
Optimally Stubborn∗

Anna Sanktjohanser†

Preliminary and Incomplete

March 12, 2017

Abstract

I consider a bargaining game with two types of players – rational and stubborn. Rational
players choose demands at each point in time. Stubborn players are restricted to choose a
bargaining strategy from a proper subset of strategies available to rational players. In the
simplest case, stubborn players are restricted to choose from the set of “insistent” strategies
that always make the same demand and never accept anything less. However, their initial
choice of demand is unrestricted. I characterize the equilibria in this game, showing how
the flexibility of the stubborn type changes equilibrium predictions.

1 Introduction

The literature on reputation builds on the idea that some players may be limited in their choice
of strategies. The results in this literature rely on the specific choice of behavioral type. With
the “right” behavioral (Stackelberg) type present, we can derive sharp predictions in term of
lower (or upper) bounds on payoffs (Fudenberg and Levine, 1989). However, there is no explicit
description of equilibrium behavior as these bounds are derived using strategies available to the
rational player, rather than the optimal one. With one major exception (Abreu and Gul (2000)
and follow-up papers), this literature does not characterize the equilibrium. The literature takes
as given that such “behavioral” types exist, and does not address the question why particular
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behavioral types occur. The aim of this paper is to endogenize these types by giving them some
choice over the form of their “stubbornness.” I do so in the framework of bargaining, as modeled
by Abreu and Gul (AG hereafter) and Myerson (1991).

I consider a bargaining game with two types of players – rational and stubborn. The game
ends when a player adjusts his demand so as to make it compatible with his opponent’s. Rational
players choose demands at each point in time. The key feature of my model is that unlike in
the literature, stubborn players can choose their initial demand freely, but cannot adjust their
demand.

My paper has two main results. First, I derive strong behavioral predictions: as the proba-
bility of stubbornness goes to 0, the set of equilibrium offers converges to at most a three-point
set, that is, players are indifferent over at most three offers. Moreover, in the limit, at most two
offers are made with positive probability. Second, even as the probability of stubbornness goes
to 0, delay (and hence, inefficiency) may not disappear. Rather, there is a Folk theorem like
payoff multiplicity. Any feasible payoff can arise as an equilibrium payoff when the probability
that a player is stubborn is sufficiently small (at least when no refinement is applied).

Both results stand in contrast with the results when stubborn players cannot choose their
initial demand freely. First, when there is an exogenous distribution of offers of the stubborn
type as in AG, rational players will mimic any demand sufficiently high. Secondly, in AG, when
the probability of a player being stubborn is small, there is no delay (and hence, inefficiency) if
the “right” stubborn type is present. My paper shows that the right stubborn type may not be
present when given choice over his initial demand. However, in the set of symmetric equilibria
with at most three offers, there is a unique equilibrium satisfying refinements such as D1 or
passive beliefs. In this equilibrium, there is no delay and inefficiency – players receive a payoff
of 1/2 when they are equally patient as they do with exogenous stubborn types in AG.

My model builds on the framework by Myerson (1991) and AG. They consider a bargaining
environment, where there is a small probability of a player being behavioral. Behavioral types
in AG have no choice over their actions, and the distribution of behavioral types is exogenously
given. They derive weak behavioral predictions: any demand above some threshold is mimicked
by the rational type. If the “right” behavioral type is present, AG derive strong predictions in
terms of the payoffs when the probability of a player being stubborn is sufficiently small. The
right behavioral type is the type which makes a demand proportional to a player’s patience. If
this type is present, then for a sufficiently small probability of a player being stubborn, there is
no delay or inefficiency. A rational player receives a payoff proportional to his patience. I show
that the right behavioral type may not be present once behavioral players choose their initial
demand freely. More generally, my paper is related to the literature on reputation (Fudenberg
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and Levine, 1989 and 1992; Abreu, Pearce and Stacchetti, 2015; Fanning, 2016a and 2016b)
and bargaining (Nash, 1953; Abreu and Pearce, 2015). The most closely related papers are
Abreu and Sethi (2003), Atakan and Ekmekci (2014), Kambe (1999) and Wolitzky (2012), who
all build on Abreu and Gul (2000). Abreu and Sethi (2003) endogenize behavioral types using
an evolutionary stability approach. In contrast, in my model stubborn types pick their initial
demand so as to maximize their payoff. They show that if a behavioral type is present in an
evolutionary equilibrium, the complementary demand must also be present – this is not true
in my model. Similar to my model, they find that inefficient delays may occur in equilibrium.
Atakan and Ekmekci (2014) endogenize behavioral types in a two sided search market. The
matching market serves as an endogenous outside option. Unlike in my model, stubborn types
cannot choose their initial demand, but they can exit the current trade when they are sure they
face a stubborn player. Given the differences in modeling, it is difficult to compare their results
to mine. In Kambe (1999) and Wolitzky (2012), players do not know at the demand stage
whether they are behavioral or not. Rather, a player becomes “committed” with some exogenous
probability after demands have been chosen. In my model, a player knows his type (behavioral
or rational) at the time of choosing his demand. Unlike in my model, the lower bound on the
payoff of a rational player in Wolitzky (2012) is non-zero. Kambe (1999) focusses on one offer
equilibria, and insofar the results are similar to mine in this special case.

The structure of this paper is as follows. I first describe the model in Section 2. Section
3 analyzes the benchmark case with an exogenous distribution of stubborn types as in AG.
Section 4 discusses necessary conditions for equilibrium existence with endogenous stubborn
types. The main results, which focus on mixing equilibria, are presented in Section 5. Section 6
briefly discusses existence of equilibria with a separating offer by the stubborn type. Section 7
concludes.

2 Model

The model and the notation (mostly) follows AG. Time is continuous, and the horizon is infinite.
Two players decide on how to split a unit surplus. At time 0, players i and j simultaneously
announce demands, αi and αj. If αi+αj ≤ 1, the demands are said to be compatible. In this case,
the game ends. If αi + αj > 1, the demands are incompatible. In this case, a concession game
starts. The game ends when one player concedes. Concession means agreeing to the opponent’s
demand.

Each player i is rational with probability 1 − z, and stubborn with probability z, where
z ∈ (0, 1). Before the game starts, each player privately learns whether he is stubborn or
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rational. A rational player i = 1, 2 can make any demand αi ∈ [0, 1] at time 0, and concede to
his opponent at any point in time. Stubborn player i can choose his initial demand αi ∈ [0, 1],
but cannot concede to his opponent. Note that this is unlike in AG, where a stubborn player
cannot choose his initial demand.1

A strategy for a stubborn player, i, σSi , is defined by a probability distribution si on [0, 1].
A strategy for a rational player i, σRi , is defined by a probability distribution ri on [0, 1], and a
collection of cumulative distributions F i

αi,αj
on R+ ∪ {∞}, for all αi + αj > 1. F i

αi,αj
(t) is the

probability of player i conceding to player j by time t (inclusive). Therefore,

lim
t→∞

F i
αi,αj

(t) ≤ 1− πi(αi),

where

πi(αi) =
zsi(αi)

zsi(αi) + (1− z)ri(αi)
(1)

is the posterior probability that player i is stubborn immediately after it is observed that i
demands αi at time zero given σRi and σSi . Note that F i

αi,αj
(0) may be positive. It is the

probability that i immediately concedes to j.
Player i’s discount rate is ρ > 0, for i = 1, 2. The continuous-time bargaining problem is

denoted B = {z, ρ}. If αi +αj ≤ 1 at t = 0, the demands are compatible and player i receives αi
and 1 − αj with probability 1/2. Suppose ᾱ = (αi, αj) is observed at time 0, with αi + αj > 1.
Then player i’s expected payoff from conceding at time t, given strategy profile σ̄ = (σi, σj),
where σi =

(
σRi , σ

S
i

)
, is:

Ui(t, σ
j | ᾱ) = αi

∫
y<t

e−ρydF j
ᾱ(y) +

αi + 1− αj
2

(
F j
ᾱ(t)− F j

ᾱ(t−)
)
e−ρt

+ (1− αj)
(
1− F j

ᾱ(t)
)
e−ρt,

(2)

where F j
ᾱ(t−) = limy↑t F

j
ᾱ(y). Hence, player i receives the discounted value of his demand αi

if player j concedes to i before i concedes to j. If players concede simultaneously, then player
i receives his own demand and the complement of player j’s demand with equal probability.
Player i receives the discounted value of the complement of player j’s demand, 1− αj, if player
i concedes first. Player i’s expected payoff from never conceding is:

1In AG, there are N +1 types of players: one rational type and N stubborn types. A stubborn player of type
αi in AG always demands αi, accepts any offer of at least αi, and rejects all smaller offers. They assume an
exogenously given finite set of stubborn types: C = {α1, α2, . . . , αN}.
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Ui(∞, σj | ᾱ) = αi

∫
y∈[0,∞)

e−ρydF j
ᾱ(y). (3)

This is a stubborn player’s payoff from facing a demand which is incompatible with his own
demand. Since F i

αi,αj
describes the concession behavior of a player, unconditional on his type, a

rational player i’s concession behavior is described by:

1

1− πi(αi)
F i
αi,αj

.

Therefore, a rational player i’s expected utility from a mixed action F i conditional on ᾱ = (αi, αj)

being observed at time 0 is:

Ui (σ̄ | ᾱ) =
1

1− πi(αi)

∫
y∈[0,∞)

Ui(y, σj | ᾱ)dF i
ᾱ(y). (4)

A rational player i’s expected utility from the strategy profile σ̄ is:

Ui(σ̄) =
∑
αi

ri(αi)

 ∑
αj≤1−αi

αi + 1− αj
2

((1− z)rj(αj) + zsj(αj))


+
∑
αi

ri(αi)

 ∑
αj>1−αi

Ui(σ̄ | αi, αj) ((1− z) rj(αj) + zsj(αj))

 .

(5)

The first term is the payoff a rational player receives from demanding αi when αi +αj ≤ 1. The
second term is the payoff from demanding αi when being faced with an incompatible demand.

Leaving aside the technical issues of defining a revision of offers in continuous time, revising
one’s offer reveals rationality. As we know from Myerson (1991), revealing rationality when the
opponent is stubborn with positive probability leads to immediate concession (i.e., revising one’s
demand so as to make it compatible with the opponent’s). Hence, I can restrict attention to the
reduced form game, where offers are made at time 0 once and for all, without loss.

For the analysis in B = {z, ρ}, I use the solution concept of Perfect Bayesian equilibrium
(PBE). As usual, a PBE is a profile of strategies σ∗ = (σ∗1, σ

∗
2), and the probability of facing a

stubborn type such that the strategy maximizes a player’s expected utility (given beliefs), and
the beliefs are formed according to Bayes’ rule, where possible (see Fudenberg and Tirole, 1991
for a formal definition). From now on, equilibrium refers to PBE.
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3 Benchmark

In this section, I recall the unique equilibrium outcome when stubborn players have no choice
over their initial demand, as modeled by Abreu and Gul (2000).2 This serves as a benchmark
for the analysis that follows.

There is an exogenously given set of stubborn types C = {α1, α2, . . . , αN}, where αn < αn+1

and αN < 1. A stubborn player of type αi always demands αi, accepts any offer of at least αi,
and rejects all smaller offers.

I denote the probability that stubborn player i is of type αn by si(α
n). Hence, si is a

probability distribution on C. The continuous-time bargaining problem is denoted BAG =

{(C, z, si, ρ)2
i=1}. Proposition 1 (AG) establishes existence and uniqueness of the equilibrium

outcomes with a given distribution of stubborn types.

Proposition 1 (AG, Proposition 2) For any bargaining game BAG, a Perfect Bayesian equi-
librium exists. Furthermore, all equilibria yield the same distribution over outcomes.

The unique equilibrium outcome in this game can be characterized by the two choices a
rational player makes: (1) when to concede, and (2) whom to mimic. In the equilibrium, after the
initial choice of demands, (i) at most one player concedes with positive probability immediately;
(ii) players concede at a constant rate that makes the opponent indifferent between waiting and
conceding; (iii) there is a finite time, call it T0, by which the posterior probability of stubbornness
reaches 1 simultaneously for both players and concessions by the rational type stop. Moreover,
any demand above some threshold is mimicked with positive probability.

I illustrate the mimicking behavior of the rational type in Figure 1. The figure shows the
posterior probability of stubbornness in an equilibrium.3 We can see that the lower three demands
are not mimicked by the rational type, i.e., π

(
α|α ≤ 1

3

)
= 1. On the other hand, any demand of

2
5
or higher is mimicked with positive probability, i.e., π

(
α|α ≥ 2

5

)
< 1. The U-shaped structure

of the posterior probability above the threshold is driven by the concept of strength, as defined
and discussed below.

Let me be more precise regarding the rate of concession and the stopping time of the rational
type. After time 0, player i demanding αi concedes to player j demanding αj at a rate:

λ
αi,αj
i =

ρ(1− αi)
αi + αj − 1

.

2In AG, players make offers sequentially rather than simultaneously (as in my model).
3In particular, I choose a PBE with seven stubborn types C = { 1

15 ,
1
10 ,

1
3 ,

2
5 ,

3
5 ,

2
3 ,

9
10}, and z =

1
3 .
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Figure 1: Probability of stubbornness conditional on the demand α, π(α), in a PBE with exoge-
nous stubborn types (see body for specification of parameters)

Requirement (iii) pins down the identity of the player who concedes at time 0 as well as the
probability with which this happens.4 Let Tαi,αji denote the time at which player i is stubborn
with probability 1 conditional on not conceding with positive probability at time 0. Then the
time T0 is given by:

T0 = min{Tα1,α2

1 , Tα2,α1

2 },

where
T
αi,αj
i = − 1

λ
αi,αj
i

log πi(αi)

for i = 1, 2. Player i is stronger than player j if and only if:

T
αi,αj
i < T

αj ,αi
j .

