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Dezső Szalay∗

University of Bonn

and CEPR

July 2016

Abstract

A decision-maker needs to make a choice and is forced to rely on delegated expertise.

The expert’s and the decision-maker’s interests are imperfectly correlated and the

expert decides how much to learn about each of their interests. We compare two

institutions of decision-making, delegation versus communication. The model features

endogenous, information driven conflicts at the communication stage. To limit the

losses arising from strategic communication, the expert acquires information relevant

to both the decision-maker and himself; in contrast, information acquisition under

delegation is completely selfish. Hence, as a complement to delegated expertise, the

decision-maker unambiguously prefers to communicate.
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Institute for Microeconomics, University of Bonn, Adenauerallee 24-42, 53113 Bonn, Germany.

1



1 Introduction

Good decision-making requires good information. Except perhaps for routine decisions,

such information is not readily available but must be actively acquired. Pressed for time,

decision-makers often have to delegate this job to others. We take this situation of dele-

gated expertise as our starting point and wonder what mechanism of decision-making should

ideally complement it? Should the decision-maker delegate decision-making to the expert

too, or should she keep authority over decision-making and have the expert report back to

her? We show that, as a complement to delegated expertise, communication unambiguously

dominates delegated decision-making.

We envision an environment where the decision-maker must rely on an expert who has

interests that are positively but not perfectly correlated with her own. Obviously, a com-

pletely like-minded expert would be preferred, but unfortunately such an ideal expert is

generally out of reach. We assume that the expert has discretion over the breadth as well

as the depth of the issues he investigates. More precisely, he chooses whether to investigate

matters of interest to the decision-maker or to himself and he chooses how much information

to acquire on each dimension. While the choices along these margins are observable, they

are not contractible. The nature and precision of the expert’s information is thus subject to

moral hazard. Moreover, the nature and precision of information shape the conflicts between

the expert and the advisee in communication and decision-making. If the decision-maker

knows that the expert has primarily looked into matters of direct interest only to himself,

then she should be cautious in following the expert’s advice. She knows that the expert

tends to be overly enthusiastic and hence she discounts the expert’s advice to undo his cock-

iness. If, on the other hand, the expert looked into issues of relatively greater interest to the

decision-maker than to himself, then it would be the expert who finds the decision-maker

too cocky. Hence, the expert would become reluctant to share his information. Thus, the

information acquired by the expert shapes the conflicts between expert and advisee.

How does the mechanism of decision-making interact with such endogenous, information

driven conflicts? If the expert has authority over decision-making, then nothing keeps him

from only investigating matters that are of interest to himself exclusively. Clearly, the

decision-maker can rely on a perfect use of information by the expert, but the information

is not as useful to her as she would have wished. In contrast, communication serves as a
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safeguard mechanism against selfish information acquisition. The advice of an expert who

is known to be too cocky - biased towards exaggeration in the jargon of the literature - is

discounted. As a result, information can only be transmitted in a coarse fashion resulting

in losses from strategic communication. So, the expert now faces a trade-off when acquiring

relatively more information on matters he is interested in. On the one hand, the expert

has by definition a preference for such information, because it is intrinsically more useful to

him. On the other hand, the losses due to strategic communication are the larger the more

selfish his information acquisition, because such information results in a more pronounced

bias in communication. In our model, the two forces exactly offset each other. Intrinsically

more useful information loses its appeal to the expert altogether, because its added value is

exactly lost in strategic communication. Hence, acquiring information that is equally useful

to the decision-maker and the expert is an equilibrium in our game. As a result, all biases

in communication between the expert and the decision-maker are eliminated.

The insights from this story for organizational design are straightforward: the decision-

maker is better off when retaining authority over decision-making. To avoid the consequences

from ineffective communication, the expert internalizes the advisee’s interests when acquiring

information. In contrast, nothing stops the expert from selfish information acquisition under

delegation. So, communication outperforms delegation because it changes the information

the expert has. We prove these results in an environment where the expert’s gains and

losses from more selfish information acquisition exactly offset each other. However, all that

is required is that the increased losses through strategic communication are the weakly

dominating force, so the result is clearly robust beyond the specific environment.

The present paper extends a line of inquiry initiated by Deimen and Szalay (2015), DS

henceforth. DS study decision-making in an organization with three parties, a sender, a

receiver, and a designer, interested in aggregate surplus. E.g., such a situation arises in an

organization with two divisions and a common headquarters. The roles in the organization

are exogenously fixed; one division is endowed with the technology to acquire information,

the other division has authority over decision-making. Headquarters steers the decision-

making process by controlling the relative precision of information about issues of interest

to one or the other division. Given an optimal information structure, it is irrelevant which

of the divisions has formal authority over decision-making; the optimal policy from division
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one’s, the sender’s, perspective is implemented regardlessly of who has formal authority.

There are several connections to and differences from our previous investigation. In

contrast to DS, the allocation of authority does matter here through its impact on the expert’s

incentives to acquire information. Similar to DS, the model has an equilibrium outcome in

which the expert acquires balanced information that eliminates conflicts in communication.

DS derives this outcome as the optimum of a designer’s (i.e. a headquarters) problem;

the present paper derives the same outcome as an optimum from an expert’s perspective.

While DS sidestep a detailed analysis of communication under conflicting interests, the

present analysis needs to understand precisely how the equilibrium value of decision-making

is affected by the information that is acquired to understand the expert’s incentives to acquire

this or that piece of information. This exercise requires a closed form representation of

expected utilities for all information structures that the expert considers as possibly optimal.

This is infeasible in the more general statistical model of DS, so we assume a special case of

theirs. Thus, our companion paper is more general in terms of assumptions, but the present

analysis is far more complex.

Sobel (2013) identifies the acquisition of information as one of the important open ques-

tions for the theory of strategic communication. The problem is complex to analyze by the

very nature of information: since Blackwell (1951) we think of better information in terms

of more dispersed distributions of posteriors. However, such dispersed distributions make it

impossible to characterize communication equilibria in closed form, a seemingly necessary

step to characterize the equilibrium value of decision-making in closed form. Perhaps the

most surprising of our results is that this logic is flawed. We develop a stylized model that

captures the essential features of improvements in information and allows for a closed form

representation of the value of decision-making despite the fact that the equilibrium itself can-

not be characterized in closed form. It is this closed form representation of values that allows

us to quantify the losses arising from strategic communication as a function of the sender’s

bias - thus ultimately, the quality of the sender’s information. The essential assumption that

generates these insights is that the joint distribution of states and signals is a multivariate

Laplace, thus an appealing but nevertheless quite specific statistical environment.1 Once

1See Lehmann (1988) for a proof that Laplace location experiments are Blackwell comparable.

The Laplace is a member of the elliptical class studied in DS; hence we analyze a special case of DS (but in
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the hard work is done, the comparison of institutions boils down to a back-of-the-envelope

computation that reveals an effect that we have not yet seen in the literature nice and simple:

communication is helpful to direct an expert’s search for information.

Delegation versus communication is the key question in Dessein (2002). Dessein (2002)

compares the performance of these institutions in the seminal model of Crawford and Sobel

(1982), where the sender’s and the receiver’s ideal choices differ by some constant. Our

model features a very different and purely information driven bias: depending on the nature

of information, the expert and the advisee differ in their responsiveness to new information.

This is exactly the right assumption to make to study conflicts that arise purely on informa-

tional grounds. On top, we show in our companion paper, that the situation arises precisely

when the sender and the receiver agree ex ante on a transfer price based on the action taken.

The transfer price can be set based on prior information only and eliminates all biases that

are known already ex ante, so that the only conflicts that remain are those that arise due

and from the information that is acquired. Dessein (2002) shows that a constant bias has

very different effects from those studied here: delegation always outperforms communication

whenever meaningful communication is possible. An interesting question is how the classical

bias interacts with information driven biases. We leave this for future work.

Alonso et al. (2008) compare centralized and decentralized forms of decision-making. It is

a question of the magnitude of biases whether communication (centralized decision-making)

or delegation (decentralized decision-making) dominates. For large biases, delegating is worse

than deciding based on prior information alone. On the other hand, communication is al-

ways valuable. Hence, communication clearly dominates. As the sender’s bias is decreased,

delegation performs better and eventually outperforms communication. In contrast, commu-

nication is always the preferred mechanism in our paper, as long as interests are positively

correlated but no matter how biased the sender is. The reason is that biases and information

are unrelated in Alonso et. al (2008) whereas the sender’s bias is a function of his information

in our work. For the Pareto efficient information structure, the trade-off between commu-

nication and delegation is unambiguously resolved in favor of communication. However, as

should be stressed, if a different information structure is selected for some reasons, perhaps

much more detail).
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errors in the process of information acquisition, then the same trade-offs as in Alonso et al.

(2008) arise here as well.

The term “delegated expertise” was coined by Demski and Sappington (1987), where an

expert is defined as a person who can acquire information while others cannot. In contrast

to the present paper, among many other differences, communication is prohibitively costly

in their work. The organization of delegated expertise is studied in Lewis and Sappington

(1997) and Gromb and Martimort (2007). Lewis and Sappington (1997) study information

acquisition by an agent in a procurement context and show that information acquisition and

production should ideally be delegated to different agents. Even though obtained under very

different assumptions - e.g. perfect commitment and allowing for monetary payments - our

result has a similar flavor: it is important that the expert, who acquires information, is not

entitled to take productive decisions. Gromb and Martimort (2007) study the organization

of delegated expertise allowing for collusion.

Commitment to decision-rules is an essential building block of the Demski and Sapping-

ton (1987) approach. Following this tradition, Crémer and Khalil (1992), Crémer et. al

(1998), and Szalay (2009) study information acquisition in a procurement context allowing

for monetary payments. Szalay (2005) studies a communication model with commitment to

decision-rules with and without allowing for money payments. The main difference to this

literature is the absence of commitment, a natural assumption that the literature following

Crawford and Sobel (1982) maintains.

Our analysis is closely related to Argenziano et al. (forthcoming) and inspired by the

questions raised there, in particular, whether delegated decision-making or communication

is preferable when information needs to be acquired. However, the details of the models

are very different - such as the information acquisition technology and the role of ex ante

known conflicts. Argenziano et al. (forthcoming) show that communication can outperform

delegation, because the expert acquires more precise information than the decision-maker

would have acquired. In contrast, our model features different sources of information and

we show that communication is helpful to convince the expert to look at all of them equally.

Ivanov (2010) studies informational control in the communication model, that is, the receiver

chooses what information the sender should observe. Informational control can outperfom

delegation to a completely informed sender. The main differences to the current model are
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that there are two sources of information here and the expert has discretion over information

acquisition.

Only quite few papers have looked at information or information acquisition in the com-

munication model. Moscarini (2007) studies the effects of better information on equilibrium

communication by a central banker. Eső and Szalay (2015) study the role of the richness

of language for incentives for information acquisition. Di Pei (2015) assumes the sender can

acquire coarse information. More precisely, the sender can partition the state space at a

cost; the sender only acquires information that he plans to communicate. The implications

for equilibrium communication are quite different from those in Crawford and Sobel (1982).

Frug (2016) studies sequential information acquisition in a communication model. Ottaviani

and Sorensen (2006) study communication when the sender wishes to appear well informed.

Kamenica and Gentzkow (2011) study what information a sender would like a receiver to

have. In contrast to Kamenica and Gentzkow (2011), the expert in the present model cannot

commit on what information to pass on to the receiver once he (the expert) has observed

the information.

The literature on communication is vast. We focus here on contributions with a close

connection to information acquisition and leave out many important contributions. We

refer to Sobel (2013) for an in depth survey of the literature. We end this review with

some more technical remarks. Communication involves a limiting case where the number of

induced actions goes to infinity as in Alonso et. al (2008) and Gordon (2010). The latter

paper studies a very general model to obtain this characterization. We confirm the result of

Gordon (2010) on the existence and non-existence of equilibria inducing a countable infinity

of receiver responses. However, even though these features are the same, we cannot rely on

the same methods, because our model has an unbounded state space in contrast to Gordon

(2010). Moreover, our main contributions are to relate the incidence of infinite versus finite

equilibria to the underlying information and to provide a closed form characterization of the

value of information. None of these results appear in Gordon (2010). Alonso et. al (2008)

characterize communication equilibria in closed form assuming a uniform type distribution.

