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Abstract

We derive robust comparative statics for general rank-order tournaments with ad-
ditive and multiplicative noise. For unimodal distributions of noise, we show that
individual equilibrium effort is unimodal in the number of players when it is de-
terministic. For a stochastic number of players, the unimodality is preserved for
changes in the number of players in the sense of first-order stochastic dominance
under an additional log-supermodularity restriction. Aggregate equilibrium effort
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1 Introduction

Tournaments are environments in which participants compete for a valuable prize by

spending effort or other resources. Examples include R&D races, rent-seeking, wars and

conflicts, and tournaments in organizations where promotions or bonuses are based on

the relative performance of workers. Starting with the seminal contributions of Tullock

(1980) and Lazear and Rosen (1981) there is by now a substantial theoretical literature on

tournaments using the respective models.1 An important feature of these models distin-

guishing them from “perfectly discriminating” contests or all-pay auctions (e.g., Hillman

and Riley, 1989; Baye, Kovenock and De Vries, 1996; Siegel, 2009) is the presence of un-

certainty, or “noise,” in the winner determination process.2 Jia (2008) and Jia, Skaperdas

and Vaidya (2013) provide a unified framework for the two prominent tournament models

showing that the contest success function (CSF) of Tullock (1980) can be obtained as a

special case of a Lazear-Rosen tournament.3

Yet, the existing analysis of general tournament models is quite scarce. For tractabil-

ity reasons, most of the literature uses either the Tullock CSF (also known as the lottery

contest) and its lottery-form generalizations satisfying the axioms of Skaperdas (1996), or

the Lazear-Rosen tournament with two players.4 Little, if anything, is known in general

about the basic comparative statics of the rank-order tournament model. Specifically, it

is unknown how the individual and aggregate equilibrium effort is affected by the number

of players and the shape of the distribution of noise. Common wisdom suggests that

as the number of players increases the individual probability of winning goes down and

hence so does the marginal gain from increasing one’s effort, leading to lower effort in

equilibrium. This is indeed the case in the Tullock contest.5 However, in a Lazear-Rosen

tournament with a uniformly distributed noise the symmetric equilibrium effort is inde-

pendent of the number of players. Since the two models have different underlying noise

1For a recent summary, see, e.g., Konrad (2009), Congleton, Hillman and Konrad (2008), Corchón
(2007), Connelly et al. (2014).

2Throughout this paper, we focus exclusively on models of “imperfectly discriminating” contests with
noise and use “tournament” as a unifying term for such models.

3While it has been known in the demand estimation literature for a long time that the logit model can
be derived from the random utility model (McFadden, 1974), in the tournament literature the Tullock
and the Lazear-Rosen tournament models have been treated as two completely unrelated models, with
the exception of Jia, Skaperdas and Vaidya (2013).

4Notable exceptions are the papers analyzing optimal prize structures in tournaments with risk-averse
players (Nalebuff and Stiglitz, 1983; Green and Stokey, 1983; Krishna and Morgan, 1998; Akerlof and
Holden, 2012) and heterogeneity (Balafoutas et al., 2017). See also a survey of the earlier literature by
McLaughlin (1988).

5See, for example, surveys by Nitzan (1994) and Corchón (2007).
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distributions, this suggests that the shape of the distribution of noise plays an important

role in equilibrium comparative statics. At the same time, aggregate equilibrium effort is

increasing in the number of players in both cases. How universal are these results? Can

individual equilibrium effort increase in the number of players or can it be nonmonotone?

Can aggregate effort decrease in the number of players?

Similar unanswered questions exist about the effect of the distribution of noise. In-

tuitively, as noise becomes more dispersed, the marginal gain from increasing one’s effort

declines and hence equilibrium effort should go down. Indeed, when the distribution of

noise is uniform with support [−a, a], the equilibrium effort is proportional to 1
2a

, confirm-

ing the intuition. Consider, however, the distribution of noise with pdf f(t) = |t|
a2

on the

same support. Even though its variance is higher than that of the uniform distribution

and, more generally, it is dominated by the uniform distribution in the sense of second-

order stochastic dominance (SOSD), this distribution leads to a higher equilibrium effort

than the uniform distribution in a two-player tournament. The reason is, as we show,

that this distribution has a lower entropy, and it is the Rényi entropy of order 2, and

not the variance or SOSD ordering, that determines the effect of noise on the equilibrium

effort.

In this paper, we start by analyzing the comparative statics of a general Lazear-

Rosen tournament model.6 We show that, in general, there is nothing robust about the

comparative statics. Individual equilibrium effort can be increasing, aggregate effort can

be decreasing, and both can be nonmonotone in the number of players. We show that

the unimodality of the distribution of noise allows for at least some degree of universality,

namely, the unimodality of equilibrium effort in the number of players, and provide a

general characterization of the comparative statics for unimodal noise distributions. In

the absence of unimodality any universality is lost.

We then turn to the analysis of general tournaments with a stochastic number of play-

ers. Indeed, in many situations the number of competitors is unknown to the tournament

participants at the time they decide how much to invest in competition. This would be

the case, for example, in coding contests where an unknown and potentially very large

number of coders submit their solutions; in hiring tournaments where a job seeker does

not know how many others she is up against; or in promotion tournaments where an

6We use the formulation with additive noise. Models with multiplicative noise, such as the Tullock
contest, are transformed into an appropriately defined tournament with additive noise and hence their
comparative statics follow as a special case of a more general theory, see Section 2.2 (cf. also Jia, Skaperdas
and Vaidya, 2013).
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employee may not know how many of her colleagues the management is considering for

a senior position. Following the tradition of the literature on auctions with a stochastic

number of bidders (e.g., McAfee and McMillan, 1987; Harstad, Kagel and Levin, 1990;

Levin and Ozdenoren, 2004), we assume an arbitrary distribution of the number of players

and explore the effects on equilibrium effort of changes in the parameters of the distribu-

tion leading to first-order stochastic dominance (FOSD); that is, we explore the effects of

a stochastic increase in the number of players.

Similar to the deterministic participation case, we show that the unimodality of the

distribution of noise plays a key role in robust comparative statics. We show that the

preservation of unimodality under uncertainty requires an additional log-supermodularity

condition imposed on the distribution of the number of players. This condition follows

from similar arguments to those identified by Athey (2002) for the preservation of single-

crossing under uncertainty. We also explore the effects of noise dispersion and show

that they are governed by an appropriate entropy defined through a combination of the

distribution of noise and the tournament size distribution. Finally, we generalize the

results of Myerson and Wärneryd (2006) on the (dis)advantage of the stochastic number

of players and of Fu, Jiao and Lu (2011) on the benefits of disclosing the actual number

of players.

Contests with a stochastic number of players and endogenous entry have been stud-

ied previously using the lottery contest model of Tullock (1980) and its generalizations

(Münster, 2006; Myerson and Wärneryd, 2006; Lim and Matros, 2009; Fu and Lu, 2010;

Fu, Jiao and Lu, 2011). Münster (2006) explores the effect of risk-aversion. He shows that

when participation probability is sufficiently low equilibrium effort increases in the number

of potential players, both under risk-neutrality and risk-aversion. Overall, effort is lower

under risk-aversion (as compared to risk-neutrality) when participation probability is low,

but higher when it is high. For an arbitrary distribution of group size with expectation µ,

Myerson and Wärneryd (2006) compare aggregate equilibrium contest expenditure when

the number of players is uncertain to the case when the number of players is equal to µ

with certainty. They show that aggregate expenditure is strictly lower in the former case if

it is guaranteed that the contest has at least one participant. Lim and Matros (2009) show

that, for the binomial distribution of contest size, the equilibrium effort is nonmonotone

and single-peaked in the participation probability when the number of potential players

n > 2. They also show that, as long as the participation probability is not too high,

effort is nonmonotone in the number of potential contestants. Fu, Jiao and Lu (2011)

study the effect of disclosure of the number of participating players on aggregate effort.
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They show that disclosure or nondisclosure may be optimal depending on the properties

of the “impact function” in the generalized lottery-form CSF; in the special case of lottery

CSF of Tullock (1980), the principal is indifferent between disclosure and nondisclosure.

Finally, Fu and Lu (2010) study endogenous entry and the optimal allocation of winner’s

prize and participation subsidy/fee. There is no contest size uncertainty in their model,

however, because entry occurs sequentially and each player observes the number of prior

entrants. Fu and Lu (2010) find that the optimal contract extracts all surplus from the

contestants and restricts participation to two active players. More generally, our paper is

related to the literature on games with population uncertainty, including auctions7 and

Poisson games.8

The rest of the paper is organized as follows. In Section 2, we set up the tournament

model with additive noise and show how the case of multiplicative noise is reduced to it

as well. In Section 3 we provide general results on the preservation of unimodality under

uncertainty that we use in the following sections. In Section 4, we focus on tournaments

with deterministic participation and present the comparative statics with respect to the

number of players. In Section 5, we move on to the analysis of the model with stochastic

participation, and Section 6 concludes. Proofs that are missing in the main text are

contained in Appendix A.

2 Model setup

2.1 Additive noise

There are k ≥ 2 identical, risk-neutral players indexed by i ∈ K = {1, . . . , k}. All players

i ∈ K simultaneously and independently choose efforts ei ≥ 0. The cost of effort ei to

player i is c(ei), where c(·) is strictly increasing, strictly convex, and twice differentiable

on (0, c−1(1)], with c(0) = 0. Efforts ei are perturbed by random additive shocks ui to

generate the players’ output levels yi = ei + ui. Shocks ui are i.i.d. with cumulative

distribution function (cdf) F and probability density function (pdf) f defined on interval

support U . When necessary, we will use ul and uh to denote, respectively, the lower

7For a theoretical analysis of auctions with a stochastic number of bidders see, e.g., McAfee and
McMillan (1987), Harstad, Kagel and Levin (1990) and Levin and Ozdenoren (2004). For a theoretical
analysis of endogenous entry in auctions see, e.g., Levin and Smith (1994) and Pevnitskaya (2004).

8See, e.g., Myerson (1998, 2000); Makris (2008, 2009); De Sinopoli and Pimienta (2009); Mohlin,
Östling and Wang (2015); Kahana and Klunover (2015, 2016).
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and upper bounds of U , which may be finite or infinite.9 We assume that f is atomless,

continuous and piece-wise differentiable in the interior of U , and has an inverse quantile

density m(z) (defined below) that is continuous and piece-wise differentiable on (0, 1)

and integrable on [0, 1]. The winner of the tournament is the player whose output is the

highest.10 The winner receives a prize normalized to one, whereas all other players receive

zero.11

For a given vector of efforts (e1, . . . , ek), the probability of player i ∈ K winning the

tournament is given by

Pr(yi > yj ∀j ∈ K \ {i}) = Pr(ei + ui > ej + uj ∀j ∈ K \ {i})

=

∫
U

 ∏
j∈K\{i}

F (ei − ej + t)

 dF (t). (1)

Consider a symmetric pure strategy Nash equilibrium in which all players choose effort

e∗ > 0. Using (1), the expected payoff of player i ∈ K from some deviation effort ei is

πi(ei, e
∗) =

∫
U

F (ei − e∗ + t)k−1dF (t)− c(ei). (2)

The first-order condition for payoff maximization evaluated at ei = e∗, ∂πi(ei,e
∗)

∂ei

∣∣∣
ei=e∗

= 0,

gives

bk = c′(e∗), bk = (k − 1)

∫
U

F (t)k−2f(t)dF (t). (3)

Let F−1(z) = inf{t ∈ U : F (t) ≥ z} denote the quantile function of the distribution of

noise. It is convenient to introduce an unnormalized density function m(z) = f(F−1(z)),

known as the inverse quantile density function (Parzen, 1979). Using the probability

integral transformation z = F (t), rewrite bk in Eq. (3) as

bk = (k − 1)

∫ 1

0

zk−2m(z)dz. (4)

Note that c′(e∗) is a strictly increasing function; therefore, if Eq. (3) has a solution, it is

9In this type of models, it is typically assumed that the shocks are zero-mean. While this assumption
can be made without loss of generality, it is not necessary because the probability of winning is determined
by differences in shocks.

10Ties are broken randomly but, under the assumption of atomless f , occur with probability zero.
11A more general setting could involve up to n distinct prizes; however, in this paper we are not

concerned with optimal contract design, and use the simplest “winner-take-all” prize structure.
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positive and unique for k ≥ 2. In what follows we assume that such a solution, e∗k, exists,

and that it is a symmetric pure strategy equilibrium, i.e., ei = e∗k is the global maximum

of function πi(ei, e
∗
k) given by (2).12

2.2 Multiplicative noise

Via simple transformations of the distribution of noise and the cost of effort, the model

above accommodates tournaments with multiplicative noise where player i’s output is

given by yi = eiui and ui are i.i.d. with a nonnegative support. The probability of player

i winning the tournament of k players can then be written as

Pr(eiui > ejuj ∀j ∈ K \ {i}) = Pr(xi + vi > xj + vj ∀j ∈ K \ {i}),

where xi = ln ei and vi = lnui. Defining F̂ (v) = F (exp(v)) as the cdf of the transformed

shocks vi and ĉ(x) = c(exp(x)) as the cost function for the transformed effort x, this

model is reduced to the tournament model with additive noise, and all the results above

go through.

Specifically, the first-order condition (3) for the transformed equilibrium effort, x∗k =

ln e∗k, is b̂k = ĉ′(x∗k), where b̂k is based on distribution F̂ . Interestingly,

ĉ′(x) = c′(exp(x)) exp(x) = c′(e)e;

therefore, the first-order condition for the original equilibrium effort is b̂k = c′(e∗k)e
∗
k. This

leads to the following proposition.

Proposition 1 The symmetric equilibrium effort in a tournament with multiplicative

noise is the same as in the tournament with additive noise distributed with cdf F̂ (v) =

F (exp(v)) and the cost of effort cm(e) =
∫ e

0
c′(x)xdx.

Tullock contests

12Equilibrium existence and comparative statics are two separate issues, and here we focus on the
latter, leaving the discussion of equilibrium existence (and uniqueness) outside the scope of this paper.
In the Lazear-Rosen tournament model, these are still open questions. It is generally understood that
the symmetric pure strategy equilibrium exists if the variance of shocks ui is sufficiently large and/or
the effort cost function c(·) is sufficiently convex, cf. Nalebuff and Stiglitz (1983). Note that the second-
order condition and the requirement that zero effort is not a best response are not sufficient for e∗k
to be a symmetric equilibrium because function πi(ei, e

∗
k) may have multiple local maxima in ei. For

completeness, we provide the second-order condition in Appendix A.
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As an illustration, consider contests with the CSF of Tullock (1980). The probability

of player i winning the contest of size k is given by
eri∑k
j=1 e

r
j

, where r > 0 is a parameter

measuring the level of noise (the “discriminatory power” of the contest) such that a lower

r corresponds to higher noise. The cost of effort is linear, c(e) = e. Following Jia (2008),

this probability of winning can be written as Pr(eiui > ejuj ∀j ∈ K\{i}) where uj > 0 are

i.i.d. with the Generalized Inverse Exponential distribution with cdf F (u) = exp(−u−r).
That is, the Tullock contest can be represented as a tournament with multiplicative

noise. We can now use Proposition 1 to transform it into a tournament with additive

noise. The transformed shocks vi = lnui have the Generalized Type-I Extreme Value

(or Gumbel) distribution with cdf F̂ (v) = F (exp(v)) = exp[− exp(−rv)] and pdf f̂(v) =

r exp[−rv − exp(−rv)] (see Jia, Skaperdas and Vaidya, 2013). This pdf is unimodal,

with a maximum at zero, and skewed to the right. The transformed cost of effort is

cm(e) =
∫ e

0
xdx = e2

2
. The first-order condition then takes the form b̂k = e∗k, where b̂k is

given by Eq. (4) with m(z) = f̂(F̂−1(z)) = −rz ln z,

b̂k = −r(k − 1)

∫ 1

0

zk−2 ln zdz =
r(k − 1)

k2
, (5)

which is the equilibrium effort in the Tullock contest.

