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Motivation

“We are going through a financial crisis more severe and
unpredictable than any in our lifetimes.”

– Henry M. Paulson, Nov 18, 2008

◮ Is that true?
◮ Are financial crises nowadays more severe or frequent?

◮ Challenge to statistics
◮ Analyze tail events
◮ Account for potential distributional changes

◮ Do extreme value statistics work here?
◮ Yes: tools for tails
◮ No: usually assuming i.i.d.
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Classic extreme value theory

◮ Modeling regularities in tails: X follows the distribution F

lim
t→∞

1− F (tx)

1− F (t)
= g(x)

◮ Consequences
◮ Potential limits g(x) = x−1/γ

◮ In conditional probability

lim
t→∞

Pr

(
X

t
≤ x |X > t

)
= 1− x−1/γ .

◮ In quantile function U = (1/(1− F ))←

lim
t→∞

U(tx)

U(t)
= xγ

◮ Potential for application: extrapolation for high quantiles
For some low p, even p = pn such that npn → 0

U(1/p)

U(n/k)
≈
(

k

np

)γ

⇒ Û(1/p) = Xn,n−k

(
k

np

)γ̂

.
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Classic extreme value statistics

◮ Estimating tail properties: e.g. extreme value index
◮ Idea: fitting excess ratios to Pareto distribution
◮ Hill estimator: for k → ∞ and k/n → 0 as n → ∞

γ̂H =
1

k

k∑

i=1

logXn,n−i+1 − logXn,n−k

◮ Asymptotic property
◮ Requires some second order condition

lim
t→∞

U(tx)
U(t) − xγ

A(t)
= H(x)

◮ The choice of k : limn→∞

√
kA(n/k) = λ

◮ Speed of convergence
√
k

√
k(γ̂H − γ)

d→ N(bias, γ2)

◮ Inference on tail events: e.g. VaR, tail probability
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Beyond homoscedastic extremes

◮ Classic extreme value statistics assumes i.i.d. observations.

◮ Literature that goes beyond i.i.d.
◮ Account for serial dependence
◮ Nevertheless, assuming stationary distribution

◮ To justify “we have ‘more severe’ crises in certain period”
◮ Must abolish “identical distribution”
◮ Must keep some common properties for statistical inference

◮ Modeling (parametrical) distributional changes in extremes
◮ Parametric models on block maxima
◮ On the shift/scale of GEV
◮ Some parametric approach on GPD
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This talk

◮ Abolishing “identical distribution”
◮ Consider observations X1, · · · ,Xn

◮ Drawn from different distributions Fn,1, · · · ,Fn,n

◮ Further assumptions
◮ Some “continuity” in Fn,i with respect to i
◮ No parametric trend!

◮ Two recent works
◮ Consider “tail comparability”: Einmahl, J., de Haan, L. and

Zhou, C. (2015), JRSS-B
◮ Common right endpoint x∗

◮ Tail comparability

lim
x→x∗

1− Fn,i(x)

1− F (x)
= c

(

i

n

)

◮ Abolish “tail comparability”: de Haan, L. and Zhou, C.
(ongoing)
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Model setup in Einmahl et al. (2015)

◮ Tail comparability

lim
x→x∗

1− Fn,i (x)

1− F (x)
= c

(
i

n

)

◮ Comparable tail: common distribution function F ∈ Dγ

◮ Heteroscedastic extremes: skedasis function c(s) on [0, 1]
◮ Uniformly for all n and all 1 ≤ i ≤ n.

◮ Identification condition: c continuous and
∫ 1

0
c(s)ds = 1

◮ Advantages: only assumes heteroscedasticity in extremes
◮ Non-parametric setup on the skedasis function
◮ Consequence: If F ∈ Dγ , then all Fn,i has the same tail index

◮ Do not allow variation in extreme value index

◮ We will nevertheless test the model setup
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The purpose of the paper

General purpose: provide a set of tools on extreme value statistics
with non-identically distributed observations

◮ Under the model setup
◮ Estimate the extreme value index of F , γ
◮ Estimate the skedasis function c(s)
◮ Testing hypothesis c(s) = c0(s) for a given c0

◮ Rejecting the null that c(s) = 1 confirms the statement that
“in some period, extreme events are more severe than other”.