While we would love to follow this approach, we cannot, because uniform distributions do not

allow us to capture the quality of information in a satisfactory way. The idea to characterize

values of communication without necessarily characterizing equilibria explictly appears of
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course also in the analysis of optimal mediation rules as in Goltsman et al. (2009) and Alonso

and Rantakari (2013). In contrast to that, our approach involves one shot communication

and hence relies on very different methods.2

The remainder of the paper is organized as follows. In Section two, the model is in-

troduced; the structure of communication equilibria is discussed in Section three; the value

of communication is derived in Section four; in Section five, we study information acquisi-

tion. Section six contains our main results, the comparison of institutions. The final section

concludes. All technical proofs are gathered in an appendix. Results of a mostly technical

nature are stated as lemmata; technical results that are essential to understand the main

trade-off are stated as propositions; economically deep results are stated as theorems.

2 The model

2.1 The decision problem

A decision-maker needs to reach a decision y ∈ R. The ideal decision from her point of view

depends on a state of the world, ω ∈ R. More precisely, the payoff of the decision-maker is

ur (y, ω) = − (y − ω)2 ,

where superscript r refers to receiver. The trouble is that the decision-maker does not know

ω. However, before taking the action, she can consult an expert, henceforth referred to as

the sender. The sender’s preferences over actions are given by the function

us (y, η) = − (y − η)2 ,

where η is the realization of a random variable that is correlated with ω. In the terminology

of the literature, the difference η − ω corresponds to a state dependent bias. However, in

contrast to the literature, conditional on ω, the bias is still random here.

2See also Blume et al. (2007) for a derivation of the noise mechanism identified as an optimal mediation

rule in Goltsman et al. (2009).

Alonso and Rantakari (2013) discuss a limiting case of a truncated Laplace model. We go beyond the limiting

case and characterize the equilibria of the model in general. Our characterization of communication values

does not rely on optimal mediation but on one-shot communication.
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The sender does not know the states ω and η either. However, he can observe noisy

signals about the realized states according to

sω = ω + εω

and

sη = η + εη.

To obtain a flexible and still tractable environment, we assume that the random vector

(ω, η, εω, εη) follows a joint Laplace distribution3 where each of the marginals has a mean of

zero4, (εω, εη) is uncorrelated with (ω, η) and εω is uncorrelated with εη. The nontrivial second

moments of the distribution are denoted V ar (ω) = σ2
ω, V ar (η) = σ2

η, Cov (ω, η) = σωη,

V ar (εω) = σ2
εω , and V ar (εη) = σ2

εη . The variances σ2
εω and σ2

εη capture the amount of noise

in the sender’s signals.

The Laplace is a member of the elliptical class5 studied in DS. The reason to assume

this particular stochastic environment is that the inference problems remain tractable. We

reproduce the basic properties of the statistical environment and the analysis of DS for

convenience of the reader below.

2.2 Timing

The strategic interaction unfolds as follows. Firstly, the decision-maker commits to an insti-

tution of decision-making. Either, she delegates both information acquisition and decision-

making to the sender or she delegates information acquisition only to the sender and retains

the right to choose y herself. In both cases, the decision-maker is forced to delegate infor-

mation acquisition to the sender, due to, say, lack of time to acquire information herself.

Secondly, the sender chooses what information to acquire. Formally, the sender chooses the

3For reasons that become obvious shortly, we defer a description of the density to Section 2.5 below.
4As mentioned in the introduction, such a situation arises, e.g., if a transfer price based on the action

corrects for differences in prior expectations.
5If the distribution admits a density, then the density of a random vector t that follows an elliptical

distribution is of the form f (t) = kn |Σ|−
1
2 φ
(
(t− µ)

′
Σ−1 (t− µ)

)
, where kn is a constant scale factor, φ a

generator function, µ is the mean vector, and Σ is up to a scale factor equal to the variance matrix. E.g.,

for the Normal distribution, the generator function is φ = e−
u
2 .
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amount of noise in the signals, i.e. the variances σ2
εω and σ2

εη . We call the joint distribution

of signals and states an information structure. The choice of the information structure is ob-

served by the receiver. However, the realizations of the signals are privately observed by the

sender. Finally, actions are chosen according to the selected institution of decision-making.

Under delegation, the sender picks his preferred action policy. Under communication, the

sender communicates with the receiver - formally, he sends a message to the receiver - and

the receiver selects her preferred action, given the information that she has received. The

receiver is unable to commit to an action policy before she receives the information.

The sender’s choice of information structure is observable but not contractible. The

sender therefore chooses the information structure with a view to using the information to

his advantage in the selected institution of decision-making. The analysis of the resulting

trade-offs are the subject of the present paper. All information structures are equally costly

in our analysis. This allows us to focus on the purely strategic reasons to select different

information structures.

2.3 Ideal policies and sufficient statistics

If both the sender and the receiver observed s = (sω, sη) directly, then their ideal choice

functions would be given by

yr (s) = E [ω| sω, sη] = αrsω + βrsη

and

ys (s) = E [η| sω, sη] = αssω + βssη

where αj, βj for j = r, s are constants, independent of the realized signals. The first equality

is due to the fact that the quadratic loss function is maximized at the conditional mean. The

second equality follows because the Laplace distribution has a linear conditional mean, as

all members of the elliptical class have. We refer the reader to DS for the exact expressions

for the weights αj, βj for j = r, s.

Of course, the receiver does not have direct access to the sender’s information but only

to the sender’s recommendation. Let

ρ ≡ σωη
σωση
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denote the coefficient of correlation between ω and η. The model is interesting only if ρ > 0,

because no meaningful communication is possible if ρ ≤ 0. Therefore, we assume that ρ ∈
(0, 1) . For this case, the first-best optimal policy functions of sender and receiver feature

yr (s) 6= ys (s) for all s 6= (0, 0) ; thus, the model features conflicts of interest almost surely.

We focus on Bayesian equilibria in the communication game. After observing signal

realizations sω, sη, the sender sends a message m ∈M to the receiver. The message space is

sufficiently rich; we do not impose any restrictions on M. A pure sender strategy maps the

sender’s information into messages M : R2 → M, (sω, sη) 7→ m. A mixed sender-strategy

is a probability distribution over pure strategies. A pure receiver strategy maps messages

into actions, X : M → R, m 7→ y. As is well known, the receiver never mixes, due to the

concavity of her payoff function. The receiver updates her belief about the sender’s type

after observing the sender’s message and acts optimally against this belief. Define

θ ≡ E [η| sω, sη] .

DS show that all sender types whose signals aggregate to the same value of θ have the

same preferences. More precisely, such sender types share the same ideal policy and their

preferences over any pair of choices depend only on the distance of the induced action to

their ideal policy. This makes it difficult to elicit more than θ from the sender. In fact, any

equilibrium is essentially equivalent to one with communication about θ only. As is standard,

we can characterize any equilibrium of this kind as a partial pooling equilibrium, where sets

of sender types pool on inducing the same receiver response. So, without loss of generality,

we can eliminate the underlying signals (sω, sη) from the picture and analyze a reduced form

model where everything is as if the sender directly observed an aggregated signal θ. For the

sender, θ is a sufficient statistic for the underlying signals; for the receiver, the underlying

signals can be dropped, because the sender is never kind enough to reveal them.

Note that E [η| sω, sη] is a linear function of the signals, which are themselves linear in the

underlying random variables. It follows from Kotz et al. (2001) that the joint distribution

of the random vector (ω, η, θ) is a multivariate Laplace and that the marginal distribution

of θ is a Laplace distribution too.6

6Note that the distribution of ω|σ is in general not Laplace. Fortunately, we are only interested in the

first moment of the conditional distribution and its distribution, not in the posterior distribution itself.
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2.4 Information and conflicts

Some caution is required when condensing the model into its reduced form. It must be true

that the joint distribution of (ω, η, θ) can be generated from the underlying joint distribu-

tion by the sender’s Bayesian updating.. In particular, the sender observes the underlying

signals, sω and sη, and forms a posterior expectation on η conditional on the signal realiza-

tions. Since θ is a function of the signals, the joint distribution is endogenous. The first

moments are all zero; in particular, we necessarily have E [θ] = 0. The second moments are

as follows. Depending on the underlying noise, the signal θ covaries more with one or the

other underlying state variable. It is straightforward to show - by brute force algebra using

the exact values of αs and βs of the sender’s posterior expectation - that

V ar (θ) = σ2
η

σ2
εω

σ2
ω

+
σ2
εη

σ2
η
ρ2 + 1− ρ2(

1 +
σ2
εω

σ2
ω

)(
1 +

σ2
εη

σ2
η

)
− ρ2

, (1)

Cov (ω, θ) = σωη

σ2
εη

σ2
η

+
σ2
εω

σ2
ω

+ 1− ρ2(
1 +

σ2
εω

σ2
ω

)(
1 +

σ2
εη

σ2
η

)
− ρ2

, (2)

and

Cov (η, θ) = V ar (θ) . (3)

Equation (3) has a natural interpretation that we explain with the help of the sender’s ideal

policy, (4) , below. Equations (1) and (2) depend crucially on the ratios
σ2
εω

σ2
ω

and
σ2
εη

σ2
η
. E.g.,

Cov (ω, θ) reaches its maximum value, σωη, if at least one of the signals is perfectly precise.

DS characterize the entire set of feasible joint distributions and show in particular that, for

the natural case of a symmetric prior with V ar (ω) = V ar (η) ≡ σ2, a joint distribution is

feasible if and only if Cov (ω, θ) ≤ σωη and for any Cov (ω, θ) = C, V ar (θ) ∈
[
ρC, 1

ρ
C
]
. From

now on we stick to this case.7 For future reference, we denote the set of joint distibutions

that can be generated through Bayesian updating Γ and depict the set in Figure 1.

The relative usefulness of the signal - in the sense of its relative covariation with the

underlying state ω or η - determines the conflicts that the sender and the receiver face when

7This is not essential; we could allow for asymmetric cases and impose the weaker condition

min
{
σ2
ω, σ

2
η

}
≥ σωη.
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σωη

σ2ρ2σ2

Cov(ω, θ)

V ar(θ)

Figure 1: The set Γ of feasible second moments of the joint distribution of (ω, η, θ) .

they communicate with each other. To see this, observe that the sender’s ideal policy as a

function of θ is simply

ys (θ) =
Cov (η, θ)

V ar (θ)
· θ = θ, (4)

where E [η| θ] = Cov(η,θ)
V ar(θ)

· θ follows from the linearity of conditional means and Cov(η,θ)
V ar(θ)

= 1

from the fact that θ is a sufficient statistic from the sender’s point of view for the underlying

signals. Clearly, by construction of θ, the sender does not revise his posterior if shown his

conditional expected mean again. In contrast, if the sender were kind enough to communicate

θ truthfully, then the receiver’s ideal policy would be

yr (θ) =
Cov (ω, θ)

V ar (θ)
· θ. (5)

Compared to the sender’s ideal policy, ys (θ) = θ, the receiver is relatively more (less)

conservative with respect to using the aggregated signal θ than the sender is if Cov (ω, θ) <

(>)V ar (θ) = Cov (η, θ) . For future reference, define

c ≡ Cov (ω, θ)

V ar (θ)
.

The bias (1− c) · θ captures the sender’s incentives to misrepresent the information he has.

If c < 1, then the receiver is relatively more conservative in her use of the aggregated signal

θ and the sender has incentives to exaggerate; if c > 1, then the receiver is relatively more

enthusiastic in her use of signal θ and the sender has incentives to downplay.
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It is useful to illustrate the situation for some extreme cases. Suppose the sender observes

η without noise. Clearly, the signal contains all the information he is interested in and θ is

identically equal to η so that V ar (θ) = σ2. Moreover, Cov (ω, θ) = σωη, as is easy to see

from (2) . So, this signal structure corresponds to the top right corner of the set Γ in Figure

1 with c = σωη
σ2 = ρ < 1 corresponding to the slope of a ray from the origin through the top

right vertex. Since the information is primarily useful to the sender, the receiver discounts

the signal θ and reacts more conservatively to the signal θ than the sender would want her to

respond. The situation is depicted in the left panel of figure 2 below. Similarly, suppose the

sender observes ω without noise and the signal sη contains an infinite amount of noise. It is

easy to see that θ = E [η|ω] = ρ · ω in this case, so that V ar (θ) = ρ2 · σ2. This information

structure corresponds to the top left corner in figure 1 with c = σωη
ρ2σ2 = 1

ρ
> 1. In this case,

the information is more useful to the receiver and hence the receiver overreacts to changes

in θ from the sender’s perspecitve, as shown in the right panel of figure 2.

yS(θ) = θ

yR(θ) = ρθ

bias {

yR(θ)

yS(θ)

θ

yR(θ) = 1
ρ
θ yS(θ) = θ

bias

{

yR(θ)

yS(θ)

θ

Figure 2: Conflicts as a function of the underlying information.

