
Searching For Information

and the Diffusion of Knowledge

Jacopo Perego Sevgi Yuksel
New York University UC Santa Barbara

November 12, 2016

Latest version at cess.nyu.edu/perego/jmp.pdf

Abstract

We study a dynamic learning model in which heterogeneously connected

Bayesian players choose between two activities: learning from one’s own ex-

perience (work) or learning from the experience of others (search). Players who

work produce an inflow of information which is local and dispersed around the

society. Players who search aggregate the information produced by others and

facilitate its diffusion, thereby transforming what inherently is a private good

into information that everyone can access more easily. The structure of social

connections affects the interaction between equilibrium information production

and its social diffusion in ways that are complex and subtle. We show that in-

creasing the connectivity of the society can lead to a strict decrease in the quality

of social information. We link these inefficiencies to frictions in peer-to-peer com-

munications. Moreover, we find that the socially optimal allocation of learning

activities can differ dramatically from the equilibrium one. Under certain condi-

tions, the planner would flip the equilibrium allocation, forcing highly connected

players to work, and moderately connected ones to search. We conclude with

an application that studies how resilient a society is to external manipulation of

public opinion through changes in the meeting technology.
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1. Introduction

This paper studies learning in large connected societies. The novelty of our approach is to

explicitly capture the interactions between the creation of information and its social diffu-

sion. When a society is effective at diffusing information, this reduces individual incentives

to create new information. Analogously, when those who create information are few and

peripheral, this hinders the diffusion of information. Our goal is to study the effects of these

interactions on learning and their dependence on the structure of social connections. We

identify a novel externality that we call the noise-amplification effect. This is an equilibrium

mechanism by which noise reverberates and amplifies throughout the society, a phenomenon

akin to the broken telephone game. We show the implications of this externality on different

aspects of social learning: Do societies allocate learning tasks among differently connected

players in ways that promote learning? Are more connected societies necessarily better

informed? Are they more resilient to the external manipulation of public opinions?

We introduce a dynamic model of learning in societies in which players are heterogeneously

connected to each other. A population of Bayesian players choose how to allocate time

between two activities: learning directly from information sources (work) and learning in-

directly from others (search). Players who work produce an inflow of information, which is

initially local, available only to the player who produces it. Search, instead, is a frictional for

two natural reasons. First, in order learn from others a player needs to meet them and this

takes time. The rate at which a player can meet others is heterogeneous and determined by

her type, representing how connected she is to the rest of society. Second, searcher-to-searcher

communication is potentially subject to frictions. Namely, we allow for some information

to be lost in these exchanges. A distinguishing feature of our model is that it captures the

important social role played by those who search for information. While not producing new

information, searchers aggregate the information produced by others and facilitate its diffu-

sion. By doing so, they transform what inherently is a private good, information produced

by a worker for herself, into a more public one, information that can be accessed more easily

by everyone else. This increases the value of search and attracts in it a group of marginally

connected players. Their diffusion ability, however, is no better than their ability to create

information. This introduces a distortion that reverberates through the rest of the searching

population, thereby causing its amplification.

Our main contribution is to identify novel inefficiencies in social learning, generated by

the interaction between information production and its diffusion. First, we highlight the

critical role played by those who search for information in the aggregation and diffusion

of information. From a collective point of view, a society needs searchers to achieve some

degree of informational efficiency. And yet, we show that the structure of social connections
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can affect efficiency in ways that are complex and subtle. To explore this, we study the

equilibrium consequences of increasing the connectivity of a society. We show that increasing

connectivity can lead to a strict decrease in the quality of social information. Our results

reveal how this inefficiency is directly linked to communication frictions. Second, we analyze

how players of different connectivity levels choose their learning activity in equilibrium, and

compare this to the planner’s solution where each type is allocated to an activity to maximize

social welfare. This allows us to study more generally the inefficiencies associated with social

learning. We show that allocation of activities in the planner’s solution can be in direct

contrast with the equilibrium one, especially when communication frictions are severe. In

such cases, the planner’s solution requires players with high connectivity to be the producers

of information in the society, whereas in equilibrium, this role is necessarily taken on by

players with low connectivity. Third, we apply our model to study how resilient a society

is to external manipulations of public opinions and how this depends on the connectivity of

the society. An important implication of our analysis is that societies that are very effective

in aggregating and diffusing information are also particularly prone to manipulations.

This paper combines ideas and modeling tools from literatures such as multi-armed bandits,

networks and search theory. In order to study both the equilibrium production of informa-

tion and its social diffusion, we introduce heterogeneity across players in a parsimonious

way. We focus on a single dimension of heterogeneity, how connected each player is to these

society. The basic assumption we make is that the connectivity of a player determines the

rate at which she meets others, not who she meets. This affects the frequency with which she

encounters opportunities to receive, as well as to transfer information to others. While this

formulation abstracts from other interesting ways in which the network structure can affect

learning dynamics, we argue that it captures its most prominent feature, namely hetero-

geneity in the number of connections. Second, we allow for frictions in searcher-to-searcher

communication. These frictions are modeled as a garbling, a “depreciation” of the quality

of a signal as it travels among searchers. These frictions create a gap between first-hand in-

formation, the information created by players who work, and second-hand information, the

information collected by anybody else. When these frictions are absent, our model reduces

to the special case in which players perfectly observe each other’s posterior beliefs upon

meeting.

The stationary equilibrium of this game is unique and has a remarkably simple structure.

Specifically, the allocation into activities is fully characterized by a threshold connectivity

level, below which players work and, above which players search. Intuitively, more connected

players meet others at a higher rate. These players, instead of working, they prefer to learn

from others, even when this entails receiving information of lower quality on average. Due to

their higher connectivity level, searchers are also easier to meet. Therefore, the information
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they carry is made more accessible to everybody else in the society, further attracting players

away from work. Frictions in peer-to-peer communication drive a wedge between a searcher’s

ability to aggregate information and her ability to diffuse it to others. In equilibrium, there

exists a group of moderately connected players who decide to search but, by the act of doing

so, impose a negative externality on the rest of the society. Due to communication frictions,

these players’ diffusion abilities as searchers are inferior to their diffusion abilities as workers.

This introduces an inefficiency that goes beyond the fact that meeting these players is now

less informative. Indeed, it impacts all social meetings. These moderately connected players

are effectively responsible for injecting extra-noise in the society. As it travels from one

searcher to another, this noise accumulates and amplifies through the structure of social

connections. We call this effect the noise-amplification externality.

We study whether this externality is fueled or, rather, dampened when the society becomes

more connected. The net effect of increasing connectivity ultimately arises from the conflict

of two opposing forces. A highly connected society provides more opportunities for players

to learn from others and them players to aggregate information at a faster rate. But at the

same time, it can tilt incentives away from producing information, thereby enlarging the pool

of searchers and, thus, increasing the noise-amplification externality. We model increased

connectivity with a class of stochastic transformations of the type-distribution. In particular,

we focus on sequences of stochastic transformations satisfying single-crossing property and

a version of the monotone likelihood ratio property. We show that the equilibrium quality

of social information is quasi-convex. This property implies that, along any sequence of

increasingly connected societies, the equilibrium quality of social information undergoes two

phases. During the first one, it declines because increased connectivity comes at the cost of

amplifying these social distortions. In the second phase, instead, increased diffusion ability

overcomes noise, and social encounters become more informative. What determines the

relative importance of these two phases is the communication technology.

To better understand these inefficiencies, we study how the planner allocates types into

learning activities to maximize welfare. We show that the socially optimal allocation can

diverge substantially from the equilibrium one. In particular, players with a higher con-

nectivity do not necessarily spend more time searching, a feature that is necessarily true in

equilibrium. Depending on the constraints the social planner faces, the socially optimal allo-

cation can differ from equilibrium in two distinct ways: reversal, a situation in which highly

connected players work, whereas lower types search, in stark contrast with equilibrium; or

time-switching, a situation in which a region of players is constantly switched back and forth

between work and search as a function of the actual information they carry. Both deviations

highlight how the planner’s allocation can differ from equilibrium in a qualitative sense.

These deviations are caused by the interplay of connectivity and frictions in communication.
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When these frictions are severe, a searcher’s contribution to social information is curtailed.

Although she accumulates information at a high rate, her diffusion ability are poor. From a

social perspective, she free-rides more than she can diffuse information. By forcing a highly

connected searcher to work, the planner trades-off her individual gains with the fact that

every signal she produces as a worker will be easier to find by those who search. This is

because her type determines both the rate at which she meets others and the rate at which

others meet her.

Finally, we apply our framework to study how resilient a society is to external manipulations

of public opinions and how this depends on the connectivity of the society. We imagine al-

tering the meeting technology in a way that consistently exposes a small group of players to

biased information.1 We evaluate the overall impact of this manipulation on the distribution

of posterior beliefs of the society. To do so, we construct a measure of influence for players in

our society. It combines all the different forces that are at play in equilibrium. Our analysis

shows that searchers become more influential as the share of the population producing in-

formation declines and connectivity of the society becomes concentrated on searchers. This

result is line with the role of the amplification mechanism described above. An important

implication of our analysis is that that societies that are very effective in aggregating and

diffusing information also correspond to those that are highly susceptible to manipulations.

As the influence of each type increases in this society –possibly due to the communication

channel becoming more efficient or the society becoming more connected– it becomes easier

to shift public opinion by manipulating the learning process for an increasingly small share

of agents in the population.

The rest of the paper is structured as follows. Section 2 gives a comprehensive account of the

related literature. Our model is introduced in Section 3 and we discuss its main assumptions

in Section 3.4. We proceed by characterizing the equilibrium in Section 4 and derive our main

results in Section 5. Section 6 is dedicated to normative solutions and efficiency benchmarks.

In Section 7, we introduce our measure of influence and study the resilience of the society

to external manipulations. Finally, Section 8 provides a discussion of our results in relation

to possible extensions, while Section 9 concludes.

1Recently, a number of controlled large-scale social media experiments have shown the power

of altering the news-feed in affecting users’ beliefs and behavior. This corresponds to tweaking the

probability that a given content will be shown to (in the language of our model, “will be found

by”) a given user. Aral (2012) study the impact of manipulation on the decision to vote, Muchnik

et al. (2013) study the likelihood of informational cascades and Bakshy et al. (2012) study product

adoption decisions.
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2. Related Literature

This paper borrows ideas and tools from several distinct literatures. The fundamental trade-

off between producing information and learning from others is a classic feature of strategic

bandit problems, as in Bolton and Harris (1999), Keller et al. (2005), and Rosenberg et al.

(2007), among many others. In bandit problems, players learn via costly experimentation or

the observation of other players’ experimentation. Pulling the safe arm effectively consists

in free-riding on the information produced by others. However, experimentation is public,

as these models do not accommodate heterogeneity in connections. Therefore, the diffusion

problem is trivial. Relative to bandit problems, we reduce players’ strategic interactions

to their minimal components. In particular, we work with a continuum of players in a

stationary environment. Moreover, the absence of a “safe” allows us to abstract from the

classic experimentation-exploration trade-off, which is of interest in that literature. This

makes the player’s problem simple, allowing us to enrich social interactions in novel directions

that are of fundamental importance for our questions. Recently, Che and Horner (2015) and

Frick and Ishii (2016) have analyzed bandit-like environments with a continuum of players

to study optimal information design and technological adoption.

A fundamentally new feature in our paper is the introduction of heterogeneity in players

connections. Empirical evidence shows how vastly different people are when it comes to how

connected they are to the rest of the society (Newman (2010)). Of course, this heterogeneity

affects players’ ability to learn from others as well as the influence they exert on others

(Ballester et al. (2006)). One of our motivations is to understand how the structure of

social connections affects equilibrium outcomes. From this point of view, we borrowed a

lot from the social networks literature (Jackson (2008) and Golub and Sadler (2016)). In

particular, our paper somewhat relates to the games studied by Bramoullé and Kranton

(2007) and Bramoullé et al. (2014) and to the questions in Acemoglu et al. (2010). We

substantially deviate from most of this literature as we model connections probabilistically

in the context of a search framework. We do so by tweaking the standard search theory set-

up to conveniently account for degree-heterogeneity. In our model, players are characterized

by a type that determines the rate at which they meet other players. These meetings are

random and their nature is a function of the type-distribution itself. With this, we are able

to capture the idea that more connected players are easier to meet. The idea of learning

from others by sampling opinions from the society is a feature that comes from the word-of-

mouth learning literature, e.g. Banerjee (1993), Ellison and Fudenberg (1995) and Banerjee

and Fudenberg (2004). In a different context, it is also a feature of Duffie et al. (2009)

and Duffie et al. (2014) and, to some extent, of Callander (2011). Caplin and Leahy (1998)

and Caplin and Leahy (2000) also use search tools to model learning in an economy with
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a continuum of agents. Our paper differs substantially from these ones as we explicitly

account for heterogeneity in the rate at which players meet. Farboodi et al. (2016) have

independently developed a similar meeting technology to model this heterogeneity, although

they have applied it to a markedly distinct environment. Moreover, unlike these authors,

we are explicitly interested in the study of equilibrium outcomes as the underlying society

becomes increasingly connected. To this purpose, the tools we develop are orthogonal to

the literature above. Our main Theorem reduces to an integral aggregation of the single-

crossing property. This problem closely relates to a tradition in economics that studies

comparative statics under uncertainty. Seminal examples are Milgrom and Shannon (1994),

Athey (2001), Athey (2002) and, specifically, Quah and Strulovici (2012) from which our

definition of “regular” sequence is inspired.

A second key innovation in our paper is to explicitly model frictions in the communication

technology. The idea is that communications between players take place through a com-

munication channel with finite capacity that inevitably distorts the message. This idea is

common in the information theory literature, especially in computer science. In economics,

finite capacity channels have been used to model rational inattentive agents, Sims (2003),

Steiner et al. (2016) and Jung et al. (2016). We abstract away from the problem of strate-

gic information transmission that has been amply studied in the communication literature,

see for example, Milgrom (1981), Grossman (1981), Jovanovic (1982), Crawford and Sobel

(1982), Okuno-Fujiwara et al. (1990) and more recently by Kamenica and Gentzkow (2011).

Frictions in communication are an implicit feature also in most of the herding literature,

Banerjee (1992) and Bikhchandani et al. (1992), Acemoglu et al. (2011), but also Gale and

Kariv (2003). In this paper, we create a flexible environment in which to interact these com-

munication frictions together with changes in the social structure of the underlying society.

Finally, our paper also relates to some recent work done in growth theory. In particular,

Perla and Tonetti (2014) and Lucas and Moll (2014) study growth models in which firms,

by search among other firms, can “update” and improve their own technologies. Jovanovic

(2015) studies a dynamic learning problem in which an agent chooses between production

or investment in information. Fogli and Veldkamp (2014) analyze, both theoretically and

empirically, the dual aspects of diffusion: encouraging the spread of good versus bad behav-

ior. In political science, Larson and Lewis (2016) model an information diffusion process

that accounts for the fact that people may trust some of their contacts more than others. In

such context, higher network density potentially impedes the wide reach of information to

diverse communities. Relatedly, Grossman et al. (2014) study empirically how the access to

information communication technology affects who gets heard and what gets communicated

to politicians.
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3. Model

In this section, we introduce the model. We begin by describing players’ characteristics and

objectives, and the learning activities available to them. In Section 3.2, we define and solve

the players’ dynamic choice problem. In Section 3.3, we model information exchanges and

introduce the communication technology. We postpone the discussion of our model to Section

3.4, in which we provide intuitions and motivation for our main modeling assumptions.

