, then as2(k) and as3(k) are identified.

(iv) If (i), (ii) and (iii) hold, then the covariance matrices of εi1, εi2, εi3, εi4 are identified, for

movers and stayers, conditional on every sequence of firm classes.

Proof. Part (i). This follows from Theorem C1.

Part (ii). This comes from:

E
(
Yi2 | ki2 = k, ki3 = k′,mi2 = 1

)
= am2 (k) + ξ2(k

′) + b2(k)E
(
αi | ki2 = k, ki3 = k′,mi2 = 1

)
,

E
(
Yi3 | ki2 = k, ki3 = k′,mi2 = 1

)
= am3 (k′) + ξ3(k) + b3(k

′)E
(
αi | ki2 = k, ki3 = k′,mi2 = 1

)
.

Part (iii). This comes from:

E (Yi2 | ki2 = k,mi2 = 0) = as2(k) + b2(k)E (αi | ki2 = k,mi2 = 0) ,

E (Yi3 | ki2 = k,mi2 = 0) = as3(k) + b3(k)E (αi | ki2 = k,mi2 = 0) .

Part (iv). For movers, we have:

Var




εi1 − ρ1|2εi2

εi2

εi3

εi4 − ρ4|3εi3


∣∣∣∣ ki2 = k, ki3 = k′,mi2 = 1



=


Var

(
εi1 − ρ1|2εi2|ki2 = k

)
0 0 0

0 V2kk′ C23kk′ 0

0 C23kk′ V3kk′ 0

0 0 0 Var
(
εi4 − ρ4|3εi3|ki3 = k′

)

 ,

where V2kk′ = Var (εi2|ki2 = k, ki3 = k′,mi2 = 1), C23kk′ = Cov (εi2, εi3|ki2 = k, ki3 = k′,mi2 = 1), and

V3kk′ = Var (εi3|ki2 = k, ki3 = k′,mi2 = 1). Hence:

Var




Yi1 − ρ1|2Yi2

Yi2

Yi3

Yi4 − ρ4|3Yi3


∣∣∣∣ ki2 = k, ki3 = k′,mi2 = 1



=


b1(k)− ρ1|2b2(k)

b2(k)

b3(k
′)

b4(k
′)− ρ4|3b3(k′)

×Var
(
αi | ki2 = k, ki3 = k′,mi2 = 1

)
×


b1(k)− ρ1|2b2(k)

b2(k)

b3(k
′)

b4(k
′)− ρ4|3b3(k′)


′

+


Var

(
εi1 − ρ1|2εi2|ki2 = k

)
0 0 0

0 V2kk′ C23kk′ 0

0 C23kk′ V3kk′ 0

0 0 0 Var
(
εi4 − ρ4|3εi3|ki3 = k′

)

 ,
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from which we recover V2kk′ , C23kk′ and V2kk′ . The variances Var (εi1|ki2 = k, ki3 = k′,mi2 = 1) and

Var (εi4|ki2 = k, ki3 = k′,mi2 = 1) are then easy to recover. A similar argument allows recovering the

covariance matrix of ε’s for stayers.

Parameters ρ1|2 and ρ4|3 may be recovered by exploiting the model’s restrictions on the covariance

structure of log-earnings. Below we explain how this can be done using restrictions on both job movers

and job stayers. A simpler approach can be used under the additional assumptions that bt = b does

not depend on t. Note that, while this condition imposes that interaction terms b(k)αi do not vary

over time within firm and worker, the effects of firm classes ast (k) and amt (k) are allowed to vary freely

with time. Under this condition one can identify ρ1|2 and ρ4|3 using a set of covariance restrictions on

job stayers alone. Indeed, within-firm log-earnings are the sum of a time-varying intercept (ast (k)), a

fixed effect (b(k)αi), and a first-order Markov shock (εit). The covariance matrix of the shocks and

the variance of the fixed-effect are identified based on T ≥ 3 periods, under suitable rank conditions.

For example, in the model with four periods we have the following restrictions on ρ1|2 and ρ4|3:

Cov
(
Yi1 − ρ1|2Yi2, Yi2 − Yi3 | ki1 = ki2 = ki3 = ki4 = k,mi1 = mi2 = mi3 = 0

)
= 0,

Cov
(
Yi4 − ρ4|3Yi3, Yi3 − Yi2 | ki1 = ki2 = ki3 = ki4 = k,mi1 = mi2 = mi3 = 0

)
= 0. (C10)

These are familiar covariance restrictions in autoregressive models with fixed-effects. For example,

the second equation in (C10) is the moment restriction corresponding to an instrumental variables

regression of Yi4 on Yi3, using Yi3−Yi2 as an instrument. A sufficient condition for identification of ρ4|3

is thus that Cov (Yi3, Yi3 − Yi2 | ki1 = ki2 = ki3 = ki4 = k,mi1 = mi2 = mi3 = 0) 6= 0. This condition

requires that ρ3|2 6= 1, where ρ3|2 denotes the regression coefficient of εi3 on εi2. Hence identification

fails when εit follows exactly a unit root process. Finally, note that (C10) shows that one could easily

allow for class-specific ρ1|2(k) and ρ4|3(k).

Dynamic model, unrestricted b’s. Let us consider an extension of the dynamic interactive

model where the bt vary with t, and may differ between movers (mi2 = 1) and stayers (mi2 = 0). In

order to enforce a Markovian structure as in Assumption 2 we impose:

bs1(k)− ρ1|2bs2(k) = bm1 (k)− ρ1|2bm2 (k), bs4(k
′)− ρ4|3bs3(k′) = bm4 (k′)− ρ4|3bm3 (k′).