In other words, a player is stronger the sooner the time at which he is known to be stubborn.
The weaker player i has to concede with sufficient probability at time zero, so that conditional
on not conceding, and given the concession rates, his probability of stubbornness reaches 1 at
the same time as player j. The strength of player i relative to player j depends on (i) how likely
i is thought to be stubborn conditional on his demand, (ii) how high i’s demand is. Clearly, the
more likely a player is thought to be stubborn, the more willing the opponent is to give up. The

4For an intuition for (iii), see AG page 10.
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higher a player’s demand, the more willing his opponent is to wait. This is because conditional
on giving up, a player gets less the higher his opponent’s demand. Hence, the lower the demand
a player makes, the stronger he is because it makes his opponent more willing to give up. To
capture this intuition, it is useful to introduce the concept of “offer-adjusted reputation.” Let
µi(αi) denote the offer-adjusted reputation of player i when demanding αi:

µi(αi) = πi(αi)
1

1−αi . (6)

Player i is weaker than player j, (and hence, i concedes to j at time 0 with positive probability) if
and only if i has a lower offer-adjusted reputation: µi(αi) < µj(αj). In particular, the probability
of immediate concession of player i is given by:

F i
αi,αj

(0) = max

{
1−

(
µi(αi)

µj(αj)

)1−αi
, 0

}
.

The derivation follows AG.
Let me return to the U-shape of the posterior probability of stubbornness in Figure 1. Suppose

player j demands αj with probability 1 and is thought to be stubborn with probability π(αj).
Then, fixing the probability of player i being stubborn, the preferences of a rational player i
are single-peaked in his own demand αi: He trades off the probability with which his opponent
concedes at time 0, with how high his payoff is conditional on his opponent conceding (see
Section 5.2 for a more detailed discussion of preferences). This implies that in equilibrium, the
conditional probability of stubbornness must be single-bottomed in αi as Figure 1 shows.

To convey the message of AG, I allow discount rates to differ in the next proposition. Let
vi = ρi + ρj and let vi := max{α ∈ C ∪ {0} | α < vi}.

Proposition 2 (AG, Corollary in Section 5) Let BAG
n = {(C, zn, si, ρi)2

i=1} be a sequence of
continuous-time bargaining games such that limn→∞ zn = 0. Let ε be the mesh of C.5 Then for n
sufficiently large, the equilibrium payoff of agent i is at least ρi

ρi+ρj
− ε, and hence, the inefficiency

due to delay is at most 2ε.

Proposition 2 says that as the probability of a player being stubborn goes to 0, delay and
inefficiency disappear provided the “right” behavioral type is present. The right type is the type
making a demand proportional to a player’s patience. In the symmetric discounting case, the
right type then is a type demanding 1/2. A rational player in AG gets a payoff proportional to
his patience.

5I.e., maxk (αk+1 − αk), ordering the offers from smallest to largest.
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As I will explain, the results differ markedly once stubborn players can choose their initial
demand freely– I derive strong predictions in terms of behavior, but delay (and hence, inefficiency)
may not disappear even in the limit, at least when no refinement is applied.

4 Necessary conditions for equilibrium existence

This section is divided into two parts. In the first part, I show that there can be at most one
separating offer. By separating offer, I mean an offer which is exclusively made by only one type,
rational or stubborn. I argue that if it exists, it is made by the stubborn type. The nature of
such “hybrid equilibria” is postponed to Section 6. In the second part of this section, I focus on
symmetric PBE in which all offers are made with positive probability by both types. I provide
necessary conditions for such equilibria to exist.

4.1 (Non-)Existence of separating offers

In this subsection, I use the following refinement of PBE:

Assumption 1 When there are two offers revealing rationality, each player receives as payoff the
limit of the (unique) equilibrium payoff in the game, where each player is believed to be stubborn
with probability z.

There are two reasons to focus on such equilibria. The first is technical: it ensures continuity
of the equilibrium payoff correspondence as z → 0. The second is that such a payoff is an
equilibrium payoff in the game with complete information.

Lemma 1 There can be at most one offer which is only made by the stubborn type.

Proof (Sketch). Suppose there were two demands which are not mimicked by the rational
type. Then both of these demands would be conceded to immediately with probability of almost
1 as z → 0. In that case, the higher demand would be strictly preferred by the stubborn type.
Hence, there can be at most one such demand. By virtue of a rational player’s payoff being
strictly higher than a rational player’s payoff, a rational player would not want to mimic this
demand.

Lemma 2 There can be at most one offer which is only made by the rational type.

Proof (Sketch). In the following, I refer to an offer which is made by both types as a hybrid
offer. There can be no hybrid offer which is higher than a rational offer. A rational player would
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receive a strictly higher payoff regardless of the offer faced: when being faced with a compatible
offer, then the higher offer (i.e., the hybrid) would receive a higher payoff. When being faced
with an incompatible offer, the opponent would never concede to the rational offer at time 0;
However, the rational offer would immediately concede to the highest hybrid offer. Hence, there
cannot be a hybrid offer which is higher than a rational offer. Note that this implies that there
is no offer which is compatible with the rational offer. As a result, if there are multiple rational
offers, then all rational offers have to be higher than the highest hybrid offer. Suppose there were
several rational offers. Then they would receive the same payoff from facing any incompatible
hybrid offer. However, the payoff when being faced with another rational offer is strictly higher
for the lowest rational offer by Assumption 1.

Lemma 3 There exists z̄ > 0 such that for any z < z̄, there exists no symmetric equilibrium
with supp r = {αh, αr} and supp s = {αh}.

Proof. See appendix.
From the previous lemma, it is clear that the rational offer αr must be the higher offer.

However, if it is the higher offer, then the rational type strictly prefers to demand it over the
lower offer αh.

I will discuss existence of equilibria with an offer only made by the stubborn type in Section
6.

4.2 Necessary conditions for existence of mixed PBE

For the remaining part of this section, and the next section I will focus exclusively on symmetric
equilibria, where all offers are made by both types. Hence, I will drop subscript i. In this
subsection, I provide necessary conditions for existence of symmetric equilibria, where all offers
are made by both types. The analysis of the model is considerably simplified by the preliminary
proposition below. The proposition imposes structure on the demand configurations that can
occur in equilibrium.

Proposition 3 Fix any set of demands C. In any symmetric equilibrium with supp r = supp s =

C, the following holds:

1. the offer-adjusted reputation, µ(α), is decreasing in α ∈ C;

2. the lowest and the highest demand in C played with positive probability (by some type) are
incompatible (unless there is only one offer);
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3. the set (or, equivalently, number) of compatible equilibrium demands is strictly decreasing
in the demand; i.e., if α < α′, with α, α′ ∈ C, then there exists α′′ ∈ C such that α+ α′′ ≤
1 < α′ + α′′.

Proof. See Appendix.
Proposition 3 is trivial if |C| = 1. Hence, from now on, suppose |C| ≥ 2. The proof of

Proposition 3 builds on the following insight. The difference between a rational and a stubborn
player demanding α is the payoff when faced with an incompatible demand α′. The rational
player has the option value of being able to concede. Once a player is certain that the opponent
is stubborn a player would strictly prefer to concede. However, a stubborn player is unable
to do so. Hence, when faced with an incompatible demand, the payoff for a rational player is
strictly higher than the payoff for a stubborn player. Therefore, unless every demand made with
positive probability is compatible with every other demand, the equilibrium payoff for a rational
player must be strictly higher than the payoff for a stubborn player. Suppose every demand is
compatible with every other demand made with positive probability, i.e., all demands have to
lie below 1/2. This cannot be an equilibrium since a rational player would then strictly prefer
to deviate to a demand above 1/2. Hence, the payoff a rational player receives is strictly higher
than the payoff a stubborn player receives.

Sketch of proof of Proposition 3

1. F i
αi,αj

(0) is increasing in µj(αj). If µj(αj) was increasing in αj, a player would always
benefit from increasing his demand αj. This is inconsistent with a player being indifferent
between demands.

2. Suppose the lowest demand was compatible with the highest demand. Then the payoff
from making the lowest demand is the same for a rational and a stubborn player. But if it
is the same for the lowest demand, it must be the same for every other demand made with
positive probability. By the above argument, this cannot be.

3. Consider two consecutive demands that a rational player is indifferent between. This
implies that the increased gain from the higher offer is precisely offset by the decrease in
the option value of concession. The stubborn player does not have this option and hence,
strictly prefers the higher demand.
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5 Existence

This section presents the main results of the paper. In the first part, I show that there is a unique
symmetric equilibrium with one offer. I then argue that the real challenge is to create indifference
over multiple demands because the two types of players have different payoff functions. I show
that the two types of players can indeed be made indifferent over the same set of demands.
However, in the limit, as the probability of stubbornness goes to 0, there are at most three
offers over which players are indifferent. Moreover, at most two offers are made strictly positive
probability. I then turn to the question of inefficiency, showing that even in the limit, delay
may not disappear. As a result, there is a Folk theorem like payoff multiplicity (at least when
no refinement is applied). I then turn to equilibrium selection with refinements, in particular
passive beliefs and D1.

5.1 Existence with one offer

Lemma 4 below establishes that there is a unique symmetric equilibrium with one offer. In this
equilibrium, there is no delay (and hence, no inefficiency).

Lemma 4 There is a unique symmetric equilibrium, where players make only one demand. In
this equilibrium, players demand 1/2.

Proof. Suppose players choose a demand α < 1/2. Then both types of players have an
incentive to deviate to 1− α. Suppose instead players choose a demand α > 1/2. The expected
payoff for a rational player in this candidate equilibrium is 1 − α. The expected payoff for a
stubborn player from demanding α is (1 − α)(1 − z

α
1−α ). However, a stubborn player could

receive 1− α, by demanding 1− α. If players demand 1/2, then α = 1− α, and hence, there is
no such deviation. Suppose α = 1/2. Then if any deviation is believed to come from a rational
type, neither player type wants to deviate.

Hence, when focussing on symmetric equilibria with one demand, I derive very strong pre-
dictions in terms of payoffs and behavior. Independent of the prior probability of a player being
stubborn, there is no inefficiency. Subsection 5.4 shows that this does not generalize to equilibria
with more than one demand. In fact, there is delay in any equilibrium with more than one
demand, even when the probability of stubbornness goes to 0. The reader might wonder if it
is reasonable to require players to put probability 1 on any deviation coming from the rational
type – I defer the discussion on off-equilibrium path beliefs to Section 5.5, where refinements
are introduced. Given this belief however, it is clear that deterring deviations is straightforward.
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Hence, the real question is whether indifference over multiple demands is possible. This is what
I turn to next.

5.2 Existence with two offers

In this subsection, I show that equilibria, where the two types of players are mixing over multiple
(two) demands exist. After stating the result formally, I provide intuition by discussing the
preferences of the two types.

Proposition 4 (a) Fix a sequence zn → 0. Fix a corresponding convergent sequence of equi-
libria (αn, βn, rn, sn). Then there exist a ∈ (0, 1/2] and b ∈ (1− a, 1] such that

lim
n→∞

αn = a, lim
n→∞

βn = b. (7)

Moreover, in any such sequence,

lim
n→∞

(
rn(αn)

rn(βn)

)
=


2(a+b−1)

2b−1
,

1−2a
2b−1

,
and lim

n→∞

(
sn(αn)

sn(βn)

)
=

 1−b
2−a−b ,

1−a
2−a−b .

(8)

(b) For any a ∈ (0, 1/2] and b ∈ (1 − a, 1], there exists a sequence zn → 0 and a convergent
sequence of corresponding equilibria (αn, βn, rn, sn) satisfying (7) and (8).

Proof. See Appendix.
Proposition 4 says that a stubborn player and a rational player can be indifferent between

the same two demands, despite the distinct preferences in the reduced game, given their strategic
differences. Note that even in the limit, as the probability of stubbornness goes to 0, both types
put strictly positive probability on both demands. This may be surprising to the reader – it
implies that unlike in standard models of signaling, preferences in my (reduced-form) model do
not satisfy the single-crossing property.

Figure 2 shows the 3D-payoff profile of a rational and stubborn player i respectively as a
function of his own demand α and π(α) when faced with an opponent j who places positive
probability on two demands, 3/10 and 8/10, for a given pair of conditional probabilities of
stubbornness for player j.6 In particular, it shows the equilibrium payoff of a rational (stubborn)
player i when the opponent j mixes over 3/10 and 8/10, and I take αi and π(α) as given (not
necessarily optimal). For both types of player, the payoff is increasing in the probability of being

6In particular, I use the equilibrium probabilities of stubbornness conditional on the demands 3/10 and 8/10,
respectively.
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Figure 2: 3D-Payoff profile for a rational type (left) and a stubborn type (right) for a fixed set
of demands and posterior probabilities of the opponent

thought to be stubborn, π(α). This is not surprising: the higher the probability that a player
is thought to be stubborn, the more likely an opponent is to give up immediately at time 0.
The payoff is non-monotonic in the demand α. Conditional on the opponent conceding, there
is a benefit to making a higher demand. However, the probability of immediate concession is
decreasing in the demand.

Consider an equilibrium with z = 1/100, α = 3/10, and β = 8/10. Figure 4 shows the
indifference correspondences of a rational and stubborn type respectively in this equilibrium
(rational type in red, stubborn type in black). We can see that the indifference correspondences
cross at 3/10 and 8/10. Figure 3 shows a cross-section of the 3D-payoff profile of player i as
a function of αi and πi. In particular, I take the cross-section through (3/10, π(3/10)) and
(8/10, π(8/10)), where π(3/10) and π(8/10) are the equilibrium probabilities of stubbornness.
We can see that there is a discontinuity in the payoff of the stubborn type at αi = 2/10 and
αi = 7/10, as αi becomes incompatible with 8/10 and 3/10 respectively.

