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“We are going through a financial crisis more severe and
unpredictable than any in our lifetimes.”
— Henry M. Paulson, Nov 18, 2008
> Is that true?
» Are financial crises nowadays more severe or frequent?
» Challenge to statistics

> Analyze tail events
» Account for potential distributional changes

» Do extreme value statistics work here?

> Yes: tools for tails
» No: usually assuming i.i.d.
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Classic extreme value theory

» Modeling regularities in tails: X follows the distribution F
. 1—F(tx)
A TR 8

» Consequences
» Potential limits g(x) = x~/7
» In conditional probability

lim Pr (5 < x|X > t) =1-x"1,
t— o0 t
» In quantile function U = (1/(1 — F))*©
. U(tx)
U
» Potential for application: extrapolation for high quantiles
For some low p, even p = p, such that np, — 0

U(1/p) k\" A k\7
~|— ) =Ul/p)=Xon—k|—] .
U(n/k) np (/p) n,n—k np

~




Classic extreme value statistics

» Estimating tail properties: e.g. extreme value index
» Idea: fitting excess ratios to Pareto distribution
» Hill estimator: for k — oo and k/n — 0 as n — o

k
. 1
YH = ; z; |0g Xn,n—i+1 - |0g Xn,n—k
i=
» Asymptotic property
» Requires some second order condition

U — X
. t _
BT O (x)

» The choice of k: lim,_ o ﬁA(n/k) =A
» Speed of convergence vk

Vk(3n —7) 5 N(bias,?)

> Inference on tail events: e.g. VaR, tail probability
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nd homoscedastic extremes

>

Classic extreme value statistics assumes i.i.d. observations.
Literature that goes beyond i.i.d.

» Account for serial dependence
> Nevertheless, assuming stationary distribution

v

v

To justify “we have ‘more severe’ crises in certain period”

» Must abolish “identical distribution”
» Must keep some common properties for statistical inference

v

Modeling (parametrical) distributional changes in extremes

» Parametric models on block maxima
» On the shift/scale of GEV
» Some parametric approach on GPD
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This talk

> Abolishing “identical distribution”

» Consider observations Xi,---, X,

» Drawn from different distributions Fp, 1, , Fon
» Further assumptions

» Some “continuity” in F,; with respect to /

» No parametric trend!
» Two recent works

» Consider “tail comparability”: Einmahl, J., de Haan, L. and
Zhou, C. (2015), JRSS-B

» Common right endpoint x*
> Tail comparability

. 1-— Fn,i(x) _ L
R <>
» Abolish “tail comparability”: de Haan, L. and Zhou, C.
(ongoing)

Chen Zhou Heteroscedastic Extremes



Model setup in Einmahl et al. (2

» Tail comparability
1= Fhi(x) i
Xll)n)](* 1-— F(X) - ;

» Comparable tail: common distribution function F € D,
» Heteroscedastic extremes: skedasis function ¢(s) on [0, 1]
» Uniformly for all nand all 1 </ < n.

v

Identification condition: ¢ continuous and

/01 c(s)ds =1

Advantages: only assumes heteroscedasticity in extremes

Non-parametric setup on the skedasis function
Consequence: If F € D, then all F,,; has the same tail index
» Do not allow variation in extreme value index

v

vy

» We will nevertheless test the model setup
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The purpose of the paper

General purpose: provide a set of tools on extreme value statistics
with non-identically distributed observations
» Under the model setup

» Estimate the extreme value index of F, v
» Estimate the skedasis function c(s)
» Testing hypothesis c(s) = co(s) for a given ¢
> Rejecting the null that ¢(s) = 1 confirms the statement that
“in some period, extreme events are more severe than other”.

