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Abstract

There is a growing literature suggesting that firm level productivity
shocks can help understand macroeconomic level outcomes. However,
existing models are very restrictive regarding the nature of competition
within sector and its implication for the propagation of shocks across
the input-output (I-O) network. The goal of this paper is to offer a more
comprehensive understanding of how firm level shocks can shape ag-
gregate dynamics. To this end, I build a tractable multi-sector heteroge-
neous firm general equilibrium model featuring oligopolistic competi-
tion and an I-O network. It is shown that a positive shock to a large firm
increases both the average productivity and the Herfindahl Index in its
sector. By reducing the sector price, the change in average productivity
propagates only to downstream sectors. Conversely, the change in the
Herfindahl Index, by increasing price and reducing demand for inter-
mediate inputs, propagates both to downstream and upstream sectors.
The sensitivity of aggregate volatility to firms’ shocks is determined by
the sector’s (i) Herfindahl Index, which measures the volatility of the
sector, (ii) position in the input-output network, which measures the
direct and indirect importance of this sector for the household, and (iii)
relative market power in the supply chain, which relates to the changes
in demand to upstream sectors.
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“[I] think that the issue of growing market power deserves in-

creased attention from economists and especially from macroe-

conomists.”

Larry Summers, Washington Post, March 2016

1. Introduction

A growing literature suggests that firm-level productivity shocks can explain

movement in prices and output at the sector and macroeconomic level1.

This literature relies on the idea that a handful of large firms represent a

large share of a sector, and thus shocks hitting these large firms cannot be

balanced out by those affecting smaller firms. However, these models are

very restrictive regarding the nature of competition within a sector: firms are

large enough to have a systemic importance but these firms do not internal-

ized this when they make their decisions. This paper explores the alternative

oligopolistic market structure where firms do take into account the effect of

their decisions on sector-level price and quantity in order to study the prop-

agation of firm-level shocks to other sectors through the Input-Output (I-O)

network. The properties of the propagation that arise under oligopolistic

competition – relative to the monopolistic case – are shown to increase the

response of aggregate volatility to firm-level shocks.

Figures 1 and 2 motivate this paper: sectors are concentrated and linked

through a “small world” I-O network. Figure 1 shows the top four firms’ share

1An important paper is the seminal work by Gabaix (2011) where he shows that when
the firm-size distribution is fat-tailed, firm-level shocks do not wash out at the aggregate.
Building on this seminal work, Carvalho and Grassi (2015) show that firm dynamic models
contain a theory of business cycle as soon as the continuum of firms’ assumption is relaxed.
Acemoglu et al. (2012), Carvalho (2010, 2014) and Baqaee (2016) build on the multi-sector
business cycle framework of Long and Plosser (1983) to show how shocks on sectors linked
through an I-O network can translate into aggregate fluctuations. Earlier contributions in-
clude Jovanovic (1987), Durlauf (1993) and Bak et al. (1993).
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Figure 1: Sector Concentration
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22 Utilities

42 Wholesale Trade

44-45 Retail Trade

48-49 Transportation and Warehousing

51 Information

52 Finance and Insurance

53 Real Estate and Rental and Leasing

54 Professional, Scientific

56 Administrative and Support

61 Educational Services

62 Health Care

71 Arts, Entertainment, and Recreation

72 Accommodation and Food Services

81 Other Services

31-33 Manufacturing

Note: Top four firms’ share of total revenues in 2002 and in 2007 for 6-
digit NAICS industry. The mean value is 35.37% in 2002 and 37.21% in
2007. 970 industries. Source: Census Bureau.
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Figure 2: Sectors’ Concentrations and the I-O Network in 2007

Note: larger nodes of the network represent sectors supplying inputs to
many other sectors. A darker color represents higher top four firms’ share
of total revenues in 2007 (sectors without available data are left white).
There are 389 sectors. Source: Bureau of Economic Analysis, detailed I-O
table for 2007 and Census Bureau. The figure is drawn with the software
package Gephi.
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of industry revenue in 2002 against the same measure in 2007 for around 970

industries. Industry revenue accounted for by the top four firms varies from

almost zero to close to 100% with a median value close to 33% in 2007. The

first thing to note is that large firms represent an important share of rev-

enue of the median sector. Secondly, as concentration is a widely used mea-

sure of a sector’s competition intensity, this figure also suggests that differ-

ent sectors have different competition levels. Finally, the fact the sectors are

not all on the 45◦ line shows that concentration is not constant across time.

While confirming the “granular” nature of these sectors, this figure empha-

sizes the importance of the oligopolistic nature of competition within sector

and its evolution across time. Besides, these sectors are not independent

from each other: production in one sector relies on a complex and inter-

locking supply-chain. Figure 2 displays the I-O network among 389 sectors

for the US in 2007. This is a “small world” network: a few nodes are con-

nected to many other nodes. In such production networks, as shown by

Acemoglu et al. (2012), Carvalho (2010, 2014) and Baqaee (2016), sector-level

shocks translate into aggregate volatility. In this paper, I study how firm-level

shocks affect sector-level productivity and competition and how changes in

the level of productivity and competition propagate in the I-O network and

thus shape the aggregate dynamics.

To this end, I build a tractable multi-sector heterogeneous firm general

equilibrium model featuring oligopolistic competition and an I-O network.

Within each sector, a finite number of heterogeneous firms are subject to

oligopolistic competition and set variable markups à la Atkeson and Burstein

(2008). Up to an approximation, two sector-level sufficient statistics, the

sectors’ average productivity and the productivity Herfindahl Index – a con-

centration measure, entirely characterize the equilibrium of this economy.

When oligopolistic competition is taken into account, in a sector with a sales

Herfindahl of 0.18 (above this level merger law in the U.S. starts to apply), I
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show that the effect of firm-level shocks on aggregate volatility increases by

80% relative to the monopolistic competition case.

The mechanism is as follows. Firm-level shocks affect both the sector’s

average productivity and concentration. To see this, take a sector with a fi-

nite number of heterogeneous firms and assume that an already large firm

is subject to a positive productivity shock. Following this shock, the sec-

tor’s average productivity becomes larger since the productivity of one firm

has become larger. Since this firm was already large before the shock hit,

the sector becomes even more concentrated. This firm-level shock has two

opposite effects on price and output at the sector level. First, because of

the increase in average productivity, the sector good is cheaper and output

increases. Second, because of the increases in concentration, competition

in the sector decreases: this large firm is larger and can use its size to ex-

tract even more profit. It follows that the sector price increases and output

decreases. These changes in prices and output propagate to the other sec-

tors through the I-O network. The increase in productivity, resulting in a

decrease in price, reduces the marginal cost of downstream sectors. Indeed

the downstream sectors use this good as an input to produce. The decrease

in competition, resulting in an increase in price, propagates downstream as

it increases the marginal cost of downstream sectors. But it also propagates

to upstream sectors as it reduces the share of sector’s income used to pay

for intermediate inputs and thus the demand for upstream sectors’ goods.

The propagation of this shock downstream ultimately affects the price of

goods purchased by the household and thus the real wage. The stronger is

the effect, the more the sector’s good is directly and indirectly (through other

sectors) consumed by the household. The propagation of shocks upstream

ultimately affects the profit rebated to the households as it reduces demand

for upstream goods. The stronger is the effect, the higher is the sector’s mar-

ket power relative to its supply-chain market power. The above example de-
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scribed the effect of one shock on an already large firm but, in this paper,

each firm’s productivity is subject to persistent idiosyncratic shocks which

make these two sufficient statistics follow AR(1)-type processes, as in Car-

valho and Grassi (2015). Each sector’s price and quantity are thus stochastic

which translate into aggregate volatility thanks to the “small world” nature

of the I-O network.

I show that the effect of firm volatility in a given sector on aggregate

volatility is a function of three characteristics. First, the concentration which

determines how important large firms are in that sector and thus how much

shocks to these firms create volatility at the sector level and hence at the ag-

gregate level. Second, the sector centrality which measures that sector’s di-

rect and indirect importance in the household’s consumption bundle. This

characteristic relates to the transmission of firm-level shocks to downstream

sectors. Third, the sector’s relative market power over its supply chain which

measures how much profit is captured by that sector relative to how much

profit its whole supply chain generates. This characteristic relates to the

propagation of firm level shocks to upstream sectors.

Thanks to the high tractability of the model and the fact that the equilib-

rium is characterized by two sector-level sufficient statistics, I calibrate the

model by relying on the choice of a few deep parameters. This calibration

allows me to decompose the contribution of firm-level volatility in a given

sector on aggregate volatility. For a sector with a sales Herfindahl index of

0.18, which is the level above which merger law applies in the U.S, the effect

of firm-level shocks on wage volatility increases by 80% when oligopolistic

competition is taken into account relative to a version of the model with

monopolistic competition. This number ranges from 19% to 65% for the ten

sectors where firm-level volatility affects aggregate volatility the most.

Related Literature This paper contributes to the emerging literature on the



8 BASILE GRASSI

micro-origin of aggregate fluctuations. This literature is based on two mains

ideas: the “granular hypothesis” and the I-O network. For the former, semi-

nal work by Gabaix (2011) shows that whenever the firm-size distribution is

fat-tailed, idiosyncratic shocks do not average out quickly enough and there-

fore translate into sizable aggregate fluctuations. Carvalho and Grassi (2015)

ground the “granular hypothesis” in a well-specified firm dynamic setup. In

the latter, Acemoglu et al. (2012) and Carvalho (2010) show that when the

distribution of sectors’ centrality in the I-O network is fat tailed then sec-

tor level perturbations also generate sizable aggregate fluctuations. Rela-

tive to these papers, I present the first framework that includes both compo-

nents explicitly. The “granular hypothesis” leads to sector-level fluctuations

whereas the I-O network structure translates sector-level fluctuations into

aggregate fluctuations. An important drawback of this literature is that firms

are supposed to be large enough to influence the aggregate but also small

enough to not be strategic. In Carvalho and Grassi (2015) framework such

assumptions were made because firms interacted in a perfectly competitive

labor market. Here, I present the first model of strategic pricing where ag-

gregate fluctuations arise from purely idiosyncratic shocks.

This paper also contributes to the literature on the propagation of shocks

in I-O networks. This literature has studied the transmission of well-identified

shocks in the I-O network: Acemoglu et al. (2015) study the transmission of

well identified supply and demand shocks, Carvalho et al. (2016) and Boehm

et al. (2016) study the firm level impact of supply chain disruptions occurring

in the aftermath of the Great East Japan Earthquake in 2011, while Barrot and

Sauvagnat (2016) look at the effect of natural disasters. Baqaee (2016) stud-

ies theoretically the effect of shocks on entry cost. My paper contributes to

this literature by studying the propagation of (endogenous) changes in the

sectors’ levels of competition, which act as supply shocks to downstream

sectors and demand shocks to upstream sectors.
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Finally, this paper also contributes to the literature on imperfect compe-

tition among heterogeneous firms. Krugman (1979), Ottaviano et al. (2002),

Melitz and Ottaviano (2008), Bilbiie et al. (2012) and Zhelobodko et al. (2012)

study demand-side pricing complementary whereas I look at supply-side

pricing complementaries as in Atkeson and Burstein (2008) but in an I-O

context. Furthermore I show that such a model is highly tractable and that

firm heterogeneity can be summarized at the sector level by just two suffi-

cient statistics.

Outline The paper is organized as follows. In section 2, I describe and solve

the household’s and firm’s problem. In section 3, I first aggregate firm be-

havior at the sector level and show that firm heterogeneity can be summa-

rized by two sufficient statistics. I then solve for the stochastic dynamics of

these two statistics. In section 4, I describe the equilibrium and show that

the model can be entirely solved at the sector level. In section 5, I first solve

analytically for the equilibrium in the no-capital case and show how con-

centration and centrality determine the response of the economy to shocks.

Section 6 concludes.

2. Model

In this section, I describe the structure of the economy and I solve for the

household and firm’s problem. A representative household consumes, sup-

plies labor and invests in productive capital. Sectors are linked by a produc-

tion network, firms compete within a sector and set their price (or quan-

tities) strategically. Firms are subject to idiosyncratic shocks that generate

uncertainty on sector’s productivity. These sectoral dynamics generate ag-

gregate uncertainty.
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2.1. Household

The representative household consumes, invests and supplies labor. The

household problem is

Max

{
E0

∞∑

t=0

ρt
(
C1−η

t

1− η
− θ

Lχ
t

χ

)}

subject to the budget constraint PC
t Ct + P I

t It ≤ wtLt + rtKt + Prot. Where

PC
t is the price index of the composite consumption good, P I

t is the price

index of the composite investment good, wt is the wage rate, rt is the rental

rate of capital, Kt is the capital stock, Ct is the composite consumption good,

It is the composite investment good, Lt is the labor supplied and Prot is the

total profit made by the firms. Capital accumulation is subject to adjustment

cost Kt+1 = (1 − δ)Kt + It − φ
(

It
Kt

)
Kt, where δ is the depreciation rate and

φ(.) is the adjustment cost of capital. The composite consumption good and

composite investment good are Cobb-Douglas aggregators of each sector’s

goods: Ct =
∏N

t=0 C
βk

k,t and It =
∏N

t=0 I
νk
k,t where Ck,t (resp. Ik,t) is the amount

of good k consumed (resp invested) by the household at time t. βk and νk

are the Cobb-Douglas shares of each goods in the composite consumption

and investment goods respectively. Sector k’s good is a CES composite of Nk

varieties produced by each firm within the sector k:

Ck,t =

(
N−ζk

k

Nk∑

t=0

Ct(k, i)
εk−1

εk

) εk
εk−1

and Ik,t =

(
N−ζk

k

Nk∑

t=0

It(k, i)
εk−1

εk

) εk
εk−1

Ct(k, i) (resp. It(k, i)) is the amount of sector k’s variety i consumed (resp in-

vested) by the household at time t, εk is the elasticity of substitution between

two varieties in sector k, ζk controls the love-for-variety effect in sector k. The

proposition below describes the optimal intra and inter-temporal allocation

of the representative household.
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Proposition 2..1 (Household’s Optimal Allocation): The household’s opti-

mal allocation is described below.

1. The labor supply and the intertemporal choice:

wt

PC
t

= θ
Lχ−1
t

C−η
t

qt =
1− φ′( It

Kt
)

P I
t

qt = Et

[
ρ

(
Ct+1

Ct

)
−η

PC
t

PC
t+1

[
rt+1 + qt+1

(
1− δ − φ

(
It+1

Kt+1

)
+

It+1

Kt+1
φ′

(
It+1

Kt+1

))]]

where qt is the replacement cost of capital.

2. The intra-temporal allocation among sectors is:

Pk,tCk,t

PC
t Ct

= βk and
Pk,tIk,t
P I
t It

= νk

where the consumption and investment price indices are:

PC
t =

N∏

k=1

P βk

k,t and P I
t =

N∏

k=1

P νk
k,t

3. The intra-temporal allocation among varieties in sector k is character-

ized by

Ct(k, i) = N−εkζk
k

(
Pt(k, i)

Pk,t

)−εk

Ck,t and It(k, i) = N−εkζk
k

(
Pt(k, i)

Pk,t

)−εk

Ik,t

with the sector k’s price index

Pk,t =

(
N−εkζk

k

Nk∑

i=1

Pt(k, i)
1−εk

) 1
1−εk
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2.2. Firms

Firm i in sector k produces a variety i of sector k’s good. There are Nk firms

in the sector k that compete either monopolistically, à la Cournot or à la

Bertrand. The firm i in sector k maximizes its profit:

πt(k, i) = pt(k, i)yt(k, i)−
N∑

l=1

Nl∑

j=1

pt(l, j)xt(k, i, l, j)− wtLt(k, i)− rtKt(k, i)

where pt(k, i) is the price charged by firm i in sector k, yt(k, i) is the quantity

produced, xt(k, i, l, j) is the quantity of variety j of good l used by firm i in

sector k, Lt(k, i) is the labor input and Kt(k, i) is the amount of capital rented

from household. The firms in sector k have access to the following constant

return to scale technology:

yt(k, i) = Ak

((
Zt(k, i)Lt(k, i)

)1−αk

Kt(k, i)
αk

)γk
(

N∏

l=1

xt(k, i, l)
ωk,l

)

γk is the share of primary inputs (labor and capital) in the production, Ak

is a normalization constant2, αk is the capital share in that primary input,

Zt(k, i) is the labor-augmented productivity specific to the firm i in sector

k, ωk,l is the input share of sector l’s goods needed in sector k’s production.

The (N × N) matrix Ω = {ωk,l}k,l represents the input-output network. Be-

cause of constant return to scale the kth rows of Ω sum to γk:
∑N

l=1 ωk,l = γk.

Furthermore, xt(k, i, l) is a composite of sector l’s varieties:

xt(k, i, l) =
(
N−ζl

l

Nl∑

j=1

xt(k, i, l, j)
εl−1

εl

) εl
εl−1

2This normalization constant makes the mathematics simpler it is equal to Ak =

γ
−γk

k

∏N
l=1 ω

−ωk,l

k,l .
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xt(k, i, l, j) is the quantity of the variety j of sector l’s good that is used for the

production of variety i of sector k’s good. Note that the elasticity of substitu-

tion among varieties in a sector is the same for firms and the representative

household. Even if this assumption seems extreme it is used to keep the

mathematics simple and the model tractable.

In the remaining of this section, I describe the firm’s problem solution

including its pricing behavior and I derive an useful approximation. Finally

I describe the process that productivity Zt(k, i) follows.

2.2.1. Firm’s Problem

The firm i in sector k chooses its inputs to minimize the cost of producing

yt(k, i) units of its variety. Proposition 2..2 describes the solution of the cost

minimization problem of a firm.

Proposition 2..2 (Firm’s Cost Minimization): To produce yt(k, i) units of its

variety, firm i in sector k uses at time t the following inputs:

Lt(k, i) = γk(1− αk)

(
wt

λt(k, i)

)
−1

yt(k, i) and Kt(k, i) = γkαk

(
rt

λt(k, i)

)
−1

yt(k, i)

xt(k, i, l, j) = N
−ζlεl
l

(
pt(l, j)

Pl,t

)
−εl

xt(k, i, l) where xt(k, i, l) = ωk,l

(
Pl,t

λt(k, i)

)
−1

yt(k, i)

The marginal cost λt(k, i) faced by that firm is:

λt(k, i) =

(
Zt(k, i)

γk(αk−1)

(
wt

1− αk

)γk(1−αk)
(
rt
αk

)γkαk

)γk N∏

l=1

P
ωk,l

l,t

wherePl,t =
(
N−ζlεl

l

∑Nl

j=1 pt(l, j)
1−εl

) 1
1−εl and where pt(l, j) is the price charged

by firm j in sector l.

Note that the labor-capital ratio is constant across firms in a sector k and

equal to 1−αk

αk

rt
wt

. The labor-augmented productivity Zt(k, i) is heterogeneous
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across firms in the sector k. It follows that the marginal cost λt(k, i) is also

heterogeneous across firm in sector k.

Firm i in sector k faces the demand yt(k, i) = N−ζkεk
k

(
pt(k,i)
Pk,t

)−εk
Yk,t where

Yk,t is the total demand faced by sector k: Yk,t = Ck,t+Ik,t+
∑N

l=1

∑Nl

j=1 xt(l, j, k) =(
N−ζk

k

∑Nk

i=1 yt(k, i)
εk−1

εk

) εk
εk−1

. Using the household allocation for Ck,t and Ik,t

and the demand for composite intermediate good by firms, it follows:

Pk,tYk,t = βkP
C
t Ct + νkP

I
t It +

N∑

l=1

Nl∑

j=1

ωl,kλt(l, j)yt(l, j) (1)

Note that in an economy with no investment and no input-output linkages

(νk = ωl,k = 0), the sector k’s revenue would write Pk,tYk,t = βkP
CC which

is a sector specific parameter times aggregate output. Instead Pk,tYk,t is a

weighted sum of aggregate quantities where the weights are sector specific

parameters. The firm’s problem is Max {pt(k, i)yt(k, i)− λt(k, i)yt(k, i)} sub-

ject to the demand

yt(k, i) = N−ζkεk
k pt(k, i)

−εkP εk−1
k,t Pk,tYk ⇔ pt(k, i) = N−ζk

k yt(k, i)
1
εk

−1
Pk,tYk,t

where pt(k, i) is the price set by firm i in sector k, yt(k, i) is the quantity pro-

duced by firm i in sector k, λt(k, i) is the marginal cost of firm i in sector k,

Nk is the number of firms in sector k, Pk,t is the price index in sector k, Yk,t is

the quantity of good produced by sector k and where:

Yk,t =

(
N−ζk

k

Nk∑

i

yt(k, i)
εk−1

εk

) εk
εk−1

and Pk,t =

(
N−ζkεk

k

Nk∑

i

pt(k, i)
1−εk

) 1
1−εk

In the next proposition, firms are assumed to take Pk,tYk,t as given i.e they

don’t internalize their price/quantity choice on Pk,tYk,t. The reason is that

Pk,tYk,t is a weighted sum of aggregate quantities where the weights are pa-
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rameters as discussed above. Firms are assumed to take into account the

effect of their choices on sector level quantity but not on aggregate quanti-

ties (in the Cournot and Bertrand competition case). I follow here Atkeson

and Burstein (2008). In their paper, there is a continuum number of sec-

tors and thus in equation (1) the
∑N

l=1 is replaced by an integral. Atkeson

and Burstein (2008)’s assumption is replaced here by the assumption on the

limited firms’ ability to internalize their effect on aggregate quantities. The

following proposition characterizes the pricing of firm i in sector k. For ease

of notation, I am dropping the time subscript.

