Statistics of heteroscedastic extremes: from skedasis to variations in the extreme value indices

Chen Zhou^{1,2,3}

¹De Nederlandsche Bank

²Erasmus University Rotterdam

³Tinbergen Institute

March 24, 2016

Motivation

"We are going through a financial crisis more severe and unpredictable than any in our lifetimes."

- Henry M. Paulson, Nov 18, 2008

- Is that true?
 - Are financial crises nowadays more severe or frequent?
- Challenge to statistics
 - Analyze tail events
 - Account for potential distributional changes
- Do extreme value statistics work here?
 - Yes: tools for tails
 - ► No: usually assuming i.i.d.

Classic extreme value theory

► Modeling regularities in tails: *X* follows the distribution *F*

$$\lim_{t\to\infty}\frac{1-F(tx)}{1-F(t)}=g(x)$$

- Consequences
 - ▶ Potential limits $g(x) = x^{-1/\gamma}$
 - ▶ In conditional probability

$$\lim_{t\to\infty} \Pr\left(\frac{X}{t} \le x|X>t\right) = 1 - x^{-1/\gamma}.$$

▶ In quantile function $U = (1/(1-F))^{\leftarrow}$

$$\lim_{t\to\infty}\frac{U(tx)}{U(t)}=x^{\gamma}$$

▶ Potential for application: extrapolation for high quantiles For some low p, even $p = p_n$ such that $np_n \rightarrow 0$

$$\frac{U(1/p)}{U(n/k)} \approx \left(\frac{k}{np}\right)^{\gamma} \Rightarrow \hat{U}(1/p) = X_{n,n-k} \left(\frac{k}{np}\right)^{\hat{\gamma}}.$$

Classic extreme value statistics

- Estimating tail properties: e.g. extreme value index
 - ▶ Idea: fitting excess ratios to Pareto distribution
 - ▶ Hill estimator: for $k \to \infty$ and $k/n \to 0$ as $n \to \infty$

$$\hat{\gamma}_H = \frac{1}{k} \sum_{i=1}^k \log X_{n,n-i+1} - \log X_{n,n-k}$$

- Asymptotic property
 - Requires some second order condition

$$\lim_{t\to\infty}\frac{\frac{U(tx)}{U(t)}-x^{\gamma}}{A(t)}=H(x)$$

- ► The choice of k: $\lim_{n\to\infty} \sqrt{k}A(n/k) = \lambda$
- ▶ Speed of convergence \sqrt{k}

$$\sqrt{k}(\hat{\gamma}_H - \gamma) \stackrel{d}{\rightarrow} N(bias, \gamma^2)$$

▶ Inference on tail events: e.g. VaR, tail probability

Beyond homoscedastic extremes

- Classic extreme value statistics assumes i.i.d. observations.
- Literature that goes beyond i.i.d.
 - Account for serial dependence
 - Nevertheless, assuming stationary distribution
- To justify "we have 'more severe' crises in certain period"
 - Must abolish "identical distribution"
 - Must keep some common properties for statistical inference
- Modeling (parametrical) distributional changes in extremes
 - Parametric models on block maxima
 - On the shift/scale of GEV
 - Some parametric approach on GPD

This talk

- Abolishing "identical distribution"
 - ▶ Consider observations X_1, \dots, X_n
 - ▶ Drawn from different distributions $F_{n,1}, \dots, F_{n,n}$
- Further assumptions
 - ▶ Some "continuity" in $F_{n,i}$ with respect to i
 - No parametric trend!
- Two recent works
 - Consider "tail comparability": Einmahl, J., de Haan, L. and Zhou, C. (2015), JRSS-B
 - Common right endpoint x*
 - ► Tail comparability

$$\lim_{x \to x^*} \frac{1 - F_{n,i}(x)}{1 - F(x)} = c\left(\frac{i}{n}\right)$$

► Abolish "tail comparability": de Haan, L. and Zhou, C. (ongoing)

