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Abstract
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nomic variables and the yield curve while being consistent with the zero lower bound.

Our model-implied short-rate distribution has a probability-mass at its lower bound

and depends on quadratic combinations of Gaussian macroeconomic and yield-speci�c

factors. With a standard pricing kernel, interest rates and their forecasts are closed-

form functions of the macroeconomy. Our empirics investigate the pricing of in�ation

risks in nominal U.S. rates. We show that the recent crisis triggers substantial short-

term de�ation fears, so keeping interest rates low is bene�cial for the macroeconomy

and investors' utility.
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1 Introduction

Understanding the joint dynamics of macroeconomic variables and the yield curve is of

paramount importance for both policy makers and investors. Macro-�nance asset pricing

models of the term structure are a natural way of capturing them. Two main principles

usually drive the underlying assumptions in these models. First, the joint dynamics should

allow to easily derive policy implications such as forecasts or impulse-response functions.

Second, the joint dynamics should provide a simple formulation of asset prices as a function

of the macroeconomic risk factors using no-arbitrage. The class of a�ne term structure

models (ATSM) is exactly �tted for these two goals. The canonical ATSM formulation

following Ang and Piazzesi (2003) expresses the yield curve as an a�ne function of both

macroeconomic and latent factors whose evolution is driven by - possibly heteroskedastic -

Gaussian shocks. The resulting conditional distribution of the yield curve is then Gaussian,

placing the nominal interest rates on a positive and negative statistical support.

Whereas the Gaussianity assumption is perceived as reasonably valid when interest rates

are high, it is strongly at odds with no-arbitrage theory when the policy rate approaches

zero. Because investors can always hold cash for a zero nominal return, interest rates cannot

theoretically go below the zero lower bound (ZLB).2 A model violating this restriction can

be extremely harmful from a policy perspective since all model-implied economic quantities

during the ZLB are likely to be highly biased due to the misspeci�cation error. Consistent

a�ne pricing models hence require the departure from conditional Gaussianity to reproduce

the non-negativity of interest rates and the persistence of the ZLB state. Recent works have

thus considered non-Gaussian ATSMs where the yield curve is driven by non-negative latent

factors only. However, these models are incapable of including macroeconomic variables

that may be negative, leading to a trade-o� between ZLB-consistency and macro-�nance

purposes.

In this paper, we provide a new way of modeling both nominal and real yield curves in

an a�ne framework, which allows for the presence of observable macroeconomic variables

and is consistent with the zero lower bound. Our ATSM formulation is motivated by the

investigation of the macroeconomic risk premia embedded in nominal securities during the

ZLB period. In particular, a key driver of nominal rates is expected in�ation and the

associated in�ation risk premium, which we explore in the empirical application. These

quantities can guide policy-makers in the assessment of the harm done to the investors'

utilities regarding the central bank reaction to macroeconomic shocks and the timing of the

raise of interest rates.

We start from the same formulation as the canonical ATSM and specify the joint dynamics

2More generally, if the cost of holding cash is positive, nominal interest rates cannot go below minus this
holding cost.
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of macroeconomic variables and yield-speci�c latent factors in a standard Gaussian VAR(1).

These variables are gathered in our vector of endogenous risk factors. The nominal short-rate

speci�cation constitutes the main novelty of our framework. Conditionally on the current

and past factor values, the short-term interest rate is gamma-distributed, its shape being

equal to a Poisson draw whose intensity is a positive linear-quadratic combination of current

factor values. This so-called gamma-zero distribution de�nes a process able to mimic the

speci�c features of the short-rate at the ZLB: it is non-negative and can reach zero and stay

there for extended periods of time before bouncing back to positive values. In particular, the

probabilities of escaping the ZLB are functions of current and past macroeconomic shocks.

This speci�cation can be interpreted as a quadratic Taylor-type rule where the loadings on

macroeconomic variables are varying over time. This representation emphasizes the presence

of shifts in monetary policy, as in Ang et al. (2011).

To obtain the entire yield curve dynamics, we express the nominal log-pricing kernel

as a quadratic function of the risk factors and a linear function of the short-term nominal

rate, where the investors' prices of risk are time-varying à la Du�ee (2002). This particular

pricing kernel formulation has two important implications. First, it is extremely �exible and

allows for possibly non-monotonic risk perception regarding macroeconomic shocks. As a

result, our model is able to obtain positive risk premia associated with high in�ation and

de�ation at the same time, an absent feature of most existing ATSMs. Second, we show

that the distributions of the risk factors under the pricing measure are the same as under

the physical measure, with shifted parameters.

Our main modeling result is that these particular dynamics de�ne an ATSM and the

nominal yield curve is obtained as closed-form function of macroeconomic variables. As

long as the in�ation rate is included in the set of observables, we show that the model

also produces closed-form interest rate formulas for in�ation-indexed bonds. We obtain this

a�ne property expressing the model with the extended vector of factors, which gathers the

short-term nominal rate and the linear and quadratic combinations of the vector of risk

factors. Due to the properties of linear-quadratic Gaussian processes and of the gamma-zero

distribution, this extended vector is an a�ne process under both the physical and pricing

measures.3 An important by-product of this result is that macroeconomic forecasts, nominal

and real interest rate forecasts, non-linear impulse-response functions and probabilities of

staying at the ZLB (or escaping the ZLB, the lifto� ) are available as closed-form functions

of macroeconomic variables.

We study the empirical performance and economic implications of the model using

monthly U.S. data from January 1990 to March 2015. The model incorporates the year-

3Since we consider quadratic combinations of Gaussian processes, the model is also a quadratic term
structure model in the sense of Ahn et al. (2002).
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on-year in�ation rate and is estimated to �t both the nominal and the real (TIPS) term

structures of interest rates. Using the real yield curve in a term structure model improves

the estimation of in�ation expectations and makes it easy to isolate the in�ation risk com-

ponents in nominal interest rates. To better pin down the macroeconomic and �nancial

dynamics, we also �t expectations of in�ation and expectations on long-term nominal inter-

est rates at di�erent horizons as measured by surveys of professional forecasters and proxies

of ZLB probabilities as measured by primary dealer surveys. Our framework is the only

existing model to be able to easily incorporate and �t the latter proxies without destroying

the a�ne structure of the state-space model.

We estimate the model with three latent variables that we �lter using the quadratic

Kalman �lter (Qkf) quasi maximum likelihood algorithm of Monfort, Renne, and Roussellet

(2015). This method mostly relies on the fact that all our observable variables are a�ne

functions of the extended vector of factors, whose total dynamics can be expressed with

a semi-strong a�ne VAR(1) formulation. This estimation method is simple, fast, and can

easily accommodate missing data. As a �rst performance assessment, we show that the

model is able to reproduce the time series of nominal and real term structures of interest

rates with an average error of 8bps and 12bps respectively. This �t is particularly high

with respect to the small number of latent yield factors, emphasizing the �exibility of the

model. Second, we show that the model-implied marginal term structures of levels and

volatilities are reasonable compared to the data. Last, we extend the classical Campbell and

Shiller (1991) regressions to assess the model's ability to both reproduce deviations from the

expectation hypothesis and predict excess returns, for both nominal and real term structures.

Comparing the model-implied regressions with the data counterparts, we cannot reject that

the one-year excess returns and predicted excess returns are consistently reproduced by the

model for nearly all maturities.4 Contrary to yield-only models with positive factors, our

framework is able to produce both reliable time-series properties, moments and risk premia

estimates.

Our main economic motivation in the application is to study the sign and size of in�ation

risk premium and its interaction with interest rate shocks during the ZLB. First, we empha-

size the importance of a U-shaped pricing kernel by calculating the physical and risk-neutral

conditional probabilities of de�ation and high in�ation (above 4%). We show that both

series of risk-neutral probabilities are consistently above their physical counterparts showing

that investors fear both low and high in�ation shocks at the same time. We then provide the

decomposition of nominal interest rates in expected real rates, expected in�ation, real term

premia and in�ation risk premia. We show that the in�ation risk premium changes sign over

4In other words, the model is consistent with conditions LPY-I and LPY-II, formulated by Dai and
Singleton (2002).
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time, re�ecting investors changing views about in�ation shocks. In particular, short-term in-

�ation risk premia becomes consistently negative in the ZLB, showing that investors require

a compensation to insure against negative in�ation shocks. This premium is economically

signi�cant as it reaches a maximum of 4.3% when the ZLB starts binding. These short-term

in�ation premia �uctuations are however largely o�set by the real term premium, producing

a very low nominal risk premium component associated with low nominal risk. In compari-

son, the long-term in�ation risk premium is low and �uctuating between −75bps and 75bps

at the ZLB, emphasizing investors' con�dence in monetary policy long-term e�ectiveness.

Long-term nominal risk premia are therefore mostly driven by real term premia.

We use our estimated joint dynamics to quantify the premium associated with staying at

the ZLB, or lifting-o�. To �rst assess the real e�ects of lifting o�, we quantify the interactions

between monetary policy and the in�ation rate during the zero lower bound. Using an

impulse-response analysis, we show that the lifto� can have very detrimental e�ects on the

in�ation path and increase dramatically short-term de�ation fears. We �nd that lifting-o�

from the ZLB by a 10bps initial increase in the short-term nominal rate is very detrimental,

translating into −22bps on the in�ation rate after one year, and a fall of the short-term

in�ation risk premium by about −120bps, compared to only −5bps and −30bps respectively
for the same increase in normal times. In turn, a 35bps in�ation shock raises the short-

term nominal rate by about 7bps in normal times but has virtually no impact at the ZLB,

emphasizing the will of the central bank to let in�ation run up. These detrimental e�ects of

lifting-o� are further investigated computing both objective and risk-neutral ZLB and lifto�

probabilities. We �nd that the one-year ZLB risk premium is mostly negative, showing

that the ZLB is perceived as a good outcome given the state of the economy. Consistently

with this result, we show that the lifto� risk premium becomes negative only after a certain

horizon, underlying investors' fears about lifting o� too soon during the ZLB period.

The remainder of the paper is organized as follows. Section 2 describes the related

literature. Section 3 presents the formulation and the properties of the term structure

model. We present a general estimation method in Section 4. Section 5 details the data

and the identi�cation constraints, while Section 6 focuses on a �rst analysis of the model in

terms of time-series �t, moments and predictability of excess returns. Section 7 explores the

economic implications of the model in terms of in�ation risk. Section 8 concludes.

2 Literature Review

After their introduction by Du�e and Kan (1996) and Du�e and Singleton (1997), a�ne

term structure models have been very popular. The class of conditionally Gaussian a�ne

models makes it easy to introduce macroeconomic variables in the analysis, as the economic
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theory on monetary policy suggests (see e.g. Taylor (1993) and Ang et al. (2004) for Tay-

lor rules in asset pricing models).5 Ang and Piazzesi (2003) are the �rst to introduce a

no-arbitrage a�ne model which contains both real activity and in�ation as well as unobserv-

able factors to price the term structure, pioneering the so-called macro-�nance asset pricing

models. Diebold et al. (2005) and Diebold et al. (2006) provide an early summary of the

literature, showing that the VAR structure of a macro-�nance model allows all traditional

policy analysis such as forecasting, impulse-response function computation or risk premia

decomposition (see also Dewachter and Lyrio (2006)). Ang et al. (2006) show that the no-

arbitrage restrictions employed in a macro-�nance model improve the identi�cation of the

macroeconomic variables dynamics. Rudebusch and Wu (2008) and Bikbov and Chernov

(2010) help relating the level, slope and curvature factors of interest rates to macroeconomic

variables. More recently, the literature has focused on whether macroeconomic factors were

signi�cantly priced in the interest rates, leading to the so-called spanning puzzle (see e.g.

Joslin et al. (2014) or Bauer and Rudebusch (2015)).

A second class of a�ne models tackles the non-negativity of interest rates. The model

of Cox et al. (1985) (CIR henceforth) has positive factors and allows to obtain closed-form

positive yield curve estimates (see also its discrete-time formulation by Gouriéroux and

Jasiak (2006) and Dai et al. (2010)). However, as shown by Dai and Singleton (2002) and

Backus et al. (2001), these processes have di�culties to reproduce the moments of the term

structure and a reliable term premium. A second approach consists in extending the Gaussian

a�ne framework in a Gaussian quadratic framework as in e.g. Leippold and Wu (2002,

2007). The short-term interest rate is given by a quadratic combination of factors following

a Gaussian VAR, and it preserves the closed-formedness of pricing formulas (see Cheng and

Scaillet (2007)). Positivity of the term structure is easily imposed in this framework (see e.g.

Gouriéroux and Sufana (2011) or Dubecq et al. (2016)) as well as including macroeconomic

variables (see Ang et al. (2011) or Campbell et al. (2016)).6 However, the positive a�ne

models all treat zero as a re�ecting barrier and are not able to generate enough stickiness

at the zero lower bound except the model of Monfort et al. (2016). In the latter, the risk

factors are positive a�ne processes with a zero point mass but their formulation does not

allow for the introduction of observable real-valued macroeconomic factors.

In the last decade, the literature on modeling the term structure at the zero lower bound

has been rapidly growing. A large number of authors have focused on the so-called shadow-

rate model (or Black (1995) model, SR henceforth), such as e.g. Kim and Singleton (2012)

or Krippner (2013). In this approach, the e�ective short-rate is the maximum of zero and a

Gaussian random variable called shadow-rate. SR models can be yield-only (see for instance

5See also Hordahl et al. (2006) or Creal and Wu (2016) for macro-�nance models that relate to a structural
macroeconomic formulation.

6Note that these two latter papers cannot or do not impose the positivity of interest rates.
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Lemke and Vladu (2016), or Andreasen and Meldrum (2015)) or incorporate macroeconomic

variables (see e.g. Bauer and Rudebusch (2016) or Jackson (2014)). The main drawback of

the SR model is that it is not a�ne hence does not produce closed-form pricing formulas.

This often leads to complexity in terms of estimation when more than two factors are included

and current methods are either approximate (see e.g. Kim and Priebsch (2013), Priebsch

(2013), Wu and Xia (2016) or Christensen and Rudebusch (2015)) or involve computationally

intensive algorithms (see Andreasen and Meldrum (2011) or Pericoli and Taboga (2015)).7

Most papers focus on the estimation of the risk premium in the ZLB or the e�ectiveness of

monetary policy measures (see for example Hamilton and Wu (2012)).

Our empirical application contributes to the vast literature on in�ation risk and the term

structure of interest rates. No-arbitrage asset pricing models of nominal and in�ation-indexed

securities have been developed by numerous authors, starting with U.K. and European data

as Barr and Campbell (1997), Evans (1998), or Anderson and Sleath (2001) for instance.8

Most papers have been focused on �nding the relative size of real term premium and

in�ation risk premium in nominal yields (see Campbell and Viceira (2001)). Buraschi and

Jiltsov (2005), Hordahl and Tristani (2012) build macroeconomic-motivated asset pricing

models leading to an a�ne formulation, while Campbell et al. (2009) and Hsu et al. (2014)

consider consumption-based pricing models. More reduced-form models have also been con-

sidered by for instance Grischenko and Huang (2013), Abrahams et al. (2016), or D'Amico

et al. (2014) who directly build on Gaussian a�ne models of the term structure on U.S. data,

or Garcia and Werner (2010) and Joyce, Lildholdt, and Sorensen (2010) who respectively

use a three-factor Gaussian a�ne model on Eurozone data and a four-factor Gaussian a�ne

model on U.K. data. Ang et al. (2008) and Chernov and Mueller (2012) add in�ation surveys

to better pin down in�ation expectations. Adrian and Wu (2009), Haubrich et al. (2012) and

Campbell et al. (2016) add volatility factors that drive the variability of the term structure

but leave the conditional Gaussianity assumption intact.

Other studies exploit the U.S. in�ation-indexed bonds (TIPS) speci�cities and develop

pricing models to back out in�ation densities or de�ation probabilities. Grischenko et al.

(2011) exploit the fact that the TIPS has an embedded de�ation option to derive de�a-

tion probabilities and the associated risk premium. Christensen et al. (2012, 2016) develop

arbitrage-free four-factor models with and without volatility factors to reproduce both nom-

7Alternative approaches have also been developed to enforce the zero lower bound. Filipovic, Larsson,
and Trolle (2016) develop the linear-rational term structure model and Feunou, Fontaine, and Le (2015)
model directly the price of bonds in a nearly arbitrage-free framework. Renne (2016) uses a term structure
model where the short-rate can reach discrete positive states.

8Other approaches have been employed to quantify the size of the in�ation risk premium. Fama (1976,
1990) constitutes its �rst attempts with linear regressions. Campbell and Shiller (1996) study the properties
of in�ation-linked securities before they were introduced in the U.S. and Wright (2011) uses panel data
regressions to assess the size of international in�ation premia.
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inal and real term structures and price de�ation risk in the U.S.. Fleckenstein et al. (2014a)

develop a three-factor model for in�ation to price in�ation-indexed swaps and options and

derive the term structure of de�ation risk premium. Last, Kitsul and Wright (2013) develop

asset pricing models of TIPS or in�ation options to back out in�ation conditional densities

and in�ation risk premium.

