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Abstract

In this paper I introduce the concept of “self-justified” equilibrium as an alternative to rational

expectations equilibrium in stochastic general equilibrium models heterogeneous agents. In a

self-justified equilibrium agents’ expectations can be described by finite sets and agents forecast

future prices by some simple function that depends on this set. The expectations are correct

(i.e. “self-justified”) for a finite number of points in the endogeneous state space but it might

lead to incorrect forecasts otherwise.

I consider a model with overlapping generations, stochastic production and idiosyncratic risk.

Unlike rational expectations equilibria, self-justified equilibria always exist in this economy and

they can be approximated numerically with standard methods. Error analysis for approximate

solutions is straightforward and there exist approximate equilibria where forcasting errors are

arbitrarily small.

∗Preliminary and Incomplete
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1 Introduction

The assumption of rational expectations and the use of recursive methods to analyze dynamic

economic models has revolutionized financial economics, macroeconomics and public finance (see

e.g. Ljungqvist and Sargent (2012)). Unfortunately, for stochastic general equilibrium models with

heterogeneous agents rational expectations equilibria are generally not tractable. In these models,

known sufficient conditions for the existence of stationary Markov equilibria are very restrictive

(see Citanna and Siconolfi (2012) or Brumm, Kryczka and Kubler (2017)), computational methods

to approximate these equilibria numerically are often ad hoc, and rigorous error analysis seems

impossible. In this paper I develop an alternative to rational expectations equilibria and consider

temporary equilibria with finitely self-justified expectations. Agents forecast future prices using

continuous function of current endogenous variables. The key is that these functions are parameter-

ized by a finite set of points and that they are simple in the sense that they can be easily evaluated.

The solution might coincide with or be close to a rational expectations equilibrium if that is well

behaved. However, the crucial advantages of self-justified equilibria is that they always exist and are

easy to approximate numerically. Errors are attributed to agents and hence directly interpretable.

The basic idea of the approach is as follows. In a temporary equilibrium agents use current en-

dogenous variables and the shock to forecast future prices and prices for commodities and assets in

the current period ensure that markets clear. The forecasts are based on a finite set of expectations

that are self-justified in the sense that in the temporary equilibrium they turn out to be correct.

However, the agents ‘extrapolate’ from this finite set to form expectations using any possibe real-

ization of current endogenous variables. In the temporary equilibrium these expectations might be

far from correct and agents might make large mistakes. However, it turns out that in many simple

examples agents do well with rule-of-thumb expectations which are computationally much simpler

that rational expectations.

The concept does not require identical expectations or identical forecasts across agents. Different

types of agents can have different expectations and different forecasting functions.

I illustrate the concept in a stochastic overlapping generations model with stochastic production.

This is a abstract model which encompasses both models with neo-classical production (as e.g.

in Krueger and Kubler (2004)) and Lucas-style asset pricing models (as e.g. in Storesletten et

al. (2007)). Self-justified equilibria exist under standard conditions and can be approximated

numerically with well-understood tools from numerical analysis. If one allows for approximate

equilibria, it can be shown that agents forecasts can become arbitrarily accurate as the expectations-

set becomes large. This latter result is relevant for numerical work, where rounding and truncation

errors cannot be avoided.

There is a large and diverse body of work exploring deviations from rational expectation (see, e.g.,

Spear (1989), Sargent (1993), Guesnerie (2001,2005), Gabaix (2014), Adam et al. (2016)). Much
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of this work is motivated by insights from behavioral economics about agents’ behavior or by the

search for simple economic mechansism that enrich the observable implications of standard models.

The motivation of this paper is rather different in that I want to develop a simple alternative to

rational expectations that allows researchers to rigorously analyze stochastic dynamic models with

heterogeneous agents.

As Sargent (1993) points out, “when implemented numerically ... rational expectations models

impute more knowledge to the agent within the model ... than is possessed by an econometri-

cian”, and a sensible approach to relax rational expectations is “expelling rational agents from our

model environment and replacing them with ‘artificially intelligent ’agents how behave like econo-

metricians.”This is exactly the idea behind self-justified equilibria. In fact, many methods that are

used to approximae rational expectations equilibria numerically (see Brumm, Kubler and Scheideg-

ger (2017) for an overview) can be reinterpreted as methods that, in fact, compute self-justified

equilibria. I will illustrate this point with simple examples below.

Applied dynamic general equilibrium modeling has been critized (rightly so) for its failure to

take into account the large heterogeneity in tastes and technologies across agents. Part of its failure

to be useful during the financial crises in 2008 might be attributed to this fact. The number of

households that overborrowed was well known and data was available about their ability to service

their mortgages in the event of an economic downturn. However, it seemed to complicated to

incorporate this information in large-scale dynamic models because existing solution methods are

not able to handle this amount of heterogeneity. Using the concept of self-justified equilbria, one can

easily incorporate large scale heterogenity into general equilibrium models and potentially improve

their usefulness for applied work.

The rest of the paper is organized as follows. In Section 2 the general economy is introduced.

In Section 3 I define self-justified equilibria and show that they exist under general conditions. In

Sections 4 and 5 I consider the two natural cases of forecasting from expectations: Collocation- and

simulation-based methods. Section 6 presents results for approximate equilibria.

2 A general dynamic Markovian economy

In this section I describe an abstract a model of a Bewley-style production economy with overlapping

generations. Brumm, Krycka and Kubler (2017) discuss a version of the model with infinitely lived

agents. As they point out, there are two special cases of the model that play an important role

in practice. In the first, a heterogeneous agent version of the Lucas (1978) asset pricing model,

agents trade in several long-lived assets that are in unit net supply and pay exogenous positive

dividends in terms of the single consumption good. In the second, a version of the Brock–Mirman

stochastic growth model with heterogeneous agents, there is a single capital good that can be used in

intraperiod production, together with labor, to produce the single consumption good. This good can
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be consumed or stored in a linear technology yielding one unit of the capital good in the subsequent

period.