3.1. Types and Meetings

Time runs continuously and uncertainty is characterized by a persistent and unknown binary

state of nature θ ∈ {−1, 1}. A continuum of Bayesian and forward looking players enter and

leave the economy at a fixed Poisson rate δ > 0. We index their age with t ≥ 0 and denote

τ(t) := δe−δt its distribution. Players discount the future at common rate r > 0 and, when

entering the game, have a common prior belief p0 := Pr(θ = 1).2 Each player is born with

a type x ∈ R+, distributed according to density f with support X. Denote F the set of all

such densities. We refer to the distribution of types f ∈ F as a society.3

Each player is endowed with a type-dependent search technology, allowing her to actively

search in order to meet others in the society. In particular, a player’s type describes how

connected she is to the rest of the society. Her type measures of how easily she can meet

others and, potentially, learn from them. Specifically, a player’s type x denotes the rate

at which meetings take place. The nature of these meetings is random. Their distribution

is given by the conditional density function h(y) := yf(y)/
∫
X
zf(z)dz, independent of the

player’s type x. That is, while a player’s type x determines the extent to which she meets

others, it does not affect the conditional likelihood with which she meets one type versus

another. Notice that, ceteris paribus, higher types are also those that are more likely to be

met by others.

Players want to learn about the state of nature θ ∈ Θ as quickly and accurately as possible.

For simplicity, we assume a player’s flow utility to be given by u(p(x, t)) := max{p(x, t), 1−
p(x, t)}, with p(x, t) denoting the player’s posterior belief at time t. To learn about θ, each

player continuously chooses between two activities : working and searching. These activities

provide them with private signals, informative about the state θ. Signals that originate

from the work activity are exogenous, as they do not depend on the activities chosen by

other players. Moreover, they are type-independent; thus, everyone has equal access to this

2Neither of these two assumptions is necessary for most of our results. When dealing with

heterogeneous prior, however, it is important that such heterogeneity is common knowledge.
3Throughout, for any measurable function q ∈ RX , we write Ef (q(x)) :=

∫
X q(x)f(x)dx.
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technology. Specifically, when a player chooses to work in a dt-interval, she receives a signal

πw, distributed normally with mean ηwθdt and variance dt. These signals are conditionally

independent across both time and players.4

Signals that originate from the search activity are, instead, equilibrium objects. These

information structures depend on which activities the other players have chosen, the meeting

technology, the amount of information each player has accumulated, and on the potential

frictions in communication, which will be introduced in Section 3.3. We broadly refer to the

information players can receive from others as social information. When searching, type x

meets other players at rate x according to the conditional density h. From each one of them,

she extracts some information. The player receives an endogenous signal from each player

she randomly meets. Clearly, the nature of these signals will differ, depending on the type

of the player she meets, as well of the age, activity and particular experience etc. Yet, what

matters for her decision to work or search in the dt-interval is the information she expects

to receive, which can be represented as a signal that aggregates all the characteristics listed

above. We denote this equilibrium object as πs(x) and posit that it is normally distributed

with mean xηsθdt and variance dt.5 Hence, the characteristics of the signal πs(x) depend on

the searcher’s type x only to the extent that it scales the mean-to-variance ratio ηs. This

reflects the idea that one’s type only affects the rate at which meetings take place, but since

the conditional meeting density h is type-independent, it does not affect the nature of these

meetings. Also, the signal does not depend on time t. This is true in a stationary equilibrium

of this dynamic model, and our analysis will mostly focus on equilibria that are stationary.

In a stationary equilibrium, even if players do learn as they grow old, the society-wide

distribution of posteriors is a stationary object. This implies that the information structure

that characterizes the search activity is time-independent.

In this simple model, the moments ηw and ηs fully characterize the information processes

associated with the two activities. They provide a measure of how informative each activity

is. In particular, ηs can be interpreted as the “per-meeting” expected quality of social

information, a measure of the informativeness of a random meeting in the society. It will

represent one of the main objects of interest in our model. Before we discuss how ηs is

determined in equilibrium, we discuss how a player, given a triple (x, ηx, ηs), chooses between

the two learning activities.

4We normalize the variance of signals to 1, letting ηw capture the mean-to-standard deviation

ratio. This normalization is without loss of generality with respect to the problem solved by each

player.
5The distributions of the signals associated with working and searching that we just posited can

be shown to be the continuous-time analogs of the distributions in a discrete-time version of our

model.
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3.2. Optimal Learning Activities

Players continuously allocate time between work and search to most effectively learn about

the uncertain state θ. Let v(pt) be the value of the player’s problem with posterior pt at age

t, and αt denote the instantaneous probability that a player searches at age t. Her dynamic

problem can be expressed recursively as follows:

v(pt) = max
αt∈[0,1]

(r + δ)u(pt)dt+ e−(r+δ)dt
E
(
v(pt+dt)|αt

)
, (1)

where the expectation is taken with respect to the future posterior beliefs pt+dt given the

choice of αt. The choice of α only affects future information. Since, we focus on a stationary

equilibrium and since players are strategically small, the choice of a player’s activity does not

affect any of the aggregate variables. In this set-up, her objective is equivalent to maximizing

the variance of her posterior beliefs. In Lemma A3, relegated to the Appendix, we show that

the recursive equation above can be written as

v(pt) = max
αt∈[0,1]

u(pt) +
2

r + δ
p2
t (1− pt)2v′′(pt)Q(αt).

The term Q(αt) := ((1 − αt)ηw)2 + (αtxηs)
2 captures how the chosen activity affects the

variance of posterior beliefs. In the Proof of the next result, we will also show that v is

convex, a consequence of the fact that the player is information-loving. She wants to learn

as fast as possible. The variance of her future posterior depends on pt. In particular, the

more extreme pt is, the smaller the variance. However, the choice of the activity does not

depend on pt as the next result establishes.

Lemma 1. Given ηw and ηs, there exists a unique threshold type x? = ηw
ηs
, such that all

types above x? search (αt = 1) and all types below x? work (αt = 0).

In particular, players never switch between activities during their lives in a stationary equi-

librium in which ηs is time-independent. There is a unique threshold type x?, whose con-

nectivity increases with ηw and decreases with ηs. We denote the map

ηs(x) =
ηw
x

(2)

the individual rationality condition (IR). Given any number η̄s, each and every type above

x finds optimal to search (exclusive) if and only if η̄s = ηs(x).

3.3. Information Exchanges and Communication Technology

When a searcher meets a type x, a transfer of information occurs from x to the searcher.

The amount of information that is successfully transferred depends naturally on two factors:
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how much information type x has accumulated up to that point, and on how efficiently he

can communicate it to the searcher. The natural upper bound is that a player can never

transfer more information than she possesses. Similarly, the lower bound is the one in which

no information can be transferred. Let Γ(x, t) denote the stock of information a player of

type x has gathered up to time t. From Lemma 1, we know that players do not switch

between activities. It is therefore particularly simple to model the stochastic process Γ(x, t),

which takes the form of a Brownian motion, potentially with endogenous drift-to-variance

ratio. We have that:

Γ(x, t) :=

{
ηwtθ +B(t) ∼ N (ηwtθ, t) if x works,

ηsxtθ +B(t) ∼ N (ηsxtθ, t) if x searches,
(3)

where B(t) is the standard Weiner process. Intuitively, when Γ(x, t) is positive (resp. nega-

tive), the player has accumulated evidence in favor of hypothesis θ = 1 (resp. θ = −1). We

show in Lemma A4 that the stock of information Γ(x, t) and the posterior belief p(x, t) are

in a one-to-one relationship. Therefore, we can think of observing the stock of information

Γ(x, t) as observing p(x, t).

A communication technology allowing for instantaneous transfer of all the information a

player has ever received in her life is certainly an extraordinary efficient one. More real-

istically, communication technologies introduce distortions in the information that can be

transferred between any two players. We want our model to be flexible with respect to these

deviations from the efficient benchmark, that has been amply studied in the literature. To do

so, it is convenient to normalize Γ(x, t) as π(x, t) := t−
1
2 Γ(x, t), which consequently becomes

normally distributed with some mean - activity and time dependent - and unit variance.6

This normalization concentrates all the heterogeneity coming from the age, t, and type of

player, x, to differences in means. We think of the communication from a searcher of type x

and any other searcher to happen through a communication technology with possibly finite

capacity.7 Specifically, the communication technology accounts for potential loss in informa-

tion when moving from the input signal, π(x, t), to the output signal, π̃(x, t), which can be

interpreted as a garbled version of it. A communication technology is defined as follows:

Definition 1. A communication technology is a map

g ∈ G := {g ∈ C(R+) | g non-decreasing and g(y) ≤ y}.

Let (G,≥) be the poset of communication technologies. When g′ ≥ g, we write that g′ is

more informative than g.

6This normalization is without loss of generality: since both x and t are observable, and activities

are persistent, the normalized signals induce the same update of pt, which is ultimately the state

variable that matters for the player.
7Sims (2003) popularized the notion of a finite capacity channel in economics. See Steiner et al.

(2016) and Jung et al. (2016) for recent applications.
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Input Output

If x works π(x, t) ∼ N
(√

tθηw, 1
)

→ π̃(x, t) ∼ N
(√

tθηw, 1
)

If x searches π(x, t) ∼ N
(
x
√
tθηs, 1

)
 π̃(x, t) ∼ N

(
g(x
√
t)θηs, 1

)
Table 1: Communication Frictions

In the Definition above, we make two natural assumptions on the communication technology.

First, g is non-decreasing. This captures the idea that more input necessarily produces

(weakly) more output. Second, g(y) ≤ y. That is, no player can ever transfer more signals

than those she has at a given point in time. Frictions in communication are implemented

as illustrated in Table 1. The basic assumption we make is that, due to these frictions, it

could be harder to transfer signals intermediated by searchers. This introduces an inherent

difference between first-hand information, the one coming directly from the source, i.e. a

worker, and second-hand information, the one coming from a searcher, someone who has

herself learned indirectly from either a worker or another searcher. We postpone further

discussions on the communication technology to Section 3.4.

Searchers receive a signal from π̃(x, t) upon meeting type x at age t. Yet, meetings are

random, taking place continuously. In order to assess the value of the search activity, a

searcher needs to evaluate the amount of information she can expect to receive whenever

she engages in the search activity for dt amount of time. From Section 3.1, we know this is

captured by ηs. To close the model, we specify how ηs is linked to the distribution of types

f and the signals π̃(x, t) that can be acquired from each player in the society:

E(πs|ηs) = E

(∫
X

(∫ ∞
0

π̃(x, t) τ(t) dt
)
h(x)dx

)
. (4)

The condition in Equation 4 directly links the informativeness of the search activity, ηs, to

the “amount” of information that is expected to be communicated in a random meeting

taking place in this society.We refer to the condition in Equation 4 as Bayes consistency.

Equation 4 makes explicit that the information process characterizing the search activity

revolves around a fixed-point argument. In order to determine the behavior of a given player

- which activity she will choose, and how much information she will gather consequently -

one needs to pin down ηs. However, ηs itself depends on the amount of information that can

be communicated by a type x at age t, which is given by π̃(x, t), also depending on ηs. We

characterize and solve this fixed-point problem in Section 4.
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3.4. Discussion of the Model

Before moving to the analysis of our model, it is useful to discuss our main assumptions,

their motivation and robustness of our results with respect to them.

The Meeting Technology. A principal feature of our model is that there is heterogeneity

in how easily players can learn from others. We assumed that highly connected players

meet others more easily. This has two implications: first, highly connected players meet

more people and, therefore, are better at extracting information from the rest of the society.

Second, highly connected players, precisely because of their relative size, attract other players

more frequently and are therefore more likely to be met by others, independently of their

activity. This is the fundamental difference between x and h(x), we have introduced in

Section 3.1. To keep the model tractable, we assumed that the connectivity of an agent x only

affects the rate at which meetings take place when she searches, not their nature. A society

f ∈ F is not, generically speaking, a network.8 Hence, by reducing all the heterogeneity in

the society to heterogeneity in connectivity, we abstract from other potentially interesting

features of a network, such as the heterogeneity in people’s neighborhoods. Instead, we

are able to capture only the first-order level of heterogeneity that characterizes real-world

networks, namely degree heterogeneity, which posits that different people may have different

levels of “access” to the network, because they have more or less connections. From this

perspective, f is a convenient way to introduce a fundamental level of heterogeneity in the

model without explicitly having to account for a full-scale network. This assumption makes

our model particularly tractable and it also allows us to study global and general shifts in the

distribution of connections f , rather than local and particular changes, such as the deletion

of one particular node or the other.

Information Exchanges and Communication Frictions. The second key component in our

analysis is the way in which information is exchanged from one player to the other. In this

paper, we abstract away from the motives that lead players to share information available to

them with other players. The problem of strategic information transmission has been amply

studied in the literature and goes beyond the scope of this paper.9 In the context of our

model, this problem is immaterial because players are too small to have an effect on the level

of social information, and therefore they are indifferent between transferring all, some or no

information. The novelty of our approach is to introduce frictions in the communication

technology that transfer information from one player to the other. Frictions only apply to

information that is accumulated via the search activity, thus introducing a wedge between

8It is indeed a very particular type of network: an infinite, complete and weighted graph on X,

where the weights are proportional to the type of a node.
9See for example Crawford and Sobel (1982), Grossman (1981), Milgrom (1981), Jovanovic

(1982) and Kamenica and Gentzkow (2011).
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first-hand and second-hand information. We posit that workers, having literally produced

the information themselves, are able to perfectly relay it to others without loss. Searchers,

instead, having received information from others, may not be as effective as workers at

relaying this knowledge to others. Of course, this is a reductive assumption, but it makes

the main tensions in this model more transparent and straightforward. In Section 8, we

discuss an extension of our model in which the communication technology is frictional for

all players, independently of their activity. In Appendix B, we show that most of our results

go through, at the cost of a stronger requirement - concavity - on g ∈ G.10

Stationarity and Payoffs. In Section 8, we discuss the dynamic version of our model. There,

ηs(t) becomes a time-dependent equilibrium object and players possibly switch from work

to search during the course of their life. In Appendix C, we show that dynamic equilibria,

although difficult to characterize, have information paths ηs(t) that necessarily converge

to the stationary equilibrium. We otherwise focus attention on stationary equilibria. In a

stationary environment, we think of players becoming aware of, or interested in, a given issue

θ about which they have no particular previous knowledge. At a random future time τ(t),

this player will have to take an irreversible guess which will determine her material payoff

given the state θ is realized. Since the time at which her choice becomes payoff relevant is

random, the optimal strategy for her is to continuously update her guess, as new information

comes along. The flow utility u(pt) represents the value of such guessing problem, that is

u(pt) := maxbt∈ΘEpt

(
1(bt = θ)

)
= max{pt, 1− pt}.11 We interpret the random time τ(t) at

which the player has to cast her final guess as the time at which issue θ becomes subjectively

obsolete for the player. A new issue θ′ will become of interest for her and she leaves the

game. While we focus on stationary equilibria mostly for analytical tractability, there are

many environments in which it is a natural solution concept. Consider a population where

each agent sequentially faces different issues or problems about which she has to form an

opinion. How much time each player spends on an issue is stochastically determined by τ(t)

and depends, among many other things, on how important this particular issue is to the

player or her awareness of other issues. When a player decides to learn about this issue from

other players, she is able to acquire information mostly from those that are also currently

interested on that specific issue. This is natural in social networks that are issue-specific.

The same is true even in a general-interest social network, such as Facebook or Twitter, as

10A concave g ∈ G captures a natural idea. Under a “finite capacity” communication channel, the

higher the number of signals that need to be transfered, the harder it is to transfer of an additional

one. See Section 8 for a more detailed discussion.
11The results we present in this paper do not hinge on the particular choice of u(pt). Any flow

utility u generating a convex value v will do. This simply requires players to be information lovers.

That is, a player’s flow payoff increases, in expectation, with information. Our choice of u is

motivated by the fact that it provides us with a simple analytical solution for the second-order

partial differential equation describing the player’s control problem.
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long as active players only post information about the issues they are currently interested

in, while older posts become obsolete or inaccessible. From this perspective, a stationary

solution concept can be interpreted as applying to those environments in which the share of

the population interested in a specific issue is evolving over time and yet its size is relatively

stable.

4. Equilibrium

In this Section, we establish existence and uniqueness of a stationary equilibrium for the

model introduced in Section 3. We show how to reduce the equilibrium to a relatively simple

fixed-point map, thus condensing all the complexity introduced in the previous sections into

one simple equation, from which most of our results will be later derived. To begin, we

formally define what a stationary equilibrium is for this game.