With the exception of Carriero et al. (2015) who employ a SR model on nominal and

real term structures, all the aforementioned work neglect the consistency with the zero lower

bound. This has become paramount regarding the recent period of low interest rates. We

hereby propose a solution to this inconsistency.

3 The Model

3.1 Macroeconomic and yields joint dynamics

Let Mt ∈ RnM be a set of observable macroeconomic variables and Zt ∈ RnZ be a set of

latent yield-related risk factors, respectively. Their joint dynamics are given by a standard

Gaussian VAR(1) of the following form:

 Mt

Zt

 =

 µM

µZ

+

 ΦM ΦM,Z

ΦZ,M ΦZ


 Mt−1

Zt−1

+

 ΣM 0

0 InZ


1/2

εt , (1)

where εt is a zero-mean unit-variance-covariance Gaussian white-noise. Denoting by Xt a

size-n vector such that Xt = (M ′
t , Z

′
t)
′, (n = nZ+nM), we can write the dynamics in compact

form as:

Xt = µ+ ΦXt−1 + Σ1/2εt , (2)

with adequate sizes for µ, Φ and Σ.9 At time t, economic agents can invest in a one-period

risk-less nominal zero-coupon bond providing a known interest rate between t and t + 1

denoted by rt. For the sake of generality, we authorize the lower bound of the short-rate to

be di�erent from zero, such that:

rt = δ0 + δrt , δ0 ∈ R (3)

where δ0 is a parameter representing the value of the lower bound. In the following, we refer

to rt as the scaled short-term interest rate. We express rt dynamics using a Poisson mixing

9We do not discuss the identi�cation of Σ1/2. Indeed, since εt is a Gaussian shock, the square-root of Σ
is only set-identi�ed and can be obtained using for instance zero, sign or long-run restrictions. This matter
is however beyond the scope of this paper.
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variable denoted by Pt:
10

 Pt|(Xt, rt−1) ∼ P (θ0 + θ′Xt + X ′tΘXt + βrt−1)

rt|(Xt, rt−1, Pt) ∼ Gamma (Pt, ς) ,

(4)

where (Xt, rt−1) = {Xt, (rt−1, Xt−1, rt−2, Xt−2, . . .)} is the present and values states of the

risk factors and the past of the scaled interest rate, Pt is the shape parameter of the Gamma

distribution11, ς > 0 is a scaling parameter, β > 0, θ0 is a constant, θ is a vector of size n

and Θ is a positive symmetric (n× n) matrix.12 Integrating out Pt, we obtain the so-called

conditional gamma-zero distribution (see Monfort, Pegoraro, Renne, and Roussellet (2016)).

We rewrite System (4) as:

rt|(Xt, rt−1) ∼ Gamma0 (θ0 + θ′Xt + X ′tΘXt + βrt−1 , ς)

The gamma-zero distribution is particularly �tted to represent the behavior of interest

rates during the zero lower bound. First, it allows us to de�ne a short-term nominal rate

that has a lower bound given by δ0, as implied by no-arbitrage with cash. The �rst argument

(θ0 + θ′Xt +X ′tΘXt + βrt−1) is an intensity and must be non-negative for the Poisson distri-

bution to be well-de�ned. For that matter it is su�cient that θ0 > 1
4
θ′Θ−1θ. Second, when

Pt = 0 the scaled short-rate distribution collapses to a Dirac mass at zero. When Pt = 0 for

several consecutive periods, the short-rate stays at its lower bound, which reproduces the

persistence of the ZLB period. Importantly, the conditional Laplace transform of rt given

the current factor values and the past is easily expressed as:

∀ur <
1

ς
, E

[
exp (urrt) |Xt, rt−1

]
= exp

[
urς

1− urς
(θ0 + θ′Xt +X ′tΘXt + βrt−1)

]
, (5)

and the conditional mean and variances of the short-rate are given by:

E
[
rt|Xt, rt−1

]
= δ0 + δς (θ0 + θ′Xt +X ′tΘXt + βrt−1)

V
[
rt|Xt, rt−1

]
= 2δ2ς2 (θ0 + θ′Xt +X ′tΘXt + βrt−1)

(6)

Further details on the gamma-zero distribution are provided in Appendix A.1.

10Since Pt is a mixing variable, it has no economic interpretation.
11The conditional density of rt given (Xt, rt−1, Pt) is given by: gt(x) = 1

Γ(Pt)ςPt
xPt−1 exp

(
−xς
)
, where Γ(·)

is the standard Gamma function.
12Note that Θ does not need to be a strictly positive matrix in all cases. If θ = 0, it is su�cient to have

θ0 > 0 and Θ semi-positive de�nite.

8



3.2 Underlying monetary policy decisions

The short-rate dynamics allows for a more conventional interpretation in terms of the un-

derlying monetary policy reaction function. Using equation (6) we write the following de-

composition:

rt = E
(
rt|Xt, rt−1)

)
+ υt with E(υt|Xt, rt−1) = 0

= δ0 + δς [θ0 + (θM + 2ΘM,ZZt + ΘMMt)
′Mt + θ′ZZt + Z ′tΘZZt + βrt−1] + υt

=: (δ0 + δςθ0 − δ0ςβ) + ςβrt−1︸ ︷︷ ︸
smoothing

+ b(Mt, Zt)
′Mt︸ ︷︷ ︸

response to macro shocks

+ c(Zt) + υt︸ ︷︷ ︸
monetary policy shocks

, (7)

where the subscripts (.)M and (.)Z are explicit notations for the partitions of θ and Θ. Equa-

tion (7) can be seen as a Taylor-type rule where the loadings on macroeconomic variables

are time-varying Gaussian variables, as in e.g. Ang et al. (2011). b(Mt, Zt) therefore rep-

resents the central bank response to macroeconomic shocks. In contrast, both c(Zt) and υt

are monetary policy shocks that are conditionally uncorrelated with macroeconomic shocks

given the past. The former can be persistent if Zt is persistent, whereas the latter is non-

persistent. Note however that the distributions of the monetary policy shocks c(Zt) and υt

are non-Gaussian, resulting in a crucial di�erence with the standard Taylor-type rule case.13

3.3 Nominal pricing kernel and risk-neutral dynamics

Between t−1 and t, economic agents discount payo�s with the nominal pricing kernel mt−1,t

(or stochastic discount factor, SDF henceforth). The SDF is speci�ed as an exponential-

quadratic function of (Xt, rt) with time-varying prices of risk.

mt−1,t = exp
{
− rt−1 + Λ′t−1Xt +X ′tΛXXt + Λrrt

− logE
[
exp

(
Λ′t−1Xt +X ′tΛXXt + Λrrt

) ∣∣Xt−1, rt−1

]}
, (8)

where the expectation term is the convexity adjustment such that E(mt−1,t|Xt−1, rt−1) =

exp(−rt−1). The linear prices of risk Λt−1 are given by an a�ne function of the past risk

factors Xt−1 (see Du�ee (2002)):

Λt−1 =: λ0 + λXt−1 . (9)

13This short-term interest rate speci�cation should not be interpreted as a structural monetary policy
reaction function. As noted by Backus et al. (2015), the identi�cation of the structural Taylor rule parameters
can be di�cult in the a�ne framework. We therefore interpret the present speci�cation as a reduced-form
for the short-term interest rate dynamics.
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This SDF speci�cation allows for a very simple derivation of risk-neutral Q-dynamics

of (Xt, rt). In particular, the form of Equations (8) and (9) preserves the same class of

probability distributions under the risk-neutral measure.

Proposition 3.1 Xt follows a Gaussian VAR under the risk-neutral measure.

Xt = µQ + ΦQXt−1 + ΣQ1/2

εQt , (10)

where εQt is a zero-mean unit-variance Gaussian white noise, and µQ, ΦQ and ΣQ are given

by: 

µQ = ΣQ
(
λ0 +

Λrς

1− Λrς
θ + Σ−1µ

)
,

ΦQ = ΣQ (λ+ Σ−1Φ) ,

ΣQ =

(
Σ−1 − 2

Λrς

1− Λrς
Θ− 2ΛX

)−1

,

(11)

whenever ΛX and Λr de�ne non-negative eigenvalues for the matrix ΣQ.

Proof See Appendix A.2. �

Additional �exibility appears compared to the standard Gaussian ATSM. First, when either

Λr or ΛX are di�erent from zero, the conditional variance of the Gaussian VAR is di�erent

under the physical and the risk-neutral measure, an absent feature of most ATSMs. Economic

agents price shocks increasing the short-term interest rate higher than expected at t−1 with

a price Λr. This translates into a premium associated with high factor values (µQ > µ) and

with the factors variance (ΣQ > Σ). Second, agents value large unexpected shocks making

the risk factors Xt deviate from their mean with price ΛX and Λt−1. In essence, ΛX can be

seen as the price of variance-covariance risk, driving an additional wedge between ΣQ and Σ.

Similar transition formulas between the physical and risk-neutral measures can be derived

for the short-term interest rate dynamics.

Proposition 3.2 rt is conditionally gamma-zero distributed given (Xt, rt−1) under the risk-

neutral measure.

rt|(Xt, rt−1)
Q∼ Gamma0

(
θQ0 + θQ

′
Xt + X ′tΘ

QXt + βQrt−1, ς
Q
)
, (12)

where the risk-neutral parameters are given by:

θQ0 =
θ0

1− Λrς
, θQ =

1

1− Λrς
θ, ΘQ =

1

1− Λrς
Θ, βQ =

β

1− Λrς
, ςQ =

ς

1− Λrς
. (13)

Proof see Appendix A.2. �
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A positive Λr drives a positive discrepancy between risk-neutral and physical parameters,

shifting all risk-neutral moments of the short-term interest rate upwards.14

3.4 The a�ne property of the model

A�ne term structure models (ATSM) are a very convenient class of models since they allow

to obtain closed-form interest rate formulas for zero-coupon bonds (see e.g. Du�e and Kan

(1996) or Dai and Singleton (2000)). A model veri�es the a�ne property if the process

gathering the risk-factors and the scaled short-term interest rate has a risk-neutral condi-

tional Laplace transform given its past which is an exponential-a�ne function of its past

(see Darolles et al. (2006)). In this section, we show that the model is an ATSM.

Let ft = [X ′t, Vec(XtX
′
t), rt]

′ be the extended vector of factors (see Cheng and Scaillet

(2007)). The conditional Laplace transform of ft given its past under the risk-neutral measure

is denoted by:

φQ
t−1(u) := EQ

[
exp(u′ft)

∣∣ft−1

]
where u = [u′x, Vec(Ux)

′, ur]
′
.

Proposition 3.3 (ft) is an a�ne process under the risk-neutral measure, so the risk-neutral

conditional Laplace transform of ft given its past is exponential-a�ne. Its closed-form ex-

pression is given by:

φQ
t−1(u) = exp

{
AQ(u) + BQ′(u)Xt−1 +X ′t−1CQ(u)Xt−1 + DQ(u)rt−1

}
,

where the loadings AQ(u), BQ(u), CQ(u) and DQ(u) are given by:

AQ(u) =
urς

QθQ0
1− urςQ

− 1

2
log

∣∣∣∣In − 2ΣQ
(
Ux +

urς
Q

1− urςQ
ΘQ
)∣∣∣∣

+ µQ′
(
Ux +

urς
Q

1− urςQ
ΘQ
)[

In − 2ΣQ
(
Ux +

urς
Q

1− urςQ
ΘQ
)]−1

µQ

+

(
ux +

urς
Q

1− urςQ
θQ
)′ [

In − 2ΣQ
(
Ux +

urς
Q

1− urςQ
ΘQ
)]−1 [

µQ +
1

2
ΣQ
(
ux +

urς
Q

1− urςQ
θQ
)]

BQ′(u) =

[(
ux +

urς
Q

1− urςQ
θQ
)′

+ 2µQ′
(
Ux +

urς
Q

1− urςQ
ΘQ
)][

In − 2ΣQ
(
Ux +

urς
Q

1− urςQ
ΘQ
)]−1

ΦQ

CQ(u) = ΦQ′
(
Ux +

urς
Q

1− urςQ
ΘQ
)[

In − 2ΣQ
(
Ux +

urς
Q

1− urςQ
ΘQ
)]−1

ΦQ

DQ(u) =
urς

Q

1− urςQ
βQ .

14Interestingly, Equations (12) and (13) also imply a di�erent Taylor-type rule under the risk neutral

measure. Similarly to Equation (7), we have: rt = δ0 + (ςθ0−δ0ςβ)+ςβrt−1+b(Mt,Zt)
′Mt+c(Zt)

(1−Λrς)2
+ υQt where the

risk-neutral response to the macroeconomic variables is exactly proportional to the physical one by a factor
1

(1−Λrς)2
.
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Proof See Appendix A.2. �

φQ
t−1(u) is therefore an exponential-a�ne function of ft−1. Since the class of distributions of

(Xt, rt) are the same under the physical and the risk-neutral measures (see previous Section),

the properties of ft are the similar under the physical measure.

Proposition 3.4 (ft) is an a�ne process under the physical measure, and the physical con-

ditional Laplace transform of ft given its past is exponential-a�ne with a closed-form ex-

pression given by:

φt−1(u) := E
[
exp(u′ft)

∣∣ft−1

]
= exp

{
A(u) + B′(u)Xt−1 +X ′t−1C(u)Xt−1 + D(u)rt−1

}
,

where the loadings A(u), B(u), C(u) and D(u) are given by the same recursions as AQ(u),

BQ(u), CQ(u) and DQ(u) respectively, plugging the physical parameters instead of the risk-

neutral ones.

Corollary 3.4.1 (ft) has a semi-strong a�ne VAR(1) representation under P. Its �rst-two
conditional moments given its past are hence a�ne functions of ft−1, and its marginal mean

and covariance matrix can be obtained in closed-form. The dynamics of ft can be expressed

as:

ft =: Ψ0 + Ψft−1 +
[
Vec−1 (Ω0 + Ωft−1)

]1/2
ξt , (14)

where ξt is a martingale di�erence with zero mean and unit variance, and exact formulas for

Ψ0, Ψ, Ω0 and Ω depend explicitly on µ, Φ, Σ, θ0, θ, Θ, β and ς:

Ψ0 =
∂A(u)

∂u

∣∣∣∣∣
u=0

, Ψ =
∂ [B′(u),Vec(C(u))′,D(u)]′

∂u

∣∣∣∣∣
u=0

Ω0 =
∂2A(u)

∂u∂u′

∣∣∣∣∣
u=0

, Ω =
n∑
i=1

Vec

(
∂2 [B′(u),Vec(C(u))′,D(u)]′i

∂u∂u′

∣∣∣∣∣
u=0

)
× e′i ,

where ei is the i
th column of identity matrix In. Explicit formulas of these derivatives can be

found in Appendix A.3.

Proof See Appendix A.3. �

Since the ft is an a�ne process under the physical measure, the forecasts of the factor

values are simply expressed with a closed-form a�ne expression. Using the semi-strong VAR

representation of Equation (14), we obtain the following proposition.
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Proposition 3.5 The process (ft) is stationary if and only if the eigenvalues of the matrix

Φ are lower than 1 in modulus and |βς| < 1. The �rst two conditional moments of the factors

k periods ahead are a�ne functions of the current value of the factors ft and are given by:15

E
(
ft+k

∣∣ft) = (In+n2+1 −Ψ)−1(In+n2+1 −Ψk)Ψ0 + Ψkft

Vec
[
V
(
ft+k

∣∣ft)] =
k−1∑
i=0

(Ψ⊗Ψ)i
(
Ω0 + Ω

[
(In+n2+1 −Ψ)−1(In+n2+1 −Ψk−i−1)Ψ0 + Ψk−i−1ft

])
.

Provided stationarity, the �rst two marginal moments of ft are given by:

E (ft) = (In+n2+1 −Ψ)−1Ψ0

Vec [V (ft)] = (I(n+n2+1)2 −Ψ⊗Ψ)−1
[
Ω0 + Ω(In+n2+1 −Ψ)−1Ψ0

]
.

Proof See Appendix A.4. �

3.5 Pricing nominal zero-coupon bonds

Nominal zero-coupon bonds are securities that deliver one unit of cash at maturity date. Let

us denote by B(t, h) and R(t, h) = −h−1 logB(t, h) respectively the price and continuously

compounded interest rate of a nominal zero-coupon bond at time t, with residual maturity

h. Standard no-arbitrage arguments imply:

B(t, h) = EQ [exp(−rt)B(t+ 1, h− 1)
∣∣ft] = EQ

[
exp

(
−

h−1∑
i=0

rt+i

)∣∣ft] . (15)

When δ0 is non-negative, the term in the exponential is always negative. Bond prices at all

maturities are hence constrained between 0 and 1, such that the associated interest rates at

all maturities are always positive. Since the model is an ATSM, the following proposition is

immediately obtained.

Proposition 3.6 B(t, h) is an exponential-a�ne function of ft and the associated interest

rate R(t, h) is a�ne in ft.