The difference between a rational type and a stubborn type demanding α is the payoff when
faced with an incompatible demand α′. The rational type has the option value of concession –
if his opponent is known to be stubborn, the rational type can (and strictly prefers to) concede,
while the stubborn type cannot. Suppose a player is faced with a demand of α′. Then a rational
and stubborn type alike receives 1− α′ from demanding 1− α′. A rational type receives at least
1 − α′ from demanding 1 − α′ + ε for any ε > 0 – he can always concede to this opponent and
receive 1− α′ immediately.

On the other hand, for ε > 0 small enough, a stubborn type receives strictly less than 1− α′
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Figure 3: Cross-sections of the 3D-payoff profile for rational (red) and stubborn (black) type (see
body for specification of z)
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Figure 4: Indifference correspondences for rational (red) and stubborn (black) type (see body
for specification of parameters)
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from demanding 1−α′+ ε. When making a compatible demand, such as 1−α′, a stubborn type
pays no cost of being faced with a (possibly) stubborn opponent. When demanding 1 − α′ + ε,
his demand is incompatible with his opponent’s. There is a positive probability that the player
will be faced with a stubborn opponent, in which case he receives a payoff of 0. As ε → 0, he
receives at most 1−α′+ ε→ 1−α′ when facing a rational opponent. However, with probability
πα′ he faces a stubborn opponent. This implies that there is a downward jump in the payoff of a
stubborn player i’s when demanding 1−α′+ ε rather than 1−α′. More generally, fixing a set of
possible demands by the opponent, the payoff function of a stubborn player i from demanding
αi is discontinuous in αi. Each demand made by the opponent with positive probability implies
a discontinuity in the payoff of a stubborn player from demanding αi as we vary αi. The size of
the downward jump in the payoff at 1−α′ is determined by the probability that the demand α′ is
made by a stubborn opponent; i.e., the downward jump in the payoff is larger the more likely the
stubborn type is faced with a stubborn opponent. This implies that when the (unconditional)
probability of a player being stubborn is small, the size of the jumps goes to 0. The cost of facing
an incompatible demand from a stubborn opponent implies that the indifference correspondence
of the stubborn type can cross the indifference curve of the rational type multiple times.

More generally, fixing the opponent’s demand and probability of stubbornness, a rational
player i’s payoff is single-peaked in αi. In other words, there is a unique best reply for a rational
player to a given demand of the opponent. The same is not true for a stubborn player – fixing
the opponent’s demand and probability of stubbornness, a stubborn player’s payoff has three
local peaks as we vary αi (either a demand is compatible with the opponent’s, it is incompatible
but has a higher offer-adjusted reputation, or it is incompatible and has a lower offer-adjusted
reputation).

The smaller the (unconditional) probability of a player being stubborn, the smaller the payoff
jumps of the stubborn type are. The smaller the jump, the closer together any two demands
between which both types of players are indifferent (one demand weakly below the demand at
which the jump occurs and one above the jump). However, Proposition 3 imposes significant
structure on the demand configurations that can occur in equilibrium. In the case of three
demands, the lower two demands need to be compatible. Hence, as z → 0, it becomes “more
difficult” to make players indifferent between different demands. This is what I turn to in the
next subsection.
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5.3 Existence with three or more offers

The proposition below states that players can be made indifferent over more than two offers.
However, the demand configurations over which players can be indifferent have a very specific
structure. Define

sa =

 1−c
2−a−c if a > 1− c

4
−
√
c(8− 7c),

0 if a < 1− c
4
−
√
c(8− 7c),

sb =

0 if a > 1− c
4
−
√
c(8− 7c),

1 if α < 1− c
4
−
√
c(8− 7c),

sc =

 1−a
2−a−c if α > 1− c

4
−
√
c(8− 7c),

0 if a < 1− c
4
−
√
c(8− 7c).

Proposition 5 (a) Fix any set of three demands C = {a, b, c}, with 1/2 < b < 1− a < c ≤ 1.
Then there exists z̄ > 0, such that for any z < z̄, there exists no symmetric equilibrium
with support C.

(b) Fix a sequence zn → 0, and a corresponding convergent sequence of equilibria (αn, βn, γn, rn, sn).
Then there exist a ∈ (0, 1/2] and c ∈ (1− a, 1] such that

lim
n→∞

(αn, βn, γn) = (a, 1− a, c) . (9)

Moreover, in any such sequence,

lim
n→∞

rn = (0, 1, 0), lim
n→∞

sn = (sa, sb, sc) . (10)

(c) For any a ∈ (0, 1/2] and c ∈ (1− a, 1], there exists a sequence zn → 0 and a corresponding
convergent sequence of equilibria (αn, βn, γn, rn, sn) satisfying (9) and (10).

Proof. See Appendix.
Note that Proposition 5 says in the limit, players are faced with a demand of 1 − α with

probability 1.

Conjecture 1 (a) Fix any set of demands C, where |C| > 3. Then there exists z̄ > 0, such
that for any z < z̄, there exists no equilibrium with support C.
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(b) Fix a sequence zn → 0, and fix a corresponding convergent sequence of equilibria (αn1 , . . . , α
n
K , r

n, sn),
where K > 3. Then there exists a ∈ (0, 1/2] and c ∈ (1− a, 1] such that

lim
n→∞

(αn1 , . . . , αk−1, αk, . . . , α
n
N) = (a, . . . , a, 1− a, . . . , 1− a, c) , (11)

where αk = dK/2e.

(c) For any a ∈ (0, 1/2] and c ∈ (1− a, 1], there exists a sequence zn → 0 and a corresponding
convergent sequence of equilibria (αn1 , . . . , α

n
K , r

n, sn) satisfying (11).

Proof. To be completed.
The intuition for Proposition 5 and the heuristic argument for Conjecture 1 is as follows.

I order demands from lowest to highest, denoting the lowest demand by α1, and the highest
demand by αN . Throughout, suppose that there are no offers made exclusively by one type.

Step 1: If there are more than three offers, then α1 and α2 have to be virtually identical.
If there are exactly three offers, then α1 and α2 have to be exactly compatible (i.e., add up to
1). Recall that the lowest demand is compatible with all but the highest demand; and that
the second lowest demand is compatible with all but the highest and second highest demand –
this follows from Proposition 3. Hence, the payoff from demanding the second lowest offer α2 is
strictly higher than the payoff from demanding the lowest offer α1 except when faced with the
highest demand αN . Hence, for a player to be indifferent between α1 and α2, then either (1) αN
has to concede to α1 much more likely than to α2 so as to offset the payoff difference, or (2) α1

and α2 are nearly identical.
Suppose (1). Recall that the probability of immediate concession is pinned down by the

probability of being thought to be stubborn adjusted for the level of the demand (i.e., by the
offer adjusted reputation). Fixing demands, the more likely a player is thought to be stubborn,
the more likely he will be conceded to immediately. Fixing the probability of being thought to
be stubborn, the higher a player’s demand the less likely he is conceded to immediately.

If αN is to concede to α1 much more likely than αN concedes to α2, (a) αN must be thought
to be stubborn much more likely than α2 or (b) α2 is is nearly identical to αN and similarly likely
to be thought to be stubborn.

Suppose (a). If z is close to 0, then this implies that the rational type is unlikely to demand
αN . However, this implies that for a rational player to be indifferent between α1 and α2, then
either (i) the two offers α1 and α2 are nearly identical so as to minimize the payoff difference
from facing any offer αi 6= αN . Note that if α1 and α2 are almost identical, then αN−1 is nearly
identical to 1 − α1; or (ii) players are faced with a demand of αN−1 almost certainly; and the
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payoff from facing a demand of αN−1 is nearly identical for α1 and α2. When making a demand
of α1, the payoff from facing an αN−1 is α1 and 1− αN−1 with equal probability. When making
a demand of α2, the payoff is a weighted sum of α2 and 1− αN−1. Recall that

α1 ≤ 1− αN−1 ≤ α2.

Hence, for the payoff from the two demands α1 and α2 to be “the same,” αN−1 must be equal to
1 − α1. Secondly, it requires that αN−1 concedes to α2 with low probability (or α2 is virtually
identical to α1). But for αN−1 to concede to α2 with low probability, it must be that α2 is close
to αN−1.7 Suppose (b). Then it must be that α2 = αN−1.

Hence, if there are more than three offers, it must be that α1 and α2 are almost identical,
and hence, αN−1 must be equal to 1− α1. Moreover, if there are exactly three offers, then these
offers must be close to (α1, 1− α1, αN).

Step 2: If there are more than three demands, then all offers below 1/2 are clustered around
α1, and all offers above 1/2 except the very highest, are clustered around 1− α1. Suppose, α2 is
almost identical to α1; and hence, αN−1 is almost identical to 1− α1.

The rational payoff from demanding αN is higher than the payoff from demanding α1 except
when faced with a demand of αN . Recall, αN is incompatible with all offers; and α1 is compatible
with all but the highest offer. It is then clear that αN gets a strictly higher payoff than α1 from
any demand lower than or equal to αN−2. Recall that αN−1 is virtually identical to 1 − α1,
which implies that the payoff from demanding α1 and αN is virtually identical when faced with
a demand of αN−1.

For a player to be indifferent between αN and α1, then either (1) the highest offer has to
be played with sufficient probability so as to offset the payoff difference; or (2) offers where αN
and α1 receive a different payoff are played with probability close to 0. Suppose (1). If αN−1 is
virtually identical to α1, then αN and αN−1 receive the same payoff from all demands by their
opponent except when faced with a demand of αN . If αN concedes with positive probability to
αN−1, then αN−1 is preferable to αN . Hence, for a player to be indifferent between the highest two
offers, it must be that αN hardly concedes to αN−1. But this is inconsistent with αN being played
with high probability. Suppose (2). When faced with a demand of less than 1/2, the payoff from
demanding αN (strictly more than 1/2) is strictly higher than the payoff from demanding α1 (at
most 1/2). Hence, any demand less than 1/2 is played with probability close to 0. Moreover, any
demand above 1/2 is either close to 1 − α1 or is played with probability close to 0. If demands
above 1/2 are close to 1− α1, this implies that all demands below 1/2 have to be close to α1.

7It cannot be that αN−1 is thought to be much more likely to be crazy than α2 if αN−1 is players are faced
with a demand of αN−1 almost certainly.
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5.4 Inefficiency and payoffs in the limit

Proposition 4 states that the necessary conditions for equilibrium existence in Proposition 3 are
sufficient if players put strictly positive probability on two demands only. For such an equilibrium
to exist, the lower demand α must be (weakly) less than 1/2, and α and β must add up to strictly
more than 1. In such an equilibrium, when the probability of stubbornness is small, the higher
demand β immediately concedes to the lower demand α with probability close to 1. When both
players choose the higher demand, they engage in a war of attrition with an expected payoff of
1−β. Therefore, even in the limit, delay (and hence, inefficiency) may not disappear. It is clear,
that when α is close to 0 (and hence, β), a rational player’s expected equilibrium payoff is close
to 0. If on the other hand both demands are close to 1/2, a rational player’s expected payoff is
close to 1/2 (when players are equally patient). By adjusting α and β one can generate in this
fashion any payoff between 0 and 1/2. Corollary 2 formalizes this insight.

Corollary 2 Fix any v ∈ (0, 1/2]. Then there exists z̄ such that for any z < z̄, a symmetric
equilibrium exists such that the equilibrium payoff for a rational agent is v.

Proof. This follows immediately from Proposition 4. Fix any equilibrium characterized in
Proposition 4. Denote the payoff of a rational player in this equilibrium by vr. Then

lim
z→0

vr =
2(a+ b− 1)

2b− 1
(1− a) +

1− 2a

2b− 1
(1− b).

Fix any ε > 0 and set a < ε. Then b > 1− ε. The result immediately follows.
Hence, unlike with an exogenously given distribution of stubborn types, there is a Folk theo-

rem like payoff-multiplicity when stubborn types can choose their initial demand freely. This is
induced by the delay to agreement. For delay to disappear in the limit with exogenous stubborn
types, AG require the “right” stubborn type to be present. In the symmetric discounting case,
this would be the type demanding 1/2. Corollary 2 shows that when the stubborn type is given
choice over his initial demand, the “right” stubborn type may not be present. When he is not,
delay (and hence, inefficiency) do not disappear even when the probability of a player being
stubborn is infinitely small. It is natural to ask if I can derive stronger predictions regarding
payoffs (and inefficiency) when using refinements.

5.5 Refinements

5.5.1 Passive beliefs

Denote the belief about a player being stubborn conditional on the out-of-equilibrium demand
d by πd. Suppose a player puts probability z on his opponent being stubborn if the opponent
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chooses an out-of-equilibrium demand d, i.e., πd = z. An equilibrium is a passive belief equilib-
rium if there exists no profitable deviation d conditional on πd = z.

Lemma 5 There is a unique passive belief equilibrium. In this equilibrium, a player makes a
demand proportional to his patience.

Proof. See appendix.
When players are equally patient as assumed throughout this paper, this implies that players

will demand 1/2. In equilibria with more than one offer, at least one offer must have a posterior
probability of stubbornness less than z. This implies that the rational type would benefit from
deviating to an offer within ε > 0 of this offer. Note that Lemma 5 makes no restriction on the
type of equilibrium considered, i.e., it includes asymmetric equilibria.

5.5.2 Divinity

Loosely speaking, the refinement D1 attaches probability 1 to the type with the strongest incen-
tive to deviate to a given demand. More formally, denote the set of types by Θ = {R, S}, where
R stands for rational and S for stubborn. Let u∗i (θ) be the equilibrium payoff of type θ ∈ {R, S}.
Define D(θ, S, d) to be the set of mixed-strategy best responses (MBR) F2 to demand d and
beliefs concentrated on S that make type θ strictly prefer d to his equilibrium strategy,

D(θ, S, d) = ∪µ:µ(S|d)=1{F2 ∈MBR(µ, d) s.t. u∗1(θ) < u1(d, F1, θ)},

and let D0(θ, S, d) be the set of mixed best responses that make type θ exactly indifferent. A
type θ is deleted for demand d under criterion D1 if there is a θ′ such that

{D(θ,Θ, d) ∪D0(θ,Θ, d)} ⊂ D(θ′,Θ, d).