Definition 2. A Stationary Equilibrium is a pair (x?, ηs), composed by a threshold type

x? and a social information quality ηs, that satisfies the following conditions:

(IR) Given ηs, x
? satisfies Individual Rationality as by Equation 2. In particular, type x

searches if and only if x ≥ x?.

(BC) Given x?, ηs is Bayes Consistent. That is, ηs is a fixed-point of Equation 4.

In the definition above, the first requirement is that no player, at any point in her life,

wants to deviate from the activity she is engaged in. For this to be true, type x? has to

be indifferent between work and search. All types with higher connectivity will search and,

vice versa, all types with lower connectivity will work. The second requirement, instead,

can be seen as a particular kind of market clearing for information. As in a production

economy, players cannot “consume” more than the economy is producing. Similarly, Bayes

consistency requires that information shall not be created from nowhere or erased with no

reason. Information must be produced and diffused according to the “rules of the game”

that we have outlined in the Section 3.

The fixed point implicit in Bayes consistency has a unique solution (Lemma A5), which is

given by the following expression:

ηs = ηw
cH(x)

1−
∫
x
g̃(z)h(z)dz

, (5)

where g̃(z) := Eτ

(
g(z
√
t)
)

: X → R+ and c := Eτ (
√
t). Function g̃(z) represents the

expected informational contribution across all possible ages t of a given type z, as it is

filtered through the communication technology g. To rule out explosive dynamics, we need

to guarantee ηs ∈ R+. A sufficient condition is given by the following assumption.

15



Assumption 1. We assume f ∈ F satisfies Ef (x2) ≤ Ef (x) and that E(
√
t) ≤ 1.

Assumption 1 imposes restrictions on how thick the upper tail of f is and on how long players

are expected to remain in the game.12 If this condition fails to apply, the society is able to

multiply information unboundedly, precluding the possibility for a stationary environment.

We will maintain Assumption 1 throughout the paper. In equilibrium, according to Defini-

tion 2, both individual rationality and Bayes consistency (Equations 2 and 5 respectively)

are satisfied simultaneously. This provides us with a single fixed-point equation that fully

characterizes the equilibrium:

x =
1

c
+

∫
x

m(z)h(z)dz, (6)

where we denoted m(z) := 1
c

(
cx − g̃(z)

)
. The following result establishes existence and

uniqueness of our stationary equilibrium. Figure 1 provides a graphical representation of the

interactions between individual rationality and Bayes consistency.

Proposition 1. Fix a society f ∈ F and a communication technology g ∈ G. A stationary

equilibrium exists and is unique.

In equilibrium, we observe rich and non-trivial interactions among activities, types and the

level of ηs. Work and search cannot be reduced to complements or substitutes of each

other. For example, substitution is important when the worker population shrinks to a

low level. In such a circumstance, there is very little information injected in the system

and, therefore, little information to be searched for. When the society is not particularly

rich of information, the search activity becomes less attractive, especially for types whose

connectivity is not particularly high. This creates incentives for these players to switch to

work, therefore re-balancing the inflow of “new” information in the society. The tension we

just described, which seems to suggest that when players switch to work, the search activity

becomes more profitable, does not apply uniformly across the population. Generically, that

is for almost all g ∈ G, the quality of social information ηs is non-monotone in the threshold

type x? (Figure 1). Past a critical value x̂, at which social information quality is maximal, ηs

starts declining as the working population becomes larger. This technical observation has the

power to uncover the unique role that searchers play in equilibrium. While searchers do not

create “new” information, they nevertheless (i) aggregate information produced by others

and (ii) enable it to be diffused to different parts of the society. Searchers transform what

inherently is a private good - i.e. information produced by a worker for her own self - into

a public good, information that everybody else can access more easily. Due to their higher

12The requirement on f can be relaxed by strengthening the requirement on τ . Equilibrium

exists uniquely as long as Eτ (
√
t)Ef (x2) ≤ Ef (x).
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Figure 1: A graphical representation of the stationary equilibrium.

connectivity, searchers meet (and are met by) people more often than others. Searchers

are better able to aggregate information and making it available to be shared with others,

modulo the distortions introduced by the communication channel. For highly connected

types, choosing the search activity might not only be beneficial on an individual level, but

it can also be beneficial for the society as a whole. With no one searching, information is

scattered around the society, in “private goods” which are of use solely for the players who

have produced them. Searchers bring these goods together and make them more accessible

to the general public. By doing so, they can increase the value of search and, in principle,

the welfare of the society. And yet, the now higher value of search can attract workers away

from their activity, thus possibly reducing the value of search. The unique balance among

these rich interactions is a feature of the equilibrium of this game, which we analyze in the

next section.

5. Results

Our model is characterized by two principal components: the distribution of types f ∈ F ,

describing how connected the society is; and the communication technology g ∈ G, describing

potential frictions in information exchanges. In this section, we study how f and g affect

the equilibrium of this game and how these two components interact with each other.

5.1. Equilibrium and the Communication Technology

We start by uncovering the role of the communication technology g in the determination of

the equilibrium. In Definition 1, we have introduced a natural order on G. We said that

g′ is more informative than g if g′ ≥ g. When this is the case, uniformly less information
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can be transferred under g than under g′. The partially ordered set of communication

technologies has two obvious extrema: max(G,≥) = idR+
, the identity function on R+, and

min(G,≥) = 0. When the communication technology is maximally informative, it is as if

players could observe each other’s posterior belief upon meeting. There is no loss entailed in

peer-to-peer information exchanges. Instead, when g = 0, second-hand information is fully

depreciated and searchers can learn only through workers. In this case, searchers serve no

social role. They only free-ride on the information produced by workers.

Proposition 2. Fix a society f ∈ F . As the communication technology g becomes more in-

formative, the mass of workers shrinks and the equilibrium information quality ηs increases.

As the communication technology improves, we observe players shifting away from work

towards search. This effect is intuitive. A better communication technology implies that,

ceteris paribus, a player is able to extract more information for any given meeting. This

implies that, the marginal type under g, who was not connected enough to be a searcher

under g, could strictly prefer to search under g′ ≥ g. This leads to a decrease in x? and,

therefore, in the share of those who produce information. However, even though information

production is reduced, the equilibrium information quality increases because, under the new

communication technology, information gets aggregated and diffused with higher efficiency.

It is no surprise that improvements in the communication technology are unambiguously

beneficial for the society. In fact, not only ηs increases in equilibrium, but it is also the

case that ηs(x) increases conditional on any x ∈ X, as depicted in Figure 2. This implies

that, under the superior communication technology, any level of ηs can be achieved with a

strictly smaller set of workers. When g is maximally informative, a particular feature of the

equilibrium (x?, ηs) is that x? = x̂, that is, the quality of social information is maximized.

Under such g, players can effectively access each other’s posterior beliefs with no friction

and learn instantaneously all the information a player has ever collected in her life. This is

a noiseless society in which no signal is ever lost.

Proposition 3 (Observing Posteriors Beliefs). Let (x?, ηs) be the equilibrium under g ∈ G
and f ∈ F . The quality of social information ηs is maximal if and only if g is maximally

informative.

Proposition 3 highlights how, in the presence of frictions in the communication technology,

players might fail to choose the activity that maximizes the quality of social information ηs.

Under any frictional g, there exists a region [x?, x̂) of players with intermediate connectivity

who choose to search, even when they would have contributed more to ηs as workers. A

frictional communication technology, indeed, introduces a wedge between an player’s own

incentives and her social role in the determination of ηs. When searching, a player aggregates
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Figure 2: Equilibrium and Communication Technology

information at a rate proportional to her type x. However, her ability to diffuse information

is depressed due to the friction imposed by the communication technology g. While players’

individual incentives are entirely determined by the former, their social role is also linked

to the latter. A discrepancy between the two creates a region characterized by players who

are better than workers at aggregating information, but worse than them at its diffusion.

Of course, this situation has implications for the efficiency of these equilibria and, more

specifically, on how a social planner would redistribute players into activities, as we will see

in Section 6. For the rest of this section, however, we focus on the effects that this region

produce on equilibrium outcomes.

5.2. Searching and the Amplification of Noise

The previous discussion highlighted the role of communication frictions in creating a region

in the type-space that is populated by searchers whose individual decisions are detrimental

for ηs, the quality of social information. In this subsection, we single out the details of the

implications of such decisions. In particular, we show how these distortions are amplified

through the activity of searchers, even those who do not belong to the compromised region.

When the communication technology g ∈ G is frictional, we know from Proposition 3 that

Bayes consistency implies ηs(x) is strictly increasing in x, for all x ∈ [x?, x̂) (Figure 1). Using

the definition of ηs in Equation 5 and rearranging, it is easy to see that,

dηs(x)

dx
> 0 ⇒ 1−

∫
x

g̃(z)h(z)dz > g̃(x)H(x) ⇒ g̃(x)ηs < cηw for all x ∈ [x?, x̂).

Fix any type x̄ ∈ X. We can think of cηw (resp. g̃(x̄)ηs) as the extent to which type

x̄ is expected to contribute to ηs in her lifetime, if she works (resp. searches). Type x̄’s

contribution when she works is exogenous, it does not depend on her type and is not affected
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by frictions. It is only a function of the distribution of ages τ . On the contrary, type

x̄’s contribution when she searches is endogenous, it is type dependent and affected by

frictions. When x̄ ∈ [x?, x̂), type x̄’s decision to search effectively reduces ηs. Equivalently,

she introduces noise in the society. When someone meets such a player, the signal she

receives is noisier than it should have been.

The distortions for which type x̄ is responsible, however, go well beyond the simple fact

that meeting her is now less profitable. The noise that type x̄, with her decision to search,

seeded in the society is collected by all searchers who meet her and, therefore, spread around

the society. It becomes part of everyone’s information set. In this sense, a problem that

was created locally, that is, in the region [x?, x̂), becomes a global phenomenon affecting

all searchers. This noise-amplification mechanism reduces the informativeness, not only of

those social meetings that involve players from the compromised region, but of all social

encounters. Types in the region [x?, x̂) seed extra-noise in the society.

Next, we formalize this idea of amplification mechanism. To do so, we compute a relative

measure of social information elasticity. To begin, we fix a type x̄ ∈ X and an activity w or

s. We compute the elasticity of ηs with respect to a marginal increase in type x̄’s diffusion

abilities:

εw(x̄) :=
dηs/dcx̄
ηs/cx̄

and εs(x̄) :=
dηs/dg̃(x̄)

ηs/g̃(x̄)

These elasticities capture how much ηs is affected when type x̄ becomes more efficient at

diffusing information. We model such an experiment by simulating a marginal increase -

affecting specifically type x̄ - in either c or g̃(x̄), according to which activity type x̄ plays

in equilibrium. The relative difference between these two elasticities, namely εs(x̄)− εw(x̄),

provides us with a measure of the total effect that type x̄ produces on ηs when she decides to

transit from work to search. In the next result, we compute and decompose such measure.

Proposition 4. The relative elasticity of search versus work for a given type x̄ ∈ X can

be decomposed as:

E(x̄) := εs(x̄)− εw(x̄) =
(
g̃(x̄)ηs − cηw︸ ︷︷ ︸

social
contribution

)
x̄

H(x?)︸ ︷︷ ︸
amplification

effect

κ(x̄), (7)

where κ(x̄) =
f(x̄)

cηwEf (z)
only depends on primitives.

Proposition 4 provides a decomposition of the negative externality that players in the com-

promised region [x?, x̂) are exerting on ηs. For these players, we have established that

g̃(x̄)ηs < cηw. Therefore, the first term represents the extra-noise that their activity seeds

in the system. This wedge, we said, is entirely due to frictions implied by g. Yet, these
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Figure 3: The amplification effect.

distortions are not meant to stay local. They are amplified by the rest of the searching

population, as captured by the second term in Equation 7. This term has two factors:

Centrality. The amplification effect is increasing in x̄. The value of x̄ measures how attrac-

tive, or “central,” this player is. The higher x̄, the higher the rate at which other searchers

will meet her, the stronger the social distortions that her individual decision creates.

Expected Path Length. The amplification effect is decreasing in H(x?). In our model, all

signals originate from some workers. These signals are then spread around the society by

the activity of searchers. The term 1
H(x?)

captures exactly the expected number of searchers

each signal encounters before reaching a player x ∈ X. To see this, consider Figure 3. Player

x, a searcher, meets another searcher called s. Although x can observes s’s type and age,

she cannot reconstruct the path followed by the information she is about to relay. However,

for each signal player s has collected, player x can speculate on the path it traveled. For

example, if s = s1, the signal that s is carrying comes directly from a worker w. Such path

has length k = 1. This event has probability H(x?), namely the probability player s meets

a worker. If s = s2, instead, the signal went through another searcher before reaching s2.

This path has length k = 2 and probability H(x?)
(
1 −H(x?)

)
. Player x can compute the

probability of each k and, thus, the expected length of such paths:

E

(
path of length k

∣∣∣ x?) =

∞∑
k=1

kH(x?)
(
1−H(x?)

)k−1
=

1

H(x?)

The smaller H(x?), the higher the expected path length that each signal travels in this

society, the higher the probability the signal ever went through the compromised region

[x?, x̂).13

The combination of the strength of attraction of type x̄ and the amplification power of the

13This is reminiscent of what, in the United States, is sometimes referred to as the telephone

game effect. The telephone game consists of having a group of people arranged in a line with a

message being whispered by one player to her immediate neighbor, until it reaches the last player,

who then announces the message to the group. Errors typically accumulate and amplify in the

re-tellings, so that the statement announced by the last player differs significantly from the one

uttered by the first. A conceptually similar force is at play in our model.
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society determine the overall impact of the negative externality that type x̄ induces on the

whole society.

5.3. The Pitfalls of Increasingly Connected Societies

We now turn the analysis to the effects of the social structure on equilibrium outcomes.

More precisely, we are interested in understanding how the equilibrium and, in particular,

the ability to produce and diffuse information, is affected when the society becomes more

connected. Our discussion in Section 5.1 shows how a frictional communication technology is

bound to introduce a wedge between an agent’s individual incentives and her social role. This

implicitly suggests that increasing connectivity in a society could have ambiguous effects on

the quality of social information ηs. We begin this Section by making this intuition explicit.

We show how different changes in the structure of the society - always increasing aggregate

connectivity - can systematically produce opposite effects on the quality of social information.

This illustrates how the ambiguity mentioned above is an endemic feature of this problem.

In our Theorem 1, we put forward a positive resolution to this ambiguity. We show that,

by organizing the changes in the social structure in a coherent and reasonable manner, the

tension between negative and positive effects gains some order, thus providing us with a

clean and general illustration of the equilibrium effects of increasing social connectivity.

To begin, let us introduce a partial order D on F capturing the idea that, if f ′Df , society f ′

is more connected than society f . Since f is a probability density function, it seems natural

to use stochastic orderings to track how the distribution f is changing. The use of stochastic

ordering is particularly convenient in our model because it allows us to abstract away from

local changes to the social structure, like adding a connection between two particular players,

and focus on global changes. We capture the idea of f ′ being more connected than f via

first-order stochastic dominance.

Definition 3. Let (F ,D) be the poset of societies endowed with the first order stochastic

order. We say that f ′ is more connected than f whenever f ′ D f .

Now consider any society f ∈ F with a frictional communication technology g ∈ G. By

Proposition 3, we know that x? < x̂. Players whose type falls between x? and x̂ are con-

tributing negatively to the equilibrium quality of information society. They find individually

optimal to be searcher, but due to frictions in the communication technology, they end up

relaying less information than they would, if they had worked. In the next Observation, we

construct two examples of first-order stochastic shifts that, in the one case, exacerbate the

influence of these trouble-types and, in the other, alleviate it. Denote ηs(f) the equilibrium

quality of social information under a given society f .
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Observation 1. Fix a society f ∈ F and any frictional communication technology g ∈ G.

There exists two societies f ′, f ′′ ∈ F , both more connected than f , such that, at their

respective equilibrium, ηs(f
′) < ηs(f) < ηs(f

′′).

Observation 1 highlights how increasing connectivity can produce opposite effects on the

quality of social information, according to which types have increased their social influence.