More generally, any feasible pair of moments V ≡ V ar (θ) and C ≡ Cov (ω, θ) in the set

Γ in Figure 1, gives rise to a regression coefficient for the receiver of c = C
V
, the slope of a

ray from the origin through V,C. For any c ∈
[
ρ, 1

ρ

]
, there is a continuum of pairs V,C that

generate c. By construction, the sender’s ideal choice function is the identity function. Thus,

any bias smaller or equal in absolute terms to the ones depicted in Figure 2 can arise from

some choice of the underlying amounts of noise in the sender’s signals.
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2.5 Information: basic mechanics and trade-offs

The preceding discussion describes the microfoundations of a stylized yet rigorously justi-

fied model that captures the basic properties of Blackwell better information and features

conflicts as a function of the information. In particular, the marginal distribution of θ is

Laplace with density

f (θ) =
1

2
λ exp (−λ |θ|) (6)

with mean zero and variance V = 2
λ2
, i.e., the scale parameter λ is pinned down by V. Figure

3 illustrates the distribution for different values of λ.

theta

f

Figure 3: The density of the Laplace for λ = 1 (solid, red line) and λ = 1
2

(dashed, green

line).

Since the sender’s and the receiver’s interests are not perfectly correlated, information

creates or resolves conflicts between sender and receiver depending on the ratio c = C
V
.

The sender chooses the moments V and C with a view to their influence on the intrinsic

value of information and their impact on the conflicts they generate when communicating

about θ. The intrinsic value of the aggregated signal θ corresponds to the resulting expected

utilities if this signal were publicly observable. However, since it isn’t, some of the intrinsic
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value is typically lost in conversation. The sender thus chooses the information structure so

as to maximize its net value to him. Information structures that are both intrinsically more

valuable and give rise to less conflicts are unambiguously preferred. However, a trade-off

arises if an information structure is intrinsically more useful than another one but gives rise

to more pronounced conflicts. Our model is designed to investigate precisely this trade-off

in detail.

While the analysis of delegated decision-making is trivial, the analysis of communication

is not. We begin with a characterization of communication equilibria and derive a closed

form expression for the value of communication. This analytical result is what enables us to

compare institutions. The necessity to have such a closed form representation for values is

also what forces us to assume a more specific informational environment than DS.

3 Communication equilibria

We now investigate equilibria in the communication game when the sender observes signals

of a given quality. At most θ is communicated in equilibrium. Indeed, an equilibrium in

which θ is transmitted truthfully can be supported for all information structures featuring

c = 1. The reason is simply that setting c = 1 eliminates all conflicts with respect to using

the aggregated signal θ, even though the model still features conflicts with respect to the

underlying signals almost surely. We explain this result, derived in DS, in our Theorem 2

below. The cases c < 1 and c > 1 are fundamentally different. For c 6= 1, any equilibrium is

essentially equivalent to a partition equilibrium where sender types within intervals induce

the same receiver response. We adopt the view taken in the literature, that the sender and

the receiver manage to coordinate on the equilibrium that gives them the highest expected

utility. Partitional equilibria are completely characterized by a sequence of marginal types,

ai, who are indifferent between pooling with types slightly below and with types slightly

above them. We focus on symmetric equilibria in the main text and prove in the Appendix

that this is without loss of generality for our results.8

8More precisely, for the case c ≤ 1, we show that the highest feasible payoff is attained in a symmetric

equilibrium. In addition, symmetric equilibria are the only ones that exist in this case. For the case c > 1,

we prove the essential result also allowing for asymmetric equilibria.
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Symmetric equilibria come in two classes. Class I has zero as a threshold, an0 = 0,

and in addition n ≥ 0 thresholds an1 , . . . , a
n
n above the prior mean. By symmetry, types

−ann, . . . ,−an1 are the threshold types below the prior mean. Such an equilibrium induces

2 (n+ 1) actions; superscript n captures the dependence of the equilibrium threshold types

on the number of induced actions. Class II has zero as an action taken by the receiver instead

of a threshold. Such an equilibrium induces 2n+ 1 actions. For n ≥ 1, let

µni ≡ E
[
θ| θ ∈

[
ani−1, a

n
i

)]
for i = 1, . . . , n (7)

and µnn+1 ≡ E [θ| θ ≥ ann] . By convention, we take all intervals as closed from below and open

from above.9 Clearly, given quadratic loss functions, the receiver’s best reply if sender types

in the interval
[
ani−1, a

n
i

)
pool is to choose

y
(
ani−1, a

n
i

)
= c · µni for i = 1, . . . , n

and y (ann,∞) = c · µnn+1 if sender types with θ ≥ ann pool. This follows from the law of

iterated expectations and the linearity of the conditional expectation function. Hence, a

class I equilibrium that induces 2 (n+ 1) actions by the receiver is completely characterized

by the indifference conditions of the marginal types an1 , . . . , a
n
n :

ani − c · µni = c · µni+1 − ani , for i = 1, . . . , n. (8)

By symmetry, this system of equations also characterizes the marginal types below the prior

mean. A class II equilibrium is characterized by the same set of indifference conditions for

i = 2, . . . , n. In that case, we let µn1 ≡ E
[
θ| θ ∈

[
an−1, a

n
1

)]
. In what follows, we are primarily

concerned with class I equilibria, so no confusion will arise.

For the Laplace distribution, it is easy to show that, for i = 1, . . . , n and ani > ani−1 ≥ 0

µni =
1

λ
+ ani − g

(
ani − ani−1

)
, (9)

where g (q) ≡ q
1−exp(−λq) . Moreover,

µnn+1 =
1

λ
+ ann. (10)

9With the obvious exception of the interval (−∞,−ann) .
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We can now write the equilibrium conditions more explicitly. Substituting (9) and (10) into

(8) and rearranging in a way suitable to the analysis, a class I equilibrium is a set of marginal

types that satisfy the conditions

cg
(
ani − ani−1

)
= 2

c

λ
+ c
(
ani+1 − ani

)
− cg

(
ani+1 − ani

)
+ 2 (c− 1) ani (11)

for i = 1, . . . , n− 1 and

cg
(
ann − ann−1

)
= 2

c

λ
+ 2 (c− 1) ann, (12)

where an0 = 0. A class II equilibrium satisfies

an1 =
c

λ
+ c (an2 − an1 )− cg (an2 − an1 )− (1− c) an1 , (13)

and in addition (11) for i = 2, . . . , n− 1 and (12) .

It proves convenient to first understand properties that equilibria necessarily have if they

exist.

Lemma 1 Suppose class I and II equilibria inducing 2 (n+ 1) and 2n + 1 receiver actions

exist. Class I equilibria feature ani+1−ani > ani −ani−1 for all i = 1, . . . , n−1; class II equilibria

always share this feature for i = 2, . . . , n− 1.

The result is depicted graphically in Figure 4.

Class I: 0

a0−a3 a3−a2 a2−a1 a1

Class II:
0

−a3 a3−a2 a2−a1 a1

Figure 4: Intervals get longer the farther away from the agreement point they are.
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The intuition is that announcements where |θ| is relatively small are relatively more

credible. The reason is straightforward. At θ = 0, the sender’s and the receiver’s ideal

policies coincide. The smaller is |θ| , the smaller is the sender’s bias in absolute terms,

(1− c) |θ| . The farther away from the agreement point, θ = 0, the larger the bias, and hence

the coarser the information that the sender transmits in equilibrium. Hence, intervals get

longer the farther out in the type space they are.

The ideas to prove the lemma are as follows. The case c = 1 is straightforward. By

symmetry, it suffices to characterize equilibrium thresholds on R+. The density is decreasing

for θ > 0. Therefore, the truncated means are located closer to the lower bound of each

interval. Consider two adjacent intervals with some dividing point between them. If the two

intervals had the same length, then the distance from the dividing point to the truncated

mean below would exceed the distance from the truncated mean above the dividing point to

the dividing point, clearly violating the indifference condition. To restore the indifference,

the first interval has to be shortened, the second one lengthened. For c < 1, this effect is

reinforced. For c > 1, the proof is constructive, working backwards through the indifference

conditions from the last one of type ann backwards to the origin.

We now address existence and further characterization of equilibria. To streamline the

exposition, we focus on class I equilibria in what follows in the main text. The extensions to

class II equilibria and asymmetric equilibria, where necessary, can be found in the Appendix.

The main take away message of this analysis is Equation (17) in Proposition 3, which,

when combined with Propositions 1 and 2, allows us to prove our theorems. The reader

uninterested in the technical details can jump directly to Section 5 at a first go.

3.1 Conservatism, enthusiasm, and limits to communication

Equilibria for n ≤ 1 are straightforward; we leave this to the reader. For n ≥ 2, existence

of equilibria is a non-trivial question, because equilibria cannot be characterized in closed

form, due to the non-linearity of equation (9) in the thresholds ai−1 and ai. We construct

class I equilibria for n ≥ 2, defined as solutions of conditions (11) and (12) , as follows.

Take a1 = x as an arbitrary initial step length and use condition (11) as an algorithm that

determines a2 (x) ; repeat this procedure successively to determine “the next” threshold type

as a function of the preceding thresholds. Provided such solutions exist up to and including
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an (x) , we obtain a sequence of thresholds, a2 (x) , . . . , an (x) that satisfy condition (11) for a

given initial condition a1 = x. This is called a forward solution. We delineate exact conditions

on x such that uniquely defined forward solutions exist up to and including an (x) . Next,

note that condition (12) depends on an and an−1 as well; we call this condition a closure

condition. An equilibrium sequence of thresholds is a fixed point with respect to x : the

sequence of thresholds satisfies the closure condition for the values of an (x) and an−1 (x)

that are generated by the forward solution.

The argument is conceptually straightforward but quite involved. We split the discussion

into two cases. We begin with the case where the receiver is conservative and show that for

any n, unique class I and II equilibria exist. In contrast to that, for the case of an overly

enthusiastic receiver, there is necessarily a bound on the number of induced receiver actions.

Lemma 2 Let c ≤ 1. For all n, there exists a class I equilibrium that induces 2 (n+ 1)

actions and a class II equilibrium that induces 2n+ 1 actions. Moreover, for each n there is

only one equilibrium in each class.

We illustrate the procedure for the case n = 2. The forward solution for a2 (x) is the

value of a2 that solves

cg (x) = 2
c

λ
+ c (a2 − x)− cg (a2 − x) + 2 (c− 1)x.

A forward solution exists iff x is low enough. For any such x, the solution a2 (x) is unique

and satisfies limx→0 a2 (x) = 0 and da2
dx

> 1. Substituting the solution into condition (12) , we

obtain

cg (a2 (x)− x) = 2
c

λ
+ 2 (c− 1) a2 (x) .

Since a2 (x)−x is increasing in x, the left side of the equation is increasing in x. As (c− 1) ≤ 0,

the right side is nonincreasing in x. Hence, there is a unique fixed point, i.e. value of x̃, that

satisfies the equality. The thresholds a2
1 = x̃ and a2

2 (x̃) completely characterize the unique

class I equilibrium inducing 6 actions. The proof generalizes these insights to the case of

arbitrary n.

There is no upper bound on the number of induced actions. If the state is θ = 0, then

the sender’s and the receiver’s ideal actions coincide. This explains why communication

equilibria exist that are arbitrarily fine around the agreement point. The second statement
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in the lemma is that for each given n and for each given class of equilibrium, the induced

actions and the equilibrium partitioning of the state space is uniquely determined. The

reason for uniqueness is that the exponential distribution is loglinear and hence weakly

logconcave (see Szalay (2012)).

It is instructive to investigate how equilibria within a given class differ when they have

more thresholds. So, consider a class I equilibrium with n thresholds in the positive orthant,

{an1 , . . . , ann} , and compare it to the equilibrium with n+1 thresholds in the positive orthant,{
an+1

1 , . . . , an+1
n+1

}
.