Proposition 2..3 (Firm’s Pricing): When εk > 1, the firm i in sector k sets a

price p(k, i), has a sale share s(k, i) and a subjective demand elasticity ε(k, i)

that satisfy the following system:

p(k, i) =
ε(k, i)

ε(k, i)− 1
λ(k, i)

s(k, i) =
p(k, i)y(k, i)

PkYk
= N

−ζkεk
k

(
p(k, i)

Pk

)1−εk

ε(k, i) =





εk Under Monopolistic Competition

εk(1− s(k, i)) + s(k, i) = εk − (εk − 1)s(k, i) Under Bertrand Competition

(
1−s(k,i)

εk
+ s(k, i)

)
−1

=
(

1
εk

+ (1 − 1
εk
)s(k, i)

)
−1

Under Cournot Competition

Let us define the firm level markup µ(k, i) = ε(k,i)
ε(k,i)−1

. Note that dµ(k,i)
dε(k,i)

< 0,

since ε(k, i) is decreasing in s(k, i) for the Bertrand and the Cournot case

when εk > 1. It implies that the firm level markup is increasing in its size

s(k, i) measured by the sale share in its sector. Larger firms charge a higher

markup. Note also that the subjective demand elasticity is a weighted av-

erage of the elasticity of substitution across varieties εk and the elasticity of

substitution across sector which is here equal to one.

Unfortunately, this system of equations does not admit an analytical so-

lution. Therfore, it is not possible to aggregate the firms’ behavior at the
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sector level. However, in the proposition below, I show that one can ap-

proximate the solution of this system of equation by the sales share under

monopolistic competition which will allow to solve the model at the sector

level.

Proposition 2..4 (Firm’s Pricing Approximation): At the third order, when

ŝ(k, i) → 0, the sales share of firm i in sector k is:

• Under Bertrand Competition,

s(k, i) = ŝ(k, i)−
(
1− 1

εk

)
ŝ(k, i)2+

(
1− 1

1− εk

)(
1− 1

εk

)2

ŝ(k, i)3+o
(
ŝ(k, i)4

)

• Under Cournot competition,

s(k, i) = ŝ(k, i)−(εk − 1) ŝ(k, i)2+

(
3 +

1

1− εk

)
(εk − 1)2 ŝ(k, i)3+o

(
ŝ(k, i)4

)

where ŝ(k, i) =
(

εk
εk−1

)1−εk
N−ζkεk

k

(
λ(k,i)
Pk

)1−εk
is the sales share of firm i in

sector k under Monopolistic competition.

Proposition 3 shows that when the sales share are not too large, the firm’s

pricing problem can be approximated easily by the sales share under mo-

nopolistic competition. In Figure 3, I plot the second and third order approx-

imations along a numerical solution of the firm pricing problem of proposi-

tion 2..3. On this Figure one can see that, for the calibrated value of εk = 5,

the approximation holds for sales share up to 35%. Moreover the third order

does not add much precision to this approximation. In the remaining of the

paper, I am assuming that firms behave as the second order approximation

as described in assumption 1.

Assumption 1 (Firm’s Pricing): Agents are assumed to make a second order
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Figure 3: Firm’s Pricing Approximation
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Note: For εk = 5. Left panel shows the Bertrand sales share using a
numerical solver (blue), the second (black) and the third (dashed black)
order approximation as a function of the Monopolistic sales share. The
middle panel plot is on a log-log scale, the right panel shows percentage
deviation of both approximations with respect to the numerical solution.
For the Cournot case, see appendix.

approximation of Firm i’s sales share in sector k around the monopolistic case,

s(k, i) =





ŝ(k, i) under Monopolistic Competition

ŝ(k, i)−
(
1− 1

εk

)
ŝ(k, i)2 + o

(
ŝ(k, i)3

)
under Bertrand Competition

ŝ(k, i)−
(
εk − 1

)
ŝ(k, i)2 + o

(
ŝ(k, i)3

)
under Cournot Competition

where ŝ(k, i) =
(

εk
εk−1

)1−εk
N−ζkεk

k

(
λ(k,i)
Pk

)1−εk
is the sales share of firm i in

sector k under monopolistic competition.

2.2.2. Firm’s Productivity Dynamics

The (labor-augmented) productivity of firm i in sector k is Zt(k, i) and is

heterogeneous among firms in sector k. I assume that this firm level pro-
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ductivity follows a sector specific Markov chain over the discrete state space

Φ = {1, ϕk, ϕ
2
k, · · · , ϕn

k , · · · , ϕMk
k } = {ϕn

k}n∈{0,1,...,Mk} for ϕk > 1 which is evenly

distributed in logs3. This Markov chain is described by the transition prob-

abilities P(k)
n,n′ , where P(k)

n,n′ = P
(
ϕ
nt+1,k,i

k = ϕn′

k |ϕ
nt,k,i

k = ϕn
k

)
is the probability

that a firm i in sector k jumps from productivity level ϕn
k to ϕn′

k between time

t and time t + 1. I assume a specific Markovian chain as described in the

assumption below.

Assumption 2 (Random Growth): Firm level productivity in sector k follows

the Markov chain with transition probability:

P(k) =




ak + bk ck 0 · · · · · · 0 0

ak bk ck · · · · · · 0 0

· · · · · · · · · · · · · · · · · · · · ·

0 0 0 · · · ak bk ck

0 0 0 · · · 0 ak bk + ck




where ak + bk + ck = 1.

This Markovian process is a discretization of a random growth process and

is taken from Córdoba (2008). Figure 4 represents these transition proba-

bilities. The properties 2..1 below show that such a process implies random

growth for productivity, i.e that the growth rate of productivity is indepen-

dent of its level.

Properties 2..1 (Gibrat’s Law): The growth rate of the firm’s productivity

which follows the Markov chain described in assumption 2 is independent

of the level of productivity (for Mk > nt,k,i > 0):

E

[
ϕ
nt+1,k,i

k

ϕ
nt,k,i

k

]
= akϕ

−1
k + bk + ckϕk and Var

[
ϕ
nt+1,k,i

k

ϕ
nt,k,i

k

]
= akϕ

−2
k + bk + ckϕ

2
k − ρ2k

3This means that
ϕn+1

k

ϕn
k

= ϕk.
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Figure 4: Productivity Process

Note: A representation of the transition probabilities in assumption 2 of
a firm i in sector k for Mk > nt,k,i > 0.

3. Sectors

In this section, I describe how the firm behavior is aggregated at the sector

level. In the first part of this section, I show that, given aggregate prices and

quantities, the sector equilibrium can be entirely described by two (endoge-

nous) variables per sector: the sectors’ markups and the sectors’ productiv-

ities. Both are weighted average of firm-level markups and productivities

respectively. Given these two variables, one can solve for the price, the size

and the profit of each sector. Furthermore, under assumption 1 and given

aggregate prices and quantities, I show that the sector equilibrium is char-

acterized by two sufficient statistics per sector: the cross-sectional average

firm’s productivity and the cross-sectional firm’s productivity concentration.

Note that in this part, I am abstracting from the time subscript for clarity.

In the second part of this section, I derive the law of motion of the sec-

tors’ productivity distributions under the random growth (assumption 2).

For a given sector, the productivity distribution is a stochastic object that

hovers around its stationary value. Therefore, the two sufficient statistics
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(the cross-sectional average firm’s productivity and the cross-sectional firm’s

productivity concentration) are also stochastic. I also characterize the law of

motion of these statistics. Finally, I articulate these results and conclude.

3.1. Sector Level’s Aggregation

In this part, I first define the sector’s markup and show how it relates to mo-

ments of the sector’s firm size distribution. I then solve for each sector’s price

and size. I show that they are related to different centrality measures of the

Input-Output network. I then explain how these centralities are related to

the double marginalization. Finally, under a second order approximation

(assumption 1), I can solve analytically for each sector’s size and price, given

aggregate prices and quantities. I use these results to derive comparative

statistics.

I first define the sector level markup as the sector’s price divided by the

sector’s marginal cost. To do so, let us first look at the the total cost of sec-

tor k, TCk, which is the sum of the total cost of firms in sector k: TCk =
∑Nk

i=1 λ(k, i)y(k, i) =
(∑Nk

i=1N
−ζkεk
k λ(k, i)p(k, i)−εkP εk

k

)
Yk after substituting for

the total demand faced by each sector k’s firm. By definition the sector k’s

marginal cost is λk = dTCk

dYk
=
∑Nk

i=1N
−ζkεk
k λ(k, i)p(k, i)−εkP εk

k . It follows that

the sector k’s markup is µk = Pk

λk
=
(∑Nk

i=1N
−ζkεk
k λ(k, i)p(k, i)−εkP εk−1

k

)−1

. I

use the firm’s pricing rule - the firm level price is equal to the firm’s marginal

cost times the firm’s markup λ(k, i) = µ(k, i)−1p(k, i) - and the expression of

the sales share s(k, i) = N−ζkεk
k

(
p(k,i)
Pk

)1−εk
to find the following expression of

the sector k’s markup:

µk =
Pk

λk

=

(
Nk∑

i=1

µ(k, i)−1s(k, i)

)−1

The sector’s markup is a sales share weighted harmonic average of firm level



IO IN I-O 21

markups4. This expression is valid for any firm level pricing rule that im-

plies a markup over marginal cost p(k, i) = µ(k, i)λ(k, i), under monopolis-

tic, Bertrand or Cournot competition. In the proposition 3..1, I show that

the sector level markup is a function of moments of the sector’s firm size

distribution. Especially, I focus on the impact of the Herfindahl index on

this sector’s markup.

Proposition 3..1 (Sector Level Markup): The sector k’s markup is equal to

µk =





εk
εk−1 Under Monopolistic competition

(
1− 1

εk

∑∞
n=0

(
1− 1

εk

)n
HKn+1

k (n + 1)
)−1

Under Bertrand competition

(
εk−1
εk

− 1
εk

(
εk − 1

)
HHIk

)−1
Under Cournot competition

where HHIk =
(∑Nk

i=1 s(k, i)
2
)

is the sector k’s Herfindahl index, andHKk(n+

1) =
(∑Nk

i=1 s(k, i)
n
)1/n

is the Hannah and Kay (1977) concentration index.

In addition, the sector level markup is an increasing function of the sector’s

Herfindahl index.

∂µk

∂HHIk
=





0 Under Monopolistic competition

εk−1
ε2k

µ2
k > 0 Under Bertrand competition

εk−1
εk

µ2
k > 0 Under Cournot competition

NB: HKk(2)
2 = HHIk the Herfindahl index is the square of the second Han-

nah and Kay (1977) concentration index.

The above proposition first shows that under Monopolistic competition the

sector level markup is constant and equal to the firm level markups. This is

4Note that the sector k’s marginal cost is a quantity share weighted average of firm level

marginal cost λk =
∑Nk

i=1 λ(k, i)
y(k,i)
Yk

.



22 BASILE GRASSI

obvious since the sector’s markup is an average of firms’ markups and as un-

der monopolistic competition all the firms in a given sector charge the same

markup. Secondly, as soon as pricing becomes strategic, the sales share dis-

tribution in this sector plays a crucial role. Under Cournot competition for

example, the second moment of this sector’s sales share distribution, i.e the

Herfindahl index, entirely determines the sector’s markup. The intuition is

as follows, when the sector’s concentration is high, i.e the Herfindahl index

is high, large firms have a higher market share and thus they can use this

higher market power to charge a higher markup which in turn aggregate to

a higher sector’s markup.

The second part of this proposition derives some comparative statics of

the markup with respect to the Herfindahl Index while keeping everything

else constant. Under Bertrand and Cournot competition, a higher sector’s

Herfindahl index always implies a higher sector’s markup. The effect is stronger

for low competitive, high markup sectors. Finally the sensitivity of the sec-

tor’s markup to the sector’s Herfindahl index is stronger under Cournot that

under Bertrand competition.

After studying the sector level markup, I describe how the sectors’ prices

depend on other sectors’ markups and productivities. Crucially, these inter-

dependences are driven by the input-output network.

Proposition 3..2 (Sector’s Price): The sector’s prices satisfy the following sys-

tem of equations:

{
logPk

}
k
= (I − Ω)−1

{
log

(
µk

(
w

1− αk

)γk(1−αk)
(

r

αk

)γkαk

Z
γk(αk−1)
k

)}

k

where µk is the sector k markup and Zk is a measure of sector k’s productivity

defined by Z
γk(αk−1)
k =

∑Nk

i=1 Z(k, i)
γk(αk−1) y(k,i)

Yk
.

To build intuition, let us first focus on the case where there are no input-
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output trade: Ω = 0. In that case the sector k’s price is equal to the sec-

tor k’s markup times the sector k’s marginal cost of (primary) inputs λ̃k :=(
w

1−αk

)γk(1−αk)
(

r
αk

)γkαk

Z
γk(αk−1)
k . In the presence of input-output trade, the

sector k’s price becomes5:

logPk = logµk + log λ̃k +

N∑

l=1

ωk,l log µlλ̃l + . . .

where I write only the impact of direct suppliers of sector k. The sector k’s

price is still equal to the sector k’s markup times the sector k’s marginal cost.

However, the sector k’s marginal cost is now equal the sector k’s marginal

cost of primary inputs times the cost of primary inputs upstream weighted

by the input shares in sector k’s production function ωk,l (which is the inten-

sity of sector l’s good used in sector k’s production). The latter is a function

of markups in upstream sectors since sector k pays the price charged by its

upstream sectors which have some market power. This intuition generalizes

to supplier of the suppliers of sector k and so on through the following terms.

This expression captures the double marginalization between sectors.

Indeed, note that under perfect competition (∀l, µl = 1), the sector k’s price

is equal to:

logP Perfect
k = log λ̃k +

N∑

l=1

ωk,l log λ̃l + . . .

Sector k’s price are then equal to the sector k’s technological marginal cost

which is the average of all the upstream marginal cost of primary inputs

weighted by the intensity of (direct and indirect) input-output linkages. Un-

der imperfect competition, the sector k’s charges a price higher than its tech-

nological marginal cost. The difference between the price charged and the

technological marginal cost is log µk +
∑N

l=1 ωk,l logµl + . . . which depends on

upstream sectors’ market powers. This capture the idea of double marginal-

5Note that (I − Ω)−1 = I +Ω +Ω2 +Ω3 + . . ..
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ization.

After studying a sector’s markup and price, I now turn to this sector size.

I show that the sector size is determined by the sectors’ markups, aggregate

quantities and the input-output network.

Proposition 3..3 (Sector’s Size = Sector’s Supplier Centrality): The sector k’s

size measure by its sales is

PkYk = β̃kP
CC + ν̃kP

II

where β̃ ′ = β ′ (I − µ−1Ω)
−1

and ν̃ ′ = ν ′ (I − µ−1Ω)
−1

are respectively

the final consumption supplier centrality and the investment supplier cen-

trality. Ψ(s) = (I − µ−1Ω)
−1

is the supply-side influence matrix and µ−1 =

diag({µ−1
k }k) is the diagonal matrix where µk is the sector k’s markup.

What determines sector’s size? Each sector’s good is either consumed or in-

vested by the household, or is used as input by other sectors. To see that let

us write the first few terms in the expression of β̃k when there is no invest-

ment:

PkYk = β̃ ′
kP

CC = β ′
kP

CC +
N∑

l=1

βlP
CCωl,k

µl
+ . . .

The first term β ′
k captures the contribution to sector k’s sales of the house-

hold’s (direct) consumption. The second term,
∑N

l=1
βlP

CCωl,k

µl
, captures the

contribution to sector k’s sales of (direct) downstream sectors. The latter

is determined by ωl,k the share of sector k’s good used in the production

of sector l good and βl the household spending share on good l. The term

βlP
CCωl,k captures the demand of good k that comes from the household

through the sector l. And this intuition goes through for the customer of the

customer of sector k through the next term and so on and so forth.

An important thing to note is that this expression is affected by the markups

of sectors downstream of sector k. Indeed, a sector l only use a share 1
µl

of
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its revenue to pay for inputs. Thus the amount of sector l’s revenue that goes

to sector k is
βlP

CCωl,k

µl
. When a sector charges a high markup, it keeps more

profit from its sales and less is left to pay for inputs among which sector k

goods. This problem is somehow similar to the demand side of the double

marginalization problem described above: double marginalization means

that whenever a upstream sector charges a higher markup, then downstream

sectors charge a higher price. Here, whenever downstream sector charges a

higher markups, the demand of the upstream sectors goes down. Market

power accumulates over the supply chain: upstream as demand shifter and

downstream as supply shifter.

In a perfect competitive framework, Acemoglu et al. (2012) show that the

sector size (in term of sales share) is determined by the Bonacich’s central-

ity measure of that sector in the input-output network: β ′(I − Ω)−1. The

Bonacich’s centrality is a network statistic that captures the impact of indi-

rect connections among sectors. If sector A needs inputs from sector B that

itself needs inputs from sector C, the Bonacich’s centrality measure of sec-

tor A takes into account the first degree connections (sector B demand from

sector A) and the second degree connections (sector C demand from sector

B and the resulting demand from sector A). In a perfect competitive frame-

work such statistic is entirely determined by the input-output structure Ω.

Baqaee (2016) has shown in an imperfect competition framework, similar

my framework, that the size of a sector is determined by a Katz centrality

measure that is related to the Bonacich’s centrality but modified by sectors’

markups. In Baqaee (2016), the markups are endogenous because of the

entry and exit margin and thus the relevant centrality becomes also endoge-

nous. In my paper, the relevant centrality measure is also endogenous be-

cause of the endogenous sectors’ markups. However, the latter endogeneity

of markups is due to the firms’ heterogeneity rather than the extensive mar-

gin. Note also, that because sectors’ goods can also be invested, the sector
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size is determined by both the final consumption supplier centrality β̃ and

the investment supplier centrality ν̃.

Finally, for completeness I solve for the sector’s level profit and I show

how this profit is rebated among firms.

Proposition 3..4 (Sector’s and Firm’s Profit): The sector k’s profit is prok =

µk−1
µk

(
β̃kP

CC + ν̃kP
II
)

while the profit of firm i in sector k is pro(k, i) =
µ(k,i)−1
µ(k,i)

µk

µk−1
s(k, i)prok where s(k, i) = p(k,i)y(k,i)

PkYk
is the sales share of firm i in

sector k.

The total profit of sector k is then a function of its total sales. As show in

proposition 3..3, this is determined by the supplier centralities β̃k and ν̃k.

Through these centralities, the input-output structure and the market power

of downstream sectors determines sectors’ profits. Furthermore, the sector

k’s market power enhances its profit. Indeed, 1− 1
µk

can be seen as the inverse

of the effective sector k’s elasticity of demand6, it also the share of sector k’s

revenue that goes to profit. Finally, this profit is distributed among firms in

in a sector depending on the sales share of that firm and its ratio between

the sector wide effective demand elasticity, µk

µk−1
, and the firm (subjective)

effective demand elasticity, µ(k,i)
µ(k,i)−1

= ε(k, i).

The above propositions emphasize the key role played by the sectors’

markups and productivities in the determination of sectors’ prices, sizes and

profits. However, each sector’s markup and productivity are endogenous

variables, they are weighted average of their firm level counterpart. In the

following of this part of this section, I now show that under a second order

approximation (assumption 1) the sectors’ markups and the productivities

are entirely pinned down by two sector level statistics: the cross-sectional

average productivity and the cross-sectional productivity Herfindahl Index.

6For the monopolistic case, where firms charge constant markup, µk−1
µk

= 1
εk

.
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Proposition 3..5 (Sector under Assumption 1): Under assumption 1 the sec-

tors’ prices are equal to:

{logPk}k =

(I − Ω)−1

{
log

((
w

1− αk

)γk(1−αk)( r

αk

)γkαk

N
ζk

εk
εk−1

k

(
εk

εk − 1

)(
Z

(1)
k

) −1
εk−1

(
fk (∆k)

) 1
εk−1

)}

k

the sector k’s markup is equal to:

µk =
εk

εk − fk (∆k)

while the sector k’s productivity is equal to:

Z
γk(αk−1)
k = N

ζk
εk

εk−1

k

(
Z

(1)
k

) −1
εk−1

(
fk (∆k)

) 1
εk−1

(
εk − fk (∆k)

εk − 1

)

where

fk(x) =





1 Under Monopolistic

1−

√
1−4

(
1− 1

εk

)
x

2
(
1− 1

εk

)
x

for x ∈
[
0, 1

4
(
1− 1

εk

)

]
Under Bertrand

1−
√

1−4(εk−1)x

2(εk−1)x
for x ∈ [0, 1

4(εk−1)
] under Cournot

and where∆k =

(
Z

(2)
k

Z
(1)
k

)2

is a concentration measure: the productivity Herfind-

ahl index while Z
(n)
k =

(∑Nk

i Z(k, i)n(εk−1)γk(1−αk)
) 1

n

is the nth moment of the sec-

tor k’s productivity distribution.

First note that ∆k =

(
Z

(2)
k

Z
(1)
k

)2

=
∑Nk

i

(
Z(k,i)2(εk−1)γk(1−αk)

Z
(1)
k

)2

where Z
(1)
k is equal

to Z
(1)
k =

∑Nk

i Z(k, i)(εk−1)γk(1−αk). Thus ∆k is the sum of the sector k’s firm

productivity share squared, in other words this is the sector k’s productivity

Herfindahl index. Higher ∆k implies a higher dispersion of productivity i.e.
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Figure 5: Deviation from Monopolistic Competition
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for different value of εk.