The way examples in Observation 1 are constructed is particularly instructive on the more

general tensions that characterize the transitions from one society to a more connected one.

To illustrate this clearly, fix f and let (x?, ηs) be the respective stationary equilibrium.

When the communication technology g ∈ G is frictional, we know from the previous section

that ηwc > ηsg̃(x) for all x ∈ [x?, x̂) and ηwc < ηsg̃(x) for all x ∈ (x̂,∞). To better

understand the effects of increasing connectivity, it is particularly useful to consider the

following decomposition of ηs (see Equation A.2):

ηs = ηwc+

∫ x̂

x?

(
ηsg̃(z)− ηwc

)︸ ︷︷ ︸
negative

h(z)dz +

∫ ∞
x̂

(
ηsg̃(z)− ηwc

)︸ ︷︷ ︸
positive

h(z)dz

From a social perspective, players in x ∈ [x?, x̂) creates a negative externality on the

equilibrium allocation. Searchers in this region could have contributed to ηs more effectively

if only they had worked. The effects on ηs of increasing connectivity crucially depend on

which types see their relative “weight” increased, whether it is [x?, x̂) or (x̂,∞). This provides

intuition on how the examples in Observation 1 can be constructed. If f increases in a first-

order stochastic sense so does h. If the implied change is such that under the new conditional

density h′, mass has been shifted from [0, x?] to [x?, x̂), the equilibrium adjustment of ηs

will be negative. Vice versa, if mass has been shifted from [0, x?] to [x̂,∞), bypassing the

trouble region [x?, x̂), the equilibrium adjustment of ηs will be positive.14

This discussion highlights, once again, how the potential negative effects associated with

increasing connectivity are closely tied to the frictions in the communication channel. As

shown in Proposition 3, both x? and x̂ are changing as the communication channel becomes

more efficient and, in particular, one converges to the other, therefore making the share of

players [x?, x̂] increasingly small. We summarize the discussion above in the next result.

Proposition 5. Fix a society f ∈ F and a communication technology g ∈ G. The following

are equivalent:

(i) ηs(f
′) > ηs(f) for all f ′ ∈ F such that f ′ D f .

14Formally, this shows that ηs(f
′, x?(f)) < ηs(f, x

?(f)) < ηs(f
′′, x?(f)). However, since

the equation that defines individual rationality is strictly decreasing in x, this will imply that

ηs(f
′, x?(f ′)) < ηs(f, x

?(f)) < ηs(f
′′, x?(f ′′)), as we wished to show.
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(ii) g ∈ G is maximally informative.

The quality of social information unambiguously improves irrespectively of the shift if and

only if players can observe each other’s posteriors, thereby perfectly transferring all the

information they ever accumulated in their life. When frictions are present, instead, there

always exist a more connected society in which ηs has decreased.

We have focused on ηs while looking at comparative statics. Note that a decrease in ηs

doesn’t directly imply a decline in social welfare. Social welfare in equilibrium is determined

by the interaction between the new distribution of connectivities f ′ and the new quality

of social information ηs(f
′). When ηs(f

′) goes down, conditional on one’s type, expected

utility unequivocally goes down. Nonetheless, it is always the case that higher types do

better. Thus, it is possible that the increase in connectivity for the society is such that the

overall welfare effect is positive. However, it is important to emphasize that an increase in

welfare in never guaranteed whenever there are frictions in the communication technology.

Particularly, it is always possible to construct examples where a decrease in ηs is accompanied

by a decline in social welfare.

The result of Proposition 5 hinges on manipulating in specific ways the distribution of con-

nectivities, while respecting the stochastic order D. The ambiguous effect on ηs is produced

by the fact that the set of first-order stochastic shifts is large and weakly structured. In the

real world, increases in connectivity often occur in more regular ways. A natural requirement

could be that if a type x is less likely under f ′ than under f , the same should apply for all

others z < x, something that is not guaranteed under D. Similarly, if f belongs to a known

parametric family of distributions, it’s unclear whether one can replicate the manipulations

in Observation 1 within the class of such distributions. For these reasons, we now introduce

more structure to our problem. Specifically, we define a natural class of stochastic shifts

that has the merit of introducing order in the way the negative and positive components

highlighted in Observation 1 affect social information. Since the structure of connectivity

in the society influences the equilibrium only through the meeting technology h, we directly

put structure on h.15

Definition 4. A sequence (hn(z))n∈N ⊂ H is increasing if for all n, hn∆ := hn+1 −
hn crosses 0 only once. The sequence is regular if, whenever positive, hn+1

∆ /hn∆ is non-

decreasing in z.

A sequence is increasing if concentration of connectivity moves from low types to high types

in a monotone way. For example, if a player with connectivity x becomes more prevalent in

15One can always consider the meeting technology h, instead of the distribution of connectivity

f , as the primitive of our model. Starting with f is more natural for introducing the model.
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the new society hn relative to the old one hn−1, all types x′ with connectivity higher than x

weakly become become more prevalent as well. Alternatively, if it the case that type x loses

prevalence, it must be that all lower types becomes less prevalent as well.

Regularity of a sequence, instead, imposes a condition on the way h increases along the

sequence. The condition closely resembles the Monotone Likelihood Ratio, but applies to

changes in h along the sequence not to h directly, and thus, accounts for cases where the ratio

can take negative values.16 One natural implication of this property is that, for n′′ > n′ > n,

letting z̄ and z being respectively defined as hn
′′
(z̄) = hn

′
(z̄) and hn

′
(z) = hn(z), we have

z̄ ≥ z, something that is not guaranteed by having an increasing sequence alone. When this

is not the case, i.e. when z̄ < z, all types z ∈ [z̄, z] would be less prevalent’ in hn′ relative

to hn, but more prevalent in hn′′ relative to hn′ . Definition 4 rules out these anomalies,

by imposing a form of regularity along the sequence. An alternative way to interpret the

condition is to focus on a specific type x and see how hn(x) changes along the sequence with

n. Regularity guarantees that the sequence can be divided into at most two parts, the first

part where hn(x) is increasing and then the subsequent part where it is decreasing.

Theorem 1. Fix a communication technology g ∈ G and a regular sequence (hn(z))n∈N ⊂ H
of increasingly connected societies. Let (ηns )n∈N be the corresponding sequence of equilibrium

social information qualities. The sequence (ηns )n∈N is quasi-convex in n.

Formally, ηs(h) is quasi-convex along any increasing and regular sequence. That is, the

equilibrium evolution of the quality of social information ηs has two distinct phases. In the

first one, ηs decreases and the quality of social information deteriorates. In this phase, the

increase in connectivity comes at the cost of amplifying the negative social role that the new

searchers are exerting. Due to their increased connectivity, these players are more attracted

to search. Yet, they don’t internalize the social cost that their choice imposes on the rest

of the society. In the second phase, ηs starts increasing. As the society becomes more

connected, so do highly connected types. At some point the increased ability at diffusing

information overcomes the negative impact of the additional noise that the marginal searchers

are introducing. What determines the relative importance of these two phases is, once again,

the communication technology g and, in particular, how severe communication frictions are.

To pair this result with Proposition 5, when g is maximally efficient, the decreasing phase

disappears along any increasing and regular sequence.

Figure 4 illustrates the result graphically. Theorem 1 sheds light on the relationship between

how connected a society is and the quality of the information that it is able to produce and

16This condition is a version of the Monotone Signed Ratio property introduced by Quah and

Strulovici (2012). It is a regularity condition necessary for successfully aggregating the single

crossing property.
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Figure 4: Social information quality as the society becomes increasingly connected.

diffuse in equilibrium. Our result arises from the clash between two opposing forces. On

the one hand increased connectivity improves the speed at which information is aggregated

and diffused in a society. This contributes positively to the overall information quality.

This is reflected in the fact that searchers, conditional on meeting another searcher, always

prefer to meet a more connected type rather than a less connected one. However, this

comparative static is only true conditional on meeting another searcher. Frictions in the

communication technology imply the existence of cases where a searcher prefers to meet a

less connected worker to a more connected searcher. These correspond to instances where the

searcher has accumulated more information than a worker, but is actually able to transfer

less information due to the frictions in communication. Moreover, increased connectivity

also provides incentives for some players to quit their working activity, and to switch to

search. This effect decreases the size of the working population, and thus the amount of

“original” information that is injected into the system. The now larger searching population

propagates noise at a higher magnitude, because the average path length connecting the

signal fetched by a worker to its “final” user is now longer and thus signals are garbled more

often.

We conclude this section with the analysis of the two extreme cases of no frictions and

maximal frictions. In the first case, our model captures interactions in which players can

observe each other’s posteriors. In the second case, our model converges to a pure exploita-

tion problem. Searchers benefit from their higher connectivity to learn from workers more

effectively. However, they serve no social role as the information they collect cannot be
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re-used by anyone else. Consistently, in these two extreme case, we obtain two opposite and

extreme results.

Corollary 1. Consider any regular sequence (fn(z))n∈N ⊂ F of increasingly connected

societies. The equilibrium quality of social information ηs is monotonically increasing (in n)

if g = max(G,≥) and monotonically decreasing if g = min(G,≥).

6. Normative Solutions

We now turn to the normative part of our analysis. This section analyzes the efficiency

of the equilibrium we characterized in the previous sections. In particular, we will ask

how should activities be allocated as to maximize social welfare. We will consider two

distinct definitions of welfare and planner. We will conclude that equilibrium allocations are

generically inefficient, in the sense that they are efficient only in the extreme case in which

players observe each others posteriors. Due to the richness of our type structure, however,

the equilibrium allocation and the optimal one may not simply diverge at a quantitative

level, but also at qualitative one.

In the first problem, the planner allocates players into activities as a function of their type

and maximizes the ex ante welfare of a generation of newborns. We show that in the optimal

allocation, the planner may entirely reverse the order of the society by allocating lower types

to search and higher type to work (non-monotone allocations). In the second problem, the

planner maximizes ad interim welfare of the society by optimally allocating players into

activities as a function of both their type and the information they have accumulated up to

any given point. We show that, even if we are still in a stationary environment, a non-empty

region of players is constantly swapped between activities by the planner, as a function of

the amount of information they have acquired.

6.1. The Optimal Time-Independent Allocation of Labor

In this section, the planner can allocate players into activities at the beginning of their life

and maximizes the present discounted value of a generation of newborn players. Formally,

the planner chooses an allocation function α ∈ A := {α : X → [0, 1]}. The planner is

not bound to respect individual incentives, as described in Lemma 1. Apart from this, the

society functions according to the rules spelled out in Section 3.3. In particular, the planner

does not affect how meetings take place and how information is collected, exchanged and,

possibly, compromised due to frictions in peer-to-peer communication. More precisely, the

planner is constrained by the fact that the quality of social information ηs still needs to be
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Bayes consistent. Equation 5, however, takes a more general form in this case:

ηs(α) := ηw
c
∫
X

(1− α(z))h(z)dz

1−
∫
X
α(z)g̃(z)h(z)dz

. (8)

The consistency condition above differs from Equation 5 as the social planner is not bound

to respect individual rationality and therefore she can choose allocations that are no longer

characterized by a unique threshold-type.17 The planner’s problem can be expressed in the

following way.

W SP = max
α∈A

∫
X

((
1− α(z)

)
vw(ηw) + α(z)vs(z, ηs)

)
f(z)dzdt,

sub to ηs = ηs(α) as in Equation 8.

(9)

In Lemma A9, we show that the planner’s trade-off relative to the allocation of type z can

be described as follows:

vs(z, ηs)− vw(ηw)︸ ︷︷ ︸
net individual gain

≥ z
(
ηwc− ηsg̃(z)

)
K︸ ︷︷ ︸

net social loss

. (10)

The left-hand side of the above inequality represents the marginal individual gain of having

type z searching rather than working. The right-hand side, instead, represents the marginal

social loss stemming from allocating type z to search rather than work. If type z searches,

throughout her life she will contribute to ηs at rate zg̃(z). The first term z captures the

idea that the more connected type z is, the more frequently she will be met by others

(independently of her activity), and therefore the more important her contribution to the

equilibrium ηs is. The other term g̃(z), instead, captures her life-long contribution to the

social information ηs, a function of how quickly she can gather information if she searches

and of how severe the communication frictions are. The life-long contribution as a worker,

c := E(
√
t), is not filtered through the function g and does not depend on the type, since

neither enter the worker’s problem.

Proposition 6. Generically, the equilibrium allocation is ex ante inefficient. In particular,

it is efficient if and only if the communication technology is maximally informative.

The word generically, again, captures the idea that, when g = max{G,≥}, that is when there

are no frictions whatsoever in peer-to-peer communications, then the equilibrium allocation

coincides with the planner’s. The result in Proposition 6 demonstrates that, whenever there

are frictions in the communication technology, we should expect the equilibrium allocation

17Specifically, Equation 8 reduces to Equation 5 if there exists some threshold type x ∈ X such

that α(z) ∈ {0, 1}, with α(z) = 1 if and only if z ≥ x.
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Figure 5: Planner’s allocation for different g ∈ G

be inefficient, and in particular to fall short in the supply of the “public good” that is pro-

duced by this economy, namely information. This result is in line with the literature in

public good provision games. When there are free-riding problems, the equilibrium usually

underprovides the public good.18 However, our model produces outcomes that go beyond a

mere quantitative deviation from the optimal amount of information that the society should

produce. Indeed, when the communication frictions are particularly severe, the equilibrium

allocation is inefficient also in a qualitative sense. The social planner could find optimal to

entirely reverse the order of the society. We know that equilibrium allocations are character-

ized by a simple threshold-type structure. This is no longer the case of the socially optimal

allocation. For example, the planner can allocate very low and very high type to work, while

leaving all intermediate types searching (see Figure 5).

Corollary 2. The optimal allocation can fail to have a monotone threshold type structure.

The efficient social allocation can be qualitatively different from the equilibrium one. For

example, it could feature three regions: low types working, intermediate types searching

and high type working. The intuition is the following. Consider a highly connected type z

such that cηw > g̃(z)ηs. This situation is bound to happen when g is particularly concave,

namely frictions are particularly severe. In such case, this player is contributing less than

she could to the total amount of information in the society. However, since z is highly

connected, she will be met extremely often by others in the society. This effect is captured

by the multiplicative term z appearing on the right hand side of Equation 10. Therefore,

the negative social contribution of player z is amplified by the fact that she is going to be

met a lot by others in the society. For this reason, the marginal social loss she generates by

searching can offset her individual gain and the planner would rather want to have her work.

6.2. Optimal Time-Dependent Allocation of Labor

In this section, we consider a more demanding definition of a planner. Not only she can

allocate people into activities based on their type, but she can also condition based on which

18This is also the case in Keller et al. (2005), for example.

29



information they have at any given point in their life. Formally, the planner selects an

allocation function α ∈ A′ :=
{
α : X ×R→ [0, 1]

}
, a map that is adapted to the filtration

it induces. The number α(x, t) denotes the instantaneous probability that type x will be

assigned to search when she is of age t. Through the choice of α, the planner chooses what

players do at every instant of their life, as a function of their type and their experience. The

planner maximizes total welfare subject to Bayes consistency:

ηs(α) := ηw

∫
X×R+

(
1− β(z, t)

)√
th(z)τ(t)dzdt

1−
∫
X×R+

g(β(z)z
√
t)h(z)τ(t)dzdt

. (11)

where β(t) :=
∫ t

0
α(t)dt = 1

t

∫ t
0
β(t)dt directly derives from α. The value of β(t) ∈ [0, 1]

captures the proportion of time player x spent on the search activity until age t. The

planner’s problem can be expressed in the following way.

W SP = max
α∈A′

E

(∫
X

∫
R+

u(p(x, t)) τ(t)dt f(z)dz
∣∣∣ α),

sub to ηs = ηs(α) as in Equation 11.

(12)

To begin, notice that the set of values that the planner can achieve under A, the set of

allocation functions from previous section, is also achievable under A′. Indeed, these allo-

cations depend, not only on type, but also on time. This immediately suggests that for all

frictional communication technologies, the equilibrium allocation is inefficient also in this

stronger, ad interim, sense. In the next proposition we show that not only this is the case,

but the allocation becomes efficient even in the ad interim sense when the communication

technology is maximally informative.