2.1 The model

I consider a Bewley-style overlapping generations model (see Bewley (1984)) with incomplete finan-

cial markets and a continuum of agents. Time is indexed by t P N0. Aggregate shocks zt realize

in a finite set Z “ t1, . . . , Zu, and follow a first-order Markov process with transition probability

πpz1|zq. A history of aggregate shocks up to some date t (which is also referred to as a “date event”)

is denoted by zt “ pz0, z1, . . . , ztq. At each date event, H types of agents enter the economy and live

for A periods. Within each type there is a continuum of agents that differ ex post by the realization

of their idiosyncratic shocks. It is assumed that for each type h each agent within the type faces

idiosyncratic shocks, y1, ..., yA, that have support in a finite set Y and are Markovian. I denote by

ηahpya`1|yaq the conditional probability of idiosyncratic shock ya`1 given that the current shock is

ya and that the current age is a, and I use ηhpyaq to denote the probability of a history of idiosyn-

cratic shocks of agents of type h who were born at time t ´ a ` 1 up to time t. I assume that the

idiosyncratic shocks are independent of the aggregate shock, that they are identically distributed

across agents within each type and age and, as in the construction in Proposition 2 in Feldman

and Gilles (1985), that they “cancel out” in the aggregate, that is, the joint distribution of idiosyn-

cratic shocks within a type ensures that at each history of aggregate shocks, zt, for any ya P Ya

the fraction of agents of type h with history ya “ py1, ..., yaq is ηhpyaq. This allows the focus on

equilibria for which prices and aggregate quantities only depend on the history of aggregate shocks,

zt. I denote the set of all date events at time t by Zt and, taking z0 as fixed, I write zt P Zt for

any t P N0 (including t “ 0). At each zt there are finitely many different agents actively trading

(distinguishing themselves by age, type, and history of shocks), who are collected in a set I. A

specific agent at a given node zt is denoted by i “ ph, yaq P I.

At each date event there are L perishable commodities, l P L “ t1, ..., Lu, available for consump-

tion and production. The individual endowments are denoted by eh,yapztq P RL` and assumed to

be time-invariant and measurable functions of the current aggregate and idiosyncratic shock. Each

agent h has a time-separable expected utility function

Uh,ztppxt`aq
A´1
a“0 q “ E0

«

A´1
ÿ

a“0

ua,h
`

ya, zt`a, xph,ztq,t`a
˘

ff

,

where xph,ztq,t`a P RL` denotes the agent’s (stochastic) consumption at date t` a.

It is useful to distinguish between intertemporal and intraperiod production. Intraperiod pro-

duction is characterized by a measurable correspondence F : Z Ñ RL, where a production plan

f P RL is feasible at shock z if f P Fpzq. For simplicity (and without loss of generality) I assume

throughout that each Fpzq exhibits constant returns to scale so that ownership does not need to be
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specified.

Intertemporally each individual i P I has access to J linear storage technologies, j P J “

t1, ..., Ju. At a node z each technology j is described by a column vector of inputs g0
j pzq P RL`, and

a vector-valued random variable of outputs in the subsequent period, g1
j pz

1q P RL`, z1 P Z. I write

G0pzq “ pg0
1pzq, . . . , g

0
Jpzqq for the L ˆ J matrix of inputs and G1pz1q “ pg1

1pz
1q, . . . , g1

Jpz
1qq for the

L ˆ J matrix of outputs. I denote by γipztq “ pγi1pztq, ..., γiJpztqqJ P RJ` the levels at which the

linear technologies are operated at node zt by agent i “ ph, yaq. Each period there are complete

spot markets for the L commodities; prices are denoted by ppztq “ pp1pz
tq, ..., pLpz

tqq, a row vector.

It is assumed throughout that agents’ utility is strictly increasing in the consumption of commodity

1 which is used as a numéraire, i.e. p1pz
tq “ 1 for all zt. It simplifies notation to write p P RL´1

` to

denote prices p1, p2, . . . , pLq..

At t “ 0 agents have some initial endowment in the capital goods which are denoted by

G1
hpz0qγh,yapz

´1q for each agent ph, yaq.

2.2 Rational expectations equilibrium

In order to be able to compare self-justified equilibria to existing concepts, it is useful to formally

define a (Rational expectations) sequential competitive equilibrium.

Given initial conditions pG1pz0qγipz
´1qqiPI, we define a sequential competitive equilibrium to be

a process of prices and choices,

`

p̄t, px̄i,t, γ̄i,t, qiPI , f̄t
˘8

t“0
,

such that markets clear and agents optimize—that is to say, (A), (B), and (C) hold.

(A) Market clearing:

ÿ

i“ph,yaqPI

ηpyaqpx̄hpz
tq `G0pztqγ̄ipz

tq ´ eipztq ´G
1pztqγ̄ipz

t´1qq “ f̄pztq, for all zt.

(B) Profit maximization:

f̄pztq P arg max
yPFpztq

p̄pztq ¨ y.

(C) Each agent ph, ztq maximizes utility:

px̄h,t, ᾱh,tq
8
t“0 P arg max

pxh,t,αh,tq
8
t“0ě0

Uhppxh,tq
8
t“0q s.t.

p̄pztq ¨
`

xhpz
tq `A0pztqαhpz

tq ´ ehpztq ´G
1pztqαhpz

t´1q
˘

ď 0, for all zt.

The definition of equilibrium assumes rational expectations. In making their plans the agents

know the process of future prices. This seems to be a strong requirement that is often justified by

focusing on recursive equilibria where agents only need to know a polucy function and a transition
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function. The concept of a (rational expectations) recursive equilibrium, however, has three draw-

backs: i) general existence can only be shown under strong conditions on the stochastic process

pztq (see Brumm et al. (2017)), ii) the agents need to know and evaluate the measurable policy

function and the measurable state transition. It is not possible to obtain results on continuity. iii)

the agents need to observe the entire state – in economies with many agents or many capital-stocks

this appears to be an unrealistically strong assumption.