For the Cournot case, see appendix.

a higher concentration. As one can see in proposition 3..5 this concentra-

tion measure determines the distortion introduced by the strategic pricing

through the term fk(∆k).

It easy to show that when ∆k → 0, we have fk(∆k) → 1 for the Bertrand or

the Cournot case. When the productivity heterogeneity across firms in a sec-

tor is going to zero the Bertrand (resp. Cournot) case nests the monopolistic

case: sector’s price, markup and productivity converge to their monopolis-

tic counterpart. This is very intuitive, since firms are strategic and use their

relative market power in order to influence the sector price and extract more

profit. If firms are all identical, firms cannot do so and we are back to the

Monopolistic Dixit and Stiglitz (1977) case.

In the figure 5, I plot the function x 7→ fk(x) for different values of εk. One

can see that this function takes values above one and is increasing. In other

words, a higher heterogeneity within a sector creates a higher deviation from

the monopolistic case.

The term (fk (∆k))
−1

εk−1 captures the effect of the firm strategic pricing on
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the sector level price. This term does not only capture the change of sec-

tor level markup but it also captures the change in the productivity implied

by the strategic pricing. A higher concentration implies that (i) the sector

is less competitive, i.e charges a higher markup and (ii) is more productive.

As is shown in corollary 3..1. If the concentration is higher in a sector, large

firms can extract more profit by using their market power to influence the

sector’s price. However, in a more concentrated sector, large firms are even

larger compared to the monopolistic case. These large firms use more pri-

mary input in a more efficient way. The former of these two opposite effects

dominates as shown in the corollary below.

Corollary 3..1 (Concentration, Competition and Productivity): Under as-

sumption 1, a sector with higher concentration is less competitive but more

productive. Formally, keeping the average productivity Z
(1)
k constant, we have

dµk

d∆k

∣∣∣∣
Z

(1)
k

> 0 and
dZk

d∆k

∣∣∣∣
Z

(1)
k

> 0 and
d
(
µkZ

γk(αk−1)
k

)

d∆k

∣∣∣∣∣∣
Z

(1)
k

< 0

Finally note that the deviation from monopolistic competition affects

other sectors through the input-output matrix Ω. In corollary 3..2, I describe

how an increase in concentration of a sector affects other sectors’ centrality.

Corollary 3..2 (Concentration and Supplier Centrality): Under assumption

1, the sector l 6= k’s centrality is non-increasing in the sector k’s concentration.



30 BASILE GRASSI

Formally, keeping the average productivity Z
(1)
k constant, we have

d log β̃l

d log∆k

∣∣∣∣∣
Z

(1)
k

= −
(
Ψ

(s)
k,l − Ik,l

) fk(∆k)

εk − fk(∆k)
ek

and

d log ν̃l
d log∆k

∣∣∣∣
Z

(1)
k

= −
(
Ψ

(s)
k,l − Ik,l

) fk(∆k)

εk − fk(∆k)
ek

where ek = d log fk(∆k)
d log∆k

is the elasticity of fk to the sector k’s concentration index

∆k. Ψ(s) = (I − µ−1Ω) is the supplier influence matrix and Ik,l = 1 if k = l and

zero otherwise.

Note that fk(∆k)
εk−fk(∆k)

ek is the elasticity of the sector k’s markup to sector k’s

concentration d log µk

d log∆k
. For l 6= k, the expression becomes d log β̃l

d log fk(∆k)

∣∣∣
Z

(1)
k

=

− d logµk

d log∆k
Ψ

(s)
k,l ≤ 0. In words, the centrality of other sectors decreases when

concentration in a sector k increases while its cross-sectional average pro-

ductivity stays the same. The intuition is as follows: when the concentration

in sector k increases, the sector k’s markup increases (see corollary 3..1); sec-

tor k demands less intermediate inputs to achieve the same sales; thus if the

sector l is upstream of sector k (measured by Ψ
(s)
k,l ), sector l suffers a decrease

in its sales share, i.e it supplier centrality decreases. The effect is stronger

(i) if sector k is an important (direct or indirect) consumer of sector l’s good

(Ψ
(s)
k,l is high) or (ii) sector k’s markup is very sensitive to the concentration

( d log µk

d log∆k
is high).

3.2. Sector Dynamics

In this subsection, I describe the evolution of a generic sector’s productiv-

ity distribution. Let us define the vector g
(k)
t = {g(k)t,n}0≤n≤M where g

(k)
t,n is

the number of firms at productivity level ϕn at time t in sector k. The vec-
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Figure 6: An illustrative example of the productivity distribution dynamics
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Note: Top panel, with a continuum of firms we have a deterministic tran-
sition. Bottom Panel, with a finite number of firms we have a stochastic
transition.

tor g
(k)
t is thus the firm’s productivity distribution in sector k. Recall that

in sector k there is an integer number of firms Nk. Following Carvalho and

Grassi (2015), this assumption implies that the productivity distribution is a

stochastic object. To understand the intuition, let us study a simple exam-

ple.

Assume there are only three levels of productivity and four firms. At time

period t these firms are distributed according to the bottom-left panel of Fig-

ure 6, i.e. all four firms produce with the intermediate level of productivity.

Further assume that these firms have an equal probability of 1/4 of going up

or down in the productivity ladder and that the probability of staying at the

same intermediate level is 1/2. That is, the transition probabilities are given
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by (1/4, 1/2, 1/4)′. First note that, if instead of four firms we had assumed a

continuum of firms, the law of large numbers would hold such that at t + 1

there would be exactly 1/4 of the (mass of) firms at the highest level of pro-

ductivity, 1/2 would remain at the intermediate level and 1/4 would transit

to the lowest level of productivity (top panel of Figure 6). This is not the case

here, since the number of firms is finite. For instance, a distribution of firms

such as the one presented in the bottom-right panel of Figure 6 is possible

with a positive probability. Of course, many other arrangements would also

be possible outcomes. Thus, in this example, the number of firms in each

productivity bin at t+1 follows a multinomial distribution with a number of

trials of 4 and an event probability vector (1/4, 1/2, 1/4)′.

In this simple example, all firms are assumed to have the same produc-

tivity level at time t. It is easy however to extend this example to any initial

arrangement of firms over productivity bins. Indeed, for any initial number

of firms at a given productivity level, the distribution of these firms across

productivity levels next period follows a multinomial. Therefore, the total

number of firms in each productivity level next period, is simply a sum of

multinomials, i.e. the result of transitions from all initial productivity bins.

The following proposition generalizes this example.

Proposition 3..6 (Sector k’s Productivity Distribution Dynamics): Under

assumption 2, the Sector k’s Productivity Distribution satisfies the following

law of motion

g
(k)
t+1 = (P(k))′g

(k)
t + ǫ

(k)
t

where ǫ
(k)
t =

{
ǫ
(k)
t,n

}
0≤n≤M

is a mean zero random vector with the following
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variance-covariance structure:

Vart

[
ǫ
(k)
t,n

]
=





ak(1− ak)g
(k)
t,n+1 + bk(1− bk)g

(k)
t,n + ck(1− ck)g

(k)
t,n−1 for n > 0

(1− ck)ckg
(k)
t,0 + (1− ak)akg

(k)
t,1 for n = 0

(1− ak)akg
(k)
t,M + (1− ck)ckg

(k)
t,M−1 for n = M

Covt

[
ǫ
(k)
t,n; ǫ

(k)
t,n′

]
=





0 for |n− n′| > 2

−bkckg
(k)
t,n − akbkg

(k)
t,n+1 for n′ = n+ 1

−akckg
(k)
t,n+1 for n′ = n+ 2

Covt

[
ǫ
(k)
t,0 ; ǫ

(k)
t,n′

]
=





0 for n′ > 2

−(1− ck)ckg
(k)
t,0 − akbkg

(k)
t,1 for n′ = 1

−akckg
(k)
t,1 for n′ = 2

Covt

[
ǫ
(k)
t,M ; ǫ

(k)
t,n′

]
=





0 for n′ < M − 2

−bkckg
(k)
t,M−1 − ak(1 − ak)g

(k)
t,M for n′ = M − 1

−akckg
(k)
t,M−1 for n′ = M − 2

Stationary Distribution The dynamics of the firms’ productivity distribu-

tion within a sector implies that the distribution hovers around a stationary

distribution. This stationary distribution is given by the stationary distribu-

tion of the Markovian process that firms’ productivity follows in that sector.

Here I solve for this object. Note that, since in the model this distribution is

the state variable, the stationary distribution is the steady state of this econ-

omy.

Proposition 3..7 (Sector k’s Productivity Stationary Distribution): Under
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assumption 2 and if ak < ck then the stationary distribution of firm level pro-

ductivity in sector k is Pareto and equal to g
(k)
n = Nk

1−ϕ
−δk
k

1−
(
ϕ
Mk+1

k

)
−δk

(ϕn
k)

−δk where

δk =
log

ak
ck

logϕk
is the tail index.

The above proposition shows that the stationary distribution is Pareto with

tail δk. It is a well established fact that random growth process generates

Pareto distribution when there is some perturbation for low productivity

level (see Gabaix, 1999 or Gabaix, 2009 for a review). In the context of as-

sumption 2, this result is due to Córdoba (2008).

Dynamics of Moments of the Productivity Distribution In the previous

proposition, I described the dynamics of the sector’s productivity distribu-

tion, the state variable of this economy. Propositions 3..3 and 3..5 show that

to solve for the sectors’ prices and quantities, only two moments of the sec-

tors’ productivity distributions are needed, namely the cross-sectional aver-

age productivity Z
(1)
t,k and the cross-sectional productivity Herfindahl index,

∆t,k. The proposition 3..8 below describes the dynamics of these two sectors

level sufficient statistics.

Proposition 3..8 (Dynamics of Z
(1)
t,k and ∆t,k): Under random growth (as-

sumption 2), the moments Z
(1)
t,k and ∆t,k of the sector k’s productivity distri-

bution satisfy the following dynamics:

Z
(1)
t+1,k

Z
(1)
t,k

= ρ
(1)
k +

o
M,(1)
t,k

Z
(1)
t,k

+

√
̺
(1)
k ∆t,k + o

σ,(1)
t,k ε

(1)
t+1,k


Z

(1)
t+1,k

Z
(1)
t,k




2

∆t+1,k

∆t,k
= ρ

(2)
k +

o
M,(2)
t,k

∆t,k
+

√
̺
(2)
k κt,k + o

σ,(2)
t,k ε

(2)
t+1,k

where ε
(1)
t+1,k and ε

(2)
t+1,k are random variables following a N (0, 1) with a covari-
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ance

Covt

[
ε
(1)
t+1,k; ε

(2)
t+1,k

]
=

̺kSkewt,k + o
C,(2)
t,k(

̺
(1)
k ∆t,k + o

σ,(1)
t,k

)1/2 (
̺
(2)
k κk + o

σ,(2)
t,k

)1/2

Where, κt,k =

(
Z

(4)
t,k

)4

(
Z

(2)
t,k

)4 andSkewt,k =

(
Z

(3)
t,k

)3

(
Z

(2)
t,k

)2(
Z

(1)
t,k

) while o
M,(1)
t,k , o

M,(2)
t,k , o

σ,(1)
t,k , o

σ,(2)
t,k

and o
C,(2)
t,k are predeterminated at time t+1. The constants ρ

(n)
k = akϕ

−n(εk−1)γk(1−αk)
k +

bk + ckϕ
n(εk−1)γk(1−αk)
k and ̺

(n)
k = akϕ

−2n(εk−1)γk(1−αk)
k + bk + ckϕ

2n(εk−1)γk(1−αk)
k −

(ρ
(n)
k )2 are respectively the mean and variance of the growth rate of firm i in

sector k productivity measure Z(k, i)n(εk−1)γk(1−αk).

Proposition 3..8 is similar to the theorem 2 in Carvalho and Grassi (2015).

It shows that the dynamics of these moments of the sector k’s productiv-

ity distribution are persistent, and that the persistent parameters ρ
(1)
k and

ρ
(2)
k depend on the firm level productivity process through ak, bk and ck. The

intuition is that since the firm level productivity is itself persistent, this per-

sistence is aggregated at the sector level. The higher is the firm level persis-

tence, higher is the sector level persistence as shown in Carvalho and Grassi

(2015).

Moreover, the (conditional) variance of the growth rate of the sector k’s

cross-sectional average productivity, Z
(1)
k,t+1, is time varying and is determined

by the concentration ∆t,k. Here as in Gabaix (2011) and Carvalho and Grassi

(2015), any volatility of the sector level productivity is due to idiosyncratic

shocks at the firm level. When a sector is concentrated, shocks to large firms

do not wash out at the aggregate level. When the concentration is high at the

sector level, i.e when large firms are more important, shocks to these large

firms generate larger movements in the average. Thus a higher concentra-

tion implies larger large firms and thus more volatility of the cross-sectional

mean due to idiosyncratic shocks.
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Proposition 3..8 also shows that the growth rate (normalized) of the cross-

sectional productivity Herfindahl index, ∆t,k, is normally distributed with

a standard error governed by κk,t =
(
Z

(4)
t,k

)4
/
(
Z

(2)
t,k

)4
. This statistic is the

(empirical) Kurtosis of the sector k’s productivity distribution. Intuitively,

the Kurtosis measures how much of the variance is due to extreme events.

Therefore a higher Kurtosis implies a higher volatility of the variance, since

a higher Kurtosis implies more extremely large firms.

3.3. Taking Stock

In this section, the firm-level behavior are aggregated at the sector-level.

Proposition 3..3 and 3..2 show how the sectors’ markups and productivi-

ties affect the sales share and the price of other sectors. These results also

emphasize the role played by the double marginalization and how it affects

sector prices and sales share.

Under a second order approximation (assumption 1) of the firm level be-

havior, proposition 3..5 shows that both the sector level markup and produc-

tivity are function of only two moments of the sector’s cross-sectional pro-

ductivity distribution, namely Z
(1)
t,k , the cross-sectional average, and ∆t,k, the

cross-sectional productivity Herfindahl index. The former measures how

much a representative firm is productive, while the latter measures how strongly

the sector is concentrated. While the average productivity does not affect the

sector level markup, the concentration does. Given these two statistics (and

aggregate prices and quantities), the sector prices and quantities are entirely

analytically solved for.

In order to characterize a given sector dynamics, I need to characterize

how the sector’s productivity distribution evolves. Under random growth

(assumption 2), the law of motion of a sector’s productivity distribution turns

out to be very tractable. Proposition 3..6 shows that this distribution is a
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stochastic object and describes its law of motion. The sector’s productivity

distribution hovers around its stationary distribution which is solved closed

form in proposition 3..7. Since the sector’s productivity distribution is stochas-

tic, it implies that its moments are also stochastic. Since the two sufficient

statistics Z
(1)
t,k and ∆t,k are moments of the productivity distribution, sector’s

price and quantity are themselves random variables. To completely describe

the dynamics of a sector, proposition 3..8 describes the evolution of these

two sufficient statistics: Z
(1)
t,k , the cross-sectional average, and ∆t,k, the cross-

sectional Herfindahl index.

4. Equilibrium

In this section, I describe the factors’ markets clearing conditions. Finally

I show that under some assumptions, the within-sector firm level hetero-

geneity can be entirely summarized by the two sufficient statistics Z
(1)
t,k and

∆t,k. It follows that the equilibrium of this economy can be defined at the

sector level.

First let us write the factors’ markets clearing conditions.

Proposition 4..1 (Factor’s Market Clearing Conditions): The labor market

clearing condition is L = w−1
∑N

k=1(1 − αk)γkµ
−1
k

(
β̃kP

CC + ν̃kP
II
)

and the

capital market clearing condition is K = r−1
∑N

k=1 γkαkµ
−1
k

(
β̃kP

CC + ν̃kP
II
)

In proposition 4..1, note that the sectors’ supplier centralities β̃k and ν̃k de-

termine the factor demand. It is because these centralities are a measure

of the sector size as shown in proposition 3..3. The primary input shares γk

and the share of each factors αk also determine the factor demand. Finally

the sector’s markup µk determines the share of revenue that is used to pay

inputs. By Walras law, only one of the market clearing condition is enough

to solve for the equilibrium. Note that the right hand side of the factor mar-
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ket clearing condition depends only on sectors’ markups either directly or

through the centrality measures β̃k and ν̃k. Under assumption 1, the sector

level markup is only a function of the sector productivity Herfindahl index

∆t,k. Once again, one need to know this statistic for each sector to compute

the factor market equilibrium condition.

It is now possible to define the equilibrium of this economy at the sector

level. Let us normalize the price of the composite consumption good PC
t =

1.

Definition 4..1 (Equilibrium at the Sector Level):

A Monopolistic (resp. Bertrand, Cournot) equilibrium at the sector level,

under assumptions 1 and 2 is a set of sequences of aggregate prices (wt, rt, qt, P
I
t ),

sector level prices (Pt,k), aggregate quantities (Ct, It, Kt, Lt), sector level quan-

tities (Ct,k, It,k, Yt,k, µt,k) and sector’s productivity distribution (g
(k)
t ) such that:

1. The representative consumer behavior satisfies by the capital accumu-

lation, the labor supply, the intertemporal choice, the intra-temporal

allocation among sectors (proposition 2..1: 1 and 2)

2. Sectors’ prices and markups satisfy proposition 3..5

3. Sectors’ Sales shares satisfy proposition 3..3

4. Markets for labor and capital clear (proposition 4..1)

5. Each sector’s productivity distribution evolves according to proposition

3..6

There are 4 equations for the intertemporal allocation of households (Law of

motion of capital, and proposition 2..1: 1 and 2), 2×N equations for the in-

tratemporal allocation of consumption goods and investment goods at the

sector level, 2 price indices’ equations for the final consumption and the

investment goods (proposition 2..1), N equations for the sectors’ markups
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(proposition 3..5), N for the sectors’ sizes (proposition 3..3), N equations for

the sectors’ prices (proposition 3..5), and N equations on the evolution of

the sectors’ productivity distributions (proposition 3..6) and one equation

for the household budget constraint. Finally there are 2 factor market clear-

ing conditions (proposition 4..1), one of which is redundant by Walras law.

The total number of equations is then 6 × N + 8. The number of variables

is as follows: aggregate prices (wt, rt, qt, P
I
t ), sector level prices (Pt,k)k, aggre-

gate quantities (Kt, It, Lt, Ct) and sector-level quantities (Ct,k, It,k, Yt,k, µt,k)k

and the sectors’ productivity distributions g
(k)
t , hence 6×N + 8 variables.

5. A Special Case

In this section, I study the special case where the only primary input is labor

∀k, αk = 0 and where ∀k, ζk = 0. I also simplify the household problem by

setting θ to one. With these assumptions, the intertemporal choice of the

household is no longer relevant for the equilibrium. The model becomes a

repeated static economy. In this case, I can solve analytically for the aggre-

gate consumption and the wage. I then use this framework to build intuition

and derive clear comparative statics. In this section, I first show the solution

for the aggregate consumption and wage. I then derive comparative statics

and define a statistic that summarizes the impact of firm level shocks on the

economy. Finally, I study some examples of network structure to illustrate

their impact on the propagation of firm level shocks across sectors and on

the aggregate.

The tractability of this special case allows to calibrate the model using

only a few parameters. I use this calibration to quantify the elasticity of the

aggregate profit, wage and output with respect to concentration. I first as-

sume that the elasticity of substitution across varieties in a sector is equal

to 5 for all sectors. Using the detailed I-O table for 2007 of Bureau of Eco-
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nomic Analysis described in the data appendix, I recover the matrix Ω and

the household spending share βk for each sector. Using the concentration

data of the Census Bureau which give for each manufacturing sector the

Herfindahl-Hirschman-Index (HHI) for the 50 largest firms, I compute the

implied value of the productivity concentration ∆k by inverting the formula

HHIk =
fk(∆k)−1
1−1/εk

for each sector. Unfortunately, the HHI is only available for

manufacturing sectors, I then assume for the other sector Dixit-Stiglitz com-

petition. Finally, I choose a value of the labor supply elasticity χ of 2 and a

value of η, the relative risk aversion, of 1.5 in lines with usual assumption in

the business cycle literature.

5.1. Role of Concentration

To solve for the aggregate, proposition 5..1 solves for the aggregate profit and

show how labor income and profit are distributed.

Proposition 5..1 (Aggregate Profit): When ∀k, αk = 0 and ∀k, ζk = 0, the

profit and labor income shares are:

Prot
PC
t Ct

= β̃ ′
t

(
µt − 1

µt

)
and

wtLt

PC
t Ct

= 1− β̃ ′
t

(
µt − 1

µt

)

where β̃t = (I − µ−1
t Ω)−1, µ−1

t = diag({µt,k}k) and µt−1
µt

is the vector {µt,k−1

µt,k
}k.

Proposition 5..1 shows that the profit income share Pro
PCC

= β̃ ′
(

µ−1
µ

)
is only

a function of the sectors’ markups. Under assumption 1, these markups are

entirely determined by the sectors’ concentrations since µt,k =
εk

εk−fk(∆t,k)
(see

proposition 3..5). This is very intuitive, since the markup determines how

much of the sector’s income is distributed across profit and inputs.