Proposition 7. Generically, the equilibrium allocation is ad interim inefficient. In partic-

ular, it is efficient if and only if the communication technology is maximally informative.

This result stresses once again how special the extreme case of g = max{G,≥} is. When

players are able to observe each other posteriors, the equilibrium goes from being inefficient

in the weak ex ante sense, to being efficient in the stronger ad interim sense. When g is not

maximal, the equilibrium allocation is inefficient not only from a quantitative point of view

but also from a qualitative one. Whenever there are communication frictions, the planner

would like to modify the equilibrium allocation in two different dimensions: types and time.

Corollary 3. The planner solution is characterized in the following way. There exists thresh-

olds 0 < x1 ≤ x2 ≤ ∞ such that for x ∈ X,

− If x < x1, the player is allocated to work, independently of time.

− If x1 < x < x2, the player is switched between work and search as a function her

posterior beliefs.
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− If x2 < x, the player is allocated to search, independently of time

The planner trades off two principal forces. On the one hand, she wants to allocate players

to those activities that maximize their current individual gains. To do so, she chooses the

activity that induces the highest posterior variance. However, the variance itself depends on

p(x, t). The idea is that when p(x, t) is very close to 1 (or equivalently 0) the gains from

learning more are small especially if compared with those of the other activity. Vice versa

when p(x, t) is very close to 1
2 gains from learning are very high. From a social point of

view, instead, the planner internalizes the net effect that every player induces on ηs. There

exists a group of types for which it is individually optimal to search but contribute to ηs

negatively in relative terms. The planner finds optimal to switch these types back and forth

between work and search as a function of how informed they are. The idea is that, when

a player is poorly informed, individual gains from learning are high. When instead she is

very informed, these gains are negligible. In the first case, this player would be allocated to

search, so to learn quick, and would be switch back to work when she build a sufficient stock

of information.

7. Social Influence and Public Opinion

In this section, we use our model to assess how resilient a society is against external ma-

nipulations of the information process for a small share of players. In particular, we study

how this resilience depends on the structure of social connections, especially as the society

becomes more connected. We think of “manipulations” as tweaks in the meeting technology

h. These tweaks are such that the targeted group of players is consistently exposed to biased

information. These manipulations happen under a regime of unawareness, that is, the soci-

ety commonly believes that h is unbiased. Although somewhat non-standard, we believe this

assumption to be extremely descriptive of how these kinds of manipulations could happen in

the real world. Ultimately, we are interested in understanding how difficult it is to influence

public opinion by manipulating the information of a relatively small group of players, which

group is optimal to target and, finally, how this depend on the level of connectivity of such

society.

In this application, we assume that the meeting algorithm is manipulated for a mass δ of

players in the society, with δ ∈ (0, 1). The manipulation is implemented in a simple way.

The manipulator selects a target type x̄ ∈ X. All types in the δ-neighborhood of this type x̄

will have their meeting technology manipulated in the following way.19 When the searching

for dt period of time, these players receive an aggregate signal, πs(x), distributed normally

19The δ-neighbor of x̄ is defined as the centered interval that solves F ([x̄− ε, x̄+ ε]) = δ.
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with mean (ηs+b)xθdt and variance dt. The parameter b ∈ R is the size of bias and assumed

to be exogenous. Without loss of generality, we will assume b = 1. We can interpret this as

a filtering of the signals that would otherwise be available to player x. That is, the meeting

technology is tweaked in such a way that signals that are biased in one direction are more

likely to be observed by the player. Notice that the more connected a type is, the stronger

is going to be the effect of the bias, as b is multiplied by x. Our goal is to calculate how

biasing the meeting technology for these players affects overall public opinion.

Our model offers natural tools to evaluate the effects of these manipulations. In Section 3.3,

we showed that the evolution of posterior beliefs for players who learn from others can be

described in terms of the following Brownian motion:

Γ(x, t) = ηsxtθ +B(t) ∼ N (ηsxtθ, t)

This implies that, values for ηw and ηs, associated with working and searching, respectively,

together with the distribution of types f , pin down the entire distribution of posterior beliefs

for the society. In fact, we can capture how manipulations in the meeting technology affect

public opinion by studying their impact on ηs. Then we can combine changes in ηs with

their effects on the evolution of beliefs for the society, as specified in the equation above.

As a simple example of this, we already know that ηs does not affect beliefs of the working

population. Therefore, manipulations of h are bound to be less disruptive the higher is the

share of players working.

Let η̃s(x̄) be the altered ηs that follows from manipulating h for all players in the δ-neighbor

of x̄. Denote Γ̃(x, t) := η̃sxtθ+B(t) the corresponding altered information process for a type

x who searches. Therefore, the impact on public opinions that follows from a manipulation

of the meeting algorithm for a δ-neighbor of x̄ ∈ X can be defined as the expected aggregate

deviation between the manipulated Γ̃(x, t) and the original Γ(x, t):

I(x̄, δ) := E

(∫
X×R+

(
Γ̃(x, t)− Γ(x, t)

)
f(z)τ(t)dzdt

∣∣∣ θ )
This discrepancy can be interpreted as the average distortion in beliefs that the manipulation

has induced. Clearly, I(x̄, δ) depends on how types in the δ-neighbor of player x̄ can affect

the opinion of other players. Therefore, it is natural to think of I(x̄, δ) as a measure of their

influence on the rest of the society. Following this logic, we can transform I(x̄, δ) into a

measure of influence for any specific type x.

Definition 5. The social influence of type x ∈ X is defined as ι(x) := limδ→0
1
δ I(x, δ).

The study of public opinion manipulations led us to the definition of a measure of influence.

This is a natural outcome. In fact, how susceptible a society is to external manipulation is a
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function of the relative influence of its components. The stronger the influence a single player

exerts on the whole society, the easier its manipulation. The next result fully characterizes

our measure of influence.

Proposition 8. Fix f ∈ F and g ∈ G and let (x?, ηs) be stationary equilibrium. The social

influence exerted by a searcher of type x is given by

ι(x) =
xg̃(x)ηs
cηw

1−H(x?)

H(x?)
.

Proposition 8 shows how the different forces in our model jointly contribute to determin-

ing the influence of any given type. The equilibrium (x?, ηs), the meeting function h, the

communication frictions g, a player’s type, all these ingredients affect ι(x) in non trivial

ways. To begin with, workers’ influence is zero, as altering their meeting algorithm does not

affect the information they receive. Other players do not exert influence on them. Therefore,

targeting workers to manipulate public opinion would result in no manipulation whatsoever.

Searchers instead are manipulable, as their information process depends on h. First, the

higher their type, the stronger their influence. This is because, they attract more players

to them and, thus, their impact on everybody’s opinion is particularly important. Second,

the higher their type, the higher is
g̃(x)
c . This is because they also collect information at a

faster rate, relative to workers, as they also meet others at a higher rate. In a sense, they

make use of the tweaked meeting function h more than others. Finally, and perhaps most

importantly, the influence of a players also depend on equilibrium variables. In particular,

ι(x) depends on two important equilibrium objects:

The Relative Speed of Learning. The ratio ηs
ηw

can be thought of as the relative speed at

which searchers learn as compared to workers. The higher ηs the faster opinion spread out

the stronger is the influence of any given searcher.

Amplification effect. As discussed in Section 5.2, information in our model can be thought

of being exchanged from player-to-player, in chains that can reach arbitrary length. These

chains necessarily start with a worker, the player who first seeded the information in the

society. Their length is important for equilibrium purposes. The idea is that the longer the

chain, the more its original signal was distorted under a potentially frictional communication

technology g distorted the original signal. Therefore, the average length of a chain affects the

expected quality of social information. It is natural, then, to find in our measure of influence

the term 1
H(x?)

, the mean of a geometric distribution with parameter H(x?). In particular,

when x? decreases, the expected length of a chain increases and so does the influence of player

x. This intuition is clear. When x? decreases, more players are searching over a total stock

of information that became smaller. In such a context, manipulating the information for a
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given player has amplified effects on the whole society. The biased information rebounds

among searchers many more times than it used and therefore it has the ability to influence

more players in the society.

An important implication of this analysis is that any change in g or f leading to an increase

in ηs, also make the society less resilient to external manipulations. This observation is

captured in the next result.

Corollary 4. Let f, f ′ ∈ F be such that f ′ is more connected than f . The increase in

connectivity either decreases the quality of social information ηs or makes the society less

resilient to external manipulation.

We observe that societies that are highly effective at aggregating and diffusing information

also happen to be societies that are particularly susceptible to manipulations. These societies

are less reliant on work, precisely because they are efficient at the diffusion of information.

However, this situation creates a weak spot. As the influence of each type increases in this

society, it becomes easier to shift public opinion by manipulating the learning process for an

increasingly smaller share of players in the population.

8. Discussion

In this section, we discuss in more depth some of our assumptions, their generalization and

extension.

8.1. Communication Technology with Finite Capacity

In our model, the communication technology g has the power to impose frictions in the

peer-to-peer communications among searchers. In particular, it does not apply to workers.

The idea behind this assumption is that workers, by virtue of their activity, are perfectly

able to communicate the information they themselves have produced. This captures the

idea that it ought to be more informative to receive information directly from its original

source as opposed to receiving it from someone who herself got it for someone else (who

in turn may have collected it from someone else, and so on). We do so as this assumption

makes the main tensions introduced by communication frictions in this model more trans-

parent and straightforward. Still, most of our results extend to the more general case in

which the communication frictions apply equally to everyone independently of their activity.

In particular, in Appendix B we discuss the variation of our model in which we apply the

communication technology to all players in the economy. For our results to go through, we

34



impose more stringent requirements on g (Definition 1). In particular, we replace continuity

of g with a concavity assumption. Concavity captures the idea of a finite capacity commu-

nication channel. This idea goes back to Shannon (1948) and it is now a standard tool in

information theory. In recent years, finite capacity communication channels have been used

and discussed also in economics as a modeling tool for rational inattention (see the work of

Sims (2003), Steiner et al. (2016) and Jung et al. (2016), among others). The idea is that

the more bits of information one collects the more laborious their communication is going

to be. Consider the problem of choosing between y signals of high precisions ηw versus re-

ceiving y′ > y signals of lower precision ηs. Suppose that these numbers are such that when

g = idR+
, a Bayesian agent would prefer to receive y′-many signals of lower precision. Under

a communication channel with finite capacity, g(y) < y, some of these signals are going to

be lost. There always exists a g concave enough such that a Bayesian player would strictly

prefer reeving fewer signals g(y) of lower precision ηw, rather than more signals g(y′) > g(y)

of higher precision ηs.

A concave g that applies equally to all players is bound to induce the same sort of distortions

like the ones we analyzed in this paper. In expectation, those who search in equilibrium

collect signals at a higher intensity than anybody who works. Therefore, their stock of

information will be hit more severely by the concavity of g. This introduces the same sort

of “primacy of the original source,” a wedge between first and second-hand information,

similar to the one discussed in Section 3. When g is increasing and concave, more informed

players are still more informative to meet. However, the more signals a player has collected,

the stronger the implied distortion. In our model c := E(
√
t) represents a measure of the

expected number of signals a worker has collected upon meeting. When the distortions apply

to workers, as well as searchers, our model will change in that c =
∫
g(
√
t)τ(t)dt =: g̃(1).

The trade-off in the social contribution of a “marginal” searcher x becomes ηwg̃(1)− ηsg̃(x),

which is deemed to be negative for types x ∈ [x?, x̂].20 Interestingly, in this more general

specification of our model, concavity of g is not strictly speaking necessary for Theorem 1,

but rather for uniqueness in Proposition 1, on which the Theorem builds.

8.2. Stationary and Non-Stationary Equilibria

Stationarity of the dynamic environment is one of the working assumption in our model. In

our game, players enter and leave at stochastic times. The outflow of “knowledge” connected

with players’ departure guarantees that the amount of information in the economy is bounded

and, in fact, stable on aggregate. Undoubtedly, the focus on stationary equilibria makes

the model tractable and the comparison of equilibria as f shifts stochastically a feasible

20Where these two threshold x? and x̂ are now computed using c =
∫
g(
√
t)τ(t)dt =: g̃(1).
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exercise. In Appendix C, we discuss the dynamic equilibria of this model. There is an

initial time t = 0 at which a unit mass of players is born and shares a common prior. As

time enfolds, new players enter the economy, while older players may leave. Our analysis

leads to three conclusions. First, the equilibrium takes the form of a non-linear second-order

differential equation, the solution of which determines the “information path” for ηs(t), now

a time-dependent equilibrium object. The existence and uniqueness of such equilibria can be

investigated invoking Picard-Lindelöf theorem and transforming the equilibrium condition in

a system of first-order ODEs, whenever possible. Second, we show that any information path

of a given dynamic equilibrium necessarily converges to the stationary equilibrium defined

in Section 4. Third, we show that players will monotonically transit from work to search,

as the ηs(t) increases. These dynamics are intuitive. At time zero, players share a common

prior and therefore cannot learn anything from each other. The time they spend working

builds a stock of information, which makes ηs(t) increase. Highly connected types will then

find optimal to switch to search.

9. Conclusion

In this paper, we introduced a simple and versatile model of frictional learning to study the

equilibrium production of information and its diffusion in a large connected society. Players

in our model face a basic tension between learning by doing (work) and learning from others

(search). Learning is frictional as we explicitly allow for both search and communication

frictions. Under a frictional communication technology, we assumed that any peer-to-peer

information exchange could entail some loss of information. In the unique stationary equi-

librium of our game, all existing information is originally produced by some worker. Players

who search do not contribute to the production of “new” information. Nevertheless, these

players exert a critical social role in enabling information that would otherwise remain local

to be aggregated and diffused to different parts of the society.

Our main contribution is to formally identify the inefficiencies that a highly connected society

is capable of setting in motion. We show that, generically, the equilibrium of our game is

characterized by excessive searching. In this situation, there exists a region of players, which

are only moderately connected, who decide to search, even when, from a social perspective,

their diffusion abilities do not compensate for the implicit loss in information that they could

have produced. These players are effectively responsible for injecting extra noise into the

society. This noise is then collected by other searchers and, as it travels from one searcher to

another, it amplifies throughout the whole society. We formalize these effects in three ways.

First, we show that a more connected society may not be a society with better information.

Second, we show how the equilibrium allocation of activities can dramatically differ from the
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one a benevolent social planner would choose. Finally, we show how increasing connectivity

can make the society less resilient to external manipulation of public opinion.
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A. Proofs.

Lemma A1. Signals πs are independent across time and types.

Proof. We show that independence holds along any sequence of discrete-time models that

converges to the continuous-time model. Fix any ∆ > 0. For any player x ∈ X, let

M1(x, t) ⊂ X denote the set of players she has met before period t. Denote M2(x, t) the set

of players that were before t met by those players in M1(x, t), and so on. Define M(x, t) :=

∪i≥1Mi(x, t). It is enough to show that, for any x′, x′′ ∈ X, the sets M(x′, t) and M(x′′, t)

are almost surely disjoint. In such case, the information of player x′ is independent from

that of player x′′. When time is finite, the cardinality of Mi(x, t) is finite for all i ∈ N.

Therefore, M(x, t) is countably infinite, for all x and t, and so is M(x′, t) ∩M(x′′, t). Since

the probability measure underlying the meeting density h is atom-less, the measure of any

countable set is zero. Therefore, we conclude that M(x′, t) and M(x′′, t) are almost surely

disjointed. �

Lemma A2. Following a choice of αt, posterior belief pt evolves according to:

dpt ∼ N
(

0, 4dt
(
pt(1− pt)

)2(
(1− αt)2η2

w + α2
tx

2η2
s

))
.

Proof. Fix a time t and a posterior belief pt. To begin with, suppose we want to compute

dpt following a generic signal ds ∼ N (µθdt, σ2dt) for some µ and σ. From Bayes’ rule,

pt+dt =
pte
− 1

2σ2dt

(
dst−µθ̄dt

)2

pte
− 1

2σ2dt

(
dst−µθ̄dt

)2

+ (1− pt)e−
1

2σ2dt

(
dst−µθdt

)2 .

Therefore,

dpt = pt+dt − pt

=
pt(1− pt)

(
e−

1
2σ2dt

(
dst−µθ̄dt

)2

− e−
1

2σ2dt

(
dst−µθdt

)2)
pte
− 1

2σ2dt

(
dst−µθ̄dt

)2

+ (1− pt)e−
1

2σ2dt

(
dst−µθdt

)2

Taking the squares and using the fact that ds2
t = σ2dt, the exponential terms can can be

simplified. For example,

e−
1

2σ2dt

(
dst−µθ̄dt

)2

= e−
1
2 eθ̄

µ

σ2 dst−
1
2
µ2

σ2 dt.

Moreover, notice that, by a Taylor expansion,

eθ̄
µ

σ2 dst−
1
2
µ2

σ2 dt = 1 + θ̄
µ

σ2
dst
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where we neglected all terms of order dt
3
2 and higher. Putting all this together in the

expression for dpt:

dp(x, t) =
2pt(1− pt) µ

σ2dst

1 + (2pt − 1) µ
σ2dst

= 2pt(1− pt)
µ

σ2
dst
(
1− (2pt − 1)

µ

σ2
dst
)

= 2pt(1− pt)
( µ
σ2
dst − (2pt − 1)

µ2

σ2
dt
)

where we used the approximation (1 + x)−1 ≈ 1− x. Inside the expression in the last line,

there is the random variable µ
σ2dst − (2pt − 1)µ

2

σ2dt. Unconditional on θ, its expectation is

zero and its variance µ2

σ2dt. It inherits its distribution from dst. Therefore,

dpt ∼ N
(

0,
4µ2dt

σ2

(
pt(1− pt)

)2
)
.

Now suppose that in the interval [t, t+ dt), a player of type x chooses αt. The evolution of

pt can be written as dpt = (1−αt)dpt,w +αtdpt,S, where dpt,w and dpt,s are the evolutions of

dpt in case the signal received is dπw and dπs, respectively. Notice that since dπw or dπs are

independent, so are dpt,w and dpt,s. Therefore, using the result proven above:

dpt = (1− αt)dpt,w + αtdpt,s ∼ N
(

0, 4dt
(
pt(1− pt)

)2(
(1− αt)2η2

w + α2
t η

2
sx

2
))
.

Rearranging gives us the result. �

Lemma A3. The HBJ equation of the agent’s problem is:

v(pt) = max
αt∈[0,1]

u(pt) +
2

δ + r
p2
t (1− pt)2v′′(p)Q(αt),

where Q(αt) = (1− αt)2η2
w + α2

tx
2η2
s .

Proof. We can approximate v with a second-order Taylor expansion:

E(v(pt+dt)|αt) ≈ E
(
v(pt) + v′(pt)dpt +

1

2
v′′(pt)(dpt)

2
∣∣∣ αt)

where dpt is a random variable that depends on αt. By Lemma A2, we know the distribution

of dpt and we can write

E(v(pt+dt)|αt) ≈ v(pt) + v′′(p)2p2
t (1− pt)2Q(αt)dt,

since E(dpt) = 0, by Lemma A2. Therefore, plugging this back into Equation 1 gives:

v(pt) = (r + δ)u(pt)dt+
(
1− (r + δ)dt

)(
v(pt) + v′′(p)2p2

t (1− pt)2Q(αt)dt
)

where we used the approximation e−(r+δ)t ≈ 1− (r+ δ)dt. Rearranging and ignoring terms

dt2, gives us the result. �

42



Proof of Lemma 1: From Lemmas A2 and A3, we have that

v(pt) = max
αt∈[0,1]

u(pt)+
2

r + δ
p2
t (1−pt)2v′′(pt)Q(αt) = u(pt)+

2

r + δ
p2
t (1−pt)2v′′(pt) max

αt∈[0,1]
Q(αt),

where Q(αt) := (1− αt)2η2
w + α2

tx
2ηs. If v′′ > 0, the problem is maximized with α? = 1, if

x2ηs > η2
w, and with α?t = 0, otherwise. Rearranging gives x? = ηw/ηs. We are therefore left

to show that v is convex. To do so, we solve the ODE.

Rewrite the ODE can be written as v̄(p) = p + Kp2(1 − p)2v̄′′(p), for p ≥ 1
2

and v(p) =

1− p+Kp2(1− p)2v′′(p) otherwise, where we set K :=
2Q(α?t )

r+δ
and drop all t subscripts. Let

ζ :=

√
1+ 4

K

2
and a := 1

2
− ζ < 0 and b := 1

2
+ ζ > 0. It can be verified by substitution that

equations

v̄(p) = p+ c1p
a(1− p)b + c2p

b(1− p)a

v(p) = 1− p+ c̃1p
a(1− p)b + c̃2p

b(1− p)a
(A.1)

are generic solutions of their respective ODE. To pin down the values of c1, c2, c̃1, and c̃2, we

invoke three properties that v must posses: (1) symmetry around p = 1
2
, (2) smooth pasting

at 1
2
, and (3) and boundaries conditions.

(1) The problem faced by the agent is symmetric in the sense that the flow payoff she

optimally respond to beliefs symmetric around 1
2
, e.g. p̄ = 1

2
− ε or p = 1

2
+ ε, when

ε ∈ [0, 1/2], are the same. Thus, also the corresponding values v(p̄) and v̄(p) need to

match. We require that for all such ε, v̄(p) = v(p̄). Notice that 1 − p̄ = p. Thus,

symmetry implies that

pap̄b(c1 − c̃2) = pbp̄a(c2 − c̃1)

which is true for all ε ∈ [0, 1/2] if and only if c1 = c̃2 and c2 = c̃1.

(2) Next, we impose smooth pasting at p = 1
2
. This requires that v̄′(p?) = v′(p?). Com-

puting the derivatives and evaluating them at p gives

v̄′(p?) = 1 + c1

(
a− p?

)
+ c2

(
b− p?

)
= 1 + c1(−ζ) + c2ζ

v′(p?) = −1 + c̃1

(
a− p?

)
+ c̃2

(
b− p?

)
=−1 + c̃1(−ζ) + c̃2ζ

hence

2 + ζ(c̃1 + c2) = ζ(c1 + c̃2).

(3) Finally, at the boundaries p ∈ {0, 1}, the agent is certain that the state is either 1

or −1. Thus, the value of the problem must necessarily be equal to 1. Let v̄(1) = 1.

Then, since a < 0,

v̄(1) = 1 + c11a0b + c21b0a = 1 + c10 + c2∞ = 1.
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Thus, c2 = 0 is the only constant that can guarantee v̄(1) = 1. A similar reasoning at

p = 0 gives us c̃1 = 0.

Putting these three conditions together we get the system
c1 = c̃2 and c2 = c̃1

2 + ζ(c̃1 + c2) = ζ(c1 + c̃2)

c̃1 = c2 = 0

⇒
c1 = c̃2 = 1

ζ
= 2 µ̃

√
x√

µ̃2x+2(r+δ)

c̃1 = c2 = 0

To conclude, the value function is:

v(p) =

{
p+ cpa(1− p)b if p ≥ 1

2

1− p+ cpb(1− p)a else.

where c > 0, a < 0 and b > 0. For p > 1
2
, its second derivative is

v′′(p) = cpa(1− p)b
(a(a− 1)

p2
+
b(b− 1)

(1− p)2

)
= −cpa(1− p)bab

( 1

p2
+

1

(1− p)2

)
> 0

where we used a − 1 = −b and b − 1 = −1 and ab < 0. In a specular way, one can show

that v′′(p) > 0 for p ≤ 1
2
. �

Lemma A4. Fix a player of type x and a time t. Let π(x, t) be the stock of information

and p(x, t) the one for posterior beliefs. There exists a one-to map ξ : R→ R, independent

of x and t, such that p(x, t) = ξ(π(x, t)).

Proof. Define the log-likelihood ratio of posterior beliefs as follow:

z(x, t) := ln
p(x, t)

1− p(x, t)
= ln

p0φ(π(x, t)|θ = 1)

(1− p0)φ(π(x, t)|θ = −1)
= z(x, 0) + ln

φ(π(x, t)|θ = 1)

φ(π(x, t)|θ = −1)

where φ(π(x, t)|θ) is the probability density of finding π(x, t) at the given level, conditional

on the state being θ. Notice that,

z(x, t) = K + 2ηaπ(x, t)

where K is a constant and ηa = ηw if x is a worker and ηs otherwise. We conclude that,

the process for p(x, t) is a one-to-one transformation of z(x, t), which, in turn, is a linear one

transformation of π(x, t). �

Lemma A5. Bayes consistency E(πs) = ηsθ implies a unique positive solution given by

ηs = ηw
cH(x)

1−
∫
x
g̃(z)h(z)dz

≥ 0.

Proof. From Equation 4, we have that

ηs = ηwH(x)

∫ √
tτ(t)dt+ ηs

∫
x

(∫
g(z
√
t)τ(t)dt

)
h(z)dz. (A.2)
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Denote g̃(z) = Eτ (g(z
√
t)) and c = Eτ (

√
t) and rearranging we get the result. We are left

to show that ηs ≥ 0 for all x. Notice that 1−
∫
x
g̃(z)h(z)dz is increasing in x. Moreover, for

any g ∈ G such that g ≤ idR+ , we have

g̃(z) :=

∫
g(z
√
t)τ(t)dt ≤

∫
z
√
t τ(t)dt.

Therefore for all x ∈ X and g ∈ G, we have

1−
∫
x

g̃(z)h(z)dz ≥ 1−
∫

0

(∫
z
√
t τ(t)dt

)
h(z)dz.

Therefore, in order to ensure ηs ≥ 0, it is enough to show that the right hand side of this

equation is positive. However, notice that∫
0

(∫
z
√
t τ(t)dt

)
h(z)dz = Eh(z)Eτ (

√
t).

By definition of f , we have that Eh(z) := Ef (z
2)/Ef (z). Finally, Assumption 1 ensures

that Eh(z)Eτ (
√
t) ≤ 1.

Proof of Proposition 1. (Existence) Equation (6) can be rewritten as

Φ(x) := cxH(x) +

∫
x

g̃(z)h(z)dz = 1. (A.3)

First we show that the Φ(x) crosses 1 at least once. Notice that at x = 0,
∫

0
g̃(z)h(z)dz ≤ 1,

as shown in the proof of Lemma A5. Therefore Φ(0) ≤ 1. Vice versa, limx→∞Q(x) = ∞.

Next, we show that Φ is continuous, as being the sum and products of continuous functions.

First, notice that H is absolutely continuous, as it admits a density h. Second, for any

sequence (xn) such that xn → x, the sequence
∫
xn
g̃(z)h(z)dz is a positive and non-increasing.

Every monotonic and bounded sequence admits a limit point, from which we conclude also∫
x
g̃(z)h(z)dz is continuous. Continuity of Φ, via a straightforward application of Bolzano’s

Theorem, guarantees the existence of a crossing point Φ(x) = 1.

(Uniqueness). To show the fixed-point is unique, we show that Φ is strictly increasing. Fix

x′ > x. We have

Φ(x′)− Φ(x) = c
[
x′H(x′)− xH(x)

]
−
∫ x′
x
g̃(z)h(z)dz

≥ c
([
x′H(x′)− xH(x)

]
−
∫ x′
x
zh(z)dz

)
.

Therefore, Φ(x′) − Φ(x) > 0, as we wished to show. We conclude that the equilibrium is

unique. �

Proof of Proposition 2. Fix any g, g′ ∈ G with g′ ≥ g. We need to show that equilibrium

ηs under g is lower than under the equilibrium ηs under g′. To show this, we prove a stronger

claim, which we will later use in the main text. Namely, let ηs(x, g) be defined as in Equation
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5, were we make explicit the dependence on x and g. We show next that ηs(x, g) ≤ ηs(x, g
′),

for all x ∈ X. We have

ηs(x, g) = ηw
cH(x)

1−
∫
x
g̃(z)h(z)dz

≤ ηw
cH(x)

1−
∫
x
g̃′(z)h(z)dz

= ηs(x, g
′),

since, for all x,

g̃′(x) :=

∫
g′(x
√
t)τ(t)dt ≥

∫
g(x
√
t)τ(t)dt =: g̃(x).

Since the equation that defines individual rationality, ηs = ηw/x, is strictly decreasing in x,

this proves our claim. �

Proof of Proposition 3. First, notice that ηs(x) as defined by Equation 5, has a maximum

at
dηs(x)

dx
= 0 ⇒ 1−

∫
x

g̃(z)h(z)dz = g̃(x)H(x).

From Equation A.3, the equilibrium x? is pinned down by:

1−
∫
x?
g̃(z)h(z)dz = cx?H(x?).

Notice that g̃(x) ≤ cx, where the inequality is strict for all g < idX . Putting all together

we conclude that, for all g < idX , at the respective equilibrium x?, dηs(x)
dx

> 0. Vice versa,

when g = idX , dηs(x)
dx

= 0. �

Proof of Proposition 4 Let (x?, ηs) be the equilibrium. Fix x̄ ∈ X as suppose x̄ < x?.

The information elasticity for this type can be computed as follows:

εw(x̄) :=
dηs/dcx̄
ηs/cx̄

=
ηwh(x̄)

1−
∫
x?
g̃(z)h(z)dz

cx̄
ηs

=
h(x̄)

H(x?)

ηwcx̄
ηwc

.

Since x̄ is a worker cx̄ = c. Moreover, by definition of h, we have h(x̄) = x̄f(x̄)/Ef (z).

Therefore,

εw(x̄) = cηw
x̄

H(x?)

f(x̄)

cηwEf (z)
.

Now suppose x̄ ≥ x?. The information elasticity for this type can be computed as follows:

εs(x̄) :=
dηs/dg̃(x̄)

ηs/g̃(x̄)
=

cηwH(x?)(
1−

∫
x?
g̃(z)h(z)dz

)2h(x̄)
g̃(x̄)

ηs
= g̃(x̄)ηs

h(x̄)

H(x?)

1

cηw
.

Using the definition of h,

εs(x̄) = g̃(x̄)ηs
x̄

H(x?)

f(x̄)

cηwEf (z)
.

From there, we can compute relative difference εs(x̄)− εw(x̄) and rearrange. �
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Proof of Proposition 5. (ii)⇒ (i). Let g(y) = y for all y ∈ R+ and consider any f ′ D f .

It is straightforward to check that the latter implies h′Dh. The fixed-point map of Equation

6 can be rewritten as

x =
1

c
+

∫
x

(x− z)h(z)dz.

Moreover,∫
x

(x−z)h(z)dz =

∫
X

(x−z)1{z>x}(z)h(z)dz >

∫
X

(x−z)1{z>x}(z)h′(z)dz =

∫
x

(x−z)h′(z)dz,

by definition of FOSD and the fact that (x − z)1{z>x} is non-increasing. Thus, letting x?

be the equilibrium under f ,

x? =
1

c
+

∫
x?

(x? − z)h(z)dz >
1

c
+

∫
x?

(x? − z)h′(z)dz.

Notice that d
dx

∫
x
(x − z)h(z) = 1 −H(x) > 0. Therefore, the equilibrium is re-established

at f ′ by decreasing x?, therefore increasing ηs as we wished to prove.

(i) ⇒ (ii). This direction is equivalent to ¬(ii) ⇒ ¬(i) which, however is the content of

Observation 1. �

Proof of Theorem 1. For clarity, we divide the proof of these result in four Lemmas. To

being, fix an increasing uniform sequence (hn)n∈N , fix n′ > n in N and some x ∈ X. Denote:

h∆(z, n) := hn′(z)− hn(z) and D(z) :=
h∆(z, n′)∫

x
h∆(z, n′)dz

− h∆(z, n)∫
x
h∆(z, n)dz

.

Notice that, since hn′Dhn, the function h∆(z, n) is single-crossing (SC)21 in z and integrate

to 0. In fact,

h∆(z, n) := hn′(z)− hn(z) = (γ(z)− 1)hn(z),

where γ(z) = hn′(z)/hn(z) is positive, non-decreasing and crosses 1, by definition of MLR.