Lemma 3 Let c ≤ 1. Equilibrium thresholds are nested. Formally, an+1
1 < an1 < an+1

2 <

· · · an+1
n < ann < an+1

n+1 for all n.

The result is intuitive; we depict it graphically in Figure 5.

n positive

thresholds:

0

a0 a1 a2 a3 . . . an

n+ 1 positive

thresholds:

0

a0 a1 a2 a3 . . . an an+1

Figure 5: The effect of increasing the number of induced receiver responses on equilibrium

thresholds.

The stated order of equilibrium thresholds follows from monotonicity in several ways.

Thresholds within an equilibrium are monotonic in the initial length a1. Moreover, a thresh-

old is monotonic in the level of the previous threshold and the length of the previous interval.

Any violation of the stated order implies by monotonicity a violation of the equilibrium fixed-

point condition.

Equilibria inducing the highest number of distinct receiver actions are natural to study,

because the utility of sender and receiver in these equilibria is as high as possible. Since
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this property makes infinite equilibria focal, we need to understand the properties of such

equilibria.

Proposition 1 Suppose that c ≤ 1 and consider the limit as n → ∞ of the finite class I

and class II equilibria. The limits correspond to an infinite equilibrium of the communication

game. Moreover, in any equilibrium, the equilibrium threshold an1 satisfies limn→∞ a
n
1 = 0.

Figure 6 illustrates the essential result.

c ≤ 1: 0

. . . . . .−an an−an−1 an−1

Figure 6: Intervals around the agreement point θ = 0 get arbitrarily short as n→∞.

In the limit as more and more distinct receiver actions are induced, the length of the

interval(s) that are closest to the agreement point, θ = 0, must go to zero. The reason

is that the length of intervals is the higher, the farther these intervals are away from the

agreement point; formally, ani+1−ani > ani −ani−1. If the length of the interval that is closest to

the agreement point would converge to some positive length as the number of induced choices

goes out of bounds, then the last type who is indifferent between inducing two actions, ann,

would be arbitrarily far away from the agreement point. However, this makes it impossible

to make this type indifferent between two actions. Hence, to make an infinite equilibrium

possible in the first place, the length of the first interval must shrink to zero. Note that the

argument refers to any infinite equilibrium, not only the limit equilibrium that corresponds

to the limit of the finite equilibrium when the number of induced actions goes to infinity.

For the case c > 1, there is an upper bound on the number of induced actions:

Proposition 2 Suppose that c > 1. Then, an1 is bounded away from zero in any equilibrium.

Moreover, the number of induced actions is finite.
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Key to understanding the result is the forward equation for a given initial interval length

x. Depending on the level of c, either one of two cases arises. For relatively large bias (c > 4
3
),

the forward equation has no solution for x small, implying directly that the length of the

first interval is bounded away from zero in any equilibrium that exists. For the case of a

smaller bias, the forward equation does have a solution, but the solution ceases to satisfy

the increasing interval property if the initial interval length gets small. However, since any

equilibrium needs to have this property, no equilibrium with a short initial interval length

can exist. In both cases, the number of induced actions needs to be finite. For our purposes,

it suffices to take away that the equilibrium threshold an1 is necessarily bounded away from

zero in any equilibrium.

4 The value of communication

In a class I equilibrium inducing 2 (n+ 1) distinct receiver responses, the receiver’s condi-

tional expectation of θ, conditional on the sender’s message, is a random variable µ that is

supported on
{
µn−(n+1), µ

n
−n, . . . µ

n
−1, µ

n
1 , . . . , µ

n
n, µ

n
n+1

}
and the receiver’s optimal policy is to

choose the action y (µ) = c ·µ. The marginal distribution of the random variable µ is derived

from the marginal distribution of θ. The receiver’s expected utility in such an equilibrium is

Eur (cµ, ω) = −E (cµ− ω)2 = c2E (µ)2 − σ2. (14)

The essential steps to prove this equality are the law of iterated expectations, E [µω] =

EθEω [µω| θ] , and the linearity of conditional means, EθEω [µω| θ] = Eθ [µcθ] . Likewise, for

the sender we have

Eus (cµ, η) = −E (cµ− η)2 = c (2− c)E (µ)2 − σ2 (15)

where we use EθEη [µη| θ] = E (µ)2 , because θ is by construction the conditional expectation

of the sender.

To relate these expressions to the familiar “residual uncertainty” concepts, let Θi ≡
[ai−1, ai) for i ∈ 1, . . . , n+1 denote a generic partition element in R+ and let Θn+1 ≡ [an,∞)

by convention. The probability mass over these partition elements conditional on θ ≥ 0 is
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denoted by pni for i = 1, . . . , n+ 1.10 Then, we can write E (µ)2 =
n+1∑
i=1

pni (µni )2 by symmetry

of the distribution. Moreover, by a standard variance decomposition, we have

n+1∑
i=1

pni (µni )2 = V ar (θ)−
n+1∑
i=1

pni [V ar (θ| θ ∈ Θi)] . (16)

Using this decomposition, we can understand the receiver’s and the sender’s expected utilities

as an intrinsic value of information net of a loss due to strategic communication. The

intrinsic value of information corresponds to a situation where the sender is kind enough to

communicate θ truthfully no matter what, or equivalently, θ is publicly observable. In that

case, the receiver would identify µ with θ, so that E (µ)2 = V ar (θ) . However, for c 6= 1,

this is not an equilibrium and the sender behaves strategically. The resulting losses due to

strategic communication are precisely proportional to
n+1∑
i=1

pni [V ar (θ| θ ∈ Θi)] .

The equilibrium variability of choices has a convenient representation:

Proposition 3 The equilibrium variability of the receiver’s posterior mean in a class I equi-

librium is given by
n+1∑
i=1

pni (µni )2 =
1

2− c
V ar (θ)− c

2− c
(µn1 )2 . (17)

The proposition provides an extremely powerful result, stating that the equilibrium vari-

ability of the receiver’s posterior depends only the posterior mean taken over the interval

[0, an1 ) . Eső and Szalay (2015) prove the result for c = 1, this paper generalizes the result to

the case c 6= 1. Clearly, it is the central result that enables us to address our question at all.

To understand the result, consider the case n = 1 with four induced choices. The

equilibrium probability distribution on R+ can be computed from the indifference condition

of the marginal type a1
1, a

1
1 − cµ1

1 = cµ1
2 − a1

1. Substituting for cµ1
1 = c

λ
+ ca1

1 − c
a11

1−exp(−λa11)

from (9) and cµ1
2 = c

λ
+ ca1

1 from (10) and solving for p1
1, we find that p1

1 =
ca11

c
λ

+ca11−cµ11
. Using

the equilibrium probability distribution, we can solve for the centered second moment of c ·µ,

10Formally, we define pni ≡
ani∫

ani−1

λ exp (−λθ) dθ for i = 1, . . . , n and pnn+1 ≡
∞∫
ann

λ exp (−λθ) dθ.
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the receiver’s choices. We can write

2∑
i=1

p1
i

(
cµ1

i −
c

λ

)2

= ca1
1

( c
λ
− cµ1

1

)
=

c

2− c

(
cµ1

1 +
c

λ

)( c
λ
− cµ1

1

)
,

where the first equality uses the equilibrium probability distribution and the second one the

fact that cµ1
2 − c

λ
= ca1

1, which together with the indifference condition of the marginal type

implies that ca1
1 = c

2−c

(
cµ1

1 + c
λ

)
. Since 1

λ
is the mean of the exponential distribution, we have

2∑
i=1

p1
iµ

1
i = 1

λ
by consistency of the conditional distributions with the marginal distribution

of θ. Decentering again and cancelling c2, we have shown that

2∑
i=1

p1
i

(
µ1
i

)2
=

1

2− c
2

λ2
− c

2− c
(
µ1

1

)2
=

1

2− c
V − c

2− c
(
µ1

1

)2
, (18)

where the second equality results from noting that 2
λ2

= V.

Equation (18) is precisely the expression in the proposition for the special case of n = 1.

Surprisingly, the right-hand side of equation (18) depends on the equilibrium only through µ1
1,

the mean over the partition element that is closest to the agreement point θ = 0. The reason

is the close connection between truncated means and the probability mass over any interval

implied by the exponential distribution. The indifference condition allows to eliminate µ1
2

from the picture.

If equation (18) is surprising, Proposition 3 is stunning, at least to us. Regardlessly

of how many distinct receiver actions are induced in a class I equilibrium, the equilibrium

variability of the receiver’s posterior mean always depends on the communication equilibrium

exclusively through µn1 , the mean over the partition element that is closest to the agreement

point, θ = 0. The formal proof of the proposition is based on an induction argument.

The proposition is extremely powerful. It allows us to quantify the usefulness of infor-

mation structures in strategic communication.
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5 Information acquisition

When choosing the information structure, the sender takes its effects on equilibrium com-

munication into account. Formally, the sender’s problem is to

max
C,V

c (2− c)
(

1

2− c
V − c

2− c
(µn1 )2

)
− σ2 (19)

s.t.c =
C

V
and C, V ∈ Γ.

where the sender’s objective follows from substituting for E (µ)2 from (17) into (15) . In face

of Propositions 1 and 2, the solution to problem (19) is obvious:

Theorem 1 The set of optimal information structures from the sender’s perspective is given

by C = σωη and V ≥ C.

The proof of the theorem is a straightforward combination of the preceding propositions.

For any C, V such that c = C
V
≤ 1, there exists a class I equilibrium with arbitrarily many

induced actions. In the limit where the number of induced actions goes out of bounds,

we have limn→∞ µ
n
1 = 0 and the equilibrium variability of the receiver’s conditional mean

converges to 1
2−cV. Hence, the sender’s expected utility is equal to

Eus (cµ, η) = c (2− c)V · 1

2− c
.

The term c (2− c)V corresponds to the intrinsic value of the signal θ to the sender if it is

publicly observed and the receiver follows the policy yr (θ) = c · θ. Since θ isn’t publicly

observed, some of its value is lost in strategic communication and only the fraction 1
2−c of

the intrinsic value materializes. Within the set of joint distributions that satisfy C
V
≤ 1, the

intrinsic value of the signal θ is strictly increasing in V and C. Hence, the highest intrinsic

value is obtained if C = σωη and V = 1
ρ
σωη. Note that this distribution minimizes c. On

the other hand, the fraction of the intrinsic value that survives in communication, 1
2−c , is an

increasing function of c. Interestingly, the strategic effect completely undoes any impact that

V has on the sender’s expected utility. In the limit equilibrium where n goes out of bounds,

the sender’s expected utility thus becomes equal to C, and depends on V only in that V
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cannot exceed C. Hence, within the set of distributions that satisfy C
V
≤ 1 any distribution

with C = σωη, the highest feasible covariance, is optimal for the sender, generating an

expected utility of σωη − σ2 to the sender.

Consider now all other information structures featuring C
V
> 1. By Proposition 2, there is

no equilibrium in which the interval around the agreement point θ = 0 gets small, so µn1 > 0.

Therefore, for all C
V
> 1,

Eus (cµ, η) = c (2− c)
(

1

2− c
V − c

2− c
(µn1 )2

)
− σ2 < σωη − σ2.

Clearly, the expression for the equilibrium variability of the receiver’s conditional means can

be extended in straightforward fashion to cover all equilibria, not just class I equilibria. In any

such equilibrium, the sender’s expected utility is less than σωη−σ2, because there necessarily

is a loss due to biased communication. Hence, we have shown that the sender reaches the

highest payoff by choosing any information structure with highest feasible covariance and

V ar (θ) ≥ σωη.

Consider now the receiver’s payoff as a function of the information structure that the

sender chooses. For C = Cov (ω, η) and any V ≥ C, the receiver’s payoff in the limit class I

equilibrium where n→∞ is

Eur (cµ, ω) = c2 1

2− c
V − σ2 =

C2

2V − C
− σ2,

a decreasing function of V. Clearly, the receiver suffers if the sender chooses an informa-

tion structure with a higher V ; at the same time, the sender derives no benefit from such

behaviour. The following theorem is now obvious:

Theorem 2 The set of sender optimal information structures contains the uniquely Pareto

efficient element V ar (θ)∗ = Cov (ω, θ)∗ = σωη. The sender achieves the highest feasible

payoff by choosing this information structure and communicating θ truthfully to the receiver,

who rubberstamps the sender’s proposal.

For convenience, the result is depicted graphically in figure 7.