This approach can be further generalized to cover contests with a CSF of the form
h(ei)∑k
j=1 h(ej)

, where h(·) is a strictly increasing “impact function,” and a possibly nonlinear

cost of effort c(ei). By introducing effective efforts xi = h(ei) and costs C(xi) = c(h−1(xi)),

such models are reduced to the Tullock contest with r = 1, and the results above apply.

Specifically, Proposition 1 implies that the symmetric equilibrium level of effective effort,

x∗, satisfies the equation k−1
k2

= C ′(x∗)x∗, where C ′(x) = c(h−1(x))
h′(h−1(x))

. Substituting back

x∗ = h(e∗k), obtain for the equilibrium effort k−1
k2

=
c′(e∗k)h(e∗k)

h′(e∗k)
.

3 Preservation of unimodality under uncertainty

In what follows, we explore the comparative statics of individual and aggregate equilibrium

effort in tournaments with respect to the number of players, k. First, in Section 4, we

assume that k is deterministically given; then, in Section 5, we allow k to be a realization of

a nonnegative integer random variable with some probability mass function (pmf). In the

latter case, we explore the comparative statics with respect to changes in the parameters

of the pmf leading to first-order stochastic dominance (FOSD).
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In both cases, we show that robust comparative statics can be obtained for unimodal

distributions of noise f(t). These comparative statics amount to preservation of uni-

modality under uncertainty. Indeed, note that coefficients bk, Eq. (4), which determine

the comparative statics in the case of deterministic group size, can be written in the from

bk =
∫ 1

0
m(z)dzk−1, i.e., as expectations of inverse quantile density m(z) with respect

to an FOSD-ordered family of cdfs F(k−1)(z) = zk−1. Our first lemma in this section

provides a necessary and sufficient condition for such expectations, generally of the form

γ(θ) =
∫ 1

0
a(z)dH(z, θ), where cdfs H(z, θ) are FOSD-ordered in θ, to be unimodal in θ for

all unimodal functions a(z). When we turn to the case of stochastic group size, equilib-

rium effort will be determined by discrete expectations of the form χ(θ) =
∑n

k=1 xkyk(θ),

where x = {xk}nk=1 is some sequence and y(θ) = {yk(θ)}nk=1 is an FOSD-ordered family of

pmfs. The second lemma in this section establishes a necessary and sufficient condition

for such expectations to be unimodal in θ for all unimodal sequences x. We start with

some definitions. All missing proofs are in Appendix A.

Definition 1 A function (or sequence) φ : S → R, where S ⊆ R, is unimodal if there

exists a t̂ ∈ S such that φ(t) is nondecreasing for t ≤ t̂ and nonincreasing for t ≥ t̂. A

function (or sequence) is interior unimodal if it is unimodal and nonmonotone.

Definition 2 A function ψ : S1 × S2 → R, where S1, S2 ⊆ R, is log-supermodular if for

all t1, t
′
1 ∈ S1, t2, t

′
2 ∈ S2, such that t′1 > t1 and t′2 > t2,

ψ(t1, t
′
2)ψ(t′1, t2) ≤ ψ(t1, t2)ψ(t′1, t

′
2).

In other words, for all t′2 > t2 the ratio r(t1, t2, t
′
2) =

ψ(t1,t′2)

ψ(t1,t2)
is nondecreasing in t1.

Consider integrals of the form γ(θ) =
∫ 1

0
a(z)dH(z, θ), where a(z) : [0, 1] → R is

an integrable, continuous and piece-wise differentiable function and H(z, θ) is a cdf of a

random variable Z|θ defined on [0, 1] and parameterized by θ ∈ Θ ⊆ R.13 We assume

that an increase in θ leads to an upward probabilistic shift, in the FOSD sense, of Z|θ;
that is, H(z, θ) is nonincreasing in θ for all z ∈ [0, 1] and θ ∈ Θ. Let Hθ(z, θ) ≤ 0 denote

the derivative of H(z, θ) with respect to θ if θ is a continuous parameter (in which case

we assume that H(z, θ) is differentiable) or the first difference, H(z, θ+ d)−H(z, θ), if θ

is a discrete index with step size d > 0.

13Variables Z|θ do not have to have the same support; rather, we assume that [0, 1] includes all of their
supports, and H(0, θ) = 1−H(1, θ) = 0 for all θ ∈ Θ.
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Lemma 1 γ(θ) is unimodal for all unimodal functions a(z) if and only if |Hθ(z, θ)| is

log-supermodular; that is, the ratio r(z, θ, θ′) = Hθ(z,θ′)
Hθ(z,θ)

is nondecreasing in z for any

θ′ > θ.

Consider now sums of the form χ(θ) =
∑n

k=1 xkyk(θ), where x is a nonnegative se-

quence and y(θ) = (y1(θ), . . . , yn(θ)) is a pmf parameterized by θ ∈ Θ ⊆ R. We will use

Yk(θ) =
∑k

l=1 yl(θ) to denote the corresponding cumulative mass function (cmf), with

Yn(θ) = 1. The upper bound of the sum, n ≥ 2, can be finite or infinite and applies

uniformly for all values of θ.14 We assume that an increase in θ shifts the distribution

y(θ) upward in the FOSD sense. Let Y ′k(θ) ≤ 0 denote the derivative or the first difference

of the cmf with respect to θ.

Lemma 2 χ(θ) is unimodal for all unimodal sequences x if and only if |Y ′k(θ)| is log-

supermodular; that is, the ratio r(k, θ, θ′) =
Y ′k(θ′)

Y ′k(θ)
is nondecreasing in k for any θ′ > θ.

In some cases, the log-supermodularity condition of Lemma 2 may be difficult to check

directly because there is no closed-form expression for the cmf Yk(θ). The following lemma

shows that a similar ratio condition can instead be checked for the probability-generating

function (pgf) of distribution y(θ), defined as G(z, θ) =
∑n

k=1 yk(θ)z
k−1. Probabilities

yk(θ) can be recovered from it as yk(θ) = 1
(k−1)!

G(k−1)(0, θ). Moreover, the pgf can be

related to the cmf Y (θ) as

n∑
k=1

Yk(θ)z
k−1 =

G(z, θ)− zn−1

1− z
. (6)

It follows from Eq. (6) that G(z, θ) is nonincreasing in θ whenever Yk(θ) is nonincreasing

in θ for all k; that is, G(z, θ) behaves as an FOSD-ordered family of cdfs (except that

G(0, θ) = y1(θ), which is, generally, nonzero). Let Gθ(z, θ) ≤ 0 denote, similar to Hθ(z, θ)

in Lemma 1, either the derivative or the first difference of G(z, θ) with respect to θ.

Lemma 3 |Gθ(z, θ)| is log-supermodular if and only if |Y ′k(θ)| is log-supermodular; that

is, the ratio R(z, θ, θ′) = Gθ(z,θ′)
Gθ(z,θ)

is nondecreasing in z for any θ′ > θ if and only if the

ratio r(k, θ, θ′) in Lemma 2 is nondecreasing in k for any θ′ > θ.

14This is not to say that y(θ) have the same support for all θ ∈ Θ; rather, n = supθ∈Θ n(θ), where n(θ)
is the upper bound of the support of y(θ). The definitions of y(θ) are extended to the uniform support
so that yk(θ) = 0 and Yk(θ) = 1 for k > n(θ).

10



The nondecreasing ratio conditions in Lemmas 1, 2 and 3 are well-known in the lit-

erature on comparative statics under uncertainty (Athey, 2002). They are also known

as total positivity of order 2 (Karlin, 1968), and increasing likelihood ratio properties

when applied to parameterized probability density functions (see, e.g., Shaked and Shan-

thikumar, 2007). Our results are most closely related to those of Athey (2002) on the

comparative statics of expectations of the form γ(θ) =
∫ 1

0
a(z)dH(z, θ) for single-crossing

functions a(z). Lemma 1 is a straightforward corollary of these results applied to uni-

modal functions, i.e., functions with a single-crossing derivative. Indeed, assuming a(1)

is finite (which is the case for interior unimodal functions) and integrating by parts,

γ(θ) = a(1)−
∫ 1

0
a′(z)H(z, θ)dz, where a′(z) is single-crossing and hence, following Athey

(2002), γ′(θ) =
∫ 1

0
a′(z)|Hθ(z, θ)|dz is single-crossing, i.e., γ(θ) is unimodal, if |Hθ(z, θ)|

is log-supermodular. Lemma 2 is a discrete version of Lemma 1 and follows similarly via

“summation by parts.” Lemma 3, however, is less straightforward; the equivalence of log-

supermodality of a discrete cdf and the corresponding pgf is a new result with potentially

broader applications.

4 Tournaments with deterministic group size

4.1 Individual equilibrium effort

Because the marginal cost function c′(·) is strictly increasing, the dependence of symmetric

equilibrium effort e∗k on k is determined entirely by coefficients bk, Eq. (4), which can be

interpreted as the marginal benefit of effort in equilibrium. Note that bk is independent of

k when the distribution of noise is uniform. The following lemma shows that the uniform

distribution is, in fact, the only one for which it is the case.

Lemma 4 Coefficients bk are independent of k for k ≥ 2 if and only if F is a uniform

distribution.

Generally, the properties of coefficients bk are determined by the shape of the distri-

bution of noise. One interpretation of coefficients bk follows from writing them in the form

bk =
∫ 1

0
m(z)dzk−1 = E(m(Z(k−1))), where Z(k−1) is the maximum of k − 1 i.i.d. uniform

random variables in [0, 1]. From the ordering of variables Z(k−1) by first-order stochastic

dominance, it follows immediately that if f(t) is nonincreasing (nondecreasing) then bk is

nonincreasing (nondecreasing) in k for k ≥ 2. Indeed, m(z) has the same monotonicity
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as f(t), and for a higher k the weights in the expectation E(m(Z(k−1))) shift to the right.

The nontrivial case emerges when f(t) is nonmonotone.

Before turning to the main results describing the behavior of bk for all k when f(t)

is unimodal, we present large-k asymptotic results for an arbitrary f(t). As discussed

above, as k increases, bk is determined by increasingly higher order statistics Z(k−1) whose

probability density is concentrated near z = 1; hence, the asymptotic behavior of bk

is determined by the shape of m(z) near z = 1, which corresponds to the upper tail

of pdf f(t). Specifically, a nonincreasing (nondecreasing) upper tail of f will lead to a

nonincreasing (nondecreasing) bk for large k. The following proposition states the result

formally.

Proposition 2 Define ẑ = inf{z′ ∈ [0, 1] : m(z) is monotone on (z′, 1)}. If m(z) is

nonincreasing (nondecreasing) and nonconstant on (ẑ, 1), then there exists a large enough

k̂ such that bk is decreasing (increasing) for all k > k̂.

Point ẑ defined in Proposition 2 determines the location of the “last” peak or dip

of m(z). If pdf f is monotone (and nonconstant), ẑ = 0 and bk is either decreasing or

increasing for all k ≥ 2. If f is nonmonotone, bk is asymptotically decreasing or increasing

depending on whether the last turning point of f is a peak or a dip.

Unimodal distributions are an important class, for which universal global properties

of coefficients bk can be established. The most general result follows directly from Lemma

1: bk is unimodal whenever f(t) (and hence m(z)) is unimodal. Indeed, defining H(z, k) =

zk−1, it is easy to see that |Hk(z, k)| = zk−1(1− z) is log-supermodular.

Recall that b1 = 0 and b2 > 0 in all cases; hence, for any n ≥ 2 a unimodal sequence

{bk}nk=1 can either be nondecreasing or interior unimodal. The subsequence {bk}nk=2,

however, can also be nonincreasing. In what follows, we will mostly focus on the properties

of the latter subsequence. Interesting special cases emerge when f(t) is symmetric and/or

n = 3.

Proposition 3 (i) If f(t) is interior unimodal then {bk}nk=2 (and {e∗k}nk=2) is unimodal.

(ii) If f(t) is nonincreasing (and nonconstant) then {bk}nk=2 (and {e∗k}nk=2) is decreasing.

(iii) If f(t) is nondecreasing (and nonconstant) then {bk}nk=2 (and {e∗k}nk=2) is increasing.

(iv) For n ≥ 4, if f(t) is interior unimodal and symmetric then b2 = b3 (and e∗2 = e∗3),

and {bk}nk=3 (and {e∗k}nk=3) is decreasing.

(v) If f(t) is symmetric (not necessarily unimodal) then b2 = b3 (and e∗2 = e∗3).

12



Figure 1: Left : The pdf f(t) of a distribution with cdf F (t) = 0.2 tan(2t) + 0.7 defined on
[−0.646, 0.491]. Right : Individual equilibrium effort e∗k (blue diamonds, left scale) and aggregate
equilibrium effort E∗k (red squares, right scale) as a function of k for effort cost function c(e) =
1
2e

2.

Part (i) of Proposition 3 follows directly from Lemma 1, while parts (ii) and (iii)

are straightforward special cases, as described above. Note that parts (ii) and (iii) only

rely on the FOSD-ordering of cdfs H(z, k) = zk−1, part (i) relies additionally on the

log-supermodularity of |Hk(z, k)|, but none of the parts (i)-(iii) relies on the specific

order-statistic structure of H(z, k). In contrast, parts (iv) and (v) (proved in Appendix

A) are more specialized and rely on that structure.

The unimodality of f is not necessary for the unimodality of bk (and e∗k), but it is a

tight condition. That is, a non-unimodal distribution of noise can produce a non-unimodal

sequence {bk}. This is illustrated in Figure 1 showing a bimodal pdf f(t) (left) and the

resulting bimodal sequence {e∗k}nk=2 for n = 15 (right). At the same time, a non-unimodal

f(t) does not necessarily lead to a non-unimodal sequence {bk}. For example, a bimodal

distribution with pdf f(t) = 1
2
[fN(−12,4)(t) + fN(12,4)(t)], where fN(µ,σ2)(t) is the pdf of

the Normal distribution with mean µ and variance σ2, generates a decreasing sequence

{bk}nk=2 for any n ≥ 3. Thus, there is no “higher-order” universality of behavior of bk for

non-unimodal distributions.