3 Self justified equilibria

The agents in this paper deviate from rational expectations with respect to two aspects. First,

it is assumed that they cannot evaluate (or store) arbitrary measurable functions. The agents

approximate the equilibrium correspondence by “simple ” functions. In the applications below I will

consider polynomial and piecewise polynomial functions as well as Gaussian processes. Second, it is

assumed that agents cannot fit their forecasts using a infinite amount of information. Expectations

are characterized by a finite set and the approximating functions are parameterized by this set. In

the applications below I consider interpolation as well as regression.

It is useful to define the endogenous state as the storage from the previous period across indi-

viduals. For this let K Ă RL` with typical element

κpztq “ pκipz
tqqiPI “

`

G1pztqγh,ya´1pzt´1q
˘

ph,yaqPI´A

and define the set of current choices and prices as E, i.e.

ppxi, γiqiPI, y, pq P E “ RIpL`Jq` ˆ RL ˆ RL´1
` .

Let S “ ZˆK denote the (aggregate) state-space and let O denote the set of possible expecta-

tions, i.e. the set of finite subsets of SˆE. Each agent of type h is characterized by a set Oh P O

and functions φh,a : SˆEˆYˆZˆO Ñ RL`, a “ 1, . . . , A, that predicts future prices and marginal

utilities, conditional on the future shock, on the basis of current state, current endogenous variables

and the agent’s expectations, Oh.

Given any collection of functions φ̄ “ pφ̄ahqhPH,a“1,...,A´1, φ̄ha : S ˆ E ˆY ˆ Z ˆ O Ñ RL` for

all h “ 1, . . . ,H, for each z, κ and each profile of expectations pOhqhPH the temporary equilibrium
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correspondence is defined as

Nps, pOhqhPHq “ tw̄ “ px̄i, γ̄iqiPI, f̄ , p̄q P E :

px̄h,ya , γ̄h,yaq P arg max
xhPRL`,γhPRJ`

ua,hpya, z, xhq `

ÿ

py1,z1qPYˆZ

πpz1|zqηpy1|yqφa,hps, w̄, y
1, z1,OhqG

1pz1qγh s.t.

´p̄ ¨ pxh `G
0pzqγh ´ eahpy, zq ´ κh,yaq ě 0 for all h, ya P I, a “ 1, . . . , A,

x̄h,yA P arg max
xiPRL`

ua,hpya, z, xhq s.t.

´p̄ ¨ pxh ´ eahpy, zq ´ κh,yAq ě 0 for all h, yA P I,

f̄ P arg max
fPFpzq

p̄ ¨ f,

ÿ

ph,yaqPI

ηpyaqpx̄h `G
0
hpzqγ̄h ´ eahpy, zq ´ κh,yaq “ f̄u.

The basic idea of the concept of self-justified equilibria is that agents have knowledge of a

finite number of points of the temporary equilibrium correspondence and use these to approximate

the entire correspondence and for these forecasts. The known points one the correspondence are

self-justified if the forecasts formed from these points leads to the correspondence. More formally,

Definition 1 Expectations pOhqhPH are self-justified if for each agent h̄ each ps, ηq P Oh̄

η P Nps, pOhqhPHq.

A self-justified equilibrium is then simply a temporary equilibrium arising from expectations

OhPH. The formal definition is as follows.

Definition 2 A temporary equilibrium process,

`

p̄t px̄h,t, γ̄h,tqhPH , ȳt
˘8

t“0
,

is self justified if there exist expectations pOhqhPH such that

`

px̄hpz
tq, γ̄hpz

tqqhPH, f̄pz
tq, p̄pztq

˘

P Npzt, κpz
tq, pOhqhPHq

for all zt

3.1 Existence

To prove existence of a self-justified equilibrium one first needs to make standard assumptions on

fundamentals not unlike those that ensure the existence of a rational expectations equilibrium.

Since I consider an economy with several commodities I want to allow for the fact that some

commodities do not enter the utility functions of agents and some commodities, although their
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consumption provides utility, are not essential in that an agent might decide to consume zero of

that commodity. Nevertheless, we need to assume that there is at least one commodity that is

essential in the sense that independently of prices an agent will always consume positive amounts of

that commodity. For simplicity we take the consumption space to be X “ R`` ˆ RL´1
` , assuming

that utility and marginal utility are well defined even if consumption of goods 2, . . . , L are on the

boundary.

The following assumptions on preferences, endowments and technologies are from Brumm et al.

(2017).

Assumption 1

1. Individual endowments in good 1 and aggregate endowments in all other goods are bounded above

and bounded below away from zero—that is, there are e, e P R`` such that for all shocks z

e ă eh1pzq ă e for all agents h,

e ă
1

H

ÿ

hPH

ehlpzq ă e for all goods l “ 2, . . . , L.

2. The Bernoulli functions uah : Y ˆ Z ˆ C Ñ R, h P H, a “ 1, . . . , A, y P Y, z P Z, are

increasing, concave, and continuously differentiable in x, they are strictly increasing and strictly

concave in x1, and they satisfy a strong Inada condition: for any sequence xn1 Ñ 0, we have

supyPY,zPZ,,px2,...,xLqPRL´1
`

uhpz, px
n
1 , x2, . . . , xLqq Ñ ´8. Utility is bounded above: there exists

a ū such that uhpz, xq ď ū for all h P H, z P Z, x P C.

Assumption 2 For each shock z the production set Fpzq Ă RL is assumed to be closed, convex-valued,

to contain RL´, to exhibit constant returns to scale—that is, f P Fpzq ñ λf P Fpzq for all λ ě 0, and

to satisfy Fpzq X ´Fpzq “ t0u. In addition, production is bounded above: There is a κ̄ P R` so that

for all κ P KU , h P H, z P Z, l P LK , and for all γ P RHJ`
ÿ

hPH

`

G0pzqγh ´ κh ´ ehpzq
˘

P Fpzq ñ sup
z1

ÿ

hPH

pehlpz
1q `

ÿ

jPJ

g1
jlpz

1qγhjq ď maxrκ̄,
ÿ

hPH

κhls.