◮ Testing the model
◮ Testing the null hypothesis of constant γ
◮ In the presence of heteroscedasticity

◮ Estimation of high quantile at certain time point
◮ Quantify how different extreme events are in some period
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The idea on estimation

Time

lo
g(
X

i
)

◮ Unified threshold using a high “order statistic”
◮ Estimating c(s) – the occurrence of POT
◮ Estimating γ – the magnitude of POT
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Estimation

◮ Estimating C (s) =
∫ s

0 c(u)du
◮ Threshold: Xn,n−k

◮ k : as in usual extreme value statistics

lim
n→+∞

k(n) = +∞, lim
n→+∞

k

n
= 0

◮ It is not an order statistic (different distributions)
◮ It nevertheless works as an order statistic from F

◮ Count the frequency of “exceeding” in the first “s fraction”
◮ Estimator: Ĉ (s) = 1

k

∑[ns]
i=1 1{Xi>Xn,n−k}

◮ Estimating c(s)
◮ C (s) is a distribution function with “density” c(s).
◮ We apply kernel density estimation to obtain c .

◮ Estimating γ
◮ Hill estimator (as if observations are i.i.d.)
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Theoretical property of the estimators

◮ Asymptotic normality of Ĉ
◮ Conditions

◮ Quantifying speed of convergence:

1−Fn,i (x)

1−F (x)
−c( i

n )
A1(x)

= O(1)
◮ Extra conditions on k :√

kA1(n/k) → 0 and
√
k sup|u−v|≤1/n |c(u)− c(v)| → 0

◮ Theorem (under a Skorokhod construction)

sup
0≤s≤1

∣∣∣
√
k(Ĉ (s) − C (s))− B(C (s))

∣∣∣ → 0 a.s.

◮ B(s) is a standard Brownian bridge.

◮ Asymptotic normality of γ̂
◮ Usual second order condition and the condition on k
◮ Under the same Skorokhod construction

√
k(γ̂H − γ) → γN0 a.s.,

where N0 follows standard normal distribution

◮ N0 and B(C (s)) are independent
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A tool for the proof: the STEP

◮ Sequential tail empirical process (STEP)
◮ Notation U := (1/(1− F )←

◮ Definition

Fn(t, s) :=
√
k


1

k

[ns]∑

i=1

1
Xi>U( n

kt )
− tC (s)


 .

◮ Taking s = 1: tail empirical process
◮ Taking t = 1: sequential process
◮ The aforementioned estimators are functionals of the STEP

Theorem
There exists a standard bivariate Wiener process W (t, s) on [0, 1]2

such that for proper weight function q, as n → ∞

sup
0≤t,s≤1

1

q(t)
|Fn(t, s)−W (t,C (s))| → 0 a.s.
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Detecting heteroscedasticity in extremes

◮ Testing the null c(s) = c0(s) or C (s) = C0(s)
◮ Example: c0(s) = 1 or C0(s) = s: no trend
◮ Economic interpretation

◮ A Kolmogorov-Smirnov type test

◮ Test statistic: T1 := sup0≤s≤1

∣∣∣Ĉ (s)− C0(s)
∣∣∣

◮ Limit behavior:

√
kT1

d→ sup
0≤s≤1

|B(C0(s))|

◮ An alternative test
◮ Test statistic: T2 :=

∫ 1

0 (Ĉ (s)− C0(s))dC0(s)
◮ Limit behavior:

kT2
d→
∫ 1

0

B2(s)ds
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Testing the model

◮ The null hypothesis: our model
◮ γ is constant across the distributions
◮ Skedasis may vary across observations