R(t, h) = −h−1 (Ah +B′hXt +X ′tChXt +Dhrt) =: ah + B′hft , (16)

where ah = −Ah/h and Bh = [−B′h/h, Vec(−Ch/h)′, −Dh/h]′, and the explicit recursive

15The conditional moments formulas are given with the use of the matrix (In+n2+1 −Ψ)−1 which is only
invertible if the system is stationary. Note that the stationarity assumption is however not necessary and
the same formulas can be expressed in the form of truncated sums.
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expressions for computing Ah, Bh and Ch are given by:

Ah = Ah−1 − δ0 + AQ
([
B′h−1, Vec (Ch−1)′ , −Dh−1

]′)
Bh = BQ

([
B′h−1, Vec (Ch−1)′ , −Dh−1

]′)
Ch = CQ

([
B′h−1, Vec (Ch−1)′ , −Dh−1

]′)
Dh = DQ

([
B′h−1, Vec (Ch−1)′ , −Dh−1

]′)
.

(17)

Proof Straightforward computation of no-arbitrage relationship (15). �

The unspanned macroeconomic factors model of Joslin, Priebsch, and Singleton (2014) is

a nested speci�cation of the model presented above. Three constraints need to be im-

posed. Macroeconomic variables should not intervene in the short-term nominal inter-

est rate speci�cation. This is easily obtained imposing that Equation (4) simpli�es to

rt|(Xt, rt−1) ∼ Gamma0 (θ0 + θ′ZZt + Z ′tΘZZt + βrt−1 , ς). The second constraint is that

the macroeconomic variables and the yield factors must be conditionally independent under

the risk-neutral measure, that is ΣQ
M,Z = 0. This is easy to impose via linear constraints on

ΛX . Last, the macroeconomic variables Mt do not Granger-cause the yield factors Zt under

the risk neutral measure. Since ΦQ = ΣQ(λ+ Σ−1Φ), imposing the bottom-left block of ΦQ

to be equal to zero is easy via linear constraints on the price of risk λ. As in the unspanned

risk literature, the macroeconomic variables would not be priced in nominal interest rates

but would help predict and be predicted by yield factors whenever Φ is unconstrained.

3.6 Pricing in�ation-indexed zero-coupon bonds

In�ation-indexed zero-coupon bonds are securities that deliver a payment at maturity which

is equal to the compounded in�ation between the inception date and the maturity date.

They can be seen as in�ation hedges in nominal terms, or risk-less investments in real terms.

Let us denote by B∗(t, h) the price in dollars of an in�ation-indexed zero-coupon bond issued

at time t and maturing at t+h. The reference price index used to compute in�ation-indexed

payments is denoted by CPIt. The in�ation rate between t and t+ 1 is denoted by πt+1 and

is equal to log(CPIt+1/CPIt). Standard no-arbitrage arguments imply:

B∗(t, h) = EQ [exp(−rt + πt+1)B∗(t+ 1, h− 1)
∣∣ft]

= EQ

[
exp

(
−

h−1∑
i=0

(rt+i − πt+i+1)

)∣∣ft] , (18)
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For in�ation-indexed bonds, we use the term interest rate to designate to the ex-ante real

interest rate � denoted by R∗a(t, h) � and which is given by R∗a(t, h) = − 1
h

logB∗(t, h). We

hereby consider versions of the model where the in�ation rate is included in the set of

observable macroeconomic variables Mt.
16

Proposition 3.7 The price of in�ation-indexed bonds are given by an exponential-a�ne

function of ft and the associated interest rate is a�ne in ft whenever πt is in Mt.

R∗a(t, h) = −h−1
(
A∗h +B∗

′

h Xt +X ′tC
∗
hXt +D∗hrt

)
=: a∗h + B∗′h ft , (19)

where a∗h = −A∗h/h and B∗h = (−B∗′h /h, −Vec(C∗h/h)′, −D∗h/h)′, and the explicit recursive

expressions for computing A∗h, B
∗
h, C

∗
h and D∗h are given by:

A∗h = A∗h−1 − δ0 + AQ
([(

B∗h−1 + eπ
)′
, Vec

(
C∗h−1

)′
, −D∗h−1

]′)
B∗h = BQ

([(
B∗h−1 + eπ

)′
, Vec

(
C∗h−1

)′
, −D∗h−1

]′)
C∗h = Ch

D∗h = Dh ,

eπ being a selection vector of the in�ation rate in the vector Xt.

Proof See Appendix A.5. �

3.7 Forecasting macroeconomic and �nancial variables and predict-

ing the lifto�

In the previous section, we have shown that the interest rates of nominal and real securities

are a�ne functions if the extended vector of factors ft. Using the formulas for the conditional

moments of the factors (Proposition 3.5), the forecasts of any observable variable is simply

expressed with a closed-form a�ne expression.

Proposition 3.8 The k-period ahead optimal forecast of macroeconomic variables, nominal

and real yields at any maturity are a�ne functions of ft. In the same fashion, the optimal

covariance forecast of macroeconomic variables, nominal and real yields at any maturity are

a�ne functions of ft. The detailed formulas are available in Appendix A.3.

16Another option would be to consider πt as a quadratic combination of latent variables and �ltering it
from the data, as in e.g. Abrahams et al. (2016).
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Proof Both macroeconomic and �nancial variables are a�ne combinations of ft. All their

future values are hence a�ne in ft+k. Using Proposition 3.5, their optimal level and covari-

ance forecasts are a�ne in ft. �

The model also provides a natural framework for analyzing the so-called lifto� probabil-

ities. These probabilities are associated with the event that the economy goes out of the

zero lower bound after k periods, that is {rt+1:t+k = δ0, rt+k+1 > δ0}. In this section, we

exploit the properties of the gamma-zero distribution to derive closed-form expressions for

the conditional probabilities to be at zero in the future. We mostly use the results provided

in Monfort et al. (2016).

Let us denote by ϕt(u1, . . . , uk) and ϕQ
t (u1, . . . , uk) the physical and risk-neutral multi-

horizon conditional Laplace transform of ft+k given ft respectively, where (u0, . . . , uk) are

vectors of size n+ n2 + 1.

ϕt(u1, . . . , uk) = E

[
exp

(
k∑
i=1

u′ift+i

)∣∣ft] and ϕQ
t (u1, . . . , uk) = EQ

[
exp

(
k∑
i=1

u′ift+i

)∣∣ft] .
It is well known that these expressions are available in closed-form for all arguments when ft

is an a�ne process under the physical and the risk-neutral measures, and are exponential-

a�ne functions of ft computable with closed-from recursions (See Appendix A.5 for the

formulas).

Proposition 3.9 Let uv = (0, . . . , 0, v)′, uv ∈ Rn+n2+1, v being a real number. The proba-

bility for the short-rate to be equal to its lower bound for k periods is given by the following

expression:

P
(
rt+1:t+k = δ0

∣∣ft) = lim
v→−∞

ϕt(uv, . . . , uv) and Q
(
rt+1:t+k = δ0

∣∣ft) = lim
v→−∞

ϕQ
t (uv, . . . , uv) .

These probabilities are exponential-a�ne functions of ft by continuity, and we write:

P
(
rt+1:t+k = δ0

∣∣ft) =: exp (D0,k +D′kft) and Q
(
rt+1:t+k = δ0

∣∣ft) =: exp
(
DQ

0,k +DQ′
k ft

)
,

where the loadings are detailed in Appendix A.5.

Proof See Monfort, Pegoraro, Renne, and Roussellet (2016). �

Corollary 3.9.1 The lifto� probabilities are given by:

P
(
rt+1:t+k = δ0, rt+k+1 > δ0

∣∣ft) = exp (D0,k +D′kft)− exp
(
D0,k+1 +D′k+1ft

)
Q
(
rt+1:t+k = δ0, rt+k+1 > δ0

∣∣ft) = exp
(
DQ

0,k +DQ′
k ft

)
− exp

(
DQ

0,k+1 +DQ′
k+1ft

)
16



Proof It is easily shown that 1{rt+1:t+k = δ0, rt+k+1 > δ0} = 1{rt+1:t+k = δ0}−1{rt+1:t+k+1 =

δ0}. The result follows immediately. �

This gives us a simple expression to compute probabilities to be at the ZLB during k periods

exactly or the associated lifto� probabilities. It is obvious from the previous proposition that

the log of the probabilities to stay at zero are a�ne functions of ft.

Proposition 3.10 The logarithm of the risk-neutral conditional probability that the short-

rate is equal to zero correspond to the (scaled) ex-ante return Rzlb(t, k) of a synthetic ZLB-

insurance bond whose payo� is equal to exp (rt + (k − 1)δ0)1{rt+1:t+k = δ0} at period t +

k. The physical counterpart is the (scaled) expected hypothesis component REHzlb (t, k) of this

return. Both these quantities are a�ne in ft, such that:

Rzlb(t, k) = −k−1
(
DQ

0,k +DQ′
k ft

)
and REHzlb (t, k) = −k−1 (D0,k +D′kft) (20)

Proof The price of such a bond is given by:

Bzlb(t, k) = EQ

[
exp

(
−

k−1∑
i=0

rt+i

)
exp [rt + (k − 1)δ0]1{rt+1:t+k = δ0}

∣∣ft]
= EQ (1{rt+1:t+k = δ0}

∣∣ft) = Q
(
rt+1:t+k = δ0

∣∣ft) .
The same argument applies for the physical measure. �

3.8 Performing an impulse response analysis

The a�ne structure of the model makes it easy to perform an impulse response analysis.

All the variables considered in this section can be expressed as linear combinations of ft

components. Let us consider the impact of a shock of size s of variable v2 on variable v1,

where v1 = e′v1ft and v2 = e′v2ft, with ev1 and ev2 vectors weighting and selecting the right

entries of ft depending on the variables of interest. Let us also denote by Ev = (ev3 , · · · , evq)
the matrix of (q − 2) weighting vectors that de�ne variables vj = e′vjft that we do not want

to shock at the initial period. The impulse response at horizon k, denoted by Iv2→v1t,k is given

by:

Iv2→v1t,k = E
(
e′v1ft+k

∣∣∣∣ft−1, e
′
v2

[ft − E(ft|ft−1)] = s, E ′v[ft − E(ft|ft−1)] = 0

)
− E

(
e′v1ft+k

∣∣ft−1, e
′
v2

[ft − E(ft|ft−1)] = 0, E ′v[ft − E(ft|ft−1)] = 0
)
.(21)
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Proposition 3.11 The impulse response function Iv2→v1t,k is given by:

Iv2→v1t,k = e′v1Ψ
k

[
E
(
ft
∣∣ft−1, e

′
v2

[ft − E(ft|ft−1)] = s, E ′v[ft − E(ft|ft−1)] = 0
)

− E
(
ft
∣∣ft−1, e

′
v2

[ft − E(ft|ft−1)] = 0, E ′v[ft − E(ft|ft−1)] = 0
)]

, (22)

which only requires �ltered values of the factor ft given initial and observable conditions.

Proof The semi-strong VAR form of Equation (14) directly gives the result. �

Corollary 3.11.1 Assuming conditions to identify Σ1/2 (that is Σ
1/2
M ) have been speci�ed,

the impulse response function of any variable v1 to a �structural� macroeconomic shock on

Mj,t = e′jXt (with ej = [0, . . . , 0, 1, 0 . . . , 0]′ of size n) is de�ned by ev2 = (e′j, 0, · · · , 0)′, Ev is
a matrix of size ((n+ n2 + 1)× n) selecting Zt in ft, such that the conditioning set is given

by Xt = µ+ ΦXt−1 + Σ1/2(sej). The IRF writes:

Iv2→v1t,k = e′v1Ψ
k


Σ1/2 0

Γt−1Σ1/2 Σ1/2 ⊗ Σ1/2

ςθ′ ςVec(Θ)′


 sej

s2Vec
(
eje
′
j

)
 , (23)

where Γt−1 = [In ⊗ (µ+ ΦXt−1) + (µ+ ΦXt−1)⊗ In].

Proof Straightforward calculation of the quantities E
(
ft
∣∣ft−1, Xt = µ+ ΦXt−1 + Σ1/2(sej)

)
and E

(
ft
∣∣ft−1, Xt = µ+ ΦXt−1

)
. �

Since the model is non-linear, the shape and amplitude of the IRFs depend on the initial

condition ft−1 for any variable being a function of Vec(XtX
′
t) or rt. However, since Ψ is

block lower-triangular and the �rst block is given by Φ (see Appendix A.3), the e�ect of a

macroeconomic shock on another macroeconomic variable j′ is given by the usual expression

e′j′Φ
kΣ1/2sej.

The average IRF can be computed in two di�erent ways. First, we can apply Formula

(22) to the initial condition ft−1 =
[
X̄ ′, Vec

(
X̄X̄ ′

)′
, r̄
]′
, where X̄ := E(Xt) and r̄ = E(rt).

17

Second, we can simulate many initial conditions ft−1 using its marginal distribution, compute

the IRFs using Formula (22) for each initial condition, and average over the responses. The

two approaches are not equivalent since they �ip the order of integration (see for example

Gallant et al. (1993) or Koop et al. (1996)).

17It is worth mentioning that the initial condition ft−1 = [X̄ ′, Vec(X̄X̄ ′)′, ς(θ0+θ′X̄+X̄ ′ΘX̄)]′ is di�erent
from ft−1 = E(ft−1) since E[XX ′] 6= E(X)E(X ′). However, once conditioning by Xt−1 = X̄, it follows
directly that Vec(Xt−1X

′
t−1) = Vec(X̄X̄ ′) with probability one.
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4 Estimation Strategy

This section deals with the estimation procedure for the model presented above. We present

hereafter a general method that can encompass any number of latent and observable factors,

as well as observable variables that are a�ne functions of ft. We �rst provide the state-space

representation of the model before describing the �ltering algorithm allowing to estimate the

parameters and evaluate the most probable values of the factors at the same time.

4.1 The state-space representation

Throughout this section, we consider measurement variables that are a�ne functions of

the extended vector of factors ft. Macroeconomic variables included in Mt are obviously

contained in this set since they correspond to one component of Xt, hence of ft. Building on

the results of the previous section, the set of observable variables may also include, among

others, nominal and real yields of zero-coupon bonds of any maturity (resp. R(t, h) and

R∗a(t, h)), survey data on k period ahead expected future rates or macroeconomic variables

(denoted by S
(k)
t ), or the log-probability of being in ZLB for k periods, REH

zlb (t, k). We gather

all these observables at time t in a single vector denoted by Yt.

Yt =
[
R(t,H)′ , R∗a(t,H∗)′ , M ′

t , S
(K)′

t , REH
zlb (t,Kzlb)′

]′
,

where H and H∗ are respectively the set of nominal and real yields maturities, K is the

horizon of the survey data, and Kzlb is the horizon of the ZLB log-probability. A standard

assumption in factor models is that observable variables Yt ∈ Rm are measured with i.i.d.

Gaussian errors that we denote by ηt ∈ Rm.

Putting together the transition equation of the model given by Equation (14) and our

assumptions on the observable variables, we obtain a linear state-space model where the

factors are conditionally non-Gaussian and heteroskedastic.

ft = Ψ0 + Ψft−1 +
[
Vec−1(Ω0 + Ωft−1)

]1/2
ξt

Yt =: A+ B′ft + Σ1/2
η ηt , (24)

where A ∈ Rm and B ∈ R(n+n2+1)×m stack respectively the intercepts and the loadings of

the di�erent observables, ηt stacks the measurement errors in a zero-mean unit-covariance

matrix Gaussian vector, and Σ
1/2
η is the matrix containing the measurement errors standard

deviations. Some of these variables can be assumed to be measured without errors if the

corresponding rows of Σ
1/2
η are equal to zero.
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4.2 The �ltering method

Since some components of ft are unobservable, we resort to �ltering techniques to estimate

the model and evaluate the factor values. The measurement equation (24) is an a�ne

function of ft, that is a linear-quadratic combination of Xt and a linear function of rt. The

Quadratic Kalman Filter (Qkf) developed by Monfort et al. (2015) is particularly �tted

to this class of models. The original �ltering algorithm has been applied to state-space

models where the transition dynamics are given by a Gaussian VAR and the measurement

equations are linear-quadratic. This algorithm is slightly modi�ed to incorporate rt (which

is non-Gaussian) and is detailed below.

Since the state-space model expressed with respect to ft is a�ne, we can apply the

Kalman �lter algorithm. Using the notations ft|t−1 = E(ft|Yt−1), Pt|t−1 = V(ft|Yt−1), ft|t =

E(ft|Yt), Yt|t−1 = E(Yt|Yt−1), Mt|t−1 = V(Yt|Yt−1), Pt|t = V(ft|Yt), the steps in the algorithm

are the following. Initialize the �lter at f0|0 = E(ft) and P0|0 = V(ft) (see Proposition 3.5).

Then, for each period t, predict the latent:

ft|t−1 = Ψ0 + Ψft−1|t−1

Pt|t−1 = ΨPt−1|t−1Ψ′ + Vec−1(Ω0 + Ωft−1|t−1) ,

predict the observable:

Yt|t−1 = A+ B′ft|t−1

Mt|t−1 = B′Pt|t−1B + Ση ,

update the prediction of the latent:

ft|t = ft|t−1 + Pt|t−1BM−1
t|t−1

(
Yt − Yt|t−1

)
Pt|t = Pt|t−1 − Pt|t−1BM−1

t|t−1B
′Pt|t−1 ,

and compute the quasi log-likelihood assuming that the conditional distribution of Yt given

Yt−1 is Gaussian with mean Yt|t−1 and variance Mt|t−1.