If the sender chooses the receiver optimal information structure among those that are

privately optimal for himself, then we have c = C
V

= 1, and the bias with respect to communi-

cating θ is eliminated. Hence, it is an equilibrium for the sender to follow the message strategy
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σωη

σ2ρ2σ2

Cov(ω, θ) = V ar(θ)Cov(ω, θ)

V ar(θ)

Figure 7: The solid line represents the sender-optimal information structures. The red

dot represents the receiver-optimal information structure within the set of sender-optimal

information structures.

m (θ) = θ for all θ, and for the receiver to follow the action strategy y (m) = Cov(ω,θ)
V ar(θ)

·m = m

for all m, because the receiver correctly identifies m with θ in her belief. In other words,

the situation corresponds to what DS have termed a “smooth communication equilibrium”,

where smoothness refers to the differentiability of the sender’s and the receiver’s strategy.

6 Delegation versus communication

We are now ready to address the question we have set out to answer: if a receiver is forced

to delegate information acquisition to a sender, should she also delegate decision-making to

this sender? The answer is unambiguously negative.

If the receiver retains the right to make choices, then the sender is happy to look into issues

also of relevance to the receiver. The receiver’s expected payoff in the smooth communication

equilibrium is

Eur (θ, ω) = σωη − σ2. (20)

If the sender has the right to choose the action directly, then he will follow the action policy

ys (θ) = θ for all θ, resulting in expected utility for the sender of

Eus (θ, η) = −E (θ − η)2 = V − σ2,
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where we used the fact that Cov (θ, η) = V by construction of θ. Clearly, the optimal

information structure from the sender’s perspective, if he is authorized to choose the action

y, is Ĉ = σωη and V̂ = 1
ρ
σωη, because this information structure maximizes V within the set

Γ. The receiver’s expected utility is

Eur (θ, ω) = −V̂ + 2Ĉ − σ2 =

(
2− 1

ρ

)
σωη − σ2. (21)

We can now state our main result:

Theorem 3 Suppose the sender selects a privately optimal information structure; in case

there are several optimal ones, he picks the receiver’s preferred information structure among

them. Then, the receiver strictly prefers delegating information acquisition only and commu-

nicating with the sender over delegating both information acquisition and decision-making to

the sender.

The formal proof of the theorem consists again simply of pulling insights together. In

particular, direct comparison of (20) and (21) reveals that communication is the preferred

mode of decision-making, because 2 − 1
ρ
< 1 for any ρ ∈ (0, 1) . Note also that the receiver

always benefits from communicating with the sender, while the gain from delegation is only

positive for ρ > 1
2
, that is, if interests are relatively well aligned.

The result stands in stark contrast to what is known for the case of exogenously given

information structures and biases. Key to understanding the difference between the results is

the selection of the pareto efficient information structure. Clearly, selecting the most efficient

equilibria is exactly in the tradition of the communication literature following Crawford and

Sobel (1982).11 To play devil’s advocate - and to reconcile results - suppose that for whatever

reason we selected the worst information structure from the receiver’s perspective out of the

set of sender optimal information structures. This corresponds to the one that is uniquely

optimal under delegation, C = σωη and V = 1
ρ
σωη. Obviously, the comparison between del-

egation and communication is now exactly as if the information structure were exogenously

given, simply because the selection criterion picks the same information structure under both

institutions.

11See also Chen et al. (2008) for a more recent result in this tradition.
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Theorem 4 Suppose the sender picks a privately optimal information structure; in case

there are several optimal ones, he selects the least preferred one from the receiver’s perspec-

tive. Then, communication is strictly preferred to delegation for ρ ∈
(
0, 2

3

)
and delegation is

strictly preferred for ρ ∈
(

2
3
, 1
)
.

Substituting C = σωη and V = 1
ρ
σωη, receiver’s expected utility under communication is

Eur (cµ, ω) =
σ2
ωη

2
ρ
σωη − σωη

− σ2 =
σωη

2
ρ
− 1
− σ2.

It is easy to see why communication is the preferred mode for badly aligned interests. The

receiver benefits from communication for all ρ > 0, while delegation is beneficial only if

ρ > 1
2
. Similarly, the gain from delegation is rather small for values of ρ larger than but

close to 1
2
. Hence, communication is still the preferred mode for ρ < 2

3
. As interests get

well aligned, in particular for ρ > 2
3
, delegation becomes the preferred institution. While

communication entails a loss of information due to strategic communication, delegation does

not. On the other hand, delegation results in a choice of action that is not ideal from the

receiver’s point of view. We take matters to the extreme by selecting the receiver’s least

preferred information structure. The qualitative findings remain unchanged if we select a

less extreme information structure.12

In sum, the current model provides strong support for communication as an institution.

The reason is that the receiver retains some indirect means of control over the kind of

information that is acquired. Delegation provides no such safeguard mechanism and therefore

results in maximally selfish information acquisition by the sender.

7 Conclusions and extensions

We have studied a model of delegated expertise, where the expert’s interests are positively but

imperfectly correlated with a decision-maker’s interests. Conflicts between the two parties

depend on the nature of information that the expert acquires. When given decision-rights

12In particular, for ρ < 2
3 , communication dominates delegation, regardlessly of which information struc-

ture the sender picks. For ρ ≥ 2
3 , the comparison depends on which information structure is selected.
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as well, the expert neglects the decision-maker’s interests when choosing what information

to acquire. In contrast, when forced to communicate with the decision-maker, the expert

anticipates that selfish information acquisition results in coarse communication. To avoid

the losses from such coarse communication, the expert acquires balanced information that is

equally useful to both the decision-maker and himself. The resulting outcome unambiguously

dominates the delegation outcome, irrespective of the degree of conflicting interests as long

as interests are positively correlated.

The model lends itself to further investigation. Interesting avenues for future research

include costs of information acquisition, noisy communication, and mediated communication,

to name but a few. The current model assumes away any conflicts that are known ex ante

or that they have been successfully eliminated. This is exactly the right assumption to make

to understand how information creates and resolves conflicts. However, it is clearly also

interesting to learn about the impact of ex ante known conflicts and how they interact with

endogenous conflicts as they arise here. We are pursuing these questions in ongoing work.

Appendix

Lemma A1 The function g (q) = q
1−exp(−λq) satisfies limq→0 g (q) = 1

λ
and has limits

limq→∞ g (q) = ∞, and limq→∞ (q − g (q)) = 0. Moreover, the function is increasing and

convex, with a slope satisfying limq→0 g
′ (q) = 1

2
and attaining the limit limq→∞ g

′ (q) = 1.

Proof of Lemma A1. By l’Hôpital’s rule limq→0 g (q) = 1
λ
. The limit limq→∞ 1 −

exp (−λq) = 1 implies that limq→∞ g (q) =∞.Using q−g (q) = − q exp(−λq)
1−exp(−λq) and limq→∞ q exp (−λq) =

0, we have limq→∞(q − g (q)) = 0.

The slope of the function is

g′ (q) =

(
1− (1 + λq) e−qλ

)
(1− e−qλ)2 ≥ 0.

The inequality is strict for q > 0 since limq→0 (1 + λq) e−qλ = 1 and ∂
∂q

(1− (1 + λq) e−qλ) =

λ2qe−qλ > 0 for q > 0. Applying l’Hôpital’s rule twice, one finds that limq→0 g
′ (q) = 1

2
,

and since limq→∞ λqe
−qλ = 0, we have limq→∞ g

′(q) = 1.
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Differentiating g (q) twice, we obtain

g′′ (q) = λ
e−qλ

(1− e−qλ)3

(
2e−qλ + qλ+ qλe−qλ − 2

)
.

The sign of the second derivative is equal to the sign of the expression in brackets. At q = 0,

the expression is zero. The change of the expression is given by

∂

∂q

(
2e−qλ + qλ+ qλe−qλ − 2

)
= λ

(
1− (1 + λq) e−qλ

)
≥ 0,

by the same argument as given above. Hence, g (q) is convex.

Proof of Lemma 1. Consider first class I equilibria for given n ≥ 2. For n < 2, the

question is meaningless. Define

zni ≡ ani − ani−1 for i = 1, . . . , n,

where we skip the superscript n whenever this causes no confusion - in particular, when n is

constant.

We first consider the case c ≤ 1. The typical indifference condition for type ai is

ai =
c

2
(E [θ| θ ∈ [ai − zi, ai)] + E [θ| θ ∈ [ai, ai + zi+1)]) .

Suppose that zi = zi+1 = ∆. Because the density is decreasing on R+, E [θ| θ ∈ [ai −∆, ai)] <

ai − ∆
2

and E [θ| θ ∈ [ai, ai + ∆)] < ai + ∆
2

. Hence,

1

2
(E [θ| θ ∈ [ai −∆, ai)] + E [θ| θ ∈ [ai, ai + ∆)]) <

1

2
2ai = ai.

For given ai−1 and given ai+1, the expression ai− c
2

(E [θ| θ ∈ [ai−1, ai)] + E [θ| θ ∈ [ai, ai+1)])

is increasing in ai, because the loglinear density is weakly logconcave (see Szalay (2012)).

Hence, ai needs to decrease relative to the situation where zi = zi+1 = ∆. This implies that

zi+1 > zi.

Consider now the case c ∈ (1, 2). For c ≥ 2, no equilibrium of the considered kind exists.

For n = 2, the indifference condition of type a2 and a1 are, in that order,

cg (z2) = 2
c

λ
+ 2 (c− 1) (z1 + z2) ,
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and

cg (z1) = 2
c

λ
+ c (z2 − g (z2)) + 2 (c− 1) z1.

Substituting the former condition into the latter and simplifying, we have

z2 =
c

2− c
g (z1) .

Since g (z) > z and c
2−c > 1, we have z2 > z1.

For n ≥ 3, the indifference conditions of types an, an−1, and an−2, respectively, can be

written as

cg (zn) = 2
c

λ
+ 2 (c− 1)

n∑
j=1

zj,

cg (zn−1) = 2
c

λ
+ c (zn − g (zn)) + 2 (c− 1)

n−1∑
j=1

zj,

and

cg (zn−2) = 2
c

λ
+ c (zn−1 − g (zn−1)) + 2 (c− 1)

n−2∑
j=1

zj.

Adding −2 c
λ
− 2 (c− 1)

n∑
j=1

zj + cg (zn) = 0 to the indifference condition of type an−1, we get

cg (zn−1) = (2− c) zn,

and hence

zn =
c

2− c
g (zn−1) .

Since c
2−c > 1 for c > 1 and g (z) > z, this implies that zn > zn−1. By Lemma A1, we

therefore have g (zn)− zn < g (zn−1)− zn−1. Hence, we also have

cg (zn−1) = 2
c

λ
+ c (zn − g (zn)) + 2 (c− 1)

n−2∑
j=1

zj + 2 (c− 1) zn−1

> 2
c

λ
+ c (zn−1 − g (zn−1)) + 2 (c− 1)

n−2∑
j=1

zj = cg (zn−2) ,

where the first equality is the indifference condition of type an−1 and the second equality the

one for type an−2. Hence, we can conclude that zn−2 < zn−1.
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Likewise, suppose as an inductive hypothesis that zi < zi+1. Consider the indifference

conditions of types ai and ai−1, respectively,

cg (zi) = 2
c

λ
+ c (zi+1 − g (zi+1)) + 2 (c− 1)

i−1∑
j=1

zj + 2 (c− 1) zi

and

cg (zi−1) = 2
c

λ
+ c (zi − g (zi)) + 2 (c− 1)

i−1∑
j=1

zj.

By Lemma A1, the value of the right-hand side of the former equation exceeds the value of

the right-hand side of the latter equation, and hence we have shown that zi−1 < zi.

Class II equilibria have the same indifference conditions for the marginal types ai for

i = 2, . . . , n− 1. Hence, the same argument applies.

Note that we do not invoke symmetry of the equilibrium in any way. Therefore, except

for notation, the same argument applies also to asymmetric equilibria.

Proof of Lemma 2. We prove the result for the case of class I equilibria first. The argument

is structured as follows. In a first step, we investigate the forward solution, addressing first

properties of solutions and then existence. In a second step, we address existence and

uniqueness of a fixed point. In a third step, we give an inductive argument for the existence

of equilibria for all n. Finally, the extension to the case of class II equilibria is presented.

1. The forward solution

i. Properties

For c ≤ 1, it is easy to see from the proof of Lemma 1 that the forward solution satisfies

a2 (x)− x > x and ai+1 (x)− ai (x) > ai (x)− ai−1 (x) for i = 3, . . . , n− 1.