Model setup in Einmahl et al. (2015)

► Tail comparability

$$\lim_{x \to x^*} \frac{1 - F_{n,i}(x)}{1 - F(x)} = c\left(\frac{i}{n}\right)$$

- lacktriangle Comparable tail: common distribution function $F\in\mathcal{D}_{\gamma}$
- ▶ Heteroscedastic extremes: skedasis function c(s) on [0,1]
- ▶ Uniformly for all n and all $1 \le i \le n$.
- Identification condition: c continuous and

$$\int_0^1 c(s)ds = 1$$

- Advantages: only assumes heteroscedasticity in extremes
- Non-parametric setup on the skedasis function
- ▶ Consequence: If $F \in \mathcal{D}_{\gamma}$, then all $F_{n,i}$ has the same tail index
 - ▶ Do not allow variation in extreme value index
- ► We will nevertheless test the model setup

The purpose of the paper

General purpose: provide a set of tools on extreme value statistics with non-identically distributed observations

- Under the model setup
 - **E**stimate the extreme value index of F, γ
 - **E**stimate the skedasis function c(s)
 - ▶ Testing hypothesis $c(s) = c_0(s)$ for a given c_0
 - Rejecting the null that c(s) = 1 confirms the statement that "in some period, extreme events are more severe than other".
- Testing the model
 - lacktriangle Testing the null hypothesis of constant γ
 - ▶ In the presence of heteroscedasticity
- Estimation of high quantile at certain time point
 - Quantify how different extreme events are in some period

The idea on estimation

- Unified threshold using a high "order statistic"
- ▶ Estimating c(s) the occurrence of POT
- lacktriangle Estimating γ the magnitude of POT

Estimation

- Estimating $C(s) = \int_0^s c(u)du$
 - ▶ Threshold: $X_{n,n-k}$
 - ▶ k: as in usual extreme value statistics

$$\lim_{n\to+\infty} k(n) = +\infty, \quad \lim_{n\to+\infty} \frac{k}{n} = 0$$

- It is not an order statistic (different distributions)
- ▶ It nevertheless works as an order statistic from F
- Count the frequency of "exceeding" in the first "s fraction"
- Estimator: $\hat{C}(s) = \frac{1}{k} \sum_{i=1}^{[ns]} 1_{\{X_i > X_{n,n-k}\}}$
- Estimating c(s)
 - ightharpoonup C(s) is a distribution function with "density" c(s).
 - We apply kernel density estimation to obtain c.
- ightharpoonup Estimating γ
 - Hill estimator (as if observations are i.i.d.)

Theoretical property of the estimators

- Asymptotic normality of \hat{C}
 - Conditions
 - Quantifying speed of convergence: $\frac{\frac{1-F_{n,i}(x)}{1-F(x)}-c\left(\frac{i}{n}\right)}{A_1(x)}=O(1)$
 - Extra conditions on k: $\sqrt{k}A_1(n/k) \to 0$ and $\sqrt{k}\sup_{|u-v| \le 1/n} |c(u) c(v)| \to 0$
 - Theorem (under a Skorokhod construction)

$$\sup_{0 \leq s \leq 1} \left| \sqrt{k} (\hat{\mathcal{C}}(s) - \mathcal{C}(s)) - \mathcal{B}(\mathcal{C}(s)) \right| \to 0 \text{ a.s.}$$

- \triangleright B(s) is a standard Brownian bridge.
- Asymptotic normality of $\hat{\gamma}$
 - Usual second order condition and the condition on k
 - Under the same Skorokhod construction

$$\sqrt{k}(\hat{\gamma}_H - \gamma) \rightarrow \gamma N_0$$
 a.s.,

where N_0 follows standard normal distribution

▶ N_0 and B(C(s)) are independent

A tool for the proof: the STEP

- Sequential tail empirical process (STEP)
 - ▶ Notation $U := (1/(1-F)^{\leftarrow})$
 - Definition

$$\mathbb{F}_n(t,s) := \sqrt{k} \left(\frac{1}{k} \sum_{i=1}^{[ns]} 1_{X_i > U\left(\frac{n}{kt}\right)} - tC(s) \right).$$