Lt = −1

2

[
m log(2π) + log |Mt|t−1|+ (Yt − Yt|t−1)′M−1

t|t−1(Yt − Yt|t−1)
]
.

In order to be consistent with the theoretical properties of the processes, two corrections are

applied to the �ltered values after storing the results. First, if the components of rt|t are

negative, they are set to zero. Second, the �ltered values of Vec(XX ′)t|t are imposed to be

exactly equal to Vec(Xt|tX
′
t|t).
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As for the standard Kalman �lter, the Qkf provides a convenient way to handle missing

data. One just has to adjust the size of the parameters in the measurement equations to

predict only the variables that are observed. The measurement equation rewrites

Y
(obs)
t = Et

(
A+ B′ft + Σ1/2

η ηt
)

=: At + B′tft + Σ
1/2
η,t ηt ,

where Y
(obs)
t ∈ Rmt is the subset of variables of Yt that is observed, and Et is a matrix

selecting the corresponding rows. The prediction and update states remain the same using

the adjusted parameters. The Qkf �nally provides a natural procedure to obtain the IRF

once the model is estimated.

Proposition 4.1 Let B̃ = (ev2 , Ev) as de�ned in Section 3.8. The computable version of the

IRF of Equation (22) is given by:

Iv2→v1t,k = e′v1Ψ
k

Vec−1(Ω0 + Ωft−1)B̃
(
B̃′
[
Vec−1(Ω0 + Ωft−1)

]
B̃
)−1

 s

0


 . (25)

Again, the terms in the bracket are slightly modi�ed such that Vec(XX ′)t|t = Vec(Xt|tX
′
t|t)

and rt|t > 0.

Proof We consider that the initial conditions ft−1 and the shocks are known without errors,

so Pt−1,t−1 = 0 and Ση = 0 in this case. Replacing the unknown quantities in Equation (22)

by the values given by the Qkf, the result is immediately obtained. �

5 Data and estimation constraints

5.1 The data

We consider monthly U.S. data from January 1990 to March 2015.18 The starting date is

determined to avoid issues related to the Volcker period. We �rst extract monthly nominal

zero-coupon yields are from Gurkaynak et al. (2007) for maturities of 1, 2, 3, 5, 7, and

10 years. We add the one-month nominal interest rate series taken from Bloomberg.19

Second, following Haubrich et al. (2012), we compute liquidity-adjusted synthetic yields for

in�ation-linked bonds using zero-coupon in�ation swap rates obtained from Bloomberg for

18Considering monthly end-of-month data avoids issues related to the CPI interpolation for the computa-
tion of TIPS payo�s.

19The one-month rate is available under the ticker <GB1M Index>.
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maturities of 1, 2, 3, 5, 7, and 10 years.20 The synthetic TIPS yields are obtained as the

di�erence between the nominal yields and the in�ation swap rates at the same maturities.21

Due to data limitations, the in�ation-linked series start in July 2004. We also treat the

months in the direct aftermath of Lehman failure � from September 2008 to February 2009

� as missing data since most movements on the TIPS interest rates during this period

can likely be attributed to the large disruption of the in�ation-indexed market (see for

instance D'Amico et al. (2014)). As for the macroeconomic variables, we consider the year-

on-year in�ation rate at the monthly frequency, computed from the CPI-U series of the

BLS database.22 We follow Kim and Orphanides (2012) and Chernov and Mueller (2012)

adding two sets of survey forecasts in the observable variables. We obtain series of expected

average in�ation over the next 1 and 10 years and nominal yields forecasts for the 10-year

maturity, respectively 3-months and 1-year ahead from the Philadelphia Fed database. All

these surveys are quarterly. Last, we gather data from the primary dealer survey conducted

on by the New York Fed. We collect information starting in January 2011 concerning the

probabilities of seeing no interest rate increase by the Fed between each date and one year

ahead. Details on these computations are provided in Appendix A.6. Time series and

standard descriptive statistics of interest rates and in�ation are presented on Figure 1 and

in Table 2. Survey and probability series are represented on Figure 4.

[Insert Figure 1 Table 2 about here.]

The nominal interest rates are very persistent at all maturities and are upward sloping

with maturity on average, from 2.9% to 5.1%. Nominal interest rate standard deviations are

slightly decreasing with maturity. Their time-series show a globally decreasing behavior up

to the recent zero lower bound period where the one-month interest rate is virtually zero from

mid-2009 on (see Figure 1). Real interest rates are also very persistent. They are upward

sloping on average, starting with negative mean values at short maturities since they are

20Swap rates are available under the ticker <USSWITx Crncy>, where x stands for the maturity. Swap
interest rates are not available as continuously compounded rates and must be transformed. The continuously
compounded yield is obtained as: κ(t, h) = log(1+κ̃(t, h)) where κ̃(t, h) is the quoted swap rate on Bloomberg
terminal.

21Christensen and Gillan (2012) note that though not free from liquidity risk, in�ation swaps are less likely
to be a�ected by liquidity issues compared to TIPS (see also Fleckenstein et al. (2014a)). For papers who
focus on extracting the liquidity risk from TIPS data, see for instance Sack and Elasser (2004), Shen (2006),
Gurkaynak et al. (2010), Grischenko and Huang (2013), P�ueger and Viceira (2013) or D'Amico et al. (2014).
Fleckenstein et al. (2014b) note that the TIPS bonds were also subject to large mispricing during the crisis.

22To be consistent with the reference price index of the in�ation-indexed securities, the realized in�ation
series is lagged of 3 months. We do not see this as a caveat since the information available at date t is closer
to the realized in�ation rate of the reference index rather than to the real-time realized in�ation rate due to
the publication lag of the di�erent price indices. Taking the lagged in�ation rate is hence more consistent
with the information set available by the representative agent. For long enough maturities, this di�erence is
likely to be negligible.
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not constrained by the zero lower bound. Excluding the aftermath of the Lehman failure

the mean real yield curve becomes more negative, from −0.22% at the 1-year to 0.86% at

the 10-year maturity. The real interest rate standard deviations are lower than the nominal

ones, but are also decreasing with maturity.

5.2 Identi�cation and estimation constraints

We consider three latent yield factors Zt (nZ = 3). Hence Xt is a four-dimensional vector,

and ft is a vector of size 21. The identi�cation of the factors and the physical dynamics is

obtained with the su�cient conditions that µZ = 0, that the bottom-right block of Φ, ΦZ

is lower triangular and that the scale parameter ς = 1 (see Appendix B.2 for a proof). For

parsimony reasons, several additional constraints are imposed on the parameters. First, ΦQ

is imposed to have the same sparse structure as Φ. Second, we set the quadratic price of

risk components to zero except the one associated with the in�ation rate, so ΛX,Π is the only

entry of ΛX that is di�erent from zero. For the short-term nominal interest rate physical

dynamics, we impose that θ = 0. While it would be possible to estimate the components

of θ, this creates numerical issues whenever Θ is close to being semi positive-de�nite. By

setting θ = 0, we immediately obtain θ0 = 0 and ensure the non-negativity of the quadratic

combination θ0 +θ′Xt+X
′
tΘXt. The measurement errors are uncorrelated and have the same

variance (Ση = σηIm) and all the standard deviations of the survey measurement errors are

calibrated to the average forecaster disagreement.23 Last, to better pin down the physical

parameters, we impose that the marginal mean of the short-rate is equal to its sample mean

and that its autocorrelation is equal to 0.97.

We perform a �rst estimation with the previous constraints and set all non-signi�cant

parameters to zero for a second round. We obtain notably that the price of interest risk Λr is

not signi�cantly di�erent from zero and that Z1 is autonomous under the physical measure.

6 Estimation results and �tting properties

6.1 Parameter estimates and factor values

The estimated parameters are presented on Tables 3 and 4, gathering respectively the pa-

rameters for the joint dynamics of the factors Xt, and the parameters for the short-rate

dynamics, the market prices of risk, and the measurement errors.

23In the data, only the interquartile range of forecasters answer is provided. Assuming the distribution
among forecasters is Gaussian, in order to obtain a quantity comparable to a standard deviation, we divide
the average interquartile range over the whole sample by 2×F−1(0.75) where F (•) is the c.d.f of a normalized
Gaussian distribution. Indeed, for any ω ∼ N (0, σ), if Fω(•) is the c.d.f of ω, we have F−1

ω (0.75)−F−1
ω (0.25) =

σ[F−1(0.75)− F−1(0.25)] = 2F−1(0.75)σ.
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[Insert Tables 3 and 4 about here.]

All parameters are highly signi�cant. In�ation and all yield factors are persistent, and

Φ possesses diagonal terms comprised between 0.90 and 0.99 under the physical measure.

Although Z1 is autonomous under the physical measure, it is signi�cantly caused by Z3

under the risk-neutral one. In addition, Z1 helps the pricing of both nominal and real rates

since it appears signi�cantly in the short-rate dynamics through the matrix Θ (see Table 4).

The estimates for the short-rate dynamics show a persistence (or smoothing) parameter β

of 0.85, but its persistence is also in�uenced by the persistence of the factors Xt. Last, the

quadratic price of risk parameter ΛX,Π is signi�cantly positive. The conditional variance of

in�ation is thus higher under the risk-neutral measure compared to the physical one � 0.55

against 0.14 � indicating investors fears for in�ation variance.

[Insert Figure 2 and Figure 3 about here.]

Figure 2 presents the �ltered factors. The �rst factor is the realized year-on-year in�ation

rate whereas the yield factors are evaluated by the �lter so as to adjust to the observables.

Figure 3 plots the normalized factor loadings of nominal and real interest rates with respect

to maturity. The loadings of in�ation are positive at the short end and slightly decreasing

with maturity. Looking only at the linear loadings on the left and middle graphs of Figure

3, we observe that Z1 has the same loadings as a level factor, Z2 looks like a slope and Z3

looks like a curvature factor for both the nominal and real yield curves (see Litterman and

Scheinkman (1991)). However, the role of the factors is distorted by the quadratic loadings,

which are dominant for Z3. Such an interpretation of the factors is therefore di�cult and

can be inconsistent with their time series properties of Figure 2. For example, Z1 resembles

an economic activity indicator or a slope factor in terms of time-series.

6.2 Goodness of �t

Using the �ltered factor series, it is easy to reconstruct the short-term interest rate rt series

along with its 95% con�dence bounds (not presented here for the interest of space). This

allows us to determine the starting date of the zero lower bound period as the �rst date when

the lower con�dence bound of rt|t reaches 0, that is from September 2008 on. Hence, every

reference to the zero lower bound period is considered from September 2008 to the end of the

estimation sample. We also reconstruct the rest of the nominal and the real yield curves and

the �ltered survey data, and compute the associated �tting errors. The SPF and primary

dealer survey data and model-implied series are presented on Figure 4 and the RMSEs for

the yield curves are shown in Table 5.
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[Insert Table 5 and Figure 4 about here.]

The model is able to provide both a reasonable �t on the survey data, consistently with

the fairly large forecasters disagreement, and an impressive �t on both the nominal and the

real yield curve with only 3 unobservable factors. RMSEs range from 6.1bps to 9.3bps for

nominal rates and from 8.4bps to 16.4bps for real rates (see Table 5). This is partly linked to

the rich linear-quadratic model formulated in the previous section, which � as documented

by Leippold and Wu (2007) � �ts the data more e�ciently than a pure linear model with

the same number of factors.

[Insert Figure 5 about here.]

The model-implied marginal �rst-two moments of the observables are presented on Figure

5. The average term structure of nominal yields produced by the model is upward sloping

and is slightly higher than the data counterpart, from 3.6% at one-year maturity to 5.9%

at ten-year maturity, compared to [3.37%, 5.10%] for the data (see panel (a.1) of Figure 5).

The model-implied mean of TIPS yields and breakeven in�ation rates is higher than the data

counterpart, mostly due to the short observation sample of these quantities. Once again, the

estimates are economically signi�cant and plausible. Panel (b) of Figure 5 performs the same

comparison for the marginal volatility of the observables. For nominal yields, TIPS yields

and breakeven in�ation rates, the model-implied volatilities are higher than the empirical

counterparts, emphasizing the high marginal variance implied by the high persistence and

the decreasing trend of yields. Again, the model-implied volatility of TIPS is higher than

the data estimates due to data limitations. Despite these di�erences, the estimates are of

reasonable order of magnitude. This feature is often not reproduced by gamma-type models

in which the marginal volatilities estimates tend to explode. In the end, our model seems

to be able to produce reasonable time-series and moment properties of the nominal and real

interest rate data.

6.3 The predictability of excess returns

A well-know limitation of models built on gamma-type processes is that they are usually

unable to reproduce both moments of the interest rate data and to provide reasonable pre-

dicted excess return estimates (see e.g. Dai and Singleton (2002) or Backus et al. (2001)).

We investigate the latter in this section.

The excess returns of any bond for k-holding periods can be de�ned as the return of

a strategy consisting in buying the bond at time t and selling it at time t + k, minus the

risk-less interest rate of maturity k. This k-period risk-less rate is equal to R(t, k) in the

nominal world and R∗a(t, k) in the real world.
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Lemma 6.1 Let us denote by RS,t+k the nominal returns of a strategy S between t and t+k.

The nominal and real excess returns of this strategy are respectively given by:

XR(N)
S,t+k = RS,t+k −R(t, k)

XR(π)
S,t+k = XR(N)

S,t+k +R(t, k)−R∗a(t, k)−
k∑
i=1

πt+i ,

where R(t, k)−R∗a(t, k) is the so-called breakeven in�ation rate of maturity k. The expected

real excess returns are therefore equal to the expected nominal excess returns plus the k-period

ahead in�ation risk premium.

Proposition 6.1 The k-period nominal excess returns of nominal bonds and real excess

returns of TIPS are a�ne functions of ft+k and are written:

XR(N)
R,t+k =

h− k
k

[R(t, h)−R(t+ k, h− k)] +R(t, h)−R(t, k) (26)

XR(π)
R∗a,t+k

=
h− k
k

[R∗a(t, h)−R∗a(t+ k, h− k)] +R∗a(t, h)−R∗a(t, k) . (27)

The real excess returns of nominal bonds and nominal excess returns of TIPS can be easily

obtained using Lemma 6.1.

Corollary 6.1.1 The nominal and real expected excess returns of nominal bonds and TIPS

at date t are a�ne functions of ft computable in closed-form.

Proof See Appendix B.3. �

These excess returns computations can be used to test whether the model is able to

reproduce the deviations from the expectation hypothesis consistently with the data, and

whether the model-implied predictions of excess returns are reasonable. These two tests are

respectively called LPY-I and LPY-II in the terminology of Dai and Singleton (2002). Both

LPY-I and LPY-II reformulates the excess returns in the form of the well-known Campbell

and Shiller (1991) regressions (CS henceforth).

Proposition 6.2 Four versions of the CS regressions can be written with nominal bonds
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and TIPS. Denoting πt,t+k the cumulated in�ation between t and t+ k:24

R(t+ k, h− k)−R(t, h) = ωk,h + φk,h
k (R(t, h)−R(t, k))

h− k
+ εt+k,h (28)

R(t+ k, h− k)−R(t, h) +
πt,t+k
h− k

= ωk,h + φk,h
k (R(t, h)−R∗a(t, k))

h− k
+ εt+k,h (29)

R∗a(t+ k, h− k)−R∗a(t, h)−
πt,t+k
h− k

= ω∗k,h + φ∗k,h
k (R∗a(t, h)−R(t, k))

h− k
+ ε∗t+k,h (30)

R∗a(t+ k, h− k)−R∗a(t, h) = ω∗k,h + φ∗k,h
k (R∗a(t, h)−R∗a(t, k))

h− k
+ ε∗t+k,h . (31)

All model-implied intercepts and slopes ωk,h, ω
∗
k,h, φk,h, and φ

∗
k,h are computable in closed-

form.

Proof Straightforward application of Corollary 6.1.1. See Appendix B.3 for the coe�cients

formulas. �

The usual formulations (28) and (31) should be thought as representing nominal and real

term premium only, whereas Equations (29) and (30) look at in�ation risk premia jointly with

nominal and real term premia respectively. If the expectation hypothesis was holding true,

intercept and slopes would all be respectively equal to 0 and 1 and the corresponding excess

return would average to zero. However, since the expectation hypothesis is largely violated

in practice, the current slope of nominal/real interest rates can predict future excess returns.

In practice, we consider k = 12 months. Testing LPY-I consists in estimating regressions

(28-31) on the data for maturities ranging from 1 to 10 years, and comparing the estimated

regression coe�cients to the model-implied ones.25 Testing LPY-II consists in performing

the same regressions on the data adding the corresponding model-implied expected excess

returns series on the right-hand side of the regression. Adding the expected excess return

should in theory correct the deviations from the expectation hypothesis.26 A consistent

model should be able to produce φk,h coe�cients non signi�cantly di�erent from 1. Results

of these regressions are respectively provided on Figure 6 and 7.

[Insert Figures 6 and 7 about here.]

24Note that Haubrich et al. (2012) also perform a similar exercise but they do not get a formulation with
the realized in�ation on the left-hand side. In essence, they obtain regressions (28) and (31). Evans (1998)
formulates a slightly di�erent regression with the Equation (20) of his paper. He expresses the expectation
hypothesis equating the expected nominal excess returns of TIPS with the expected nominal excess returns
of nominal bonds. As such, his formulation can be thought as a combination of Equations (28) and (30).