First, note that a change in the cross-sectional average productivity in

sector k, Z
(1)
t,k , does not affect the profit income share. Indeed such a shock

affects all the firms in sector k in the same way, and thus does not increase
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the market power of one versus the others. Thus the sectors’ markups and

profits are not affected. However, a change in sector k’s concentration - mea-

sure by the productivity Herfindahl index, ∆t,k - does affect the relative mar-

ket power of firms in sector k. This change in relative market power affects

the sector k’s markup, which in turn affects sales and profits of others sectors

through the input-output network. Formally, I show that

∂
(

Prot
PC
t Ct

)

∂∆t,k

= µt,kβ̃t,k

(
1−

N∑

l=1

Ψ
(s)
k,l

µt,l − 1

µt,l

)
f ′
k(∆k)

εk

∂
(
log Prot

PC
t Ct

)

∂ log∆t,k

= µt,k
prok
Pro

(
1−

N∑

l=1

Ψ
(s)
k,l

µt,l − 1

µt,l

)
ek

whereΨ(s) = (I−µ−1
t Ω)−1 is the supplier influence matrix. To understand the

intuition, let us focus on the case where there is no input-output trade, Ω = 0

then Ψ(s) = I and β̃t,k = βk. In that case
d

(
Prot
PC
t Ct

)

d∆t,k
=

βkf
′

k(∆k,t)

εk
. The change of

profit is governed by the importance of that sector for household consump-

tion and the elasticity of substitution in that sector, which measures how

much this sector’s markup is sensitive to concentration7. The larger the sec-

tor is (as measured by the household spending share βk), and the more the

markup is sensitive to concentration, the higher the change in profit share

is.

For the case where Ω 6= 0, the same intuition applies. The importance

of a sector is now measured by the supplier centrality measure β̃t,k (which is

equal to the sales share of that sector by proposition 3..3) , while the sensitiv-

ity of the sector k’s markup to the concentration is still measured by
f ′

k(∆k)

εk
.

Here, a change in markup in sector k also affects its payment for interme-

diate inputs to upstream sectors. The intensity of that change is governed

7Note that
dµ−1

k

d∆k
= −1

εk
f ′

k(∆k).
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by the share of intermediate inputs (direct and indirectly) used in the pro-

duction of sector k’s good. This is measured by the term (k, l) of the sup-

plier influence matrix: Ψ
(s)
k,l . If the concentration of a sector using intensively

intermediate inputs (directly and indirectly) increases then its demand of

upstream sectors’ goods is reduced, which in turn decreases the profits of

upstream sectors. The total effect on aggregate profit share of this increase

of concentration is thus reduced. I define the markup centrality that sum-

marized, for a given sector, the market power of its upstream sectors.

Definition 5..1 (Markup Centrality): The markup centrality is defined as:

µ̃k,t =
ε̃k

ε̃k − 1

where ε̃−1
k is the kth element of the vector ε̃−1 defined as

ε̃−1 = (I − µ−1Ω)−1

{
fk(∆k)

εk

}

k

=

N∑

l=1

Ψ
(s)
k,l

µt,l − 1

µt,l

With this definition of the markup centrality, the effect of concentration on

profit share can be rewritten as:

∂
(

Prot
PC
t Ct

)

∂∆t,k

= β̃t,k
µt,k

µ̃k,t

f ′
k(∆k)

εk
or

∂
(
log Prot

PC
t Ct

)

∂ log∆t,k

=
prok
Pro

µt,k

µ̃k,t

ek (2)

where the term
µt,k

µ̃k,t
measures the markup of a sector relative to the markup

centrality i.e. the markup of its upstream sectors. This term summarizes the

implied change of profit in sector k’s upstream sector following the increase

in sector k’s concentration. If the concentration in a sector were a policy

instrument, and if the government wanted to reduce the income share of

profit, then that government should reduce concentration in the large sec-

tors (as measured by its profit share) that have a high markup relative to
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Table 1: 10 Highest Value of
∂
(
log Pro

PCC

)

∂ log∆k

(1) (2) (3) (4)

Rank Description
∂
(
log Pro

PCC

)

∂ log∆k

prok
Pro

µk
µ̃k

ek = ∂ log fk(∆k)
∂ log ∆k

1 Petroleum refineries 0.1825 3.2022 82.0782 6.9436

2 Pharmaceutical preparation 0.09641 2.379 91.0579 4.4504

3 Automobile 0.091837 0.82031 79.1659 14.1417

4 Distilleries 0.043212 0.19743 93.3785 23.4397

5 Dog and cat food 0.042521 0.21589 80.4335 24.4871

6 Animal (except poultry) slaughtering, [. . . ] 0.037498 0.93887 73.5278 5.4318

7 Breakfast cereal 0.034594 0.13358 85.3834 30.3305

8 Computer terminals and other computer [. . . ] 0.033749 0.20891 89.6474 18.0203

9 Soap and cleaning compound 0.033614 0.35909 89.2162 10.4924

10 Soft drink and ice 0.030435 0.52436 79.4411 7.3063

Note: εk = 5. Columns (1),(2),(3) and (4) are percentage points. Source:
Bureau of Economic Analysis (detailed I-O table for 2007) and Census Bu-
reau (Herfindahl-Hirschman index for the 50 largest firms). Only Manu-
facturing 31-33 industries. See Data Appendix for more details.

their markup centrality. Table 1 displays the 10 sectors where the elastic-

ity of the aggregate profit share with respect to concentration is the highest.

A decrease in concentration of 1% in the Petroleum refineries sector leads

to a decrease in aggregate profit share of 0.0018%. This sector is large (as its

profit share is close to 3.2%), captures 82% of the markup along its supply

chain and is very concetrated. If the governement wanted to decrease the

aggregate profit share and had to choose one sector where to decrease con-

centration, this governement should thus focus on the Petroleum refineries

sector.

After solving for the distribution of income across profit and labor, the

equilibrium is now solved for using the second order approximation (as-

sumption 1) in Proposition 5..2. This proposition shows that the wage, wt

and the aggregate consumption Ct are function of 2 × N statistics: the sec-

tors’ cross-sectional average productivities Z
(1)
k and Herfindahl Indices, ∆t,k.
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In this proposition I droppe the time subscript.

Proposition 5..2 (A Special Case: Wage and Consumption): Under assump-

tion 1 and when θ = 1 and ∀(k, k′), αk = 0, ζk = 0, the equilibrium wage is

logw = −β
′
{
log

(
εk

εk − 1

(
Z

(1)
k

) −1
εk−1

(
fk (∆k)

) 1
εk−1

)}

k

and aggregate consumption is

logC =
−χ

χ+ η − 1
β
′

{
log

(
εk

εk − 1

(
Z

(1)
k

) −1
εk−1 (

fk

(
∆k

)) 1
εk−1

)}

k

. . .

. . . − χ− 1

χ+ η − 1
log

(
1− β̃′

{
fk (∆k)

εk

}

k

)

where β
′
= β ′(I − Ω)−1 and β̃ ′ = β ′(I − µ−1Ω)−1 with µ−1 = diag{µ−1

k }k =

diag
{
1− fk(∆k)

εk

}
k

and where, the function fk : x 7→ fk(x) is

fk(x) =





1 Under Monopolistic

1−

√
1−4

(
1− 1

εk

)
x

2
(
1− 1

εk

)
x

for x ∈
[
0, 1

4
(
1− 1

εk

)
]

Under Bertrand

1−
√

1−4(εk−1)x

2(εk−1)x
for x ∈ [0, 1

4(εk−1)
] under Cournot

where ∆k =

(
Z

(2)
k

Z
(1)
k

)2

is a productivity concentration measure (the productivity

Herfindahl index) while Z
(n)
k =

(∑Nk

i Z(k, i)n(εk−1)γ
) 1

n

is the nth moment of the

sector k’s productivity distribution.

The proposition 5..2 entirely characterizes the equilibrium given the sec-

tors’ cross-sectional average productivities Z
(1)
k and Herfindahl Indices ∆k.

The equilibrium wage and consumption are determined by two centrality

measures of the input-output network namely β̃ ′ = β ′(I − µ−1Ω)−1 and β
′
=

β ′(I − Ω)−1. The former is a measure of the equilibrium sector’s sales share
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since β̃k = PkYk

PCC
(proposition 3..3). The latter determines the elasticity of the

wage and consumption to the cross-sectional average productivity (while

keeping constant the concentration). Indeed, when concentration is kept

constant, it is easy to show that:

∂ logC

∂ logZ
(1)
k

∣∣∣∣∣
∆k

=
χ

χ + η − 1

βk

εk − 1
> 0 and

∂ logw

∂ logZ
(1)
k

∣∣∣∣∣
∆k

=
βk

εk − 1
> 0

Note however that the elasticity of output to a sector’s cross-sectional aver-

age productivity is also function of the labor supply elasticity. The higher is

the labor supply elasticity, the higher is the increase in labor supply follow-

ing a cross-sectional average productivity increase (as long as η > 1).

This model is different from Acemoglu et al. (2012) because the output

elasticity to sectors’ cross-sectional average productivities is not equal to

sales share of the sector. If one is interested in quantifying the impact of a

sector wide shock that increases the productivity of all the firms in that sec-

tor, one should look at the centrality measure of this sector βk rather than

at its sales share. Indeed, this centrality is purely technological as it is only

a function of the input-output matrix Ω and the household’s preferences β.

As shown in Baqaee (2016), this is due to the imperfect competition and the

accumulation of markups along the supply chain.

However, unlike Baqaee (2016) the firm heterogeneity and the deviation

from monopolistic competition introduce a role for the sector’s concentra-

tion ∆t,k. It is easy to show that the elasticity of the wage with respect to

sector k’s concentration (while keeping the cross-sectional average produc-

tivity constant) is equal to:

∂ logw

∂ log∆t,k

∣∣∣∣
Z

(1)
k

=
−βk

εk − 1
ek < 0
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When the concentration in sector k increases then the real wage decreases.

The higher is the effect, the higher is the sector k’s centrality βk. The intu-

ition is as follows. As shown in corollary 3..1, when the sector k’s concen-

tration ∆t,k increases, the sector’s markup also increases. The increases the

price of the sector k’s good and make it more expensive for the household.

However, this sector k’s price increase also pushes the marginal cost of sec-

tors downstream to sector k. These downstream sectors also increase their

price which makes their goods more expensive too, due to double marginal-

ization. Therefore what determines the elasticity of the real wage to sec-

tor k’s centrality is the importance of sector’s k good directly and indirectly

(through others sectors) in the consumption of households which is mea-

sured by βk. Table 2 show the 10 sectors where the value of the elasticity of

the wage with respect to concentration is the smallest. An increase in con-

centration of 1% in the Petroleum refineries sector reduce the wage by al-

most -0.08%, a similar reduction in wage can be attained by a reduction the

sector average productivity by 7% (=0.08/1.14).

Concentration has a more ambiguous effect on aggregate consumption

because an increase in sector k’s concentration reduces the real wage but

also increases the profit share:

∂ logC

∂ log∆k
=

−χ

χ+ η − 1

βk

εk − 1
ek +

χ− 1

χ+ η − 1

(
Pro

wL

)(prok
Pro

) µk

µ̃k
ek

Following an increase in the concentration of sector k, two effects arise (i) a

negative effect on the wage (first term in the right hand side) and (ii) a pos-

itive income effect (second term in the right hand side). The former goes

as follows, as concentration increase in sector k, the real wage decreases:

the price of the composite consumption good is affected directly and indi-

rectly (through other sectors). Leisure becomes relatively cheaper and thus

household substitute toward leisure. The strength of this substitution effect

is stronger for high labor supply elasticity χ and high consumer centrality
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Table 2: 10 Lowest Value of ∂ logw
∂ log∆k

(1) (2) (3)

Rank Description ∂ logw

∂ logZ
(1)
k

∂ logw
∂ log ∆k

ek =
∂ log fk(∆k)

∂ log ∆k

1 Petroleum refineries 1.1486 -0.079758 6.9436

2 Automobile 0.25446 -0.035985 14.1417

3 Pharmaceutical preparation 0.80699 -0.035915 4.4504

4 Animal (except poultry) slaughtering, [. . . ] 0.33918 -0.018424 5.4318

5 Dog and cat food 0.062438 -0.015289 24.4871

6 Distilleries 0.059772 -0.01401 23.4397

7 Soap and cleaning compound 0.12041 -0.012634 10.4924

8 Soft drink and ice 0.17149 -0.01253 7.3063

9 Computer terminals and other computer [. . . ] 0.068267 -0.012302 18.0203

10 Soybean and other oilseed processing 0.047027 -0.011734 24.9513

Note: εk = 5. Columns (1),(2) and (3) are percentage points. Source: Bu-
reau of Economic Analysis (detailed I-O table for 2007) and Census Bu-
reau (Herfindahl-Hirschman index for the 50 largest firms). Only Manu-
facturing 31-33 industries. See Data Appendix for more details.

βk. The positive income effect, (ii), is due to the fact that the increase in

concentration pushes aggregate profit up which is ultimately rebates to the

household who thus increases its consumption. This effect is stronger the

higher is the change of profit share due to the increase in concentration of

sector k (see equation 2), the higher is total profit relative to labor income

and the higher is the labor supply elasticity χ. Table 3 shows the ten sectors

with the lowest elasticity of consumption with respect to concentration. An

increase in concentration of 1% in the Petroleum refineries sector reduces

output by 0.036%, whereas an increase of average producitivity of 1% in this

sector leads to an increase in consumption of 0.92%.

With the above results that characterize the aggregate consumption and

wage, it is easy to solve for the sectors’ outputs. Indeed, propositions 3..5 and

3..3 together with the proposition 5..2 I can solve for the equilibrium output

of a given sector.
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Table 3: 10 Lowest Value of ∂ logC
∂ log∆k

(1) (2) (3) (4)

Rank Description ∂ logC
∂ log∆k

χ
χ+η−1

∂ logw
∂ log ∆k

χ−1
χ+η−1

(
Pro
wL

) ∂ log Pro

PCC
∂ log ∆k

∂ logC

∂ logZk

1 Petroleum refineries -0.035854 -0.063806 0.027952 0.91892

2 Automobile -0.014722 -0.028788 0.014066 0.20357

3 Pharmaceutical preparation -0.013965 -0.028732 0.014767 0.64559

4 Animal (except poultry) slaughtering, [. . . ] -0.0089958 -0.014739 0.0057433 0.27135

5 Soybean and other oilseed processing -0.006204 -0.0093872 0.0031832 0.037622

6 Dog and cat food -0.0057188 -0.012231 0.0065127 0.049951

7 Soft drink and ice -0.0053622 -0.010024 0.0046615 0.13719

8 Fluid milk and butter -0.0050734 -0.0091334 0.00406 0.081068

9 Poultry processing -0.0050546 -0.0085552 0.0035006 0.10557

10 Soap and cleaning compound -0.0049585 -0.010107 0.0051485 0.096327

Note: εk = 5, χ = 2 and η = 1.5. Columns (1),(2),(3) and (4) are per-
centage points. Source: Bureau of Economic Analysis (detailed I-O ta-
ble for 2007) and Census Bureau (Herfindahl-Hirschman index for the 50
largest firms). Only Manufacturing 31-33 industries. See Data Appendix
for more details.
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Corollary 5..1 (A Special Case: Sectors’ Output): Under assumption 1 and

when θ = 1 and ∀(k, k′), αk = 0, ζk = 0, the sector k’s output is equal to

log Yk = log β̃k −
∑

l=1

Ψ
(d)
k,l log

(
εl

εl − 1

(
Z

(1)
l

) −1
εl−1

(
fl (∆l)

) 1
εl−1

)
. . .

. . .+
1− η

χ+ η − 1
logw − χ− 1

χ+ η − 1
log

(
1− Pro

PCC

)

where β̃ = β ′(I − µ−1Ω)−1 i.e β̃k =
∑N

l=1 βlΨ
(s)
l,k with Ψ(s) = (I − µ−1Ω)−1, the

supllier influence matrix and Ψ(d) = (I − Ω)−1 the demand-side influence

matrix.

Each terms are easily interpretable. The first term is the share of aggregate

demand that goes to sector k directly and indirectly, it capture the impor-

tance of sector k as a supplier to the final consumer. The second term cap-

tures the cost of inputs used directly and indirectly, it capture the role played

by the sector k as a customer of other sectors’ goods. The last two terms cap-

ture the aggregate demand. The elasticity of sector k’s output with respect to

sector l’s average productivity is equal to:

∂ log Yk

∂ logZ
(1)
l

=
Ψ

(d)
k,l

εl − 1
+

1− η

χ+ η − 1

βl

εl − 1

The first term captures the change in price of intermediate inputs l used by

sector k. Indeed, Ψ
(d)
k,l is the amout of goods l used by sector k directly and

indirectly. Whenever productivity in sector l increases, the price of of sec-

tor l’s good fall which in turn increases production in sector k. The wage

increases following an increase in sector l’s productivity and this has two

distinct effects: the cost of labor increases which reduces sector k’s output

while households are richer and consume more. This effect is capture by the

second term. The change in productivity in a sector has thus an effect on
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sector downstream and a general equilibrium effect. To evaluate the impast

of a change in concentration in a given sector on other sectors, I compute

the elasticity of sector k’s output, Yk with respect to sector l’s Herfindahl, ∆l:

∂ log Yk

∂ log∆l
= −

(
Ψ

(s)
l.k − Il,k

) fl(∆l)

εl − fl(∆l)
el −

Ψ
(d)
k,l

εl − 1
el . . .

. . .− 1− η

χ+ η − 1

βl

εl − 1
el +

χ− 1

χ+ η − 1

Pro

wL

prok
Pro

µl

µ̃l
el

Once again each term can be easily interpreted. The first term is due to the

fact that following a change in sector l’s Herfindahl, the share of aggregate

spending going to sector k through sector l is reduced: sector l captures more

profit. Indeed,
d log µ−1

l

d log∆l
= − fl(∆l)

εl−fl(∆l)
el is the change in the share of sector l’s

income that is used to pay for intermediate inputs while Ψ
(s)
l.k represents the

share of this payement that goes to sector k. The second term is due to the

fact that the change in concentration ∆l affects sector l’s productivity: this

affects sector k through the consumption of sector l goods by sector k, Ψ
(d)
k,l .

Finally the last two terms are the general equilibrium effect on both wage

and profit income.

Note that the elasticity of the strategic pricing distortion with respect to

concentration, ek, is key to evaluate the effect of an increases in concentra-

tion on any variables. Figure 7 displays this elasticity for the Bertrand cases

as a function of ∆k for different values of εk. For εk = 5 and for a concen-

tration ∆k equal to 0.1376, which corresponds to a sales Herfindahl index of

0.188, this elasticity is about 0.179.

8Merger laws in the U.S. apply for sales Herfindahl index above 0.18.
9In the Cournot case to have a sales Herfindahl Index of 0.18, ∆k has to be equal to 0.061

for εk = 5. And the elasticity ek is about 2.58.
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Figure 7: Elasticity of the Distortion w.r.t. the Concentration
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Note: Bertrand Case, elasticity d log fk(x)
d log x of fk : x 7→ 1−

√
1−4(1−1/εk)x

2(1−1/εk)x
for

different value of εk. Cournot Case, see appendix.

5.2. Sensitivity to Firm’s Volatility

In this part, I study the effect of firm level volatility on aggregate volatility. To

do so I define two centralities: the firm’s volatility wage (resp. consumption)

centrality is defined as the derivative of the variance of the growth rate of the

wage (resp. consumption) with respect to the variance of the growth rate of

firm level productivity ̺
(1)
k := Vart

[
Z

(εk−1)γ
t+1 (k, i)/Z

(εk−1)γ
t (k, i)

]
.

Definition 5..2 (Firm’s Volatility Centralities): The Firm’s volatility wage (resp.

consumption) centrality is:

β̆w
t,k :=

∂Vart

[
log wt+1

wt

]

∂̺
(1)
k

and β̆C
t,k :=

∂Vart

[
log Ct+1

Ct

]

∂̺
(1)
k

where ̺
(1)
k := Vart

[
Z

(εk−1)γ
t+1 (k, i)/Z

(εk−1)γ
t (k, i)

]
.

These centralities measure the effect of firm’s productivity volatility on the

volatility of the wage and the aggregate consumption.
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Proposition 5..3 (Firm’s Volatility Centrality): Under assumptions 1 and 2,

when ∀k, αk = 0, ζk = 0, the firm’s volatility wage and consumption centrali-

ties β̆w
t and β̆C

t are

β̆w
t,k =

(
βk

εk − 1

)2

∆t,k

(
4e2t,k + 4et,k + 1

)

and

β̆C
t,k =

(
χ

χ+ η − 1

βk

εk − 1

)2

∆t,k(4e
2
t,k + 4et,k + 1) . . .

. . . + 4

(
χ− 1

χ+ η − 1

(
Prot

wtLt

)(
prot,k

Prot

)
µt,k

µ̃t,k

)2

∆t,ke
2
t,k

. . . − 4
χ(χ− 1)

(χ+ η − 1)2
βk

εk − 1

(
Prot

wtLt

)(
prot,k

Prot

)
µt,k

µ̃t,k
∆t,k (2et,k + 1) et,k

where β
′
= β ′(I−Ω)−1, µ̃t,k =

ε̃t,k
ε̃t,k−1

and where
{
ε̃−1
t,k

}
k
= (I−µ−1

t Ω)−1
{

fk(∆t,k)

εk

}
k
.

∆t,k is the sector k’s productivity Herfindahl index and et,k is the elasticity of fk

with respect to ∆t,k at time t.

Unlike Baqaee (2016), the sector’s volatility is due to firm level shocks only.