In other words, if the set of best responses (and associated beliefs about a player being stubborn
conditional on d) for which a rational player benefits from deviating to d is strictly smaller than
the set of best responses for which a stubborn player benefits from deviating to d, then D1 puts
probability 0 on the deviation coming from a rational player. Note that D1 is not defined for
dynamic games to beyond signaling games. However, first, note that, given the realized demands
and associated beliefs, I can compute the expected payoff from the continuation game. Hence, I
can associate to my game a corresponding game which ends once offers are chosen. This is the
game on which I apply D1.

Lemma 6 The unique symmetric one-offer equilibrium satisfies D1.
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Proof. The payoff for both types of player in the symmetric one-offer equilibrium is α = 1/2.
If a player was to deviate, he would deviate to d > 1/2. Denote the belief that the demand d is
made by a stubborn player by sd. The payoff from d for a stubborn player is:

vds =
(
1− z2d

)(
d

(
1− zs

− 1
2(1−d)

d

)
+

1

2
zs
− 1

2(1−d)
d

)
.

A rational player’s payoff from demanding d is:

vdr = d

(
1− zs

− 1
2(1−d)

d

)
+

1

2
zs
− 1

2(1−d)
d .

It follows immediately that the threshold belief (and the resulting action by the opponent) at
which the stubborn player prefers to deviate is strictly above the threshold belief at which the
rational player prefers to deviate. Hence, D1 puts probability 1 on a deviation coming from a
rational player. As a result, there is no profitable deviation from α = 1/2 for either type of
player.

Note that, unlike with passive beliefs, my claim is only about symmetric equilibria. Any
asymmetric one offer equilibrium (i.e., where player i demands αi and j demands αj = 1 − αi)
satisfies D1.

Lemma 7 There is a unique equilibrium satisfying D1, in the set of symmetric equilibria with
at most two offers.

Proof. See appendix.

Conjecture 3 There is a unique equilibrium satisfying D1 in the set of symmetric equilibria
with at most three offers.

Proof. To be completed.
Let me illustrate D1 in a simple two demand equilibrium. Consider an equilibrium with

(α, β, z) =
(

1
3
, 3

4
, 1

100

)
. It is straightforward to derive the threshold MBR D0(θ, S, d) for θ = R, S

which makes a player of type θ indifferent between α (or equivalently β) and d. Figure 5
shows the ratio of the “threshold beliefs” at which a player is indifferent between the equilibrium
demand and deviating to a demand d ∈ (α, 1 − α]. We can see that the ratio is consistently
above 1. Hence, the set of MBR and associated beliefs for which a rational player benefits
from deviating to d is a proper subset of the set of MBRs and associated beliefs for a stubborn
player for any d ∈ (α, 1 − α]. But if a player was thought to be stubborn with probability 1 if
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Figure 5: Ratio of the threshold belief of a rational player/threshold belief of a stubborn player

he makes any demand in (a, 1 − a], this is a profitable deviation. Hence, the equilibrium with
(α, β, z) =

(
1
3
, 3

4
, 1

100

)
does not satisfy D1.8

The difference between a rational and a stubborn player is the payoff when faced with an
incompatible demand. The rational player has the option value of concession – if his opponent is
known to be stubborn, the rational player can (and strictly prefers to) concede, while the stubborn
player cannot. In fact, the stubborn player’s payoff is 0 when faced with an incompatible demand
from a stubborn opponent. Hence, the stubborn player is at a disadvantage when being faced
with an incompatible demand relative to the rational player. When faced with a demand of α,
the payoff of a stubborn player as a function of his own demand jumps down at 1 − α. This
makes a deviation d ∈ (a, 1− a] “more attractive” for the stubborn type. This suggests that D1

(or passive beliefs) may substitute for exogenous behavioral types as in AG.

6 Existence with a separating offer

In Section 4, I show that there can be at most one separating offer, and that this separating offer
has to be made by the stubborn type. In this section, I show that such equilibria do indeed exist.

Lemma 8 (a) Fix any α > 1/2. There exists z̄ > 0, such that for all z < z̄, there exists a
symmetric equilibrium with supp r = {α} and supp s = {1− α, α}.

8My choice of demands as well as the probability of a player being stubborn is without loss. Fixing d = 1/2,
I have plotted the ratio of the threshold beliefs for any α, β. It is clear that the ratio is consistently above 1, and
hence, D1 rules out any such equilibrium.
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(b) Fix any αh, αs with αh+αs 6= 1. There exists no symmetric equilibrium with supp r = {αh}
and supp s = {αh, αs}.

While I have not established existence for such hybrid equilibria with more than two offers,
I conjecture that one can always add a separating offer for the stubborn type.

7 Conclusion

This paper shows that the predictions of the reputation literature are reliant on the assumption
of exogenous stubborn types. Once the stubborn type is given choice over his initial demand,
delay (and hence, inefficiency) may not disappear even when the probability of stubbornness
goes to 0. Unlike in the literature, I am able to derive strong behavioral predictions in terms of
the demand configurations that can occur in equilibrium.

A natural extension to the current paper would be to broaden the set of strategies to available
to the stubborn type. For instance, it may be natural to introduce an exit option for the stubborn
type, when known to be faced with a stubborn opponent. This may help to understand better
the tradeoff between the predictions of the reputation literature and the flexibility given to
behavioral types. While this paper focusses on endogenizing behavioral types in a bargaining
setting, it would also be interesting to consider this question in other settings, for instance in a
repeated games framework.
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Appendix

Proof of Lemma 3. Suppose there was one offer which is only made by the rational type,
call it αr, and one offer which was made by both types, call it αh. Denote the probability with
which the rational type demands αh by rh.

There exists no such PBE if αh > 1/2, and αh + αr > 1. In this case, the payoff of a rational
player from playing αh is strictly higher than the payoff from playing αr:

((1− z)rh + z)(1− αh) + (1− z)(1− rh)(1− αr) < ((1− z)rh + z)(1− αh) + (1− z)(1− rh)αh.

Suppose αr > 1/2, and αh < 1/2, with αr + αh > 1.
Then the payoff of a rational player demanding αr is:

vαrr = ((1− z)rh + z) (1− αh) + (1− z)(1− rh)(1− αr).
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The payoff from demanding αh is the same for a rational and stubborn type:9

vαh = ((1− z)rh + z) 1/2 + (1− z)(1− rh)αh.

Hence,

r∗h = 1− 1− 2αh
(1− 2αr)(1− z)

.

Note r∗h < 0 if

z <
2(αh + αr − 1)

2αr − 1
.

Hence, for small z there exists no symmetric PBE with αr > 1/2, and αh < 1/2, with αr+αh > 1.
Moreover, under assumption 1, a rational player has an incentive to deviate to 1− αh:

v1−αh
r = 1− αh.

Suppose αr > 1/2, and αh < 1/2, with αr + αh < 1. Then the payoff of a rational player is:

vαrr = ((1− z)rh + z) (1/2(1− αh) + 1/2αr) + (1− z)(1− rh)(1− αr)

vαrr = ((1− z)rh + z) 1/2 + (1− z)(1− rh) (αh1/2 + (1− αr)1/2) .

Hence, the payoff from αr is strictly higher than from αh.

Proof of Proposition 3. For the proof that follows it is useful to introduce some notation.
Define:

2W = {µ2(α2) < µ1(α1)},

and
2S = {µ2(α2) ≥ µ1(α1)}.

Moreover, I denote by qji the probability of player i making a demand αj, i.e.,

qji = zisi(α
j) + (1− zi)ri(αj).

Note that for existence of equilibrium, it is necessary that
∑

αi q
i
1(αi) = 1, and∑

αi

π1(αi)qi1 = z.

9Clearly, a stubborn type has no incentive to deviate (he receives the same payoff as a rational player).
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I can write the payoff of a rational player 2 demanding α2 in equilibrium as:

V R∗
2 (α2) =

∑
αi≤1−α2

qi1
1− αi + α2

2
+

∑
αi s.t. 2W

qi1(1− αi) +
∑

αi s.t. 2S

qi1 (α2F
αi,α2

1 (0) + (1− αi) (1− Fαi,α2

1 (0)))

=
∑

αi≤1−α2

qi1
1− αi + α2

2
+

∑
αi s.t. 2W

qi1(1− αi) +
∑

αi s.t. 2S

qi1

(
α2 + (1− αi − α2)

(
µ1(αi)

µ2(α2)

)1−αi
)
.

Similarly, I can write the payoff of a stubborn player 2 demanding α2 in equilibrium as:

V S∗
2 (α2) =

∑
αi≤1−α2

qi1
1− αi + α2

2
+

∑
αi s.t. 2W

qi1α2

∫ T
α2αi
1

0

e−ρsdFαiα2
1 (s)

+
∑

αi s.t. 2S

qi1α2

(
Fαi,α2

1 (0) +

∫ T
α2αi
2

0

e−ρsdFαiα2
1 (s)

)
.

This requires the evaluation of two integrals:∫ T
αiα2
1

0

e−ρsdFαiα2
1 (s) =

[
− λαiα2

1

λαiα2
1 + ρ

exp (−s (r + λαiα2
1 ))

]Tαiα21

0

=
λαiα2

1

λαiα2
1 + ρ

(1− exp (−Tαiα2
1 (ρ+ λαiα2

1 )))

=
λαiα2

1

λαiα2
1 + ρ

(
1− exp

(
1

λαiα2
1

log π1(αi) (ρ+ λαiα2
1 )

))
=

1− αi
α2

(1− µ1(αi)
α2) .

∫ T
α2αi
2

0

e−ρsdFαiα2
1 (s) =[...] =

1− αi
α2

π1(αi)π2(α2)
− 1−αi

1−α2

(
1− π2(α2)

α2
1−α2

)
=

1− αi
α2

(
µ1(αi)

µ2(α2)

)1−αi
(1− µ2(α2)α2) .

I can write V S∗
2 (α2) as:

V S∗
2 (α2) =V R∗

2 (α2)−
∑

αi s.t. 2W

qi1(1− αi)µ1(αi)α2 −
∑

αi s.t. 2S

qi1(1− αi)
(
µ1(αi)

µ2(α2)

)1−αi

µ2(α2)α2

=V R∗
2 (α2)−

∑
αi>1−α2

qi1(1− αi)µ1(αi)
α2 max

{
1,

(
µ2(α2)

µ1(αi)

)αi+α2−1
}
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(1) Suppose the offer-adjusted reputation µ2(α2) was not decreasing in α2. Suppose further that
an increase in α2 does not change the sets αi < 1− α2, 2W , and 2S in V R∗

2 . By inspection, V R∗
2

is increasing in α2: if αi is such that 2S , then

1−
(
µ1(αi)

µ2(α2)

)1−αi
> 0.

Moreover, V R∗
2 is increasing in µ2(α2): 1 − αi − α2 < 0 by virtue of the demands being

incompatible. And hence, since µ1(αi)
µ2(α2)

is decreasing in µ2(α2), V R∗
2 is increasing in µ2(α2). This

implies that provided an increase in α2 does not change the sets, µ2(α2) has to be strictly
decreasing in α2 for player 2 to be indifferent between demands.

Now suppose that the offer-adjusted reputation µ2(α2) is not decreasing in α2; and an increase
in α2 does change the sets from αi < 1− α2 to 2W , or from 2W to 2S , or both. I show that any
such increase in α2 increases a rational player’s payoff. Note that

1− αi + α2

2
< (1− αi)

for any α2 < 1−αi (where α2 is the “lower” and hence, compatible demand). Hence, an increase
in α2 which causes a shift from the set α2 < 1− αi to 2W increases player 2’s payoff. Similarly,

(1− αi) <

(
α2 + (1− αi − α2)

(
µ1(αi)

µ2(α2)

)1−αi
)
,

for any α2 > 1 − αi. Hence, if the offer-adjusted reputation is not decreasing, then an increase
in α2 strictly increases player 2’s payoff. Hence, for a player to be indifferent between demands
it must be that µ2(α2) is decreasing in α2.

(3) Suppose the set of compatible demands was constant between αn and αn+1. Then I could
write the payoff differences for a stubborn player as:(

V S∗
2 (αn)− V R∗

2 (αn)
)
−
(
V S∗

2 (αn+1)− V R∗
2 (αn+1)

)
= −

∑
αi>1−αn

qi(1− αi)·(
µ1(αi)

αn max

{
1,

(
µ2(αn)

µ1(αi)

)αi+αn−1
}
− µ1(αi)

αn+1 max

{
1,

(
µ2(αn+1)

µ1(αi)

)αi+αn+1−1
})

.

I show that this difference is always negative. There are three cases to consider: (i) the maximum
is 1 in both max operators, (ii) the maximum is 1 for neither case, (iii) 1 is the maximum when
αn+1, but not when αn. Suppose (i):

max

{
1,

(
µ2(αn)

µ1(αi)

)αi+αn−1
}

= 1
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and

max

{
1,

(
µ2(αn+1)

µ1(αi)

)αi+αn+1−1
}

= 1.

Clearly,
µ1(αi)

αn > µ1(αi)
αn+1 .

Therefore, the payoff difference is negative in this case.
Suppose instead (ii):

max

{
1,

(
µ2(αn)

µ1(αi)

)αi+αn−1
}

=

(
µ2(αn)

µ1(αi)

)αi+αn−1

and

max

{
1,

(
µ2(αn+1)

µ1(αi)

)αi+αn+1−1
}

=

(
µ2(αn+1)

µ1(αi)

)αi+αn+1−1

.