Since hn(z) > 0, we have that h∆(z, n) ≥ 0 implies h∆(z′, n) ≥ 0 for all z′ ≥ z. Moreover,∫∞
0
h∆(z, n)dz = 1 − 1 = 0. For this reason, together with the fact that h∆(z, n) is SC, we

have that
∫
x
h∆(z, n)dz ≥ 0. Also, notice that

∫∞
x
D(z)dz = 0.

We begin by showing that D(z) inherits the single-crossing property from h∆(z, n′) and

h∆(z, n).22

Lemma A6. D(z) is single-crossing in z in the interval [x,∞).

Proof. Since the SC property is preserved under scalar transformation, we prove that the

function

D′(z) := h∆(z, n′)− βh∆(z, n) with β :=

∫
x
h∆(z, n′)dz∫

x
h∆(z, n)dz

≥ 0

21A function f : R→ R is single-crossing if f(z) ≥ 0 implies f(z′) ≥ 0 for all z′ ≥ z.
22This is done in a very much similar spirit of Athey (2002) and, more closely, of Quah and

Strulovici (2012).
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is single-crossing in z in the interval [x,∞). Let D′(z) ≥ 0. We want to show that

D′(z) ≥ 0 for all z′ ≥ z. Note that, since hn and hn′ belong to a uniform sequence, we have

that h∆(z, n′) ≥ 0 implies that h∆(z, n) ≥ 0. That is, h∆(z, n) crosses zero before h∆(z, n).

Therefore, we have to consider only three cases: (1) when h∆(z, n′), h∆(z, n) ≥ 0, (2) when

h∆(z, n′) ≤ 0 ≤ h∆(z, n) and (3) h∆(z, n′), h∆(z, n) ≤ 0.

(1) Suppose h∆(z, n′), h∆(z, n) ≥ 0. Since D′(z) ≥ 0, we have h∆(z, n′) ≥ βh∆(z, n).

Therefore,

β ≤ h∆(z, n′)

h∆(z, n)
=
hn′′(z)− hn′(z)

hn′(z)− hn(z)
.

which is increasing since the sequence is uniform (Definition 4). We conclude that for

any z′ ≥ z, D′(z′) ≥ 0.

(2) Suppose h∆(z, n′) < 0 ≤ h∆(z, n). This implies D(z) < 0, a contradiction.

(3) Finally, suppose h∆(z, n′), h∆(z, n) ≤ 0. We will show that this is incompatible with

D′(z) ≥ 0. By way of contradiction, suppose that D′(z) ≥ 0. Note that at the right-

most boundary of this region, we have that h∆(z0, n) = 0 (since h∆(z, n) crosses zero

first). Therefore, at z0, we have that D′(z0) = h∆(z0, n
′) ≤ 0. By continuity, there

must be a z? ∈ [z, z0], such that D′(z?) = 0. This implies that h∆(z?,n′)
h∆(z?,n)

= β. Since, the

sequence is uniform, we have h∆(z,n′)
h∆(z,n)

≤ β. Now we use the definition of β.

β :=

∫
x
h∆(z, n′)dz∫

x
h∆(z, n)dz

=

∫ x
h∆(z, n′)dz∫ x
h∆(z, n)dz

=

∫ x
h∆(z, n′)h∆(z,n)

h∆(z,n)
dz∫ x

h∆(z, n)dz
<

∫ x
h∆(z, n)βdz∫ x
h∆(z, n)dz

= β

This gives us the contradiction. In the second equality, we used that for any n

and x,
∫
h∆(z, n)dz = 0. For the inequality, we used the fact that x < z?. This is

automatically the case since we are trying to show SC of D′ on [x,∞).

This shows that D′(z) ≥ 0 only in case (1), where we showed D′(z′) ≥ 0 for all z′ ≥ z.

Therefore D′ is SC in the interval [x,∞) and so is D. �

Now that we have established the SCP for D(z), we move to a second instrumental result,

which builds on Lemma A6.

Lemma A7. We have that

∫
x

m(z)D(z)dz ≤ 0.

Proof. By definition of D(z), notice that
∫∞
x
D(z)dz = 0. Since D(z) is SC in the interval

[x,∞) (Lemma A6), we have that
∫ y
x
D(z)dz ≤ 0 for any y <∞. Integrating by parts:

∫
x

m(z)D(z)dz = m(z)

∫ z

x

D(y)dy
∣∣∣z=∞
z=x

−
∫
x

(
m′(z)

∫ z

x

D(y)dy
)
dz

=−
∫
x

(
m′(z)

∫ z

x

D(y)dy
)
dz ≤ 0.
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The second equality comes from the fact that
∫∞
x
D(z)dz =

∫ x
x
D(z)dz = 0. The inequality

comes from
∫ y
x
D(z)dz ≤ 0 and the fact that m′(z) ≤ 0. To confirm the latter, recall that

m(z) := c−1
(
cx − g̃(z)

)
. Therefore, m′(z) = −c−1

∫ √
tg′(z
√
t)τ(t)dt ≤ 0, by the fact that

g′ ≥ 0 is increasing. (Definition 1) �

Finally, the last and most important of these instrumental results.

Lemma A8. Fix x ∈ X arbitrarily and consider an D-increasing uniform sequence in H.

The functional L : N → R, defined as

L(n) =

∫
x

m(z)hn(z)dz,

is quasi-concave in n ∈ N .

Proof. To show this, it is enough to prove that, for n′′ ≥ n′ ≥ n,

L(n′′)− L(n′) ≥ 0 ⇒ L(n′)− L(n) ≥ 0.

Notice that

0 ≤ L(n′′)− L(n′) =

∫
x

m(z)
(
hn′′(z)− hn′(z)

)
dz =

∫
x

m(z)h∆(z, n′)dz

Therefore, we need to show that, for any n′ ≥ n∫
x

m(z)h∆(z, n′)dz ≥ 0 ⇒
∫
x

m(z)h∆(z, n)dz ≥ 0.

Fix n′ ≥ n and assume
∫
x
m(z)h∆(z, n′)dz ≥ 0. As argued above,

∫
x
h∆(z, n′)dz ≥ 0 (for

any n′). Therefore, ∫
x
m(z)h∆(z, n′)dz∫
x
h∆(z, n′)dz

≥ 0.

Moreover,

∫
x
m(z)h∆(z, n′)dz∫
x
h∆(z, n′)dz

−
∫
x
m(z)h∆(z, n)dz∫
x
h∆(z, n)dz

=

∫
x

m(z)D(z)dz ≤ 0.

Thus,

0 ≤
∫
x
m(z)h∆(z, n′)dz∫
x
h∆(z, n′)dz

≤
∫
x
m(z)h∆(z, n)dz∫
x
h∆(z, n)dz

⇒
∫
x

m(z)h∆(z, n)dz ≥ 0,

concluding the proof of Lemma A8. �

With this last result, we can finally provide the proof for Theorem 1.

Let (hn)n be a D-increasing uniform sequence in H and let hn′′ D hn′ D hn. Call xn, xn′

and xn′′ the fixed points of Equation (6) for hn, hn′ and hn′′ , respectively. To show quasi-

concavity we need to show that xn′ ≥ min{xn, xn′′}. That is, we need to show: (Case 1) if
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xn′ ≤ xn′′ , then xn ≤ xn′ , and (Case 2) if xn ≥ xn′ then xn′ ≥ xn′′ . To begin, notice that, by

Proposition 1, we know that the self-map in Equation (6) has a unique fixed point. Since

c > 0, it must be the case that the function 1
c

+ L(x, h) crosses the function x from above.

Indeed,

1

c
+ L(0, n) =

1

c
+

1

c

∫ ∞
0

(0− g̃(z))hn(z)dz =
1

c

(
1−

∫ ∞
0

g̃(z)hn(z)dz
)
> 0.

We discuss Case 1 and Case 2 separately.

Case 1. Let xn′ ≤ xn′′ . Then, by the argument just made, it must be that 1
c

+

L(xn′ , n
′′) ≥ 1

c
+ L(xn′ , n

′) = xn′ , otherwise we would contradict xn′ ≤ xn′′ . This

implies that L(xn′ , n
′′) ≥ L(xn′ , n

′). By Lemma A8, we know L is quasi-concave in

h. That is, L(xn′ , n
′′) ≥ L(xn′ , n

′) implies that L(xn′ , n
′) ≥ L(xn′ , n). Again, by the

single crossing argument above, this implies that xn ≤ xn′ .

Case 2. This case mimics the previous one. Let xn ≥ xn′ . We know that this implies

L(xn′ , n) ≥ L(xn′ , n
′). By Lemma A8, we get that L(xn′ , n

′) ≥ L(xn′ , n
′′) and conclude

that xn′ ≥ xn′′ .

The two cases above showed that xn′ ≥ min{xn, xn′′}. Since n′′ ≥ n′ ≥ n were arbitrary,

we conclude that the fixed point x of Equation 6 is quasi-concave in n. By the equation

that defines individual rationality this implies that ηs is quasi-convex, concluding the proof

of Theorem 1. �

Lemma A9. Fix a type z ∈ X. The derivative of W SP1(α) with respect to a marginal

increase in α(z) is:

W SP1

α(z)(α) = f(z)
(
vs(z, ηs)− vw(ηw) + z

(
ηsg̃(z)− ηwc

)
K
)
,

where K ≥ 0 is a positive constant.

Proof. We compute the derivative of W SP1 with respect to a marginal increase in α(z), the

probability that type z is allocated to search. In computing this derivative, we need to

compute
dvs(z, ηs)

dα(z)
=
dvs(z, ηs)

dηs

dηs
dα(z)

.

We know that the first term is positive for all z. The second term instead is

dηs
dα(z)

= zf(z)C
(
g̃(z)ηs − cηw

)
.

where we used the definition of h, of ηs and we denoted C :=
(
Ef (z)

(
1−
∫
X
α(z)g̃(z)h(z)dz

))−1
,

a positive constant. Putting all together, we get

W SP1

α(z)(α) = f(z)
(
vs(z, ηs)− vw(ηw) + z

(
ηsg̃(z)− ηwc

)
K
)
,

where K = C
∫
X
α(y)dvs(y,ηs)

dηs
f(y)dy ≥ 0.
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Proof of Corollary 1. The first part follows from Proposition 5. We are left to show that for

any regular sequence (fn(z))n∈N ⊂ F , ηs is monotonically decreasing if g = min(G,≥). When

the communication technology is completely uninformative, we we have that ηs = ηwcH(x?),

a strictly increasing function of x?. If f ′ DMLR f , the respective h′ and h are also ranked by

DMLR, i.e. h′ DMLR h. Moreover, since DMLR ⊂ D, H ′(x) ≤ H(x), for all x ∈ X. Thus,

fixing x?, ηs is decreasing in the shift. Since ηs = ηw/x is strictly decreasing in x, we conclude

that x? is increasing in the shift, and therefore ηs is decreasing.

Proof of Proposition 6. (If part). Let g = max{G,≥}. As by Lemma A9, the sign

of W SP1

α(z)(α) is positive, meaning that the planner wants a type z to search, if and only if

vs(z, ηs) − vw(ηw) ≥ z
(
ηwc − ηsg̃(z)

)
K. In the particular case when g is maximal, we have

that g̃(z) = cz. Therefore, the inequality becomes

vs(z, ηs)− vw(ηw) ≥ zc
(
ηw − zηs

)
K.

Now let (x?, ηs) be the equilibrium under such g. Notice that by definition of x?, we have

ηw = x?ηs and vs(x
?, ηs) = vw(ηw). For all types above x?, the LHS of the inequality is

strictly positive, while the RHS is strictly negative. For all types below x?, the RHS of the

inequality is strictly negative, while the RHS is strictly positive. Therefore, W SP1

α(z)(α) ≥ 0 if

and only if x ≥ x?, showing that the allocation is indeed efficient.

(Only if part). Now take any g < max{G,≥}. By continuity, we have that g̃(z) < E(
√
t)z.

Now consider the equilibrium (x?, ηs). We have that

ηwE(
√
t)− ηsg̃(x?) > c

(
ηw − x?ηs

)
= 0 = vs(x

?, ηs)− vw(ηw).

The planner would strictly prefer this type to work. This constitutes a deviation from the

equilibrium allocation, thereby proving that it cannot be efficient. �

Proof of Corollary 2. Consider the extreme case g(y) := 0. In this case, meeting other

searchers is completely unproductive. We have that g̃(z) = 0 for all z ∈ X and ηs can be

written as

ηs(α) = ηwc

∫
X

(1− α(z))h(z)dz.

The planner’s incentive can be represented with the following inequality

vs(z, ηs)− vw(ηw) ≥ zcηwK.

The left hand side is increasing and strictly concave, starting at −vw(ηw) when z = 0. The

right hand side is linear and increasing. For appropriate values of ηw and c, there are exactly

two solutions for this equation, x1 and x2 with x1 ≤ x2, such player z searches if and only if

z ∈ (x1, x2). �

Proof of Proposition 7. (Only if part). When g is not maximally informative, the equilib-

rium allocation is inefficient in the ex ante sense (Proposition 6) and, a fortiori, is inefficient

in the ad interim sense.
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(If part). Suppose g is maximally informative, i.e. g = idR+ , and let (x?, ηs) be the equilib-

rium. Consider a type x of arbitrary age t and suppose there exists a profitable deviation

from the equilibrium plan. We consider a simple deviation that consists in switching type

x’s activity for a dt interval and then reverting back to the equilibrium allocation forever.

Let x be a searcher. Switching x to work for a dt interval generates two effects. First, dpt,

namely the instantaneousness change in type x’s posterior beliefs, has lower variance. On

an individual basis, type x is worse off. Second, her social contribution is affected. In the

dt interval she accumulated information at rate ηwdt rather than xηsdt. Since x searches in

equilibrium, xηsdt > ηwdt. Since g = idR+ , this necessarily implies her social contribution is

diminished. The deviation considered reduces both ηs and type x’s present discounted value

and therefore cannot improve social welfare. �

Proof of Corollary 3. When g = max{G,≥}, Proposition 7 shows that x1 = x2 = x? and

there is nothing to prove. Let g < max{G,≥}. There are three distinct cases to consider:

Case 1. Suppose there exists no such x1 > 0. This implies that the social planner finds

optimal to allocate x = 0 to search at some particular pt. However, both type x and

the society lose from this deviation. As a searcher, type x’s contribution to the society

is null and so is her personal gain. As a worker, these are both strictly positive. A

contradiction. Therefore there must exists x1 > 0. By monotonicity, all types below

x1 will be allocated in a similar way.

Case 2. Next, suppose x2 <∞. For any type x > x2, the cost of reverting back to work

is higher. In terms of social contribution, the most extreme case is when g = 0. In

such case, x contributes exactly as x2. Yet, the individual gains for x dominate those

of x2, while the implied social loss is the same. Therefore, x is allocated to search

independently of time.

Case 3. Now consider a type x1 < x < x2. By Case 1 and 2, this type individually gains

from search, at all pt, but she contributes negatively to society due to the interaction

between her type and the communication technology g. When pt converges to 0 or

1, her individual gain for engaging in search relative to work goes to zero, whereas

her social contribution does not. Therefore, the planner would want this type to pt to

work. Vice versa, when pt goes to 1
2
, her individual gain are maximized, the planner

would want this type to search. �

Proof of Proposition 8. Fix a target type x̄ a bias b and a basin of δ. The altered η̃s can

be computed in ways similar to Lemma A5. We have that

η̃s = cηwH(x?) + η̃s

∫
x?
g̃(z)h(z)dz + b

∫ x̄+εδ

x̄−εδ
α(z)h(z)dz =

cηwH(x?) + b
∫ x̄+εδ
x̄−εδ

α(z)h(z)dz

1−
∫
x?
g̃(z)h(z)dz

where α(x) = g̃(x) if x ≥ x? and α(x) = c otherwise. The influence exerted by the
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δ-neighbor of x̄ is then

I(x̄, δ) =

∫
x?
z(η̃s − ηs)f(z)dz

= Ef (x)(1−H(x?))
b
∫ x̄+εδ
x̄−εδ

α(z)h(z)dz

1−
∫
x?
g̃(z)h(z)dz

= Ef (x) (1−H(x?))ηs
cH(x?)ηw

b
∫ x̄+εδ
x̄−εδ

α(z)h(z)dz.

where we used that h(z) = zf(z)/Ef (x). Finally, setting b = 1,

ι(x) := lim
δ→0

I(x,δ)
δ

= Ef (x) (1−H(x?))ηs
cH(x?)ηw

lim
δ→0

1
δ

∫ x̄+εδ
x̄−εδ

α(z)h(z)dz

=
Ef (x)

Ef (x)
(1−H(x?))ηs
cH(x?)ηw

lim
δ→0

1
δ

∫ x̄+εδ
x̄−εδ

zα(z)f(z)dz

= ηs
cηw

1−H(x?)
H(x?)

xα(x)

= xα(x)ηs
cηw

1−H(x?)
H(x?)