◮ The alternative: γ variation

◮ Comparing with other tests in literature
◮ Quintos et al. (2001) tested constant γ, by taking the null

hypothesis that observations are i.i.d.
◮ They require constant skedasis under the null hypothesis

◮ Data violate that null, but following our model would be
rejected there

◮ We test constant γ in the presence of heteroscedasticity
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Estimation on γ with partial sample

◮ Using observations in (s1, s2]

◮ The observations: X[ns1]+1, · · · ,X[ns2]

◮ Using a proper k : reflecting the intensity of extremes

k(s1,s2] := k(Ĉ (s2)− Ĉ (s1))

◮ Estimation: using the Hill estimator γ̂(s1,s2]
◮ Limit behavior (under the null):

sup
s2−s1>δ

∣∣∣∣
√
k
(
γ̂(s1,s2] − γ

)
− γ

W (C (s2))−W (C (s1))

C (s2)− C (s1)

∣∣∣∣→ 0 a.s.

◮ The starting point to construct test statistics
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Testing constant γ

◮ Involving all partial samples
◮ Instead of s2 − s1 > δ, we look at Ĉ (s2)− Ĉ (s1) > δ
◮ Take all estimators with such subsamples
◮ Test statistic: T3 := sup

Ĉ(s2)−Ĉ(s1)>δ

√
k
∣∣γ̂(s1,s2] − γ̂

∣∣
◮ Limit behavior:

√
kT3

d→ sup
s2−s1>δ

γ

∣∣∣∣
W (s2)−W (s1)

s2 − s1
−W (1)

∣∣∣∣

◮ A “block POT” approach
◮ Take m blocks as 0 = s0 < s1 < · · · < sm = 1
◮ Equal intensity in each block: Ĉ (sj)− Ĉ (sj−1) = 1/m for

j = 1, ·,m
◮ Test statistic: T4 :=

1
m

∑m

j=1

(
γ̂(sj−1,sj ]

γ̂ − 1
)2

◮ Limit behavior:
kT4

d→ χ2(m − 1)
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VaR prediction

◮ We predict high quantiles at the “next” time point
◮ Assumptions

◮ c(s) is defined on [0, 1 + ε] for ε > 0
◮ All conditions hold also with i = n+ 1

◮ Estimator

̂Un,n+1(1/p) = Xn,n−k

(
kĉ(1)

np

)γ̂H

.

◮ Need to estimate ĉ(1)
◮ Use a boundary kernel:

ĉ(1) =
1

kh

n∑

i=1

1{
X

(n)
i

>Xn,n−k

}Gb

(
1− i

n

h

)
,

where

Gb(x) =

∫ 1

0
u2G(u)du − x

∫ 1

0
uG(u)du

1
2

∫ 1

0
u2G(u)du −

(∫ 1

0
uG(u)du

)2G(x);
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Asymptotic normality for the predicted quantile

◮ Bandwidth choice
◮ kh → ∞
◮ hk1/5 → λ ∈ [0,∞)
◮

√
h log(k/(np)) → β ∈ [0,∞)

◮ Theorem

√
kh




̂
Un,n+1

(
1
p

)

Un,n+1

(
1
p

) − 1


 d→ N (bias, variance)

bias = λ5/2 γc
′′(1)

2c(1)

∫ 1

0
x2Gb(x)dx

variance = γ2

(∫ 1
0 G 2

b (x)dx

c(1)
+ β2

)

Chen Zhou Heteroscedastic Extremes



Simulations

◮ Simulated observations
◮ DGP 1: i.i.d. standard Fréchet c(s) = 1
◮ DGP 2: c(s) = 0.5 + s
◮ DGP 3: c(s) = 2s + 0.5, for s ∈ [0, 0.5], c(s) = −2s + 2.5 for

s ∈ (0.5, 1]
◮ DGP 4: c(s) = 0.8, for s ∈ [0, 0.4] ∪ [0.6, 1], c(s) = 20s − 7.2

for s ∈ (0.4, 0.5], c(s) = −20s + 12.8 for s ∈ (0.5, 0.6).