Given the assumptions of Theorem C2, bm1 (k) − ρ1|2bm2 (k) and bm4 (k′) − ρ4|3bm3 (k′) are identified,
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together with E (αi | ki2, ki3,mi2). Moreover we have, for movers:

E
(
Yi1 | ki2 = k, ki3 = k′,mi2 = 1

)
= as1(k) + ρ1|2(a

m
2 (k)− as2(k)) + ρ1|2ξ2(k

′)

+bm1 (k)E
(
αi | ki2 = k, ki3 = k′,mi2 = 1

)
,

E
(
Yi2 | ki2 = k, ki3 = k′,mi2 = 1

)
= am2 (k) + ξ2(k

′) + bm2 (k)E
(
αi | ki2 = k, ki3 = k′,mi2 = 1

)
,

E
(
Yi3 | ki2 = k, ki3 = k′,mi2 = 1

)
= am3 (k′) + ξ3(k) + bm3 (k′)E

(
αi | ki2 = k, ki3 = k′,mi2 = 1

)
,

E
(
Yi4 | ki2 = k, ki3 = k′,mi2 = 1

)
= as4(k

′) + ρ4|3(a
m
3 (k′)− as3(k′)) + ρ4|3ξ3(k)

+bm4 (k′)E
(
αi | ki2 = k, ki3 = k′,mi2 = 1

)
.

Hence, for given ρ1|2 and ρ4|3, the a’s, b’s, and ξ’s are identified under a suitable rank condition as in

Theorem C2 (ii).

For stayers we similarly have:

E (Yi1 | ki2 = k,mi2 = 0) = as1(k) + bs1(k)E (αi | ki2 = k,mi2 = 0) ,

E (Yi2 | ki2 = k,mi2 = 0) = as2(k) + bs2(k)E (αi | ki2 = k,mi2 = 0) ,

E (Yi3 | ki2 = k,mi2 = 0) = as3(k) + bs3(k)E (αi | ki2 = k,mi2 = 0) ,

E (Yi4 | ki2 = k,mi2 = 0) = as4(k) + bs4(k)E (αi | ki2 = k,mi2 = 0) .

Note that the means E (αi | ki2 = k,mi2 = 0) are identified from Theorem C2. However, in this model

with non-stationary and mobility-specific b’s, the ast and bst are not identified based on mean restrictions

alone.

Now, covariance restrictions on stayers imply:

Var




Yi1 − ρ1|2Yi2

Yi2

Yi3

Yi4 − ρ4|3Yi3


∣∣∣∣ ki2 = ki3 = k,mi2 = 0



=


bs1(k)− ρ1|2bs2(k)

bs2(k)

bs3(k)

bs4(k)− ρ4|3bs3(k)

×Var (αi | ki2 = ki3 = k,mi2 = 0)×


bs1(k)− ρ1|2bs2(k)

bs2(k)

bs3(k)

bs4(k)− ρ4|3bs3(k)


′

+


Var

(
εi1 − ρ1|2εi2|ki2 = k

)
0 0 0

0 V s
2k Cs23k 0

0 Cs23k V s
3k 0

0 0 0 Var
(
εi4 − ρ4|3εi3|ki3 = k

)

 , (C11)

where: V s
2k = Var (εi2|ki2 = ki3 = k,mi2 = 0), Cs23k = Cov (εi2, εi3|ki2 = ki3 = k,mi2 = 0), and V s

3k =

Var (εi3|ki2 = ki3 = k,mi2 = 0). Note that bs1(k) − ρ1|2bs2(k) = bm1 (k) − ρ1|2bm2 (k), bs4(k) − ρ4|3bs3(k) =

55



bm4 (k) − ρ4|3b
m
3 (k), Var

(
εi1 − ρ1|2εi2|ki2 = k

)
, and Var

(
εi4 − ρ4|3εi3|ki3 = k

)
can be recovered from

movers’ mean and covariance restrictions. The system (C11) thus identifies bs2(k), bs3(k), V s
2k, C

s
23k,

V s
3k, and Var (αi | ki2 = ki3 = k,mi2 = 0), under suitable rank conditions.

Lastly, all the arguments above have been conducted for known ρ1|2 and ρ4|3. The ρ’s may be

recovered from jointly imposing covariance restrictions for stayers in (C11), and for movers in the

following system:

Var




Yi1 − ρ1|2Yi2

Yi2

Yi3

Yi4 − ρ4|3Yi3


∣∣∣∣ ki2 = k, ki3 = k′,mi2 = 1



=


bm1 (k)− ρ1|2bm2 (k)

bm2 (k)

bm3 (k′)

bm4 (k′)− ρ4|3bm3 (k′)

×Var
(
αi | ki2 = k, ki3 = k′,mi2 = 1

)
×


bm1 (k)− ρ1|2bm2 (k)

bm2 (k)

bm3 (k′)

bm4 (k′)− ρ4|3bm3 (k′)


′

+


Var

(
εi1 − ρ1|2εi2|ki2 = k

)
0 0 0

0 V2kk′ C23kk′ 0

0 C23kk′ V3kk′ 0

0 0 0 Var
(
εi4 − ρ4|3εi3|ki3 = k′

)

 ,

across all values of k, k′. In this case also, identification relies on a rank condition to be satisfied.

C.2 Estimation algorithms in interactive models

Consider the static interactive model (1) on two periods. The mean restrictions in (C6) being linear

in parameters, estimation can be based on linear IV techniques. The LIML estimator is particularly

convenient here, as it is invariant to scaling of the moment conditions. In practice, this means that

the normalization on intercept and slope parameters (e.g., a1(1) = 0, b1(1) = 1) is immaterial for the

results. In addition, LIML is computationally convenient as it is the solution to a minimum eigenvalue

problem.33

The identification results in Theorem C1 thus suggest the following multi-step estimation method.

First, estimate firm classes k̂(j). Given the estimated firm classes, construct the instruments Zi in

(C6), and estimate intercepts, slopes, and coefficients associated with observables using LIML, see

33Specifically, let us write the moment restrictions in (C6) as E(Z ′iWiβ) = 0. Then the LIML estimator is

given, up to scale, by:

β̂ = argmin
b

b′W ′Z(Z ′Z)−1Z ′Wb

b′W ′Wb
.

Alternatively, β̂ is the minimum eigenvalue of the matrix (W ′W )−1W ′Z(Z ′Z)−1Z ′W .
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part (i) in Theorem C1. Then estimate means of αi using linear regression, see also part (i). Finally,

estimate variances of αi, εi1, and εi2 using empirical counterparts to the covariance restrictions in parts

(ii) and (iii) in Theorem C1. The latter restrictions are also linear in parameters, so computation is

straightforward.34

We now describe the estimation algorithms in static and dynamic interactive models.

Static case. We consider estimation in the static interactive model (1) on two periods. The algo-

rithm is as follows.

1. Estimate firm classes k̂(j).

2. Perform the following sub-steps:

• Construct Ẑi from dummies k̂i1 and k̂i2 and their interactions, as well as interactions with

(Xi1, Xi2). Estimate parameters ̂̃at(k), τ̂t(k), and ̂̃ct(k) using LIML based on (C6) with

scale and location normalizations.35 Recover b̂t(k) = 1/τ̂t(k), ât(k) = b̂t(k)̂̃at(k), and ĉt as

a mean of the ̂̃ct(k) = b̂t(k)̂c̃t(k) over k, weighted by the probabilities Pr(k̂i1 = k).

• Let µmkk′ = E(αi | ki1 = k, ki2 = k′,mi1 = 1), and µk = E(αi | ki1 = k). Estimate µ̂mkk′ as the

mean of:
1

2

2∑
t=1

τ̂t(k̂it)Yit − ̂̃at(k̂it)−X ′it̂̃ct(k̂it) (C12)

given k̂i1 = k, k̂i2 = k′,mi1 = 1. Estimate µ̂k as the mean of (C12) given k̂i1 = k. Note

that it is easy to also recover estimates of means of αi for job stayers (that is, mi1 = 0).

Construct Ỹit = Yit −X ′itĉt.

• Estimate the variances Var (αi | ki1 = k, ki2 = k′,mi1 = 1) = vmkk′ , Var (εi1 | ki1 = k) = V1k,

and Var (εi2 | ki2 = k) = V4k by minimizing:

K∑
k=1

K∑
k′=1

Nm
kk′

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣


V̂ar

(
Ỹi1 | k̂i1 = k, k̂i2 = k′,mi1 = 1

)
Ĉov

(
Ỹi1, Ỹi2 | k̂i1 = k, k̂i2 = k′,mi1 = 1

)
V̂ar

(
Ỹi2 | k̂i1 = k, k̂i2 = k′,mi1 = 1

)
−


b̂1(k)2vmkk′ + V1k

b̂1(k)̂b2(k
′)vmkk′

b̂2(k
′)2vmkk′ + V2k′


∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
2

,

subject to all vmkk′ ≥ 0, V1k ≥ 0, V2k′ ≥ 0, where V̂ar and Ĉov denote empirical variances

and covariances, respectively, and Nm
kk′ denotes the number of job movers from k̂i1 = k to

34In practice, it may be useful to explicitly impose that variances be non-negative when fitting covariance

restrictions. This requires solving quadratic programming problems, which are convex and numerically well-

behaved, see below.
35Note that an additive specification is obtained as a special case, when one imposes that bt(k) = 1 for all t, k

in this step.
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k̂i2 = k′. Lastly, estimate Var (αi | ki1 = k) = vk by minimizing:

K∑
k=1

Nk

∣∣∣∣∣∣V̂ar
(
Ỹi1 | k̂i1 = k

)
− b̂1(k)2vk − V̂1k

∣∣∣∣∣∣2 ,
subject to all vk ≥ 0, where Nk denotes the number of workers in firm class k̂i1 = k in

period 1.

Dynamic case. We consider estimation in the dynamic interactive model on four periods (C7)-

(C8). We focus on the case where the b coefficients are stationary and common across movers and

stayers. A more general estimation algorithm is readily constructed. For simplicity we do not include

covariates Xit, although their coefficients can be easily estimated from the LIML sub-step. The

algorithm is as follows.

1. Estimate firm classes k̂(j).

2. Perform the following sub-steps:

• Consider the following objective function:

Q(ρ1, ρ4) = min
K∑
k=1

N s
k

∣∣∣∣∣
∣∣∣∣∣



V̂ar
(
Yi1 − ρ1Yi2 | k̂i2 = k̂i3 = k,mi2 = 0

)
Ĉov

(
Yi1 − ρ1Yi2, Yi2 | k̂i2 = k̂i3 = k,mi2 = 0

)
Ĉov

(
Yi1 − ρ1Yi2, Yi3 | k̂i2 = k̂i3 = k,mi2 = 0

)
Ĉov

(
Yi1 − ρ1Yi2, Yi4 − ρ4Yi3 | k̂i2 = k̂i3 = k,mi2 = 0

)
Ĉov

(
Yi2, Yi4 − ρ4Yi3 | k̂i2 = k̂i3 = k,mi2 = 0

)
Ĉov

(
Yi3, Yi4 − ρ4Yi3 | k̂i2 = k̂i3 = k,mi2 = 0

)
V̂ar

(
Yi4 − ρ4Yi3 | k̂i2 = k̂i3 = k,mi2 = 0

)



−



(1− ρ1)2ṽsk + V1k

(1− ρ1)ṽsk
(1− ρ1)ṽsk

(1− ρ1)(1− ρ4)ṽsk
(1− ρ4)ṽsk
(1− ρ4)ṽsk

(1− ρ4)2ṽsk + V4k



∣∣∣∣∣
∣∣∣∣∣
2

,

subject to all ṽsk ≥ 0, V1k ≥ 0, V4k ≥ 0. Estimate ρ̂1|2 and ρ̂4|3 as:(
ρ̂1|2, ρ̂4|3

)
= argmin

(ρ1,ρ4)
Q(ρ1, ρ4).

In practice, different minimum-distance weights can be used.
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• Let c1(k) = as1(k) − ρ1|2a
s
2(k), c4(k) = as4(k) − ρ4|3a

s
3(k), d1(k) = b(k) − ρ1|2b(k), and

d4(k) = b(k) − ρ4|3b(k). Construct Ẑi from dummies k̂i2 and k̂i3 and their interactions.

Estimate parameters τ̂1(k) = 1/d̂1(k), τ̂4(k) = 1/d̂4(k), ̂̃c1(k) = ĉ1(k)/d̂1(k), and ̂̃c4(k) =

ĉ4(k)/d̂4(k) using LIML based on:

E
[
Zi
(
τ4(ki3)

(
Yi4 − ρ4|3Yi3

)
− τ1(ki2)

(
Yi1 − ρ1|2Yi2

)
− c̃4(ki3) + c̃1(ki2)

)
|mi2 = 1

]
= 0,

imposing scale and location normalizations and replacing ρ1|2 and ρ4|3 by ρ̂1|2 and ρ̂4|3.

This yields estimates d̂1(k), d̂4(k), ĉ1(k), and ĉ4(k). This also yields estimates of

b̂(k) =
d̂1(k)

2(1− ρ̂1|2)
+

d̂4(k)

2(1− ρ̂4|3)
.

• Let µmkk′ = E(αi | ki2 = k, ki3 = k′,mi2 = 1). Estimate µ̂mkk′ as the mean of:

1

2

(
τ̂1(k̂i2)

(
Yi1 − ρ̂1|2Yi2

)
− ̂̃a1(k̂i2) + τ̂4(k̂i3)

(
Yi4 − ρ̂4|3Yi3

)
− ̂̃a4(k̂i3)) (C13)

given k̂i2 = k, k̂i3 = k′,mi2 = 1. Let µsk = E(αi | ki2 = ki3 = k,mi2 = 0). Estimate µ̂sk as

the mean of (C13) given k̂i2 = k̂i3 = k,mi2 = 0.

• Estimate âst (k) as the mean of:

Yit − b̂(k)µ̂sk,

given k̂i2 = k̂i3 = k,mi2 = 0.

• Estimate âm2 (k), âm3 (k′), ξ̂2(k), and ξ̂3(k
′) by minimizing:

K∑
k=1

K∑
k′=1

Nm
kk′

∣∣∣∣∣
∣∣∣∣∣


Ê
(
Yi1 | k̂i2 = k, k̂i3 = k′,mi2 = 1

)
+ ρ̂1|2â

s
2(k)− âs1(k)− b̂(k)µ̂mkk′

Ê
(
Yi2 | k̂i2 = k, k̂i3 = k′,mi2 = 1

)
− b̂(k)µ̂mkk′

Ê
(
Yi3 | k̂i2 = k, k̂i3 = k′,mi2 = 1

)
− b̂(k′)µ̂mkk′

Ê
(
Yi4 | k̂i2 = k, k̂i3 = k′,mi2 = 1

)
+ ρ̂4|3â

s
3(k
′)− âs4(k′)− b̂(k′)µ̂mkk′



−


ρ̂1|2 (am2 (k) + ξ2(k

′))

am2 (k) + ξ2(k
′)

am3 (k′) + ξ3(k)

ρ̂4|3 (am3 (k′) + ξ3(k))


∣∣∣∣∣∣∣∣2,

which is a quadratic objective function.

• Let V αm
kk′ = Var (αi | ki2 = k, ki3 = k′,mi2 = 1), V2kk′ = Var (εi2|ki2 = k, ki3 = k′,mi2 = 1),

C23kk′ = Cov (εi2, εi3|ki2 = k, ki3 = k′,mi2 = 1), V3kk′ = Var (εi3|ki2 = k, ki3 = k′,mi2 = 1),

V ε12
k = Var

(
εi1 − ρ1|2εi2|ki2 = k

)
, and V ε43

k = Var
(
εi4 − ρ4|3εi3|ki3 = k

)
. Estimate V̂ αm

kk′ ,
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V̂2kk′ , Ĉ23kk′ , V̂3kk′ , V̂
ε12
k , and V̂ ε43

k by minimizing:

K∑
k=1

K∑
k′=1

Nm
kk′

∣∣∣∣∣
∣∣∣∣∣V̂ar




Yi1 − ρ̂1|2Yi2

Yi2

Yi3

Yi4 − ρ̂4|3Yi3


∣∣∣∣ k̂i2 = k, k̂i3 = k′,mi2 = 1



−


b̂(k)− ρ̂1|2b̂(k)

b̂(k)

b̂(k′)

b̂(k′)− ρ̂4|3b̂(k′)

× V αm
kk′ ×


b̂(k)− ρ̂1|2b̂(k)

b̂(k)

b̂(k′)

b̂(k′)− ρ̂4|3b̂(k′)


′

−


V ε12
k 0 0 0

0 V2kk′ C23kk′ 0

0 C23kk′ V3kk′ 0

0 0 0 V ε43
k′


∣∣∣∣∣
∣∣∣∣∣
2

,

subject to all V αm
kk′ ≥ 0, V ε12

k ≥ 0, V ε43
k′ ≥ 0, V2kk′ ≥ 0, V3kk′ ≥ 0. This is a quadratic

programming problem. In addition one may impose the quadratic constraint: C2
23kk′ ≤

V2kk′V3kk′ . If needed, estimate Var (εi1|ki2 = k, ki3 = k′,mi2 = 1), Cov(εi1, εi2|ki2=k, ki3=k′,
mi2 = 1), Var (εi4|ki2 = k, ki3 = k′,mi2 = 1), and Cov (εi3, εi4|ki2 = k, ki3 = k′,mi2 = 1) by

simple matrix inversion.

• Let V αs
k = Var (αi | ki2 = ki3 = k,mi2 = 0), V s

2k = Var (εi2|ki2 = ki3 = k,mi2 = 0), Cs23k =

Cov (εi2, εi3|ki2 = ki3 = k,mi2 = 0), and V s
3k = Var (εi3|ki2 = ki3 = k,mi2 = 0). Estimate

V̂ αs
k , V̂ s

2k, Ĉ
s
23k, and V̂ s

3k by minimizing:

K∑
k=1

N s
k

∣∣∣∣∣
∣∣∣∣∣V̂ar




Yi1 − ρ̂1|2Yi2

Yi2

Yi3

Yi4 − ρ̂4|3Yi3


∣∣∣∣ k̂i2 = k̂i3 = k,mi2 = 0



−


b̂(k)− ρ̂1|2b̂(k)

b̂(k)

b̂(k)

b̂(k)− ρ̂4|3b̂(k)

× V αs
k ×


b̂(k)− ρ̂1|2b̂(k)

b̂(k)

b̂(k)

b̂(k)− ρ̂4|3b̂(k)


′

−


V̂ ε12
k 0 0 0

0 V s
2k Cs23k 0

0 Cs23k V s
3k 0

0 0 0 V̂ ε43
k


∣∣∣∣∣
∣∣∣∣∣
2

,
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subject to all V αs
k ≥ 0, V s

2k ≥ 0, Cs23k ≥ 0, and V s
3k ≥ 0. This is another quadratic program-

ming problem. Here also one may impose as quadratic constraints: (Cs23k)
2 ≤ V s

2kV
s
3k. If

needed, estimate Var (εi1|ki2 = ki3 = k,mi2 = 0), Cov (εi1, εi2|ki2=ki3=k,mi2=0), Var(εi4|
ki2=ki3=k,mi2=0), and Cov (εi3, εi4 | ki2=ki3=k,mi2=0).

C.3 Interactive models on T periods

Here we consider the dynamic interactive model on T periods. The static interactive model is a special

case of the latter. An important feature of interactive models is that they are defined conditionally

on a sequence of firm classes and mobility choices. We thus start by deriving restrictions implied by

Assumption 2 on earnings distributions conditional on the entire sequences of kit and mit. Given that

we work with interactive regression models, we emphasize the implications of Assumption 2 on means

and variances. We assume strictly exogenous X’s for simplicity, and focus on models where the bt’s

do not depend on mobility (although the a’s do).

The first-order Markov structure implies the following “forward” and “backward” restrictions,

denoting Zt:t+si = (Zit, ..., Zi,t+s).

• Forward restrictions:

E
[
Yit |Yi,t+s, αi, kTi ,mT−1

i , XT
i

]
= E

[
Yit |Yi,t+s, αi, k1:t+si ,m1:t+s−1

i , XT
i

]
, s > 0.

• Backward restrictions:

E
[
Yit |Yi,t−s, αi, kTi ,mT−1

i , XT
i

]
= E

[
Yit |Yi,t−s, αi, kt−s:Ti ,mt−s:T−1

i , XT
i

]
, s > 0.

A simple regression model that satisfies these conditions is defined as follows, conditionally on a

sequence (kTi ,m
T−1
i , XT

i ):

Yit = att(kit,mi,t−1,mit) + bt(kit)αi +X ′itct + εit

+

T−t∑
s=1

(
ρt|t+sat+s,t+s(ki,t+s,mi,t+s−1,mi,t+s) + ρt|t+s−1ξ

f
t+s(ki,t+s,mi,t+s−1)

)
+

t−1∑
s=1

(
ρt|t−sat−s,t−s(ki,t−s,mi,t−s−1,mi,t−s) + ρt|t−s−1ξ

b
t−s(ki,t−s,mi,t−s)

)
,

where εit is first-order Markov with E
(
εit |αi, kTi ,m

T−1
i , XT

i

)
= 0, and, for all s > 0:

E
(
εit | ε1:t−si , αi, k

T
i ,m

T−1
i , XT

i

)
= ρt|t−sεi,t−s, E

(
εit | εt+s:Ti , αi, k

T
i ,m

T−1
i , XT

i

)
= ρt|t+sεi,t+s.

As a result: ρt+s+m|t = ρt+s+m|t+sρt+s|t and ρt|t+s+m = ρt|t+sρt+s|t+s+m for all s > 0,m > 0.
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Estimation. The main difference with the estimation of the dynamic model on four periods is in

the estimation of the mean parameters, i.e. the a’s, b’s, c’s, and ξ’s given the ρ’s. Let τt(k) = 1/bt(k),

and let:

W ′itγt = att(kit,mi,t−1,mit) +X ′itct

+

T−t∑
s=1

(
ρt|t+sat+s,t+s(ki,t+s,mi,t+s−1,mi,t+s) + ρt|t+s−1ξ

f
t+s(ki,t+s,mi,t+s−1)

)
+

t−1∑
s=1

(
ρt|t−sat−s,t−s(ki,t−s,mi,t−s−1,mi,t−s) + ρt|t−s−1ξ

b
t−s(ki,t−s,mi,t−s)

)
.

We have:

E
[
τt(kit)

(
Yit −W ′itγt

)
| kTi ,mT−1

i , XT
i

]
= 0,

which is a quadratic conditional moment restriction. Letting Zit = Zit(k
T
i ,m

T−1
i , XT

i ) be a vector of

instruments we can base estimation on:

E
[
Zitτt(kit)

(
Yit −W ′itγt

)]
= 0.

In order to ensure invariance to normalization, one can solve a continuously updated GMM problem

such as:

min
(τ,γ)

∑N
i=1

∑T
t=1 Z

′
itτt(kit) (Yit −W ′itγt)

(∑N
i=1

∑T
t=1 ZitZ

′
it

)−1∑N
i=1

∑T
t=1 Zitτt(kit) (Yit −W ′itγt)∑N

i=1

∑T
t=1 τt(kit) (Yit −W ′itγt)

2
.

In practice this objective function may be minimized iteratively, iterating between τ ’s and γ’s, each

step corresponding to a LIML-like minimum eigenvalue problem.

Finally, for implementation it is important to choose a parsimonious set of instruments.

D Estimation on data from a theoretical model

In this section of the appendix we consider a variation of the model of Shimer and Smith (2000) with

on-the-job search. Relative to the main text we modify some of the notation, in order to be closer to

the original paper.

Environment. The economy is composed of a uniform measure of workers indexed by x with

unit mass and a uniform measure of jobs indexed by y with mass V̄ . A match (x, y) produces output

f(x, y) and separates exogenously at rate δ. Workers are employed or unemployed. We denote u(x)

the measure of unemployed, h(x, y) the measure of matches, and v(y) the measure of vacancies. We

let U =
´
u(x)dx the mass of unemployed, and V =

´
v(y)dy the mass of vacancies. Unemployed

workers meet vacancies at rate λ0, and employed workers meet vacancies at rate λ1. Vacancies meet
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unemployed workers at rate µ0, and employed workers at rate µ1. A firm cannot advertise for a job

that is currently filled. Unemployed workers collect benefits b(x), and vacancies have to pay a flow

cost c(y).

Timing. Each period is divided into four stages. In stage one, active matches collect output and

pay wages. In stage two, active matches exogenously separate with probability δ. In stage three vacant

jobs can advertise and all workers can search. In stage four workers and vacant jobs meet randomly

and, upon meeting, the worker and the firm must decide whether or not to match based on expected

surplus generated by the match. The wage is set by Nash bargaining, where α is the bargaining power

of the worker. We assume that wages are continuously renegotiated with the value of unemployment

(see Shimer (2006) for a discussion). Since workers and firms can search in the same period as job

losses occur, it is convenient to introduce within periods distributions:

v1/2(y) :=
δ + (1− δ)v(y)

δ + (1− δ)V
, u1/2(x) :=

δ + (1− δ)u(x)

δ + (1− δ)U
, h1/2(x, y) :=

h(x, y)

1− U
,

where each distribution integrates to one by construction.

Value functions. We then write down the value functions for this model. Let S(x, y) be the

surplus of the match, W0(x) the value of unemployment, and Π0(y) the value of a vacancy. We have:

rW0(x) = (1 + r)b(x) + λ0

ˆ
M(x, y)αS(x, y)v1/2(y)dy, (BE-W0)

and:

rΠ0(y) = µ0

ˆ
M(x, y)(1− α)S(x, y)u1/2(x)dx+ µ1

ˆˆ
P (x, y′, y)(1− α)S(x, y)h1/2(x, y

′)dy′dx,

(BE-P0)

whereM(x, y) := 1{S(x, y) ≥ 0} is the matching decision, and P (x, y′, y) is one when S(x, y) > S(x, y′)

(that is, when y is preferred to y′ by x), zero when S(x, y) < S(x, y′), and 1/2 when S(x, y) = S(x, y′).

We write the Bellman equation for a job y that currently employs a worker x at wage w:

(r + δ)Π1(x, y, w) = (1 + r) [f(x, y)− w + δ (Π0(y) + c(y))]

− (1− δ)λ1q(x, y)(1− α)S(x, y),

where q(x, y) =
´
P (x, y, y′)v1/2(y

′)dy′ represents the total proportion of firms y′ that can poach a

worker x from firm y. We then turn to the Bellman equation for the employed worker:

(r + δ)W1(x, y, w) = (1 + r) [w + δ (W0(x)− b(x))]

+ (1− δ)λ1
ˆ
P (x, y, y′)(αS(x, y′)− αS(x, y))v1/2(y

′)dy′.

(BE-W1)
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Finally, we derive the value of the surplus associated with the match (x, y), defined by S := W1 +

Π1 −W0 −Π0:

(r + δ)S(x, y) = (1 + r) [f(x, y)− δ (b(x)− c(y))]− r(1− δ) (Π0(y) +W0(x))

+ (1− δ)λ1
ˆ
P (x, y, y′)(αS(x, y′)− S(x, y))v1/2(y

′)dy′. (BE-S)

Flow equations. Lastly we write the flow equation for the joint distribution of matches at the

beginning of the period:(
δ + (1− δ)λ1q(x, y)

)
h(x, y) = λ0 (δ + (1− δ)U)u1/2(x)v1/2(y)M(x, y)

+ λ1(1− δ)(1− U)

ˆ
P (x, y′, y)h1/2(x, y

′)dy′v1/2(y),

(EQ-H)

where:

µ0 (δ + (1− δ)V ) = λ0 (δ + (1− δ)U) , and µ1 (δ + (1− δ)V ) = λ1(1− δ)(1− U), (MC-S)

are the total number of matches coming out of unemployment and coming from on-the-job transitions,

respectively. The market clearing conditions on the labor market are given by:
ˆ
h(x, y)dx+ v(y) = V̄ , and

ˆ
h(x, y)dy + u(x) = 1. (MC-L)

Equilibrium. For a set of primitives δ, λ0, λ1, f(x, y), b(x), c(y), α, the stationary equilibrium

is characterized by the values S(x, y),W0(x),Π0(y) and the measure of matches h(x, y) such that

i) Bellman equations (BE-W0), (BE-P0) and (BE-S) are satisfied, ii) h satisfies the flow equation

(EQ-H), and iii) the constraints (MC-S) and (MC-L) hold.

Wages. We then derive the wage function using equation (BE-W1) and using that Nash bargaining

gives W1(x, y, w(x, y)) = αS(x, y) +W0(x):

(1+r)w(x, y) = (r+δ)αS(x, y)+(1−δ)rW0(x)−(1−δ)λ1
ˆ
P (x, y, y′)(αS(x, y′)−αS(x, y))v1/2(y

′)dy′.

Mapping to distributional model. From there we can recover our model’s cross sectional

worker type proportions conditional on firm heterogeneity (qk(α) in the body of the paper):

qy(x) =
h(x, y)

1− v(y)
,

and the type proportions for job movers (pk′k(α) in the main text), which are given by:

pyy′(x) =

(
δλ0 + (1− δ)λ11{S(x, y′) > S(x, y)}

)
h(x, y)M(x, y′)´ (

δλ0 + (1− δ)λ11{S(x̃, y′) > S(x̃, y)}
)
h(x̃, y)M(x̃, y′)dx̃

.

64



Lastly, we assume that the wage is measured with a multiplicative independent measurement error:

w̃ = w(x, y) exp(ε),

from which we can derive the marginal log-wage distributions (Fkα in the main text).

Without on-the-job search (λ1 = µ1 = 0). Let us consider the case without on-the-job

search. Equation (EQ-H) gives:

δh(x, y) = λ0 (δ + (1− δ)U)u1/2(x)v1/2(y)M(x, y).

Hence:

pyy′(x) =
M(x, y)M(x, y′)u1/2(x)´
M(x̃, y)M(x̃, y′)u1/2(x̃)dx̃

. (PX-YY’)

These probabilities are symmetric in (y, y′). In the context of Theorem 1 this means that Assumption

3 i) is not satisfied, as a(α) = 1 for all α. This is the setup considered in Shimer and Smith (2000)

and Hagedorn, Law, and Manovskii (2014), for example. Symmetry occurs because, in these models,

all job changes are associated with an intermediate unemployment spell, where all information about

the previous firm disappears. Empirically the majority of job changes occur via job-to-job transitions.

Moreover, in Figure E3 we find evidence against the particular symmetry of equation (PX-YY’).

Simulation and estimation. We pick two parameterizations of the model associated with

positive assortative matching (PAM) and negative assortative matching (NAM) in equilibrium. We

set b(x) = b = 0.3, c(y) = c = 0, and V̄ = 2. We solve the model at a yearly frequency, and we set

δ = 0.02, λ0 = 0.4 and λ1 = 0.1. The production function is CES:

f(x, y) = a+ (νxρ + (1− ν)yρ)1/ρ ,

where we set ν = 0.5 and a = 0.7. Finally we consider ρ = −3 (PAM) and ρ = 4 (NAM).

Figures D1 and D2 plot the model solutions, in terms of production, surplus, allocation, and log

wages. We see clear differences between PAM and NAM. In particular, in NAM mean log wages are

not monotone in firm productivity.

In Table D1 we report the results of variance decompositions based on the data generated according

to the model, and based on estimates from our static finite mixture model based on those data. We use

L = 6 (worker types) and K = 10 (firm classes) in estimation, and consider two scenarios for L and K

in the model: (6, 10) and (50, 50). In the first three columns we show the results of a decomposition of

the variance of log wages in terms of between-worker, within-worker between-firm, and within-worker

within-firm components. We see in the first four rows that, when we use as many heterogeneity types

in estimation as in the true model our approach tends to underestimate the worker contribution and

overestimate the within-worker-and-firm component. Nevertheless, the decomposition is rather well
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Figure D1: Model solutions: production, surplus and allocation

Production PAM

xy

Surplus PAM

xy

Allocation PAM

xy

Production NAM

xy

Surplus NAM

xy

Allocation NAM

xy

Notes: The graphs show the model solution in terms of production f(x, y), surplus S(x, y), and allocation h(x, y).

Positive assortative matching (top panel), and negative assortative matching (bottom panel).

Table D1: Variance decompositions on data generated by a theoretical model

dim %bw %wwbf %wwwf V ar(α)
V ar(α+ψ)

V ar(ψ)
V ar(α+ψ)

2Cov(α,ψ)
V ar(α+ψ)

Corr(α, ψ)

PAM model 6× 10 0.693 0.103 0.203 0.791 0.054 0.156 0.377
BLM 6× 10 0.636 0.101 0.263 0.756 0.069 0.175 0.385

NAM model 6× 10 0.661 0.136 0.203 1.082 0.125 -0.206 -0.281
BLM 6× 10 0.625 0.114 0.262 1.049 0.099 -0.148 -0.23

PAM model 50× 50 0.693 0.108 0.2 0.758 0.071 0.171 0.367
BLM 6× 10 0.591 0.121 0.288 0.701 0.095 0.204 0.396

NAM model 50× 50 0.685 0.115 0.201 1.079 0.107 -0.186 -0.273
BLM 6× 10 0.668 0.044 0.288 1.009 0.041 -0.05 -0.122

Notes: Variance decompositions based on data generated from the theoretical sorting model with PAM or NAM.

“BLM” corresponds to estimates based on our approach. “dim” is L × K, where L is the number of worker

types and K is the number of firm classes. “%bw”, “%wwbf”, and “%wwwf” denote the between-worker, within-

worker between-firm, and within-worker within-firm components of the variance of log wages, respectively. The

last four columns correspond to an additive variance decomposition, similar to Table 3.
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Figure D2: Model solutions: log wages
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Notes: The left graphs show log wages (without measurement error), by worker type and firm class. The right

graphs show deciles of log wages (with measurement error) by firm class. The thick lines correspond to mean

log wages. Positive assortative matching (top panel), and negative assortative matching (bottom panel).
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reproduced, especially taking into account that we re-estimate the firm classes together with all model

parameters. In the last four rows of the table the results are comparable, although for NAM the

within-worker between-firm contribution is underestimated. This suggests that our approach may still

provide informative answers in situations where worker and firm heterogeneity are not clustered into

a few classes and types.

In the last four columns of Table D1 we show the results of additive variance decomposition

exercises, similar to the ones reported in Table 3. We see that our approach recovers the worker

and firm components rather well, even when the number of types and classes used in estimation,

(6, 10), is smaller than the true one, (50, 50). In addition, our approach correctly recovers the sign of

the correlation between worker and firm effects, for both positive and negative assortative matching.

Moreover, the magnitude of the correlation is very well estimated for PAM, and slightly less so for

NAM, the bias being highest in the last row of the table.
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E Additional empirical results

Table E2: Data description, larger sample

all continuing firms, full year employed

years: 2002-2004 2002-2004 2001-2005

all movers all movers all movers

number of workers 795,419 88,771 599,775 19,557 442,757 9,645

number of firms 50,448 17,887 43,826 7,557 36,928 4,248

number of firms ≥ 10 26,834 13,233 23,389 6,231 20,557 3,644

number of firms ≥ 50 4,876 3,974 4,338 2,563 3,951 1,757

mean firm reported size 36.41 76.5 37.59 132.33 39.67 184.77

median firm reported size 10 18 10 28 11 36

firm reported size for median worker 154 158 154 159 162 176

firm actual size for median worker 83 23 72 5 64 3

% high school drop out 19.6% 15% 20.6% 14% 21.5% 14.7%

% high school graduates 56.6% 56.7% 56.7% 57.3% 57% 59%

% some college 23.7% 28.3% 22.7% 28.7% 21.4% 26.3%

% workers younger than 30 19.3% 26.8% 16.8% 28% 13.9% 23.8%

% workers between 31 and 50 56.8% 56.7% 57.2% 59% 59.4% 62.1%

% workers older than 51 23.9% 16.5% 26% 13% 26.7% 14.2%

% workers in manufacturing 43.5% 35.4% 45.4% 35.1% 48.5% 40.4%

% workers in services 27% 34.3% 25.3% 33.7% 22.4% 27.8%

% workers in retail and trade 16.2% 15% 16.7% 20.3% 16.3% 20.8%

% workers in construction 13.3% 15.3% 12.6% 10.9% 12.8% 11%

mean log-earnings 10.16 10.15 10.18 10.17 10.19 10.17

variance of log-earnings 0.146 0.2 0.124 0.166 0.113 0.148

between-firm variance of log-earnings 0.055 0.104 0.0475 0.1026 0.0441 0.0947

mean log-value-added per worker 15.28 15.86 15.3 16.35 15.37 16.63

Notes: Swedish registry data. Males, employed in the last quarter of 2002 and the first quarter of 2004. Figures

for 2002.
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Table E3: Number of job movers between firm classes

firm class in period 2

1 2 3 4 5 6 7 8 9 10
fi
rm

cl
as

s
in

p
er

io
d

1

1 83 122 49 95 81 62 46 45 46 11

2 124 544 258 273 217 195 147 144 70 32

3 59 208 209 164 237 117 245 130 49 21

4 100 283 213 463 304 287 193 187 167 107

5 44 243 185 238 295 205 251 206 112 48

6 40 145 117 346 274 249 163 231 162 91

7 36 132 151 169 332 236 383 357 474 99

8 26 227 96 212 203 255 320 372 424 169

9 12 70 79 152 223 217 310 561 890 783

10 6 21 16 89 39 110 71 176 480 547

Notes: Males, fully employed in the same firm in 2002 and in 2004, continuously existing firms. Movers from

firm class k (vertical axis) to firm class k′ (horizontal axis).

Figure E3: Earnings of job movers
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Figure E4: Earnings of job movers, by period
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Notes: Left panel: mean log-earnings of job movers in 2002 for different firm classes in 2002 and 2004. Firm

classes in 2004 are on the x-axis, the various lines correspond to firm class in 2002 being 1-2, 3-4, 5-6, 7-8, and

9-10, respectively. Right panel: similar to left, showing mean log-earnings in 2004 as a function of firm classes

in 2002, the various lines corresponding to different classes in 2004.
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