Note that for any such αi, µ(αn) > µ(αn+1), and 0 < αn+αi−1 < αn+1 +αi−1 < 1. Therefore:

µ(αi)
1−αi

(
µ(αn)αn+αi−1 − µ(αn+1)αn+1+αi−1

)
> 0.

Therefore, the payoff difference is negative in this case.
Finally suppose (iii):

max

{
1,

(
µ2(αn)

µ1(αi)

)αi+αn−1
}

=

(
µ2(αn)

µ1(αi)

)αi+αn−1

and

max

{
1,

(
µ2(αn+1)

µ1(αi)

)αi+αn+1−1
}

= 1.

Note that this implies µ(αn) > µ(αi). Moreover, by assumption

0 < αi + αn − 1 < αi + αn+1 − 1 < 1.

Therefore,
µ(αi)

1−αiµ(αn)αi+αn−1 − µ(αk)
αn+1 > 0.

Hence, for a stubborn player to be indifferent the set of compatible demands must be decreasing
in α.
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Proof of Proposition 4. I can write the payoff for a rational player from making demands
α and β wpp (and only those) as

V R
α = (zs(α) + (1− z)r(α))

1

2

+ (zs(β) + (1− z)r(β))

(
α + (1− β − α)

zs(β)

zs(β) + (1− z)r(β)

(
zs(α)

zs(α) + (1− z)r(α)

)− 1−β
1−α
)

V R
β = (zs(α) + (1− z)r(α)) (1− α) + (zs(β) + (1− z)r(β)) (1− β)

(12)

Moreover, I can write the payoff differences V R
α − V S

α and V R
β − V S

β as

V R
α − V S

α = − (zs(β) + (1− z)r(β)) (1− β)
zs(β)

zs(β) + (1− z)r(β)

(
zs(α)

zs(α) + (1− z)r(α)

)α+β−1
1−α

V R
β − V S

β = − (zs(α) + (1− z)r(α)) (1− α)

(
zs(α)

zs(α) + (1− z)r(α)

) β
1−α

− (zs(β) + (1− z)r(β)) (1− β)
zs(β)

zs(β) + (1− z)r(β)

(
zs(α)

zs(α) + (1− z)r(α)

) β
1−β

(13)

An equilibrium requires

V R
α − V R

β = 0,

V R
α − V S

α −
(
V R
β − V S

β

)
= 0,

r(α) + r(β) = 1,

s(α) + s(β) = 1.

(14)

I replace
zs(α)

zs(α) + (1− z)r(α)

by πα, and
zs(β)

zs(β) + (1− z)r(β)
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by πβ. Moreover, I replace s(α)/πα by zα. Similarly, for s(β)/πβ. Then I get:

V R
α − V R

β = z

(
(β + α− 1) zβ −

(1− 2α)zα
2

− (β + α− 1)π
− 1−β

1−α
α πβzβ

)
(
V R
α − V S

α

)
−
(
V R
β − V S

β

)
= z

(
(1− β) π

β
1−β
β zβ + π

α+β−1
1−α

α ((1− α) παzα − (1− β)πβzβ)

)
1 = zαπα + zβπβ

1− z
z

= zα(1− πα) + zβ(1− πβ)

(15)

Note that the payoff differences are linear in z. Hence, I divide by z. Moreover, I replace zβ by
1−παzα
πβ

. I denote the new expressions, AR and AS:

AR = (β + α− 1)
1− παzα

πβ
− (1− 2α)zα

2
− (β + α− 1) π

− 1−β
1−α

α (1− παzα)

AS = (1− β) π
β

1−β
β

1− παzα
πβ

+ π
α+β−1
1−α

α ((1− α) παzα − (1− β) (1− παzα))

1− z
z

= zα(1− πα) +
1− παzα

πβ
(1− πβ) .

(16)

For the constraint to be satisfied as z → 0, it is necessary that zα →∞, or πβ → 0. If zα →∞,
then for a solution to the system to exist, it is necessary that πβ → 0 (from AR). If πβ → 0, then
for a solution to exist, it is necessary that either πα → 0, or παzα → 1−β

2−α−β . Hence, if a solution
exists, then

πα → 0 and πβ → 0,

or
παzα →

1− β
2− α− β

and πβ → 0.

I can solve AR = 0 for zα.

zα =

(α + β − 1)

(
π
− 1−β

1−α
α − π−1

β

)
−1/2 + α + (α + β − 1)

(
π
β−α
1−α
α − παπ−1

β

) (17)
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I replace zα in AS. I denote the new expression BS:

BS = (1− β)

1−
πα

(
(α + β − 1)

(
π
− 1−β

1−α
α − π−1

β

))
−1/2 + α + (α + β − 1)

(
π−

β−α
1−α − παπ−1

β

)
 π

−2+ 1
1−b

β

+ π
−1+ β

1−α
α

−1 + β +

2 (2− α− β) (α + β − 1) πα

(
π
− β

1−α
α − π−

1
1−α

α πβ

)
−2 (α + β − 1) π

− α
1−α

α πβ + π
− β

1−α
α (2 (α + β − 1) πα + πβ − 2απβ)


I can bring the two fractions to a common denominator, multiply BS by this common denomi-
nator, and then simplify. I denote the new expression CS.

CS =2(1− β)− 2α (2− α− β) + (1 + 2α (−1 + β)− β) πβπ
−1
α

− (1− 2α) (1− β) π
− β

1−α
α π

β
1−β
β + 2(1− α) (α + β − 1) π

− 1−β
1−α

α πβ

For a solution to exist, it is necessary that one of the three terms involving πα and πβ in CS goes
to a constant, and the other two terms go to 0.

Case 1 πα/πβ → K, where K is some constant to be determined. Then

π
− β

1−α
α π

β
1−β
β = (πα/πβ)−

β
1−α π

− β
1−α

β π
β

1−β
β → K−

β
1−απ

β(β−α)
(1−α)(1−β)
β

Therefore, if πα/πβ → K, then π
− β

1−α
α π

β
1−β
β → 0. Moreover,

π
− 1−β

1−α
α πβ = (πα/πβ)−

1−β
1−α π

− 1−β
1−α

β πβ → K−
1−β
1−απ

β−α
1−α
β .

Hence, if πα/πβ → K, then π
− 1−β

1−α
α πβ → 0. Hence, I can solve for the ratio πα/πβ → K in the

limit:

πα/πβ →
(1− 2α)(1− β)

2(1− α)(α + β − 1)
,

or equivalently,

K =
(1− 2α)(1− β)

2(1− α)(α + β − 1)
.
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I can therefore also derive an expression for zα (equation (6)) in the limit:

zα =
(α + β − 1) (πα/πβ)−

1−β
1−απ

− 1−β
1−α

β − (α + β − 1) π−1
β

−1/2 + α + (α + β − 1) (πα/πβ)
β−α
1−α π

β−α
1−α
β − (α + β − 1) (πα/πβ)

,

zα → z∗α =
(α + β − 1)K−

1−β
1−απ

− 1−β
1−α

β − (α + β − 1) π−1
β

−1/2 + α + (α + β − 1)K
β−α
1−α π

β−α
1−α
β − (α + β − 1)K

.

(18)

By using the constraint in (5) I can solve for πβ as a function of z only:

1− z
z

=zα(1− πα) +
1− πβ
πβ

(1− παzα)

=zα (1− (πα/πβ)πβ) +
1− πβ
πβ

(1− (πα/πβ)πβzα)

1− z
z
≈z∗α (1−Kπβ) +

1− πβ
πβ

(1−Kπβz∗α)

≈π−1
β − 1

(19)

Since s(α) = zα/πα:

s(α)→
(α + β − 1)K−

1−β
1−απ

β−α
1−α
β − (α + β − 1)

−1/2 + α + (α + β − 1)K
β−α
1−α π

β−α
1−α
β − (α + β − 1)K

K

≈ (α + β − 1)K−
1−β
1−α z

β−α
1−α − (α + β − 1)

−1/2 + α + (α + β − 1)K
β−α
1−α z

β−α
1−α − (α + β − 1)K

K.

(20)

Hence,

lim
z→0

s(α) =
1− β

2− α− β
.

Recall
πα =

zs(α)

zs(α) + (1− z)r(α)
.

Moreover,
πα/πβ → K.

Hence, I can solve for limz→0 r(α) in the same fashion:

lim
z→0

r(α) =
2(α + β − 1)

2β − 1
.
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Case 2 πα/π
1−α
1−β
β → K, where as before K is some constant to be determined. However,

πβ/πα = πβ

(
πα/π

1−α
1−β
β

)−1

π
1−α
1−β
β → K−1π−

β−α
1−α .

Hence, πα/π
1−α
1−β
β 6→ K.

Therefore, there is a unique candidate solution. Note that r(α) and s(α) are well-defined for
any α, β such that α < 1/2 and α + β > 1. The second part of the proposition follows by the
implicit function theorem. A and B below are the payoff differences between two offers a and b
for a rational and stubborn type respectively.

A = (sa− 1)z(a+ b− 1)

(
saz

ra(−z) + ra + saz

) 1−b
a−1

+
1

2
(2a+ (2b− 1)z(ra− sa)− 2bra + 2b+ ra− 2)

B = (b−1)(sa−1)z

(
(sa − 1)z

ra(−z) + ra + saz − 1

) 1
1−b−2

−z(sa(a+b−2)−b+1)

(
saz

ra(−z) + ra + saz

)− b
a−1
−1

Claim 4 The system

A =0

B =0
(21)

can be solved locally around z = 0, with sa ∈ (0, 1), ra ∈ (0, 1).

Replace sa by rax(z−1)
xz−1

in A and B. Then I can solve A = 0 for ra as a function of x and z only:

ra =
2(a+ b− 1)(xz − 1)

(
x

1
a−1 z

a
a−1 − x

b
a−1 z

b
a−1

)
(z − 1)

(
2(a+ b− 1)x

a
a−1 z

a
a−1 + (1− 2b)x

b
a−1 z

b
a−1

) .
Replacing ra in B and simplifying, I get:

B1 =x
b−2
a−1 z−

ab+a+b
(a−1)(b−1) (b1 + b2b3) , (22)

where
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b1 =− (1− 2b)2(b− 1)x
b+2
a−1 z

(a−1)b+a+2b2

(a−1)(b−1)

+ 2(2b− 1)(a+ b− 1)(a+ 2b− 3)x
a+b+1
a−1 z

(a−1)b+a+2b2

(a−1)(b−1)

− 4(a+ b− 2)(a+ b− 1)2x
2a+b
a−1 z

(a−1)b+a+2b2

(a−1)(b−1)

+ 4(a− 1)(a+ b− 1)2x
3
a−1

+2z
b(2a+b)

(a−1)(b−1)

− 2(a− 1)(2b− 1)(a+ b− 1)x
a+2
a−1 z

b(2a+b)
(a−1)(b−1)

b2 =

 x
b

a−1 (2x(a+ b− 1)− 2b+ 1)z
b

a−1

(2a− 1)x
b

a−1 z
b

a−1 − 2(a+ b− 1)
(
x

1
a−1 − x

a
a−1

)
z

a
a−1

 1
1−b

b3 =− 8(b− 1)(a+ b− 1)2x
4
a−1

+2z
2ab−a+b2+b
(a−1)(b−1)

+ 4(b− 1)(a+ b− 1)2x
4
a−1

+3z
2ab−a+b2+b
(a−1)(b−1)

+ 4(b− 1)(a+ b− 1)2x
a+3
a−1 z

2ab−a+b2+b
(a−1)(b−1)

− 4(2a− 1)(b− 1)(a+ b− 1)x
a+b+2
a−1 z

b(a+2b)
(a−1)(b−1)

+ 4(2a− 1)(b− 1)(a+ b− 1)x
2a+b+1
a−1 z

b(a+2b)
(a−1)(b−1)

+ (1− 2a)2(b− 1)x
a+2b+1
a−1 z

a+b(3b−1)
(a−1)(b−1)

(23)

I replace x by

u+
(1− b)(2b− 1)

2(2− a− b)(a+ b− 1)

and z by s
1−a
b−a in B1. Moreover, multiply B1 by

−
(a+ b− 2)s−

2b
a−b

(
(b−1)(2b−1)

2(a+b−2)(a+b−1)
+ u
) 2−b
a−1

2u(a+ b− 2)(a+ b− 1)− 2ab+ a+ 2b− 1
.

Call the new function B2(s, u). I then take partial derivatives of B2(s, u) with respect to s and
u; and evaluate

−∂B2(s, u)/∂u

∂B2(s, u)/∂s

at (s, u) = (0, 0). I get

∆s
∆u

∣∣∣∣
(s,u)=(0,0)

= −∂B2(s, u)/∂u

∂B2(s, u)/∂s

∣∣∣∣
(s,u)=(0,0)

=
(2− a− b)

1− a

(
2(2− a− b)(a+ b− 1)

(1− b)(2b− 1)

) b−a
1−a

,

35



which is clearly finite. Hence, the system

A =0

B =0
(24)

can be solved locally around z = 0, with ra ∈ (0, 1), and sa ∈ (0, 1).

Proof of Proposition 5. In a similar fashion to the two offer case, replace si
zsi+(1−z)ri by

xi for i = a, β in the payoff differences for rational and stubborn players respectively. Moreover,
replace zsγ

zsγ+(1−z)rγ by (zxγ)
1−γ
1−β . Denote by A1 and A2 the payoff differences for a rational player

between a and β and between β and c respectively. Further, denote by A3 and A4 the respective
payoff differences for a stubborn player.