We first show that the forward solution a2 (x) satisfies limx→0 (a2 (x)− x) = 0 and da2
dx

>

1, implying that a2 (x) − x is increasing in x. Then we we show that the forward solutions

ai (x)− ai−1 (x) for i = 3, . . . , n all satisfy limx→0 (ai (x)− ai−1 (x)) = 0 and dai+1(x)
dx

> dai(x)
dx

,

implying that ai (x)− ai−1 (x) is increasing in x.

Consider the equation determining the forward solution for a2 (x), that is condition (11)

for i = 1, a0 = 0, and a1 = x; formally, a2 (x) is the value of a2 that solves

cg (x)− c

λ
=
c

λ
+ c (a2 − x)− cg (a2 − x) + 2 (c− 1)x.
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In the limit as x → 0, we obtain limx→0 a2 (x) = 0 from the fact that limq→0 g (q) = 1
λ
.

Totally differentiating, we obtain

(cg′ (x) + c (1− g′ (a2 (x)− x))− 2 (c− 1)) dx− c (1− g′ (a2 (x)− x)) da2 = 0,

so that
da2

dx
=

(cg′ (x) + c (1− g′ (a2 (x)− x))− 2 (c− 1))

c (1− g′ (a2 (x)− x))
> 0.

Moreover, da2
dx

> 1 by the fact that cg′ (x) − 2 (c− 1) > 0 for c ≤ 1. Hence, we have that

limx→0 (a2 (x)− x) = 0 and d
dx

(a2 (x)− x) > 0.

For i = 2, consider the forward equation for a3 (x) . Formally, a3 (x) is the value of a3

that solves

cg (a2 (x)− x)− c

λ
=
c

λ
+ c (a3 − a2 (x))− cg (a3 − a2 (x)) + 2 (c− 1) a2 (x) .

Since limx→0 a2 (x) = 0 and limx→0 (a2 (x)− x) = 0, we also have limx→0 a3 (x) = 0 and

limx→0 (a3 (x)− a2 (x)) = 0. Totally differentiating, we obtain

da3 (x)

da2 (x)
=
cg′ (a2 (x)− x)

(
da2(x)
dx
− 1
)

+ (c (1− g′ (a3 (x)− a2 (x)))− 2 (c− 1)) da2(x)
dx

c (1− g′ (a3 (x)− a2 (x))) da2(x)
dx

.

Since da2(x)
dx

> 1, we have da3(x)
da2(x)

> 0, and moreover da3(x)
da2(x)

> 1. Finally,

da3 (x)

dx
=
da3 (x)

da2 (x)

da2 (x)

dx
>
da2 (x)

dx
.

Hence, we have that limx→0 (a3 (x)− a2 (x)) = 0 and d
dx

(a3 (x)− a2 (x)) > 0.

Suppose as an inductive hypothesis that the forward solutions up to and including ai (x)

have the properties that limx→0(ai (x)− ai−1 (x)) = 0, limx→0 ai (x) = 0, and dai(x)
dai−1(x)

> 1, so

that ai (x)− ai−1 (x) increasing in x. Consider the equation for ai+1 with solution ai+1(x),

cg (ai (x)− ai−1 (x))− c

λ
=
c

λ
+ c (ai+1 − ai (x))− cg (ai+1 − ai (x)) + 2 (c− 1) ai (x) .

The inductive assumptions for ai (x) and ai−1 (x) imply that limx→0(ai+1 (x) − ai (x)) = 0,
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so that limx→0 ai+1 (x) = 0. Totally differentiating, we obtain

dai+1 (x)

dai (x)

=
cg′ (ai (x)− ai−1 (x))

(
dai(x)
dai−1(x)

− 1
)

+ (c (1− g′ (ai+1 (x)− ai (x)))− 2 (c− 1)) dai(x)
dai−1(x)

c (1− g′ (ai+1(x)− ai (x))) dai(x)
dai−1(x)

.

The assumption dai(x)
dai−1(x)

> 1 implies that dai+1(x)
dai(x)

> 1. We can conclude that, ai+1 (x)−ai (x)

is increasing in x for all i = 1, . . . , n.

ii. Existence

We now address existence of forward solutions and show that for each i = 2, . . . , n, there

is x∗i such that a unique, finite forward solution for ai (x) exists for all x ∈ [0, x∗i ) . In the

limit as x→ x∗i , limx→x∗i ai (x) =∞. Furthermore, we show that x∗i+1 < x∗i .

The forward solution a2 (x) solves

cg (x)− c

λ
=
c

λ
+ c (a2 − x)− cg (a2 − x) + 2 (c− 1)x.

The left-hand side satisfies limx→0 cg (x)− c
λ

= 0 and increases in x. The right-hand side

satisfies

lim
a2→x

{ c
λ

+ c (a2 − x)− cg (a2 − x) + 2 (c− 1)x
}

= 2 (c− 1)x ≤ 0,

where the inequality is strict for c < 1 and x > 0. Moreover, the right-hand side is increasing

and concave in a2 with limiting value

lim
a2→∞

{ c
λ

+ c (a2 − x)− cg (a2 − x) + 2 (c− 1)x
}

=
c

λ
+ 2 (c− 1)x.

Hence, there exists a finite forward solution a2 (x) if and only if

cg (x)− c

λ
<
c

λ
+ 2 (c− 1)x.

Since cg (x)− c
λ

is nonnegative and increasing in x and c
λ

+ 2 (c− 1)x is positive for x = 0

and nonincreasing in x, there exists a unique value x∗2 such that

cg (x∗2)− c

λ
=
c

λ
+ 2 (c− 1)x∗2. (22)
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Hence, a finite forward solution a2 (x) exists for all x ∈ [0, x∗2) . In the limit as x → x∗2, we

have limx→x∗2 a2 (x) =∞.
Consider now the forward solution for ai (x) for i = 3, . . . , n. The forward solution ai

solves

cg (ai−1 (x)− ai−2 (x))− c

λ
=
c

λ
+ c (ai − ai−1 (x))− cg (ai − ai−1 (x)) + 2 (c− 1) ai−1 (x) .

The left-hand side satisfies limx→0 cg (ai−1 (x)− ai−2 (x))− c
λ

= 0 and is increasing in x. The

right-hand side satisfies

lim
ai→ai−1(x)

c

λ
+ c (ai − ai−1 (x))− cg (ai − ai−1 (x)) + 2 (c− 1) ai−1 (x) = 2 (c− 1) ai−1 (x) ≤ 0,

with strict inequality for x > 0 and c < 1. Moreover, the right-hand side is increasing and

concave in ai−1 with limiting value

lim
ai→∞

c

λ
+ c (ai − ai−1 (x))− cg (ai − ai−1 (x)) + 2 (c− 1) ai−1 (x) =

c

λ
+ 2 (c− 1) ai−1 (x) .

Therefore, a unique solution for ai exists if and only if

cg (ai−1 (x)− ai−2 (x))− c

λ
<
c

λ
+ 2 (c− 1) ai−1 (x) .

Given the derived properties of the forward solution, we have that cg (ai−1 (x)− ai−2 (x))−
c
λ

is nonnegative and increasing in x and c
λ

+ 2 (c− 1) ai−1 (x) is positive for x = 0 and

nonincreasing in x. Therefore, there exists a unique value x∗i such that

cg (ai−1 (x∗i )− ai−2 (x∗i ))−
c

λ
=
c

λ
+ 2 (c− 1) ai−1 (x∗i ) . (23)

Hence a finite forward solution ai (x) exists for all x ∈ [0, x∗i ) . In the limit as x → x∗i , we

have limx→x∗i ai (x) =∞.
Define

Ai (x) ≡ cg (ai−1 (x)− ai−2 (x))− c

λ
−
( c
λ

+ 2 (c− 1) ai−1 (x)
)
,

and similarly

Ai+1 (x) ≡ cg (ai (x)− ai−1 (x))− c

λ
−
( c
λ

+ 2 (c− 1) ai (x)
)
.
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Since ai (x)− ai−1 (x) > ai−1 (x)− ai−2 (x) and ai (x) > ai−1 (x) for all x, we have Ai+1 (x) >

Ai (x) . Moreover, both Ai+1 (x) and Ai (x) are increasing in x. Letting x∗i and x∗i+1 denote

the values of x such that Ai (x
∗
i ) = 0 and Ai+1

(
x∗i+1

)
= 0, we have x∗i+1 < x∗i .

2. The fixed point argument

Take the forward solution for ai (x) for i = 2, . . . , n and consider the difference between

the left and the right side of (12) , which we define as

∆n (x) ≡ cg (an (x)− an−1 (x))− c

λ
− c

λ
− 2 (c− 1) an (x) .

Differentiating ∆n (x) with respect to x we get

d∆n (x)

dx
= cg′ (an (x)− an−1 (x))

(
dan (x)

dx
− dan−1 (x)

dx

)
− 2 (c− 1)

dan (x)

dx

= cg′ (an (x)− an−1 (x))

(
dan (x)

dan−1 (x)
− 1

)
dan−1 (x)

dx
− 2 (c− 1)

dan (x)

dx
.

Since dan(x)
dan−1(x)

> 1, ∆n (x) is strictly monotonic in x. This implies that there is at most one

value of x that solves ∆n (x) = 0. Let x̃n denote the value of x that satisfies ∆n (x̃n) = 0

for given n, if it exists. To show that a fixed point exists, we need to show that x̃n is such

that the forward solution for an (x̃n) exists. To see this is true, note simply that ∆n (x̃n) = 0

for x̃n = x∗n+1. That is, x̃n is the value of x, such that forward solutions for ai (x) for

i = 2, . . . , n+ 1 exist and are finite for all x ∈ [0, x̃n) . Since x∗n+1 < x∗n, the forward solutions

for i = 2, . . . , n exist and are finite at x = x̃n. Hence, this completes the proof that there

exists exactly one fixed point.

3. Induction

From the main text we have existence of an equilibrium for n = 2. We now show that

existence of an equilibrium inducing 2 (n+ 1) receiver actions implies the existence of an

equilibrium inducing 2 ((n+ 1) + 1) receiver actions. The equilibrium inducing 2 (n+ 1)

receiver actions is characterized by the thresholds an1 = x̃n, an2 (x̃n) , . . . , ann (x̃n) and the

condition ∆n (x) = cg (an (x)− an−1 (x))− c
λ
− c

λ
−2 (c− 1) an (x) = 0. Note that the forward

solution for ann+1 (x) satisfies limx→x̃n a
n
n+1 (x) =∞. This implies that for all x ∈ [0, x̃n) the

forward solution with n+ 1 steps exists. Now consider the function

∆n+1 (x) ≡ cg (an+1 (x)− an (x))− c

λ
− c

λ
− 2 (c− 1) an+1 (x) .
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Clearly, limx→x̃n ∆n+1 (x) > 0, by the fact that limx→x̃n a
n
n+1 (x) = ∞. As ∆n+1 (x) is in-

creasing in x, and limx→0 ∆n+1 (x) = − c
λ
< 0, there exists a unique value x̃n+1 such that

∆n+1 (x̃n+1) = 0. The thresholds an+1
1 = x̃n+1, a

n+1
2 (x̃n+1) , . . . , an+1

n+1 (x̃n+1) characterize the

unique class I equilibrium inducing 2 (n+ 2) receiver actions.

Hence, for all n there exists a unique equilibrium inducing exactly 2 (n+ 1) receiver

actions.

Class II Equilibria:

A class II equilibrium is characterized by

a1 =
c

λ
+ c (a2 − a1)− cg (a2 − a1)− (1− c) a1

in addition to condition (11) for i = 2, . . . , n− 1 and condition (12) .

To construct a forward solution, take an arbitrary initial value x for the first threshold

as given and compute a2 (x) as the solution to

x =
c

λ
+ c (a2 (x)− x)− cg (a2 (x)− x)− (1− c)x.

We have lima2→x
(
c
λ

+ c (a2 − x)− cg (a2 − x)− (1− c)x
)

= − (1− c)x and

lima2→∞
(
c
λ

+ c (a2 − x)− cg (a2 − x)− (1− c)x
)

= c
λ
− (1− c)x. Hence, there is a unique

finite forward solution a2 (x) if and only if x < c
λ
− (1− c)x, or equivalently (2− c)x < c

λ
.