As in Duffie et al. (1994) and Brumm et al. (2017), Assumption 1 implies that there is a c ą 0

such that, independently of prices, an agent will never choose consumption in commodity 1 that is

below c. The reason is that budget feasibility implies that an agent can always consume his or her

endowments (the agent cannot sell them on financial markets in advance), and we therefore must

have, for any shock z and for any x with x1 ă c,

uhpz, xq `
δu

1´ δ
ă

1

1´ δ
inf
zPZ

uhpz, xq,

where ū is the upper bound on Bernoulli utility and x1 “ ω, xl “ 0, l “ 2, . . . , L.
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Assumption 2 ensures that the set K can be taken to be compact.

It is useful to define Ξ to be the set of storage decisions across agents, γ, that ensure that next

period’s endogenous state lies in K:

Ξ “ tγ P RHJ` :
`

G1pz1qγh
˘

hPH
P K for all z1 P Zu. (1)

It is useful to decompose an agent h’s expectations,

Oh “ ppsph, 1q, wph, 1qq, . . . , psph,Nq, wph,Nqqu,

into expectations about states,

OD
h “ psph, 1q, . . . , sph,Nqu,

and to consider a function Ŵ : YhPHOD
h Ñ W with wph, iq “W psph, iqq for all i “ 1, . . . , N , h P H.

The following assumption on φah suffices to ensure existence of self-justified equilibria.

Assumption 3 The functions φahpz, κ, w, y1, z1,Ohq are continuous in κ,w and in pwph, 1q, . . . , wph,Nnqq

for all z, y1, z1 P ZˆYˆZ. The functions are bounded below by 0 and, for given Oh uniformly bounded

above.

Existence of a self-justified equilibrium then simply reduces to the existence of a finite-dimensional

fixed point, in partciluar - the first main result of this section is as follows.

Theorem 1 Under Assumptions 1-3, given any expectations about states

OD
h “ ppsph, 1q, . . . , sph,Nhqu, h P H,

for all h P H

Ŵ psph, iqq P Nps, pOhqhPHq

for all h, i.

To prove the result we decompose the economy into sub-economies for each sph, jq and introduce

the standard agents’ best repsponses for all these subnote. A slight technical difficulty arises as one

needs to bound prices away from zero. The bounds are denoted by real positive numbers, βx and βp.

For any βx ą 0, βp ą 0 sufficiently small and for any spiq “ pzpiq, κpiqq P OD, define the following

compact sets:
rFpspjqq “ tf P Fpzq : f `

ÿ

iPI

ηpyaqpehpya, zq ` κiq ě 0u,

rXβxpspjqq “ txi P RL` : ηpyaq
1

2
xi ´

ÿ

iPI

pehpya, zq ` κiq P Fpzq, xh1 ě βxu,

G “ tγh P RJ` : ηpyaqeilpz
1q `

ÿ

jPJ

a1
hljpz

1qγhj ď 2κ̄ for all h P H, l P L, z1 P Zu.
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Define the truncated price set ∆L´1
βp

“ tp P RL` :
řL
l“1 pl “ 1, p1 ě βpu and for each agent

h “ 1, . . . ,H the choice correspondence

Φi,j
η : ∆L´1

η ˆΞ Ñ rCpsq ˆA.

by

Φh
ηpp, α

˚q “ arg max
xhPC̃psq,αhPA

EM̄h ps, xh, αh, α
˚q s.t.

´p ¨ pxh ´ ehpzq ´ κh `A
0
hpzqαhq ě 0

By a standard argument, the correspondence Φ is convex-valued, non-empty valued, and upper-

hemicontinuous. Define the producer’s best response ΦH`1
η : ∆L´1

η Ñ rYpsq by

ΦH`1
η ppq “ arg max

yP rYpsq
p ¨ y

and define a price player’s best response,

Φ0
η : pC̃psq ˆAqH ˆ Ỹpsq Ñ ∆L´1

η

by

Φ0
ηppxh, αhqhPH, yq “ arg max

pP∆L´1
η

p ¨

˜

ÿ

hPH

pxh ´ ehpzq ´ κh `A
0
hpzqαhq ´ y

¸

.

It is easy to see that this correspondence is also upper-hemicontinuous, non-empty, and convex

valued. Finally, define

ΦH`2 : AH Ñ Ξ

by

ΦH`2pαq “ arg min
α˚PΞ

}α´ α˚}2.

By Kakutani’s fixed-point theorem, the correspondence
ˆ

H`1
Ś

h“0

Φh
η

˙

ˆΦH`2 has a fixed point, which

we denote by px̄, ᾱ, ȳ, ᾱ˚, p̄q.

Since by budget feasibility we must have

p̄ ¨

˜

ÿ

hPH

px̄h ´ ehpzq ´ κh `G
0
hpzqᾱhq ´ ȳ

¸

ď 0,

optimality of the price player implies that for sufficiently small η ą 0 the upper bound imposed by

requiring x P C̃psq and the upper bound on production will both never bind. Consumption solves

the agent’s problem for all x P C and production maximizes profits among all y P Ypzq. In addition,

Assumption 2 implies that the upper bound on each αh cannot be binding and that in fact ᾱ “ ᾱ˚.

Finally, there must be some ε ą 0 such that for all η ă ε the fixed point must satisfy that p̄1 ě ε.

This is true because all commodities must either be consumed, used as an input for intra-period

production, or stored. If p̄1 ă ε there must be some other commodity l ‰ 1 with p̄l
p̄1
ą 1´ε
pL´1qε . But for
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sufficiently small ε ą 0 the (relative) price of this commodity is so high that it is not consumed—

because marginal utility of good 1 is bounded away from zero in rCpsq and marginal utility of

commodity l is finite (as utility is assumed to be continuously differentiable on C “ R``ˆRL´1
` ).

Furthermore, good l can neither be used for (constant-returns-to-scale) intratemporal production,

nor for (linear) storage—the agent who stores it could eventually increase his utility by selling a

small fraction of this commodity and increasing his consumption of commodity 1. Therefore there

is some ε ą 0 such that for η ă ε the price player chooses a price with p̄1 ě ε and a standard

argument gives that
ÿ

hPH

px̄h ´ ehpzq ´ κh `A
0
hpzqᾱhq “ ȳ.

This proves the result. l

3.2 Approximate equilibria

In order to derive results on how well agents’ can forecast future prices in self-justified equilibria

it often turns out to be useful to consider approximate equilibria where agents make ε-mistakes

in their choices. There are a variety of justifications for this, the only one that seems somewhat

credible derives from the fact that compuational methods can only solve for approximate equilibria.

However, it has to be kept in mind that the theoretical results in this paper will focus on one specific

approximate equilibrium among many others and there is a priori no reason why the numerical

methods should comptute that specific one. I will return to this issue when discussing specific

examples.

For now it is useful to define the ε-equilibrium temporary equilibrium correspondence as follows.

Nεps, pOhqhPHq “ tw̄ “ ppx̄i, γ̄iqiPI, f̄ , p̄, Ūq P Eˆ RI :

ε ą }Ūya,h ´

¨

˝ua,hpya, z, xhq `
ÿ

py1,z1qPYˆZ

πpz1|zqηpy1|yqφa,hps, w̄, y
1, z1,OhqG

1pz1qγh

˛

‚}

Ū “ max
xhPRL`,γhPRJ`

ua,hpya, z, xhq `

ÿ

py1,z1qPYˆZ

πpz1|zqηpy1|yqφa,hps, w̄, y
1, z1,OhqG

1pz1qγh s.t.

´p̄ ¨ pxh `G
0pzqγh ´ eahpy, zq ´ κh,yaq ě 0 for all h, ya P I, a “ 1, . . . , A,

f̄ P arg max
fPFpzq

p̄ ¨ f,

ÿ

ph,yaqPI

ηpyaqpx̄h `G
0
hpzqγ̄h ´ eahpy, zq ´ κh,yaq “ f̄u.

An ε equilibrium is then simply a sequence of values in the ε -equilibrium temporary equilibrium

correspondence.
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Clearly, in actual computations one can only expect to find ε-equilibria. If the set of these

equilibria is large even for relativelty small values of ε it seems important to pin down how the

errors arise. I will make this clear in the concrete examples below.

4 Interpolation

There is a certain sense where the choice of OD
h and of the functions φp.q should be guided by

insights from numerical analysis. The problem of recovering unknown functions from finitely many

function observations has a rich history. One possible method is called “interpolation”where an

approximating function is chosen to coincide with the unknown function precisly at the known

points.

Suppose we want to approximate f : r´1, 1sd Ñ IR by interpolating it at points in H Ă

r´1, 1sd. It turns out that, in order to obtain a good approximation, both the choice of H and the

interpolating function f̂ are crucial. Krueger and Kubler (2003) use Smolyak’s (1963) method which

provides a general principle to construct good approximations for d-dimensional problems, based on

approximations for the univariate case. Brumm Kubler and Scheidegger (2017) use adaptive sparse

grids together with D-linear interpolation.

For the purposes of this paper, it is enough to consider an abstract method which requires a

set of points H Ă r´1, 1sd, together with function values fpxiq for all i P H and produces a simple

approximating function f̂px;H, fpHq. It is without loss of generality to think of the approximating

functions to be defined uniquely by the values of the unknown functions at all points in H. With this

the search for a self-justified equilibrium then reduces to solving a non-linear system of equations. At

all points in pOD
h qhPH the system of equations (with the first order conditions of the maximizations

problems taken to be equations, assuming interior solutions)

Ŵ psph, iqq P Nps, pOhqhPHq for all h, i.

In other words, one searches for the points in the expectations set that ensure that the agents’

forecasting function passes exactly through these points.

Obviously, this rasies the question who good the approximation is away from these points. This

can be phrased in two ways. First, one can ask if actual bounds are available for a given number

of points. It is clear that the answer to this will generally be negative. However, one can compute

given paramteric examples and in these examples verify that forecasts can be very accurate.

The second question is how the model behaves if the number of points in the expectation-sets

become very large. This question will be taken up in Section 4.2 below. For now a simple example

is considered.

12



4.1 A numerical example

The following example is from Krueger and Kubler (2003) - however, in that paper the authors report

errors in Euler equations for the approximated equilibrium. Here we use their solution method to

compute self-justified temporary equilibria. For the reader’s convenience I rewrite the model for the

special case of a single capital stock and use the notation in Krueger and Kubler (2003):

The economy is populated by overlapping generations of agents that live for N periods. At each

date-event zt a representative household is born. As mentioned in the introduction we focus on the

case where there is no within generation heterogeneity and households only distinguish themselves

by the date-event of their birth so that a household is fully characterized by zt. To simplify notation,

we collect all households which are alive at some node zt in a set Izt and denote a typical household

by i P Izt . When there is no ambiguity about the identity of households we will index households

simply by their time of birth.

In each period i of her life, an agent born at node zs has non-negative, possibly stochastic labor

endowment lipztq which depends on the agents’ age, i “ t´ s` 1 and on the current shock zt alone.

The price of the consumption good at each date event is normalized to one and at each date event

zt the household supplies her labor endowment inelastically for a market wage wpztq.

Let by cst denote the consumption of an agent born at time s in period t ě s.1 Individuals value

consumption according to

Es

«

s`N´1
ÿ

t“s

βt´supcst q

ff

(2)

where u : R`` Ñ R is assumed to be smooth, strictly increasing, strictly concave and to satisfy the

Inada condition limcÑ0 u
1pcq “ 8.

Households have access to a storage technology: they can use one unit of the consumption

good to obtain one unit of the capital good next period. We denote the investment of household

s into this technology by ast . We do not restrict ast ě 0, because we want to permit households to

borrow against future labor income. One possible interpretation of this assumption is that there is

a bank which acts as an intermediary and which stores the capital good for all households, and each

individual household can then borrow from this bank. At time t the household sells its capital goods

accumulated from last period, ast´1, to the firm for a market price rt ą 0. The budget constraint of

household s in period t ě s is

cst ` a
s
t “ rta

s
t´1 ` l

t´swt (3)

We impose the restriction that in the last period of his life the agent is not allowed to borrow,

ass`N´1 ě 0, i.e. we rule out that households die in debt. Furthermore we assume that agents enter

the economy without any assets, i.e. we assume that ass´1 “ 0.

1Whenever there is no ambiguity we will use the notation cst “ cst pz
t
q to denote consumption of an agent born at

s at node zt of the event tree. The notation for all other variables is to be understood correspondingly.
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To start off the economy we assume that in period zero, there are N households of ages 1 through

N who enter the period with given capital holdings a0
´1, . . . , a

´N`1
´1 , where by assumption a0

´1 “ 0

There is a single representative firm which in each period t uses labor and capital to produce

the consumption good according to a constant returns to scale production function ftpK,L; ztq.

Since firms make their decisions on how much capital to buy and how much labor to hire after the

realization of the shock zt they face no uncertainty and simply maximize current period profits.2

In the examples below we will always use the following parametric form for the production

function.

fpK,L, zq “ ηpzqF pK,Lq `Kp1´ δpzqq (4)

where ηp.q is the stochastic shock to productivity, where δp.q can be interpreted as the (possibly)

stochastic depreciation rate and where F p., .q is a Cobb-Douglas production function.

In this simple economy the only markets are spot markets for consumption, labor and capital,

all of which are assumed to be perfectly competitive. It is not difficult to extend the model (but

possibly difficult to compute its equilibrium) to include financial markets where J securities like

bonds or options are traded. However, in order to focus on the main computational challenges we

avoid unnecessary notation and additional prices and focus on the simplest possible asset structure.

Definition 3 A competitive equilibrium, given initial conditions z0, pa
s
´1q

0
s“´N`1 is a collection of

choices for households pcit, a
i
tq
iPIzt and for the representative firm tKt, Ltu as well as prices trt, wtu for

all t “ 0, . . .8. such that

1. For all s “ 0, ...,, given trt, wtu8t“0, the choices tcst , a
s
tu
s`N´1
t“s maximize p2q, subject to p3q

2. Given rt, wt the firm maximizes profits, i.e.

pKt, Ltq P arg max
Kt,Ltě0

fpKt, Lt, ztq ´ rtKt ´ wtLt (5)

3. All markets clear: For all t

Lt “
ÿ

iPIzt

lit

Kt “
ÿ

iPIzt

ait´1

Note that by Walras law market clearing in the labor and capital market imply market clearing

in the consumption goods market. Note furthermore that the assumptions on the parametric form
2We assume that households cannot convert capital goods back into consumption goods at the beginning of the

period. This assumption is necessary to prevent households from consuming the capital at the beginning of the period

instead of selling it to the firm in states where the net return to capital is negative. Alternatively one can assume

that for all zt, rpztq ě 1, as is the case for our numerical examples below.
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of the production function as well as concavity and differentiability of F imply that equilibrium

prices satisfy

wpztq “ ηpztqFLpKpz
tq, Lpztqq

rpztq “ ηpztqFKpKpz
tq, Lpztqq ` p1´ δpztqq

For future reference, the Euler equation for consumption for any given generation s in node zt reads

as

u1pcst pz
tqq “ β

ÿ

zt`1PZ
Πpzt`1|ztqrpz

t, zt`1qu
1pcst`1pz

t, zt`1qq

“ βEztu
1pcst`1pz

t, z̃qqrpzt, z̃q (6)

where Ezt is the conditional expectation of z̃, conditional on zt.

Aollowing our numerical algorithm described above we now approximate policy functions θ̂. Once

these are obtained we choose some3 initial conditions pa0
´1, . . . , a

´N`1
´1 q and use these, together with

a simulated path of shocks tztuTt“0 to generate approximated equilibrium allocations.

We use a sequence of N simulated aggregate capital stocks and the same simulated path of

shocks tztuTt“N`1 to generate true equilibrium allocations, for initial conditions that are consistent

with the initial conditions for the approximated equilibrium. We then compare these allocations

to the true equilibrium allocations. For the evaluation we discard the first 1,000 of our 15,000

simulated observations, to avoid the influence of initial conditions on our results.

We parametrize the economy as follows. We set β “ 0.9560{N . We consider a Cobb-Douglas

production function, F pK,Lq “ KαL1´α and pick a capital share of α “ 0.3. The stochastic

production shock is assumed to be iid across time and can take four values, i.e. Z “ tz1, z2, z3, z4u

with equal probability of 1
4 . The iid assumption is mainly made for expositional simplicity (the

model has an analytical solution with serially correlated aggregate shocks as well). Experiments

with positively correlated technology shocks deliver results that are similar to those reported in the

text.

In order to shed some light on whether and to what extent the size of aggregate shocks matters

and whether it is shocks to the return to capital or shocks to returns to labor that matter more for

the quality of the approximation we consider four different cases for the values the productivity and

depreciation shocks.
3In practice we use the steady state asset holdings for some deterministic steady state in which the aggregate

shock is fixed permanently at an intermediate level.
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Table 1: Specifications for Shocks

State 1 State 2 State 3 State 4

Case 1: η 0.95 1.05 0.95 1.05

Case 1: δ 0.7 0.7 0.7 0.7

Case 2: η 0.85 1.15 0.85 1.15

Case 2: δ 0.7 0.7 0.7 0.7

Case 3: η 0.95 1.05 0.95 1.05

Case 3: δ 0.5 0.5 0.9 0.9

Case 4: η 0.85 1.15 0.85 1.15

Case 4: δ 0.5 0.5 0.9 0.9

In Table 1 we list the parameters for the 4 cases. While it is obvious that for realistic calibrations

the magnitude of the shocks has to depend on the length of a period (and therefore on the number

of agents), we keep these four cases fixed throughout the paper. Our goal in this paper is to evaluate

the proposed algorithm for a variety of different shocks.

In Table 2 we show how the number of generations N , the degree of the interpolating polynomial

ρ (recall that the dimension of the state space is N ´ 1 and that in the notation of Section 3

ρ “ 2q´d) as well as the magnitude of productivity and depreciation shocks influences the accuracy

of our algorithm, as compared to the true equilibrium allocations (recall that the dimension d of the

problem equals d “ N ´ 1). We implemented the algorithm for 2nd degree complete polynomials

(q “ d ` 1), 4th (q “ d ` 2) and 8th ( q “ d ` 3) degree polynomials. We compute equilibria for

N “ 3, N “ 6 and N “ 9. For all examples we set the stopping tolerance of the time iteration

method to τ “ 10´6. As it turns out for this model specification, the results are numerically highly

unstable for large N . This is caused by the fact, that agents have zero endowments for all but one

period of their lives. We therefore do not consider N ą 10 in this section.

The results are based on simulations of the economy for 14,000 periods (after discharging the

initial 1,000 observations). What we report is the maximal error maxt

ˇ

ˇ

ˇ

K̂t´Kt
Kt

ˇ

ˇ

ˇ
in the aggregate

capital stock K̂t computed with our numerical approximation, as compared to the true analytical

solution Kt.
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Table 2: Maximal Errors in Allocations and average running times

ρ,N Case 1 Case 2 Case 3 Case 4

2,3 6.7 (-4) 2.2 (-3) 8.2(-3) 1.9 (-2)

4,3 1.1 (-5) 1.0 (-4) 3.4 (-4) 5.1 (-4)

8,3 4.2 (-6) 1.2 (-5) 4.9 (-5) 1.1 (-4)

2,6 6.3 (-2) 9.1 (-2) 1.2 (-1) 2.8 (-1)

4,6 3.9 (-4) 9.8 (-4) 2.3 (-3) 3.2 (-3)

8,6 7.4 (-5) 1.0 (-4) 3.5 (-4) 7.7 (-4)

2,9 9.8 (-2) 2.4 (-1) 5.1 (-1) 6.9 (-1)

4,9 1.1 (-3) 7.3 (-3) 2.0 (-2) 3.8 (-2)

8,9 6.7 (-4) 9.9 (-4) 3.1 (-3) 7.2 (-3)

We see that in almost all cases where N “ 3 the quality of the approximation is excellent – a

maximal error of 10´4 (in the table written as 1.0 (-4)) implies that if the true capital stock were

always equal to 1 the approximated capital stock is never smaller than 0.9999 or larger than 1.0001.

In general the quality of the approximation (but also obviously the running time of the algorithm)

improves with the number of points. It is generally not advisable to only use polynomials of order

2 for the approximations.

It is interesting to note that the quality of the approximation decreases with the size of the

technology shocks (compare errors for case 1 and 2, and for case 3 and 4); this is due to the

fact that with a larger support of technology shocks the deterministic steady states lie further

apart and hence the approximation occurs over a larger state space, which leads to poorer quality

of the approximation. More importantly from a quantitative point of view, however, is that the

approximation becomes significantly worse for economies for which stochastic returns to labor and to

capital are imperfectly correlated (cases 3 and 4). In these cases the decision rules are more “curved”

in the own asset holdings and thus cannot be approximated as well with Chebyshev polynomials as

for the case with nonstochastic depreciation.

As the number of agents, N , increases, the quality of the approximation decreases quite rapidly.

4.2 Good approximations

While it is difficult to make statements about exact equilibria a simple argument shows that for

approxiamte equilibria forecasts can be arbitrarily accurate as one allows for sufficiently many points

in expectation-sets.

The following theorem makes this precise.

Theorem 2 For any ε ą 0 and any pOqiPIq for any type h̄ there existφa,hp.q and Oh̄ as well as an

ε temporary equilibrium sequence, such that agent h̄’s forecasts are always within ε of the realized
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equilibrium values.

To prove the result, observe... TBR

5 Regression

Clearly, in the presence of idiosyncratic shocks the above method is no longer feasible. The number

of dimensions of the state space exceeds several millions and even with only a few points per

dimension the problem is no longer feasible. In that situation it seems reasonable to assume that

agents do not take the entire wealth-distribution into account to form their forecasts of next period

equilibrium variables. One way to make this precise is to assume that agents try to find “an active

subspace”. Scheidegger and Bilonis (2017) show how active subspace method, applied to Gaussian

processes, can be used in dynamic economic models. The basic idea is from Constantine et al.

(2013)). They examine the problem of approximating a high dimensional function f : Rm Ñ R by

finding an appropriate matrix m ˆ n matrix W (where n is much smaller than m) to be able to

write

fpxq “ F pWy `WRzq „ gpyq.

They provide a simple and (in variations applicable) construction for gp.q and W and Scheidegger

and Bilonis (2017) show that in many economic applications n can be taken to be very small relative

to the true dimension of the state space.