,

since F ([x̄− εδ, x̄+ εδ]) = δ. �

Proof of Corollary 4. Take any two societies f, f ′ ∈ F with f ′D f . If ηs(f
′) < ηs(f) there

is nothing to prove. Suppose ηs(f
′) > ηs(f). In such case, we have that x? declined. Since

f ′ D f implies h′ D h, we must have H(x?) has also decreased under this transformation.

From Proposition 8 we know that the influence of all searchers has strictly increased. The

manipulative strategy can therefore produce higher distortions for any fixed δ, or the same

amount of distortion for a strictly smaller δ. �

B. Finite Capacity Communication Technologies

In this Appendix, we extend our model to a communication technology g that equally applies

to both workers and searchers.

Definition B1. A communication technology with finite capacity is a concave and non-

decreasing self-map g on R+ with g(y) ≤ y. Let G denote the set of such functions.

Relative to the model presented in the paper, the coefficient c, which was defined as c :=

Eτ (
√

(t)) in Section 3, becomes a g̃(1) := Eτ (
√

(t)), an object that directly depends on
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the communication channel. Following Lemma A5, it is straightforward to show that Bayes

consistency implies

ηs = ηw
g̃(1)H(x)

1−
∫
x
g̃(z)h(z)dz

≥ 0. (B.1)

The fixed-point map of 6, becomes

x =
1

g̃(1)
+

∫
x

m(z)h(z)dz, (B.2)

where we denoted m(z) := 1
g̃(1)

(
g̃(1)x− g̃(z)

)
. The following result establishes existence and

uniqueness of our stationary equilibrium when g is a finite capacity channel.

Assumption B2. Let δ be high enough so that Eh,τ (x
√
t | x ≥ 1) ≤ 1.

Lemma B10. Fix a society f ∈ F and a communication technology with finite capacity

g ∈ G. A stationary equilibrium exists and is unique.

Proof. (Existence) Notice that Equation B.2 can be rewritten as

xg̃(1)H(x) +

∫
x

g̃(z)h(z)dz = 1.

First we show that the left hand side crosses 1 at least once. Notice that at x = 0,∫
0
g̃(z)h(z)dz ≤ 1, by Assumption 1. When x → ∞ the right hand side grows unbound-

edly. Since the right hand side is continuous in x, this proves that there exists at least one

stationary equilibrium in this game. Next we show that x ≥ 1.

(Uniqueness). To show that the left hand side crosses 1 exactly once, we start by computing

the derivative of Equation B.1:

dηs
dx

= K
(

1−
∫
x

g̃(z)h(z)dz − g̃(x)H(x)
)
,

where K > 0. It is enough to show that 1 −
∫
x
g̃(z)h(z)dz ≥ g̃(x)H(x) at any equilibrium

point to ensure uniqueness.

To begin, suppose the equilibrium point is x ≥ 1. Notice that, at the equilibrium, it must

be that

1−
∫
x

g̃(z)h(z)dz = g̃(1)H(x).

Therefore, 1−
∫
x
g̃(z)h(z)dz ≥ g̃(x)H(x) at the equilibrium if g̃(x) ≤ xg̃(1). This is true if

g(x
√
t) ≤ xg(

√
t), which is guaranteed by concavity of g (Definition B1), together with the

fact that x ≥ 1.23

23To see this, fix x ≥ 1 and t arbitrarily. Let α := 1
x < 1 and notice that by concavity of g,

g(αx
√
t+ (1− α)0) ≥ αg(x

√
t) + (1− α)g(0),

and, since g(0) = 0, g(αx
√
t) ≥ αg(x

√
t). Rearranging gives us g(x

√
t) ≤ xg(

√
t).
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To complete the proof, we analyze the x < 1 and conclude that there cannot be an equilib-

rium of this kind. Notice that at x = 1, 1−
∫

1
g̃(z)h(z)dz > g̃(1)H(1). Indeed,

1−
∫

1
g̃(z)h(z)dz −H(1)g̃(1) > 1− (1−H(1))E(

√
xt|x > 1)−H(1)E(

√
t)

> 1− (1−H(1))E(
√
xt|x > 1)−H(1)E(

√
xt|x > 1)

> 1− E(
√
xt|x > 1)

≥ 0

where the last inequality follows from Assumption B2. Since the derivative is single-crossing,

1−
∫
x
g̃(z)h(z)dz > g̃(x)H(x) for any x < 1. Moreover, concavity of g in the interval x ∈ [0, 1]

implies xg(1) < g(x). Therefore, 1−
∫
x
g̃(z)h(z)dz > xg̃(1)H(x) and therefore x < 1 cannot

be an equilibrium. �

After ensuring the existence and uniqueness of the stationary equilibrium, Theorem 1 follows

immediately since the fixed-point problem of Equation B.2 has the same property than the

one of Equation 6, in particular, function m is decreasing in z. Similarly, the proofs of

Proposition 2, 3 and 5 can be readily applied to the new problem of Equation B.2 to reach

the same conclusions.

C. Non-Stationary Equilibria and Convergence

In this section, we discuss the non-stationary version of our model. For concreteness, we

will assume there is a unit mass of players alive a time t = 0 and that δ = 0. Players are

infinitely lived is and there is no inflow of newborn player in the society. Moreover, we restrict

attention to a simpler class of communication technologies, linear functions g(y) = κg(y),

0 ≤ κ ≤ 1. Let ηs : R+ → R be a time-dependent precision for social information. We

refer to ηs(t) as a social information path. It describes the precision of the instantaneous

signal coming from search. Due to the continuum of players, we can think of ηs as being

deterministic. We will denote Es(t) :=
∫ t

0
ηs(t

′)dt′ and, therefore, E ′s(t) = ηs(t). At time t,

every players has two channel from which she can receive information, work and search:

πw ∼ N
(
ηwθdt, dt

)
πs(x) ∼ N

(
xE ′s(t)θdt, dt

)
Players allocate their time optimally. Since they are of measure zero, they cannot affect

the path of ηs. Their problem is in fact very similar to the of Section 3.2. A player at time

t faces a decision problem that consists in choosing the signal, between πw and π(x), that

maximizes the variance of her posterior beliefs. As in Lemma 1, her problem is solved by

the following stopping function:

Lemma C11. Fix a strictly increasing social information path E ′s(t). There exists a stopping

rule ζ : X → R+, such that, for all x ∈ X, player x searches at time t if and only if t ≥ ζ(x).

Moreover, ζ(x) is strictly decreasing in x.
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Proof. Fix a path Es(t). From Lemma 1, we know that at time t the indifferent type at

is pinned down by Equation ηw = x?(t)E ′s(t). Define ζ(x) the inverse function of x?(t) =

ηw/E
′
s(t). Since E ′s(t) is strictly increasing, ζ is well-defined. �

When E ′s(t) is increasing, ζ is decreasing. This means that players unravel away from work,

starting from highly connected types down to less connected types. In such case, players

necessarily switch from work to search. The stock of information that each players collect is

Γ(x, t) :=

{
ηwtθ +B(t) if t < ζ(x),(
ηwζ(x) + x

(
E(t)− E(ζ(x))

)
θ +B(t) else.

(C.1)

We normalize to 1 the variance of the signal that type (x, t) relay onto others. Its conditional

expectation becomes, E
(
π(x, t)|θ

)
= ηw

√
tθ if if t < ζ(x), and E

(
π(x, t)|θ

)
= ηw

ζ(x)√
t
θ +

κx√
t

(
E(t)− E(ζ(x)

)
θ otherwise.

Definition C2. A Dynamic Equilibrium is a stopping rule ζ : X → R+ and social infor-

mation path Es : R+ → R+ such that

1. Given the social information path Es, the stopping rule is adapted to Es as by Lemma

C11. That is, for all types x and times t, player x searches at t if and only if t ≥ ζ(x).

2. Given the stopping rule ζ, Es us Bayes consistent, that is

E ′s(t) =

∫
X

E(π(z, t)|Es)h(z)dz ∀t ≥ 0.

In the equilibrium definition, we impose the obvious consistency requirement, which replace

its stationary counterpart of Equation 4. By replacing the values for E(π(z, t)|Es) in the

Bayes consistency requirement and rearranging, we get

√
tE ′s(t) = ηwtH(x?(t)) +

∫
x?(t)

(
ηwζ(z) + κx

(
Es(t)− Es(ζ(z)

))
h(z)dz. (C.2)

This condition can be expressed as a second-order non-linear ODE, as we show in the next

result.

Lemma C12. A pair (ζ, Es) is a Dynamic Equilibrium if and only if Es is a solution to the

ODE

tE ′′s (t) = ηw
√
tH
( ηw
E ′s(t)

)
+ E ′s(t)

(√
t

∫
ηw
E′s(t)

zh(z)dz − 1

2

)
and ζ is adapted to Es.

Proof. We begin by deriving Equation C.2. Since by definition of ζ we have ζ(x?(t)) = t,
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the derivative simplifies a lot. In particular, notice that

d
dt

√
tE ′s(t) = ηwH(x?(t)) + x?t (t)h(x?(t))

(
ηwt− ηwζ(x?(t)) + κx?(t)

(
Es(t)− Es(ζ(x?(t)))

))
+κ
∫
x?(t)

zE ′s(t)h(z)dz

= ηwH(x?(t)) + x?t (t)h(x?(t))
(
ηwt− ηwt+ κx?(t)

(
Es(t)− Es(t))

))
+ κ

∫
x?(t)

zE ′s(t)h(z)dz

= ηwH(x?(t)) + κ
∫
x?(t)

zE ′s(t)h(z)dz.

Therefore,
1

2
√
t
E ′s(t) +

√
tE ′′s (t) = ηwH(x?(t)) + κE ′s(t)

∫
x?(t)

zh(z)dz

and rearranging, with x?(t) = ηw/E
′
s(t),

tE ′′s (t) = ηw
√
tH
( ηw
E ′s(t)

)
+ E ′s(t)

(
κ
√
t

∫
ηw
E′s(t)

zh(z)dz − 1

2

)
which concludes the proof. �

C.1. Convergence Towards the Stationarity Equilibrium

The dynamic model introduced in the previous section differs from the on introduced in

Section 3 because players are infinitely lived. In this section, we perform the same exercise

of the previous one, but in a dynamic model in which players at different ages can coexist.

Although equilibria cannot be readily expressed as we did in Lemma C12, we can conclude

they has nice features. In particular we show that when g(x) = x, ηs(t) is necessarily a

strictly increasing path that converges to the stationary equilibrium of Section 4. To avoid

confusion, we will refer to time with variable t and to age with variable m. Notice that

m ≤ t. As a consequence of Lemma C11, we still have that the activity choice for a player

of type x only depends on t, not m. In particular, such choice is determined by τ(x) the

stopping rule adapted to Es. The stock of information is given by

Γ(x,m, t) :=


ηwmθ +B(m) if t < τ(x),(
ηw(τ(x)−m) + x

(
E(t)− E(τ(x))

)
θ +B(m) if m > t− τ(x).(

x
(
E(t)− E(m)

)
θ +B(m) if m < t− τ(x).

Similarly, we can define the normalized E
(
π(z,m, t)

∣∣Es), as we did in the previous section.

The consistency conditions now takes into account the fact that a type can be a multiple

different ages at the same time. In particular, at time t, the probability that type x is

of age m ≤ t is given by the truncated exponential distribution τ(m|t). Therefore, Bayes

consistency becomes:

E ′s(t) =

∫
X

(∫ t

0

E
(
π(z,m, t)

∣∣Es)τ(m|t)dm
)
h(z)dz ∀t ≥ 0. (C.3)
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The equilibrium is then defined as follows:

Definition C3. A Dynamic Equilibrium with overlapping generations is composed by a

stopping rule ζ : X → R+ and a social information path Es : R+ → R+ such that

1. Given the social information path Es, the stopping rule is adapted to Es as by Lemma

C11. That is, for all types x and times t, player x searches at t if and only if t ≥ ζ(x).

2. Given the stopping rule ζ, Es is a solution to Equation C.3.

In the next result we argue that, when an equilibrium exists, its information path ηs(t) it has

two important property. continuous solution will satisfy the property of being monotonically

increasing and converging to the stationary equilibrium analyzed in Section 4. For that, we

prove first two other results about ηs(t).

Lemma C13. Let (x?, η?s) be the unique stationary equilibrium. Suppose (τ, Es) is a dynamic

equilibrium with overlapping generations and that g(y) = y. Then ηs(t) is strictly increasing.

Proof. Suppose not. Let t̄ be the first time at which η′(t) ≤ 0. Fix a type z and an age m. We

want to show E(π(z,m, t̄+ dt)|ηs) ≥ E(π(z,m, t̄)|ηs). This compares the social contribution

of two identical players that where born dt-apart from each others. If t̄ < ζ(z), then both

players have worked all their lives, which are of length m. Therefore they accumulated the

same amount of information in expectation, or E(π(z,m, t̄ + dt)|ηs) = E(π(z,m, t̄)|ηs). If,

instead, t̄ ≥ ζ(z), the younger player, the one who is of age m at time t̄ + dt, has collected

more information in expectation, E(π(z,m, t̄ + dt)|ηs) > E(π(z,m, t̄)|ηs). This is because,

by assumption on t̄, in the interval [0, t̄) the information path ηs(t) was strictly increasing.

Therefore, keeping τ(m|t̄) constant, the integral in Equation C.3 is strictly increasing. The

change in the distribution only reinforce this effect. In fact, the distribution of ages τ(m|t̄)
is first-order stochastically dominated by τ(m|t̄ + dt). Since E(π(z,m, t̄)|ηs) is trivially

increasing in m (older players have more information in expectation), we conclude that

ηs(t̄) < ηs(t̄+ dt) and therefore η′s(t̄) > 0. A contradiction. �

Lemma C14. Let (x?, η?s) be the unique stationary. Suppose (τ, Es) is a non-stationary

equilibrium with overlapping generations and that g(y) = y. Then ηs(t) is bounded above by

η∗s

Proof. Suppose not. Then, by continuity of ηs(t), there must be a t̄ such that ηs(t̄) = η?s . By

Claim C13, we know that ηs(t) < η? for all t ∈ [0, t̄). As before, fix any type x and any age

m. Under the dynamic equilibrium, this player cannot have accumulated more information

than the same player of the same age under the stationary equilibrium. If (z,m) works at

t̄, she has been working since t̄−m and has the expected amount of information under the

two regimes. If she ever searched, then by ηs(t) < η?, she must have strictly less information

under the dynamic equilibrium. Therefore, keeping τ(m|t̄) constant, at t̄ the integral in

Equation C.3 is strictly smaller than η?s , or ηs(t̄) < η?s , a contradiction. �
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Lemma C15. Let (x?, η?s) be the unique stationary equilibrium. Suppose (τ, Es) is a non-

stationary equilibrium with overlapping generations and that g(y) = y. Then lim ηs(t) = η?.

Proof. We know that ηs(t) is an monotone increasing (Claim C13) and bounded (Claim C14)

sequence. As such, it necessarily converges to some real limit point lim ηs(t) ≤ η?. Suppose

lim ηs(t) < η?. In such case, lim ηs(t), together with the implied threshold x, must satisfies

Definition 2. A contradiction on the uniqueness result of Proposition 1. �
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