Additionally, Proposition 3 allows us to characterize the behavior of bk for single-

dipped distributions such that −f(t) is unimodal. Of interest is the case when f(t) is

single-dipped and nonmonotone (when f is monotone parts (ii) and (iii) of Proposition 3

13



apply).

Corollary 1 (i) For n ≥ 3, if f(t) is single-dipped and nonmonotone then {bk}nk=2 (and

{e∗k}nk=2) is single-dipped.

(ii) For n ≥ 4, if f(t) is single-dipped, nonmonotone and symmetric then b2 = b3 (and

e∗2 = e∗3), and {bk}nk=3 (and {e∗k}nk=3) is increasing.

The example in Figure 1 illustrates part (i).

4.2 Aggregate equilibrium effort

Given the various possibilities for the dependence of individual equilibrium effort e∗k on

group size k, it is of interest to also explore how aggregate equilibrium effort E∗k = ke∗k
changes with the number of players. Considering a change from k − 1 to k players, write

the relative change in aggregate effort in the form

δE∗k =
E∗k − E∗k−1

E∗k−1

=
k

k − 1

e∗k
e∗k−1

− 1. (7)

We will explore conditions for δE∗k to be positive, i.e., for the aggregate effort to be in-

creasing in k. As seen from (7), the number of players affects the aggregate equilibrium

effort in two ways: The direct positive effect, represented by factor k
k−1

> 1, and the indi-

rect equilibrium effect,
e∗k
e∗k−1

, which can be less or greater than one. Obviously, aggregate

effort will increase in k when e∗k ≥ e∗k−1, i.e., whenever individual effort is nondecreasing

in k. It is, however, also possible to have aggregate effort increasing in k when e∗k is

decreasing or nonmonotone. For example, in Tullock contests with linear costs individual

effort e∗k = r(k−1)
k2

is decreasing but aggregate effort E∗k = r(k−1)
k

is increasing in k.

It is difficult to proceed with the analysis of aggregate effort for a general cost function

c(e); therefore, we restrict attention to homogeneous cost functions of the form c(e) = c0e
ξ,

ξ > 1. In this case Eq. (7) gives δE∗k = k
k−1

(
bk
bk−1

) 1
ξ−1 − 1, which leads to the following

proposition.

Proposition 4 Suppose c(e) = c0e
ξ, ξ > 1. Then E∗k ≥ E∗k−1 if and only if

bk
bk−1

≥
(
k − 1

k

)ξ−1

. (8)
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One consequence of Proposition 4 is that for any k ≥ 3 it is always possible to find a

sufficiently high ξ such that E∗k ≥ E∗k−1. The intuition is that a higher ξ makes the cost

function more convex and hence, reduces the sensitivity of the equilibrium effort to its

marginal benefit, i.e., bk. Then, for a sufficiently high ξ the direct positive effect of a

higher number of players dominates the indirect equilibrium effect. On the other hand,

ξ can be arbitrarily close to 1 in which case the equilibrium effort becomes infinitely

sensitive to bk;
15 therefore, if bk < bk−1 for some k, it is always possible to find a ξ > 1

such that (8) does not hold and hence E∗k < E∗k−1.

For illustration, compare tournaments with group sizes k = 2 and 3. It follows from

Proposition 3 that b3 ≥ b2, and hence E∗3 > E∗2 , when f(t) is symmetric or nondecreasing.

However, if f(t) is nonincreasing (and nonconstant), we have b3 < b2, in which case

E∗3 < E∗2 for ξ < 1 +
ln
(
b2
b3

)
ln( 3

2)
. For example, consider the distribution of noise with cdf

F (t) = tα and pdf f(t) = αtα−1 on [0, 1], with α > 1
2
.16 This gives m(z) = αz

α−1
α and

bk = α2(k−1)
αk−1

; therefore, b3
b2

= 2(2α−1)
3α−1

< 1 if and only if α < 1, i.e., f(t) is decreasing. For

α = 3
4
, we obtain E∗3 < E∗2 for ξ < 1 +

ln( 5
4)

ln( 3
2)
≈ 1.55.

A natural question to ask is whether it can be established that E∗k is unimodal for a

unimodal f(t). The answer is, in general, negative. Indeed, we can write E∗k = kc′−1(bk),

where c′−1(·) is the inverse marginal cost of effort. For a strictly convex c(e), c′−1 is

strictly increasing; therefore, c′−1(bk) is unimodal for a unimodal f(t). However, a product

of a strictly increasing and unimodal functions is not necessarily unimodal. Additional

restrictions on f(t) and/or c(e) are needed to ensure the unimodality of E∗k . The following

proposition provides further insights.

Proposition 5 Suppose c(e) = c0e
2, m(z) is twice differentiable, and m(1) and m′(1)

are finite.

(i) If f(t) is log-concave, then {E∗k}nk=2 is nondecreasing.

(ii) If f(t) is log-convex and f(uh) = 0, then {E∗k}nk=2 is nonincreasing.

(iii) If f(t) is exponential, f(t) = λe−λt, then {E∗k}nk=2 is constant and equal to E∗k = λ
2c0

.

(iv) If f(t) is first log-concave and then log-convex and f(uh) = 0, then {E∗k}nk=2 is uni-

modal.

15As ξ gets closer to 1, it becomes more difficult to satisfy the second-order condition for payoff
maximization at e∗k, but for any given ξ it can always be satisfied for a sufficiently high c0 and/or a
sufficiently dispersed distribution of noise.

16The restriction α > 1
2 ensures that m(z) is integrable on [0, 1].
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The key property used in the proof of Proposition 5 is that the log-concavity (log-

convexity) of f(t) is equivalent to the concavity (convexity) of m(z). Further, for a

quadratic cost of effort E∗k ∝ kbk and, integrating (4) by parts twice, E∗k can be expressed

through an integral of m′′(z) (see the proof for details). Part (i) generalizes the results

for the Tullock contest with linear costs. Indeed, as shown in Section 2.2, such a contest

is equivalent to a tournament with a quadratic cost and Gumbel distribution of noise,

which has a log-concave pdf. To understand part (ii), note that the log-convexity of f(t)

and condition f(uh) = 0 imply that f(t) is decreasing sufficiently fast. Then, not only

does individual equilibrium efforts decrease (see Proposition 3(ii)) but the aggregate effort

decreases too. For a simple example illustrating part (ii), consider the F2,2-distribution

whose pdf and cdf are f(t) = 1
(1+t)2

and F (t) = t
1+t

defined for t ≥ 0. Then, bk = 2
k(k+1)

and the aggregate effort E∗k = 2
k+1

is strictly decreasing with the number of players.17

The exponential distribution is log-normal and f(uh) = 0. Hence, it satisfied the

conditions of both parts (i) and (ii) yielding a constant aggregate effort. Finally, for part

(iv), the F -distribution and Beta distribution for some parameters, and the lognormal

distribution are first log-concave and then log-convex (see Bagnoli and Bergstrom (2005)

for details).

4.3 The effect of noise dispersion

Intuitively, when noise becomes more dispersed, the marginal gain from effort goes down

and equilibrium effort should decrease. For example, when the distribution of noise is

uniform on the interval [−a, a], we have bk = 1
2a

for all k ≥ 2; hence, as the variance

of noise increases the equilibrium effort goes down. Similarly, in Tullock contests the

dispersion of noise is determined by parameter r (see Section 2.2). As r goes down, noise

becomes more dispersed and the equilibrium effort decreases.

Consider, however, a family of zero-mean, symmetrically distributed random variables

T |α, parameterized by α ≥ 0, with pdfs f(t|α) = α+1
2
|t|α defined on support [−1, 1]. An

increase in α leads to a higher variance, Var(T |α) = α+1
α+3

, and, more generally, shifts the

distribution in terms of second-order stochastic dominance (SOSD). At the same time,

b2 = (α+1)2

2(2α+1)
increases with α. In other words, an increase in noise leads to a higher

equilibrium effort in a two-player tournament.

17To illustrate the importance of the requirement f(uh) = 0, consider again the example in Figure 1,
where the pdf is log-convex but f(uh) > 0. As the right panel shows, E∗3 < E∗4 < E∗2 < E∗5 and E∗k is
monotonically increasing for k ≥ 5.
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These examples show, perhaps surprisingly, that, in general, neither the variance nor

SOSD ordering of noise distributions have a monotone effect on the equilibrium effort.

To understand why this is the case, let u1 and u2 denote i.i.d. random variables with

pdf f and recall that, from Eq. (3), b2 =
∫
U
f(t)2dt = fu1−u2(0), where fu1−u2(·) is the

pdf of u1 − u2. In the example with variables T |α above, as α increases, the mass of

the distribution is shifted away from the middle towards the edges of the support and,

therefore, the density of u1−u2 acquires a sharp peak at zero (and two additional, smaller

peaks around −2 and +2) leading to an increase in b2 even as the variance of T |α goes

up.

For the rest of this section, we will use bk[f ] and e∗k[f ] to denote, respectively, the

coefficient bk and equilibrium effort e∗k obtained from a noise distribution with pdf f(t).

Note that, from Eq. (3), b2 can be written in the form b2[f ] =
∫
U
f(t)2dt = exp(−H[f ]),

where H[f ] is the Rényi entropy of order 2, also known as “collision entropy” (Rényi,

1961).18 Thus, in two-player tournaments equilibrium effort decreases in the entropy of

the noise distribution. More generally, from Eq. (3),

bk[f ] =
4(k − 1)

k2

∫
U

[
k

2
F (t)

k
2
−1f(t)

]2

dt =
4(k − 1)

k2
b2[f(k/2)] =

4(k − 1)

k2
exp(−H[f(k/2)]),

(9)

where f(k/2)(t) = d
dt
F (t)

k
2 is the pdf corresponding to cdf F(k/2)(t) = F (t)

k
2 . Thus, co-

efficient bk in a tournament of k ≥ 2 players can be represented as an appropriately

rescaled coefficient b2 in a tournament of two symmetric players each having the cdf of

noise F(k/2)(t). The latter coefficient can then be expressed through the entropy of pdf

f(k/2).

Proposition 6 In a tournament of k players, equilibrium effort decreases in the Rényi

entropy of order 2 of a distribution with pdf f(k/2).

The representation (9) and Proposition 6 have a straightforward interpretation when

k is even: Each player has access to k
2

draws from the original noise distribution and selects

the highest draw.19 Another, though less precise, interpretation is that the k players are

split arbitrarily into two equal subgroups with k
2

players each. Then F(k/2)(t) is the cdf

of noise of the two players whose shocks are the largest in each subgroup, and the player

with a larger shock between the two subgroup “winners” will win the tournament.

18The general expression for the Rényi entropy of order α is Hα[f ] = 1
1−α ln

(∫
U
f(t)αdt

)
.

19This is the case in some Olympic sports where participants have several attempts and choose the
best result, such as discus throw, shot put, javelin throw, long jump, triple jump, etc.

17



When support [ul, uh] is finite, the entropy reaches its maximum for the uniform

distribution. This leads to the following corollary.

Corollary 2 Of all noise distributions with a finite support [ul, uh], the distribution that

minimizes the symmetric equilibrium effort in the tournament of k ≥ 2 players has cdf

Fmin(t) =
(

t−ul
uh−ul

) 2
k
. The resulting minimized value of bk is bk[fmin] = 4(k−1)

k2(uh−ul)
.

As seen from the corollary, the effort-minimizing noise distribution in a k-player tourna-

ment is uniform for k = 2, but for k > 2 it has a concave cdf and monotonically decreasing

pdf, more so the larger the number of players k, such that Fmin(t)
k
2 is uniform.

An important sufficient condition that allows to rank entropy of different distributions

and hence, equilibrium efforts is given by the dispersive order (Lehmann, 1988).20

Definition 3 X is more dispersed than Y if for all z, z′ ∈ [0, 1] such that z′ > z

F−1
X (z′)− F−1

X (z) ≥ F−1
Y (z′)− F−1

Y (z).

and the inequality is strict in some open interval of z.

The definition is rather intuitive: X is more dispersed than Y if the distance between any

two quantiles of X is at least as large as the distance between the same quantiles of Y .

As discussed by Shaked and Shanthikumar (2007), whenever X is more dispersed than Y ,

Var(X) ≥ Var(Y ); the converse, however, is not true. Similarly, the dispersive order for

variables with equal means implies SOSD, but the converse is not true. Finally, whenever

X is more dispersed than Y , it has a higher entropy. Moreover, the dispersive order

is preserved for order statistics (Theorem 3.B.26 in Shaked and Shanthikumar, 2007),

leading to the following result.

Lemma 5 If X is more dispersed than Y then H[fX(k/2)] > H[fY (k/2)], and hence e∗k[fX ] <

e∗k[fY ] for any k ≥ 2.

The proof of Lemma 5 is straightforward and based on Proposition 6 and the fact that

X being more dispersed than Y is equivalent to mX(z) ≤ mY (z) (see Appendix A).

An important special case which satisfies the dispersive order, allows for an explicit

characterization of the equilibrium effort, and incorporates several important examples is

20For recent applications of the dispersive order in the auction theory literature see, e.g., Ganuza and
Penalva (2010) and Kirkegaard (2012).
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when additional dispersion is generated by scaling: X = sY , where s > 1. A parameter-

ized cdf F (t, s) is said to have a scale parameter s if it satisfies F (t, s) = F ( t
s
, 1). The

corresponding scaled pdf is f(t, s) = 1
s
f( t

s
, 1). For example, the standard deviation of a

zero-mean normal distribution, the length of the support of a uniform distribution, the

expected value of an exponential distribution and the scale of the Gumbel distribution

(and hence, the “discriminatory power” of the Tullock contest, see Section 2.2) are scale

parameters. It is easy to see that an increase in s leads to a more dispersed distribution

(Theorem 3.B.4 in Shaked and Shanthikumar, 2007) and hence to a lower equilibrium

effort (Lemma 5). For an explicit characterization, note that if [ul, uh] is the support of

f(t, 1), then the support of f(t, s) is [sul, suh] and

bk[f(t, s)] = (k − 1)

∫ suh

sul

F (t, s)k−2f(t, s)2dt =
k − 1

s2

∫ suh

sul

F

(
t

s
, 1

)k−2

f

(
t

s
, 1

)2

dt

=
k − 1

s

∫ uh

ul

F (u, 1)k−2f(u, 1)2du =
1

s
bk[f(t, 1)].

Thus, individual and aggregate equilibrium efforts are decreasing in s.

In many cases of interest the dispersive order does not rank distributions. For example,

a mean-preserving spread generated by adding an independent zero-mean random variable

satisfies the dispersive order only under a special condition. In particular, suppose X =

Y + W , where E(W ) = 0 and W is independent of Y . In this case X is more dispersed

than Y for any W (and hence Lemma 5 applies) if and only if the pdf of Y is log-concave

(Theorem 3.B.7 in Shaked and Shanthikumar, 2007).

Two (different) distributions cannot be ranked in the sense of dispersive order if they

have the same finite support (Theorem 3.B.14. in Shaked and Shanthikumar, 2007). The

following lemma may then help as it allows for ranking of some distributions directly in

terms of the entropy.

Lemma 6 Consider random variables X and Y defined on the same support [ul, uh] (finite

or infinite). If any of the following conditions holds then H[fX ] ≥ H[fY ].