Under random growth (assumption 2), each sectors’ fluctuations are driven

by fluctuations in moments of the sector’s productivity distribution and es-

pecially the cross-sectional average productivity Z
(1)
t,k and its Herfindahl in-

dex ∆t,k. These two key sufficient statistics evolve according to proposition

3..8. Taking into account the fluctuations in these two statistics, the effect of

firm’s volatility on aggregate volatility is given by the proposition 5..3.

This effect depends crucially on the elasticity of the wage to sector k’s

cross-sectional average productivity shocks βk which measures the impor-

tance of that sector in the composite consumption good price index. Fur-

thermore, the influence of sector k’s firm level volatility is increasing in the

sector k’s concentration ∆t,k through three channels. The first one is cap-

tured by the term
(

βk

εk−1

)2
∆t,k and is due to the fact that the cross-sectional
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average of productivity Z
(1)
t,k is higher when the concentration is higher: larger

firms are even larger and shocks to these large firms matters more. The sec-

ond channel is due to the fact, that ∆t,k is itself volatile and that its volatility

is increasing in its level (this is the term
(

βk

εk−1

)2
∆t,k4e

2
t,k). Finally, the third

channel, is due to the fact that these two statistics are correlated and this cor-

relation is also increasing in sector k’s concentration: firm level shocks affect

both the cross-sectional average and the dispersion of sector productivity at

the same time (this is the term
(

βk

εk−1

)2
∆t,k4et,k).

In a version of the model with monopolitic competition only, it is easy

to show that β̆w
t,k =

(
βk

εk−1

)2
∆t,k, it follows that the term 4e2t,k + 4et,k capture

the extra effect due to the oligopolistic competition. For a sector with a sales

Herfindahl of 0.18, which the level above which merge law applies in the U.S,

and for an elasticity of subtitution across varieties of 5 the term 4e2t,k + 4et,k

is equal to 0.79. In other words, oligopolistic competition increases the ef-

fect of firm volatility on aggregate volatility by 80% relative to a model with

monopolistic competition. Figure 8 displays the value of 4e2k + 4ek as a func-

tion of ∆k for different value of εk. Table 4 show the sector for which β̆w
t,k is

the highest. Columns (1) and (2) give the value of β̆w
t,k relative to the case

where Ω = 0 and monopolistic comeptition is assumed in all sectors. Col-

umn (3) give the value 1+4e2t,k+4et,k in these sectors. It follow that by taking

into account I-O trade the effect of firm-level volatility on wage volatility is

increased by 89% with monopolistic competition (column 1) and by 146%

with oligopolistic competition (column 2).

The same intuition applies for the effect of firm’s volatility on aggregate

consumption volatility. However, in addition, fluctuations of ∆t,k shift the

profit income share, which affects aggregate consumption through an in-

come effect (the term 4
(

χ−1
χ+η−1

(
Prot
wtLt

)(
prot,k
Prot

)
µt,k

µ̃t,k

)2
∆t,ke

2
t,k). The last term re-

flects the correlation between cross-sectional average productivity and the

concentration.
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Table 4: 10 Highest Value of
∂Vart

[
log

wt+1
wt

]

∂σk

(1) (2) (3)

Rank Description I-O + Monop I-O + Oligop (2)/(1)

1 Petroleum refineries 1.8946 2.4574 1.297

2 Pharmaceutical preparation 1.2266 1.4546 1.1859

3 Automobile 1.0711 1.7626 1.6457

4 Animal (except poultry) slaughtering, [. . . ] 2.3338 2.8685 1.2291

5 Soft drink and ice 1.0876 1.4287 1.3136

6 Toilet preparation 1.1496 1.4624 1.2721

7 Soap and cleaning compound 1.6268 2.3812 1.4637

8 Audio and video equipment 1.4817 1.7208 1.1614

9 Poultry processing 1.5209 2.0538 1.3504

10 Biological product (except diagnostic) 95.4241 126.9477 1.3304

Note: εk = 5.
∂Vart[log

wt+1
wt

]
∂σk

: (1) and (2) relative to the no I-O and mo-
nopolitic competition case; (3) relative to the I-O and monopolitic com-
petition case. Source: Bureau of Economic Analysis (detailed I-O table
for 2007) and Census Bureau (Herfindahl-Hirschman index for the 50
largest firms). Only Manufacturing 31-33 industries. See Data Appendix
for more details.
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Figure 8: Effect of Oligopolistic Competition w.r.t. the Concentration: 4e2k +
4ek
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Note: 4e2t,k + 4et,k for the Bertrand Case where ek = d log fk(x)
d log x with fk :

x 7→ 1−
√

1−4(1−1/εk)x

2(1−1/εk)x
for different value of εk. For a sales Herfindahl of

0.18 and for εk = 5 then ∆k = 0.1376 and 4e2k +4ek = 0.79. Cournot Case,
see appendix.

5.3. Shock in the Horizontal, Vertical and Star Economies

I describe the effect of a positive shock on a large firm for three Input-Output

Networks: the horizontal, the vertical and the star economies. These three

economies are represented in Figure 9. The horizontal economy (left panel)

is characterized by no input-output trade and all sectors are supplying the

household equally. The vertical economy (middle panel) has a source, here

sector 1, and a sink, here the household. The star economy (right panel)

has a central sector, here sector 1, whereas the other sectors are supplying

equally the household. The centrality β̄1 of the sector 1 is smaller in the ver-

tical economy than in the horizontal economy which is smaller than in the

star economy.

In each economy, a positive shock on a large firm (top 20%) in sector 1

puts this firm at the top 1% of the productivity distribution. In Figure 10,
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Figure 9: Three Production Networks with Four Sectors

Note: From left to right: a horizontal economy with no input trade, a
vertical economy with a source and a sink, and a star economy with a
central node. Source: Carvalho (2014) and Bigio and LaO (2016).
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I plot the response of different variables to this shock for each economy:

the cross sectional average productivity Z
(1)
t,1 in sector 1 (top left panel), the

concentration ∆t,1 in sector 1 (top right panel), the wage and consumption

(middle left and right panels resp.), the sales share Pt,1Yt,1/P
C
t Ct in sector 1

(bottom left panel) and the price Pt,3 in sector 3 net of the effect of the wage

(bottom right panel). The dashed lines are the responses under Dixit-Stiglitz

competition while the full lines are the responses under Bertrand compe-

tition. In Figure 11, I plot the responses of the same variables where the

cross-sectional average productivity is kept constant while the evolution of

the concentration is identical as the one in Figure 10. This Figure allows to

look only at the effect of the change in concentration. These economies are

calibrated such that the initial level of concentration in sector 1 across these

economies is identical and such that the response of Z
(1)
t,1 and ∆t,1 are also

identical.

The first thing to note is that such a shock has a positive effect on both

the cross-sectional average productivity, Z
(1)
t,1 , and the concentration, ∆t,1. It

is because an already large firm becomes even more productive which in-

creases the average productivity and the concentration. As the shocked firm

goes back to it initial productivity level, these two statistics are converging

back to their long-term average.

The aggregate response of the wage and consumption to this shock is

higher in the star economy than in the horizontal economy which is also

higher than in the vertical economy. Note that there are two effects at play

here: (i) the increase in average productivity has a positive effect on the wage

and output and (ii) the increase in concentration results in an increase in the

sector 1’s markup which decreases the wage and the output. Here the posi-

tive effect of the increase of the average productivity dominates the negative

effect of the increase in concentration. In the middle panels of Figure 11, we

can see the negative response of the wage and output due to the increase in



58 BASILE GRASSI

concentration. The stronger are these effects, the higher is the centrality β̄1.

Indeed, the centrality measures the importance as a supplier of the sector 1

to the household. Thus the responses is stronger in the star economy than

in the horizontal and even stronger than in the vertical economy.

To study the transmission of this shock to the rest of the economy, let us

focus on the bottom panel of Figures 10 and 11. The sales share of sector 1

(bottom left panel) is affected by this shock only in the star economy. Ac-

cording to proposition 3..3, the sales share is affected by markups of down-

stream sectors. Sector 1 is a downstream sector of itself in the star economy.

Since the other sectors buy and sell their goods to sector 1. Furthermore, un-

der Dixit-Stiglitz competition, sector 1’s markup is constant and thus does

not affect any sales share. According to proposition 3..2, sector prices are af-

fected by upstream sectors. In the vertical and in the star economies, sector

1 is a (direct or indirect) supplier of sector 3 while it is not in the horizon-

tal economy. It follows that price in sector 3 is only affected in the vertical

and the star economies. There are again two opposite effects. On one hand,

sector 1 becomes more productive and thus sell its good at a lower price to

its downstream sectors since sector 1 is part of the marginal cost of sector

3, which in turn charges a lower prices. One the other hand, concentration

is higher in sector 1 and thus it charges a higher markup and thus a higher

price. Then its suppliers faces a higher marginal cost and thus charges a

higher price. This is the result of double marginalization. The bottom right

panel of Figure 11 shows the latter effect. However, since the wage enters

the marginal cost of each sector, prices are increasing accordingly. In both

Figures, I have reported the part of the price which is not due to the increase

in the wage.
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Figure 10: Shock on a Large Firm: Horizontal, Vertical, Star
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Figure 11: Shock on Concentration: Horizontal, Vertical, Star
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6. Conclusion

In this paper, I study how firm-level shocks affect sector-level productivity

and competition and how changes in the level of productivity and competi-

tion propagate in the input-output network. Changes in the level of com-

petition act as supply shocks to downstream sectors and demand shocks

to upstream sectors. The position of a sector in the input output network

determines the elasticity of wages and output to changes in both average

productivity and concentration. The relative market power of a sector in its

supply chain affects the elasticity of profit income share and aggregate con-

sumption to changes in the level of competition. Finally, I show that firms

in highly central, highly concentrated sectors and sectors that capture most

of the profit along the supply chain are the most important for aggregate

volatility.

The fact that in the framework described in this paper, changes in the

level of competition shifts the distribution of income between primary in-

puts and profit hints at the potential impact of these changes on inequality.

As soon as households are heterogeneous in their holdings of firm stocks,

these changes in competition will create distributional effects. I leave this

question open for future work.

Throughout the paper, I completely abstract from the effect of competi-

tion on growth. Indeed, rent seeking behavior has been shown to be a driv-

ing force for R&D investment and endogenous growth as in the seminal work

of Aghion and Howitt (1992). Imbs and Grassi (2015) study the interaction

of growth and volatility arising from firm-level shocks in a model of ideas

flows à la Lucas (2009). The introduction of imperfect competition and rent-

seeking behavior deserves further research.
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A Data Appendix

In this paper, I use two types of data at the sector level. The first one is the I-O data
of the Bureau of Economic Analysis. The second one is the concentration data of
the Census Bureau.

The Bureau of Economic Analysis provide Input-Output information at differ-
ent level of aggregation. I use here the detailed I-O table from 2007 which gives
information on 389 sectors. They do not provide direct requirement Industry-by-
Industry table but instead total Industry-by-Industry requirement table. I then use
the formula Ω = (TOT − I)TOT−1 to find the direct requirement of an industry
input to produce one dollar of its output. To find the value of household consump-
tion share, I use the USE table of the Bureau of Economic Analysis, which gives for
each commodity how much the household buy of this commodity. I then recover
the share of income spend by the household on each industry by premultiplying
these commodity spending share by the MAKE table. The MAKE table gives for
each industry how much of each commodity is needed to produce one dollar of
output.

The Census Bureau provides concentration measure for different level of ag-
gregation for all sectors except for Agriculture, Forestry, Fishing and Hunting (11);
Mining, Quarrying, and Oil and Gas Extraction (21); Construction (23); Manage-
ment of Companies and Enterprises (55); Public Administration (92). The measure
of concentration are the top 4,8,20 and 50 firms’ share of total industry revenues in
2002, 2007 and 2012. For manufacturing (31-33), the census bureau also gives the
Herfindahl-Hirschman Index among the 50 largest firms. I use these measures in
Figures 1,12 and 13.

Using the correspondance table given by the Bureau of Economic Analysis be-
tween the I-O sectors classification and the NAICS 2007 classification, I matched
these two data source to plot Figure 2 and to calibrate the model in section 5..

B Figures Appendix
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Figure 12: Sectors’ Concentrations - Manufacturing

0 0.05 0.1 0.15 0.2 0.25 0.3

Herfindahl-Hirschman index (50 largest firms) in 2002, %

0

0.05

0.1

0.15

0.2

0.25

0.3

H
e
rf

in
d
a
h
l-
H

ir
s
c
h
m

a
n
 i
n
d
e
x
 (

5
0
 l
a
rg

e
s
t 
fi
rm

s
) 

in
 2

0
0
7
, 
%

Note: Herfindahl-Hirschman index for the 50 largest companies in 2002
and in 2007 for 6 digits NAICS manufacturing industry (31-33). 448 in-
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Figure 13: Sectors’ Concentration Distribution
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Figure 14: Firm’s Pricing Approximation: Cournot case
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Figure 15: Deviation from Monopolistic Competition: Cournot
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Figure 16: Elasticity of the Distortion w.r.t. the Concentration
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C Proofs Appendix

C1. Firms

Proof of Proposition 2..4. Firm’s Pricing Approximation

Note that this proof is written for any elasticity of subtitution across interme-
diate inputs σ. The case study in the main text is for σ = 1, the whole proof goes
through. Let us defined the following system of equation for a given parameter χ:

p(k, i) =
ε(k, i)

ε(k, i) − 1
λ(k, i)

s(k, i) =
p(k, i)y(k, i)

pkYk
= N

−ζkεk
k

(
p(k, i)

pk

)1−εk

ε(k, i) =





εk Under Monopolistic Competition
εk − χ(εk − σ)s(k, i) Under Bertrand Competition(

1
εk

+ χ( 1σ − 1
εk
)s(k, i)

)−1
Under Cournot Competition

Let us rewrite the system of equation describing the pricing of the firm i in sec-
tor k by subsituting the expression of ε(i, k) and p(k, i):

s(k, i) =





(
1− 1

εk−χ(εk−σ)s(k,i)

)εk−1
N

−ζkεk
k

(
λ(k,i)
pk

)1−εk
Under Bertrand

(
1− 1

εk
− χ( 1σ − 1

εk
)s(k, i)

)εk−1
N

−ζkεk
k

(
λ(k,i)
pk

)1−εk
Under Cournot

Let us described the system of equation with the unknown X(ω, χ) = s(k, i)ξ

with ω = N
−ζkεk
k

(
λ(k,i)
pk

)1−εk
by the function H(X,ω, χ) such that

F(ω, χ) = H(X(ω, χ), ω, χ) = 0 (3)

with

H(X,ω, χ) =





X −
(
1− 1

εk−χ(εk−σ)X1/ξ

)ξ(εk−1)
ωξ Under Bertrand

X −
(
1− 1

εk
− χ( 1σ − 1

εk
)X1/ξ

)ξ(εk−1)
ωξ Under Cournot

Note that X(ω, 0) = ŝ(k, i)ξ is the solution under monopolistic competition. The
solution of this system X(ω, χ) satisfies at the second order:

X(ω, χ) = X(ω, 0) + χX ′(ω, 0) + χ2X ′′(ω, 0) + o(χ2)

where X ′(ω, χ) := ∂X
∂χ (ω, χ) and X ′′(ω, χ) := ∂X′

∂χ (ω, χ).

For χ = 1 it yields an approximation of the Cournot and Bertrand solution:

X(ω, 1) ≈ X(ω, 0) +X ′(ω, 0) +X ′′(ω, 0)
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Let us compute these derivatives by differentiating equation 3:

F ′

χ(ω, χ) = 0 = X ′(ω, χ)H′

X(X(ω, χ), ω, χ) +H′

χ(X(ω, χ), ω, χ)

F ′′

χ(ω, χ) = 0 = X ′′(ω, χ)H′

X(X(ω, χ), ω, χ) + (X ′(ω, χ))2H′′

XX(X(ω, χ), ω, χ) + 2X ′(ω, χ)H′′

χX(X(ω, χ), ω, χ)

From which it follows:

X ′(ω, χ) = −H′

χ(X(ω, χ), ω, χ)

H′

X(X(ω, χ), ω, χ)

X ′′(ω, χ) = −
(X ′(ω, χ))2H′′

XX(X(ω, χ), ω, χ) + 2X ′(ω, χ)H′′

χX(X(ω, χ), ω, χ)

H′

X(X(ω, χ), ω, χ)

and evaluating this at (ω, 0):

X ′(ω, 0) = −
H′

χ(X(ω, 0), ω, 0)

H′

X(X(ω, 0), ω, 0)

X ′′(ω, 0) = −
(X ′(ω, 0))2H′′

XX(X(ω, 0), ω, 0) + 2X ′(ω, 0)H′′

χX(X(ω, 0), ω, 0)

H′

X(X(ω, 0), ω, 0)

We are left to compute the derivative of H(X,ω, χ) and substitute, which yields:

X ′(ω, 0) =

{
−ξ(1− σ

εk
)X(ω, 0)1/ξ+1 Under Bertrand

−ξ( εkσ − 1)X(ω, 0)1/ξ+1 Under Cournot

X ′′(ω, 0) =

{
ξ(1− σ

εk
)2(ξ − 1

εk−1 )X(ω, 0)2/ξ+1 Under Bertrand

ξ( εkσ − 1)2(2 + ξ − 1
εk−1 )X(ω, 0)2/ξ+1 Under Cournot

which yields:

X(ω, 1) ≈





X(ω, 0)
(
1− ξ(1− σ

εk
)X(ω, 0)1/ξ + ξ(1− σ

εk
)2(ξ − 1

εk−1 )X(ω, 0)2/ξ
)

Under Bertrand

X(ω, 0)
(
1− ξ( εkσ − 1)X(ω, 0)1/ξ + ξ( εkσ − 1)2(2 + ξ − 1

εk−1 )X(ω, 0)2/ξ
)

Under Cournot

By substituing X(ω, 1) = s(k, i)ξ and X(ω, 0) = ŝ(k, i)ξ , we get the result. �

C2. Sectors Aggregation

C2.1. Sector Markup, Price, Size and Profit

Proof of Proposition 3..3. Sector’s Size = Sector’s Supplier Centrality

In this section, we are going to solve for some measure of sector size, namely
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P σ
k Yk. From equation (1), we have

PkYk = βkP
CC + νkP

II +

N∑

l=1

ωl,kYl




Nl∑

j=1

λ(l, j)
y(l, j)

Yl




Remember that the sector level marginal cost λl =
∑Nl

j=1 λ(l, j)
y(l,j)
Yl

and of the

sector level markup µl =
(∑Nl

j=1 µ(l, j)
−1 P (l,j)y(l,j)

PlYl

)−1
. Using thatλ(l, j) = µ(l, j)−1p(l, j),

it has been shown that Pl = µlλl. Let us substitute this equality in the previous
equation.

PkYk = βkP
CC + νkP

II +

N∑

l=1

ωl,kµ
−1
l PlYl

Let us define sk = PkYk, the vectors s = {sk}k, β = {βk}k, ν = {νk}k, and the
diagonal matrix µ−1 = diag({µ−1

k }k). The previous equation becomes in matrix
form

s′ = β′PCC + ν ′P II + s′µ−1Ω

Solving this equation in s yields

s′ = β′Ψ(s)PCC + ν ′Ψ(s)P II

with Ψ(s) =
(
I − µ−1Ω

)−1
. �

Proof of Proposition 3..2. Sector’s Price We have that

λ(k, i) = h(k, i)γk

N∏

l=1

P
ωk,l

l

with h(k, i) =
(

w
1−αk

)(1−αk) (
r
αk

)αk

Z(k, i)(αk−1) by summing over firms in sector k

time their output share
y(k,i)
Yk

we get

λk =

Nk∑

i=1

λ(k, i)
y(k, i)

Yk
=

(
Nk∑

i=1

h(k, i)γk
y(k, i)

Yk

)
N∏

l=1

P
ωk,l

l

Note that

Nk∑

i=1

h(k, i)γk
y(k, i)

Yk
=

(
w

1− αk

)γk(1−αk)( r

αk

)γkαk Nk∑

i=1

Z(k, i)γk(αk−1) y(k, i)

Yk

=

(
w

1− αk

)γk(1−αk)( r

αk

)γkαk

Z
γk(αk−1)
k
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It follows that

λk =

Nk∑

i=1

λ(k, i)
y(k, i)

Yk
=

(
w

1− αk

)γk(1−αk)( r

αk

)γkαk

Z
γk(αk−1)
k

N∏

l=1

P
ωk,l

l

Using the fact that λk = µ−1
k Pk, we have

Pk =

(
w

1− αk

)γk(1−αk)( r

αk

)γkαk

µkZ
γk(αk−1)
k

N∏

l=1

P
ωk,l

l

taking logs writing these equations in matrix form yields:

log P =

{
log

(
w

1− αk

)γk(1−αk)( r

αk

)γkαk

µkZ
γk(αk−1)
k

}

k

+Ω logP

solving this matrix equation yields the result.

logP = (I − Ω)−1

{
log

(
w

1− αk

)γk(1−αk)( r

αk

)γkαk

µkZ
γk(αk−1)
k

}

k

�

Proof of Proposition 3..4. Sector’s and Firm’s Profit

By definition of the sector k profit, we have

prok =

Nk∑

i=1

pro(k, i) =

Nk∑

i=1

p(k, i)y(k, i) −
Nk∑

i=1

λ(k, i)y(k, i)

using the definition of λk and its relationship with µk, we have

prok = PkYk − λkYk = (1− µ−1
k )PkYk

using proposition 3..3:

prok = (1− µ−1
k )PkYk =

µk − 1

µk

(
β̃k(P

C)σC + ν̃k(P
I)σI

)

Firm i profit in sector k is

pro(k, i) =
µ(k, i) − 1

µ(k, i)

p(k, i)y(k, i)

PkYk
PkYk

=
µ(k, i) − 1

µ(k, i)

µk

µk − 1

p(k, i)y(k, i)

PkYk
prok

=
µ(k, i) − 1

µ(k, i)

µk

µk − 1
s(k, i)prok
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where s(k, i) = p(k,i)y(k,i)
PkYk

is the sales share of firm i in sector k. �

C2.2. Under a Second Order Approximation 1

Proof of proposition 9

Lemma 1 (Sector’s Markup under Assumption 1):
Under assumption 1, the sector k’s markup satisfies

µ−1
k =





εk−1
εk

Under Monopolistic

εk−1
εk

− 1
εk

(
1− 1

εk

)
N

−2ζk
k H

2
εk−1

εk

k

(
Z

(2)
k

)2

Under Bertrand

εk−1
εk

− 1
εk

(
εk − 1

)
N

−2ζk
k H

2
εk−1

εk

k

(
Z

(2)
k

)2

Under Cournot

whereHk = N
−ζkεk
k

(
εk

εk−1

)−εk
P εk
k

(
w

1−αk

)−εkγk(1−αk) (
r
αk

)−εkγkαk
(∏N

l=1 P
−εkωk,l

l

)
and

Z
(n)
k =

(∑Nk

i=1 Z(k, i)n(1−εk)γk(αk−1)
) 1

n

is a moment of the sector k’s firm productivity

distribution.