25To obtain the yields of nominal bonds and TIPS at all maturities for the whole sample period, we use
the model-implied yield series reconstructed from the �ltered factors and omit the measurement errors.

26We add the series of expected excess returns to the regressor so that we still estimate one regression
slope.
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For all CS regressions testing LPY-I, the model-implied slopes lie inside the Newey-West

95% con�dence bounds, the only exception being observed for real excess returns of nominal

bonds for a few long maturities. For both nominal excess returns of nominal bonds and

real excess returns of TIPS (top-left and bottom-right graphs of Figure 6), model-implied

regression slopes are very close to those obtained with the data. we thereby provide evidence

that the pricing of both in�ation risk, nominal and real interest rates are consistent with

the LPY-I condition. Focusing on the LPY-II results of Figure 7, we observe that the unit

values lie inside the 95% Newey-West con�dence intervals of the CS regressions, the only

exception being again real excess returns of nominal bonds at the long-end.27 Most slopes

are statistically equal to one, indicating a strong capacity of the model to jointly reproduce

the behavior of both in�ation risk premia, real term premia, and nominal risk premia.

7 In�ation risk and the zero lower bound

In this section, we use the estimated model to explore the investors' views on in�ation

risks, especially during the ZLB and its relationship with the raise of interest rates. We

begin by emphasizing the U-shaped form of the pricing kernel and present the risk premium

associated with high in�ation and de�ation risks. We then distinguish the compensation for

both in�ation risk and for real interest risk in nominal rates and their time-series behavior.

Last, we calculate the impact of lifting o� at the zero lower bound in terms of the path of

in�ation, the path of interest rates, and the risk premium associated to that situation.

7.1 U-shaped pricing kernel and in�ation fears

Kitsul and Wright (2013) document non-monotonic pricing kernels regarding in�ation risk.

In Section 3.3, we emphasized that our speci�cation allows for a U-shaped nominal pricing

kernel as a function of the Gaussian yield factors Zt and of the macroeconomic variables Mt.

In this section, we study what this speci�cation implies for the pricing of in�ation risks.

U-shaped pricing kernels essentially indicate investors double-sided fears of in�ation out-

comes, that is fears of both positive and negative deviations from expectations. To illustrate

this e�ect, we use our model to compute the shape of the nominal pricing kernel for di�er-

ent factor values and horizons. Figure 8 presents these physical and risk-neutral in�ation

conditional pdfs for one-month, one-year and ten-year horizons.

[Insert Figure 8 about here.]

27Note that these results rely on the �ltered values of the real interest rates on the whole sample, which
gather uncertainty around their estimates. This analysis does not consider this source of uncertainty which
would produce even larger con�dence bands in the �gures, potentially solving this inconsistency.

28



Panel (a) presents the conditional densities starting from Xt = E(Xt) whereas panel (b)

starts from the average ZLB factor values Xt = (T − τ)−1
∑T

i=τ Xi, τ being the starting

date of the ZLB. Even for the one-month horizon, the risk-neutral in�ation densities exhibit

di�erent means and variances than their physical counterparts. This is usually absent from

ATSMs with exponential-a�ne pricing kernels. As a result, the Q/P density ratio � which

is proportional to the (projected) nominal pricing kernel � has a U-shape in both panels.28

From panel (a) to panel (b), the change of monotonicity varies as a function of the states.

Increasing the horizon enlarges conditional variances of both distributions, resulting in �atter

density ratios. This U-shaped pattern re�ects investors fears of both low and high in�ation

for all horizons.

We can also observe this e�ect computing one-year ahead conditional probabilities of

the year-on-year in�ation rate being bigger than 4% (High in�ation) and one-year ahead

conditional de�ation probabilities under both the physical and the risk-neutral measure.

The discrepancy between risk-neutral and physical estimates provides the risk-premium as-

sociated with each of these events at every point in time. Results are provided on Figure

9.

[Insert Figure 9 about here.]

Given the rare occurrence of the year-on-year in�ation going negative in our sample, the

ex-ante conditional de�ation physical probabilities are fairly low, from virtually zero to 8% at

their highest just after the economy hits the ZLB. The risk-neutral de�ation probabilities are

more volatile, and consistently higher than their physical counterparts. They peak at several

times during the estimation sample, rising to 35% in November 1998, 95% when the economy

hits the ZLB, and to 44% in December 2014, corresponding to periods when the in�ation

rates went below 2%. These di�erences between risk-neutral and physical estimates re�ect a

high and variable de�ation risk premium during the sample, reaching its highest during the

ZLB period. On the right panel of Figure 9, we observe physical probabilities of high in�ation

that are globally decreasing during the estimation sample, following the downward trend of

in�ation expectations of the last 25 years. In 1990, these probabilities are as high as 60%

but reach virtually zero during the ZLB emphasizing the low in�ation expectations during

the crisis. Again, the risk-neutral probabilities of high in�ation are nearly always higher and

more volatile than their physical counterparts, peaking during the 1990 recession and the

burst of the dotcom-bubble. These di�erences also translate into signi�cantly positive high

in�ation risk premia. These double-sided risk premia illustrate the e�ect of the U-shaped

pricing kernel on in�ation risk and the non-monotonicity of investors fears with respect to

in�ation.
28Since the ratio is only proportional to the nominal pricing kernel, their size should not be economically

interpreted.

29



7.2 In�ation and real risk premia decomposition

Considering jointly in�ation and real interest rate data allows to decompose nominal interest

rates at each maturity in four di�erent parts and investigate the evolution of in�ation risks

further: the expected compounded real interest rate, the expected in�ation up to maturity,

real risk premia and in�ation risk premia.29 Nominal bonds indeed contain in�ation risk

since the real return of nominal bonds decreases when in�ation turns out to be higher than

expected. The in�ation premium associated with the latter event is positive (resp. negative)

if investors require a higher return for providing insurance against positive (resp. negative)

in�ation shocks. We present the model-implied marginal decomposition and the time-series

of the various components of the nominal interest rates on Figures 5 and 10 respectively.

[Insert Figure 10 about here.]

Consistently with the existing literature and the violations of the expectation hypothesis,

the model-implied nominal risk premium is time-varying and upward sloping with maturity

(see top-left graph of Figure 5). The 1-year nominal yield is very close to zero during the

ZLB, as well as its risk premia component whereas most of the 10-year yield �uctuations

during the ZLB are related to risk premia (see �rst row of Figure 10). The second row of

Figure 10 shows signi�cantly time-varying real term premia components both at the 1-year

and at the 10-year maturity which are increasing with maturity on average. During the ZLB

period, the expected real rates fall far into negative territory with minimum values of −2%
and -1.3% for the 1- and 10-year maturities, producing negative real interest rates at the

short-end. The real term premia is positive, reaching an all times high of 4% and 3% during

the crisis for the 1- and 10-year maturities respectively. Again, the real term premium drives

most �uctuations of the 10-year real interest rate during the ZLB.

The short- and long-term in�ation risk premium is whipsawing around zero and changes

sign during most of the sample. When entering the ZLB, the premium becomes largely

negative re�ecting immediate fears of a de�ation spiral. At the 1-year maturity, in�ation risk

premia stay in the negative territory during the ZLB, between −430bps and small negative

values. Thus, when the ZLB starts binding, investors require a premium of 4.3% to provide

insurance against negative in�ation shocks during the next year. Conversely, the 10-year

in�ation premia component comes back to close to zero values soon after October 2008 where

29The methodology is as follows. First, we obtain the nominal expected component calculating the pricing
formulas for nominal bonds and imposing all prices of risk λ0, λ and ΛX to be equal to zero. The pricing
formulas are easily obtained using Equation (17) and replacing the risk-neutral parameters by the physical
ones. The nominal risk premium is the spread between the model-implied nominal yields and their expected
components. The same method can be applied to get the real rates decomposition in expected real rates
and real term premia. Last, expected in�ation is given by the di�erence between nominal and real expected
components, and in�ation risk premia as the di�erence between nominal and real term premia.
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an all times low of −91bps is observed. In comparison, the expected in�ation component

is slowly moving around 2.5% so most �uctuations in the in�ation component comes from

in�ation risk premia, for every maturity. For the 10-year maturity, the in�ation risk premia

component is overall very small, �uctuating between -75bps and 75bps. This implies that

long-term in�ation expectations are well-anchored, and that there is low uncertainty around

the level of the 10-year ahead compounded in�ation rate. Economic agents are thus con�dent

that the central bank will stabilize in�ation in the long-run whereas short-term concerns

produce sizable in�ation risk premia at the one-year maturity.

In comparison with the literature, our long-term in�ation risk premia estimates are

broadly in line with those of Abrahams et al. (2016), Fleckenstein et al. (2014a) and D'Amico

et al. (2014). Our short-term in�ation premia estimates are however more volatile than the

ones of the latter, which are extremely small in magnitude. Our estimates di�er more largely

from Haubrich et al. (2012). Their model imposes the risk premia estimates to be functions

of the conditional volatility of interest rates only. This produces long-term real term premia

and in�ation risk premia that are roughly constant over time and consistently positive. They

however do not explicitly include the zero lower bound constraint on nominal interest rates

in the estimation, which can bias the expected component estimates of nominal yields.

7.3 The lifto� and the real economy

We use the model to explore the implications of the lifto� and its impact on the real economy

and on the risk premia. We consider two exercises. We �rst compute impulse-response

functions of monetary policy shocks and in�ation shocks in and out of the ZLB. We compare

the impact of an interest rate increase in normal times and during the ZLB with respect

to in�ation and the associated risk premia. Second, we calculate the conditional ZLB and

lifto� probabilities and the associated risk premia.

In Section 3.8, we develop the methodology to perform impulse-response analysis. We

apply this methodology in this section by studying the e�ects of an in�ation shock and a

monetary policy shock. The former is re�ected by a shock on Πt that does not impact Zt

contemporaneously, while the latter is a shock on the components of Zt that does not impact

Πt contemporaneously.30 The size of the in�ation shock is calibrated to the conditional

standard deviation of in�ation and the size of the monetary policy shock is 10bps. We apply

these shocks to two di�erent initial conditions ft−1. The �rst set of impulse-responses is

computed at the �steady-state� ft−1 =
[
X̄ ,Vec

(
X̄X̄ ′

)′
, r̄
]′
, X̄ = E(Xt) and r̄ = E(rt) and

30We impose that the monetary policy shock is fully re�ected by a shock in the latent yield variables Zt.
In the light of the decomposition performed in Equation (7), this implies that the value of vt is imposed to
zero. In the conditioning set of Equation (22), we therefore impose that Πt = Et−1(Πt), rt = Et−1(rt) + s
and c(Zt) = Et−1(rt) + s, s being the size of the shock.
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is presented on Figure 11. The second set of impulse-responses is computed at the ZLB,

setting ft−1 =
[
X̄zlb ,Vec

(
X̄zlbX̄

′
zlb

)′
, r̄zlb

]′
, where X̄zlb = (T − τ)−1

∑T
i=τ Xi and r̄zlb =

(T − τ)−1
∑T

i=τ ri, τ being the beginning date of the ZLB period and T being the �nal date

of the sample. The results are presented on Figure 12.

[Insert Figures 11 and 12 about here.]

At the steady-state, the upward monetary policy shock is very persistent and the one-

month interest rate is still 10bps above its steady-state value after 10 years. This results in

an immediate and persistent increase of the 10-year nominal rate of about 20bps despite a

decrease of the associated risk premia of about 10bps (see panels (a.1-2) of Figure 11). This

monetary policy tightening has only a small negative e�ect of −5bps on the in�ation rate

after 12 months. This result is consistent with the IRFs obtained with FAVAR approaches

of Bernanke et al. (2005) or Wu and Xia (2016), where the authors �nd that the e�ect of

a monetary policy shock has a small or non-signi�cant impact on the CPI index. Short-

term and long-term in�ation risk premia drop respectively by 30bps and 10bps, re�ecting

slightly higher de�ation fears. On panel (b) of Figure 11, we observe that the e�ect of

a 35bps in�ation shock results in a 2bps to 7bps increase in the short-term nominal rate

and a �attening of the yield curve due to a smaller increase of the long-term nominal rate.

The e�ect on in�ation risk premia is overall small and negative, and dies after 2 to 3 years.

This shows that long-term in�ation expectations are still well-anchored following an in�ation

shock.

The e�ects are completely di�erent starting in the ZLB period. The initial 10bps mone-

tary policy shock has a high instantaneous impact on the 10-year yield driven by an increase

of nominal expectations of more than 100bps. The contraction of in�ation after the monetary

policy shock is about −22bps after one year, driving high fears of long-term de�ation. The

one-year in�ation risk premium decreases by nearly 120bps and the ten-year by 40bps. The

impact of lifting-o� can hence be very detrimental with respect to stabilizing in�ation and

the associated premium. Looking at the panel (b) of Figure 12, we see that a 35bps in�ation

shock has virtually no e�ect on the nominal yield curve, consistently with the fact that the

central bank is trying to restore stable long-term in�ation and is stuck at the ZLB. These

results emphasize the time-varying nature of responses to economic and �nancial shocks and

the possible detrimental e�ects of lifting o� on the real economy.

These time-varying e�ects of the lifto� on the real economy imply time-varying views

on the lifto� for the investors. We ask how the lifto� is perceived by looking at the risk

premium associated to such an event. On Figure 13 we plot the times series of one-year

ahead physical and risk-neutral probabilities of being stuck at the ZLB (left column) and
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the lifto� probabilities with respect to the horizon in April 2010 and January 2011 (right

column). All quantities are presented with the associated risk premium.

[Insert Figure 13 about here.]

The ZLB physical probabilities reproduce the primary dealer survey data and the risk-

neutral probabilities evolve mostly below their physical counterparts during the ZLB period.

Except for a few months, this indicates a negative risk premium for staying at the ZLB

for one year, so investors view staying at the ZLB for a year as a good outcome in terms

of utility. Even when the physical probabilities of staying at the ZLB begin to decrease in

2014, the risk-neutral probabilities follow the same pattern and the risk premium increases

while staying negative.

Last, we focus on the lifto� probabilities presented on the right panel of Figure 13. April

2010 is the date when one-year ZLB physical probabilities plunges before going back to close

to one values. The most probable lifto� date is then on June 2010 with a 20% probability.

However, the risk premium estimates show that lifting-o� before January 2011 was perceived

as a bad outcome, consistently with the negative risk premium associated with the one-year

ahead ZLB probabilities at the same time. On January 2011, the most probable lifto�

date has been pushed back to January 2012 with a probability of 6% only. Again, the risk

premium associated with lifting-o� before March 2012 is positive and perceived as a bad

outcome from the investors point of view. Lifting-o� too early would have represented a

bad outcome because of its detrimental e�ect on the real economy and on the interest rates,

while lifting-o� too late seemed to be preferred.

8 Conclusion

In this paper, we provide a new way of modeling both nominal and real yield curves in an

a�ne framework, which allows for the presence of observable macroeconomic variables and is

consistent with the zero lower bound. Relying on a combination of quadratic term structure

models and the gamma-zero distribution, the model is able to generate a short-term nominal

rate stuck at the zero lower bound for several periods. We show that the short-term interest

rate speci�cation can have a convenient economic interpretation in terms of a time-varying

Taylor-type rule. We show that the model is an ATSM such that it provides closed-form

formulas for nominal and real interest rates, interest rate forecasts, macroeconomic forecasts,

impulse-response functions, and lifto� probabilities under both physical and risk-neutral

measure.

The relevance of this new framework is explored with an empirical application on U.S.

data to study the interactions between in�ation and the monetary policy in and out of the
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zero lower bound. We �rst provide evidence that the model delivers a good �t in terms of

moments, time series properties, and predictability of excess returns. Second, we explore its

implications for risk premia estimates. We provide evidence that high in�ation and de�ation

fears arise at the same time due to the particular U-shaped structure of the nominal pricing

kernel. During the ZLB period, in�ation risk premia become negative at the short-end of

the yield curve, while staying closer to zero at longer horizons, emphasizing the horizon-

dependent de�ation risk aversion. We last study the e�ect and the cost of lifting-o�. While

an increase of the short-term interest rate has little impact on in�ation during normal times,

it severely and negatively impacts in�ation views during the ZLB. This pushes the fear of

lifting-o� to change over time. As such, the model provides a convenient tool for policy-

makers to monitor not only market views on the timing of interest rate increases, but also

on the harm done to economic agents when the lifto� occurs.
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A Appendix

A.1 The Gamma-zero (γ0) distribution

The gamma-zero autoregressive process was introduced by Monfort, Pegoraro, Renne, and

Roussellet (2016) as a generalization of the autoregressive gamma process of Gouriéroux and

Jasiak (2006). Its construction is summarized hereafter.