Since c ≤ 1, this is equivalent to x < c
λ(2−c) . We have limx→ c

λ(2−c)
a2 (x) = ∞. Likewise, for

x = 0 we have a2 (x)|x=0 = 0.

Differentiating totally, we find

0 = (c (1− g′ (a2 (x)− x))) da2 − (c (1− g′ (a2 (x)− x)) + (2− c)) dx,

and so
da2

dx
=

(c (1− g′ (a2 (x)− x)) + (2− c))
(c (1− g′ (a2 (x)− x)))

> 1.

Since the forward equations for ai (x) for i = 3, . . . , n as well as the fixed point condition

(12) are unchanged, all the remaining arguments are unchanged. We conclude that there is

a unique class II equilibrium for all n.

Proof of Lemma 3. Since an1 = x̃n = x∗n+1 and an+1
1 = x̃n+1 = x∗n+2 it follows immediately

from Lemma 2 that an+1
i < ani for i = 1, . . . , n. In particular, the argument follows from the
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fact that the solution of the forward equation is monotonic in the initial condition, x. Hence,

it suffices to prove that an+1
i > ani for i = 1, . . . , n.

We start with two preliminary observations.

Firstly, the “next” solution of the forward equation, aki+1 (x) for i = 1, . . . , k − 1, k =

n, n + 1 is monotonic in aki (x) , and the length of the previous interval, aki (x) − aki−1 (x) .

To see this, note that the forward equations for ak2, a
k
3, and aki+1, for i = 3, . . . , k − 1 and

k = n, n+ 1, satisfy:

cg (x)− c

λ
=
c

λ
+ c
(
ak2 − x

)
− cg

(
ak2 − x

)
+ 2 (c− 1)x,

cg
(
ak2 (x)− x

)
− c

λ
=
c

λ
+ c
(
ak3 − ak2 (x)

)
− cg

(
ak3 − ak2 (x)

)
+ 2 (c− 1) ak2 (x) ,

and

cg
(
aki (x)− aki−1 (x)

)
− c

λ
=
c

λ
+ c
(
aki+1 − aki (x)

)
− cg

(
aki+1 − aki (x)

)
+ 2 (c− 1) aki (x) .

The conclusion follows from the fact that aki (x) decreases the value of the right-hand side

and increases the value of the left-hand side. Moreover, the left-hand side is increasing in

aki (x)− aki−1 (x) .

Secondly, it is impossible that an+1
n+1 (x̃n+1) < ann (x̃n) and an+1

n+1 (x̃n+1) − an+1
n (x̃n+1) <

ann (x̃n)− ann−1 (x̃n) . If these conditions would hold, then one of the fixed-point conditions,

0 = cg
(
ann (x̃n)− ann−1 (x̃n)

)
− c

λ
− c

λ
− 2 (c− 1) ann (x̃n)

and

0 = cg
(
an+1
n+1 (x̃n+1)− an+1

n (x̃n+1)
)
− c

λ
− c

λ
− 2 (c− 1) an+1

n+1 (x̃n+1)

would necessarily be violated.

We now show that an+1
j+1 > anj for all j ≤ n.

Suppose that this were not true and let the property be violated for the first time at

j = l.

Now suppose an+1
j+1 (x̃n+1) > anj (x̃n) for all j = 1, . . . , l − 1 and an+1

l+1 (x̃n+1) < anl (x̃n) .

Taken together, these inequalities immediately imply that an+1
l+1 (x̃n+1)−an+1

l (x̃n+1) < anl (x̃n)−
anl−1 (x̃n). In turn, the monotonicity property of the next forward solution implies then that

an+1
l+2 (x̃n+1) < anl+1 (x̃n) .
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It also follows then that an+1
l+2 (x̃n+1) − an+1

l+1 (x̃n+1) < anl+1 (x̃n) − anl (x̃n) . To see this,

suppose instead that an+1
l+2 (x̃n+1) − an+1

l+1 (x̃n+1) ≥ anl+1 (x̃n) − anl (x̃n) or equivalently that

an+1
l+2 (x̃n+1) ≥ anl+1 (x̃n) +

{
an+1
l+1 (x̃n+1)− anl (x̃n)

}
. However, this is impossible since both

an+1
l+2 (x̃n+1) < anl+1 (x̃n) and an+1

l+1 (x̃n+1) < anl (x̃n) . Hence, the claim follows.

However, if an+1
l+2 (x̃n+1) < anl+1 (x̃n) and an+1

l+2 (x̃n+1) − an+1
l+1 (x̃n+1) < anl+1 (x̃n) − anl (x̃n) ,

then an+1
l+3 (x̃n+1) < anl+2 (x̃n) and so forth. Hence, we would have an+1

j+1 (x̃n+1) < anj (x̃n) and

an+1
j+1 (x̃n+1) − an+1

j (x̃n+1) < anj (x̃n) − anj−1 (x̃n) for all j ≥ l and in particular for j = n,

leading to a violation of one of the fixed-point conditions.

The same argument can be given for a class II equilibrium. This is omitted.

Proof of Proposition 1. i) The limit of {an1 , an2 , . . . , ann} as n goes to infinity is an equilib-

rium.

To see this, note that the sequence {x̃n}∞n=2 is monotone decreasing and bounded from

below by zero. Hence it converges. As shown in Lemma 3, the sequence {ann}
∞
n=2 is monotone

increasing. Moreover, the fixed point condition implies that the sequence is bounded from

above, ann <
c

1−c
1

2λ
for all n. Hence, it also converges.

Given that the largest threshold ann converges, by construction of the equilibrium all

thresholds below must also converge: We have constructed an equilibrium as a forward

equation for given initial interval length an1 = x together with a closure condition (12), that

determines the equilibrium value of x. The same equilibrium can also be constructed as a

backward equation, that starts with a given threshold ann = q, which recursively determines

ann−1 (q) and so on, and that together with a closure condition determines the equilibrium

point q. An equilibrium set of thresholds satisfies both the forward and the backward equa-

tion. Given that the largest threshold converges, all thresholds below must also converge

since, they are linked recursively to ann via the backward equation. Hence by construction,

the limit is an equilibrium.

ii) From Lemma 3, we have x̃n+1 < x̃n: the higher the number of thresholds, the shorter

the first interval. We now show that in the limit as n→∞, we have limn→∞ x̃n = 0.

Recall that the forward solution for an (x) exists for x ≤ x∗n, where x∗n satisfies

cg (an−1 (x∗n)− an−2 (x∗n))− c

λ
=
c

λ
+ 2 (c− 1) ann−1 (x∗n) .

Monotonicity of the forward solutions, ak (x) > ak−1 (x), and increasing length of the in-
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tervals, ak (x) − ak−1 (x) > ak−1 (x) − ak−2 (x), imply that for any x > 0, there is a k such

that

cg (ak−1 (x)− ak−2 (x))− c

λ
≤ c

λ
+ 2 (c− 1) ak−1 (x)

and

cg (ak (x)− ak−1 (x))− c

λ
>
c

λ
+ 2 (c− 1) ak (x) .

For a fixed length x of the first interval, the forward solution will necessarily cease to have a

solution at some point. Hence, in an infinite equilibrium we have limn→∞ x̃n = 0, the length

of the first interval goes to zero.

The proof for the case of a class II equilibrium is virtually the same and hence omitted.

Proof of Proposition 2. Let c > 1. Consider class I equilibria first. The forward equation

for a2 is given by

cg (x)− c

λ
=
c

λ
+ c (a2 − x)− cg (a2 − x) + 2 (c− 1)x. (24)

The left-hand side satisfies limx→0 cg (x) − c
λ

= 0 and is increasing and convex in x, with

slope between c
2

and c. The right-hand side satisfies

lim
a2→x

c

λ
+ c (a2 − x)− cg (a2 − x) + 2 (c− 1)x = 2 (c− 1)x ≥ 0,

where the inequality is strict for x > 0. Moreover, the right-hand side is increasing and

concave in a2 with limit

lim
a2→∞

c

λ
+ c (a2 − x)− cg (a2 − x) + 2 (c− 1)x =

c

λ
+ 2 (c− 1)x.

Hence, there exists a forward solution a2 (x) if and only if

2 (c− 1)x < cg (x)− c

λ
<
c

λ
+ 2 (c− 1)x.

There are three cases to distinguish. For c ∈
(
1, 4

3

]
, we have 2 (c− 1) ≤ c

2
and thus

2 (c− 1) ≤ cg′ (x) for all x, since g′ (x) ≥ 1
2

for all x. Therefore, the former inequality is

satisfied for all x > 0. The latter inequality holds for x small since limx→0 cg (x)− c
λ

= 0 < c
λ
.

As x increases, the latter inequality eventually ceases to hold, since c > 2 (c− 1) and thus
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cg′ (x) > 2 (c− 1) for x sufficiently large, as g′ (x) tends to one as x → ∞. Hence, there

exists a solution a2 (x) for x small enough.

For c ∈
(

4
3
, 2
)
, we have c

2
< 2 (c− 1) < c. Since limx→0 g

′ (x) = 1
2
, we have 2 (c− 1)x ≥

cg (x) − c
λ

for x positive and small, so that the former inequality is violated for x small.

Thus, no solution for a2 (x) exists if x is close to zero.

Finally, for c ≥ 2 we have 2 (c− 1) ≥ c and therefore cg′ (x) ≤ 2 (c− 1) for all x.

Hence, no solution exists for a2 (x) . This implies that at most two actions can be induced in

equilibrium.

Hence, it follows immediately that x is bounded away from zero for c > 4
3
. Consider

therefore the case where c ∈
(
1, 4

3

]
. By Lemma 3, the solution must satisfy a2 (x)−x > x for

any equilibrium. We show that this condition is violated for small x. Suppose that a2−x = x.

We define the difference between the rhs and the lhs of condition (24) at a2 − x = x as

D (x) ≡ c

λ
+ cx− cg (x) + 2 (c− 1)x+

c

λ
− cg (x) .

If D (x) is positive (negative), then a2 needs to decrease (increase) to satisfy the forward

equation, since the right-hand side of (24) is increasing in a2. We have limx→0D(x) = 0.

Moreover, the slope of D(x) at x = 0 is D′(x)|x=0 = 2 (c− 1) > 0. Hence, for x small,

the solution to the forward equation would satisfy a2 (x) − x < x, violating the increasing

interval property. However, since any equilibrium needs to have this property, x is bounded

away from zero.

Note that this argument extends to any equilibrium with zero as a threshold, not just

symmetric equilibria.

Consider now a class II equilibrium. Given x, a2 (x) is the value of a2 that solves

cg (a2 − x)− c

λ
= c (a2 − x) + (c− 2)x. (25)

Note first that no solution a2 (x) exists for c ≥ 2. To see this, note that

lim
a2→x

c

λ
+ c (a2 (x)− x)− cg (a2 (x)− x)− (2− c)x = − (2− c)x ≥ 0

for any c ≥ 2 and any x ≥ 0. Therefore, we consider 1 < c < 2 from now on. Equation (25)

has a solution for x < c
λ(2−c) , which satisfies limx→0 a2 (x) = 0 and moreover,

da2

dx
=
c (1− g′ (a2 − x)) + (2− c)

c (1− g′ (a2 − x))
> 1.
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Rearranging (25) we can write

−2
(c− 1)

(c− 2)

(
cg (a2 (x)− x)− c

λ
− c (a2 (x)− x)

)
= −2 (c− 1)x.

Given x and a2 (x) , a3 (x) is the value of a3 that solves

cg (a2 (x)− x)− c

λ
=
c

λ
+ c (a3 − a2 (x))− cg (a3 − a2 (x)) + 2 (c− 1) a2 (x) . (26)

Adding up both equations and rearranging, we can conclude that a3 (x) is the value of a3

that solves

0 =
c

λ
+ c (a3 − a2 (x))− cg (a3 − a2 (x)) + 4

c− 1

2− c
(a2 (x)− x)− c

2− c

(
cg (a2 (x)− x)− c

λ

)
.

(27)

Note that the right-hand side of this equation is increasing in a3 and that a3 (x) is the unique

value that sets the expression equal to zero. We wish to show that the expression is strictly

positive for a3 − a2 (x) = a2 (x) − x, to get that we would have to have a3 (x) − a2 (x) <

a2 (x)− x, in contradiction to the increasing interval property.