◮ Sample size n = 5, 000 (similar to that in application)

◮ Number of samples 1000

◮ Report: rejections under 1%, 5%, 10% confidence level

α 1% 5% 10%
Test T1 T2 T1 T2 T1 T2

DGP 1 8 12 44 47 95 98

DGP 2 990 998 998 999 1000 1000

DGP 3 455 570 838 921 941 987

DGP 4 663 521 930 903 979 978
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Application

◮ Data: S&P500 daily returns (1988–2012) 6,302 obs
◮ Testing constant γ: T3 and T4, strong rejection
◮ Not possible to apply the theory

◮ Sub-sample: 1988-2007 (5,043 obs)
◮ Testing constant γ: p = 0.98(T3) and p = 0.76(T4)
◮ Testing constant c(s): T1 and T2, strong rejection
◮ Next, we plot the estimated c(s)

◮ Robustness check: weekly returns (1,043 obs)
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The skedasis function over time
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The ongoing work: abolishing the “tail comparability”

◮ Recall the notation Fn,i as the distribution function of Xi

◮ A series of distribution functions Fs(x) := F (s, x): Fs ∈ Dγ(s)

◮ Fn,i = F i
n
for i = 1, 2, · · · , n

◮ Note that γ(s) is now varying across s!

◮ The goal: estimate γ(s) with observations X1, · · · ,Xn

◮ Second order condition: Denote Us = (1/(1 − Fs))
←, then

lim
t→∞

Us(tx)
Us(t)

− xγ(s)

As(t)
= xγ(s)

xρ(s) − 1

ρ(s)
,

holds uniformly for all s ∈ [0, 1] and x > 1.
◮ ρ(s): continuous negative function
◮ As(t) := A(s, t) continuous with respect to s
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Further assumptions on continuity and smoothness

◮ Intermediate sequence and band width: h → 0, kh → ∞.

◮ Notation: γ = sup0≤s≤1 γ(s) and γ = inf0≤s≤1 γ(s)

◮ The quantile functions varies slowly:

√
k sup
|s1−s2|≤h

∣∣∣∣∣
Us1

(
n
k

)

Us2

(
n
k

) − 1

∣∣∣∣∣→ 0.

◮ The function γ(s) varies slowly: for some ε > 0,

k1/2+γ+ε sup
|s1−s2|≤h

|γ(s1)− γ(s2)| → 0.

◮ No asymptotic bias in our asymptotic theory: for some ε > 0,

k1/2+γ+ε sup
0≤s≤1

∣∣∣As

(n
k

)∣∣∣→ 0.

Chen Zhou Heteroscedastic Extremes



Asymptotic theories: local versus global

◮ Local estimation
◮ Local estimator for γ(s): Hill estimator in a h-neighborhood

◮ Top [2kh] order statistics among [2nh] local observations

◮ Local asymptotic theory

√
2kh

(
γ̂(s)− γ(s)

)
d→ N(0, (γ(s))2).

◮ Global estimation
◮ The goal: Γ(s) =

∫ s

0
γ(u)du

◮ Estimator:
Γ̂(s) = 2h

∑

st≤s

γ̂(st).

◮ The series st = (2t − 1)h for t = 1, 2, · · · .
◮ Asymptotic theory

√
k
(
Γ̂(s)− Γ(s)

)
d→
∫ s

0

γ(u)dW (u).
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Conclusion

◮ We can handle extreme value statistics when observations are
drawn from different distributions

◮ We can identify whether heteroscedastic extremes are due to
the variation of γ or skedasis

◮ If the skedasis varies, we can quantify that variation

◮ If the γ varies, we can also estimate the variation in γ.

◮ Handle the γ constant case: the Sequential Tail Empirical
Process (STEP)

◮ A useful tool that can be applied to other estimators
◮ It was the first STEP towards non-stationarity.

◮ Now we have made the second step!
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