Let It = I(Xt) be a non-negative process which is a function of the risk factors Xt and rt,

and Pt be a Poisson variable with intensity It. rt is conditionally gamma-zero distributed if:

Pt|Xt, rt−1 ∼ P(I(Xt, rt−1)) and rt|Pt ∼ γPt (ς) , (32)

that is, conditionally on the Poisson mixing variable, rt has a gamma distribution of shape

(or degree of freedom) parameter Pt and a scale parameter ς. When Pt = 0, the conditional

distribution of rt converges to a Dirac point mass at zero. Integrating with respect to Pt, we

obtain the conditional distribution of rt given Xt that we call gamma-zero, encompassing a

zero point mass. In this paper, the intensity It is given by a quadratic combination of the

Gaussian vector Xt, that is:

It = θ0 + θ′Xt +X ′tΘXt + βrt−1 .

The conditional distribution of rt given Xt and its past can be expressed with its conditional

Laplace transform:

E
[
exp(urrt)

∣∣Xt, rt−1

]
= exp

(
urς

1− urς
(θ0 + θ′Xt +X ′tΘXt + βrt−1)

)
, (33)

which is an exponential-quadratic function of Xt and exponential-linear in rt−1.

A.2 A�ne P-property and risk neutral dynamics of ft

De�ne u = [u′x, Vec(Ux)
′, u′r]

′, where the blocks have respective size n, n2 and 1. We �rst

introduce the following Lemma.

Lemma A.1 The conditional Laplace transform of [X ′t,Vec(XtX
′
t)
′]′ given its past is given
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by:

E
[
exp (u′xXt +X ′tUxXt)

∣∣Xt−1

]
= exp

{
u′x(In − 2ΣUx)

−1

(
µ+

1

2
Σux

)
+ µ′Ux(In − 2ΣUx)

−1µ− 1

2
log
∣∣In − 2ΣUx

∣∣
+ (ux + 2Uxµ)′(In − 2ΣUx)

−1ΦXt−1 +Xt−1Φ′Ux(In − 2ΣUx)
−1ΦXt−1

}

Proof See Cheng and Scaillet (2007). �

Let us now calculate the conditional Laplace transform of ft given ft−1.

E
[
exp (u′ft)

∣∣ft−1

]
= E

[
exp (u′xXt +X ′tUxXt + urrt)

∣∣ft−1

]
= E

{
E
[
exp (u′xXt +X ′tUxXt + urrt)

∣∣ft−1, Xt

] ∣∣ft−1

}
= E

[
exp

{
u′xXt +X ′tUxXt +

urς

1− urς
[θ0 + θ′Xt +X ′tΘXt + βrt−1]

} ∣∣ft−1

]
,

= exp

(
urς

1− urς
(θ0 + βrt−1)

)
E

[
exp

{(
ux +

urς

1− urς
θ

)′
Xt +X ′t

(
Ux +

urς

1− urς
Θ

)
Xt

}∣∣ft−1

]
,

which is obtained using the law of iterated expectations and the conditional Laplace trans-
form of rt given Xt (see Equation (33)). We hence obtain the conditional Laplace transform

of [X ′t,Vec(XtX
′
t)
′]′ applied in the two arguments

[(
ux + urς

1−urς θ
)′

; Vec
(
Ux + urς

1−urςΘ
)′]′

.

Using Lemma A.1, we have:

E
[
exp (u′ft)

∣∣ft−1

]
= exp

{
urς

1− urς
(θ0 + βrt−1) +

(
ux +

urς

1− urς
θ

)′ [
In − 2Σ

(
Ux +

urς

1− urς
Θ

)]−1 [
µ+

1

2
Σ

(
ux +

urς

1− urς
θ

)]

+ µ′
(
Ux +

urς

1− urς
Θ

)[
In − 2Σ

(
Ux +

urς

1− urς
Θ

)]−1

µ− 1

2
log

∣∣∣∣In − 2Σ

(
Ux +

urς

1− urς
Θ

)∣∣∣∣
+

[(
ux +

urς

1− urς
θ

)′
+ 2µ′

(
Ux +

urς

1− urς
Θ

)][
In − 2Σ

(
Ux +

urς

1− urς
Θ

)]−1

ΦXt−1

+ X ′t−1Φ′
(
Ux +

urς

1− urς
Θ

)[
In − 2Σ

(
Ux +

urς

1− urς
Θ

)]−1

ΦXt−1

}
. (34)

This conditional Laplace transform is obviously an exponential-quadratic function of Xt−1

and an exponential-linear function of rt−1, that is by extension an exponential-a�ne function

of ft−1. (ft) is therefore an a�ne process under the physical measure.
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To derive the risk-neutral conditional Laplace transform of ft given ft−1, we use the transition

formulas provided in Roussellet (2015), Chapter 4. Using the block recursive a�ne structure

of ft, the risk-neutral conditional Laplace transform of rt given Xt and ft−1 is given by:

EQ
(

exp{u′rrt}
∣∣Xt, ft−1

)
=

E
(

exp
{

[ur + Λr]
′ rt
} ∣∣Xt, ft−1

)
E
(

exp {Λ′rrt}
∣∣Xt, ft−1

) (35)

= exp

{(
(ur + Λr)ς

1− (ur + Λr)ς
− Λrς

1− Λrς

)
(θ0 + θ′Xt +X ′tΘXt + βrt−1)

}
,

where EQ(·) is the expectation operator under the risk-neutral measure. The di�erence of

ratios can be simpli�ed as follows.

(ur + Λr)ς

1− (ur + Λr)ς
− Λrς

1− Λrς
=

(1− Λrς) (ur + Λr)ς − [1− (ur + Λr)ς] Λrς

[1− Λrς] [1− (ur + Λr)ς]

= ς
ur − Λrurς + urΛrς

[1− Λrς] [1− (ur + Λr)ς]

=
urς

[1− Λrς] [1− (ur + Λr)ς]
.

De�ne now ςQ =
ς

1− Λrς
, that is ς =

ςQ

1 + ΛrςQ
. We obtain:

urς

1− (ur + Λr)ς
=

ur
ςQ

1+ΛrςQ

1− (ur + Λr)
ςQ

1+ΛrςQ

=
1 + Λrς

Q

1− urςQ
× urς

Q

1 + ΛrςQ

=
urς

Q

1− urςQ
.

Hence the conditional Laplace transform of Equation (35) is given by:

EQ
(

exp{u′rrt}
∣∣Xt, ft−1

)
= exp

{
urς

Q

1− urςQ
× θ0 + θ′Xt +X ′tΘXt + βrt−1

1− Λrς

}
=: exp

{
urς

Q

1− urςQ
(
θQ0 + θQ

′
Xt +X ′tΘ

QXt + βQrt−1

)}
.

rt is therefore conditionally gamma-zero distributed given Xt and its past, where the risk-

neutral parameters are given by:

θQ0 =
θ0

1− Λrς
, θQ =

θ

1− Λrς
, ΘQ =

Θ

1− Λrς
, βQ =

β

1− Λrς
, ςQ =

ς

1− Λrς
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We turn now to the computation of the risk-neutral conditional Laplace transform of (X ′t, Vec(XtX
′
t)
′)′

given ft−1. Again, using the property in Roussellet (2015) Chapter 4, we have:

EQ
(

exp {u′xXt +X ′tUxXt}
∣∣ft−1

)
=

E
[
exp

{
(ux + Λ̃t−1)′Xt +X ′t(Ux + Λ̃r)Xt

} ∣∣ft−1

)
E
[
exp

{
Λ̃′t−1Xt +X ′t(Ux + Λ̃r)Xt

} ∣∣ft−1

) ,

where Λ̃t−1 and Λ̃r are given by:

Λ̃t−1 = λ0 + θ
Λrς

1− Λrς
+ λXt−1 , Λ̃r =

Λrς

1− Λrς
Θ + ΛX .

The transition between the physical and risk-neutral dynamics of Xt are as if the SDF was

exponential-quadratic, with adjusted prices of risk Λ̃t−1 and Λ̃r. Since Λ̃r the price associated

to Vec(XtX
′
t) is constant through time, we can rely on the results of Monfort and Pegoraro

(2012). We obtain that Xt follows a Gaussian VAR(1) under the risk-neutral measure and:

Xt = µQ + ΦQXt−1 + ΣQ1/2

εQt ,

where εQt is a zero-mean unit-variance Gaussian white noise, and µQ, ΦQ and ΣQ are given

by: 

µQ = ΣQ
(
λ0 + θ

Λrς

1− Λrς
+ Σ−1µ

)
,

ΦQ = ΣQ (λ+ Σ−1Φ) ,

ΣQ =

(
Σ−1 − 2

Λrς

1− Λrς
Θ− 2ΛX

)−1

.

Since rt is conditionally gamma-zero given Xt and that Xt follows a VAR(1) under the
risk-neutral measure, the class of distributions are the same under the physical and the risk-
neutral measure. Trivially transforming Formula 34, the risk-neutral Laplace transform of
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ft given ft−1 is given by:

EQ
[
exp (u′ft)

∣∣ft−1

]
= exp

{
urς

Q

1− urςQ
(
θQ0 + βQrt−1

)
− 1

2
log

∣∣∣∣In − 2ΣQ
(
Ux +

urς
Q

1− urςQ
ΘQ
)∣∣∣∣

+

(
ux +

urς
Q

1− urςQ
θQ
)′ [

In − 2ΣQ
(
Ux +

urς
Q

1− urςQ
ΘQ
)]−1 [

µQ +
1

2
ΣQ
(
ux +

urς
Q

1− urςQ
θQ
)]

+ µQ′
(
Ux +

urς
Q

1− urςQ
ΘQ
)[

In − 2ΣQ
(
Ux +

urς
Q

1− urςQ
ΘQ
)]−1

µQ

+

[(
ux +

urς
Q

1− urςQ
θQ
)′

+ 2µQ′
(
Ux +

urς
Q

1− urςQ
ΘQ
)][

In − 2ΣQ
(
Ux +

urς
Q

1− urςQ
ΘQ
)]−1

ΦQXt−1

+ X ′t−1ΦQ′
(
Ux +

urς
Q

1− urςQ
ΘQ
)[

In − 2ΣQ
(
Ux +

urς
Q

1− urςQ
ΘQ
)]−1

ΦQXt−1

}
. (36)

This conditional Laplace transform is also exponential-quadratic in Xt−1 and exponential-

linear in rt−1, that is an exponential-a�ne function of ft−1. (ft) is therefore an a�ne process

under the risk-neutral measure.

A.3 Conditional moments of ft

From Cheng and Scaillet (2007) and using the same notations as in Monfort, Renne, and
Roussellet (2015), the conditional �rst two moments of (X ′t,Vec(XtX

′
t)
′)′ given the past can

be expressed as:

E


 Xt

Vec(XtX
′
t)

∣∣ft−1

 =

 µ

Vec(µµ′ + Σ)

+

 Φ 0

µ⊗ Φ + Φ⊗ µ Φ⊗ Φ


 Xt−1

Vec(Xt−1X
′
t−1)



V


 Xt

Vec(XtX
′
t)

∣∣ft−1

 =

 Σ ΣΓ′t−1

Γt−1Σ Γt−1ΣΓ′t−1 + (In2 +Kn)(Σ⊗ Σ)

 .

where ⊗ is the standard Kronecker product, Γt−1 = [In ⊗ (µ+ ΦXt−1) + (µ+ ΦXt−1)⊗ In],

and Kn is the (n2 × n2) commutation matrix.

Using the law of iterated expectations and the conditional �rst two moments of rt given Xt,
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we have:

E
[
rt
∣∣ft−1

]
= ς

(
θ0 + θ′E(Xt|ft−1) + Vec(Θ)′E[Vec(XtX

′
t)|ft−1] + βrt−1

)
= ς

(
θ0 + βrt−1 + θ′ (µ+ ΦXt−1)

+ Vec(Θ)′
[
Vec(µµ′ + Σ) + (µ⊗ Φ + Φ⊗ µ)Xt−1 + (Φ⊗ Φ)Vec(Xt−1X

′
t−1)
])

V
[
rt
∣∣ft−1

]
= E

(
V
[
rt
∣∣ft−1, Xt

] ∣∣ft−1

)
+ V

(
E
[
rt
∣∣ft−1, Xt

] ∣∣ft−1

)
= 2ςE

[
rt
∣∣ft−1

]
+ V

(
ς [θ′Xt +X ′tΘXt]

∣∣ft−1

)
= 2ς2

(
θ0 + βrt−1 + θ′ (µ+ ΦXt−1)

+ Vec(Θ)′
[
Vec(µµ′ + Σ + (µ⊗ Φ + Φ⊗ µ)Xt−1 + (Φ⊗ Φ)Vec(Xt−1X

′
t−1)
])

+ ς2

(
θ′Σθ + 2Vec(Θ)′Γt−1Σθ + Vec(Θ)′

[
Γt−1ΣΓ′t−1 + (In2 +Kn)(Σ⊗ Σ)

]
Vec(Θ)

)
.

The conditional covariance is given by:

Cov


 Xt

Vec(XtX
′
t)

 , rt
∣∣ft−1

 = Cov


 Xt

Vec(XtX
′
t)

 , ς (θ0 + θ′Xt +X ′tΘXt + βrt−1)
∣∣ft−1


= ς

 Σ
[
θ + Γ′t−1Vec(Θ)

]
Γt−1Σ

[
θ + Γ′t−1Vec(Θ)

]
+ (In2 +Kn)(Σ⊗ Σ)Vec(Θ)

 .

In the end, putting the previous results together, we obtain the transition equation in the

form of Equation (14) with parameters given by:

Ψ0 =


µ

Vec(µµ′ + Σ)

ς

(
θ0 + θ′µ+ Vec(Θ)′Vec(µµ′ + Σ)

)
 ,

Ψ =


Φ 0 0

µ⊗ Φ + Φ⊗ µ Φ⊗ Φ 0

ς (θ′Φ + Vec(Θ)′[µ⊗ Φ + Φ⊗ µ]) ς (Φ⊗ Φ) ςβ

 ,
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and,

Vec−1(Ω0 + Ωft−1) =



Σ ΣΓ′t−1 ςΣ
(
θ + Γ′t−1Vec(Θ)

)
Γt−1ΣΓ′t−1 ςΓt−1Σ

[
θ + Γ′t−1Vec(Θ)

]
+(In2 +Kn)(Σ⊗ Σ) + ς(In2 +Kn)(Σ⊗ Σ)Vec(Θ)

2ς2
(
θ0 + βrt−1 + θ′ (µ+ ΦXt−1)

+Vec(Θ)′
[
Vec(µµ′ + Σ + (µ⊗ Φ + Φ⊗ µ)Xt−1 + (Φ⊗ Φ)Vec(Xt−1X′t−1)

])
+ς2

(
θ′Σθ + 2Vec(Θ)′Γt−1Σθ + Vec(Θ)′

[
Γt−1ΣΓ′t−1 + (In2 +Kn)(Σ⊗ Σ)

]
Vec(Θ)

)



.

A.4 Forecasts and marginal moments with a semi-strong VAR for-

mulation

From Equation (14), we have:

ft = Ψ0 + Ψft−1 +
[
Vec−1 (Ω0 + Ωft−1)

]1/2
ξt ,

where ξt is a martingale di�erence with zero mean and unit variance. Assuming that ft is

stationary so that (In+n2+1 −Ψ)−1 exists, we have:

E
(
ft+k|ft

)
= E

(
Ψ0 + Ψft+k−1 +

[
Vec−1 (Ω0 + Ωft+k−1)

]1/2
ξt+k|ft

)
= Ψ0 + ΨE

(
ft+k−1|ft

)
=

k−1∑
i=0

ΨiΨ0 + Ψkft

Replacing the sum by the following formula, we obtain the desired result:

k−1∑
i=0

Ψi =
+∞∑
i=0

Ψi −
+∞∑
i=k

Ψi =

(
+∞∑
i=0

Ψi

)(
In+n2+1 −Ψk

)
= (In+n2+1 −Ψ)−1 (In+n2+1 −Ψk

)
.

Taking the limit when k tends to in�nity, Ψk goes to zero and we obtain the marginal mean.

For the conditional variance, we have:

V
(
ft+k|ft

)
= V

[
E
(
ft+k|ft+k−1

)
|ft
]

+ E
[
V
(
ft+k|ft+k−1

)
|ft
]

= V
(
Ψft+k−1|ft

)
+ E

[
Vec−1 (Ω0 + Ωft+k−1) |ft

]
= ΨV

(
ft+k−1|ft

)
Ψ′ + Vec−1

[
Ω0 + ΩE

(
ft+k−1|ft

)]
.
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Therefore,

Vec
[
V
(
ft+k|ft

)]
= (Ψ⊗Ψ)Vec

[
V
(
ft+k−1|ft

)]
+[

Ω0 + Ω
{

(In+n2+1 −Ψ)−1 (In+n2+1 −Ψk−1
)

Ψ0 + Ψk−1ft
}]

.

A simple recursion gives the desired result, that is:

Vec
[
V
(
ft+k

∣∣ft)] =
k−1∑
i=0

(Ψ⊗Ψ)i
(
Ω0 + Ω

[
(In+n2+1 −Ψ)−1(In+n2+1 −Ψk−i−1)Ψ0 + Ψk−i−1ft

])
.

For the marginal variance, again using the law of total variance we have:

V (ft) = V
[
E
(
ft|ft−1

)]
+ E

[
V
(
ft|ft−1

)]
= ΨV (ft) Ψ′ + Vec−1 [Ω0 + ΩE (ft)] ,

and using the vec operator, we get the desired result.

A.5 Multi-horizon Laplace transform of ft

Since the one-period ahead conditional risk-neutral Laplace transform of ft given ft−1 is

exponential-a�ne in ft−1, it is well-known that the conditional multi-horizon risk-neutral

Laplace transform of (ft, . . . , ft+k) is also exponential-a�ne in ft−1 (see e.g. Darolles,

Gourieroux, and Jasiak (2006)). Using the notation:

EQ
[
exp (u′ft)

∣∣ft−1

]
=: exp

{
AQ(u) + BQ′(u)Xt−1 +X ′t−1CQ(u)Xt−1 + DQ(u)rt−1

}
,

with:

AQ(u) =
urς

QθQ0
1− urςQ

− 1

2
log

∣∣∣∣In − 2ΣQ
(
Ux +

urς
Q

1− urςQ
ΘQ
)∣∣∣∣

+

(
ux +

urς
Q

1− urςQ
θQ
)′ [

In − 2ΣQ
(
Ux +

urς
Q

1− urςQ
ΘQ
)]−1 [

µQ +
1

2
ΣQ
(
ux +

urς
Q

1− urςQ
θQ
)]

+ µQ′
(
Ux +

urς
Q

1− urςQ
ΘQ
)[

In − 2ΣQ
(
Ux +

urς
Q

1− urςQ
ΘQ
)]−1

µQ

BQ′(u) =

[(
ux +

urς
Q

1− urςQ
θQ
)′

+ 2µQ′
(
Ux +

urς
Q

1− urςQ
ΘQ
)][

In − 2ΣQ
(
Ux +

urς
Q

1− urςQ
ΘQ
)]−1

ΦQ

CQ(u) = ΦQ′
(
Ux +

urς
Q

1− urςQ
ΘQ
)[

In − 2ΣQ
(
Ux +

urς
Q

1− urςQ
ΘQ
)]−1

ΦQ

DQ(u) =
urς

Q

1− urςQ
βQ ,
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We obtain:

ϕQ
t−1(u0, . . . , uk) = EQ

[
exp

(
k∑
i=0

u′ift+i

)∣∣ft−1

]

= exp

(
AQ
k (u0, . . . , uk) + BQ′

k (u0, . . . , uk)Xt−1

+ X ′t−1C
Q
k (u0, . . . , uk)Xt−1 + DQ

k (u0, . . . , uk) rt−1

)
,

where:

AQ
k (u0, . . . , uk) := AQ

k,k(u0, . . . , uk)

BQ
k (u0, . . . , uk) := BQ

k,k(u0, . . . , uk)

CQ
k (u0, . . . , uk) := CQ

k,k(u0, . . . , uk)

DQ
k (u0, . . . , uk) := DQ

k,k(u0, . . . , uk) ,

with initial conditions AQ
k,1(u0, . . . , uk) = AQ(uk), BQ

k,1(u0, . . . , uk) = BQ(uk), CQ
k,1(u0, . . . , uk) =

CQ(uk) and DQ
k,1(u0, . . . , uk) = DQ(uk), and ∀i ∈ {2, . . . , k},

AQ
k,i(u0, . . . , uk) = AQ

k,i−1(u0, . . . , uk)

+ AQ
(
uk−i+1 +

[
BQ′
k,i−1(u0, . . . , uk) ,Vec

(
CQ
k,i−1(u0, . . . , uk)

)′
,DQ

k,i−1(u0, . . . , uk)

]′)
BQ
k,i(u0, . . . , uk) = BQ

(
uk−i+1 +

[
BQ′
k,i−1(u0, . . . , uk) ,Vec

(
CQ
k,i−1(u0, . . . , uk)

)′
,DQ

k,i−1(u0, . . . , uk)

]′)
CQ
k,i(u0, . . . , uk) = CQ

(
uk−i+1 +

[
BQ′
k,i−1(u0, . . . , uk) ,Vec

(
CQ
k,i−1(u0, . . . , uk)

)′
,DQ

k,i−1(u0, . . . , uk)

]′)
DQ
k,i(u0, . . . , uk) = DQ

(
uk−i+1 +

[
BQ′
k,i−1(u0, . . . , uk) ,Vec

(
CQ
k,i−1(u0, . . . , uk)

)′
,DQ

k,i−1(u0, . . . , uk)

]′)
.

Since the conditional Laplace transform of ft given ft−1 under the physical measure φt−1(u)

is the same function as the risk-neutral one φQ
t−1(u), but plugging in the physical parameters

instead of the risk-neutral ones, we easily obtain:

ϕt−1(u0, . . . , uk) = E

[
exp

(
k∑
i=0

u′ift+i

)∣∣ft−1

]
=: exp

(
Ak(u0, . . . , uk) + B′k(u0, . . . , uk)Xt−1 +X ′t−1Ck(u0, . . . , uk)Xt−1 + Dk(u0, . . . , uk)rt−1

)
.(37)
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where:

Ak(u0, . . . , uk) := Ak,k(u0, . . . , uk)

Bk(u0, . . . , uk) := Bk,k(u0, . . . , uk)

Ck(u0, . . . , uk) := Ck,k(u0, . . . , uk)

Dk(u0, . . . , uk) := Dk,k(u0, . . . , uk) ,

with initial conditions Ak,1(u0, . . . , uk) = A(uk), Bk,1(u0, . . . , uk) = B(uk), Ck,1(u0, . . . , uk) =

C(uk) and Dk,1(u0, . . . , uk) = D(uk), and ∀i ∈ {2, . . . , k},

Ak,i(u0, . . . , uk) = Ak,i−1(u0, . . . , uk)

+ A
(
uk−i+1 +

[
B
′
k,i−1(u0, . . . , uk) ,Vec (Ck,i−1(u0, . . . , uk))

′ ,Dk,i−1(u0, . . . , uk)
]′)

Bk,i(u0, . . . , uk) = B
(
uk−i+1 +

[
B
′
k,i−1(u0, . . . , uk) ,Vec (Ck,i−1(u0, . . . , uk))

′ ,Dk,i−1(u0, . . . , uk)
]′)

Ck,i(u0, . . . , uk) = C
(
uk−i+1 +

[
B
′
k,i−1(u0, . . . , uk) ,Vec (Ck,i−1(u0, . . . , uk))

′ ,Dk,i−1(u0, . . . , uk)
]′)

Dk,i(u0, . . . , uk) = C
(
uk−i+1 +

[
B
′
k,i−1(u0, . . . , uk) ,Vec (Ck,i−1(u0, . . . , uk))

′ ,Dk,i−1(u0, . . . , uk)
]′)

.

Using the properties of Monfort et al. (2016), the probabilities to stay at zero for k periods

are given by the following limit:

P
(
rt+1:t+k = δ0

∣∣ft) = P
(
rt+1:t+k = 0

∣∣ft) = lim
v→−∞

ϕt(uk, · · · , uk) , uk = (0, · · · , 0, v)

Q
(
rt+1:t+k = δ0

∣∣ft) = Q
(
rt+1:t+k = 0

∣∣ft) = lim
v→−∞

ϕQ
t (uk, · · · , uk) , uk = (0, · · · , 0, v) .

Using a continuity argument, we �ip the limit and the exponential such that:

P
(
rt+1:t+k = δ0

∣∣ft) = exp

(
lim

v→−∞
Ak(uk, . . . , uk) + lim

v→−∞
B′k(uk, . . . , uk)Xt−1

+ X ′t−1

[
lim

v→−∞
Ck(uk, . . . , uk)

]
Xt−1 + lim

v→−∞
Dk(uk, . . . , uk) rt−1

)
Q
(
rt+1:t+k = δ0

∣∣ft) = exp

(
lim

v→−∞
AQ
k (uk, . . . , uk) + lim

v→−∞
BQ′
k (uk, . . . , uk)Xt−1

+ X ′t−1

[
lim

v→−∞
CQ
k (uk, . . . , uk)

]
Xt−1 + lim

v→−∞
DQ
k (uk, . . . , uk) rt−1

)
,
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for uk = (0, · · · , 0, v)′. We obtain:

D0,k = lim
v→−∞

Ak(uk, . . . , uk)

Dk = lim
v→−∞

[
B′k(uk, . . . , uk), Vec (Ck(uk, . . . , uk))

′ , Dk(uk, . . . , uk)
]′

DQ
0,k = lim

v→−∞
AQ(uk, . . . , uk)

Dk = lim
v→−∞

[
BQ′
k (uk, . . . , uk), Vec

(
CQ
k (uk, . . . , uk)

)′
, DQ

k (uk, . . . , uk)
]′
.

A.6 Primary Dealer Survey data

The primary dealer surveys (PDS) are publicly available from January 2011 on. They are

conducted by the New York Fed to inform the FOMC members of primary dealer's expec-

tation about the economy, monetary policy and �nancial markets developments. They are

conducted on a regular basis, prior to the FOMC meetings (8 per year) in January, March,

April, June, July, September, October and December.31 The questions and statistics col-

lected have evolved to adapt to the economic environment, which makes it di�cult to create

homogeneous time-series on the probability to stay at the zero lower bound for a year.

We construct the conditional probabilities of staying at zero for a year using the question:

Of the possible outcomes below, please indicate the percent chance you attach to the timing of

the �rst federal funds target rate increase. (question #2 of each survey). The answer takes

the form of a table associating the average of all participant answers per horizon. Table 1

provides two examples.

As can be seen on Table 1, the horizons of the question can be for next quarter or next

semester. For all time periods where the horizons are quarterly or below, we aggregate the

answers to get semi-annual horizons for homogeneity. We then compute the probabilities as

follow. LetMt = {1, . . . , 12} be the number of the current date-t month, Yt the number of
date-t year, and Ht = 1 +1 {Mt ∈ {7, . . . , 12}} the indicator of the semester. Let pt(Ht,Yt)
be the answer given in the survey. Our probabilities are given by:

[1− pt (Ht,Yt)]× [1− pt (Ht + 1,Yt)]×
[
1− pt (Ht,Yt + 1) Mt−1

12

]
if Ht = 1

[1− pt (Ht,Yt)]× [1− pt (Ht − 1,Yt + 1)]×
[
1− pt (Ht,Yt + 1) Mt−1

12

]
if Ht = 2 .

The previous formula assumes that inside the last semester considered, the timing of the

�rst increase is uniformly distributed. For example, for the two panels of Table 1, we obtain

31See the survey results on https://www.newyorkfed.org/markets/primarydealer_survey_questions.html.
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Table 1: Examples of primary dealer survey answers

Panel(a): January 2011

2011 2012 > 2013

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1

Average 0% 1% 2% 11% 14% 13% 16% 17% 25%

Panel(b): March 2013

2013 2014 2015 2016 2017

H1 H2 H1 H2 H1 H2 H1 H2 H1 >H2

Average 0% 1% 5% 10% 23% 27% 18% 8% 4% 4%

the probabilities:

2011− 01 → [1− (0 + 0.01)]× [1− (0.02 + 0.11)] ' 0.86

2013− 03 → (1− 0)× (1− 0.01)×
(

1− 3− 1

12
0.05

)
' 0.965 .

Last, in order to avoid the �tted series to be too volatile, we �ll out the missing data with the

last available data point (step function) and impose that the measurement errors standard

deviation is equal to 15% of the obtained series standard deviation.
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B Technical Appendix

B.1 Including longer-period price variations in Mt

The class of models we consider is models where the in�ation rate between t−k and t, denoted
by πt−k,t, is directly included as the �rst macroeconomic variable, that is the �rst component

of Mt. For notation simplicity let us also assume that there is no other macroeconomic

variable, that is Mt = πt−k,t. By de�nition we have:

πt−k,t =
k∑
i=1

πt−k+i−1,t−k+i ⇐⇒ πt−1,t = πt−k,t − πt−k−1,t−1 + πt−k−1,t−k .

Hence, using the VAR(1) dynamics of Xt (see Equation (1)):

πt−1,t = µπ + (Φπ − 1)πt−k−1,t−1 + ΦπZZt−1 + Σ1/2
π επ,t + πt−k−1,t−k .

Denoting by:

X̃t = [πt−k,t, Z
′
t, πt−1,t, . . . , πt−k,t−k+1]

′
,

the vector of size n+ k, we can form a new Gaussian VAR(1) dynamic system with X̃t as:

X̃t =



µπ

µZ

µπ

0

...

0


+



Φπ Φπ,Z 0 · · · 0

ΦZ,π ΦZ 0 · · · 0

Φπ − 1 Φπ,Z 0 · · · 0 1

0 0 1 0 · · · 0

...
... 0

. . .
...

0 0 0 0 1 0


X̃t−1 +



Σ
1/2
π 0

0 InZ

Σ
1/2
π 0

0 0

...
...

0 0


εt .

It is immediate to see that the short-rate dynamics can also be transformed in terms of X̃t,

that is:

rt|(rt−1, X̃t) ∼ γ0

(
θ0 + θ̃′X̃t + X̃ ′tΘ̃X̃t + βrt−1, ς

)
,

where

θ̃ = [θ′, 0, · · · 0]′ and Θ̃ =

 Θ 0

0 0

 .
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Risk-neutral dynamics and conditional Laplace transforms under any measure can be easily

derived for the vector f̃t = [X̃ ′t, Vec(X̃tX̃
′
t)
′, rt]

′. The pricing of nominal bonds and in�ation-

indexed bonds hence follow exactly the same pattern as presented in the main text.

B.2 Identi�cation constraints

In this section, we prove that the constraints imposed for the estimation are su�cient to

identify the physical parameters and that the latent factors cannot be rotated. Let us

consider an alternative vector of factors X̃t such that:

X̃t = q +QXt = q +Q(µ+ ΦXt−1 + Σ1/2εt)

= q +Qµ+Q−1q +QΦQ−1X̃t +QΣ1/2εt (38)

=: µ∗ + Φ∗X̃t−1 + Σ∗
1/2

εt . (39)

Let us partition q and Q such that:

q =

 qM

qZ

 and

 QM QM,Z

QZ,M QZ

 .

We show that the conditions µ = µ∗, Φ = Φ∗ and Σ = Σ∗ are su�cient to obtain q = 0

and Q = In. First, since the macroeconomic variables are observed, we have M̃t = Mt. This

implies: 
qM = 0

QM = InM

QM,Z = 0

Second, since µZ = 0, we have:

qZ +QZ,MµM +Q−1
Z qZ = 0⇐⇒ qZ = −(I +Q−1

Z )−1QZ,MµM .

Then, we consider the condition Σ = Σ∗:

0 = QZ,MΣM

I = QZ,MΣMQ
′
Z,M +QZQ

′
Z
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which, by invertibility of ΣM translates into:

QZ,M = 0 and QZQ
′
Z = I .

In particular, these conditions imply that qZ = 0 thus q = 0, and QZ is orthogonal. We just

need to prove now that QZ = InZ
. Let us consider the condition Φ = Φ∗.

Φ = QΦQ−1 ⇐⇒ Φ =

 ΦM ΦM,ZQ
−1
Z

QZΦZ,M QZΦZQ
−1
Z

 .

which can be rewritten as: 
ΦM,Z = ΦM,ZQ

′
Z

ΦZ,M = QZΦZ,M

ΦZ = QZΦZQ
′
Z

which is only possible if QZ = I.

B.3 Campbell-Shiller regression coe�cients

In the following, we focus on a 12-month holding period. In the nominal world, the one-year

excess returns of holding a nominal bond of maturity h are given by:

1

12
log

(
B(t+ 12, h− 12)

B(t, h)

)
−R(t, 12) .

In the real world, the nominal return of this one-year holding-period strategy must be cor-

rected from the realized in�ation rate and compared to the real rates R∗a(t, 12):

1

12
log

(
B(t+ 12, h− 12)

B(t, h)

)
− 1

12
Πt+12 −R∗a(t, 12)

=

 1

12
log

(
B(t+ 12, h− 12)

B(t, h)

)
−R(t, 12)︸ ︷︷ ︸

Nominal excess returns

+

R(t, 12)−R∗a(t, 12)− 1

12
Πt+12︸ ︷︷ ︸

Breakeven − In�ation

 .

The real excess returns of nominal bonds are the sum of the nominal excess returns and

the spread between the so-called breakeven in�ation rate (R(t, 12)−R∗a(t, 12)) and the real-

ized in�ation during the holding period. This last term would be close to the in�ation risk

premium would the in�ation forecasting errors be small. Therefore, real excess returns of
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nominal bonds include information about both the evolution of nominal term premia and

in�ation risk premia separately.

For the excess returns of TIPS, I denote by B∗t (t+ 12, h− 12) the price at t+ 12 of the TIPS

issued at time t of maturity h.

B∗t (t+ 12, h− 12) = E
[
mt+12,t+h

CPIt+h
CPIt

∣∣ft+12

]
, (40)

where the principal is adjusted by the reference price-index variation between the inception

and the maturity date (t and t + h). Rearranging formula (40), this price can be expressed

with the price of a newly issued TIPS at date t+ 12.

B∗t (t+ 12, h− 12) = E
[
mt+12,t+h

CPIt+h
CPIt+12

∣∣ft+12

]
CPIt+12

CPIt
= B∗(t+ 12, h− 12) exp(Πt+12) .

(41)

Therefore, the real and nominal excess returns of holding TIPS for k-holding periods are

respectively given by:

1

12
log

(
B∗(t+ 12, h− 12)

B∗(t, h)
exp(Πt+12)

)
− 1

12
Πt+12 −R∗a(t, 12)

=
1

12
log

(
B∗(t+ 12, h− 12)

B∗(t, h)

)
−R∗a(t, 12)

and,

1

12
log

(
B∗(t+ 12, h− 12)

B∗(t, h)
exp(Πt+12)

)
−R(t, 12)

=

 1

12
log

(
B∗(t+ 12, h− 12)

B∗(t, h)

)
−R∗a(t, 12)︸ ︷︷ ︸

Real excess returns

−
R(t, 12)−R∗a(t, 12)− 1

12
Πt+12︸ ︷︷ ︸

Breakeven − In�ation

 .

Similarly to nominal bonds, TIPS excess returns involve only real term premia in real terms,

and both real term premia and in�ation risk premia in nominal terms.

We turn now to the model-implied slopes for Campbell-Shiller regressions (28) to (31). Due

to the similarities of the di�erent speci�cations, we only present the computations for (28).

Let us consider the general linear regression Y = ω + φX + ε. The optimal φ is given by:

φ =
Cov (Y,X)

V(X)
.
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Replacing Y and X by the Campbell-Shiller speci�cation variables, we obtain:

φh =
h− 12

12
× Cov [R(t+ 12, h− 12)−R(t, h), R(t, h)−R(t, 12)]

V [R(t, h)−R(t, 12)]
.

Using the a�ne interest rate formulas, we obtain:

φh =
h− 12

12
×

Cov
[
B′h−12ft+12 − B′hft,B′hft − B′12ft

]
V [B′hft − B′12ft]

=
h− 12

12
×

Cov
[(
B′h−12Ψ12 − B′h

)
ft, (B′h − B′12) ft

]
V [(B′h − B′12) ft]

=
h− 12

12
×

(
B′h−12Ψ12 − B′h

)
Vec−1

((
I(n+n2+1)2 − (Ψ⊗Ψ)

)−1
(Ω0 + ΩE(ft))

)
(Bh − B12)

(B′h − B′12) Vec−1
((
I(n+n2+1)2 − (Ψ⊗Ψ)

)−1
(Ω0 + ΩE(ft))

)
(B′h − B′12)

,

where E(ft) = (In+n2+1−Ψ)−1Ψ0. The proofs for the other regressions are of similar fashion,

since all dependent and independent variables of all regressions can be expressed as a�ne

functions of the process ft.
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C Tables and �gures

Table 2: Descriptive statistics

Nominal rates (1990-2015)

1-month 1-year 2-year 3-year 5-year 7-year 10-year

mean 2.883 3.375 3.642 3.893 4.336 4.699 5.103

sd 2.228 2.382 2.351 2.272 2.098 1.952 1.800

ρ(1) 0.981 0.986 0.985 0.984 0.982 0.980 0.979

In�ation Real rates (2004-2015)

y-o-y 1-year 2-year 3-year 5-year 7-year 10-year

mean 2.607 -0.071 -0.100 -0.034 0.234 0.532 0.909

mean (excl. crisis) -0.221 -0.206 -0.111 0.174 0.473 0.855

sd 1.237 1.592 1.423 1.312 1.153 1.069 0.954

sd (excl. crisis) 1.431 1.362 1.286 1.146 1.055 0.936

ρ(1) 0.942 0.938 0.963 0.964 0.969 0.962 0.956

Notes: All units are annualized percentage points. 'mean' are sample averages, 'sd' are sample standard
deviations, and 'ρ(1)' are autocorrelation of order 1. The 'excl. crisis' rows present descriptive statistics
calculated on the TIPS data excluding the period from September 2008 to February 2009.
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Table 3: Parameter estimates: Xt dynamics

estimates std. estimates std.

µΠ 2.3948∗∗∗ (0.5892) µQ
Π 9.7565∗∗∗ (2.2447)

µZ1 0 � µQ
Z1

2.5501∗∗∗ (0.7398)

µZ2 0 � µQ
Z2

0 �

µZ3
0 � µQ

Z3
0 �

ΦΠ 0.9006∗∗∗ (0.0107) ΦQ
Π 0.7894∗∗∗ (0.0109)

ΦZ1,Π 0 � ΦQ
Z1,Π

0 �

ΦZ2,Π 0.2579∗∗∗ (0.0292) ΦQ
Z2,Π

0.0482∗∗∗ (0.0037)

ΦZ3,Π 0.1042∗∗∗ (0.0287) ΦQ
Z3,Π

0.0378∗∗∗ (0.0049)

ΦΠ,Z1
0 � ΦQ

Π,Z1
0 �

ΦZ1
0.9816∗∗∗ (0.0025) ΦQ

Z1
0.9574∗∗∗ (0.0008)

ΦZ2,Z1
0 � ΦQ

Z2,Z1
0 �

ΦZ3,Z1 0 � ΦQ
Z3,Z1

0 �

ΦΠ,Z2
-0.0109∗∗∗ (0.0027) ΦQ

Π,Z2
-0.0795∗∗∗ (0.008)

ΦZ1,Z2
0 � ΦQ

Z1,Z2
0 �

ΦZ2
0.9739∗∗∗ (0.00008) ΦQ

Z2
0.9961∗∗∗ (0.0005)

ΦZ3,Z2 -0.0097∗∗∗ (0.003) ΦQ
Z3,Z2

0 �

ΦΠ,Z3 -0.0204∗∗∗ (0.0026) ΦQ
Π,Z3

-0.0781∗∗∗ (0.0079)

ΦZ1,Z3
0 � ΦQ

Z1,Z3
-0.0267∗∗∗ (0.0021)

ΦZ2,Z3
0 � ΦQ

Z2,Z3
0 �

ΦZ3 0.9998∗∗∗ (0.000001) ΦQ
Z3

0.9984∗∗∗ (0.0003)

ΣΠ 0.1357∗∗∗ (0.006) ΣQ
Π 0.552709∗∗∗ (0.07786)

ΣZ1,Π 0 � ΣQ
Z1,Π

0 �

ΣZ2,Π 0 � ΣQ
Z2,Π

0 �

ΣZ3,Π 0 � ΣQ
Z3,Π

0 �

ΣZ1
1 � ΣQ

Z1
1 �

ΣZ2,Z1 0 � ΣQ
Z2,Z1

0 �

ΣZ3,Z1 0 � ΣQ
Z3,Z1

0 �

ΣZ2
1 � ΣQ

Z2
1 �

ΣZ3,Z2
0 � ΣQ

Z3,Z2
0 �

ΣZ3 1 � ΣQ
Z3

1 �

Notes: Standard deviations are in parentheses and are calculated using the outer-product Hessian
approximation. The '�' sign indicates that the parameter has been calibrated hence does not possess any
standard deviation. Signi�cance level: ∗ <0.1, ∗∗ <0.05, ∗∗∗ <0.01.
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Table 4: Parameter estimates: short-rate and the prices of risk

rt dynamics

estimates std. estimates std.

ΘΠ 0.013784∗∗∗ (0.001804) ΘQ
Π 0.013784∗∗∗ (0.001804)

ΘZ1,Π 0.010387∗∗∗ (0.000837) ΘQ
Z1,Π

0.010387∗∗∗ (0.000837)

ΘZ2,Π 0.005234∗∗∗ (0.000707) ΘQ
Z2,Π

0.005234∗∗∗ (0.000707)

ΘZ3,Π -0.000278∗ (0.000163) ΘQ
Z3,Π

-0.000278∗ (0.000163)

ΘZ1
0.007828∗∗∗ (0.000594) ΘQ

Z1
0.007828∗∗∗ (0.000594)

ΘZ2,Z1
0.003944∗∗∗ (0.000411) ΘQ

Z2,Z1
0.003944∗∗∗ (0.000411)

ΘZ3,Z1 -0.000209∗ (0.000115) ΘQ
Z3,Z1

-0.000209∗ (0.000115)

ΘZ2 0.001988∗∗∗ (0.000388) ΘQ
Z2

0.001988∗∗∗ (0.000388)

ΘZ3,Z2
-0.000106∗ (0.00006) ΘQ

Z3,Z2
-0.000106∗ (0.00006)

ΘZ3
0.000006 (0.000006) ΘQ

Z3
0.000006 (0.000006)

β 0.8541∗∗∗ (0.0045) βQ 0.8541∗∗∗ (0.0045)

ς 1 � ςQ 1 �

δ0 · 1200 0.1574∗∗∗ (0.0056) δ · 1200 0.2053∗∗∗ (0.014)

Prices of risk and measurement errors standard deviations

estimates std. estimates std.

λ0,Π 0 � λ0,Z2
0 �

λ0,Z1
2.5501∗∗∗ (0.7398) λ0,Z3

0 �

λΠ -5.2097∗∗∗ (0.2816) λΠ,Z2 -0.0635∗∗∗ (0.0136)

λZ1,Π 0 � λZ1,Z2
0 �

λZ2,Π -0.2098∗∗∗ (0.0277) λZ2
0.0222∗∗∗ (0.0005)

λZ3,Π -0.0664∗∗ (0.0261) λZ3,Z2
0.0097∗∗∗ (0.003)

λΠ,Z1 0 � λΠ,Z3 0.0088∗∗ (0.0045)

λZ1 -0.0243∗∗∗ (0.0024) λZ1,Z3 -0.0267∗∗∗ (0.0021)

λZ2,Z1
0 � λZ2,Z3

0 �

λZ3,Z1
0 � λZ3

-0.0014∗∗∗ (0.0003)

Λr 0 � ΛX,Π 2.7808∗∗∗ (0.1474)

σR 0.0534∗∗∗ (0.0006) σ∗R 0.1277∗∗∗ (0.0027)

σ
(12)
Π 0.509 � σ

(120)
Π 0.389 �

σ
(3)
SR

0.231 � σ
(12)
SR

0.422 �

σZLB 0.0522 �

Notes: Standard deviations are in parentheses and are calculated using the outer-product Hessian
approximation. The '�' sign indicates that the parameter has been calibrated hence does not possess any
standard deviation. Signi�cance level: ∗ <0.1, ∗∗ <0.05, ∗∗∗ <0.01.
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Table 5: Model �t and characteristics

Maturities (months) 1 12 24 36 60 84 120

Nominal rates RMSE (bps) 6.1 8.3 7.61 8.62 9.33 8.00 8.17

Real rates RMSE (bps) - 16.4 8.37 10.19 15.15 13.32 9.62

Probabilities (in %) P(rt = 0) = 24.31 P(rt = 0|rt−1 = 0) = 84.35

Note: Probabilities are calculated with simulated paths of length 1,000,000.
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Figure 1: Nominal and real term structures and in�ation data
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Notes: The left plot presents the time-series of the nominal term structure of interest rates from January
1990 to March 2015. Maturities range from 1 month to 10 years. The middle plot presents the term
structure of real rates built as the di�erence between the nominal zero-coupon interest rates and the
in�ation swap rates of the same maturity. Observations start in July 2004 and run to March 2015. The
vertical red dashed lines indicate the beginning and end of a reduced market liquidity period, that we treat
as missing data in the estimation. The right plot presents the realized year-on-year in�ation lagged of 3
months (black solid line). The dots superimpose the expected average in�ation rate over the next year as
measured by the survey of professional forecasters.
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Figure 2: Filtered factors
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Notes: The �rst factor is the observed year-on-year in�ation rate. It hence possesses no �ltering standard
deviations. The other 3 factors are estimated using the quadratic Kalman �lter and 95% con�dence bounds
are plotted with dashed grey lines. The red vertical line delimits the beginning of the zero lower bound
period.
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Figure 3: Factors loadings
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Figure 4: Fitted series of survey data
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Notes: The black dots correspond to observed forecast data. The grey solid lines correspond to the
model-implied forecasted values. Top graphs correspond respectively to the one-year ahead and 10-year
ahead in�ation average surveys. Medium graphs correspond respectively to the three-months ahead and
one-year ahead 10-year yield survey. Units are in annualized percentage points. Bottom graphs correspond
respectively to the �tted natural logarithm of ZLB probabilities, and of the exponential of the latter.
Con�dence intervals computed using the measurement errors standard deviations are plotted in grey
dashed lines. The red vertical line delimits the beginning of the zero lower bound period.
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Figure 5: Marginal term structures
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Notes: Panel (a) presents the marginal mean term structure of nominal yields, TIPS yields, and breakeven
in�ation rates (resp. left, middle and right plots). For each graph of panel (a), we present the data average
(red diamonds), the model-implied counterpart (black solid line) and its decomposition into expected
component (grey solid line) and risk premium (black dashed line). Panel(b) presents the model-implied
marginal term structure of standard deviations of nominal yields, TIPS yields, and breakeven in�ation
rates (resp. black solid lines of left, middle and right plots) along with data counterparts (red diamonds).
All model-implied quantities are obtained with the closed-form marginal �rst two moments of the
transition equation (14).
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Figure 6: Campbell-Shiller regression slopes: LPY-I
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Notes: From left to right, from top to bottom, the graphs present the slopes of Campbell and Shiller
regressions for (28), (29), (30) and (31) with a 12-months holding period. The red solid line gathers the
slope estimates obtained with �ltered yields data from January 1990 to August 2014. 95% Con�dence
intervals are computed using Newey-West robust estimators with automatically selected lag and are
indicated with the dashed lines. Model-implied estimates are indicated with the black dots and computed
with the yields and in�ation expectation and variance formulas.
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Figure 7: Campbell-Shiller regression slopes: LPY-II
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Notes: From left to right, from top to bottom, the graphs present the slopes of Campbell and Shiller
regressions for (28), (29), (30) and (31) when regressors are adjusted by the corresponding model-implied
expected excess return series. The red solid line represents the theoretical values of the regression, namely
one for all maturities. Model-implied estimates are indicated with the black dots and computed performing
the Campbell and Shiller regressions where the dependent variable is adjusted by the model-implied
expected excess returns. 95% Con�dence intervals are computed using Newey-West robust estimators with
automatically selected lag and are indicated with the dashed lines.
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Figure 8: In�ation conditional densities and density ratios
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Notes: Panel (a) and (b) present the conditional in�ation densities from the starting point Xt = E(Xt) and
Xt = X̄zlb respectively, the model-implied mean of the factors and the empirical mean measured during the
ZLB period. For both panels, the �rst row presents the physical and risk-neutral conditional Gaussian pdfs
(black and grey lines respectively) and the second row presents the Q/P-ratio. The three columns represent
di�erent horizons: one-month (left), one-year (middle) and ten-year (right). x-axis units are in percentage
points.
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Figure 9: De�ation and high in�ation risk
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Notes: The �rst column presents the one-year ahead physical and risk-neutral conditional probabilities
that the year-on-year in�ation rate goes negative (resp. black and grey solid lines) and calculates the
associated risk premium (bottom graph). The second column presents the one-year ahead physical and
risk-neutral conditional probabilities that the year-on-year in�ation rate goes above 4% (resp. black and
grey solid lines) and calculates the associated risk premium (bottom graph). The red vertical line delimits
the beginning of the zero lower bound period. Pink shaded areas are NBER recession periods.
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Figure 10: Decomposition of interest rates
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Notes: First column presents results for the 1-year maturity yields, whereas second column presents results
for the 10-year maturity yields. The �rst row presents to the observed nominal yield (black solid line), the
nominal term premia (grey solid line), and the expected component (black dashed line). The second row
presents to the �ltered TIPS yield (black solid line), the real term premia (grey solid line) and the expected
real rate (black dashed line). The last row presents the �ltered in�ation breakeven rate (black solid line),
the in�ation risk premia (grey solid line) and the in�ation expectation (black dashed line). Units are in
annualized percentage points. The red vertical line delimits the beginning of the zero lower bound period.
Pink shaded areas are NBER recession periods.
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Figure 11: Impulse-response functions in the steady-state
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Notes: These graphs present the e�ect of an upward monetary policy shock (panel (a)) and of an upward
in�ation shock (panel (b)) conditionally on being at the steady state (see Section 3.8 for the detailed
procedure). Column 1 to 4 respectively present the e�ects of the shocks on the short-term nominal interest
rate, the long-term nominal rate, the in�ation rate, and the in�ation risk premium. Units are in annualized
basis points.
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Figure 12: Impulse-response functions at the zero lower bound
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Notes:These graphs present the e�ect of an upward monetary policy shock (panel (a)) and of an upward
in�ation shock (panel (b)) conditionally on being at the zero lower bound (see Section 3.8 for the detailed
procedure). Column 1 to 4 respectively present the e�ects of the shocks on the short-term nominal interest
rate, the long-term nominal rate, the in�ation rate, and the in�ation risk premium. Units are in annualized
basis points.
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Figure 13: Physical and risk-neutral lifto� probabilities
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Notes: The two columns present respectively the 1-year ahead zero lower bound probabilities under the
physical and the risk-neutral measure and the physical and risk-neutral lifto� probabilities at two chosen
dates. P- and Q-probabilities are respectively represented with a black and a grey solid line. The second
row presents the di�erence between the risk-neutral and physical probabilities. All quantities are computed
before applying corrections on the factors. The red vertical bar delimits the beginning of the zero lower
bound period.
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