(a) fX and fY are nondecreasing and Y FOSD X;

(b) fX and fY are nonincreasing and X FOSD Y ;

(c) fX and fY are interior unimodal, fX is a “spread” of fY (that is, there exist t1 < t2

such that fX crosses fY from above at t1, then from below at t2, and the modes of both fX

and fY are between t1 and t2), and fX(t1) = fX(t2).

Condition (a) in Lemma 6 is satisfied, for example, when fX and fY are both non-
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decreasing and fX crosses fY from above; that is, there exists a t̂ ∈ [ul, uh] such that

fX(t) ≥ (≤)fY (t) for t ≤ (≥)t̂. Similarly, condition (b) is satisfied when fX and fY are

both nonincreasing and fX crosses fY from below. Of course, multiple crossings are also

admissible as long as the FOSD relationships hold. Additionally, since a horizontal shift

of the distribution of noise does not affect the equilibrium effort, what really matters is

that the supports of X and Y are of the same size. In part (c), when fX and fY are sym-

metric, the “spread” implies that (Y |Y ≤ µ) FOSD (X|X ≤ µ), where µ = E(X) = E(Y )

(the invariance to a horizontal shift implies that assuming the common mean leads to no

loss of generality). Hence, for symmetric distributions part (c) is a simple consequence

of part (a). But in general, a much weaker symmetry – only at the crossing points – is

sufficient.21

Note that first-order stochastic dominance is preserved by order statistics; therefore,

if condition (a) in Lemma 6 is satisfied for fX and fY , the same condition is satisfied for

fX(k/2) and fY (k/2) for any k ≥ 2. This leads to the following result.

Corollary 3 If fX and fY satisfy condition (a) in Lemma 6 then H[fX(k/2)] ≥ H[fY (k/2)]

and hence e∗k[fX ] ≤ e∗k[fY ] for any k ≥ 2.

5 Tournaments with stochastic group size

5.1 Model setup

Consider now a setting in which the number of players in the tournament, K, is a random

variable taking nonnegative integer values. The maximal possible number of players n ≥ 2

can be finite or infinite. Let p = (p0, p1, . . . , pn) denote the probability mass function (pmf)

of K, where pk = Pr(K = k) is the probability of having k players in the tournament,

with
∑n

k=0 pk = 1. The expected number of players k̄ =
∑n

k=0 kpk is finite. Operationally,

it is convenient to think about a set of potential participants N = {1, . . . , n} from which

a subset K ∈ 2N is randomly drawn such that Pr(|K| = k) = pk, and subsets of the same

cardinality |K| have the same probability of being drawn. Each player is informed if she

is selected, but is not informed about the value of K.

Let Si denote a random variable equal to 1 if player i ∈ N is selected for participation

and zero otherwise, and let K̃ = (K|Si = 1) denote the random number of players in

the tournament from the perspective of a participating player. The distribution of K̃ is

21For a discussion of “rotation order” – a concept related to spread – see Johnson and Myatt (2006).
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updated as (see, e.g., Harstad, Kagel and Levin, 1990)

p̃k = Pr(K̃ = k) =
pkk

k̄
, k = 1, . . . , n. (10)

Equation (10) can be understood as follows (cf. Myerson and Wärneryd, 2006). Suppose

n is finite (for an infinite n, a similar argument applies in the limit n→∞). For a given

K, the probability for player i to be selected for participation is Pr(Si = 1|K = k) = k
n
;

thus,

p̃k = Pr(K = k|Si = 1) =
Pr(Si = 1|K = k)pk∑n
l=0 Pr(Si = 1|K = l)pl

=
k
n
pk∑n

l=0
l
n
pl
,

which gives (10).

Consider a symmetric pure strategy equilibrium in which all participating players

choose effort e∗ > 0. From Eq. (2), the expected payoff of a participating player i from

some deviation effort ei is

πi(ei, e
∗) =

n∑
k=1

p̃k

∫
U

F (ei − e∗ + t)k−1dF (t)− c(ei). (11)

The first-order condition for payoff maximization evaluated at ei = e∗, ∂πi(ei,e
∗)

∂ei

∣∣∣
ei=e∗

= 0,

gives

Bp = c′(e∗), Bp =
n∑
k=1

p̃k(k − 1)

∫
U

F (t)k−2f(t)dF (t). (12)

Changing the variable of integration to z = F (t), obtain, similar to (4),

Bp =
n∑
k=1

p̃k(k − 1)

∫ 1

0

zk−2m(z)dz =

∫ 1

0

m(z)dG̃(z). (13)

Here, G̃(z) =
∑n

k=1 p̃kz
k−1 denotes the probability-generating function (pgf) of distribu-

tion p̃.

Let e∗p denote the unique positive solution of (12), assuming that it exists and it is

a symmetric pure strategy equilibrium.22 When p is degenerate at some k, Eq. (12)

reduces to the deterministic group size case, Eq. (3). As before, since c′(e∗) is strictly

increasing in e∗, the comparative statics of equilibrium effort e∗p with respect to parameters

of distribution p are determined entirely by coefficients Bp.

22As in Section 2, we leave the issues of equilibrium existence and uniqueness outside the scope of this
paper.
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Using Eqs. (13) and (10), and the definition of bk, Eq. (3), coefficients Bp can also

be written as

Bp =
n∑
k=1

p̃kbk = Ep̃(bK) =
1

k̄

n∑
k=2

pkkbk =
1

k̄
Ep(KbK |K ≥ 2)Prp(K ≥ 2). (14)

Here, Ep(·) and Prp(·) denote expectation and probability with respect to distribution p.

Note that the summation in (14) can start with k = 2 instead of k = 1 because b1 = 0.

Representation (14) shows, as expected, that only group sizes k ≥ 2 contribute to the

equilibrium effort.

5.2 The uniform distribution of noise

The effects of stochastic participation are straightforward when the distribution of noise

is uniform. In this case, bk = b2 for any k ≥ 2. Equation (13) then gives

Bp = b2

(
G̃(1)− G̃(0)

)
= b2

(
1− p1

k̄

)
, (15)

leading to the following result.

Lemma 7 Suppose F is a uniform distribution. Then e∗p ≤ e∗k for any k ≥ 2, with

equality if and only if p1 = 0.

Lemma 7 states that for a uniform distribution of noise the individual equilibrium

effort of participating players in a tournament with stochastic group size cannot be higher

than with deterministic group size, and is strictly lower if the probability for a player to

be alone in the tournament is not zero. Indeed, if p1 = 0, there are at least two players in

the tournament (from the perspective of a player who has been selected), and the result

follows because equilibrium effort is independent of tournament size for k ≥ 2 when F is

uniform (see Lemma 4).

5.3 Comparative statics for unimodal noise distributions

We are interested in the effects of changes in distribution p on coefficientsBp. In particular,

we explore how Bp responds to a stochastic increase (in an appropriate sense) in the

number of players in the tournament. To this end, consider a parameterized family of

(updated) group size distributions {p̃(θ)}θ∈Θ, where Θ ⊆ R is an interval of the real line
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or a set of consecutive discrete values. Let P̃ (θ), G̃(z, θ) and Bp(θ) denote, respectively,

the corresponding cmf, pgf and Bp.

Suppose an increase in θ leads to a stochastic increase in the number of players

in the sense of first-order stochastic dominance (FOSD); that is, assume that P̃k(θ) is

nonincreasing in θ for all k = 1, 2, . . . , n. The simplest case that does not require any

additional restrictions is when the sequence {bk}nk=2 is nondecreasing (which implies that

{bk}nk=1 is nondecreasing because b1 = 0). The following lemma and corollary follow

immediately from (14) and Proposition 3.

Lemma 8 Suppose an increase in θ leads to a stochastic increase in K̃ and {bk}nk=2 is

nondecreasing. Then Bp(θ) (and e∗p) is nondecreasing in θ.

Corollary 4 Suppose an increase in θ leads to a stochastic increase in K̃ and f(t) is

nondecreasing. Then Bp(θ) (and e∗p) is nondecreasing in θ.

Note that a similar result cannot be established when {bk}nk=2 is nonincreasing, because

b1 = 0 and hence {bk}nk=1 would be nonmonotone, unless p1 = 0 (for a more detailed

discussions of results in the case when tournaments are restricted to have at least two

participants, see Section 5.9); and when {bk}nk=2 is interior unimodal, further restrictions

are needed.

Let G̃θ(z, θ) ≤ 0 denote the derivative or the first difference of the pgf with respect

to θ. Combined with Proposition 3, Lemmas 2 and 3 produce the following result.

Proposition 7 Suppose an increase in θ leads to a stochastic increase in K̃ and

(a) f(t) is unimodal;

(b) |G̃θ(z, θ)| is log-supermodular; that is, the ratio R(z, θ, θ′) = G̃θ(z,θ′)

G̃θ(z,θ)
is nondecreasing

in z for all θ′ > θ.

Then Bp(θ) (and e∗p) is unimodal in θ.

The two distributions used most prominently in the literature to model population

uncertainty – the Poisson and binomial distributions – satisfy the log-supermodularity

condition (b) of Proposition 7. These distributions, along with the negative binomial and

logarithmic distributions, belong to a family known as power series distributions (PSD).

As we show in the following section, all PSD distributions satisfy condition (b).
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5.4 Power series distributions of group size

Power series distributions (PSD) are characterized by pmfs of the form

pk(θ) =
akθ

k

A(θ)
, (16)

where ak are nonnegative numbers, θ ≥ 0 is a parameter, and A(θ) =
∑∞

k=0 akθ
k (it is

assumed that the sum exists) is the normalization function (Johnson, Kemp and Kotz,

2005). The pgf of PSD distributions is G(z, θ) = A(θz)
A(θ)

. Proposition 7 is applicable to the

whole PSD family due to the following three properties.

Proposition 8 For any pmf p in the PSD family (16)

(i) the updated pmf p̃ is also in the PSD family;

(ii) Gθ(z, θ) ≤ 0;

(iii) |Gθ(z, θ)| is log-supermodular.

Property (i) states that the PSD family is closed under the participation updating

(10). In some cases, the updated distribution is of the same type as the initial distribution.

For example, for K ∼ Binomial(n, q) we have pk =
(
n
k

)
qk(1− q)n−k (for k = 0, . . . , n) and

p̃k =
(
n−1
k−1

)
qk−1(1−q)n−k (for k = 1, . . . , n); that is, (K̃−1) ∼ Binomial(n−1, q). Similarly,

for K ∼ Poisson(λ) we have pk = exp(−λ)λk

k!
(for k = 0, 1, . . .) and p̃k = exp(−λ)λk−1

(k−1)!
(for

k = 1, 2, . . .); that is, (K̃ − 1) ∼ Poisson(λ). It is possible, however, for the updated

distribution to be of a different type (albeit still within the PSD family). For example,

for K ∼ Logarithmic(θ), where θ ∈ (0, 1), we have pk = − θk

k ln(1−θ) , k̄ = − θ
(1−θ) ln(1−θ) , and

p̃k = (1− θ)θk−1; that is, K̃ has the geometric distribution with parameter 1− θ.
Property (ii) shows that PSD distribution are FOSD-ordered by parameter θ. Finally,

property (iii) ensures that condition (b) of Proposition 7 is satisfied, and hence Bp (and

e∗p) is unimodal in θ for any PSD distribution provided f(t) is unimodal.

5.5 The binomial distribution of group size

For illustration, we consider the binomial distribution of tournament size, with K ∼
Binomial(n, q), where n ≥ 2 and q ∈ [0, 1]. The expected number of players is k̄ = nq

and the updated probability of group size k is

p̃k =
1

nq

(
n

k

)
qk(1− q)n−kk =

(
n− 1

k − 1

)
qk−1(1− q)n−k;
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that is, from the perspective of a participating player, the distribution of the number of

other players, K̃− 1, is Binomial(n− 1, q). The pgf for the updated binomial distribution

is

G̃(z, q) =
n∑
k=1

(
n− 1

k − 1

)
qk−1(1− q)n−kzk−1 = (1− q + qz)n−1. (17)

Throughout this section, with a slight abuse of notation, we will write Bp as Bn(q) and

e∗p as e∗n(q), in order to show explicitly the dependence on the parameters (n, q) of the

binomial distribution. From Eqs. (13) and (17),

Bn(q) = (n− 1)q

∫ 1

0

(1− q + qz)n−2m(z)dz. (18)

5.5.1 The effects of q and n

For a given n, an increase in q leads to an FOSD shift in the number of participants. It

follows from (17) that G̃q(z, q) = −(n− 1)(1− z)(1− q + qz)n−2 ≤ 0 and

R(z, q, q′) =
G̃q(z, q

′)

G̃q(z, q)
=

(
1− q′(1− z)

1− q(1− z)

)n−2

.

It is easy to see that R(z, q, q′) is nondecreasing in z for any q′ > q. Thus, |G̃q| is log-

supermodular, and for a unimodal f(t) all the assumptions of Proposition 7 are satisfied

and Bn(q) is unimodal in q.

Similarly, for a given q an increase in n leads to an FOSD shift in K̃. Equation (17)

gives

G̃n(z, n) = G̃(z, n+ 1)− G̃(z, n) = −q(1− z)(1− q + qz)n−1

and R(z, n, n′) = (1− q+ qz)n
′−n, which is nondecreasing in z for n′ > n. Thus, for a uni-

modal f(t), Bn(q) is unimodal in n as well. As seen from Eq. (18), Bn(q) is a polynomial

in q; therefore, the unimodality implies that it is either monotonically increasing or has

a unique interior maximum in q, which we denote q∗n. These results confirm the findings

of Lim and Matros (2009) for Tullock contests with the binomial distribution of group

size. Indeed, such contests are equivalent to tournaments with the Gumbel distribution

of noise, which is unimodal.
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5.5.2 The Laplace distribution of noise

Consider the Laplace(0, 1) distribution of noise, whose pdf is f(t) = 1
2

exp(−|t|) and cdf

is F (t) = 1
2

exp(t) for t ≤ 0 and F (t) = 1− 1
2

exp(−t) for t ≥ 0. Equation (18) then gives

Bn(q) =
(1− q)n − 2

(
1− q

2

)n
+ 1

nq
. (19)

Coefficients bk = 1
k

(
1− 1

2k−1

)
are decreasing for k ≥ 3, with b2 = b3. Indeed, since the

Laplace distribution is symmetric and unimodal, Proposition 3(iv) applies. Proposition

7 also applies, and Bn(q) (and hence e∗n(q)) is unimodal in q and n, as illustrated in the

left panel of Figure 2.

Figure 2: Individual effort as a function of q for different values of n for the binomial distribution
of the number of players with parameters (n, q) and cost function c(e) = 1

2e
2. Left : Noise is

distributed according to the Laplace(0, 1) distribution. Right : Noise is distributed according to
a distribution with cdf F (t) = 0.2 tan(2t) + 0.7 on [−0.646, 0.491] (see Figure 1).