In the model of this paper it seems reasonable that agents do not know the full state space

and can only approximate functions of relatively low dimensions. An extreme case is, of course to

assume that they do not take the wealth distribution into account at all. This is somewhat similar

to the computational approach taken in Krusell and Smith (1997). In a model with productions,

they assume simple laws of motion for aggregate capital and show that agents make small mistakes

with these law of motions

5.1 A simple example

For the purposes of this paper, it suffices to consider a much simpler case. While the deviations

from rationality can be large in this case, it illustrates the general idea and one does not require

any additional technical methods.

Suppose that agents trade in a Lucas tree (and possibly financial markets). Production is trivial

in the sense that a tree today is transformed into a tree tomorrow together with dividends.

Suppose for this purposes that the agents base their forecasts only on the current and next

period’s shock, i.e. the forecasting functions φ do not depend on endogenous variables at all.

Agents simply assign the average price in that realizes in their expectations set to assign a price to
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each pz, z1q. The agents then use cubic splines to approximate their policy functions numerically,

taken as given the simplified evolution of prices.

It is useful to discuss this in a specific example. Assume that agent live for 12 periods (A “ 12).

For this case there are at most 211 “ 2048 possible histories of idiosyncratic shocks per type active in

financial markets and one can keep track of the wealth distribution among these agents exactly. For

significantly larger A this obviously quickly becomes infeasible and one needs to approximate the

wealth distribution itself. While it is now well understood how to do this efficiently (see e.g. Allais

et al. (2014) for an overview), any approximation scheme will create another source of numerical

error. Since the focus lies on evaluating the performance of the optimization approach I limit myself

to cases where this additional error is absent and the wealth distribution is exact.

The agents’ problems are solved accurately enough to ensure that the maximal relative errors

in Euler equations are below 0.5 ˆ 10´4. Given that these are problems with occasionally binding

constraints, a higher accuracy is difficult to obtain. This limits the search for ε-equilibria to the

same order of magnitude. Two kinds of computational experiments are performed. First I discuss

examples with several types and two assets but simple calibration for endowment shocks. Then I

examine some simpler economies with a single tree but with more complex endowment processes.

In all examples it is assumed that all agents maximize time-separable expected utility,

Uh,ztp~xq “ Ezt
A
ÿ

a“1

ua,hp~xaq,

and that per-period utility is CRRA with coefficient of risk aversion σ ‰ 1 and a discount factor β,

that is,

uahpxq “ βa
x1´σ

1´ σ
for all a, h.

In this first example it is assumed that there are two types of agent (H “ 2) that distinguish

themselves only by their trading constraints. The fraction of agent 1 is denoted by λ. There are two

aggregate shocks and two idiosyncratic shocks. There are J “ 2 assets; the first one is a Lucas tree

with dividends dpzq and the second one is a one-period Arrow security paying fpz, qq “ q ` dpzq if

the aggregate shock is z “ 1 (and zero otherwise). The Lucas tree cannot be shorted and the Arrow

security can only be shorted against the Lucas tree. Agents of type 1 can trade in both securities,

while agents of type 2 can only trade in the tree.

Throughout this example it is assumed that β “ 1; that both idiosyncratic and aggregate shocks

are i.i.d., and that πpz “ 1q “ πpz “ 2q “ 1
2 and ηahpy “ 1q “ ηahpy “ 2q “ 1

2 for all pa, hq. It is

assumed that the life-cycle profile for aggregate endowments per cohort is as follows;

ē “ pē1, . . . , ē12q “ p0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.5, 0.5, 0.5, 0.2, 0.2, 0.2q, d̄ “ 1.

Define dpyq “ dpyqd̄ and

eahpy, zq “

$

&

%

ēa ¨ eypyq ¨ ezpzq a “ 1, . . . , 9

ēa a “ 10, 11, 12.
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Note that this deviates from the notation above and it is now assumed that agents of age a “ 1 are

subject to the idiosyncratic shock.

For this example, risk aversion, the shocks d, ey, and ez as well as λ and σ are varied. For

all experiments in this example N “ 2; that is, there are only two possible prices per shock (that

depend on the previous aggregate shock). Table 1 shows that both average errors as well as maximal

errors are low for a wide variety of these parameters.

σ d ey ez λ Avg. err. Max. err.

2 (0.9,1) (0.75, 1.25) (0.9,1) 0.5 2.3E-04 5.4E-04

3 (0.9,1) (0.75, 1.25) (0.9,1) 0.5 4.1E-04 9.4E-04

4 (0.9,1) (0.75, 1.25) (0.9,1) 0.5 6.4E-04 1.4E-03

2 (0.85,1) (0.75, 1.25) (0.9,1) 0.5 6.7E-04 1.5E-03

2 (0.95,1) (0.75, 1.25) (0.9,1) 0.5 2.1E-04 5.0E-04

2 (1,1) (0.75, 1.25) (0.9,1) 0.5 6.3E-04 1.5E-03

2 (0.85,1) (0.75, 1.25) (0.85,1) 0.5 3.6E-04 8.6E-04

2 (0.95,1) (0.75, 1.25) (0.95,1) 0.5 1.6E-04 2.6E-04

2 (0.9,1) (0.5, 1.5) (0.9,1) 0.5 5.7E-04 1.3E-03

2 (0.9,1) (0.25, 1.75) (0.9,1) 0.5 8.2E-04 2.0E-03

2 (0.9,1) (0.75, 1.25) (0.9,1) 0.1 2.5E-04 6.0E-04

2 (0.9,1) (0.75, 1.25) (0.9,1) 0.9 4.7E-04 1.2E-03

Table 3: Errors for various specifications

As can be seen from Table 1, only two prices per aggregate shock suffice to obtain good approxi-

mations for a wide variety of parameters. Computing the welfare losses of agents in the bounded

rationality interpretation leads to similar errors. Agents’ errors in consumption choices rarely exceed

0.001 percent of their planned consumption.

Of course, this example is oversimlified and in many more complex examples one would certainly

not expect simple forecasts to fare as well. The example is simply presented to show the basic forces

at work.

5.2 Stable ε-equilibria

TBR

6 Conclusion

TBR
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