Proof of Lemma 1. Sector’s Markup under Assumption 1

Bertrand Competition
Under Bertrand Competition, we have

µ−1
k = 1− 1

εk

∞∑

n=0

(
1− 1

εk

)n

HKn+1
k (n+ 1)

= 1− 1

εk
HK1

k(1)−
1

εk

(
1− 1

εk

)
HK2

k(2) −

(
1− 1

εk

)2

εk

∞∑

n=2

(
1− 1

εk

)n−2

HKn+1
k (n+ 1)

The Hannah-Kay centrality measure is such that

HKn+1
k (n+ 1) =

Nk∑

i=1

s(k, i)n

HK1
k(1) =

Nk∑

i=1

s(k, i) = 1

HK2
k(2) =

Nk∑

i=1

s(k, i)2 = HHIk

under assumption 1 (i.e without term of order higher than s(k, i)3), the (inverse) of
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the markup is

µ−1
k =

εk − 1

εk
− 1

εk

(
1− 1

εk

) Nk∑

i=1

s(k, i)2

From assumption 1, we have when εk
σ → 1, s(k, i)2 = ŝ(k, i)2 where ŝ(k, i) is the sales

share of firm i in sector k under Monopolistic competition: ŝ(k, i) = N
−ζkεk
k P εk−1

k

(
εk

εk−1

)1−εk
λ(k, i)1−εk .

Substituing the expression for the marginal cost yields

ŝ(k, i) = N
−ζk
k H

εk−1

εk

k Z(k, i)(1−εk)γk(αk−1)

Using the above equations give us

µ−1
k =

εk − 1

εk
− 1

εk

(
1− 1

εk

)
N

−2ζk
k H

2
εk−1

εk

k

(
Z

(2)
k

)2

Cournot Competition
From proposition 3..1, we have under the Cournot case

µ−1
k =

εk − 1

εk
− 1

εk
(εk − 1)

Nk∑

i=1

s(k, i)2

Under assumption 1, we have

s(k, i)2 = ŝ(k, i)2

where ŝ(k, i) is the sales share of firm i in sector k under Monopolistic competi-

tion: ŝ(k, i) = N
−ζkεk
k P εk−1

k

(
εk

εk−1

)1−εk
λ(k, i)1−εk . Substituing the expression for

the marginal cost yields

ŝ(k, i) = N
−ζk
k H

εk−1

εk

k Z(k, i)(1−εk)γk(αk−1)

Using the above equations give us

µ−1
k =

εk − 1

εk
− 1

εk
(εk − 1)N−2ζk

k H
2

εk−1

εk

k

Nk∑

i=1

Z(k, i)2(1−εk)γk(αk−1)

�

Lemma 2 (Sector’s Productivity under Assumption 1):

Under assumption 1, the sector level productivityZk =
(∑Nk

i=1 Z(k, i)γk(αk−1) y(k,i)
Yk

) 1

γk(αk−1)
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satisfies

Z
γk(αk−1)
k =





Hk

(
Z

(1)
k

)
Under Monopolistic

Hk

(
Z

(1)
k

)
− εk

εk−1

(
1− 1

εk

)
H

−1/εk
k N

−ζk
k H2

k

(
Z

(2)
k

)2

Under Bertrand

Hk

(
Z

(1)
k

)
− εk

εk−1

(
εk − 1

)
H

−1/εk
k N

−ζk
k H2

k

(
Z

(2)
k

)2

Under Cournot

where Hk = N
−ζkεk
k

(
εk

εk−1

)−εk
P εk
k

(
w

1−αk

)−εkγk(1−αk) (
r
αk

)−εkγkαk
(∏N

l=1 P
−εkωk,l

l

)

and Z
(n)
k =

(∑Nk

i=1 Z(k, i)n(1−εk)γk(αk−1)
) 1

n

is a moment of the sector k’s firm pro-

ductivity distribution.

Proof of Lemma 2. Sector’s Productivity under Assumption 1

Monopolistic Competition:

Z
γk(αk−1)
k =

Nk∑

i=1

Z(k, i)γk(αk−1) y(k, i)

Yk

Using the demand face by firm i in sector k and p(k, i) = εk
εk−1λ(k, i) yields

y(k, i)

Yk
= N

−ϕkεk
k

(
εk

εk − 1

)−εk

λ(k, i)−εkP εk
k

The firm’s i in sector k marginal cost is equal to λ(k, i) = Z(k, i)γk(αk−1)
(

w
1−αk

)γk(1−αk) (
r
αk

)γkαk ∏N
l=1 P

ωk,l

l .

Substituing this last equation in the expression of the output share yields

y(k, i)

Yk
= N

−ϕkεk
k

(
εk

εk − 1

)
−εk

P εk
k

(
w

1− αk

)
−εkγk(1−αk)( r

αk

)
−εkγkαk

(
N∏

l=1

P
−εkωk,l

l

)
Z(k, i)−εkγk(αk−1)

From which it follows that

Z
γk(αk−1)
k = N

−ϕkεk
k

(
εk

εk − 1

)
−εk

P εk
k

(
w

1− αk

)
−εkγk(1−αk)( r

αk

)
−εkγkαk

(
N∏

l=1

P
−εkωk,l

l

)
Nk∑

i=1

Z(k, i)(1−εk)γk(αk−1)

Bertrand Competition:

Since p(k, i)−1 = µ(k, i)−1λ(k, i)−1, we have
y(k,i)
Yk

= Pkλ(k, i)
−1µ(k, i)−1s(k, i).

Under Bertrand competition

µ−1
k = 1−ε(k, i)−1 = 1− 1

εk

(
1−

(
1− 1

εk

)
s(k, i)

)−1

= 1− 1

εk

∞∑

n=0

(
1− 1

εk

)n

s(k, i)n

thus
y(k, i)

Yk
= Pkλ(k, i)

−1

(
s(k, i)− 1

εk

∞∑

n=0

(
1− 1

εk

)n

s(k, i)n+1

)
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Under assumption 1, we have (i.e without term of higher order than ŝ(k, i)3), we
have

y(k, i)

Yk
= Pkλ(k, i)

−1

(
ŝ(k, i)

εk − 1

εk
−
(
1− 1

εk

)
ŝ(k, i)2

)

From there the proof goes as in the Cournot case by substituting (εk − 1) by
(
1− 1

εk

)
.

Cournot Competition:

We have that
y(k,i)
Yk

= Pk

p(k,i)s(k, i) and

p(k, i)−1 = µ(k, i)−1λ(k, i)−1 =
(
1− ε(k, i)−1

)−1
λ(k, i)−1

=

(
εk − 1

εk
− 1

εk
(εk − 1)s(k, i)

)
λ(k, i)−1

thus
y(k, i)

Yk
= Pkλ(k, i)

−1

(
εk − 1

εk
s(k, i) − 1

εk
(εk − 1)s(k, i)2

)

Under assumption 1, we have s(k, i) = ŝ(k, i)−
(
εk
σ − 1

)
ŝ(k, i)2 and s(k, i)2 = ŝ(k, i)2

where ŝ(k, i) is the sales share of firm i in sector k under Monopolistic competition:

ŝ(k, i) = N
−ζkεk
k P εk−1

k

(
εk

εk−1

)1−εk
λ(k, i)1−εk . Substituing these in the output share

yields

y(k, i)

Yk
= Pkλ(k, i)

−1

(
εk − 1

εk

(
ŝ(k, i) − (εk − 1) ŝ(k, i)2

)
− 1

εk
(εk − 1)ŝ(k, i)2

)

= Pkλ(k, i)
−1

(
εk − 1

εk
ŝ(k, i) − (εk − 1) ŝ(k, i)2

)

and thus

y(k, i)

Yk
= Pkλ(k, i)

−1ŝ(k, i)

(
εk − 1

εk
− (εk − 1) ŝ(k, i)

)

= N
−ζkεk
k P εk

k

(
εk

εk − 1

)1−εk

λ(k, i)−εk

(
εk − 1

εk
− (εk − 1)N−ζkεk

k P εk−1
k

(
εk

εk − 1

)1−εk

λ(k, i)1−εk

)

= N
−ζkεk
k P εk

k

(
εk

εk − 1

)
−εk

λ(k, i)−εk

(
1− εk

εk − 1
(εk − 1)N−ζkεk

k P εk−1
k

(
εk

εk − 1

)1−εk

λ(k, i)1−εk

)

Since the firm i in sector k marginal cost is

λ(k, i) =

(
w

1− αk

)γk(1−αk)( r

αk

)γkαk

(
N∏

l=1

P
ωk,l

l

)
Z(k, i)γk(αk−1)
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thus,

y(k, i)

Yk
= HkZ(k, i)−εkγk(αk−1)

(
1−

εk

εk − 1
(εk − 1)N

−ζkεk
k N

ζk(εk−1)
k H

εk−1

εk
k Z(k, i)(1−εk)γk(αk−1)

)

= HkZ(k, i)−εkγk(αk−1)

(
1−

εk

εk − 1
(εk − 1)N

−ζk
k H

εk−1

εk
k Z(k, i)(1−εk)γk(αk−1)

)

Z(k, i)γk(αk−1) y(k, i)

Yk
= HkZ(k, i)(1−εk)γk(αk−1)

(
1−

εk

εk − 1
(εk − 1)N

−ζk
k H

εk−1

εk
k Z(k, i)(1−εk)γk(αk−1)

)

Summing over all the firms in sector k, yields

Nk∑

i=1

Z(k, i)γk(αk−1) y(k, i)

Yk
=

Nk∑

i=1

(
HkZ(k, i)(1−εk)γk(αk−1) −

εk

εk − 1
(εk − 1)N

−ζk
k H

εk−1

εk
+1

k Z(k, i)2(1−εk)γk(αk−1)

)

=


Hk

Nk∑

i=1

Z(k, i)(1−εk)γk(αk−1) −
εk

εk − 1
(εk − 1)N

−ζk
k H

εk−1

εk
+1

k

Nk∑

i=1

Z(k, i)2(1−εk)γk(αk−1)




�

Proof of Proposition 3..5. Sector Assumption 1

From proposition 3..2, we have

(I − Ω) logP =

{
log

(
w

1− αk

)γk(1−αk)( r

αk

)γkαk

µkZ
γk(αk−1)
k

}

k

by taking the row k of the above vector equation yields

logPk −
N∑

k=1

ωk,l log Pl = log

(
w

1− αk

)γk(1−αk)( r

αk

)γkαk

µkZ
γk(αk−1)
k

logPk +

N∑

k=1

logP
−ωk,l

l = log

(
w

1− αk

)γk(1−αk)( r

αk

)γkαk

µkZ
γk(αk−1)
k

log

(
Pk

N∏

k=1

P
−ωk,l

l

)
= log

(
w

1− αk

)γk(1−αk)( r

αk

)γkαk

µkZ
γk(αk−1)
k

Pk

(
N∏

k=1

P
ωk,l

l

)−1

=

(
w

1− αk

)γk(1−αk)( r

αk

)γkαk

µkZ
γk(αk−1)
k

Cournot Competition
From lemma 1,

µ−1
k =

εk − 1

εk
− εk − 1

εk
N

−2ζk
k H

2
εk−1

εk

k

(
Z

(2)
k

)2
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and from lemma 2,

Z
γk(αk−1)
k = Hk

(
Z

(1)
k

)
− εkH

−1/εk
k N

−ζk
k H2

k

(
Z

(2)
k

)2

where Hk = N
−ζkεk
k

(
εk

εk−1

)−εk
P εk
k

(
w

1−αk

)−εkγk(1−αk) (
r
αk

)−εkγkαk
(∏N

l=1 P
−εkωk,l

l

)
.

It follows,

Pk

(
N∏

k=1

P
ωk,l

l

)−1

=

(
w

1− αk

)γk(1−αk) ( r

αk

)γkαk
Hk

(
Z

(1)
k

)
− εkH

−1/εk
k N

−ζk
k H2

k

(
Z

(2)
k

)2

εk−1
εk

− εk−1
εk

N
−2ζk
k H

2
εk−1

εk
k

(
Z

(2)
k

)2

Pk

(
N∏

k=1

P
ωk,l

l

)−1

=

(
w

1− αk

)γk(1−αk) ( r

αk

)γkαk

Hk
εk

εk − 1

(
Z

(1)
k

)
− εkH

εk−1

εk
k N

−ζk
k

(
Z

(2)
k

)2

1−N
−2ζk
k H

2
εk−1

εk
k

(
Z

(2)
k

)2

which yields

1 = P−1
k

(
N∏

k=1

P
ωk,l

l

)(
w

1− αk

)γk(1−αk)
(

r

αk

)γkαk

Hk
εk

εk − 1

(
Z

(1)
k

)
− εkH

εk−1

εk
k N

−ζk
k

(
Z

(2)
k

)2

1−N
−2ζk
k H

2
εk−1

εk
k

(
Z

(2)
k

)2

Note that

P−1
k

(
N∏

k=1

P
ωk,l

l

)(
w

1− αk

)γk(1−αk) ( r

αk

)γkαk εk

εk − 1
Hk

= N
−ζkεk
k

(
εk

εk − 1

)(1−εk)

P
εk−1
k

(
w

1− αk

)(1−εk)γk(1−αk)( r

αk

)(1−εk)γkαk
(

N∏

l=1

P
(1−εk)ωk,l

l

)

= N
−ζk
k H

εk−1

εk
k

Let us defineXk = N
−ζk
k H

εk−1

εk

k , thus to solve for the price we can solve the following
equation in Xk:

1 = Xk

(
Z

(1)
k

)
− εkXk

(
Z

(2)
k

)2

1−X2
k

(
Z

(2)
k

)2

which is equivalent to

(εk − 1)

(
Z

(2)
k

)2

X2
k −

(
Z

(1)
k

)
Xk + 1 = 0

For ease of notation, let us note A =

(
Z

(1)
k

)
and B =

(
Z

(2)
k

)2

. This equation has

two positive solutions on the real axis if A2 − 4(εk − 1)B > 0. Let us assume that.
Note that solving for the monopolitic case is equivalent to solve the above equation
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for B = 0 which yeilds Xk = 1
A . For B > 0, the two solutions are

X1 =
A−

√
A2 − 4(εk − 1)B

2(εk − 1)B
and X2 =

A+
√

A2 − 4(εk − 1)B

2(εk − 1)B

Note that when B → 0, X1 → 1
A whereas X2 → +∞. To ensure continuity, we select

the former over the latter solution. The admissible solution is thus

Xk =

(
Z

(1)
k

)
−
√(

Z
(1)
k

)2

− 4(εk − 1)

(
Z

(2)
k

)2

2(εk − 1)

(
Z

(2)
k

)2

Since,

Xk = N
−ζkεk
k

(
εk

εk − 1

)(1−εk)

P εk−1
k

(
w

1− αk

)(1−εk)γk(1−αk)( r

αk

)(1−εk)γkαk

(
N∏

l=1

P
(1−εk)ωk,l

l

)

X
1

εk−1

k = N
−ζk

εk
εk−1

k

(
εk

εk − 1

)−1

Pk

(
w

1− αk

)−γk(1−αk)( r

αk

)−γkαk

(
N∏

l=1

P
−ωk,l

l

)

Pk = X
1

εk−1

k N
ζk

εk
εk−1

k

(
εk

εk − 1

)(
w

1− αk

)γk(1−αk)( r

αk

)γkαk

(
N∏

l=1

P
ωk,l

l

)

log Pk = log

(
X

1

εk−1

k N
ζk

εk
εk−1

k

(
εk

εk − 1

)(
w

1− αk

)γk(1−αk)( r

αk

)γkαk

)
+

N∑

l=1

ωk,lPl

In matrix form,

(I − Ω) log P =

{
log

(
X

1

εk−1

k N
ϕk

εk
εk−1

k

(
εk

εk − 1

)(
w

1− αk

)γk(1−αk)( r

αk

)γkαk

)}

k

logP = (I − Ω)−1

{
log

((
w

1− αk

)γk(1−αk)( r

αk

)γkαk

N
ϕk

εk
εk−1

k

(
εk

εk − 1

)
X

1

εk−1

k

)}

k

To find the expression for the markup, let us note that

µ−1
k =

εk − 1

εk

(
1−N

−2ζk
k H

2
εk−1

εk

k

(
Z

(2)
k

)2
)

=
εk − 1

εk

(
1−X2

kB
)

using the fact that BX2
k = AXk−1

εk−1

µ−1
k =

εk − 1

εk

(
1− AXk − 1

εk − 1

)
=

(
εk −AXk

εk

)
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which yields the results.
Finally to compute sector level productivity, note that

Z
γk(αk−1)
k = N

ζk
k H

1

εk

k

(
N

−ζk
k H

εk−1

εk

k A− εkN
−2ζk
k H

2
εk−1

εk

k B

)

= N
ζk

εk
εk−1

k X
1

εk−1

k

(
XkA− εkX

2
kB
)

= N
ζk

εk
εk−1

k X
1

εk−1

k

(
XkA− εk

εk − 1
(AXk − 1)

)

= N
ζk

εk
εk−1

k X
1

εk−1

k

1

εk − 1
(εk −AXk)

which yeidls the results.

Bertrand Competition
From lemma 1,

µ−1
k =

εk − 1

εk
− 1

εk

εk − 1

εk
N

−2ζk
k H

2
εk−1

εk

k

(
Z

(2)
k

)2

and from lemma 2,

Z
γk(αk−1)
k = Hk

(
Z

(1)
k

)
−H

−1/εk
k N

−ζk
k H2

k

(
Z

(2)
k

)2

where Hk = N
−ζkεk
k

(
εk

εk−1

)−εk
P εk
k

(
w

1−αk

)−εkγk(1−αk) (
r
αk

)−εkγkαk
(∏N

l=1 P
−εkωk,l

l

)
.

It follows,

Pk

(
N∏

k=1

P
ωk,l

l

)−1

=

(
w

1− αk

)γk(1−αk)
(

r

αk

)γkαk
Hk

(
Z

(1)
k

)
−H

−1/εk
k N

−ζk
k H2

k

(
Z

(2)
k

)2

εk−1
εk

− 1
εk

εk−1
εk

N
−2ζk
k H

2
εk−1

εk
k

(
Z

(2)
k

)2

Pk

(
N∏

k=1

P
ωk,l

l

)−1

=

(
w

1− αk

)γk(1−αk)
(

r

αk

)γkαk

Hk
εk

εk − 1

(
Z

(1)
k

)
−H

εk−1

εk
k N

−ζk
k

(
Z

(2)
k

)2

1− 1
εk

N
−2ζk
k H

2
εk−1

εk
k

(
Z

(2)
k

)2

which yields

1 = P−1
k

(
N∏

k=1

P
ωk,l

l

)(
w

1− αk

)γk(1−αk) ( r

αk

)γkαk

Hk
εk

εk − 1

(
Z

(1)
k

)
−H

εk−1

εk
k N

−ζk
k

(
Z

(2)
k

)2

1− 1
εk

N
−2ζk
k H

2
εk−1

εk
k

(
Z

(2)
k

)2
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Note that

P−1
k

(
N∏

k=1

P
ωk,l

l

)(
w

1− αk

)γk(1−αk) ( r

αk

)γkαk εk

εk − 1
Hk

= N
−ζkεk
k

(
εk

εk − 1

)(1−εk)

P
εk−1
k

(
w

1− αk

)(1−εk)γk(1−αk)( r

αk

)(1−εk)γkαk
(

N∏

l=1

P
(1−εk)ωk,l

l

)

= N
−ζk
k H

εk−1

εk
k

Let us defineXk = N
−ζk
k H

εk−1

εk

k , thus to solve for the price we can solve the following
equation in Xk:

1 = Xk

(
Z

(1)
k

)
−Xk

(
Z

(2)
k

)2

1− 1
εk

X2
k

(
Z

(2)
k

)2

which is equivalent to

(
1−

1

εk

)(
Z

(2)
k

)2

X2
k −

(
Z

(1)
k

)
Xk + 1 = 0

For ease of notation, let us note A =

(
Z

(1)
k

)
and B =

(
Z

(2)
k

)2

. This equation has

two positive solutions on the real axis if A2 − 4
(
1− 1

εk

)
B > 0. Let us assume that.