We conclude this section by an example showing that, similar to the conditions of

Proposition 3, the unimodality of f(t) in Proposition 7 is a tight condition. Consider again

the bimodal distribution shown in Figure 1, which produces a non-unimodal sequence

{bk}. This distribution generates a non-unimodal dependence of Bp (and e∗p) on q shown

in the right panel of Figure 2.23

23Similar to Section 4.1, a bimodal distribution is not sufficient to generate a non-unimodal dependence
of Bn(q) on q. For example, the bimodal distribution with pdf f(t) = 1

2 [fN(−12,4)(t)+fN(12,4)(t)] generates
Bn(q) which is strictly increasing in q for any n.
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5.5.3 Aggregate effort

The effect of q

In this section we explore how aggregate expected equilibrium effort E∗n(q) = nqe∗n(q)

changes with q. For Tullock contests, Lim and Matros (2009) showed that the aggregate

effort always increases in q. In our case, the situation is more complex due to the nonlin-

earity of the cost of effort and the effects of the shape of the distribution of noise. As we

show, E∗n(q) may or may not be monotonically increasing in q, depending on parameters.

For the remainder of this section, we will restrict attention to the cases when Bn(q)

is unimodal in q, i.e., it is either increasing or there exists a q∗n ∈ (0, 1) such that Bn(q) is

increasing for q ≤ q∗n and decreasing for q ≥ q∗n. A sufficient, but not necessary, condition

for this is the unimodality of f(t), as described in Proposition 7.

Differentiating both sides of the first-order condition Bn(q) = c′(e∗n(q)), obtain

∂E∗n(q)

∂q
= n

[
e∗n(q) + q

∂e∗n(q)

∂q

]
=
nc′(e∗n(q))

c′′(e∗n(q))
[η(e∗n(q)) + βn(q)] , (20)

η(e) =
c′′(e)e

c′(e)
, βn(q) =

B′n(q)q

Bn(q)
.

Thus, the sign of the derivative ∂E∗n(q)
∂q

is determined by the sum of two elasticities: η(e∗n(q))

is the effort elasticity of the marginal cost c′(e) in equilibrium, and βn(q) is the elasticity

of Bn(q) with respect to q. The former elasticity is always positive; the latter one is also

positive when Bn(q) is increasing for all q. Thus, the nontrivial case left to be considered

is the one where Bn(q) has an interior maximum q∗n and, therefore, βn(q) is negative for

q > q∗n.

It is difficult to proceed with the analysis of Eq. (20) in general since η(e) may be

an arbitrary function of effort. Therefore, from this point on we will consider the special

case of constant elasticity, i.e., restrict attention to cost functions of the form c(e) = c0e
ξ,

ξ > 1. In this case η(e) = ξ − 1 is independent of e and can be made arbitrarily

small. It should, therefore, be possible to have ξ − 1 + βn(q) < 0 for some q and a

nonmonotonic dependence of aggregate effort on q. In other words, when individual effort

is nonmonotonic in q, ξ should be large enough for the aggregate effort to be monotonically

increasing in q. Formally, note that βn(q) is a continuous function on [q∗n, 1] and hence

minq∈[q∗n,1] βn(q) is well-defined. This leads to the following proposition.

Proposition 9 Suppose c(e) = c0e
ξ, ξ > 1. Then E∗n(q) is monotonically increasing in q

27



if and only if

ξ ≥ 1− min
q∈[q∗n,1]

βn(q).

Under an additional restriction, the result of Proposition 9 can be written in terms

of the primitives of the model. Recall that the nontrivial case arises only when βn(q)

is negative for q > q∗n. As shown in the following proposition, βn(q) is decreasing on

[q∗n, 1], and hence the minimum of βn(q) is reached at q = 1, when the sequence {bk}nk=2

is log-concave.

Definition 4 A sequence of numbers {ak}nk=1 is log-concave if a2
k+1 ≥ akak+2 for all

k = 1, . . . , n− 2.

Proposition 10 Suppose c(e) = c0e
ξ, ξ > 1, and Bn(q) has an interior maximum q∗n.

Suppose also that the sequence {bk}nk=2 is log-concave. Then E∗n(q) is monotonically in-

creasing in q if and only if

ξ ≥ (n− 1)
bn−1

bn
− (n− 2).

Otherwise, E∗n(q) has a unique interior maximum Q∗n ∈ (q∗n, 1).

The effect of n

We now turn to the analysis of the dependence of aggregate effort E∗n(q) on n. As above,

we restrict attention to the cases when e∗n(q) is single-peaked in q. Considering a change

from n− 1 to n players, obtain for the relative change in aggregate effort,

δE∗n(q) =
E∗n(q)− E∗n−1(q)

E∗n−1(q)
=
ne∗n(q)− (n− 1)e∗n−1(q)

(n− 1)e∗n−1(q)
=

n

n− 1

e∗n(q)

e∗n−1(q)
− 1.

Clearly, this expression is positive for q > 0 when e∗n(q) ≥ e∗n−1(q), i.e., for q ∈ (0, q∗n].

Thus, if e∗n(q) is monotonically increasing in q then E∗n(q) ≥ E∗n−1(q) for all q. The

nontrivial case is when e∗n(q) has an interior maximum and q > q∗n, i.e., e∗n(q) < e∗n−1(q).

In this case it is possible that E∗n(q) < E∗n−1(q) for some q > q∗n. As in the analysis

above, it is difficult to obtain further results for a general effort cost function. Assuming

c(e) = c0e
ξ, ξ > 1, we can write, from Eq. (12), e∗n(q) =

(
Bn(q)
c0ξ

) 1
ξ−1

and

E∗n(q)− E∗n−1(q)

E∗n−1(q)
=

n

n− 1

(
Bn(q)

Bn−1(q)

) 1
ξ−1

− 1.
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The function Bn(q)
Bn−1(q)

is continuous in q in [q∗n, 1], and hence its minimum on this interval

is well-defined. This leads to the following proposition.

Proposition 11 Suppose c(e) = c0e
ξ, ξ > 1. Then E∗n(q) ≥ E∗n−1(q) for all q if and only

if

min
q∈[q∗n,1]

Bn(q)

Bn−1(q)
≥
(
n− 1

n

)ξ−1

. (21)

It follows from Proposition 11 that for any n it is possible to find ξ high enough for

the aggregate effort to increase in n. Indeed, the right-hand side of the inequality (21)

can be made arbitrarily small by increasing ξ.

Similar to Proposition 10, condition (21) can be written more explicitly if Bn(q)
Bn−1(q)

is

decreasing in q for q ∈ [q∗n, 1]. It turns out that this condition is equivalent to βn(q) being

a decreasing function of q and hence the log-concavity of {bk}nk=2 is sufficient for it as well

(cf. the proof of Lemma 11 in the Appendix).

Proposition 12 Suppose c(e) = c0e
ξ, ξ > 1, and Bn(q) has an interior maximum q∗n.

Suppose also that the sequence {bk}nk=2 is log-concave. Then E∗n(q) ≥ E∗n−1(q) for all q if

and only if
bn
bn−1

≥
(
n− 1

n

)ξ−1

. (22)

Note that inequality (22) coincides with condition (8) in Proposition 4 for the deter-

ministic case. The two results are different, however. Given the binomial distribution of

group size, condition (22) is necessary and sufficient for E∗n(q) ≥ E∗n−1(q) to hold for any

q under the additional assumption of log-concavity of {bk}nk=2, whereas condition (8) is

necessary and sufficient for E∗n(1) ≥ E∗n−1(1) only, and does not require any additional

assumptions.

For an illustration, continue with the example of the Laplace distribution considered

in Section 5.5.2. Aggregate effort E∗n(q) = nqe∗n(q) is monotonically increasing in q for

n = 3 since individual effort e∗3(q) is monotonically increasing in q, due to the symmetry

of the distribution. For n ≥ 4, the behavior of E∗n(q) depends on the cost function. It can

be shown that the minimum value of βn(q), the elasticity of Bn(q) with respect to q, is

above −1 and converges to this value when q = 1 and n→∞. Hence, if the cost function

is c(e) = c0e
ξ, the aggregate effort is monotonically increasing in q if and only if ξ ≥ 2

(see Proposition 9). This is illustrated in Figure 3.
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Figure 3: Aggregate effort as a function of q for cost functions c(e) = e2 (dashed blue line, left
scale) and c(e) = e3/2 (solid red line, right scale), for noise distributed as Laplace(0, 1).

5.6 The effect of noise dispersion

Similar to Section 4.3, suppose the distribution of group sizes, p, is fixed and consider

the effect of changes in the dispersion of noise on the equilibrium effort. Throughout

this section, we will use Bp[f ] and e∗p[f ] to denote, respectively, coefficient Bp and the

equilibrium effort e∗p corresponding to the distribution of noise with pdf f(t). Let g̃(z) =

G̃z(z) denote the derivative of the pgf G̃ with respect to z. Changing the variable of

integration to z = F (t), rewrite (13) in the form

Bp[f ] =

∫ 1

0

m(z)g̃(z)dz =

∫
U

g̃(F (t))f(t)2dt. (23)

Consider a pdf fp(t) (with support U) defined as follows:

fp(t) =
1

cp
f(t)

√
g̃(F (t)), cp =

∫
U

f(t)
√
g̃(F (t))dt =

∫ 1

0

√
g̃(z)dz, (24)
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where the normalization constant cp is independent of f . Then Eq. (23) can be written

in the form

Bp[f ] = c2
p

∫
U

fp(t)
2dt = c2

p exp(−H[fp]), (25)

where H[·] is the Rényi entropy. We arrive at the following results.

Proposition 13 (i) In tournaments with stochastic participation, the equilibrium effort

decreases in the Rényi entropy of a distribution with pdf fp.

(ii) Of all noise distributions with a finite support [ul, uh], the equilibrium effort is

minimized by the distribution such that fp(t) = 1
uh−ul

; that is, cdf Fmin satisfies the differ-

ential equation

F ′(t) =
cp

(uh − ul)
√
g̃(F (t))

. (26)

The minimized value of Bp is Bp[fmin] =
c2p

uh−ul
.

It is easy to see that the results for deterministic participation can be recovered as

a special case for a degenerate p. The right-hand side of Eq. (26) decreases in t; hence,

similar to the deterministic participation case, the effort-minimizing cdf is concave, with

a monotonically decreasing pdf.

For illustration, consider K ∼ Binomial(n, q). From (17), g̃(z) = (n − 1)q(1 − q +

qz)n−2, cp =
√

4(n−1)
qn2 [1− (1− q)n2 ], and

fp(t) =
nqf(t)[1− q + qF (t)]

n
2
−1

2[1− (1− q)n2 ]
.

The equilibrium effort is minimized when fp(t) is uniform on [ul, uh], and the minimized

value of Bp is Bp[fmin] = 4(n−1)[1−(1−q)
n
2 ]2

qn2(uh−ul)
.

Note that g̃(z) is independent of the shape of the distribution of noise. Representation

(23) then immediately implies that if X is more dispersed than Y then Bp[fX ] ≤ Bp[fY ];

thus, the dispersive order of noise distributions has the same effect on the equilibrium

effort as in the deterministic participation case (cf. Lemma 5).

Lemma 9 If X is more dispersed than Y then e∗p[fX ] ≤ e∗p[fY ].
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5.7 A comparison between stochastic and deterministic partic-

ipation

It may be of interest to compare expected aggregate effort in a tournament with stochastic

participation, E∗p = k̄e∗p, to aggregate effort in the tournament with deterministic partici-

pation of size k̄, E∗
k̄

= k̄e∗
k̄
. The results are summarized in the following proposition.

Proposition 14 (a) Suppose k̄ =
∑n

k=0 kpk is integer. Suppose also that p0 = 0 and for

all k ≥ 1 in the support of p kbk is concave. Then E∗p ≤ E∗
k̄
; moreover, the inequality is

strict if kbk is strictly concave.

(b) Suppose k̄ ≥ 2 is integer. Suppose also that for all k ≥ 2 in the support of p (i)

kbk is concave and (ii) bk is nonincreasing. Then E∗p ≤ E∗
k̄
; moreover, the inequality is

strict if kbk is strictly concave or p1 > 0.

The comparison between aggregate efforts E∗p and E∗
k̄

for a given k̄ is equivalent to

the comparison of individual efforts e∗p and e∗
k̄
. The general intuition behind Proposition

14 is that Bp, which determines e∗p, is proportional to the expectation of KbK , cf. Eq.

(14), and the concavity of kbk gives the result by Jensen’s inequality. However, since this

expectation is conditional and also divided by the expected number of players k̄, additional

qualifiers are needed. For part (a), note that k̄ = Ep(K) is the unconditional expectation

of K while Bp is proportional to the expectation of KbK conditional on K ≥ 1. By setting

p0 = 0, this conditional expectation becomes unconditional and Jensen’s inequality gives

the result. For part (b), as seen from (14), Bp can also be written as proportional to

the expectation of KbK conditional on K ≥ 2; while the expectation of K conditional

on K ≥ 2 is always (weakly) greater than the unconditional expectation of K. Then,

the result is obtained using Jensen’s inequality for conditional expectations (for concave

kbk) and the assumption that bk is nonincreasing for k ≥ 2. Part (a) of Proposition 14

generalizes the result of Myerson and Wärneryd (2006) who studied generalized Tullock

contests with an arbitrary distribution of group size (subject to the restriction p0 = 0).

Part (b) generalizes the result of Lim and Matros (2009) who analyzed Tullock contests

with K ∼ Binomial(n, q).

For examples of violations of the conditions of Proposition 14, when stochastic partic-

ipation can lead to a higher expected aggregate effort, consider the binomial distribution

of tournament size, K ∼ Binomial(n, q). Let qopt denote the optimal participation proba-

bility, that is, the probability q that maximizes expected aggregate effort E∗p = k̄e∗p subject

to the constraint k̄ = nq. The deterministic contest generates a higher aggregate effort
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if qopt = 1. The binomial distribution violates the conditions of part (a) of Proposition

14 since p0 = (1 − q)n > 0. Also, for the bimodal distribution of noise in Figure 1 both

assumptions (i) and (ii) of part (b) do not hold. Then, qopt ≈ 0.9 for k̄ = 3 and qopt → 0

(that is, a tournament with n → ∞ potential players, each with zero probability of par-

ticipation, is optimal) for k̄ ≥ 4. For the F2,2-distribution of noise (see the end of Section

4.2) assumption (i) of part (b) is violated, and qopt ∈ (0, 1) for 3 ≤ k̄ ≤ 5 while qopt → 0

for k̄ ≥ 6.

5.8 Optimal disclosure of the number of players

Several authors investigated optimal disclosure policies under uncertainty, asking whether

it makes sense for a principal whose goal is the maximization of aggregate effort, to disclose

to players how many participants there are in the tournament. Lim and Matros (2009)

show that in a standard Tullock contest with the binomial distribution of the number of

players aggregate effort is independent of disclosure. Fu, Jiao and Lu (2011) generalize

this result to lottery-form contests with CSFs of the form h(ei)∑k
j=1 h(ej)

. They show that

full disclosure (no disclosure) is optimal if h(e)
h′(e)

is strictly convex (concave), while the

indifference is recovered when h(e)
h′(e)

is linear.24 In this section, we generalize these results

to arbitrary tournaments and arbitrary distributions of the number of players.