Note that the right-hand side of (27) depends only on the differences a2 (x) − x and

a3− a2 (x) . Moreover, note that a2 (x)− x goes to zero as x goes to zero. Let z = a2 (x)− x
and evaluate the rhs of (27) at a3 − a2 (x) = z. We obtain

F (z) ≡ cz + 4
c− 1

2− c
z +

2

2− c

( c
λ
− cg (z)

)
.

F (z) is concave in z. In the limit as x and hence z tends to zero, we find

F ′ (z)|z=0 =
5c− c2 − 4

2− c
,

where we use that g′ (z)|z=0 = 1
2
. For c ∈ (1, 2), we have 5c− c2 − 4 > 0 and we know that

F (z) > 0 for z small. Since, the right-hand side of (27) is increasing in a3, to restore equality

with zero, a3 needs to decrease, which would imply that a3 (x)−a2 (x) < a2 (x)−x. However,

this contradicts the the increasing interval property of any equilibrium. This implies that x

must be bounded away from zero.

Consider now an asymmetric interval around zero. Fix an arbitrary point a−1 = −y < 0

and an arbitrary point a1 = x > 0. We have Pr (θ ∈ (0, x]) = 1
2

(
1− e−λx

)
and Pr (θ ∈ (−y, 0]) =
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Pr (θ ∈ [0, y)) = 1
2

(
1− e−λy

)
. Let δ (x, y) ≡ (1−e−λx)

(1−e−λx)+(1−e−λy)
, then the conditional expec-

tation over the interval [−y, x] is

ω (x, y) ≡ δ (x, y)

(
1

λ
+ x− g (x)

)
− (1− δ (x, y))

(
1

λ
+ y − g (y)

)
.

Clearly, ω (x, y) T 0 for x T y. The forward solution a2 (x, y) is the value of a2 that solves

−cω (x, y) =
c

λ
+ c (a2 − x)− cg (a2 − x) + (c− 2)x. (28)

Note first that for c ≥ 2 necessarily x < y. However, we need to have y < x to get a solution

for the isomorphic problem on the negative orthant. Hence for c ≥ 2 the forward solution

does not exist in both directions.

Now consider 1 < c < 2. A solution a2 (x, y) exists if and only if

(c− 2)x < −cω (x, y) <
c

λ
+ (c− 2)x.

Note that this is always satisfied for x = y, and hence by continuity also for x close to y.

The condition determining a3 is unchanged,

cg (a2 (x, y)− x)− c

λ
=
c

λ
+ c (a3 − a2 (x, y))− cg (a3 − a2 (x, y)) + 2 (c− 1) a2 (x, y) . (29)

Rearranging (28), we can write

2 (c− 1)

(c− 2)
cω (x, y)− 2 (c− 1)

(c− 2)

(
cg (a2 − x)− c

λ
− c (a2 − x)

)
= −2 (c− 1)x.

Adding up with (29) ,

2 (c− 1)

(c− 2)
cω (x, y)

=
c

λ
+ c (a3 (x, y)− a2 (x, y))− cg (a3 (x, y)− a2 (x, y)) + 4

c− 1

2− c
(a2 (x, y)− x)

− c

2− c

(
cg (a2 (x, y)− x)− c

λ

)
.

For x > y, the left-hand side is strictly negative. On the other hand, the right-hand side is

strictly positive at a3 (x, y)− a2 (x, y) = a2 (x, y)− x = z for z small. Hence, the argument
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extends to this case. Note that by symmetry of the distribution, the case x < y causes the

isomorphic problem on the negative orthant. Hence, the size of the interval around zero

must be bounded away from zero.

Finally, note that if the interval closest to the origin has length bounded away from zero,

then all intervals must be of strictly positive length. Hence, only a finite number of intervals

can exist and a finite number of receiver actions is induced.

Proof of Proposition 3. Define zni ≡ ani −ani−1 for i = 1, . . . , n. We wish to derive a closed

form representation for
∑n+1

i=1 p
n
i

(
cµni − c

λ

)2
.

For k = 1, . . . , n+ 1, we define

Xn
k

(
ank−1

)
≡

n+1∑
i=k

pni
(
cµni − c

λ

)2

n+1∑
i=k

pni

and p̂nk
(
ank−1

)
≡ pnk

n+1∑
i=k

pni

.

Xn
k

(
ank−1

)
is the expected squared deviation of the receiver’s choice from its mean value, c

λ
,

conditional on truncation above ank−1. Moreover, p̂nk
(
ank−1

)
= Pr

(
θ ∈ Θn

k

∣∣θ ≥ ank−1

)
.

We first derive an exact expression for Xn
n

(
ann−1

)
. Then, we impose as an inductive

hypothesis that Xn
k

(
ank−1

)
has the same functional form as Xn

n

(
ann−1

)
has and show that

this implies that Xn
k−1

(
ank−2

)
does have the same functional form that Xn

k

(
ank−1

)
has.

Clearly, we have p̂nn+1 (ann) = 1 and since µnn+1 = 1
λ

+ ann, we get

Xn
n+1 (ann) =

(
cµnn+1 −

c

λ

)2

=

(
c

n∑
j=1

znj

)2

.

For n = 1, the expression takes value c2 (z1
1)

2
.

We now use Xn
n+1 (ann) to compute

∑n+1
i=n

pni
pnn+pnn+1

(
cµni − c

λ

)2
, the expected squared devi-

ation of the receiver’s choice from its mean conditional on θ ≥ ann−1. We can write

Xn
n

(
ann−1

)
= p̂n

(
ann−1

) (
cµnn −

c

λ

)2

+
(
1− p̂n

(
ann−1

))
Xn
n+1 (ann) .

For the exponential distribution,
∑n+1

i=n
pni

pnn+pnn+1
= 1−exp (−λznn) . The indifference condition

of type ann pins down p̂n
(
ann−1

)
. To see this, note that the indifference condition of type ann,
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−cµnn = cµnn+1 − 2
∑n

j=1 z
n
j , written explicitly takes the form:

c
znn

1− exp (−λznn)
− c

λ
− c

n∑
j=1

znj =
c

λ
+ c

n∑
j=1

znj − 2
n∑
j=1

znj .

Rearranging and simplifying, we have

p̂nn
(
ann−1

)
= 1− exp (−λznn) =

cznn

2 c
λ
− 2 (1− c)

n∑
j=1

znj

.

Hence, we can write

Xn
n

(
ann−1

)
=

cznn

2 c
λ
− 2 (1− c)

n∑
j=1

znj

(
(2− c)

n∑
j=1

znj −
2c

λ

)2

+

1− cznn

2 c
λ
− 2 (1− c)

n∑
j=1

znj


(
c

n∑
j=1

znj

)2

.

Tedious but straightforward algebra shows that

Xn
n

(
ann−1

)
= cznn

(
2c

λ
−
(
(2− c) znn + 2 (1− c) ann−1

))
+ c2

(
ann−1

)2
.

Using the indifference condition of type ann, (2− c)
∑n

j=1 z
n
j = c

λ
+ cµnn, we can also write

Xn
n (an−1) =

c

(2− c)

( c
λ

+ cµnn − (2− c) ann−1

)( c
λ
− cµnn + cann−1

)
+ c2

(
ann−1

)2
.

Notice that for n = 1, which implies that ann−1 = 0, we obtain the exact value of the expected

squared deviation of the receiver’s choice from their mean.

Suppose now as an inductive hypothesis that

Xn
k

(
ank−1

)
=

c

(2− c)

( c
λ

+ cµnk − (2− c) ank−1

)( c
λ
− cµnk + cank−1

)
+ c2

(
ank−1

)2
.

We can write

Xn
k−1

(
ank−2

)
= p̂nk−1

(
ank−2

) (
cµnk−1 −

c

λ

)2

+
(
1− p̂nk−1

(
ank−2

))
Xn
k

(
ank−1

)
=
(
1− exp

(
−λznk−1

)) (
cµnk−1 −

c

λ

)2

+ exp
(
−λznk−1

)
Xn
k

(
ank−1

)
.
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Note that
exp(−λznk−1)∑n+1

i=k p
n
i

=
exp(−λ(ank−1−a

n
k−2))

exp(−λak−1)
= exp (λak−2) = 1∑n+1

i=k−1 p
n
i

, so the factor exp
(
−λznk−1

)
adjusts the term Xn

k

(
ank−1

)
to reflect the change in the truncation point from ank−1 to ank−2.

Writing the indifference condition of type ank−1, −cµnk−1 = cµnk − 2
∑k−1

j=1 z
n
j , in explicit

form, we have

c
znk−1

1− exp
(
−λznk−1

) − c

λ
− c

k−1∑
j=1

znj = cµnk − 2
k−1∑
j=1

znj .

This delivers the probability distribution as

p̂nk−1

(
ank−2

)
= 1− exp

(
−λznk−1

)
=

cznk−1

c
λ

+ cµnk − (2− c)
k−1∑
j=1

znj

.

Substituting the inductive hypothesis and the probability distribution, we have

Xn
k−1 (ak−2) =

cznk−1

c
λ

+ cµnk − (2− c)
k−1∑
j=1

znj

(
cµnk−1 −

c

λ

)2

+

c
λ

+ cµnk − (2− c)
k−1∑
j=1

znj − cznk−1

c
λ

+ cµnk − (2− c)
k−1∑
j=1

znj

·

(
c

(2− c)

( c
λ

+ cµnk − (2− c) ank−1

)( c
λ
− cµnk + cank−1

)
+ c2

(
ank−1

)2
)
.

Substituting for c
∑k−1

j=1 z
n
j = cank−1 = cank−2 + cznk−1, and using the indifference condition of

type ank−1, −cµnk−1 = cµnk − 2
(
ank−2 + znk−1

)
, we find

Xn
k−1 (ak−2) =

cznk−1
c
λ
− cµnk−1 + cank−2 + cznk−1

(
cµnk−1 −

c

λ

)2

+
c
λ
− cµnk−1 + cank−2

c
λ
− cµnk−1 + cank−2 + cznk−1

·(
c

(2−c)

(
c
λ
− cµnk−1 + cank−2 + cznk−1

) (
c
λ
− (2− c)

(
ank−2 + znk−1

)
+ cµnk−1

)
+c2

(
ank−2 + znk−1

)2

)
.
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Tedious but straightforward algebra shows that

Xn
k−1 (ak−2) =

c

(2− c)

( c
λ

+ cµnk−1 − (2− c) ank−2

)( c
λ
− cµnk−1 + cank−2

)
+ c2

(
ank−2

)2
,

completing the inductive argument.

To obtain the statement in the proposition, note that in a class I equilibrium an0 = 0 and

so we can write

Xn
1 (0) =

c

(2− c)

( c
λ

+ cµn1

)( c
λ
− cµn1

)
.

Since Xn
1 (0) =

∑n+1
i=1 p

n
i

(
cµni − c

λ

)2
, we have shown that

n+1∑
i=1

pni

(
cµni −

c

λ

)2

=
c

2− c

(( c
λ

)2

− (cµn1 )2

)
.

Since
∑n+1

i=1 p
n
i

(
cµni − c

λ

)2
=
∑n+1

i=1 p
n
i (cµni )2 −

(
c
λ

)2
- by the fact that

∑n+1
i=1 p

n
i µ

n
i = 1

λ
- we

can write

c2

n+1∑
i=1

pni (µni )2 =
2

2− c

( c
λ

)2

− c

2− c
(cµn1 )2 .

Hence we have shown that

n+1∑
i=1

pni (µni )2 =
1

2− c
2

λ2
− c

2− c
(µn1 )2 .

Noting that V ar (θ) = 2
λ2
, completes the proof.
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[9] Crémer, J., Khalil, F., and Rochet, J.-C. (1998) “Contracts and Productive Information

Gathering”, Games and Economic Behavior, 25, 174-193.

[10] Deimen, I. and Szalay, D. (2014) “Smooth, strategic communication” CEPR DP 10190.

[11] Deimen, I. and Szalay, D. (2015) “Information, Authority, and Smooth Communication

in Organizations” CEPR DP 10969.

50



[12] Demski, J. S., & Sappington, D. E. (1987). Delegated expertise. Journal of Accounting

Research, 25(1), 68-89.

[13] Dessein, W. (2002) “Authority and Communication in Organizations” Review of Eco-

nomic Studies 69, 811-838.

[14] Di Pei, H. (2015) ”Communication with Endogenous Information Acquisition” Journal

of Economic Theory, 160, 132-149.
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