Note that solving for the monopolitic case is equivalent to solve the above equation
for B = 0 which yeilds Xk = 1

A . For B > 0, the two solutions are

X1 =

A−
√

A2 − 4
(
1− 1

εk

)
B

2
(
1− 1

εk

)
B

and X2 =

A+

√
A2 − 4

(
1− 1

εk

)
B

2
(
1− 1

εk

)
B

Note that when B → 0, X1 → 1
A whereas X2 → +∞. To ensure continuity, we select

the former over the latter solution. The admissible solution is thus

Xk =

(
Z

(1)
k

)
−
√(

Z
(1)
k

)2

− 4
(
1− 1

εk

)(
Z

(2)
k

)2

2
(
1− 1

εk

)(
Z

(2)
k

)2

The rest of the proof is similar to the Cournot case. �

C3. Sector Dynamics

C3.1. Distribution Dynamics

Proof of Proposition 3..6. Sector k’s Productivity Distribution Dynamics
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For n > 0, thanks to assumption 2 we have

g
(k)
t+1,n = f

n,n−1
k,t+1 + f

n,n
k,t+1 + f

n,n+1
k,t+1

where f
n′,n
k,t+1 is the number of firms in state n′ at t+ 1 that were in state n at time t.

Given assumption 2 the 3 × 1 vector f .,n
k,t+1 = (fn−1,n

k,t+1 , f
n,n
k,t+1, f

n+1,n
k,t+1 )′ follow a multi-

nomial distribution with number of trial µ
(k)
t,n and event probabilities (ak, bk, ck)

′. It

follows that Et

[
f
.,n
k,t+1

]
= µ

(k)
t,n(ak, bk, ck)

′ and Covt

[
f
.,n
k,t+1

]
= µ

(k)
t,nΣ with

Σ =



a(1− a) −ab −ac

−ab b(1− b) −bc

−ac −bc c(1− c)




Note that f .,n
k,t+1 are idependent across n and thus

Et

[
g
(k)
t+1,n

]
= Et

[
f
n,n−1
k,t+1

]
+ Et

[
f
n,n
k,t+1

]
+ Et

[
f
n,n+1
k,t+1

]
= ag

(k)
t,n+1 + bg

(k)
t,n + cg

(k)
t,n−1

Vart

[
g
(k)
t+1,n

]
= Vart

[
f
n,n−1
k,t+1

]
+ Vart

[
f
n,n
k,t+1

]
+ Vart

[
f
n,n+1
k,t+1

]
= a(1 − a)g

(k)
t,n+1 + b(1− b)g

(k)
t,n + c(1 − c)g

(k)
t,n−1

To complete the proof let us look at the covariance structure.

Covt

[
g
(k)
t+1,n; g

(k)
t+1,n′

]
= Covt

[
f
n,n−1
k,t+1 + f

n,n
k,t+1 + f

n,n+1
k,t+1 ; fn′,n′

−1
k,t+1 + f

n′,n′

k,t+1 + f
n′,n′+1
k,t+1

]
= 0 if |n− n′| > 2

since the f
.,n
k,t+1 are idependent across n. For n′ = n+ 1, we have:

Covt

[
g
(k)
t+1,n; g

(k)
t+1,n+1

]
= Covt

[
f
n,n−1
k,t+1 + f

n,n
k,t+1 + f

n,n+1
k,t+1 ; fn+1,n

k,t+1 + f
n+1,n+1
k,t+1 + f

n+1,n+2
k,t+1

]

= Covt

[
f
n,n
k,t+1; f

n+1,n
k,t+1

]
+ Covt

[
f
n,n+1
k,t+1 ; fn+1,n+1

k,t+1

]

= −bcg
(k)
t,n − abg

(k)
t,n+1

using the fact that Covt

[
f
.,n
k,t+1

]
= µ

(k)
t,nΣ for all n > 0. The same reasoning apply for

n′ = n+ 2.
For n = 0, because of assumption 2 we have

g
(k)
t+1,0 = f

0,0
k,t+1 + f

0,1
k,t+1

Given assumption 2 the 2 × 1 vector f
.,0
k,t+1 = (f0,0

k,t+1, f
1,0
k,t+1)

′ follow a multinomial

distribution with number of trial g
(k)
t,0 and event probabilities (ak+bk, ck)

′. The same

reasoning apply than for n > 0.
For n = M , because of assumption 2 we have

g
(k)
t+1,M = f

M,M−1
k,t+1 + f

M,M
k,t+1

Given assumption 2 the 2× 1 vector f .,M
k,t+1 = (fM−1,M

k,t+1 , f
M,M
k,t+1)

′ follow a multinomial
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distribution with number of trial g
(k)
t,M and event probabilities (ak, ck+bk)

′. The same

reasoning apply than for n > 0.
Gathering the results yields that in matrix form:

g
(k)
t+1 = (P(k))′g

(k)
t + ǫ

(k)
t

where ǫ
(k)
t is the M × 1 vector of ǫ

(k)
t,n .

�

Proof of Proposition 3..7. Sector k’s Productivity Stationary Distribution

Let us drop the (k) superscript and subscript to simplify notation. The station-
ary distribution is a sequence that solve the following system:

(BC1) g0 = (a+ b)g0 + ag1

(BC2) gM = cgM−1 + (b+ c)gM
(EH) gn = agn+1 + bgn + cgn−1

Let us solve for the general solution of (EH). This equation is a second order
linear difference equation eqauivalent to 0 = agn+1 + (b − 1)gn + cgn−1 = agn+1 −
(a+ c)gn+ cgn−1, with an associated second order plynomial aX2− (a+ c)X + c = 0
which have roots 1 and c

a . The general solution of (EH) is thus gn = K1 +K2

(
c
a

)n
where K1 and K2 are constant to solve for.

Let us substitute this general solution in the equation (BC1), it yields

K1 +K2 = (a+ b)(K1 +K2) + aK1 + aK2
c

a
= (2a+ b)K1 + (a+ b+ c)K2

since a+b+c = 1, (BC1) implies K1 = (2a+b)K1. Since a < c and a+b+c = 1, then
2a+ b 6= 1 and thus K1 = 0. The general solution of this sytem is then gn = K2

(
c
a

)n
.

It is trivial to see that (BC2) is satisfied by this general solution. Since n = logϕn

logϕ ,

thus
(
c
a

)n
= exp

(
−s log a

c

)
= exp

(
− logϕn

logϕ log a
c

)
= (ϕn)−δ with δ =

log a

c

logϕ . It follows

that gn = K2 (ϕ
n)−δ

To solve for K2, let us use the fact that gn has to sum to Nk.

Nk =

M∑

n=0

gn = K2

M∑

n=0

(
ϕ−δ

)n
= K2

1−
(
ϕ−δ

)M+1

1− ϕ−δ

since ϕ−δ < 1. It follows that K2 = Nk
(1−ϕ−δ)

1−(ϕ−δ)M+1 and g
(k)
n = Nk

(1−ϕ−δ)

1−(ϕ−δ)M+1 (ϕn)−δ. �

C3.2. Dynamics of Moments

Let us define MZt,k(ξ) =
∑Nk

i=1 Zt(k, i)
ξ the ξth moment of the productivity distri-

bution within sector k at time t. Note that since productivity evolves on the discrete

state spaceΦk = {1, ϕk , · · · , ϕn
k , · · · , ϕMk

k }, we can rewriteMZt,k(ξ) =
∑Nk

i=1 Zt(k, i)
ξ =∑Nk

i=1 ϕ
ξnt,k,i

k where nt,k,i is such that the firm i in sector k has a producitivity level
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ϕnt,k,i at time t. It follows that MZt,k(ξ) =
∑Mk

n=0(ϕ
n
k )

ξg
(k)
t,n by instead of summing

over firms i, summing over productivity level ϕn
k . Below, I am showing two lem-

mas that totally described the dynamics of the moments MZt,k(ξ) for any ξ. With
these results in hand I am then characterizing the dynamics of the two moments of

interest: Z
(1)
t,k and ∆t,k.

Lemma 3 (Dynamics of Moments of the Productivity Distribution): Under as-
sumption 2, the ξth moment of the productivity distribution within sector k, MZt,k(ξ) =∑Nk

i=1 Z(k, i)ξ , satisfies

MZt+1,k(ξ) = ρk(ξ)MZt,k(ξ) +OM
t,k(ξ) + σt,k(ξ)εt

σt,k(ξ)
2 = ̺k(ξ)MZt,k(2ξ) +Oσ

t,k(ξ)

where εt is an iid (across t and k) random variable following a N (0, 1), ρk(ξ) =
akϕ

−ξ + bk + ckϕ
ξ, and ̺k(ξ) = akϕ

−2ξ + bk + ckϕ
2ξ − ρk(ξ)

2.

Proof of Lemma 3. Dynamics of Moments of the Productivity Distribution

Note first that

MZt+1,k(ξ) =

Nk∑

i=1

Zt+1(k, i)
ξ =

Nk∑

i=1

ϕ
ξnt+1,k,i

k =

Mk∑

n=0

(ϕn
k )

ξg
(k)
t+1,n

where g
(k)
t+1,n is a stochastic as shown in proposition 3..6. In the proof of this propo-

sition we have shown that for n > 0

g
(k)
t+1,n = f

n,n−1
k,t+1 + f

n,n
k,t+1 + f

n,n+1
k,t+1

where f
n′,n
k,t+1 is the number of firms in state n′ at t+ 1 that were in state n at time t.

Given assumption 2 the 3 × 1 vector f
.,n
k,t+1 = (fn−1,n

k,t+1 , f
n,n
k,t+1, f

n+1,n
k,t+1 )′ follow a multi-

nomial distribution with number of trial g
(k)
t,n and event probabilities (ak, bk, ck)

′. In

other words,

f
.,n
k,t+1 =

(
fn−1,n
k,t+1

fn,n
k,t+1

fn+1,n
k,t+1

)
 Multi

(
µ
(k)
t,n ,
( ak

bk
ck

))

Severini (2005) (p377 example 12.7) show that a multinomial distribution can be
approximate (i.e converge in distribution) by a multivariate normal distribution:

1√
g
(k)
t,n

(
f
.,n
k,t+1 − g

(k)
t,n

( ak

bk
ck

))
D−→

g(k)
t,n→∞

Z  N (0,Σ)

where

Σ =



a(1− a) −ab −ac

−ab b(1− b) −bc

−ac −bc c(1− c)



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For n = 0, we have

g
(k)
t+1,0 = f

0,0
k,t+1 + f

0,1
k,t+1

Given assumption 2 the 2 × 1 vector f
.,0
k,t+1 = (f0,0

k,t+1, f
1,0
k,t+1)

′ follow a multinomial

distribution with number of trial g
(k)
t,0 and event probabilities (ak + bk, ck)

′. Using

the same result in Severini (2005),

1√
g
(k)
t,0

(
f
.,0
k,t+1 − g

(k)
t,0

(
ak+bk
ck

)) D−→
g(k)
t,0 →∞

Z  N (0,Σ0)

where

Σ0 =

(
c(1− c) −c(1− c)
−c(1− c) c(1− c)

)

For n = M , we have

g
(k)
t+1,0 = f

M,M
k,t+1 + f

M,M−1
k,t+1

Given assumption 2 the 2× 1 vector f .,M
k,t+1 = (fM−1,M

k,t+1 , f
M,M
k,t+1)

′ follow a multinomial

distribution with number of trial g
(k)
t,M and event probabilities (ak, bk + ck)

′. Using

the same result in Severini (2005),

1√
g
(k)
t,0

(
f
.,M
k,t+1 − g

(k)
t,M

( ak

bk+ck

)) D−→
g(k)
t,M→∞

Z  N (0,Σ0)

where

ΣM =

(
a(1− a) −a(1− a)
−a(1− a) a(1− a)

)

Let us keep this results in mind and let us go back to (I drop the subscript k to
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keep the notation parcimonious)

MZt+1,k(ξ) =

M∑

n=0

(ϕn)ξG
(k)
t+1,n = g

(k)
t+1,0 +

M−1∑

n=1

(ϕn)ξg
(k)
t+1,n + (ϕM )ξg

(k)
t+1,M

= f
0,0
k,t+1 + f

0,1
k,t+1 +

M−1∑

n=1

(ϕn)ξ
(
f
n,n−1
k,t+1 + f

n,n
k,t+1 + f

n,n+1
k,t+1

)
+ (ϕM )ξ

(
f
M,M−1
k,t+1 + f

M,M
k,t+1

)

= f
0,0
k,t+1 + f

0,1
k,t+1 +

M−1∑

n=1

(ϕξ)nfn,n−1
k,t+1 +

M−1∑

n=1

(ϕξ)nfn,n
k,t+1 +

M−1∑

n=1

(ϕξ)nfn,n+1
k,t+1 + (ϕM )ξ

(
f
M,M−1
k,t+1 + f

M,M
k,t+1

)

= f
0,0
k,t+1 + f

0,1
k,t+1 +

M−2∑

n=0

(ϕξ)n+1f
n+1,n
k,t+1 +

M−1∑

n=1

(ϕξ)nfn,n
k,t+1 +

M∑

n=2

(ϕξ)n−1f
n−1,n
k,t+1 + (ϕM )ξ

(
f
M,M−1
k,t+1 + f

M,M
k,t+1

= f
0,0
k,t+1 + ϕξf

1,0
k,t+1 +

M−1∑

n=1

(ϕξ)n
(
ϕξf

n+1,n
k,t+1 + f

n,n
k,t+1 + ϕ−ξ + f

n−1,n
k,t+1

)
+ (ϕξ)M

(
f
M,M
k,t+1 + ϕ−ξf

M−1,M
k,t+1

)

=
(

1
ϕξ

)
′

(
f0,0
k,t+1

f1,0
k,t+1

)
+

M−1∑

n=1

(ϕξ)n
(

ϕ−ξ

1
ϕξ

)
′

(
fn−1,n
k,t+1

fn,n
k,t+1

fn+1,n
k,t+1

)
+ (ϕξ)M

(
ϕ−ξ

1

)
′

(
fM−1,M
k,t+1

fM,M
k,t+1

)

=

(
ρk,0g

(k)
t,0 +

√
̺k,0g

(k)
t,0 εt+1,0

)
+

M−1∑

n=1

(ϕξ)n
(
ρkg

(k)
t,n +

√
̺kg

(k)
t,nεt+1,n

)
. . .

. . .+ (ϕξ)M
(
ρk,Mg

(k)
t,M +

√
̺k,Mg

(k)
t,nεt+1,M

)

Since

(
fn−1,n
k,t+1

fn,n
k,t+1

fn+1,n
k,t+1

)
≈ Z  N

(
µ
(k)
t,n

( ak

bk
ck

)
, µ

(k)
t,nΣ

)
it follows that

(
ϕ−ξ

1
ϕξ

)′
(

fn−1,n
k,t+1

fn,n
k,t+1

fn+1,n
k,t+1

)
≈

(
ϕ−ξ

1
ϕξ

)′

Z  N
(
µ
(k)
t,n

(
x−ξ

1
xξ

)′ ( ak

bk
ck

)
, µ

(k)
t,n

(
x−ξ

1
xξ

)′
Σ

(
ϕ−ξ

1
ϕξ

))
= N

(
µ
(k)
t,nρk, µ

(k)
t,n̺k

)
.where

ρk = akϕ
−ξ + bk+ ckϕ

ξ and ̺k = akϕ
−2ξ + bk+ ckϕ

2ξ −ρ2k. The same reasoning apply

for n = M with ρk,M = ρk + c(1 − ϕξ) := ρk + ρ̃k,M and ̺k,M = ̺k − c(1 − c)(1 −
x2ξ) − 2cb(1 − ϕξ) − 2ca(1 − ϕξ) := ̺k + ˜̺k,M . The same reasoning apply for n = 0

with ρk,0 = ρk + a(1− ϕ−ξ) := ρk + ρ̃k,0 and ̺k,0 = ̺k − a(1− a)(1− x−2ξ)− 2ab(1−
ϕ−ξ)− 2ac(1 − ϕ−ξ) := ̺k + ˜̺k,0. From this it follows that

MZt+1,k(ξ) =
(
ρ̃k,0g

(k)
t,0

)
+ ρk

M∑

n=0

(ϕξ)ng
(k)
t,n + (ϕξ)M

(
ρ̃k,Mg

(k)
t,M

)
+ σt,k(ξ)εt+1

= ρk(ξ)MZt,k(ξ) +OM
t,k(ξ) + σt,k(ξ)εt+1

Where OM
t,k(ξ) = ρ̃k,0g

(k)
t,0 + (ϕξ)M ρ̃k,Mg

(k)
t,M .Since the εt+1,n are independent across
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n, the variance of σt,k(ξ)εt is the sum of the variances of

√
̺kg

(k)
t,n εt+1,n i.e

σt,k(ξ)
2 = ̺k,0g

(k)
t,0 +

M−1∑

n=1

(ϕ2ξ)n̺kg
(k)
t,n + (ϕ2ξ)M̺k,Mg

(k)
t,n

= (̺k + ˜̺k,0) g(k)t,0 +

M−1∑

n=1

(ϕ2ξ)n̺kg
(k)
t,n + (ϕ2ξ)M (̺k + ˜̺k,M) g

(k)
t,n

= ˜̺k,0g(k)t,0 +

M∑

n=0

(ϕ2ξ)n̺kg
(k)
t,n + (ϕ2ξ)M ˜̺k,Mg

(k)
t,n

= ̺k(ξ)MZt,k(2ξ) +Oσ
t,k(ξ)

where Oσ
t,k(ξ) = ˜̺k,0g

(k)
t,0 +(ϕ2ξ)M ˜̺k,Mg

(k)
t,n . Moreover, εt+1 follows a standard normal

distribution since the εt+1,n are also normaly distributed. �

Lemma 4 (Covariance of Moments of the Productivity Distribution): Under as-
sumption 2, the covariance between the ξth moment and the ξ′th moment of the
productivity distribution within sector k is given by

Covt
[
MZt+1,k(ξ);MZt+1,k(ξ

′)
]
= ̺k(ξ, ξ

′)MZt,k(ξ
′ + ξ) +OC

t,k(ξ, ξ
′)

where MZt,k(ξ) =
∑Nk

i=1 Z(k, i)ξ and ̺k(ξ, ξ
′) = a(1 − a)ϕ−(ξ+ξ′) + b(1 − b) + c(1 −

c)ϕξ+ξ′ − ab(ϕ−ξ + ϕ−ξ′)− ac(ϕ−(ξ−ξ′)ϕξ−ξ′)− bc(ϕξ + ϕξ′).

Proof of Lemma 4. Covariance of Moments of the Productivity Distribution

In the proof of 3, we had

MZt+1,k(ξ) =
( 1
ϕξ

)′ ( f0,0
k,t+1

f1,0
k,t+1

)
+

M−1∑

n=1

(ϕξ)n
(

ϕ−ξ

1
ϕξ

)′
(

fn−1,n
k,t+1

fn,n
k,t+1

fn+1,n
k,t+1

)
+(ϕξ)M

(
ϕ−ξ

1

)′
(

fM−1,M
k,t+1

fM,M
k,t+1

)
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Thus

Covt

[
MZt+1,k(ξ);MZt+1,k(ξ

′
)
]
=

Covt



(

1

ϕξ

)
′




f
0,0
k,t+1

f
1,0
k,t+1



 +

M−1∑

n=1

(ϕ
ξ
)
n

(
ϕ−ξ

1

ϕξ

)
′




f
n−1,n
k,t+1

f
n,n
k,t+1

f
n+1,n
k,t+1


 + (ϕ

ξ
)
M
(

ϕ−ξ

1

)
′




f
M−1,M
k,t+1

f
M,M
k,t+1



 ;

(
1

ϕξ′

)
′




f
0,0
k,t+1

f
1,0
k,t+1



 +

M−1∑

n=1

(ϕ
ξ′

)
n



ϕ−ξ′

1

ϕξ′




′




f
n−1,n
k,t+1

f
n,n
k,t+1

f
n+1,n
k,t+1


 + (ϕ

=Covt




(

1

ϕξ

)
′




f
0,0
k,t+1

f
1,0
k,t+1



 ;

(
1

ϕξ′

)
′




f
0,0
k,t+1

f
1,0
k,t+1







+

M−1∑

n=1

M−1∑

n′=1

(ϕ
ξ
)
n
(ϕ

ξ′
)
n′

Covt




(
ϕ−ξ

1

ϕξ

)
′




f
n−1,n
k,t+1

f
n,n
k,t+1

f
n+1,n
k,t+1


 ;



ϕ−ξ′

1

ϕξ′




′




f
n′

−1,n′

k,t+1

f
n′,n′

k,t+1

f
n′+1,n′

k,t+1





+ . . .

. . . + (ϕ
ξ+ξ′

)
M

Covt




(

ϕ−ξ

1

)
′




f
M−1,M
k,t+1

f
M,M
k,t+1



 ;

(
ϕ−ξ′

1

)
′




f
M−1,M
k,t+1

f
M,M
k,t+1









=Covt




(

1

ϕξ

)
′




f
0,0
k,t+1

f
1,0
k,t+1



 ;

(
1

ϕξ′

)
′




f
0,0
k,t+1

f
1,0
k,t+1







+

M−1∑

n=1

(ϕ
ξ+ξ′

)
n
Covt




(
ϕ−ξ

1

ϕξ

)
′




f
n−1,n
k,t+1

f
n,n
k,t+1

f
n+1,n
k,t+1


 ;



ϕ−ξ′

1

ϕξ′




′




f
n−1,n
k,t+1

f
n,n
k,t+1

f
n+1,n
k,t+1





 . . .