Without disclosure, the expected aggregate effort in the tournament is E∗p = k̄e∗p =

k̄c′−1(Bp), where, from (14), Bp = Ep̃(bK). With disclosure, the expected aggregate effort

is Ep(Kc
′−1(bK)), which can be rewritten as

Ep(Kc
′−1(bK)) =

n∑
k=1

pkkc
′−1(bk) = k̄

n∑
k=1

p̃kc
′−1(bk) = k̄Ep̃(c

′−1(bK)).

Thus, comparing E∗p and Ep(Kc
′−1(bK)) is equivalent to comparing c′−1(Ep̃(bK)) and

Ep̃(c
′−1(bK)).

It follows that the optimality of disclosure depends entirely on the concavity/convexity

of c′−1, and not on the nature of coefficients bk. One special case is when bk is constant

in the support of p̃ (for example, noise is uniformly distributed and p1 = 0); in this case

the two expressions are equal. When bk is not constant in the support of p̃, and c′−1

is concave (convex) and nonlinear for at least some distinct values of bk, disclosure is

24In asymmetric settings, the consequences of disclosure/nondisclosure become richer. For recent de-
velopments see, e.g., Denter, Morgan and Sisak (2014), Fu, Lu and Zhang (2016) and Zhang and Zhou
(2016).
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not optimal (optimal). Note that the concavity (convexity) of c′−1 is equivalent to the

convexity (concavity) of c′, i.e., to the condition c′′′ ≥ (≤)0.

Proposition 15 Suppose bk is non-constant for k in the support of p̃, and c′(·) is non-

linear for at least some distinct values of bk in the support of p̃. Then it is optimal to

disclose (not disclose) the number of participants in the tournament if c′′′ ≤ (≥)0.

5.9 Tournaments with size k ≥ 2

Proposition 7 on the unimodality of Bp(θ) in Section 5.3 is quite general, but it imposes a

restriction on how θ may affect the distribution of tournament size, in the form of the log-

supermodularity of |G̃θ(z, θ)|. As we show in this section, the unimodality of Bp(θ) can

also be obtained under an alternative set of restrictions on pmf p; namely, a requirement

that p1 = 0. In other words, in this section we consider tournaments in which, from the

perspective of a participating player, the number of players is known to be at least two.

Such tournaments are rather common in applications; indeed, it is common for organizers

to have a provision that competition will be canceled if only one participant signs up.

We consider the effects of an upward probabilistic shift in the updated distribution of

group size from p̃ to p̃′. When {bk}nk=2 is nondecreasing, the result is straightforward and

given by Lemma 8 and Corollary 4. Generally, when {bk}nk=1 is nonmonotone, the effect

of such a shift is ambiguous without additional restrictions on p and p′. Note that p1 = 0

and p̃′ FOSD p̃ jointly imply that p′1 = 0. The following results then follow immediately

from (14) and Proposition 3.

Lemma 10 Suppose p̃′ FOSD p̃ and p1 = 0. If {bk}nk=2 is nonincreasing then Bp′ ≤ Bp

(and e∗p′ ≤ e∗p).

Corollary 5 Suppose p̃′ FOSD p̃ and p1 = 0. Then,

(i) if f(t) is nonincreasing then e∗p′ ≤ e∗p;

(ii) for n ≥ 4, if f(t) is interior unimodal and symmetric then e∗p′ ≤ e∗p;

(iii) for n = 3, if f(t) is symmetric then e∗p′ = e∗p.

Parts (i) and (ii) follow from parts (ii) and (iv) of Proposition 3. Part (iii) follows from

part (v) of Proposition 3.

Lemma 10 has one other interesting implication. When {bk}nk=2 is nonincreasing,

the only way e∗p can be nonmonotone with respect to an upward probabilistic shift in

p̃ is if p1 > 0. Put differently, the possibility for a player to find herself alone in the
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tournament is the only mechanism through which the individual equilibrium effort can be

nonmonotone in a parameter θ. One example is the Tullock contest, for which bk = r(k−1)
k2

decreases monotonically for k ≥ 2, and Lim and Matros (2009) found that the individual

equilibrium effort is nonmonotone in q for K ∼ Binomial(n, q). Lemma 10 shows that

this nonmonotonicity is a consequence entirely of the fact that p1 = nq(1− q)n−1 > 0. If

the distribution of group size is replaced with a truncated binomial distribution such that

p1 = 0, the nonmonotonicity will go away. Of course, the nonmonotonicity can still arise

even when p1 = 0 if {bk}nk=2 is nonmonotone; for example, if it is interior unimodal.

6 Conclusion

In this paper we derive robust comparative statics results for rank-order tournaments in

which a player’s effort is distorted by additive or multiplicative noise and the number

of players is either deterministic or stochastic. The unimodality of the distribution of

noise is critical for robust comparative statics, due to results on the preservation of uni-

modality under uncertainty. In the deterministic case, we show that the equilibrium effort

is unimodal in the number of players when the distribution of noise is unimodal. In the

stochastic case, the equilibrium effort is similarly unimodal in parameters shifting the dis-

tribution of the number of players in the sense of first-order stochastic dominance, albeit

under an additional log-supermodularity restriction. The unimodality of the distribution

of noise is a tight condition; we provide examples of non-unimodal noise distributions for

which the comparative statics are no longer unimodal. We also show that, generally, there

is no universality in the behavior of aggregate equilibrium effort.

The second dimension of our analysis is the effect of noise dispersion. We show that

the equilibrium effort decreases in the appropriately defined Rényi entropy, as opposed

to the often-cited variance or second-order stochastic dominance order. For the case

of deterministic participation, it is the entropy of order statistics of the distribution of

noise, while in the case of stochastic participation it is the entropy of a distribution that

combines the distribution of noise with the distribution of tournament size. An important

special case of entropy ordering that applies to both cases is the dispersive order of noise

distributions.
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A Proofs

Second-order condition Differentiating the payoff function (2) twice with respect to ei

and setting ei = e∗, obtain ∂2πi(ei,e
∗)

∂e2i

∣∣∣
ei=e∗

= ηk − c′′(e∗), where

ηk = (k − 1)

[
(k − 2)

∫
U

F (t)k−3f(t)2dF (t) +

∫
U

F (t)k−2f ′(t)dF (t)

]
.

Integrating the second term by parts, obtain

ηk =
k − 1

2

[
(k − 2)

∫
U

F (t)k−3f(t)2dF (t) + f(uh)
2 − f(ul)

2Ik=2

]
,

where Ik=2 is an indicator equal to one if k = 2 and zero otherwise. Thus, when k = 2

and the distribution of noise is symmetric the second-order condition is always satisfied.

Otherwise, the restriction ηk − c′′(e∗) < 0 has to be imposed.

Proof of Lemma 1 (i) Sufficiency: When a(z) is monotone, it follows immediately that

γ(θ) is monotone. Suppose that a(z) is interior unimodal; in this case, a(1) is finite.

Integrating by parts, obtain

γ(θ) = a(1)−
∫ 1

0

a′(z)H(z, θ)dz. (27)

Let ẑ ∈ (0, 1) denote a mode of a(z). Differentiating, or taking the first difference, with

respect to θ, and splitting the integral in (27), obtain

γ′(θ) = −
∫ ẑ

0

a′(z)Hθ(z, θ)dz −
∫ 1

ẑ

a′(z)Hθ(z, θ)dz

=

∫ ẑ

0

a′(z)|Hθ(z, θ)|dz −
∫ 1

ẑ

|a′(z)||Hθ(z, θ)|dz. (28)

Suppose γ′(θ) ≤ 0 for some θ and consider a θ′ > θ. Then (28) gives

γ′(θ′) =

∫ ẑ

0

a′(z)|Hθ(z, θ
′)|dz −

∫ 1

ẑ

|a′(z)||Hθ(z, θ
′)|dz

=

∫ ẑ

0

a′(z)r(z, θ, θ′)|Hθ(z, θ)|dz −
∫ 1

ẑ

|a′(z)|r(z, θ, θ′)|Hθ(z, θ
′)|dz

≤ r(ẑ, θ, θ′)

∫ ẑ

0

a′(z)|Hθ(z, θ)|dz − r(ẑ, θ, θ′)
∫ 1

ẑ

|a′(z)||Hθ(z, θ
′)|dz = r(ẑ, θ, θ′)γ′(θ) ≤ 0.
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Here, the first inequality follows from the assumption that r(z, θ, θ′) is nondecreasing in

z. Thus, we showed that γ(θ) is unimodal.

(ii) Necessity: Suppose that there exist θ′ > θ and a z ∈ [0, 1] such that r(z, θ, θ′) is

decreasing in z. The proof consists in showing that a unimodal function a(z) can then

be constructed such that γ(θ) is not unimodal. By continuity, there exists an interval

of positive length [z1, z2] where r(z, θ, θ′) is strictly decreasing. First, define a unimodal

function a(z) such that it is nonzero only withing this interval. Furthermore, a(z) can

be defined in a way that γ′(θ) = 0. For example, it can be defined as a piece-wise linear

function such that a′(z) =
∫ z2
ẑ
|Hθ(z, θ)|dz for z ∈ (z1, ẑ) and |a′(z)| =

∫ ẑ
z1
|Hθ(z, θ)|dz

for z ∈ (ẑ, z2). In this case, it follows from (28) that γ′(θ) = 0. Finally, we modify

this a(z) “slightly” to make γ′(θ) negative. For example, choose some ε > 0 and set

a′(z) =
∫ z2
ẑ
|Hθ(z, θ)|dz − ε for z ∈ (z1, ẑ). Then

γ′(θ′) =

∫ ẑ

z1

a′(z)r(z, θ, θ′)|Hθ(z, θ)|dz −
∫ z2

ẑ

|a′(z)|r(z, θ, θ′)|Hθ(z, θ
′)|dz

= r(z∗1 , θ, θ
′)

∫ ẑ

z1

a′(z)|Hθ(z, θ)|dz − r(z∗2 , θ, θ′)
∫ z2

ẑ

|a′(z)||Hθ(z, θ
′)|dz

= r(z∗1 , θ, θ
′)

[∫ z2

ẑ

|Hθ(z, θ)|dz − ε
] ∫ ẑ

z1

|Hθ(z, θ)|dz

− r(z∗2 , θ, θ′)
∫ z2

ẑ

|Hθ(z, θ
′)|dz

∫ ẑ

z1

|Hθ(z, θ)|dz

= (r(z∗1 , θ, θ
′)− r(z∗2 , θ, θ′))

∫ ẑ

z1

|Hθ(z, θ)|dz
∫ z2

ẑ

|Hθ(z, θ
′)|dz

− εr(z∗1 , θ, θ′)
∫ z2

ẑ

|Hθ(z, θ)|dz.

Here, z∗1 ∈ (z1, ẑ) and z∗2 ∈ (ẑ, z2) exist due to the mean-value theorem for definite

integrals. Note that z∗2 > z∗1 and hence the first term in the last expression is positive,

while the second term can be made arbitrarily small via the choice of ε; therefore, an

ε > 0 can be chosen such that γ′(θ′) > 0. Thus, γ(θ) is not unimodal.
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Proof of Lemma 2 (i) Sufficiency: Rewrite χ(θ) as follows:

χ(θ) = y1(θ)x1 + y2(θ)x2 + . . .+ yn−1(θ)xn−1 + yn(θ)xn

= Y1(θ)x1 + (Y2(θ)− Y1(θ))x2 + . . .+ (Yn−1(θ)− Yn−2(θ))xn−1 + (Yn(θ)− Yn−1(θ))xn

= xn + Y1(θ)(x1 − x2) + Y2(θ)(x2 − x3) + . . .+ Yn−1(θ)(xn−1 − xn)

= xn −
n−1∑
k=1

Yk(θ)∆xk+1,

where ∆xk+1 = xk+1 − xk. This “summation by parts” representation is similar to inte-

gration by parts and expresses the expectation χ(θ) through the cmf Y (θ) and the first

difference of xk. Taking the derivative, or the difference, with respect to θ, obtain

χ′(θ) = −
n−1∑
k=1

Y ′k(θ)∆xk+1 =
n−1∑
k=1

|Y ′k(θ)|∆xk+1.

Let k̂ denote a mode of x such that ∆xk+1 ≥ (≤)0 for k < (≥)k̂. This gives

χ′(θ) =
∑
k<k̂

|Y ′k(θ)|∆xk+1 −
∑
k≥k̂

|Y ′k(θ)||∆xk+1|.

Suppose that χ′(θ) ≤ 0 for some θ and consider a θ′ > θ. Then

χ′(θ′) =
∑
k<k̂

|Y ′k(θ′)|∆xk+1 −
∑
k≥k̂

|Y ′k(θ′)||∆xk+1|

=
∑
k<k̂

|Y ′k(θ)|r(k, θ, θ′)∆xk+1 −
∑
k≥k̂

|Y ′k(θ)|r(k, θ, θ′)|∆xk+1|

≤ r(k̂, θ, θ′)
∑
k<k̂

|Y ′k(θ)|∆xk+1 − r(k̂, θ, θ′)
∑
k≥k̂

|Y ′k(θ||∆xk+1| = r(k̂, θ, θ′)χ′(θ) ≤ 0.

Here, the first inequality follows from the assumption that r(k̂, θ, θ′) is nondecreasing in

k.

(ii) Necessity: Suppose that there exist θ′ > θ and k such that r(k − 1, θ, θ′) >

r(k, θ, θ′). As in the proof of Lemma 1, we will show that it is possible to construct a

unimodal sequence x such that χ(θ) is not unimodal. Set xl = a for all l ≤ k − 1 and

xl = b for all l ≥ k + 1; furthermore, set xk > max{a, b}. The resulting sequence x is

interior unimodal with mode k and satisfies ∆xk > 0, ∆xk+1 < 0, and ∆xl = 0 for all
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l 6= k, k + 1. Then

χ′(θ) = |Y ′k−1(θ)|∆xk − |Y ′k(θ)||∆xk+1|.

Choosing a, xk and b so that ∆xk = |Y ′k(θ)| − ε for some ε > 0 and |∆xk+1| = |Y ′k−1(θ)|,
obtain χ′(θ) = −ε|Y ′k−1(θ)| < 0. However,

χ′(θ′) = |Y ′k−1(θ′)|∆xk − |Y ′k(θ′)||∆xk+1|

= r(k − 1, θ, θ′)|Y ′k−1(θ)|(|Y ′k(θ)| − ε)− r(k, θ, θ′)|Y ′k(θ)||Y ′k−1(θ)|

= (r(k − 1, θ, θ′)− r(k, θ, θ′))|Y ′k(θ)||Y ′k−1(θ)| − εr(k − 1, θ, θ′)|Y ′k−1(θ)|.

The first term on the last line is strictly positive, while the second term can be made

arbitrarily small through the choice of ε; thus, an ε > 0 can be chosen such that χ′(θ′) > 0,

i.e., χ(θ) os not unimodal.

Proof of Lemma 3 (i) Sufficiency: By differentiating, or taking the first difference of,

Eq. (6) with respect to θ, obtain

n∑
k=1

Y ′k(θ)z
k−1 =

Gθ(z, θ)

1− z
,

which gives, for some θ′ > θ,

R(z, θ, θ′) =
|Gθ(z, θ

′)|
|Gθ(z, θ)|

=

∑n
k=1 |Y ′k(θ′)|zk−1∑n
k=1 |Y ′k(θ)|zk−1

=

∑n
k=1 |Y ′k(θ)|r(k, θ, θ′)zk−1∑n

k=1 |Y ′k(θ)|zk−1
. (29)

Define a pmf αk(z) =
|Y ′k(θ)|zk−1∑n
l=1 |Y ′l (θ)|zl−1 and the corresponding cmf Ak(z) =

∑k
l=1 αk(z). Then

(29) can be written as an expectation R(z, θ, θ′) =
∑n

k=1 αk(z)r(k, θ, θ′) of a nondecreasing

random variable r(K, θ, θ′). This expectation is nondecreasing in z provided an increase

in z leads to an FOSD increase in distribution α(z), i.e., if Ak(z) is nonincreasing in z.

The derivative of Ak(z) is

A′k(z) =
d

dz

(∑k
l=1 |Y ′l (θ)|zl−1∑n
l=1 |Y ′l (θ)|zl−1

)
=

1

(
∑n

l=1 |Y ′l (θ)|zl−1)2

k∑
l=1

n∑
l′=1

|Y ′l (θ)||Y ′l′(θ)|zl+l
′−3(l − l′)

=
1

(
∑n

l=1 |Y ′l (θ)|zl−1)2

k∑
l=1

n∑
l′=k+1

|Y ′l (θ)||Y ′l′(θ)|zl+l
′−3(l − l′) ≤ 0. (30)

(ii) Necessity: Define ∆rl+1 = r(l + 1, θ, θ′) − r(l, θ, θ′), and suppose that ∆rk+1 < 0
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for some k and θ′ > θ. Using the same “summation by parts” transformation as at the

start of the proof of Lemma 2, write

R(z, θ, θ′) = r(n, θ, θ′)−
n−1∑
l=1

Al(z)∆rl+1,

which gives, differentiating with respect to z,

Rz(z, θ, θ
′) =

n−1∑
l=1

|A′l(z)|∆rl+1.

Choose Yl(θ) so that Y ′l (θ) = 0 for all l 6= k, k + 1 and Y ′k(θ), Y
′
k+1(θ) < 0. Equation (30)

then gives

A′k(z) =
−|Y ′k(θ)||Y ′k+1(θ)|z2k−2

(|Y ′k(θ)|zk−1 + |Y ′k+1(θ)|zk)2
< 0

and A′l(z) = 0 for all l 6= k; therefore, we obtain Rz(z, θ, θ
′) = |A′k(z)|∆rk+1 < 0, which is

a contradiction.

Proof of Lemma 4 Sufficiency is obvious: If F is a uniform distribution, m(z) is a

constant and bk = m(0) (for k ≥ 2). Conversely, suppose bk = b2 for all k ≥ 2. This

implies (k + 1)mk = b2 and hence mk = b2
k+1

for all k = 0, 1, . . .. The moment-generating

function of m(z), defined as φ(t) = E(exp(tZ)), can be written in the form of expansion

over moments, φ(t) =
∑∞

k=0
mk
k!
tk, which gives

φ(t) =
∞∑
k=0

b2

(k + 1)!
tk =

b2

t
(exp(t)− 1).

This is the moment-generating function of an (unnormalized) uniform distribution on

[0, 1], implying m(z) is a constant and F is uniform.

Proof of Proposition 2 Recall that bk =
∫ 1

0
m(z)dzk−1; therefore, integrating by parts,

bk − bk+1 =

∫ 1

0

m(z)d(zk−1 − zk) = −
∫ 1

0

zk−1(1− z)m′(z)dz.

Suppose m(z) is nonincreasing and nonconstant on (ẑ, 1) (the case of a nondecreasing and
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nonconstant m(z) is proved similarly). Then

bk − bk+1 = −
∫ ẑ

0

zk−1(1− z)m′(z)dz +

∫ 1

ẑ

zk−1(1− z)|m′(z)|dz

≥
∫ 1

ẑ

zk−1(1− z)|m′(z)|dz −
∫ ẑ

0

zk−1(1− z)|m′(z)|dz

= M1

∫ 1

ẑ

zk−1dz −M2

∫ ẑ

0

zk−1dz,

where M1 and M2 are positive constants (independent of k), the existence of which follows

from the mean-value theorem for definite integrals. Evaluating the integrals, further

obtain

bk − bk+1 ≥
1

k
[M1(1− ẑk)−M2ẑ

k] =
1

k
[M1 − ẑk(M1 +M2)].

Since ẑ < 1, it is clear that the last expression becomes positive for a sufficiently large k.

Proof of Proposition 3 Define

∆bk+3 = bk+3 − bk+2 =

∫ 1

0

[
(k + 2)zk+1 − (k + 1)zk

]
m(z)dz, k = 0, 1, . . . , n− 3. (31)

Integrating by parts, obtain

∆bk+3 =

∫ 1

0

m(z)d(zk+2 − zk+1) =

∫ 1

0

zk+1(1− z)m′(z)dz. (32)

For part (iv), the symmetry of f(t) around its mean µ implies f(t) = f(2µ−t) and F (t) =

1− F (2µ− t) for all t ∈ U . Letting z = F (t) = 1− F (2µ− t), obtain 1− z = F (2µ− t),
F−1(1 − z) = 2µ − t and m(1 − z) = f(F−1(1 − z)) = f(2µ − t) = f(t) = f(F−1(z)) =

m(z). Thus, the symmetry of the distribution of noise implies m(z) = m(1 − z) and

m′(z) = −m′(1− z) for all z ∈ [0, 1].

This gives, via a change of variable z → 1− z,

∆bk+3 = −
∫ 1

2

0

z(1− z)[(1− z)k − zk]m′(z)dz,

which immediately implies that ∆b3 = 0 and ∆bk+3 < 0 for k > 0.

For part (v), note that b2 =
∫ 1

0
m(z)dz and, if m(z) = m(1− z) (which only requires
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symmetry but not unimodality of f),

b3 = 2

∫ 1

0

zm(z)dz = 2

∫ 1

0

(1− z)m(1− z)dz = 2

∫ 1

0

(1− z)m(z)dz = 2b2 − b3,

which implies b2 = b3.

Proof of Proposition 5 Given the cost function, E∗k = 1
2c0
kbk. Integrating by parts

twice, obtain

E∗k ∝ k(k − 1)

∫ 1

0

zk−2m(z)dz = k

[
m(1)−

∫ 1

0

m′(z)zk−1dz

]
= km(1)−m′(1) +

∫ 1

0

m′′(z)zkdz, k ≥ 2,

which gives

∆E∗k+1 = E∗k+1 − E∗k ∝ m(1)−
∫ 1

0

m′′(z)(zk − zk+1)dz.

Log-concavity (log-convexity) of f(t) is equivalent to concavity (convexity) of m(z).

Hence, if m′′(z) < 0, then ∆E∗k+1 > 0 proving part (i). If m(1) = 0 and m′′(z) > 0,

then ∆E∗k+1 < 0 proving part (ii).

Part (iii) is shown by direct computation using m(z) = λ(1− z).

For part (iv), note that if f(t) is first log-concave and then log-convex, then −m′′(z)

is single crossing and hence, −m′(z) is unimodal. Since zk − zk+1 is log-supermodular,

Lemma 1 implies the result.

Proof of Lemma 5 Definition 3 is equivalent to the requirement that F−1
X (z)−F−1

Y (z) is

nondecreasing in z. Differentiating with respect to z, obtain 1
fX(F−1

X (z))
− 1

fY (F−1
Y (z))

≥ 0, or,

using the definition of inverse quantile density, mX(z) ≤ mY (z) (with a strict inequality

in some open interval). Equation (4) then gives the result.

Proof of Lemma 6 For part (a), note that since fX and fY are nondecreasing and Y

FOSD X, for any nondecreasing function u(t) we have
∫
fY (t)u(t)dt ≥

∫
fX(t)u(t)dt.

Using u(t) = fY (t), obtain
∫
fY (t)2dt ≥

∫
fX(t)fY (t)dt; using u(t) = fX(t), obtain∫

fY (t)fX(t)dt ≥
∫
fX(t)2dt. Combining the two inequalities, obtain the result.

For part (b), similarly, note that X FOSD Y and hence for any nonincreasing func-

tion u(t) we have
∫
fX(t)u(t)dt ≤

∫
fY (t)u(t)dt. Using u(t) = fY (t) and u(t) = fX(t)
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consecutively, obtain the result.

For part (c), define

∆b2 =

∫ u

u

[f 2
Y (t)− f 2

X(t)]dt =

∫ u

u

f+(t)f−(t)dt,

where f±(t) = fY (t)± fX(t). Note that f−(t) ≤ 0 for t ∈ [u, t1]∪ [t2, u], and f−(t) ≥ 0 for

t ∈ [t1, t2]. Thus,

∆b2 =

∫ t2

t1

f+(t)f−(t)dt−
∫ t1

u

f+(t)|f−(t)|dt−
∫ u

t2

f+(t)|f−(t)|dt.

By the mean-value theorem for definite integrals, there exist t∗1 ∈ (u, t1), t∗12 ∈ (t1, t2) and

t∗2 ∈ (t2, u) such that

∆b2 = f+(t∗12)

∫ t2

t1

f−(t)dt− f+(t∗1)

∫ t1

u

|f−(t)|dt− f+(t∗2)

∫ u

t2

|f−(t)|dt.

Note also that
∫ u
u
f−(t) = 0, which gives

∫ t2

t1

f−(t)dt =

∫ t1

u

|f−(t)|dt+

∫ u

t2

|f−(t)|dt,

and, therefore,

∆b2 = [f+(t∗12)− f+(t∗1)]

∫ t1

u

|f−(t)|dt+ [f+(t∗12)− f+(t∗2)]

∫ u

t2

|f−(t)|dt.

This expression will be nonnegative if we can ensure that f+(t∗12) ≥ f+(t∗1) and f+(t∗12) ≥
f+(t∗2). We know that f+(t∗1) < f+(t1) and f+(t∗2) < f+(t2), so it is sufficient to have

f+(t∗12) ≥ max{f+(t1), f+(t2)}. This can be achieved if f+(t1) = f+(t2), i.e., fX(t1) +

fY (t1) = fX(t2) + fY (t2), implying fX(t1) = fX(t2) = fY (t1) = fY (t2).

Proof of Proposition 8 (i) From (10),

p̃k =
kpk
k̄

=
kakθ

k∑∞
k=1 kakθ

k
=
ãkθ

k

Ã(θ)
,

where ãk = kak and Ã(θ) =
∑∞

k=1 ãkθ
k; that is, p̃k also has the PSD form.
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(ii) Recall that G(z, θ) = A(θz)
A(θ)

. This gives

Gθ(z, θ) =
A′(θz)z

A(θ)
− A′(θ)

A(θ)

A(θz)

A(θ)

=

∑∞
k=0 kakθ

k−1zk

A(θ)
−
∑∞

k=0 kakθ
k−1

A(θ)

∑∞
k=0 akθ

kzk

A(θ)

=
1

θ

(
E(KzK)− E(K)E(zK)

)
=

1

θ
Cov(K, zK) ≤ 0.

(iii) Let Ak(θ) = 1
A(θ)

∑k
l=0 alθ

l denote the cmf of a PSD distribution. We will prove

that |A′k(θ)| is log-supermodular; the result then follows by Lemma 3. Note that

A′k(θ) =
1

A(θ)2

k∑
l=0

∑
m≥0

alamθ
l+m−1(l −m) = − 1

A(θ)2

k∑
l=0

∑
m≥k+1

alamθ
l+m−1(m− l).

Consider some θ′ > θ and let β = θ′

θ
> 1. For convenience, introduce the notation

αlm = alamθ
l+m−1(m− l). The ratio r(k, θ, θ′) from Lemma 2 is

A′k(θ′)

A′k(θ)
= A(θ)2

A(θ′)2
Nk
Dk

, where

Nk =
k∑
l=0

∑
m≥k+1

βl+m−1αlm, Dk =
k∑
l=0

∑
m≥k+1

αlm.

We need to show that Nk
Dk

is nondecreasing in k, or, equivalently, that Nk+1Dk−NkDk+1 ≥
0. Notice that Nk+1 can be expressed through Nk as follows:

Nk+1 = Nk −
k∑
l=0

βl+kαl,k+1 +
∑

m≥k+2

βm+kαk+1,m.

Similarly,

Dk+1 = Dk −
k∑
l=0

αl,k+1 +
∑

m≥k+2

αk+1,m;
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therefore,

Nk+1Dk −NkDk+1 =

(
Nk −

k∑
l=0

βl+kαl,k+1 +
∑

m≥k+2

βm+kαk+1,m

)
Dk

−Nk

(
Dk −

k∑
l=0

αl,k+1 +
∑

m≥k+2

αk+1,m

)

=
k∑
l=0

αl,k+1(Nk − βl+kDk) +
∑

m≥k+2

αk+1,m(βm+kDk −Nk).

It can be shown that each of the two terms in the last line is nonnegative. We demonstrate

it explicitly for the first term; for the second term, the derivation is similar.

k∑
l=0

αl,k+1(Nk − βl+kDk) =
k∑
l=0

∑
m≥k+1

k∑
l′=0

(
βl
′+m−1αl′mαl,k+1 − βl+kαl′mαl,k+1

)
=

k∑
l=0

∑
m≥k+1

k∑
l′=0

(
βl+m−1αlmαl′,k+1 − βl+kαl′mαl,k+1

)
≥

k∑
l=0

∑
m≥k+1

k∑
l′=0

βl+k (αlmαl′,k+1 − αl′mαl,k+1)

=
k∑
l=0

∑
m≥k+1

k∑
l′=0

βl+kalamal′ak+1θ
l+m−1+l′+k [(m− l)(k + 1− l′)− (m− l′)(k + 1− l)]

=
k∑
l=0

∑
m≥k+1

k∑
l′=0

βl+kalamal′ak+1θ
l+m−1+l′+k(m− k − 1)(l − l′)

=
∑

m≥k+1

βkamak+1θ
m−1+k(m− k − 1)

k∑
l=0

k∑
l′=0

βlalal′θ
l+l′(l − l′).

The sum over l and l′ can be rewritten as

k∑
l=0

k∑
l′=0

βlalal′θ
l+l′(l − l′) = Ak(θ)

2A(θ)2[E(βLL)− E(βL)E(L)]

= Ak(θ)
2A(θ)2Cov(βL, L) ≥ 0.

Here, L is understood as a random variable with support 0, 1, . . . , k and pmf alθ
l

Ak(θ)A(θ)
.

The covariance is nonnegative because β > 1.
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Lemma 11 Suppose Bn(q) has a unique interior maximum q∗n ∈ (0, 1) and the sequence

{bk} = {Bk(1)} is log-concave. Then function βn(q) = qB′n(q)
Bn(q)

is decreasing in q for

q ∈ (q∗n, 1].

Proof From 18, it is easy to see that B′n(q) = n−1
q

[Bn(q)−Bn−1(q)], which gives

βn(q) =
(n− 1)[Bn(q)−Bn−1(q)]

Bn(q)
= (n− 1)

[
1− Bn−1(q)

Bn(q)

]
.

Thus, in order to show that βn(q) is decreasing in q, we will show that Bn−1(q)
Bn(q)

is in-

creasing in q. This is the case if and only if B′n−1(q)Bn(q) > Bn−1(q)B′n(q) or, using the

representation for B′n(q) again,

(n− 2)[Bn−1(q)−Bn−2(q)]Bn(q) > (n− 1)[Bn(q)−Bn−1(q)]Bn−1(q),

which can be transformed into

(n− 1)Bn−1(q)2 > (n− 2)Bn(q)Bn−2(q) +Bn(q)Bn−1(q). (33)

Recall that we are considering q ∈ (q∗n, 1] and hence Bn−1(q) > Bn(q). Therefore, it is

sufficient to show that Bn−1(q)2 > Bn(q)Bn−2(q). Introducing variable s = 1−q
q

, rewrite

Bn(q) as

Bn(s) =
n− 1

(s+ 1)n−1

∫ 1

0

(s+ z)n−2m(z)dz.

The inequality Bn−1(q)2 > Bn(q)Bn−2(q) then can be written as

(n− 2)2

[∫
(s+ z)n−3m(z)dz

]2

> (n− 1)(n− 3)

∫
(s+ z)n−2m(z)dz

∫
(s+ z)n−4m(z)dz.

(34)

Introduce coefficients mk =
∫
zkm(z)dz. For convenience, we also set mk = 0 if k < 0.

Then, representing the square of the integral on the left-hand side as a product of integrals

and using binomial expansions, the inequality becomes

(n− 2)2

n−3∑
k=0

(
n− 3

k

)
skmn−3−k

n−3∑
l=0

(
n− 3

l

)
slmn−3−l

> (n− 1)(n− 3)
n−2∑
k=0

(
n− 2

k

)
skmn−2−k

n−4∑
l=0

(
n− 4

l

)
slmn−4−l.
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On both sides of the inequality we have strictly increasing, positive polynomials of degree

2n − 6 in s. The inequality will hold for all s ≥ 0 if for any t = 0, 1, . . . , 2n − 6 the

coefficient on st on the left-hand side exceeds the coefficient on st on the right-hand side.

Thus, we require that for each t = 0, 1, . . . , 2n− 6,

(n− 2)2

t∑
k=0

(
n− 3

k

)(
n− 3

t− k

)
mn−3−kmn−3−t+k

> (n− 1)(n− 3)
t∑

k=0

(
n− 2

k

)(
n− 4

t− k

)
mn−2−kmn−4−t+k.

This inequality can be rewritten in terms of coefficients bn = Bn(1) = (n−1)
∫ 1

0
zn−2m(z)dz =

(n− 1)mn−2. The left-hand side becomes

(n− 2)2

t∑
k=0

(
n− 3

k

)(
n− 3

t− k

)
bn−1−kbn−1−t+k

(n− 2− k)(n− 2− t+ k)

=
t∑

k=0

(n− 2)2(n− 3)!(n− 3)!

k!(n− 3− k)!(t− k)!(n− 3− t+ k)!

bn−1−kbn−1−t+k

(n− 2− k)(n− 2− t+ k)

=
t∑

k=0

(
n− 2

k

)(
n− 2

t− k

)
bn−1−kbn−1−t+k.

Similarly, the right-hand side becomes

(n− 1)(n− 3)
t∑

k=0

(
n− 2

k

)(
n− 4

t− k

)
bn−kbn−2−t+k

(n− 1− k)(n− 3− t+ k)

=
t∑

k=0

(n− 1)(n− 3)(n− 2)!(n− 4)!

k!(n− 2− k)!(t− k)!(n− 4− t+ k)!

bn−kbn−2−t+k

(n− 1− k)(n− 3− t+ k)

=
t∑

k=0

(
n− 1

k

)(
n− 3

t− k

)
bn−kbn−2−t+k.

Thus, we need to show that for all t = 0, . . . , 2n− 6,

t∑
k=0

(
n− 2

k

)(
n− 2

t− k

)
bn−1−kbn−1−t+k >

t∑
k=0

(
n− 1

k

)(
n− 3

t− k

)
bn−kbn−2−t+k. (35)

Observe that the sums of the products of binomial coefficients on the two sides of (35) are

equal to each other. This follows from the identity (s+1)n−2(s+1)n−2 = (s+1)n−1(s+1)n−3
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by equating the coefficients on the same powers of s.

The right-hand side of (35) can be transformed as

t∑
k=0

(
n− 1

k

)(
n− 3

t− k

)
bn−kbn−2−t+k =

(
n− 3

t

)
bnbn−2−t

+
t∑

k=1

(
n− 1

k

)(
n− 3

t− k

)
bn−kbn−2−t+k =

(
n− 3

t

)
bnbn−2−t

+
t−1∑
k=0

(
n− 1

k + 1

)(
n− 3

t− k − 1

)
bn−1−kbn−1−t+k.

Thus, inequality (35) becomes(
n− 2

t

)
bn−1bn−1−t −

(
n− 3

t

)
bnbn−2−t

+
t−1∑
k=0

[(
n− 2

k

)(
n− 2

t− k

)
−
(
n− 1

k + 1

)(
n− 3

t− k − 1

)]
bn−1−kbn−1−t+k > 0.

Note that the sum can be extended to k = t and the first term can be included back into

it using the convention that
(
n−3
−1

)
= 0. This gives

t∑
k=0

[(
n− 2

k

)(
n− 2

t− k

)
−
(
n− 1

k + 1

)(
n− 3

t− k − 1

)]
bn−1−kbn−1−t+k >

(
n− 3

t

)
bnbn−2−t.

(36)

To gain some intuition, consider several special cases. For t = 0, the inequality reduces

to b2
n−1 > bnbn−2, which is true due to the log-concavity of bk. For t = 1, we obtain

[(n− 2)− (n− 1)]bn−1bn−2 + (n− 2)bn−2bn−1 > (n− 3)bnbn−3,

which reduces to bn−1bn−2 > bnbn−3, which is also true due to the log-concavity of bk. For

t = 2, the inequality becomes[(
n− 2

2

)
− (n− 1)(n− 3)

]
bn−1bn−3 +

[
(n− 2)2 −

(
n− 1

2

)]
b2
n−2

+

(
n− 2

2

)
bn−3bn−1 >

(
n− 3

2

)
bnbn−4.
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Simplifying, obtain

(n− 2)(n− 3)

2
b2
n−2 > (n− 3)bn−1bn−3 +

(n− 3)(n− 4)

2
bnbn−4,

or

(n− 2)b2
n−2 > 2bn−1bn−3 + (n− 4)bnbn−4.

This inequality holds because b2
n−2 > bn−1bn−3 and b2

n−2 > bnbn−4 due to the log-concavity

of bk.

Building on these examples, we proceed as follows. Suppose first that t is odd, i.e.,

t = 2p + 1 where p ≥ 1. There are 2p + 2 terms in the sum in the left-hand side of (36),

which come in pairs multiplying bn−1−kbn−1−t+k for k = 0, . . . , p. Therefore, (36) can be

written as

p∑
k=0

Dtkbn−1−kbn−1−t+k >

(
n− 3

t

)
bnbn−2−t, (37)

Dtk = 2

(
n− 2

k

)(
n− 2

t− k

)
−
(
n− 1

k + 1

)(
n− 3

t− k − 1

)
−
(

n− 1

t− k + 1

)(
n− 3

k − 1

)
.

Note that(
n− 2

k

)(
n− 2

t− k

)
−
(
n− 1

k + 1

)(
n− 3

t− k − 1

)
=

(n− 2)!2

k!(n− 2− k)!(t− k)!(n− 2− t+ k)!

− (n− 1)!(n− 3)!

(k + 1)!(n− 2− k)!(t− k − 1)!(n− 2− t+ k)!

=
(n− 2)!(n− 3)![(n− 2)(k + 1)− (n− 1)(t− k)]

(k + 1)!(t− k)!(n− 2− k)!(n− 2 + t− k)!
,

(
n− 2

k

)(
n− 2

t− k

)
−
(

n− 1

t− k + 1

)(
n− 3

k − 1

)
=

(n− 2)!2

k!(n− 2− k)!(t− k)!(n− 2− t+ k)!

− (n− 1)!(n− 3)!

(t− k + 1)!(n− 2− t+)!(k − 1)!(n− 2− k)!

=
(n− 2)!(n− 3)![(n− 2)(t− k + 1)− (n− 1)k]

k!(t− k + 1)!(n− 2− k)!(n− 2 + t− k)!
.
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Combining the two differences, obtain for the coefficient on bn−1−kbn−1−t+k in (37):

Dtk =
(n− 2)!(n− 3)!Ttk

(k + 1)!(t− k + 1)!(n− 2− k)!(n− 2− t+ k)!
,

where

Ttk = [(n− 2)(k + 1)− (n− 1)(t− k)](t− k + 1) + [(n− 2)(t− k + 1)− (n− 1)k](k + 1)

= 2(n− 2)(k + 1)(t− k + 1)− (n− 1)[(t− k)2 + t− k + k2 + k]

= −(n− 1)t2 + 2(2n− 3)kt− 2(2n− 3)k2 + (n− 3)t+ 2(n− 2).

For k ≤ p, Ttk is increasing in k. It can also be shown that Ttp > 0. Indeed,

Ttp = −(n− 1)(4p2 + 4p+ 1) + 2(2n− 3)(p2 + p) + (n− 3)(2p+ 1) + 2(n− 2)

= 2[−p2 + (n− 4)p+ (n− 3)] = 2(n− 3− p)(p+ 1).

Recall that t = 2p + 1 ≤ 2n − 6, and hence p < n − 3, which implies Ttp > 0. Next, we

show that Tt0 < 0 for a sufficiently large t. Indeed,

Tt0 = −(n− 1)t2 + (n− 3)t+ 2(n− 2) = −[(n− 1)t− 2(n− 2)](t+ 1);

therefore, Tt0 < 0 for t > 2. The cases with t ≤ 2 have been considered separately above,

and from this point on we assume that t > 2. This implies that coefficients Dtk in (37)

are negative for low k and positive for high k, and there exists a k̄ such that 0 < k̄ < p

and Dtk ≤ 0 for k ≤ k̄ (where the inequality is strict at least for k = 0) and Dtk > 0 for

k > k̄.

Separating the terms with k ≤ k̄ and k > k̄ in the sum in (37), rewrite it as

p∑
k=k̄+1

Dtkbn−1−kbn−1−t+k > −
k̄∑
k=0

Dtkbn−1−kbn−1−t+k +

(
n− 3

t

)
bnbn−2−t. (38)

Now all the coefficients on both sides are positive, and because the sums of coefficients

on both sides of (35) are equal, so are the sums of coefficients on both sides of (38). In

addition, it follows from the log-concavity of {bk} that each product bn−1−kbn−1−t+k on

the left-hand side of (38) is greater than each product on the right-hand side because the

values of k in the sum on the left are all larger and t− k > k. These observations imply

that the inequality holds.

54



Suppose now that t is even, t = 2p, p > 1. In this case there are 2p + 1 terms in the

sum on the left-hand side of (36). There is one term proportional to b2
n−1−p, and all other

2p terms come in pairs multiplying bn−1−kbn−1−t+k for k = 0, . . . , p − 1. Therefore, (36)

can be written as[(
n− 2

p

)2

−
(
n− 1

p+ 1

)(
n− 3

p− 1

)]
b2
n−1−p +

p−1∑
k=0

Dtkbn−1−kbn−1−t+k >

(
n− 3

t

)
bnbn−2−t,

(39)

where Dtk is defined in (37). The coefficient on b2
n−1−p can be simplified as

(
n− 2

p

)2

−
(
n− 1

p+ 1

)(
n− 3

p− 1

)
=

(n− 2)!2

p!2(n− 2− p)!2
− (n− 1)!(n− 3)!

(p+ 1)!(p− 1)!(n− 2− p)!2

=
(n− 2)!(n− 3)![(n− 2)(p+ 1)− (n− 1)p]

p!(p+ 1)!(n− 2− p)!2
=

1

p+ 1

(
n− 2

p

)(
n− 3

p

)
.

Thus, the coefficient on b2
n−1−p is always positive. The remaining coefficients Dtk, k =

0, . . . , p − 1, are nonpositive for k ≤ k̄ (and strictly negative at least for k = 0) and

positive for k > k̄ as shown above. We can, therefore, separate the sum into two parts

and move the negative part to the right-hand side in the same way as above. The result

again will be an inequality where all coefficients are positive, the sums of coefficients on

the left and on the right are equal, and all terms bn−1−kbn−1−t+k on the left have a higher

value of k than on the right and hence, due to the log-concavity of {bk}, they are larger.

The inequality, therefore, holds.

We have shown that if the sequence {bk} is log-concave then inequality (34) holds for

all s and, therefore, Bn−1(q)2 > Bn(q)Bn−2(q) for all q, which implies that (33) holds for

q ∈ (q∗n, 1]. This, in turn, implies that βn(q) is decreasing in q for q ∈ (q∗n, 1].

Proof of Proposition 10 For c(e) = c0e
ξ, it follows from (20) that

∂E∗n(q)

∂q
=
nc′(e∗n(q))

c′′(e∗n(q))
[ξ − 1 + βn(q)]. (40)

This expression is positive if and only if ξ > 1− βn(q). This is always true for βn(q) ≥ 0,

i.e., for q ≤ q∗n. For q > q∗n, it follows from Lemma 11 that βn(q) is decreasing in q, and
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hence ξ > 1− βn(q) if and only if

ξ > 1− βn(1) = 1− (n− 1)

[
1− Bn−1(1)

Bn(1)

]
,

and the result follows.

Proof of Proposition 14 In order to compare E∗p = k̄e∗p to E∗
k̄

= k̄e∗
k̄
, we need to

compare e∗p and e∗
k̄
, i.e., it is sufficient to compare Bp given by (14) and bk̄.

(a) Suppose p0 = 0 and kbk is concave for k ≥ 1. Then

Bp =
1

k̄

n∑
k=1

pkkbk =
1

k̄
Ep(KbK) ≤ 1

k̄
k̄bk̄ = bk̄,

where the inequality follows from Jensen’s inequality, which will be strict if kbk is strictly

concave.

(b) From Jensen’s inequality for conditional expectations, and assumptions (i) and

(ii),

Ep(KbK |K ≥ 2) ≤ Ep(K|K ≥ 2)bEp(K|K≥2) ≤ Ep(K|K ≥ 2)bk̄.

The first inequality will be strict if kbk is strictly concave. Multiplying both sides by

Prp(K ≥ 2),

Ep(KbK |K ≥ 2)Prp(K ≥ 2) ≤ Ep(K|K ≥ 2)Prp(K ≥ 2)bk̄,

or

k̄Bp ≤
n∑
k=2

kpkbk̄ ≤
n∑
k=0

kpkbk̄ = k̄bk̄.

The last inequality will be strict if p1 > 0. Thus, we showed that Bp ≤ bk̄, with strict

inequality if kbk is strictly concave or p1 > 0.
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