A1 =sγz (−1 + β + γ) (xβz)−
1−γ
1−β − (1− a− β)

sβ
2xβ
− (β − a)

sα
2xα
− sγz (a+ γ − 1) (xαz)−

1−γ
1−α

− sγz(β − α)(xγz)−
1−γ
1−β

(25)

A2 = (β + γ − 1) sγz
(

(xγz)−
1−γ
1−β − (xβz)−

1−γ
1−β

)
− (1− α− β)

sα
2xα

(26)

A3 = (1− β) (xβz)
β

1−β
sβ
xβ
− (1− c) sγ

(
(xαz)

c
1−αx−1

α − (xβz)
γ

1−β x−1
β

)
(27)

A4 = (1− α) (xαz)
c

1−α
sα
xα
− (1− c) sγ

(
(xβz)

c
1−β x−1

β − z(zxγ)
2γ−1
1−β

)
− (1− β)

sβ
xβ

(
(xβz)

β
1−β − (xβz)

γ
1−β

)
(28)

and the constraint on xi:

zsγ

(
1− (xγz)−

1−γ
1−β

)
z − 1

+
sα − sαxαz
xα − xαz

+
sβ − sβxβz
xβ − xβz

= 1 (29)

Hence, an equilibrium requires

A1 = 0, A2 = 0, A3 = 0, A4 = 0,

and equation (29) to be satisfied. First, note that the system is linear in si. Therefore, I can
normalize sγ = 1. Second, replace xi by πi/z. Third, replace si by ziπi. Note that πi ∈ [0, 1],
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and zi ∈ [0,∞). Conversely, for every zi ∈ [0,∞) and πi ∈ [0, 1], there exists, xi ∈ [?, 1/z] and
si ∈ [0, 1].

With these replacements in A1 through to A4, I can then define:

B1 =z (−1 + β + γ) (πβ)−
1−γ
1−β − (1− α− β)

zβz

2
− (β − a)

zαz

2
− z (a+ γ − 1) (πα)−

1−γ
1−α

− z(β − α)(πγ)
− 1−γ

1−β

(30)

B2 = (β + γ − 1) z
(

(πγ)
− 1−γ

1−β − (πβ)−
1−γ
1−β

)
− (1− α− β)

zαz

2
(31)

B3 = (1− β) (πβ)
β

1−β zβz − (1− γ)
(

(πα)
γ

1−α zπ−1
α − (πβ)

γ
1−β zπ−1

β

)
(32)

B4 = (1− α) (πα)
γ

1−α zαz − (1− c)
(

(πβ)
γ

1−β zπ−1
β − z(πγ)

2γ−1
1−β

)
− (1− β)zβz

(
(πβ)

β
1−β − (πβ)

γ
1−β

)
(33)

and the constraint on xi:

z
(

1− (πγ)
− 1−γ

1−β

)
z − 1

+ zzα
1− πα
1− z

+ zzβ
1− πβ
1− z

= K0,
(34)

where K0 is a positive constant.(
π
− 1−γ

1−β
γ − 1

)
+ za(1− πα) + zβ(1− πβ) =

1− z
z

K0 (35)

Note that the system B1 through to B4 is linear in z, and hence I can divide by z. Define:

C1 = (β + γ − 1) π
− 1−γ

1−β
β − (α + γ − 1) π

− 1−γ
1−α

α − (β − α)π
− 1−γ

1−β
γ − (1− α− β)

zβ
2
− (β − a)

zα
2
(36)

C2 = (β + γ − 1)

(
π
− 1−γ

1−β
γ − π

− 1−γ
1−β

β

)
− (1− α− β)

zα
2

(37)

C3 = (1− β) π
β

1−β
β zβ − (1− γ)

(
π

γ
1−α−1
α − π

γ
1−β−1

β

)
(38)
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C4 = (1− α) π
γ

1−α
α zα − (1− γ)

(
π

γ
1−β−1

β − π
2γ−1
1−β
γ

)
− (1− β)zβ

(
π

β
1−β
β − π

γ
1−β
β

)
(39)

Hence, an equilibrium is a vector (π, z) ∈ [0, 1]3 × [0, 1]2 such that

C1 = 0, C2 = 0, C3 = 0, C4 = 0,

and equation (35) is satisfied. Note that:

C2 = 0 and zα > 0 → πγ ≤ πβ,

C3 = 0 and zβ > 0 → πβ ≤ πα.

In short, if a solution (πα, πβ, πγ, zα, zβ) exists,

πα ≥ πβ ≥ πγ.

Note that C2 is linear in za, and C3 is linear in zβ. Hence, I can solve for zα and zβ:10

za =

2(β + γ − 1)

(
π
− 1−γ

1−β
γ − π

− 1−γ
1−β

β

)
1− α− β

,

zβ =

(1− γ)

(
π
− β

1−β
β π

a+γ−1
1−a

α − π
− 1−γ

1−β
β

)
1− β

.

I can then plug zα and zβ into C1 and C4. I denote them D1 and D4:

D1 =
(α2(1− γ)− 2α(1− β)(2β + γ − 1) + (1− β)(−1 + β + γ + βγ))π

− 1−γ
1−β

β

2(1− β)(1− α− β)

− (α + γ − 1)π
− 1−γ

1−α
α −

(1− α− β)(1− γ)π
γ

1−α−1
α π

− β
1−β

β

2(1− β)
− (β − α)(γ − α)π

− 1−γ
1−β

γ

1− α− β

(40)

D4 =

2(1− α)(β + γ − 1)π
γ

1−α
α

(
π
− 1−γ

1−β
γ − π

− 1−γ
1−β

β

)
1− α− β

− (1− γ)π
γ

1−α−1
α

(
1− π

γ−β
1−β
β

)
− (1− γ)

(
π

2γ−1
1−β
β − π

2γ−1
1−β
γ

)
(41)

Hence, an equilibrium requires D1 = 0, D4 = 0, and equation (35). Note that the first term in
D1 is positive for any a, β, γ.

10Note that C2 is independent of zβ ; and C3 is independent of zα. Moreover, 1− α− β > 0 and β < 1. Hence,
a solution is well-defined.
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Claim 5 When z → 0, πi → 0 for i = α, β, γ.

Proof. Consider equation (35). To satisfy this equation as z → 0, and hence Z → ∞, it is
necessary that either (i) zα → ∞, (ii) zβ → ∞, or (iii) πγ → 0. Suppose (i) zα → ∞. Then,
from (36) it follows that πβ → 0, and from (37) it follows that πγ → 0. Suppose (ii) zβ → ∞.
Then, from (38) it follows that πβ → 0, and from (37) it follows that πγ → 0. Suppose finally
(iii) πγ → 0. Then, from (36) it follows that πβ → 0. Hence, it must be that yi → 0 for i = β, γ.

From (41), it follows that πα → 0 – otherwise, the second term in D4 cannot be 0 in the limit
(the other two terms go to 0). Hence, we know that

yi → 0 for i = α, β, γ.

Claim 6 Fixing the demands α, β, and γ, a solution does not exist, i.e., there is no πα and πβ
satisfying E∗∗1 = 0.

Consider D4. Note that as z → 0, π
γ

1−α−1
α is infinitely bigger than π

γ−β
1−β
β , π

2c−1
1−β
β and π

2γ−1
1−β
γ . The

exponent on πα is smaller than on πβ or πγ, and πα is bigger than πβ and πγ for any z. Eliminating
those terms that are negligible gives us E4:

E4 =

2(1− α)(β + γ − 1)π
γ

1−α
α

(
π
− 1−γ

1−β
γ − π

− 1−γ
1−β

β

)
1− α− β

− (1− γ)π
γ

1−α−1
α

(42)

With E4, I can solve for πγ.

π
− 1−γ

1−β
γ → (1− α− β) (1− γ)

2(1− α)(β + γ − 1)πα
+ π

γ−1
1−β
β .

I can plug this into D1. I denote the new expression E1:

E1 =
β + γ − 1− βγ + α(1− 2β + γ)

2(1− β)
π
− 1−γ

1−β
β − (α + γ − 1)π

− 1−γ
1−α

α

−
(1− α− β)(1− γ)π

γ
1−α−1
α π

− β
1−β

β

2(1− β)
− (β − α)(γ − α)(1− γ)π−1

α

2(1− α)(β + γ − 1)

(43)
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I can multiply this by π
1−γ
1−β
β :

E∗1 = π
1−γ
1−β
β E1 =

β + γ − 1− βγ + α(1− 2β + γ)

2(1− β)
−

(β − α)(γ − α)(1− γ)π−1
α π

1−γ
1−β
β

2(1− α)(β + γ − 1)

− (α + γ − 1)π
− 1−γ

1−a
α π

1−γ
1−β
β −

(1− α− β)(1− γ)π
γ

1−α−1
α π

−β+γ−1
1−β

β

2(1− β)

(44)

Note that the second and third term have the same power on πβ, but (1− γ)/(1− α) < 1, and

hence π−1
α is infinitely bigger in the limit than π

− 1−γ
1−α

α . Hence, there are two remaining terms
involving πα and πβ. Define E∗∗1 :

E∗∗1 =
β + γ − 1− βγ + α(1− 2β + γ)

2(1− β)
−

(β − α)(γ − α)(1− γ)π−1
α π

1−γ
1−β
β

2(1− α)(β + γ − 1)

−
(1− α− β)(1− γ)π

γ
1−α−1
α π

−β+γ−1
1−β

β

2(1− β)

(45)

There are three cases to consider:

Case 1: π−1
α π

1−γ
1−β
β → K1, and π

γ+α−1
1−α

α π
−β+γ−1

1−β
β → K2,

Case 2: π−1
α π

1−γ
1−β
β → K3, and π

γ+α−1
1−α

α π
−β+γ−1

1−β
β → 0,

Case 3: π
γ+α−1
1−α

α π
−β+γ−1

1−β
β → K4, and π−1

α π
1−γ
1−β
β → 0,

where K1 through to K4 are constants.

Case 1 If π−1
α π

1−γ
1−β
β → K1, and π

γ+a−1
1−a

α π
−β+γ−1

1−β
β → K2, then

πα ∝ π
1−γ
1−β
β , and

πα ∝ π
β+γ−1
1−β

1−a
a+γ−1

β .

However,
1− γ
1− β

6= β + γ − 1

1− β
1− α

α + γ − 1
,

since 1 − γ < 1 − α, and β+γ−1
α+γ−1

> 1. Hence, the two terms in E∗∗1 involving πα and πβ cannot
both go to a constant.
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Case 2 If π−1
α π

1−γ
1−β
β → K3, then

πα ∝ π
1−γ
1−β
β .

Since
(α + γ − 1)

1− α
1− γ
1− β

− β + γ − 1

1− β
< 0,

it follows that
π
γ+α−1
1−α

α π
−β+γ−1

1−β
β →∞.

Hence, if π−1
α π

1−γ
1−β
β → K3,

π
γ+α−1
1−α

α π
−β+γ−1

1−β
β 6→ 0.

Case 3 If π
γ+α−1
1−α

α π
−β+γ−1

1−β
β → K4, then

πα ∝ π
(β+γ−1)

1−β
1−α

(α+γ−1)

β .

Since
− 1− α
γ + α− 1

(β + γ − 1)

1− β
+ 1− γ < 0,

it follows that
π−1
α π

1−γ
1−β
β →∞.

Hence, if π
γ+α−1
1−α

α π
−β+γ−1

1−β
β → K4, then

π−1
α π

1−γ
1−β
β 6→ 0.

Hence, fixing α, β and γ, there is no πα and πβ satisfying E∗∗1 = 0. Hence, fix any three demands,
where β 6= 1 − α, then there exists z̄ > 0 such that for any z < z̄ no equilibrium exists, where
players put strictly positive probability on all three demands.

Claim 7 When β = 1− α, a solution to the the system of equations

C1 = 0, C2, C3 = 0, C4 = 0,

and equation (35) exists.

Take C1 to C4 and simplify by the fact that β = 1− α. Denote the new expressions F1 to F4.

F1 = (γ − α) π
− 1−γ

α
β − (α + γ − 1) π

− 1−γ
1−α

α − (1− 2α)π
− 1−γ

α
γ − (1− 2α)

zα
2

(46)
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F2 = (γ − α)
(
π
− 1−γ

α
γ − π−

1−γ
α

β

)
(47)

F3 =απ
1−α
α

β zβ − (1− γ)
(
π

γ
1−α−1
α − π

γ
α
−1

β

)
(48)

F4 = (1− α) π
γ

1−α
α zα − (1− γ)

(
π
γ
α
−1

β − π
2γ−1
α

γ

)
− αzβ

(
π

1−α
α

β − π
γ
α
β

)
(49)

Note that for a solution to exist, πγ = πβ (from F2 = 0). I can solve for zα and zβ by setting
F1 = 0 and F3 = 0:

zα =

2

(
(α + γ − 1)π

− 1−γ
1−α

α + (α− γ)π
− 1−γ

α
β + (1− 2α)π

− 1−γ
α

γ

)
2α− 1

zβ =

(1− γ)π
α+γ−1
1−α

α

(
πβ − π

−α+γ−1
1−α

α π
γ
α
β

)
α

(50)

I replace zα and zβ in F4. Moreover, I replace πγ by πβ; and multiply F4 by π
− γ+α−1

1−α
α . I denote

the new expression G4:

G4 =
2(1− α)(α + γ − 1)π

γ−α
1−α
α

1− 2α

(
παπ

− 1−γ
α

β − π
γ−α
1−α
α

)
− (1− γ)

(
1− π

α+γ−1
α

β

)
(51)

Note that π
γ−α
1−α
α → 0. Similarly, π

α+γ−1
α

β → 0. Hence, for G4 = 0 as z → 0, I require

2(1− α)(α + γ − 1)

1− 2α
παπ

− 1−γ
α

β − (1− γ)→ 0.

Hence,

πα/π
1−γ
α

β → 2(1− α)(α + γ − 1)

1− 2α
.

Define
K =

2(1− α)(α + γ − 1)

1− 2α
.
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Recall that πγ = πβ. Therefore, I can write all variables as a function of the demands, πβ and z:

s(α) ≈
2(α + γ − 1)

(
K

γ−α
1−α π

(γ−α)(1−γ)
(1−α)α

β −K
)

2α− 1

s(β) ≈
(1− γ)

(
π

2(1−α)2+(−2+α)γ+γ2

(−1+α)α

β −K
γ+α−1
1−α π

α+γ−1
α

β

)
α

s(γ) = 1

r(α) ≈
2(α + γ − 1)

(
K

γ−α
1−α π

(γ−α)(1−γ)
(1−α)α

β −K
)

2α− 1

(
−1 +Kπ

1−γ
α

β

)
z

Kπ
1−γ
α

β (−1 + z)

r(β) ≈
(1− γ)

(
π

2(1−α)2+(−2+α)γ+γ2

(−1+α)α

β −K
γ+α−1
1−α π

α+γ−1
α

β

)
α

(−1 + πβ)z

πβ(−1 + z)

r(γ) ≈
z(π

− 1−γ
α

β − 1)

1− z
r(α) + r(β) + r(γ) = s(α) + s(β) + s(γ).

(52)

The constraint on the probabilities allows me to solve for πβ as a function of z only. It is
then straightforward algebra to show that if

α <
1

4

(
4− γ −

√
(8− 7γ)γ

)
,

πβ ≈ z.

If
α >

1

4

(
4− γ −

√
(8− 7γ)γ

)
,

πβ ≈
(

(1− α)(1− γ)

α(2− α− γ)
z

) α−α2
2−3α+α2−2γ+αγ+γ2

.

Case 1 πβ ≈ z; α < 1
4

(
4− γ −

√
(8− 7γ)γ

)
. Then I can solve for the probabilities first as a

function of z only, and then take limits with respect to z:

lim
z→0

s(α) =
1− c
1− a

, lim
z→0

s(β) =∞, lim
z→0

s(γ) = 1,

lim
z→0

r(α) =
2 (a+ c− 1)

1− 2a
, lim

z→0
r(β) =∞, lim

z→0
r(γ) = 0.

(53)
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I denote the scaled probabilities with the subscript “s”. Then:

lim
z→0

ss(α) = 0, lim
z→0

ss(β) = 1, lim
z→0

ss(γ) = 0,

lim
z→0

rs(α) = 0, lim
z→0

rs(β) = 1, lim
z→0

rs(γ) = 0.
(54)

Case 2 πβ ≈
(

(1−α)(1−γ)
α(2−α−γ)

z
) α−α2

2−3α+α2−2γ+αγ+γ2 ; α > 1
4

(
4− γ −

√
(8− 7γ)γ

)
. Then in the same

fashion, I derive:

lim
z→0

s(α) =
1− c
1− a

, lim
z→0

s(β) = 0, lim
z→0

s(γ) = 1,

lim
z→0

r(α) = 0, lim
z→0

r(β) =
2− a− c

1− a
, lim

z→0
r(γ) = 0.

(55)

Hence, the correctly scaled probabilities are:

lim
z→0

ss(α) =
1− c

2− a− c
, lim

z→0
ss(β) = 0, lim

z→0
ss(γ) =

1− a
2− a− c

,

lim
z→0

rs(α) = 0, lim
z→0

rs(β) = 1, lim
z→0

rs(γ) = 0.
(56)

When α = 1
4

(
4− γ −

√
(8− 7γ)γ

)
, then limz→0 s(β) = 1−c

a
. Hence, in this case all three

probabilities of the stubborn player are strictly interior (everything else unchanged). The third
part of the proposition follows by the implicit function theorem:

The payoff differences between the offers a, b, and c for a rational and stubborn player
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respectively can be written as:

A1 =− 1

2
(−a+ b+ 1)(rα(−z) + rα + sαz) +

1

2
(a− b+ 1)(rβ(−z) + rβ + sβz)

+ sγz(−a− c+ 1)

(
sαz

rα(−z) + rα + sαz

) 1−c
a−1

+ a(rγ(−z) + rγ + sγz)

+ sγz(b+ c− 1)

(
sβz

rβ(−z) + rβ + sβz

) 1−c
b−1

− (b− 1)(rβ(z − 1)− sβz) + b(rγ(z − 1)− sγz) +
1

2
(rα(−z) + rα + sαz)

A2 =
1

2
z

(
sα(a+ b− 1) + 2sγ(b+ c− 1)

((
sβz

rβ(−z) + rβ + sβz

) c−1
b−1

− 1

)(
sβz

rβ(−z) + rβ + sβz

) 1−c
b−1

)
− 1

2
rα(z − 1)(a+ b− 1)− rγ(z − 1)(b+ c− 1)

A3 =(c− 1)sγz

(
sαz

rα(−z) + rα + sαz

)−a+c−1
a−1

− (c− 1)sγz

(
sβz

rβ(−z) + rβ + sβz

)− b+c−1
b−1

− (b− 1)sβz

(
sβz

rβ(−z) + rβ + sβz

) 1−2b
b−1

A4 =(a− 1)(rα(z − 1)− sαz)

(
sαz

rα(−z) + rα + sαz

) c
1−a

+ (c− 1)sγz

(
sβz

rβ(−z) + rβ + sβz

)− b+c−1
b−1

− (b− 1)sβz

(
sβz

rβ(−z) + rβ + sβz

) c
1−b−1

− (b− 1)(rβ(z − 1)− sβz)

(
sβz

rβ(−z) + rβ + sβz

) b
1−b

− (c− 1)sγz

(
sγz

rγ(−z) + rγ + sγz

) 1−2c
c−1

(57)

I can replace si
zsi+(1−z)ri by ui for i = a, b, c. Moreover, note that from the first part of the proof

b = 1 − a. Moreover, I replace rc = 1 − ra − rb. Then I can solve A1 = 0 for ra as a function
of rb, and ui. Moreover, I can solve A2 = 0 for uc as a function of ub only. I can then plug the
expressions for ra and ub into A3 and A4. I can then solve A3 = 0 for rb as a function of ui. I
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plug this into A4. I replace ui by yi/z for i = a, b. Then I get:

A4 =
n4.0n4.1

d4

, where

n4.0 =a(z − 1)π
− c
a−1

α

(
π

1−c
a

β

)− 2c
c−1

n4.1 =2(a− 1)(a+ c− 1)π
a+1
a−1
α π

1
a
β

(
π

1−c
a

β

) 2c
c−1

− (2a− 1)(c− 1)π
c+1
a−1
α

(
π

1−c
a

β

) 2c
c−1
(
π

1
a
β − π

a+c
a

β

)
− 2(a− 1)(a+ c− 1)π

a+c
a−1
α π

c
a
β

(
π

1−c
a

β

) 2c
c−1

+ (2a− 1)(c− 1)π
a+2c
a−1
α

(
π

1
a
β

(
π

1−c
a

β

) 1
c−1

− π
2c
a
β

(
π

1−c
a

β

) 2c
c−1

)
d4 =− 2a(a+ c− 1)π

2a
a−1
α π

1
a
β

+ 2a(a+ c− 1)π
a+1
a−1
α π

1
a
β + π

a+c
a−1
α

(
−((2a− 1)(c− 1)πβ + a+ c− 1)π

c
a
β − a(2a− 1)π

1
a
β

)
+ 2a(a+ c− 1)π

2a+c−1
a−1

α π
c
a
β + (2a− 1)(c− 1)(πβ − 1)πβπ

1
a−1
α

(58)

The remaining equation is the constraint:

ra + rb + rc = sa + sb + sc.

Doing the same change of variables as with the payoff differences, I get:

C1 =
c1(−1 + z)

c2z
− 1, where

c1 =2a(a+ c− 1)π
2a+1
a−1
α π

1
a
β + (2a− 1)π

a+c+1
a−1

α

(
(c− 1)π

a+c
a

β + aπ
1
a
β

)
− 2a(a+ c− 1)π

2a+c
a−1
α π

c
a
β + (1− 2a)(c− 1)π2

βπ
2
a−1
α

c2 =π
a+c+1
a−1

α

(
2a2π

1
a
β − (c− 1)(πβ − 1)π

c
a
β + a

(
π
c
a
β + 2(c− 1)π

a+c
a

β − π
1
a
β

))
− 2a(a+ c− 1)π

a+2
a−1
α π

1
a
β + 2a(a+ c− 1)π

2a+1
a−1
α π

1
a
β − 2a(a+ c− 1)π

2a+c
a−1
α π

c
a
β

+ (1− 2a)(c− 1)(πβ − 1)πβπ
2
a−1
α

(59)

Hence, we can express the system as A4 = 0, and C1 = 0.

Claim 8 The system

C1 =0

A4 =0
(60)

can be solved locally around z = 0, with si ∈ (0, 1), ri ∈ (0, 1) for i ∈ {a, 1− a, c}.
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Case 1:
(a− 2)c+ 2(a− 1)2 + c2

(a− 1)a
< 0.

In this case, πβ ≈ z. I replace πα by
x

1−c
a

α

in A4 and C1. Then all variables in A4 and C1 go to 0 at the same rate. I denote the numerator
of these expressions (with the replacement of πα) by D1 and D2:

D1 =a(z − 1)x
−a(c−2)+2c2+c−1

(a−1)a
α π

− 2c
a

β d1, where

d1 =− 2(a− 1)(a+ c− 1)π
1
a
β x

−ac+a−2c2+c

a−a2
α

+ 2(a− 1)(a+ c− 1)x
a(c−1)+c2+c−1

(a−1)a
α π

c
a
β + (2a− 1)(c− 1)x

2a(c−1)+c2

(a−1)a
α

(
π

1
a
β − π

a+c
a

β

)
D2 =− (2a− 1)x

a−c2
(a−1)a
α

(
(c− 1)π

a+c
a

β + aπ
1
a
β

)
+ 2a(z − 1)(a+ c− 1)π

1
a
β x
−a(c−2)+c

(a−1)a
α − 2az(a+ c− 1)x

− (a+1)(c−1)
(a−1)a

α (xαπβ)
1
a

− z(a+ c− 1)x
− (c−1)(a+c)

(a−1)a
α (xαπβ)

c
a + 2az(a+ c− 1)π

1
a
β x

a−2c+1
(a−1)a
α

+ 2a(a+ c− 1)x
1− (c−1)(a+c)

a−1
a

α π
c
a
β + (2a− 1)(c− 1)πβ(πβ − z)x

(a−2)c+1
(a−1)a
α

(61)

For D1 to be 0, we need d1 = 0, and hence, I can ignore the remaining terms in D1. Further, I
multiply d1 by

x
1+a2−2ac−c2

a2−a
α ;

similarly, I multiply D2 by

π
−1+ 1−2c+ac

a−a2
β .

Recall that as z → 0, πβ → 0 and xα → 0. Hence, I delete all but the biggest term in d1;
similarly in D1. Call the new expressions E1 and E2, respectively:

E1 =x
a2−2ac−c2+1

(a−1)a
α

(
2(a− 1)(a+ c− 1)x

a(c−1)+c2+c−1
(a−1)a

α π
c
a
β + (2a− 1)(c− 1)π

1
a
β x

2a(c−1)+c2

(a−1)a
α

)

E2 =(2a− 1)(c− 1)(πβ − z)x
(a−2)c+1
(a−1)a
α π

ac−2c+1

a−a2
β

(62)

I can then take derivatives with respect to πβ, xα and z respectively. I then evaluate those
derivatives at z = 0, xα = mπβ, where

m = 2−
a

1−c

(
(1− 2a)(1− c)

(1− a)(a+ c− 1)

) a
1−c

.
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Then I can write the derivatives as:

dE1

dxα

∣∣∣∣
z=0,xα=mπβ

=
(a− 1)

(
(2a− 1)(c− 1)m−1/a + 2(a− c)(a+ c− 1)m−

c
a

)
a

dE1

dπβ

∣∣∣∣
z=0,xα=mπβ

=
m

a2−3ac+2a−2c2+2

a−a2
(

2(a− 1)c(a+ c− 1)m
a+c

(a−1)a + (2a− 1)(c− 1)m
ac+1

(a−1)a

)
a

dE2

dxα

∣∣∣∣
z=0,xα=mπβ

=
(2a− 1)(c− 1)((a− 2)c+ 1)m

(a−2)c+1
(a−1)a

−1

(a− 1)a

dE2

dπβ

∣∣∣∣
z=0,xα=mπβ

=
(2a− 1)(c− 1) (a2 − a(c+ 1) + 2c− 1)m

(a−2)c+1
(a−1)a

(a− 1)a

(63)

Denote the Jacobian

J1 =

[
dE1

dxα
dE1

dπβ
dE2

dxα
dE2

dπβ

]∣∣∣∣∣
z=0,xα=mπβ

.

Similarly, I evaluate

dE1

dz

∣∣∣∣
z=0,xα=mπβ

=0

dE2

dz

∣∣∣∣
z=0,xα=mπβ

=(1− 2a)(c− 1)

(
2

a
c−1

(
−(a− 1)(a+ c− 1)

(2a− 1)(c− 1)

) a
c−1

) (a−2)c+1
(a−1)a

(64)

Denote

Z1 =

[
dE2

dz
dE2

dz

]∣∣∣∣∣
z=0,xα=mπβ

.

Finally, [
dxα
dz
dπβ
dz

]∣∣∣∣∣
z=0,xα=mπβ

= −J−1
1 × Z1.

It can be verified that
dxα
dz

∣∣∣∣
z=0,xα=mπβ

> 0

dπβ
dz

∣∣∣∣
z=0,xα=mπβ

> 0.

(65)

Hence, if
(a− 2)c+ 2(a− 1)2 + c2

(a− 1)a
< 0,

then A4 = 0 and C2 = 0 can be solved locally around z = 0.
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Case 2:
(a− 2)c+ 2(a− 1)2 + c2

(a− 1)a
> 0.

In this case, z ≈ a(−a−c+2)π

a2+ac−3a+c2−2c+2
a−a2

β

(1−a)(1−c) . I replace πβ by

x
a−a2

a2+ac−3a+c2−2c+2

β .

Similarly, I replace πα by

x
(a−1)(c−1)

a2+a(c−3)+(c−2)c+2
α .

Note that now all variables go to 0 at the same rate. Denote the numerator of C1 and D2 by D1

and D2:

D1 =− a(z − 1)x
− 1
a2+a(c−3)+(c−2)c+2

α x
(a−1)a

a2+a(c−3)+(c−2)c+2

β d1, where

d1 =− (2a− 1)(c− 1)x
c2

a2+a(c−3)+(c−2)c+2
α

(
x

(a−1)c

a2+a(c−3)+(c−2)c+2

β − x
(a−1)(a+2c−1)

a2+a(c−3)+(c−2)c+2

β

)
− 2(a− 1)(a+ c− 1)x

a(c−1)+c

a2+a(c−3)+(c−2)c+2
α x

(a−1)(a+2c−1)

a2+a(c−3)+(c−2)c+2

β

+ 2(a− 1)(a+ c− 1)x
a(c−1)+c(c−1)+1

a2+a(c−3)+(c−2)c+2
α x

(a−1)(a+c)

a2+a(c−3)+(c−2)c+2

β

D2 =x
− 1
a2+a(c−3)+(c−2)c+2

α x
− 3a
a2+a(c−3)+(c−2)c+2

β d2, where

d2 =2a(a+ c− 1)x
a(−a+c+1)

a2+a(c−3)+(c−2)c+2
+1

α x
2a2−ac+a+c

a2+a(c−3)+(c−2)c+2

β

+ 2az(a+ c− 1)x
a(c−1)+c

a2+a(c−3)+(c−2)c+2
α x

2a2+1

a2+a(c−3)+(c−2)c+2

β

− x
a(c−1)+c(c−1)+1

a2+a(c−3)+(c−2)c+2
α x

a(a−2c)

a2+a(c−3)+(c−2)c+2

β d3

+ (2a− 1)(c− 1)x
c

a2+a(c−3)+(c−2)c+2
α

(
x

3a
a2+a(c−3)+(c−2)c+2

β − zx
a(a+2)

a2+a(c−3)+(c−2)c+2

β

)
− 2a(a+ c− 1)x

2a(c−1)+1

a2+a(c−3)+(c−2)c+2
α x

2a2+1

a2+a(c−3)+(c−2)c+2

β , and

d3 =

(
z(a+ c− 1)x

(a+1)(a+c)

a2+a(c−3)+(c−2)c+2

β + a(2a− 1)x
a2+2ac+1

a2+a(c−3)+(c−2)c+2

β + (2a− 1)(c− 1)x
a(c+2)+c

a2+a(c−3)+(c−2)c+2

β

)
(66)

I multiply D1 by

x
2−a(a+c)

a2+a(c−3)+(c−2)c+2
α ,
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and D2 by

x
−a2+a−c+1

a2+a(c−3)+(c−2)c+2
α .

Then I do first order Taylor expansions (i.e., keeping the largest term in both D1 and D2). I call
the new expressions E1 and E2:

E1 =2(a− 1)a(z − 1)(a+ c− 1)x
(c−1)(a+c)

a2+a(c−3)+(c−2)c+2
+

2−a(a+c)
a2+a(c−3)+(c−2)c+2

α x
(a−1)(2a+c)

a2+a(c−3)+(c−2)c+2

β

E2 =(1− 2a)(c− 1)zx
−a2+a−c+1

a2+a(c−3)+(c−2)c+2
+ c−1

a2+a(c−3)+(c−2)c+2
α x

(a−1)a

a2+a(c−3)+(c−2)c+2

β

(67)

I can then take derivatives with respect to xβ, xα and z respectively. I then evaluate those
derivatives at z = 0, xα = nxβ, where

n = 2−
a−1
c−1
− c
a−1
−1

(
−2a(c− 1) + c− 1

(a− 1)(a+ c− 1)

)a−1
c−1

+ c
a−1

+1

.

Then I can write the derivatives as:

dE1

dxα

∣∣∣∣
z=0,xα=nxβ

=
2(a− 1)a(a+ c− 1) (a2 + a− c2 + c− 2)n

− (a−1)(2a+c)

a2+a(c−3)+c2−2c+2

a2 + a(c− 3) + c2 − 2c+ 2

dE1

dxβ

∣∣∣∣
z=0,xα=nxβ

=− 2(a− 1)2a(a+ c− 1)(2a+ c)n
− a2+a−c2+c−2

a2+a(c−3)+c2−2c+2

a2 + a(c− 3) + c2 − 2c+ 2

dE2

dxα

∣∣∣∣
z=0,xα=nxβ

=− a2(2a− 1)(a+ c− 2)n
− (a−1)a

a2+a(c−3)+c2−2c+2
−1

a2 + a(c− 3) + c2 − 2c+ 2

dE2

dxβ

∣∣∣∣
z=0,xα=nxβ

=
a2(2a− 1)(a+ c− 2)n

− (a−1)a

a2+a(c−3)+c2−2c+2

a2 + a(c− 3) + c2 − 2c+ 2

(68)

Denote the Jacobian

J2 =

[
dE1

dxα
dE1

dπβ
dE2

dxα
dE2

dπβ

]∣∣∣∣∣
z=0,xα=nxβ

.

Similarly, I evaluate

dE1

dz

∣∣∣∣
z=0,xα=nxβ

=0

dE2

dz

∣∣∣∣
z=0,xα=nxβ

=(1− 2a)(c− 1)2−
a

1−c

(
−2a(c− 1) + c− 1

(a− 1)(a+ c− 1)

) a
1−c

(69)
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Denote

Z2 =

[
dE1

dz
dE2

dz

]∣∣∣∣∣
z=0,xα=nxβ

.

Finally, [
dxα
dz
dxβ
dz

]∣∣∣∣∣
z=0,xα=nxβ

= −J−1
2 × Z2.

dxα
dz

=−
(a− 1)(c− 1)2−

a2+a(c−3)+c2−2c+2
(a−1)(c−1) (2a+ c)

(
−2a(c−1)+c−1
(a−1)(a+c−1)

)a2+a(c−3)+c2−2c+2
(a−1)(c−1)

a2(a+ c− 2)
> 0

dxβ
dz

=− (c− 1) (a2 + a− c2 + c− 2)

a2(a+ c− 2)
> 0.

(70)

Hence, if
(a− 2)c+ 2(a− 1)2 + c2

(a− 1)a
> 0,

the system C1 = 0, A4 = 0, can be solved locally around z = 0.

Proof of Lemma 5. In PBE with more than one offer, at least one offer must have a
posterior probability of stubbornness less than z. This implies that the rational type would
benefit from deviating to an offer within ε > 0 of this offer – he would be conceded to with
higher probability, and hence, receive a higher payoff.

Consider one-offer PBE with asymmetric discounting. With passive beliefs, the payoff for a
rational player i from a deviation to d when his opponent demands αj is:

V d
Ri =d

(
1− zz−

ρi
ρj

1−αj
1−d

)
+ (1− αj)zz

− ρi
ρj

1−αj
1−d (71)

The first step is to show that (α1, α2) =
(

ρ2
ρ1+ρ2

, ρ1
ρ1+ρ2

)
is a passive belief equilibrium. I then

show that for any other candidate equilibrium, there is a profitable deviation for the rational
player.

Step 1 If (α1, α2) =
(

ρ2
ρ1+ρ2

, ρ1
ρ1+ρ2

)
, then the payoff to a rational player and a stubborn player

is the same. Hence, if there is a profitable deviation, it must be a profitable deviation for the
rational player. Clearly, a rational player i would not want to deviate to a demand below ρj

ρ1+ρ2
.

Hence, consider a deviation to d > ρj
ρ1+ρ2

. His payoff from this deviation is:

V d
R2i =d

(
1− zz−

ρi
ρ1+ρ2

1
1−d
)

+
ρj

ρ1 + ρ2

zz
− ρi
ρ1+ρ2

1
1−d (72)
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Clearly, V d
Ri <

ρj
ρ1+ρ2

if and only if:

− ρi
ρ1 + ρ2

1

1− d
+ 1 > 0.

Since d > ρj
ρ1+ρ2

, there is no profitable deviation for i = 1, 2.

Step 2 Note that there cannot be an asymmetric one-offer equilibrium with α1 + α2 > 1. A
stubborn player would have an incentive to deviate to a demand which makes his demand just
compatible with his opponent. Hence, consider a candidate equilibrium with αi = 1−αj < ρj

ρ1+ρ2
.

I claim that a rational player then has an incentive to deviate to ρj
ρ1+ρ2

. A rational player’s payoff
from deviating to d =

ρj
ρ1+ρ2

is:

V d
Ri =d

(
1− zz−

ρi
ρj

(1−αj)
(1−d)

)
+ (1− αj)zz

− ρi
ρj

(1−αj)
(1−d)

=
ρj

ρ1 + ρ2

(
1− zz−

ρ2+ρ1
ρj

(1−αj)
)
− (1− αj)zz

− ρ2+ρ1
ρj

(1−αj)
.

(73)

Clearly, V d
Ri > 1− αj = αi if and only if

1− ρ2 + ρ1

ρ1

(1− α1) > 0.

Since 1−αj < ρj
ρ1+ρ2

, V d
Ri > 1−αj. Hence, unless αi =

ρj
ρ1+ρ2

, there always is a profitable deviation
for the rational player i.

Proof of Lemma 7. Suppose a rational player i deviates to d ∈ (α, 1 − α). Then the
rational type’s payoff is:

vdri = (zsα + (1− z)rα)

(
d+ 1− α

2

)
+ (zsβ + (1− z)rβ)

(
dF β,d

j (0) + (1− β)(1− F β,d
j (0))

)
,

where
F β,d
j (0) = 1− zsβ

zsβ + (1− z)rβ
(zsd)

− 1−β
1−d

and zsd is the belief that j puts on i being stubborn conditional demanding d. I can then solve
for the value of sd which makes the rational type indifferent between his equilibrium demands
and the deviating demand d, call it srd:

srd =
1

z

(
2(−1 + β + d)(−1 + sα)z

2− 2β − 2d− (1 + α)rα + 2βrα + drα + (1 + a− 2β − d)(rα − sα)z

) 1−d
1−β

.
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In the following I show that at srd the stubborn type strictly prefers to deviate to d. The payoff
of a stubborn type from a deviation d ∈ (α, 1− α) is:

vdsi = (zsα + (1− z)rα)

(
d+ 1− α

2

)
+ (zsβ + (1− z)rβ)

(
1−

(
zsβ

zsβ + (1− z)rβ

) d
1−β
)(

dF β,d
j (0) + (1− β)(1− F β,d

j (0))
)
.

(74)

The payoff from the equilibrium demand β is: I first replace sd in vdsi − v
β
si by srd. Moreover, I

replace zsβ
zsβ+(1−z)rβ

by πβ, and zsα
zsα+(1−z)rα by πα. I can then write the payoff difference as:

I show that vdsi|srd − v
β
si > 0. [To be completed].

Proof of Lemma 8. (a) Denote the probability with which the stubborn type demands α
by sh.The payoff of a rational player from demanding α is:

vαr = (1− z + zsh)(1− α) + z(1− sh)α.

Suppose an opponent puts probability 1 on any deviation coming from a rational type. A
rational player has no strict incentive to play any offer above α – he will receive the same payoff
from the deviation as in the candidate equilibrium. From any deviating demand less than α, he
receives a strictly lower payoff: when being faced with a demand of α, he receives at most 1−α;
yet, when being faced with a demand of 1−α his payoff is strictly less than α. Hence, a rational
player has no incentive to deviate.

The payoff of a stubborn type from demanding α, and 1− α respectively is:

vαs = (1− z + zsh)(1− α)
(

1− z
α

1−α

)
+ z(1− sh)α,

v1−α
s = (1− z + zsh)(1− α) + z(1− sh)1/2.

I can solve this for the mixing probability s∗h:

s∗h =
−2(α− 1)z

α
1−α + 2(α− 1)z

1
1−α − 2αz + z

z
(
−2α + 2(α− 1)z

α
1−α + 1

) ,

where s∗h ∈ [0, 1] for any α > 1/2, as z → 0. (b) Suppose there was one offer which is only made
by the stubborn type, call it αs, and one offer which was made by both types, call it αh. The
offer made by the stubborn type only, αs ,cannot be above 1/2, otherwise, there exists z̄ > 0 such
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that for any z < z̄, vs > 1/2. But vr > vs, and vr ≤ 1/2. The hybrid offer αh cannot be below
1/2, otherwise there is an incentive for both types to deviate to 1− αh. Hence, αs ≤ 1/2 ≤ αh.

Suppose now αs + αh > 1. Then the payoff of a stubborn type from demanding αh is:

vαhs = (1− z + zsh)(1− z
αh

1−αh )(1− αh).

But a stubborn type could receive 1− αh by demanding 1− αh. Hence, if a hybrid equilibrium
exists, αs ≤ 1/2 ≤ αh ≤ 1− αs. The payoff of a rational player in such a candidate equilibrium
is:

vαhr = (1− z + zsh)(1− αh) + z(1− sh) ((1− αs)1/2 + αh1/2) .

Recall that α2 ≤ 1/2. If αs < 1− αh, then a rational player benefits from deviating to 1− αh:

v1−αh
r = (1− z + zsh)(1− αh) + z(1− sh) (1− αs) .

Hence, if a hybrid equilibrium exists, then αh = 1− αs = α.
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