- ▶ Taking s = 1: tail empirical process
- ▶ Taking t = 1: sequential process
- ▶ The aforementioned estimators are functionals of the STEP

Theorem

There exists a standard bivariate Wiener process W(t,s) on $[0,1]^2$ such that for proper weight function q, as $n \to \infty$

$$\sup_{0\leq t,s\leq 1}\frac{1}{q(t)}\left|\mathbb{F}_n(t,s)-W(t,C(s))\right|\to 0\ a.s.$$

Detecting heteroscedasticity in extremes

- ▶ Testing the null $c(s) = c_0(s)$ or $C(s) = C_0(s)$
 - Example: $c_0(s) = 1$ or $C_0(s) = s$: no trend
 - Economic interpretation
- A Kolmogorov-Smirnov type test
 - lacktriangledown Test statistic: $T_1:=\sup_{0\leq s\leq 1}\left|\hat{C}(s)-C_0(s)\right|$
 - Limit behavior:

$$\sqrt{k}\,T_1 \stackrel{d}{\to} \sup_{0 \le s \le 1} |B(C_0(s))|$$

- ► An alternative test
 - ► Test statistic: $T_2 := \int_0^1 (\hat{C}(s) C_0(s)) dC_0(s)$
 - Limit behavior:

$$kT_2 \stackrel{d}{\to} \int_0^1 B^2(s) ds$$

Testing the model

- ▶ The null hypothesis: our model
 - lacktriangledown γ is constant across the distributions
 - Skedasis may vary across observations
- ▶ The alternative: γ variation
- Comparing with other tests in literature
 - Quintos et al. (2001) tested constant γ, by taking the null hypothesis that observations are i.i.d.
 - ▶ They require constant skedasis under the null hypothesis
 - Data violate that null, but following our model would be rejected there
 - \blacktriangleright We test constant γ in the presence of heteroscedasticity

Estimation on γ with partial sample

- Using observations in $(s_1, s_2]$
- ▶ The observations: $X_{[ns_1]+1}, \dots, X_{[ns_2]}$
- Using a proper k: reflecting the intensity of extremes

$$k_{(s_1,s_2]} := k(\hat{C}(s_2) - \hat{C}(s_1))$$

- **E**stimation: using the Hill estimator $\hat{\gamma}_{(s_1,s_2]}$
- Limit behavior (under the null):

$$\sup_{s_2-s_1>\delta}\left|\sqrt{k}\left(\hat{\gamma}_{(s_1,s_2]}-\gamma\right)-\gamma\frac{W(\textit{C}(s_2))-W(\textit{C}(s_1))}{\textit{C}(s_2)-\textit{C}(s_1)}\right|\to 0 \text{ a.s.}$$

▶ The starting point to construct test statistics

Testing constant γ

- Involving all partial samples
 - ▶ Instead of $s_2 s_1 > \delta$, we look at $\hat{C}(s_2) \hat{C}(s_1) > \delta$
 - Take all estimators with such subsamples
 - ► Test statistic: $T_3 := \sup_{\hat{C}(s_2) \hat{C}(s_1) > \delta} \sqrt{k} \left| \hat{\gamma}_{(s_1, s_2]} \hat{\gamma} \right|$
 - Limit behavior:

$$\sqrt{k}T_3 \stackrel{d}{\to} \sup_{s_2-s_1>\delta} \gamma \left| \frac{W(s_2)-W(s_1)}{s_2-s_1} - W(1) \right|$$

- ► A "block POT" approach
 - ▶ Take m blocks as $0 = s_0 < s_1 < \cdots < s_m = 1$
 - ▶ Equal intensity in each block: $\hat{C}(s_j) \hat{C}(s_{j-1}) = 1/m$ for $j = 1, \cdot, m$
 - ► Test statistic: $T_4 := \frac{1}{m} \sum_{j=1}^m \left(\frac{\hat{\gamma}_{(s_{j-1},s_j]}}{\hat{\gamma}} 1 \right)^2$
 - Limit behavior:

$$kT_4 \stackrel{d}{\rightarrow} \chi^2(m-1)$$

VaR prediction

- We predict high quantiles at the "next" time point
- Assumptions
 - c(s) is defined on $[0, 1 + \varepsilon]$ for $\varepsilon > 0$
 - ▶ All conditions hold also with i = n + 1
- Estimator

$$\widehat{U_{n,n+1}(1/p)} = X_{n,n-k} \left(\frac{k\widehat{c}(1)}{np}\right)^{\widehat{\gamma}_H}.$$

- ▶ Need to estimate $\hat{c}(1)$
- Use a boundary kernel:

$$\widehat{c}(1) = rac{1}{kh} \sum_{i=1}^n \mathbb{1}_{\left\{X_i^{(n)} > X_{n,n-k}
ight\}} \mathsf{G}_b\left(rac{1-rac{i}{n}}{h}
ight),$$

where

$$G_b(x) = \frac{\int_0^1 u^2 G(u) du - x \int_0^1 u G(u) du}{\frac{1}{2} \int_0^1 u^2 G(u) du - \left(\int_0^1 u G(u) du\right)^2} G(x);$$

Asymptotic normality for the predicted quantile

- ► Bandwidth choice
 - $ightharpoonup kh o \infty$
 - $hk^{1/5} \rightarrow \lambda \in [0, \infty)$
- ▶ Theorem

$$\begin{split} \sqrt{kh} \left(\frac{\widehat{U_{n,n+1}\left(\frac{1}{p}\right)}}{U_{n,n+1}\left(\frac{1}{p}\right)} - 1 \right) & \stackrel{d}{\to} N \, (\, bias, \, variance) \\ bias &= \lambda^{5/2} \frac{\gamma c''(1)}{2c(1)} \int_0^1 x^2 G_b(x) dx \\ variance &= \gamma^2 \left(\frac{\int_0^1 G_b^2(x) dx}{c(1)} + \beta^2 \right) \end{split}$$

Simulations

- Simulated observations
 - ▶ DGP 1: i.i.d. standard Fréchet c(s) = 1
 - ▶ DGP 2: c(s) = 0.5 + s
 - ▶ DGP 3: c(s) = 2s + 0.5, for $s \in [0, 0.5]$, c(s) = -2s + 2.5 for $s \in (0.5, 1]$
 - ▶ DGP 4: c(s) = 0.8, for $s \in [0, 0.4] \cup [0.6, 1]$, c(s) = 20s 7.2 for $s \in (0.4, 0.5]$, c(s) = -20s + 12.8 for $s \in (0.5, 0.6)$.
- ▶ Sample size n = 5,000 (similar to that in application)
- ▶ Number of samples 1000
- ▶ Report: rejections under 1%, 5%, 10% confidence level

α	1%		5%		10%	
Test	T_1	T_2	T_1	T_2	T_1	T_2
DGP 1	8	12	44	47	95	98
DGP 2	990	998	998	999	1000	1000
DGP 3	455	570	838	921	941	987
DGP 4	663	521	930	903	979	978

Application

- ▶ Data: S&P500 daily returns (1988–2012) 6,302 obs
 - ▶ Testing constant γ : T_3 and T_4 , strong rejection
 - Not possible to apply the theory
- Sub-sample: 1988-2007 (5,043 obs)
 - ▶ Testing constant γ : $p = 0.98(T_3)$ and $p = 0.76(T_4)$
 - ▶ Testing constant c(s): T_1 and T_2 , strong rejection
 - ▶ Next, we plot the estimated c(s)
- Robustness check: weekly returns (1,043 obs)

The skedasis function over time

The ongoing work: abolishing the "tail comparability"

- ▶ Recall the notation $F_{n,i}$ as the distribution function of X_i
 - ▶ A series of distribution functions $F_s(x) := F(s, x)$: $F_s \in \mathcal{D}_{\gamma(s)}$
 - $F_{n,i} = F_{\frac{i}{n}}$ for $i = 1, 2, \dots, n$
 - ▶ Note that $\gamma(s)$ is now varying across s!
- ▶ The goal: estimate $\gamma(s)$ with observations X_1, \dots, X_n
- Second order condition: Denote $U_s=(1/(1-F_s))^{\leftarrow}$, then

$$\lim_{t\to\infty}\frac{\frac{U_s(tx)}{U_s(t)}-x^{\gamma(s)}}{A_s(t)}=x^{\gamma(s)}\frac{x^{\rho(s)}-1}{\rho(s)},$$

holds uniformly for all $s \in [0,1]$ and x > 1.

- ho(s): continuous negative function
- $ightharpoonup A_s(t) := A(s,t)$ continuous with respect to s

Further assumptions on continuity and smoothness

- ▶ Intermediate sequence and band width: $h \to 0$, $kh \to \infty$.
- ▶ Notation: $\overline{\gamma} = \sup_{0 \le s \le 1} \gamma(s)$ and $\underline{\gamma} = \inf_{0 \le s \le 1} \gamma(s)$
- ▶ The quantile functions varies slowly:

$$\sqrt{k} \sup_{|s_1-s_2| \le h} \left| \frac{U_{s_1}\left(\frac{n}{k}\right)}{U_{s_2}\left(\frac{n}{k}\right)} - 1 \right| \to 0.$$

▶ The function $\gamma(s)$ varies slowly: for some $\varepsilon > 0$,

$$k^{1/2+\overline{\gamma}+arepsilon} \sup_{|s_1-s_2| \leq h} |\gamma(s_1)-\gamma(s_2)| o 0.$$

▶ No asymptotic bias in our asymptotic theory: for some $\varepsilon > 0$,

$$k^{1/2+\overline{\gamma}+\varepsilon}\sup_{0\leq s\leq 1}\left|A_s\left(\frac{n}{k}\right)\right|\to 0.$$

Asymptotic theories: local versus global

- Local estimation
 - Local estimator for $\gamma(s)$: Hill estimator in a h-neighborhood
 - ▶ Top [2kh] order statistics among [2nh] local observations
 - Local asymptotic theory

$$\sqrt{2kh}\left(\widehat{\gamma(s)}-\gamma(s)\right)\stackrel{d}{
ightarrow}N(0,(\gamma(s))^2).$$

- Global estimation
 - ▶ The goal: $\Gamma(s) = \int_0^s \gamma(u) du$
 - Estimator:

$$\widehat{\Gamma(s)} = 2h \sum_{s_t \leq s} \widehat{\gamma(s_t)}.$$

- ▶ The series $s_t = (2t 1)h$ for $t = 1, 2, \cdots$.
- Asymptotic theory

$$\sqrt{k}\left(\widehat{\Gamma(s)}-\Gamma(s)\right)\stackrel{d}{\to}\int_0^s\gamma(u)dW(u).$$

Conclusion

- We can handle extreme value statistics when observations are drawn from different distributions
- \blacktriangleright We can identify whether heteroscedastic extremes are due to the variation of γ or skedasis
- If the skedasis varies, we can quantify that variation
- ▶ If the γ varies, we can also estimate the variation in γ .
- ▶ Handle the γ constant case: the Sequential Tail Empirical Process (STEP)
 - ► A useful tool that can be applied to other estimators
 - It was the first STEP towards non-stationarity.
- Now we have made the second step!