> Testing the model

» Testing the null hypothesis of constant ~
> In the presence of heteroscedasticity

» Estimation of high quantile at certain time point
» Quantify how different extreme events are in some period
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The idea on estimation

log(X,)

Time

> Unified threshold using a high “order statistic”
» Estimating c(s) — the occurrence of POT

» Estimating v — the magnitude of POT
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» Estimating C(s) = [; c(u)du
» Threshold: X, n—«
> k: as in usual extreme value statistics

lim k(n)=+oco, lim k_ 0

n—+o0 n—+oo N
> It is not an order statistic (different distributions)
> It nevertheless works as an order statistic from F
» Count the frequency of “exceeding” in the first “s fraction”
» Estimator: (f(s) = % ZE':} Lix>X, 0 s}
» Estimating c(s)
» C(s) is a distribution function with “density” c(s).
» We apply kernel density estimation to obtain c.
» Estimating ~
» Hill estimator (as if observations are i.i.d.)
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Theoretical property of the estimators

» Asymptotic normality of ¢
» Conditions

i)
» Quantifying speed of convergence: ;7(%() 0(1)
» Extra conditions on k:
VkAi(n/k) = 0 and \/Esup“,_v‘gl/n |c(u) —¢(v)] — 0
» Theorem (under a Skorokhod construction)
sup [Vk(C(s) — C(s)) — B(C(s))| = 0 as.
0<s<1
> B(s) is a standard Brownian bridge.
» Asymptotic normality of 4
» Usual second order condition and the condition on k
» Under the same Skorokhod construction

\/Z(’yH —7) = vNg ass.,

where Ny follows standard normal distribution

» Np and B(C(s)) are independent



A tool for the proof: the STEP

» Sequential tail empirical process (STEP)
» Notation U :=(1/(1 - F)<
» Definition

[nS]

Fa(t,s): 21X>Uﬁ — tC(s)

» Taking s = 1: tail empirical process
» Taking t = 1: sequential process
» The aforementioned estimators are functionals of the STEP

Theorem
There exists a standard bivariate Wiener process W (t, s) on [0, 1]?
such that for proper weight function q, as n — oo

1
sup —— |Fa(t,s) — W(t,C(s))] = 0 as.
o<t,s<1 q(t)
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Detecting heteroscedasticity in extremes

» Testing the null ¢(s) = cp(s) or C(s) = Co(s)
» Example: ¢(s) =1 or Gy(s) = s: no trend
» Economic interpretation

» A Kolmogorov-Smirnov type test
» Test statistic: T := SUpg<s<g ‘(f(s) - Co(s)‘
» Limit behavior:

VkT: % sup |B(Go(s))|

0<s<1

» An alternative test
» Test statistic: T := fol((:'(s) — Co(s))dGCo(s)
» Limit behavior:

1
szi/ B2(s)ds
0
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Testing the model

» The null hypothesis: our model
> -y is constant across the distributions
» Skedasis may vary across observations

» The alternative: - variation

» Comparing with other tests in literature
» Quintos et al. (2001) tested constant -, by taking the null
hypothesis that observations are i.i.d.
» They require constant skedasis under the null hypothesis
» Data violate that null, but following our model would be

rejected there
» We test constant -y in the presence of heteroscedasticity
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Estimation on ~ with partial sample

» Using observations in (s1, s3]
» The observations: Xj,s141,° s X[nsy]
» Using a proper k: reflecting the intensity of extremes

K(si, 0] 7= k(é(52) - 6(51))

» Estimation: using the Hill estimator %, ]

» Limit behavior (under the null):

X W(C(sy)) — W(C(s1))
e VR Gl =) e T

» The starting point to construct test statistics

— 0 a.s.
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Testing constant -y

> Involving all partial samples

Instead of s, — 51 > 0, we look at C(s) — C(s1) >0
Take all estimators with such subsamples

Test statistic: T3 := SUPE(s,)— E(s1) >0 Vk |'“y(51752] — '“y}
Limit behavior:

vV vy vy

VkT; 2 sup
S5—51>0
» A “block POT" approach
> TakemblocksasO:so<51<A---<si,,:1
» Equal intensity in each block: C(s;) — C(sj—1) = 1/m for
j = 17 s, m

N 2
- . V(si_1,s;
> Test statistic: T := L yi ( (f;Yl i _ 1)

‘ W(s) — W(s1)

) - W) vv(l)\

» Limit behavior:
kT4 2 x2(m—1)
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VaR prediction

» We predict high quantiles at the “next” time point
» Assumptions

» c(s) is defined on [0,1 +¢] for e > 0

» All conditions hold also with i = n+1

» Estimator
— ke(1)\
Un,n+1(1/p) = Xn,n—k ( ( )> .

np

> Need to estimate &(1)
» Use a boundary kernel:

1 1-1
¢(1) = Ele{X}"BXn,n_k}G" ( ; ") ;

where

6y(x) fol u?G(u)du — xfol uG(u)du
b(x) = 5
1 1
3 Jo v?G(u)du — (fo uG(u)du)

G(x);



Asymptotic normality for the predicted quantile

» Bandwidth choice

» kh — o0
> hk/> — X € [0,00)
> Vhlog(k/(np)) = B € [0,00)

» Theorem

o —

VR Un,nt1 (%) L

1
Un,n—l—l (E)
" 1
bias = 35225 ) [7 20 0

2¢(1) Jo

1 -~2
variance = 72 (% + /32>

4N (bias, variance)
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Simulations

» Simulated observations
» DGP 1: i.i.d. standard Fréchet c(s) =1
» DGP 2: ¢(s)=05+s
» DGP 3: ¢(s) =25+ 0.5, for s € [0,0.5], c(s) = —25 + 2.5 for
s € (0.5,1]
» DGP 4: ¢(s) =0.8, for s €[0,0.4] U[0.6,1], c(s) =20s — 7.2
for s € (0.4,0.5], c(s) = —20s + 12.8 for s € (0.5,0.6).
» Sample size n = 5,000 (similar to that in application)
» Number of samples 1000
» Report: rejections under 1%, 5%, 10% confidence level
o 1% 5% 10%
Test T1 ‘ T> T1 ‘ T> T1 ‘ T>
DGP 1| 8 12 | 44 | 47 95 98
DGP 2 || 990 | 998 | 998 | 999 | 1000 | 1000
DGP 3 || 455 | 570 | 838 | 921 | 941 | 987
DGP 4 || 663 | 521 | 930 | 903 | 979 | 978
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Application

» Data: S&P500 daily returns (1988-2012) 6,302 obs

» Testing constant y: T3 and Ty, strong rejection
» Not possible to apply the theory

» Sub-sample: 1988-2007 (5,043 obs)
» Testing constant v: p = 0.98(T3) and p = 0.76( T4)
» Testing constant c(s): Ty and Ty, strong rejection
» Next, we plot the estimated c(s)

» Robustness check: weekly returns (1,043 obs)
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The skedasis function over time
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The ongoing work: abolishing the “tail comparability”

> Recall the notation F,; as the distribution function of X;
» A series of distribution functions Fs(x) := F(s,x): Fs € D,
> Fpi=Fifori=1,2,---,n
» Note that v(s) is now varying across s!

» The goal: estimate 7(s) with observations Xi,--- , Xj

» Second order condition: Denote Us = (1/(1 — Fs))*", then

Us(tx)
i U0 x7(9) _ 0o xP(s) — 1
T AE) s

holds uniformly for all s € [0,1] and x > 1.

» p(s): continuous negative function
» Ag(t) := A(s, t) continuous with respect to s
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Further assumptions on continuity and smoothness

» Intermediate sequence and band width: h — 0, kh — oo.
» Notation: 7 = supp<s<1 ¥(s) and 7 = info<s<17(s)
» The quantile functions varies slowly:

U (2
Vk sup sl(ﬁ)—l — 0.
jsi—sal<h | Us, (%)
» The function 7(s) varies slowly: for some ¢ > 0,
K274 sup Jy(s1) —(s2)| = O,
|51—52|§h

» No asymptotic bias in our asymptotic theory: for some ¢ > 0,

As (%)‘ — 0.
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Asymptotic theories: local versus global

> Local estimation
» Local estimator for y(s): Hill estimator in a h-neighborhood
> Top [2kh] order statistics among [2nh] local observations
» Local asymptotic theory

Vakh (7(s) = (5)) % N(O. (+(5))°).

» Global estimation
> The goal: [(s) = [5 v(u)du

» Estimator: - o
M(s)=2h)_ ~(st).

s:<s
> The series s; = (2t — 1)h for t =1,2,---.
» Asymptotic theory

V& (TG - 1()) 2 /S'y(u)dW(u).

0
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Conclusion

» We can handle extreme value statistics when observations are
drawn from different distributions

» We can identify whether heteroscedastic extremes are due to
the variation of v or skedasis

» If the skedasis varies, we can quantify that variation

» If the v varies, we can also estimate the variation in ~.

» Handle the v constant case: the Sequential Tail Empirical
Process (STEP)

» A useful tool that can be applied to other estimators
» It was the first STEP towards non-stationarity.

» Now we have made the second step!
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