. . . + (ϕ
ξ+ξ′

)
M

Covt



(

ϕ−ξ

1

)
′




f
M−1,M
k,t+1

f
M,M
k,t+1


 ;

(
ϕ−ξ′

1

)
′




f
M−1,M
k,t+1

f
M,M
k,t+1






where at the second line, we use the fact that f
.,0
k,t+1 and f

.,M
k,t+1 are independent

of the f
.,n
k,t+1 for any 0 < n < M and in the third line that f

.,n
k,t+1 are independent

across n. Using the fact that Cov[A′X,B′Y ] = A′Cov[X,Y ]B for vectors A and B
and random vectors X and Y of appropriate size, we have

Covt

[
MZt+1,k(ξ);MZt+1,k(ξ

′
)
]
=

(
1

ϕξ

)
′

Covt








f
0,0
k,t+1

f
1,0
k,t+1



 ;




f
0,0
k,t+1

f
1,0
k,t+1








(

1

ϕξ′

)
+

M−1∑

n=1

(ϕ
ξ+ξ′

)
n

(
ϕ−ξ

1

ϕξ

)
′

Covt







f
n−1,n
k,t+1

f
n,n
k,t+1

f
n+1,n
k,t+1


 ;




f
n−1,n
k,t+1

f
n,n
k,t+1

f
n+1,n
k,t+1









ϕ−ξ′

1

ϕξ′



 . . .

. . . + (ϕ
ξ+ξ′

)
M
(

ϕ−ξ

1

)
′

Covt






f
M−1,M
k,t+1

f
M,M
k,t+1


 ;




f
M−1,M
k,t+1

f
M,M
k,t+1





(

ϕ−ξ′

1

)

Using the definition of Σ, Σ0 and ΣM yields

Covt
[
MZt+1,k(ξ);MZt+1,k(ξ

′)
]
=

g
(k)
t,0

(
1
ϕξ

)′
Σ0

(
1
ϕξ′

)
+

M−1∑

n=1

(ϕξ+ξ′)ng
(k)
t,n

(
ϕ−ξ

1
ϕξ

)′

Σ

(
ϕ−ξ′

1
ϕξ′

)
+ (ϕξ+ξ′)Mg

(k)
t,M

(
ϕ−ξ

1

)′
ΣM

(
ϕ−ξ′

1

)

To complete the proof, let us just note that

(
ϕ−ξ

1
ϕξ

)′

Σ

(
ϕ−ξ′

1

ϕξ′

)
= a(1 − a)ϕ−(ξ+ξ′) + b(1− b) + c(1− c)ϕξ+ξ′ − ab(ϕ−ξ + ϕ−ξ′ )− ac(ϕ−(ξ−ξ′)ϕξ−ξ′ )− bc(ϕξ + ϕξ′ )

(
1
ϕξ

)
′

Σ0

(
1

ϕξ′

)
= c(1− c)(1− ϕξ′ − ϕξ + ϕξ+ξ′ )

(
ϕ−ξ

1

)
′

ΣM

(
ϕ−ξ′

1

)
= a(1 − a)(1 − ϕ−ξ′ − ϕ−ξ + ϕ−(ξ+ξ′))
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which implies that

OC
t,k(ξ, ξ

′)

= g
(k)
t,0

((
ϕ−ξ

1
ϕξ

)
′

Σ

(
ϕ−ξ′

1

ϕξ′

)
−
(

1
ϕξ

)
′

Σ0

(
1

ϕξ′

))
+ (ϕξ+ξ′)Mg

(k)
t,M

((
ϕ−ξ

1
ϕξ

)
′

Σ

(
ϕ−ξ′

1

ϕξ′

)
−
(

ϕ−ξ

1

)
′

ΣM

(
ϕ−ξ′

1

))

= g
(k)
t,0 ̺k,0 + (ϕξ+ξ′)Mg

(k)
t,M̺k,M

�

Proof of Proposition 3..8. Dynamics of Z
(1)
t,k and ∆t,k

Using lemma 3 and the fact that

(
Z

(n)
t,k

)n

= MZt,k

(
n(εk−1)γk(1−αk)

)
, we have

Z
(1)
t+1,k

Z
(n)
t,k

= ρ
(1)
k +

O
M,(1)
t,k

Z
(n)
t,k

+
σ
(1)
t,k

Z
(n)
t,k

ε
(1)
t+1


 σ

(1)
t,k

Z
(n)
t,k




2

= ̺
(1)
k ∆t,k +

O
σ,(1)
t,k(

Z
(n)
t,k

)2

Using a similar reasonning, we have

∆t+1,k =


Z

(2)
t+1,k

Z
(1)
t+1,k




2

= ρ
(2)
k


Z

(2)
t,k

Z
(1)
t,k




2
 Z

(1)
t,k

Z
(1)
t+1,k




2

+


 Z

(1)
t,k

Z
(1)
t+1,k




2

O
M,(2)
t,k(
Z

(1)
t,k

)2 +
σ
(2)
t,k(

Z
(2)
t,k

)2


Z

(2)
t,k

Z
(1)
t,k




2
 Z

(1)
t,k

Z
(1)
t+1,k




2

ε
(2)
t+1

with

σ
(2)
t,k(

Z
(2)
t,k

)2 = ̺
(2)
k


Z

(4)
t,k

Z
(2)
t,k




4

+
O

σ,(2)
t,k(

Z
(2)
t,k

)2
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Finally, it can be shown that

Covt

[
ε
(1)
t+1; ε

(2)
t+1

]
=

̺
(1,2)
k

(
Z

(3)
t,k

)3

+O
C,(1,2)
t,k

σ
(1)
t,k σ

(2)
t,k

=

̺(1,2)
k

(
Z(3)

t,k

)3

(
Z(1)

t,k

)2(
Z(2)

t,k

)2 +
O

C,(1,2)
t,k(

Z(1)
t,k

)2(
Z(2)

t,k

)2

(
̺
(1)
k ∆t,k +

O
σ,(1)
t,k(

Z(n)
t,k

)2

)(
̺
(2)
k

(
Z

(4)
t,k

Z(2)
t,k

)4

+
O

σ,(2)
t,k(

Z(2)
t,k

)2

)

=

̺(1,2)
k

(
Z(3)

t,k

)3

(
Z

(1)
t,k

)2(
Z

(2)
t,k

)2 +
OC,(1,2)

t,k(
Z

(1)
t,k

)2(
Z

(2)
t,k

)2

(
̺
(1)
k ∆t,k

)(
̺
(2)
k

(
Z(4)

t,k

Z(2)
t,k

)4
)

This complete the proof.�

C4. Closing the Model

Proof of Proposition 4..1. Factor’s Market Clearing Conditions

The labor market clearing condition is

L =

N∑

k=1

Nk∑

i=1

L(k, i) =

N∑

k=1

N∑

i=1

γk(1− αk)

(
w

λ(k, i)

)−1

y(k, i)

= w−1
N∑

k=1

γk(1− αk)

N∑

i=1

λ(k, i)y(k, i) = w−1
N∑

k=1

γk(1− αk)λkYk

= w−1
N∑

k=1

γk(1− αk)µ
−1
k PkYk

L = w−1
N∑

k=1

(1− αk)γkµ
−1
k

(
β̃kP

CC + ν̃kP
II
)

where we use at the second line propostion 2..2: L(k, i) = γk(1−αk)
(

w
λ(k,i)

)−1
y(k, i),

the definition ofλk and the fact that λk = µ−1
k Pk at the third line and the proposition

3..3 at the fourth line.
Similarly, the capital market clearing condition wirtes

K = r−1
N∑

k=1

γkαkµ
−1
k

(
β̃kP

CC + ν̃kP
II
)



92 BASILE GRASSI

�

C5. A Special Case

Proof of Proposition 5..2. No Capital Case

Solving for the equilibrium wage
Without loss of generality, let us normalized the composite consumption good

to 1. It follows that 0 = log 1 = log PC = β′ {log P}k. Using proposition 3..5, we
have

0 = β′(I − Ω)−1




log



wγk

(
εk

εk − 1

)(
Z

(1)
k

) −1
εk−1


fk




Z
(2)
k(

Z
(1)
k

)2







−1
εk−1








k

0 = β′(I − Ω)−1




{γk}k logw + log




(
εk

εk − 1

)(
Z

(1)
k

) −1
εk−1


fk




Z
(2)
k(

Z
(1)
k

)2







−1
εk−1








k

β′(I − Ω)−1{γk}k logw = −β′(I − Ω)−1




log




(
εk

εk − 1

)(
Z

(1)
k

) −1
εk−1


fk




Z
(2)
k(

Z
(1)
k

)2







−1
εk−1








k

Note that β′(I−Ω)−1{γk}k = β′I = 1 since the row of Ω sum to {1−γk}k10 and since
the row of β′ sum to one. This yields the result

logw = −β′(I − Ω)−1




log




(
εk

εk − 1

)(
Z

(1)
k

) −1
εk−1


fk




Z
(2)
k(

Z
(1)
k

)2







−1
εk−1








k

Solving for aggregate consumption

Using the houshold labor supply condition, we have that wL = w
χ

χ−1C
−η

χ−1 . By
proposition 5..1, we have C = wL

1−β̃′

(
µ−1

µ

) where we use the fact that αk = 0 and

10Which implies ΩI = {1 − γk}k and thus (I − Ω)I = {γk}k which implies I = (I −
Ω)−1{γk}k.
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PC = 1. Combining these two together yields

C =
w

χ

χ+η−1

(
1− β̃′

(
µ−1
µ

)) χ−1

χ+η−1

taking logs

logC =
χ

χ+ η − 1
logw − χ− 1

χ+ η − 1
log

(
1− β̃′

(
µ− 1

µ

))

substituing the expression for the wage yields

logC =
−χ

χ+ η − 1
β′(I − Ω)−1




log




(
εk

εk − 1

)(
Z

(1)
k

) −1

εk−1


fk




Z
(2)
k(

Z
(1)
k

)2







−1

εk−1








k

− χ− 1

χ+ η − 1
log

(
1− β̃′

(
µ− 1

µ

))

where β̃′ = β′(I − µ−1Ω)−1 with µ−1 = diag{µ−1
k }k, and

(
µ−1
µ

)
=
{

µk−1
µk

}
k

=
{
1− µ−1

k

}
k

.

Note that

µ−1
k = 1− 1

εk
fk




Z
(2)
k(

Z
(1)
k

)2




1− µ−1
k =

1

εk
fk




Z
(2)
k(

Z
(1)
k

)2



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thus

logC =
−χ

χ+ η − 1
β′(I − Ω)−1




log




(
εk

εk − 1

)(
Z

(1)
k

) −1

εk−1


fk




Z
(2)
k(

Z
(1)
k

)2







−1

εk−1








k

− χ− 1

χ+ η − 1
log


1− β̃′





1

εk
fk




Z
(2)
k(

Z
(1)
k

)2








k




�
Proof of Corollary 3..2. Concentration and Centrality

First, I am showing an intermediate results. Let us comput the derivative of
β′(I − SΩ)−1 with respect of Sk where S = diag ({Sk}k) is a diagonal matrix.

dβ′(I − SΩ)−1

dSk
= −β′(I − SΩ)−1 d(I − SΩ)

dSi
(I − SΩ)−1

= β′(I − SΩ)−1 dS

dSi
Ω(I − SΩ)−1

= β′(I − SΩ)−1 dS

dSi
S−1SΩ(I − SΩ)−1

= β′(I − SΩ)−1d log S

dSi
SΩ(I − SΩ)−1

= β′(I − SΩ)−1d log S

dSi

(
(I − SΩ)−1 − I

)

Let us then apply this to the vector of sectors’ supplier centrality β̃ = β′(I −
µ−1Ω)−1 where µ−1 = diag

(
{µ−1

k }k
)
= diag

(
{1− fk

εk
}k
)

is a diagonal matrix. Ap-

plying the above equation yields

dβ̃′

dfk
= β′(I − µ−1Ω)−1d log µ

−1

dfk

(
(I − µ−1Ω)−1 − I

)

= β̃′ d log µ
−1

dfk

(
Ψ(s) − I

)

where Ψ(s) = (I − µ−1Ω)−1. Note that

d log µ−1

dfk
=

d

dfk

[
diag

(
{log(1− fk

εk
)}k
)]

= eke
′
k

−1

εkµ
−1
k

= − eke
′
k

εk − fk

where e′k = (0, · · · , 0, 1, 0, · · · 0) is the kth base vector of RN thus eke
′
k is the diagonal

matrix full of zeros except the kth element of the diagonal which is equal to one. It
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follows that:

dβ̃′

dfk
= −β̃′ eke

′
k

εk − fk

(
Ψ(s) − I

)
= − β̃k

εk − fk
e′k

(
Ψ(s) − I

)

Taking that vector expression at column l yields

dβ̃l

dfk
= − β̃k

εk − fk

(
Ψ

(s)
k,l − Ik,l

)

The same reasonning applies for ν̃. �
Proof of Corollary 5..3. Concentration and Centrality

Wage Volatility
The total derivative of the equilibrium wage is

d logw =

N∑

k=1

(
∂ logw

∂ logZ(1)
k

d logZ(1)
k +

∂ logw

∂ log ∆k
d log ∆k

)

which is also, after substituing the partial derivative of w equal to

d logw =

N∑

k=1

(
βk

εk − 1
d logZ(1)

k −
βkek

εk − 1
d log ∆k

)

where ek = d log fk(∆k)
d log∆k

is the elasticity of the distortion fk w.r.t to ∆k. It follows that

at the first order

log

(
wt+1

wt

)
≈

N∑

k=1

(
βk

εk − 1
log

(
Z(1)

t+1,k

Z(1)
t,k

)
− βket,k

εk − 1
log

(
∆t+1,k

∆t,k

))

Taking the conditional variance

Vart

[
log

(
wt+1

wt

)]
≈

N∑

k=1

(
βk

εk − 1

)2

Vart

[
log

(
Z(1)

t+1,k

Z(1)
t,k

)]
+

(
βket,k

εk − 1

)2

Vart

[
log

(
∆t+1,k

∆t,k

)]
. . .

. . .− 2

(
βk

εk − 1

)(
βket,k

εk − 1

)
Covt

[
log

(
Z(1)

t+1,k

Z(1)
t,k

)
; log

(
∆t+1,k

∆t,k

)]

since the and Z(1)
t+1,k the ∆t+1,k are independent across k. Using the proposition
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3..8, one can show that (at the first order)

Vart

[
log

(
Z(1)

t+1,k

Z(1)
t,k

)]
= ̺

(1)
k ∆t,k + o

σ,(1)
t,k

Vart

[
log

(
∆t+1,k

∆t,k

)]
= 4

(
̺
(1)
k ∆t,k + o

σ,(1)
t,k

)
+ ̺

(2)
k κt,k + o

σ,(2)
t,k − 4

(
̺kSkewt,k + o

C,(2)
t,k

)

Covt

[
log

(
Z(1)

t+1,k

Z(1)
t,k

)
; log

(
∆t+1,k

∆t,k

)]
= ̺kSkewt,k + o

C,(2)
t,k − 2

(
̺
(1)
k ∆t,k + o

σ,(1)
t,k

)

It follows after substituing

Vart

[
log

(
wt+1

wt

)]
≈

N∑

k=1

(
βk

εk − 1

)2
(
Vart

[
log

(
Z(1)

t+1,k

Z(1)
t,k

)]
+ e2t,kVart

[
log

(
∆t+1,k

∆t,k

)]
. . .

. . . −2et,kCovt

[
log

(
Z(1)

t+1,k

Z(1)
t,k

)
; log

(
∆t+1,k

∆t,k

)])

≈
N∑

k=1

(
βk

εk − 1

)2
(
̺
(1)
k ∆t,k + o

σ,(1)
t,k + e2t,k

(
4
(
̺
(1)
k ∆t,k + o

σ,(1)
t,k

)
+ ̺

(2)
k κt,k + o

σ,(2)
t,k − 4

(
̺kSkewt,k + o

C,(2)
t,k

))
. . .

. . .− 2et,k

(
̺kSkewt,k + o

C,(2)
t,k − 2

(
̺
(1)
k ∆t,k + o

σ,(1)
t,k

)))

Taking the derivative with respect to ̺
(1)
k yields

β̆w
t,k =

(
βk

εk − 1

)2

∆t,k

(
4e2t,k + 4et,k + 1

)

Consumption Volatility
The total derivative of the aggregate consumption is

d logC =

N∑

k=1

(
∂ logC

∂ logZ(1)
k

d logZ(1)
k +

∂ logC

∂ log ∆k
d log ∆k

)

which is also, after substituing the partial derivative of C equal to

d logC =

N∑

k=1

(
χ

χ+ η − 1

βk

εk − 1
d logZ(1)

k + . . .

. . . +

( −χ

χ+ η − 1

βk

εk − 1
ek +

χ− 1

χ+ η − 1

(
Pro

wL

)(prok
Pro

)
µk (1− ε̃k) ek

)
d log ∆k

)

where ε̃k
−1 =

∑N
l=1 Ψ

(s)
k,l

µl−1
µl

and where ε̃−1 = (I −µ−1Ω)−1
{

fk(∆k)
εk

}
k

is the elastic-
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ity centrality. It follows that at the first order

log

(
Ct+1

Ct

)
≈

N∑

k=1

(
χ

χ+ η − 1

βk

εk − 1
log

(
Z(1)

t+1,k

Z(1)
t,k

)
+ . . .

. . .+

( −χ

χ+ η − 1

βk

εk − 1
+

χ− 1

χ+ η − 1

(
Pro

wL

)(prok
Pro

)
µk (1− ε̃k)

)
ek log

(
∆t+1,k

∆t,k

))

Taking the conditional variance

Vart

[
log

(
Ct+1

Ct

)]
≈

N∑

k=1

(
χ

χ+ η − 1

βk

εk − 1

)2

Vart

[
log

(
Z(1)

t+1,k

Z(1)
t,k

)]
+ . . .

. . .+

(
−χ

χ+ η − 1

βk

εk − 1
+

χ− 1

χ+ η − 1

(
Pro

wL

)(prok
Pro

)
µk (1− ε̃k)

)2

e2kVart

[
log

(
∆t+1,k

∆t,k

)]

. . .+ 2

(
χ

χ+ η − 1

βk

εk − 1

)(
−χ

χ+ η − 1

βk

εk − 1
+

χ− 1

χ+ η − 1

(
Pro

wL

)(prok
Pro

)
µk (1− ε̃k)

)
ekCovt

[
log

(
Z(1)

t+1,k

Z(1)
t,k

)
; log

(
∆t+1,k

∆t,k

)]

since the and Z(1)
t+1,k the ∆t+1,k are independent across k. Let us introduce some

notation to keep this computation simple. Let us defined A =
(

χ
χ+η−1

βk

εk−1

)
and

B = χ−1
χ+η−1

(
Pro
wL

) (prok
Pro

)
µk (1− ε̃k), the above expression thus becomes

Vart

[
log

(
Ct+1

Ct

)]
≈

N∑

k=1

A2
Vart

[
log

(
Z(1)

t+1,k

Z(1)
t,k

)]
+ (B −A)2 e2kVart

[
log

(
∆t+1,k

∆t,k

)]

. . .+ 2A (−A+ B) ekCovt

[
log

(
Z(1)

t+1,k

Z(1)
t,k

)
; log

(
∆t+1,k

∆t,k

)]

≈
N∑

k=1

A2
Vart

[
log

(
Z(1)

t+1,k

Z(1)
t,k

)]

+
(
A2 +B2 − 2AB

)
e2kVart

[
log

(
∆t+1,k

∆t,k

)]

. . .+ 2
(
AB −A2

)
ekCovt

[
log

(
Z(1)

t+1,k

Z(1)
t,k

)
; log

(
∆t+1,k

∆t,k

)]

≈
N∑

k=1

A2
(
̺
(1)
k ∆t,k + o

σ,(1)
t,k

)

+
(
A2 +B2 − 2AB

)
e2k

(
4
(
̺
(1)
k ∆t,k + o

σ,(1)
t,k

)
+ ̺

(2)
k κt,k + o

σ,(2)
t,k − 4

(
̺kSkewt,k + o

C,(2)
t,k

))

. . .+ 2
(
AB −A2

)
ek

(
̺kSkewt,k + o

C,(2)
t,k − 2

(
̺
(1)
k ∆t,k + o

σ,(1)
t,k

))

Taking the derivative with respect to ̺
(1)
k yields

β̆C
t,k = ∆t,k

(
A2(1 + 4e2k + 4ek) + 4B2e2k − 4AB (2ek + 1) ek

)
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which after substituing the expression of A and B:

β̆C
t,k = ∆t,k

(
χ

χ+ η − 1

βk

εk − 1

)2

(1 + 4e2k + 4ek) . . .

. . .+ 4∆t,k

(
χ− 1

χ+ η − 1

(
Pro

wL

)(prok
Pro

)
µk (1− ε̃k)

)2

e2k

. . .− 4∆t,k

(
χ

χ+ η − 1

βk

εk − 1

)(
χ− 1

χ+ η − 1

(
Pro

wL

)(prok
Pro

)
µk (1− ε̃k)

)
(2ek + 1) ek

�


