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ABSTRACT. In this paper we discuss the estimation of a nonpara-
metric component f; of a nonparametric additive model Y =
filX1) + ...+ fo(Xy) + . We allow the number ¢ of additive
components to grow to infinity and we make sparsity assumptions
about the number of nonzero additive components. We compare
this estimation problem with that of estimating f; in the ora-
cle model Z = f1(X1) + ¢, for which the additive components
fa,..., fq are known. We construct a two-step presmoothing-and-
resmoothing estimator of f; in the additive model and state finite-
sample bounds for the difference between our estimator and some
smoothing estimators f{’r“le in the oracle model which satisfy mild
conditions. In an asymptotic setting these bounds can be used to
show asymptotic equivalence of our estimator and the oracle esti-
mators; the paper thus shows that, asymptotically, under strong
enough sparsity conditions, knowledge of fs,..., f; has no effect
on estimation efficiency. Our first step is to estimate all of the
components in the additive model with undersmoothing using a
group-Lasso estimator. We then construct pseudo responses Y by
evaluating a desparsified modification of our undersmoothed esti-
mator of f; at the design points. In the second step the smoothing

method of the oracle estimator foracle

is applied to a nonparamet-
ric regression problem with “responses” Y and covariates X;. Our
mathematical exposition centers primarily on establishing proper-
ties of the presmoothing estimator. We also present simulation
results demonstrating close-to-oracle performance of our estimator
in practical applications. The main results of the paper are also
important for understanding the behavior of the presmoothing es-

timator when the resmoothing step is omitted.

Date: March 24, 2016.

2010 Mathematics Subject Classification. Primary 62G08; secondary 62G20.
Key words and phrases. nonparametric curve estimation, additive models, pe-

nalization, Lasso, variable selection, dimension reduction.

I Research Training Group RTG 1953, University of Mannheim, L9,7, 68131

Mannheim, Germany.

2 Institute of Applied Mathematics, Heidelberg University, Im Neuenheimer Feld
205, 69120 Heidelberg, Germany and National Research University Higher School

of Economics, Russian Federation.

3 Institute of Mathematics, Humboldt-Universitit zu Berlin, Unter den Linden

6, 10099 Berlin, Germany.

1



1. INTRODUCTION

In this paper we study the estimation of an additive component
in a high-dimensional sparse additive model. We compare this esti-
mation problem with estimation in a nonparametric sub-model that
contains only a single nonparametric component and we show that the
two estimation problems are asymptotically equivalent. Our central
argument is based on the construction of a class of two-step estima-
tors that achieve the operating characteristics achieved by arbitrarily
chosen smoothing estimators in the model with a single nonparametric
component. We will prove finite-sample bounds for the difference be-
tween these two estimators. In an asymptotic framework, these bounds
imply asymptotic equivalence of the two estimators under weak condi-
tions. In addition to their theoretical value, these estimators are also
of direct practical value, which we illustrate in simulations.

Our approach is analogous to that by which it is shown, in semi-
parametric modeling, that optimal estimation of a finite-dimensional
parameter 6 is asymptotically equivalent to optimal estimation in the
hardest parametric sub-model containing only the parameter . This
corresponds to our studying the estimation of an additive component f;
in an additive model with additive components fi,..., f; as compared
to the estimation of f; in the classical nonparametric regression model
in which f; is the sole component. We refer to the latter model as the
oracle model because estimation in this model is equivalent to estima-
tion in the additive model when the functions fs, ..., f, are known.

When we study estimation in semiparametric models, we typically
have at our disposal an estimator for the parametric sub-model which
is asymptotically normal and unbiased and of which the asymptotic co-
variance matrix achieves a lower bound. Thus, in order to establish the
asymptotic efficiency of an estimator for the parametric component of a
semiparametric model, it suffices to show that it is asymptotically nor-
mal and unbiased and that its asymptotic covariance matrix achieves
the same lower bound as that achieved by the estimator in the para-
metric sub-model.

In contrast, in nonparametric estimation, we typically do not have
any single asymptotically optimal estimator for the sub-model contain-
ing only f;. This is because there are many different types of smooth-
ing estimators, such as regression splines, kernel estimators, smoothing
splines, and orthogonal series, which are not naturally comparable to
one another and which have distinct asymptotic variances and biases,
where the biases, moreover, are typically non-vanishing. Thus, there
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is no benchmark optimal estimator of f; in the single-component sub-
model to which we can compare estimators of f; in the additive model.

We circumvent this problem by showing that for every smoothing
estimator ffmde in the oracle model, there exists a corresponding es-
timator f; in the additive model such that ||f; — o9 = op(dy),
where || - ||« is the supremum norm and where §, is the pointwise rate
of convergence of f:{’mde to fi. For this result we make some weak as-
sumptions on ff“’”ele that hold for all classical smoothers and which we
shall outline shortly. In particular, we get that, given a kernel esti-
mator or smoothing spline in the oracle model with bias d,b(x;) and
asymptotic variance 620%(z1) at a point x;, we get an estimator in
the additive model with bias d,b(x1) + 0(d,,) and asymptotic variance
6202(x1) 4+ 0(62). Furthermore, asymptotic minimax results in the ora-
cle model directly carry over to the additive model. This holds because
the lower bound of the oracle model trivially also applies in the addi-
tive model. Upper bounds of the oracle model also remain valid in
the additive model because the minimax estimator in the oracle model
has an asymptotically equivalent counterpart in the additive model,
according to our theory.

We prescribe a two-step construction of the estimator fl. In the
first step all the components of the additive model are estimated with
undersmoothing—that is with low bias and high variance—resulting
in a pilot estimator fl of fi that is intentionally too wiggly. In the
second step we apply the smoothing operation used in the calculation
of forade to the nonparametric regression problem where f’l(X{) is re-
gressed on the values of the first covariate X, i = 1,...,n. The resulting
resmoothed estimator fl is our proposed estimator for f.

Our main result will state finite-sample properties for the presmooth-
ing or pilot estimator fl. It is important that this is needed only for one
specification of fl. We will argue that these finite-sample properties
imply that, asymptotically,

1fr = J72% oo = 0p () (1.1)

for a whole class of smoothing estimators ffradc in the oracle model.
Thus, we have developed an asymptotic optimality theory for sparse
high-dimensional additive models.

We now formally express our estimation problem. Let

YZf(X)+€:ij(Xj)+€
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with responses Y and covariates X = (Xj,...,X,) taking values in
[0,1]9.  For identifiability, we assume that E[f;(X;)] = 0 for j =
2,...,q. We assume that ¢ is a Gaussian random variable indepen-
dent of X with expectation 0 and variance o?. Moreover, we assume
that we observe n independent copies (Y, X1),..., (Y™, X™) of (Y, X),

ie.,
q
Y=Y fi(XD+€, i=1...n (1.2)
j=1

We aim at estimating f; globally as well as locally at some point xg.
We compare the additive model (1.2) with the oracle model
Z'=fi( XD+, i=1,...,n, (1.3)

where X} and ¢; are the same variables as in the additive model (1.2).
We will choose f; such that for an undersmoothed estimator frae® in
the oracle model it holds that

11 = 7% loo = 0p(00). (1.4)
oracle

Define now fj as the estimator obtained from applying the smooth-
ing operation of £ to the regression problem with covariate values
X? and “response” values for*(Xi). Similarly, f; is defined as the

estimator resulting from the smoothing operation of ffra' applied to
the regression problem with covariate values X! and response values

F1(X). Our main assumption on fo* is that

e = Frll = or(5,). (1.5

This is a natural assumption that is valid for many smoothing estima-
tors. It says that a smoothing operation applied after an undersmooth-
ing of the data is asymptotically equivalent to a single application of
the smoothing. For our next argument we need that the smoothing

operation of ff“"de has the following continuity property for all § > 0
and a constant C' > 0:

A change in the responses by a maximal amount (1.6)
less than d does not lead to a change larger than C'§ in the

resulting smoother.

This gives, with (1.4), that
i Frle < € max [A1(XD) — fomck(xs)

< Ollfs = f77llos = 0p(6a)-
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Thus, from (1.5) we get that
1f1 = F7 oo = 0p(8n)- (L.7)

We now choose fl = fl. Because of (1.7) this estimator is asymptoti-
cally equivalent to ffr“le. The main mathematical difficulty in our line
of arguments lies in the choice of fl and ffr“le and in the proof of (1.4)
for this choice. Once (1.4) is established for our choice of fl, we get rel-

atively easily that for all smoothers f{™° in the oracle model satisfying

(1.5) and (1.6), the estimator f; = fi is asymptotically equivalent to
the oracle estimator ffrade. This is our asymptotic optimality theory
for additive models.

This theoretical program has been carried out in [15] for additive
models with a fixed number of functions ¢. In this paper we will go
far beyond this restriction and allow the total number of functions ¢
as well as the number sy of nonzero functions to grow with n, allowing
also the case in which ¢ > n.

The discussion of additive models goes back to the influential work
of C.J. Stone, who pointed out that additive nonparametric models
efficiently circumvent the poor accuracy of high-dimensional regression
functions and yet still provide high flexibility for statistical modeling;
see [30]. In recent years, estimation of nonparametric high-dimensional
sparse additive models has been considered in a series of papers. Earlier
references are [22], [1], [35], [16], and [29], where L;-penalty based
methods have been used for variable selection in additive models. For
a related paper on model choice in nonparametric regression, see [4].
For sparse models in functional linear regression see [21], and for sparse
models in varying coefficient models, see [26]. Rates of convergence for
a fixed number of non-zero components have been discussed in [22]
and [16]. Rates of convergence for settings that allow for an increasing
number of non-zero components were studied in [25], [27], [31], and [19].
The latter paper also includes more general additive models where the
summands are not necessarily functions of differing one-dimensional
arguments. The paper [18] proposes a two-step procedure in which
variables are selected in a first step and a rate-optimal estimator is
implemented in the second step. In [13] sure independence screening is
proposed for ultra-high dimensional additive models.

All of these papers discuss only variable selection and/or optimal
rates of convergence. None of them presents any asymptotic distribu-
tion results for the proposed estimators, which severely restricts their
range of statistical application. In particular, there are no procedures
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in the current literature for the construction of valid confidence regions
or tests of hypotheses in the high-dimensional sparse additive model.
An asymptotic distribution theory for the Lasso estimator is complex
because model choice is implicitly embedded in the construction of
the estimator. For high-dimensional parametric models modifications
for the Lasso estimator have been proposed that allow a complete as-
ymptotic distribution theory. The method is to replace in the least-
squares estimator each orthogonal projection of a covariate onto the
other covariates with a projection of relaxed orthogonality (using the
Lasso) and then to subtract an estimate of the resulting bias, which
is constructed with Lasso estimates of the parameters. The result is
a non-sparse estimator, and it has been called the desparsified Lasso
for this reason. Influential discussions of this method include [3] and
2], [36], [32], and [17]. We will use this method in the nonparamet-
ric context of additive models. Desparsification has also been used in
nonparametrics in [23] for the discussion of undersmoothing estimators
in additive models. Their estimator of a component f; is based on fits
of the model fi(z1) + fo(z2, x1) + ... + fo(zq, 21) with E[fi, (X}, 21)] for
all z;. In our model we assume that error variables are homoscedastic.
Things change in the case of heteroscedastic errors, as has been pointed
out in [11] for fixed gq.

In this paper we will use the desparsification technique in the defini-
tion of our presmoothing estimator fl, whereby its resmoothed version
fl evaluated at a point will be asymptotically normally distributed.
This will allow for the construction of pointwise confidence intervals
and of global confidence bands for f; based on the resmoothed estima-
tor fi. Moreover, these confidence intervals will have oracle width due
to the asymptotic oracle properties of the resmoothed estimator fl.

The paper is organized as follows. In the next section we will describe
the construction of our two-step procedure. Section 3 contains our
main results and a simulation study. Section 4 gives an outline of the
structure of the proofs. The main part of the proofs can be found in
Section 5. More details of the proofs are collected in the supplementary
material of this paper.

1.1. Notation. The space L*(PX) is a Hilbert space with the inner
product (g,h) = E[g(X)h(X)] and the corresponding norm ||g|| =
V{9,9). Let || - || denote the supremum norm on L>®(PX). Let (-, ),
denote the empirical inner product defined by

(9. = - D g(XDF(X)
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and let || - ||, denote the corresponding empirical norm. Let || - |2
denote the Euclidean norm. Furthermore, let Y = (Y1,... Y")T €=
(el,...,emT, and for f e L2(PY), f = (f(X1),..., f(X")T. By C we
denote a constant depending only on the (minor) quantities ¢, ¢, ¢y,
Co, and C;. We make use of the convention that the constant C' need
not represent the same value at each occurrence.

2. THE ESTIMATOR

2.1. Piecewise polynomials. For j =1,...,¢,lett; > 0and m; > 1
be integers and let U; be the space of piecewise polynomials in the
variable z; € [0, 1] of maximal degree t; defined on the intervals

kE k+1
Ijk_<; :|a

mj o My

k=0,...,m; — 1. Thus each function g; € U; has the property that,
restricted to each interval I, it is a polynomial of degree at most ;.
Let @, I > 0 be the sequence of the Legendre polynomials (see, e.g., the
book by Whittaker and Watson [34] for the definition and fundamental
properties of the Legendre polynomials). Then the shifted and rescaled
polynomials Ry(z) = V2l 4+ 1Q;(2x — 1), € [0, 1], are orthonormal
with respect to the inner product induced by the Lebesgue measure on
0,1]. For k=0,...,m; —land l=1,...,t; + 1, we now define

k
by rny+(25) = /MR <mj <9Cj - m))
J
for x € I;;, (and equal to zero otherwise). Hence
bj,k(tj+1)+17 s 7bj,k:(tj+1)+tj+1

is an orthonormal basis of the functions in U; which are zero outside
the interval I;;, and we conclude that

bj,17 s 7bj,m]'(tj+])

is an orthonormal basis of U; with respect to the Lebesgue measure.
The space of piecewise polynomials has a number of important prop-
erties, among which we mention that

1
g < (& + 1)%m, / g2 (), (2.1)

for each g; € U; (see, e.g., [6, Equation (7)]).
In the following we suppose that

m2:...:mq
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and that
ty ==t
that is, we suppose that Us, ..., U, are defined with piecewise polyno-

mials of the same order and on the same intervals. We let m = max; m;
and t = max;t;. Moreover, let

Vi=U
and for j = 2,..., ¢, define from Uy, . .., U, the centered function spaces
Vi={g; € U; : E[g;(X;)] = 0}
In the sequel we will consider the spaces Uj,...,U, as subspaces of
L*(PX) N L>®(P¥). We let d; = dim V; and d = max; d;. Hence (under
Assumption 1), we have dy = my(t; +1) and dy = - - = d, = ma(t2 +

1) — 1. We let
q
voyy
j=1

and abbreviate the space of additive functions with components coming

from Va,...,V, as
q
Vo=>V;
=2

Finally, let T1_; : L?(P¥) — V_; be the orthogonal projection from
L*(PX) to V_; given by

M1 f = argmin | f — g|*

geV_1

2.2. The Lasso estimators. To reconstruct the desparsified Lasso
estimator in the additive model context, we will need Lasso estimators
of f1,..., f; as well as a Lasso version of the projection of the V; basis
functions onto V_;.

We first define the nonparametric Lasso estimator

q
fr=>"10
j=1
of f by

q
<f1L,...,f(f) = argmin{HY— Zgj
j=1

g;€Vj

2 q
el
j=1

where A > 0 is some tuning parameter. This estimator will be used
to correct the bias resulting from the replacement in the least-squares
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estimator of the orthogonal projection of the Vi basis functions onto
V_; with a projection of relaxed orthogonality.
For k =1,...,d;, we define the nonparametric Lasso estimator
q
- by = Z(Hflbm)j eV
j=2

of TI_ by, by

q
((Hflblk)% . (]-_-[Elblk:)q) = argmin {Hblk — Zgj
=2

g;€Vj

2 q
) ||gj||n} ,
j=2

where > 0 is some tuning parameter. Moreover, we extend f[fl
linearly to all of V; as follows:

d1 dl
7L 7L
H_1 Vi = V_l, E akblk — E akH_lblk,

k=1 k=1
which can be seen as an empirical version of II_; restricted to V;. We

use f[fl as the projection from Vj to V_; of relaxed orthogonality in
the desparsified Lasso construction.

Remark 1. In practice, the Lasso estimators should be based on the

Spaces
‘fn U 1 Xi

instead of V; (j = 2,...,¢), which is achieved by centering each basis
function bj; by its empirical mean (b;x, 1),,. However, since the differ-
ence between the centering (bjx,1) and (bj, 1), is of order n=2 we
choose, in our analysis, to proceed using the spaces V; instead of V}" in
order to avoid cumbersome technicalities.

2.3. The presmoothing estimator. Let ¢11,. .., ¢14, be any basis of

~L ~
V; and let us denote by B, € R% the vector of coefficients of fI with
respect to the basis @11, ..., ¢14,. We now define

dq
fi= Z BikPik,
k=1
where 3, = (Bu, o ,Bldl) is defined by

~

A AL - . 1 |
Bi= B+ (X)) M aly - 1) - (Laix,) lzly i),
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where )
Xl = ((z)lk(Xi))lgign,lngdl
and

Z, = ((¢1k - ﬂ£1¢1k)(Xi))1§i§n,1§k§d1 '

So far, we have constructed an estimator only for the case in which
(1/n)ZTX, is invertible. However, since we will show that (1/n)Z7X,
is invertible with high probability, it is not necessary for our theoretical
considerations to define the estimator in the case in which this matrix
is not invertible.

Our presmoothing estimator is chosen to be piecewise polynomial.
For finite-sample applications the discontinuity of this estimator at
knot points may affect the shape of the second-step estimator. This
could be avoided by using least-squares splines or other alternative
smoothing methods in the presmoothing step instead of piecewise poly-
nomials. We conjecture that the whole theory of this paper would go
through with the choice of least-squares splines in the presmoothing
step, but at the cost of considerable inflation in our notation. For this
reason we pursue our theory with piecewise polynomials, which makes
our exposition more transparent. In our simulations we explore the
performance of our estimator when least-squares splines are chosen in
the presmoothing step.

3. MAIN RESULTS

3.1. Assumptions. Our main results make use of the following as-
sumptions.

Assumption 1. Suppose that for j =1,...,q, X; takes values in [0, 1]
and has a density p; with respect to the Lebesgue measure on [0, 1]
which satisfies ¢; < p; < 1/cy for some constant ¢; > 0. Moreover,
suppose that for j =2...,q, (X1, X;) has a density pi; with respect to
the Lebesque measure on [0, 1]*> which is bounded from above by 1/c;.

Assumption 2 introduces a geometric quantity pg which governs the
degree of collinearity between the spaces Vi and V_;. The closer pg
is to 1, the harder it is to distinguish the effects of X; from those of
Xo, ..., Xy
Assumption 2. Suppose that there is a constant 0 < py < 1 such that
for all g1 € V1,

=191l < pollgal]-

Note that py can also be defined as the minimal angle between V;
and V_; (see, e.g., [33]).
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Assumption 3. Suppose that there exist some i, > 0 and a subset
Jo C{1,...,q} with 1 € Jy and |Jo| < so such that for each j € Jy
there is a g; € V; satisfying

1fi = gillec < Cod™
ifj=1 and

1fi = g5l < Cody ™
otherwise for some constant Cy > 0. Moreover, setting

=>4
Jj€Jo
suppose that
1f = *lloo < Co (di™ + s0dy™) .

Assumption 4 states that the projection of each basis function of
V1 onto the space V_; may be approximated sufficiently well by its
projection onto a subspace of V_; of s; or fewer additive components.

Assumption 4. For each k =1,...,dy, suppose that there is a subset
Je €{2,...,q} with |Jy| < s1, such that there is a decomposition

q

Ty bik — Togbie = Y v

Jj=2

with v; € V; satisfying

- d
Sl < Gy [
j=2

for some constant C; > 0. Finally, suppose that d < n and

Vi
N>/
n

Assumption 5 (Theoretical compatibility conditions). Suppose that
there is a real number 0 < ¢ <1 such that

q
S lgl*<||>
J€Jo Jj=1

for all (g1,...,9,) € Vi,...,V,) satisfying

Z lgsll < 83> llg;ll. (3.1)

je€do

Y




12 KARL GREGORY'!, ENNO MAMMEN? AND MARTIN WAHL?
Moreover, for k=1,...,dy, suppose that
q
2
S lgl < Y0
J€Jk J=2
for all (g2, ...,94) € (Va,...,V,) satisfying

q
Yo lgill <83 gl
j=2

JE€Jk

C2

Let 0 < ¢ <1 be the largest number such that

SlglP <D g

JE€Jk JjEJk

2
/¢

forallg; € V;,j € Jyand allk = 1,...,d;. By Assumption 5, we know
that ¢ > ¢ > 0. Note that while the constant ¢ plays an important
role in the analysis of the Lasso estimators, the (weaker) constant 1)
will be used in the analysis of the norms of the II_;by;.

3.2. Main result: bound for the presmoothing estimator. In
this section, we state our main result, which is a precise, finite-sample
statement of equation (1.4). Recall the convention that C' denotes a
constant depending only on the quantities ¢, t1, ¢1, Cp, and C and that
C' is not necessarily the same at each occurrence. For our main result
we suppose that the Lasso estimators are defined with

)\:20\/3_’_20“2564—210@]
n n

e (\/d(x+1ogd1 +logg) | sid(x +logdy +logq))

and

n Yn

where x > 1. Moreover, we also introduce

C\/sld(x +logd + log q)
T

n

Note that an explicit expression of the constants C' can be found in
Appendix E in the supplementary material. Our theory requires two
conditions on the dimensions d; and d. First, we need that

) Vdy dyn?
(j;Q + 511/)¢177 + Sl¢1277 > S (1 o pO)Q /07 (32)
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where C' is the constant in Proposition 6. This condition will ensure
that an empirical version py of pg is strictly less than 1 with high
probability. Second, we need that

1 1
max(so, 51) (\jﬁ + d(CL‘ +n og Q) 4 d(l‘ +n 0og Q)> S ¢2/C (33)
where C' comes from Proposition 12. This second condition is needed
in the analysis of the Lasso estimators. It implies that certain empirical
compatibility conditions are satisfied with high probability. Note that
setting x = y = log ¢ and considering the geometric quantities pg, @, ¥
as constants, these two conditions are satisfied if

d (log q + logd) d (log g + log d)
814/ and max(sg, s
1 1\/ n (50,51) Jn
are bounded by a constant. In Section 4.2 we decompose fl — ffrade
into three main terms: the approximation error term, the improved
Lasso bias term, and the variance term. To these terms correspond the
following three error terms:

1
- - —T1 —T2
A1 = (1= po) (1™ o+ s150d;7)
and
1
By = et (/0 (67 + o™+ sov/3TV/d ).
(1 — po)
and, for y > 0,
- 1 si(logdi +y)
P (1= po) n '

We now have:

Theorem 1. Suppose that Assumptions 1-5 hold. Moreover, suppose
that (3.2) and (3.3) are satisfied. Then we have that

B (Il = frlle = C (A1 + B0 + Ag) ) < dexp(—) + exp(—y).

3.3. Application of the main results to the resmoothing step.
We now consider the resmoothing step discussed in the introduction
which makes use of the presmoothed data. Our main result, presented
in Theorem 1, established that

11— £ < O(AL + Ay + Ay)

with probability greater than or equal to 1 —4exp(—x) —exp(—y). We

now consider several classes of estimators fP° for the oracle model.
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As explained in the introduction, we want to construct a two-step esti-
mator f; for f1 in the additive model for which | fi— forade]| o is small.

This requires verifying two things: that || f"mde foracle | is small and
that the second smoothing step is continuous with respect to changes
in the inputs as per (1.6).

We start by discussing two estimators for which ffrade = ffrade and
thus || forade ferade|| . = 0 trivially holds. For such estimators only

(1.6) has to be verified. We will see that the equality forade — foracle
holds when forade is a least-squares piecewise polynomial smoother or
a least-squares spline estimator and when this type of smoothing is

used in the second step of the two-step estimator ffra‘ﬂe. For these two
classes of estimators there are two conditions which are necessary for

the equality ffrade = ffrade to hold. The first is that the B-splines or
polynomials, respectively, in the second step have the same order as the
polynomials in the first step. The second is that the grid of the first step
is a sub-grid of the second step. Under these two conditions the equality
follows from the projection interpretation of the estimators. Note that
the projection of a vector x onto a linear space F; is equivalent to the
projection of z* onto Ey if 2* is the projection of x onto a linear space
E5 and Ey is a linear subspace of F5. For the additive model, define

Pl or P! respectively, as the two-step estimators where least-squares
polynomlal or B-spline fitting has been used in the second step. We get
the following result (For a proof see Appendix D in the supplementary
material).

Theorem 2. Suppose that the assumptions of Theorem 1 hold and let

FPol and f37 be two-step estimators for which least-squares polynomial
and B-spline fitting, respectively, with an equidistant partition of m*
intervals has been used in the second step. Furthermore, suppose that
the order of the polynomials or B-splines used in the second step is the
same as that of the polynomials used in the first step and suppose that

the number of intervals my used in the first step is a multiple of m*.
Then

H fpol omcle ,pol

C(A; 4+ Ag + Ag),
C(A] + Ay + Ag)

oo <
||fspl oracle sleOO S

with probability greater than or equal to 1 —4exp(—y) —exp(—y). Here

Foracle, pol le, spl. . .
oractenol gnd forCestl gre the one-step estimators in the oracle model

based on least squares polynomial or B-spline fitting, repectively.
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The assumption that the grid used in the first step is based on subdi-
viding the grid used in the second step greatly simplifies the proof. But
by using more refined arguments, it can be shown that this assumption
is not necessary.

For an asymptotic interpretation let us assume that

loglog ¢ = o(logn), ¢ — oo, (3.4)
sp=0(n"), s =0(n") (3.5)
for some constants 0 < 9 < 1/2 and 0 <~ < 1/4. Then we have (see
proof in Appendix D in the supplementary material) that for g > 0,

the following is true: For the preliminary estimator m; and m can be
chosen such that with x =y = logq

Al + AQ + Ag = O(N_'g), (36)

2
20Vm)+—mn < 1-—5, (3.8)
™ ™
2 2 2
—(Am)+ <2 + ) (YoVm) < 1——3. (3.9)
T T2 T

Equation (3.6) implies that || /P — 2| = op(n~F) and || f;*' —
foraclespl)| " — op(n~?). This result can be applied to check whether an
estimator in the additive model exists that is asymptotically equivalent
to a rate-optimal spline or polynomial estimator in the oracle model.
For rate-optimal estimation in the oracle model, the number of intervals
my should be a constant times n'/(?1+1) which results in a pointwise
rate of n~"/(n+)  To establish the existence of an asymptotically
oracle-equivalent estimator, we thus have to show that (3.7)-(3.9) hold
with 8 = r1/(2r1 +1). Inequalities (3.7)—(3.9) hold for vy, > 0 small
enough as long as the right hand sides of the inequalities are positive.
The right hand sides are positive as long as ro > 2r1/(2r1 + 1) = 28
and r; > 1/2. In particular, we see that for r; choices of o with ro < 1y
are allowed. Thus we do not require the nuisance additive components
fa2, ..., fg to be as smooth as f;.

We now discuss local polynomial estimators. The degree of the lo-
cal polynomial estimator is denoted by k. Define (ao, ..., ax) as the

minimum of
n

S 7 a0 — o — an(X] — 2)*) Ki(X] — @)

i=1
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over (ag,...,a;) € R¥1 and set f7°*“"°(z) = @;. This is an esti-
mator of the j-th derivative of f; in the oracle model. Here, Kj(u) =
h™'K(h~'u) is a kernel with kernel function K and bandwidth h. Sim-

. ~i ol x x x .
ilarly, we define f{"*(z) = a;, where now (ay, ..., @) minimizes

n . ) 2 )
Z [Yz —ag— ... —ap(Xi — )| Kp(X!—2)

i=1

with V¢ = f,(X?). For this class of estimators we have the following
result.

Theorem 3. Suppose that the assumptions of Theorem 1 hold. Suppose
further that the kernel K is a probability density function with bounded
support, [—1,1] say, that it has an absolutely bounded derivative and
that the bandwidth h fulfills cyn™ < h < con™™ for some ¢y, co > 0 and
0 <mne <m < 1/3. Furthermore, assume that for a value py < k + 1
the function f has an absolutely bounded derivative of order py. Then
it holds for j =0,...,k that

thflj,omcle,lpol_ ~f',lpolHOO < C[A1+A2—|—A3—|—d;pl

+(dih) ™ (nh) "2 (Vlog(n) + V/2)]

uniformly for all h with cyn™ < h < con™™ with probability greater
than or equal to 1 — 4exp(—x) — exp(—y) — exp(—=z).

Applying this theorem with j = 0 and & = p; — 1 and with a choice
of h of optimal order n=/ 27+ we can show that the two-step estima-
tor is asymptotically equivalent to a local polynomial estimator in the
oracle model if (3.7)—(3.9) holds with 8 = p1/(2p; + 1). Furthermore,
one can argue in the same way as in the discussion after Theorem 2
to get asymptotic oracle equivalence of the two-step estimator and the
oracle estimator.

We conclude this section by discussing a minimax theorem. To sim-
plify notation we formulate this theorem asymptotically. For the first
additive component we assume that

]”16«5':{g:[0,1]%R:/Olg(p1)(3v)2 dngg}, (3.10)

where p; > 1 and Cs > 0. By the Sobolev embedding theorem this
implies that for all f; € S there is a g7 € V; satistying

11 = 9illoe < Codi™

with 7y = p; — 1/2, so that the first part of Assumption 3 is satisfied.
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We now define a class F,, = F,(p1, Cs, c1, Co, C1, 72, &, po, Y0, C°, 71, Ct)
of tuples (f1,..., fg, p) of additive components fi,..., f, and densities
pof (Xi,...,X,), where it is assumed that these functions fulfill As-
sumptions 1-5 with constants ¢;, Cy, C1, r, r1 = p1 — 1/2, ¢, po and
S0, 81 with 5o < C%n and s; < C'n™, ¢ < w, and where f; € S.
Here w, is a fixed sequence with loglogw, = o(logn). We now state
our minimax theorem.

Theorem 4. Suppose that for some constants o, p1, Yo, and v1, (3.7)-
(3.9) hold with 8 = p1/(2p1 + 1) and r1 = p1 — 1/2. Then there exists
an estimator f1 in the additive model with

w20 Do), [ (o)~ ) do] =1+ 0001

umformly over (flv sy fqvp) S Fn(plv CS, C1, CO; Cla T2, ¢7 Lo, Yo, Cov Y15 Cl)
for positive constants Cs, c1, Cy, Cy, ¢, C°, Ct > 0 and 0 < py < 1. Here

and E. denotes the conditional expectation, given Xy,...,X,.

(2p1+1)

The proof of this theorem is similar to those of the previous two the-
orems; see also the proof of Theorem 6 in [15]. The minimax estimator
can be chosen as two-step estimator according to the construction pre-
sented in this paper. The value k(p;) is the asymptotic minimax risk
in the oracle model, which has been established in [10]; see also the
discussion in [15], where a minimax theorem for additive models was
proved for the case in which ¢ is fixed. Theorem 4 states that, under
our assumptions, the asymptotic minimax risk for estimators in the
oracle model can be achieved in the additive model. This holds for
7,7 > 0 small enough as long as the right hand sides of (3.7)—(3.9)
are positive. Such choices of 7y, y; exist for all values rq, p; with p; > 2
and 5 > (2p? — p1)/(2p? — 1). Thus we have the same asymptotic
minimax bound in the additive model as in the oracle model as long as
0,71 are small enough. We conjecture that the minimax result contin-
ues to hold under weaker sparsity conditions and also under conditions
that include the case p; = 1. Note that our theory gives bounds for
L., norms between the pilot estimators but for the stated minimax
theorem only L, norms are needed.
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3.4. Simulation results. We generated data sets of n independent
observations from the model

Y = S (WA FG < s0) + 2, (3.11)

j=1

where ¢ is a Gaussian error term independent of X with zero mean and
unit variance. We then used the proposed presmoothing and resmooth-
ing two-step procedure to estimate and make pointwise inference on
fi == f. We chose cubic B-splines in both the presmoothing and
resmoothing steps, as these are a common choice in practice. Simu-
lations were run at all combinations of n = 100, 500, 1000, ¢ = 50, 200
and f(z) equal to

sine(x) = 2sin(2z)

line(z) = o
expo(x) = exp(—z) — (2/5)sinh(5/2)
quad(z) = 2? — 25/12,

which come from [25].

The number of non-null components s, is set to s = [¢/20]. The
non-null functions are scaled such that they have decreasing magnitude.
This is to underscore the fact that we do not require any so-called “beta-
min” conditions for our procedure to work; that is, there is no lower
bound which the norms of our non-null functions must exceed in order
for our procedure to produce valid pointwise confidence intervals.

The covariates X, ..., X, are generated such that X; is marginally
uniformly distributed on (—2.5,2.5) for j = 1,...,¢q and such that
the correlation matrix of (Xy,...,X,) is a block diagonal matrix with
blocks of size s; = sg = [¢/20], where the off-diagonals in each block
are equal to 0.9. The high correlation among the covariates will make
the functions harder to estimate, as the effects of the different variables
will be harder to distinguish. This is an important setting to explore,
as in some areas of application it is common that the active covariates
are highly intercorrelated.

We construct 95% confidence intervals for fi(x) over a range of z

values based on the oracle estimator f™(z), the presmoothing esti-
mator fi(z), and the resmoothed final estimator fi(z). To make fair
comparisons with the oracle, the true variance of the error term is used
in constructing both the oracle and the pre- and resmoothed confidence
intervals.
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The Lasso tuning parameters A and 7 are each chosen via 10-fold
cross-validation—however, not in every simulation run, as the compu-
tation time is quite high; instead, at each n,q combination, a small
simulation is run in which the A and 7 values are chosen via cross-
validation, and then the averages of the A and 7 choices over the small
simulation are used in the full-size simulation.

Instead of piecewise polynomials, we chose to use cubic B-splines in
both the presmoothing and resmoothing steps, as this is a common
choice in practice.

The simulations were carried out at different smoothnesses of the
presmoothing estimator as well as of the oracle and resmoothing esti-
mators. We observed that more extreme undersmoothing in the pres-
moothing step lead to closer-to-oracle coverage of the resmoothed final
estimator.

Figure 1 displays the estimation and coverage results for the n = 100,
g = 50, f = sine simulation when the dimension of the presmoother
was dpre = 75 and that of the oracle and resmoothed final estimator
was dre/orel = 40. The top panel displays, for a single simulated data
set, the pointwise confidence intervals for fi(z) across a range of x
values based on the presmoothing estimator, the oracle estimator, and
the resmoothed estimator. The middle panel displays the averages of
the upper and lower bounds of each of these three intervals over 500
simulated data sets. We see that the presmoothing intervals are much
wider than the oracle and resmoothed intervals, and that the oracle
and resmoothed intervals are very similar to each other in width and
behavior. The bottom panel plots the coverage of the pointwise con-
fidence intervals across the range of x values. The oracle confidence
interval has coverage close to the nominal coverage of 0.95 across the
range of x values, and this coverage is nearly matched by the pres-
moothing confidence interval and the resmoothed confidence interval.
Thus, the confidence interval based on our estimator has width and
coverage very close to that based on the oracle estimator, for which all
the other components are known.

Tables 1-3 give the coverage results over all the n = 100, 500, 1000,
g = 50,200 and f = sine, line, expo, quad simulations at the values z =
—1.5,0, 1 for different degrees of undersmoothing in the presmoothing
step. For the larger sample sizes n = 500, 1000, the coverages of the
confidence intervals based on the resmoothed estimator are very close
to those of the oracle confidence intervals. For n = 100, the coverage of
the resmoothing confidence interval is in some cases somewhat less than
oracle coverage. This is not surprising, as in the n = 100, ¢ = 200 case,
there are twice as many unknown functions as there are observations.
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[[TTTTTT] Presmoothing [ | Oracle

Resmoothing

20

10

0

-2 0 2 4 6 -10

-4

-6

Ptwise emp coverage Avg Cl limits (500 runs) Cl limits (single run)
0.85

—— oracle coverage — presmoother coverage --- resmoothed coverage

-15 -1.0 -0.5 0.0 0.5 1.0 1.5
n =100, q =50, sO = 3, (d_pre,d_re/orcl) = (75,40), q*d_pre = 3750, S = 500 sim runs

0.75

F1GURE 1. Results from the n = 100, ¢ = 50, f = sine
simulation with extreme undersmoothing in the pres-
moothing estimator. (Upper) Pointwise confidence inter-
vals based on the presmoothing, resmoothing, and oracle
estimator for fi(z) over a range of z values for a single
simulated data set. (Middle) Average over 500 simula-
tion runs of upper and lower bounds of pointwise confi-
dence intervals based on the three estimators with true
function overlaid. (Lower) Empirical coverage over the
500 simulation runs of the pointwise confidence intervals
based on the three estimators.

Moreover, the correlations between the covariates are very high, so
that the influences of the different covariates are difficult to distinguish.
Even in this setting, the proposed estimator performs quite reliably.
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4. THE MATHEMATICAL APPROACH

4.1. The geometric representation. In this section, we suppose
that the event holds on which V; and {g; : g; € V1} C R", where g; =
(9;(X]),...,9;(X))", have the same dimension. Then, we choose
®11,- - -, P14, to be the orthonormal basis of Vi with respect to the
empirical inner product obtained by applying the Gram-Schmidt or-
thogonalization (with respect to the empirical inner product) to the
basis b1, ...,b14. Clearly, this basis is still local in the sense that

¢1,k(t1+1)+1; ) ¢1,k(t1+1)+t1+1
is a basis of the functions in V; which are zero outside the interval
L. Note that in the case of local constant functions, i.e. ¢; = 0, the
above procedure simply normalizes the basis functions according to the
empirical norm ¢y = by /||bik||n. We again restrict our analysis to the
event that (1/n)ZTX, is invertible. We have

1

27X, = ({6w — 0, 6u)) |

k=1
The matrix %ZlTXl can be considered as a linear map on the coefficients

in R% . Equivalently, it can be considered as a linear map from V; into
itself. Therefore, let II; be the linear map defined by

d1
Mif = {duk lnduk,
k=1

where f € L*(P¥) (resp. € R"). Since ¢y, ..., @14, is an orthonormal
basis of V4 with respect to the empirical inner product, I1; is the orthog-
onal projection from L?(PX) (resp. R") to V; (resp. {g1 : g1 € Vi }) with
respect to the empirical inner product (resp. Euclidean inner product).
Now, let

d1
9o =Y axbix € Vi,
k=1

Then 1ZTX; sends a = (v, ..., aq,)" to the coefficient vector
d & p
(Z<¢1k - ﬁ£1¢1k7 ¢)1l>n0£l) = (((I - ﬂ£1)¢1k7ga>n) 3
— o k=1
dy

- <<(1 - ﬂlﬂil)qﬁm,gah)

Now, the linear operator f[lﬂfl : V1 — V] has an adjoint operator (its
transpose) (I[;I1X,)* : V; — V4, and thus this coefficient vector can be

k=1
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written as
dy

({1 (1 = (ILITE, ) )ga)

which are the coefficients of

(1 = (ILITE)") g

k=1

Thus, considered as a map from V; into itself, we have that (1Z]X;)™!
is equal to

(1 = (ILITE) )
In particular,
fl = (I - (ﬁlﬂfl)*>71gm

where
« ~ dy
o= ({ou =00 Y = f4)a)
We can go slightly further. f[’il is a map from V; to V_q, but it can
also be ConsideredAas a map from V; to R™. In both cases, it has an
adjoint operator (IT1X,)* such that

di d1

(00 = 11500, Y = 5, ) = (e (2 = ()Y = 7))

This is the coefficient vector of the function

k=1 k=1

A~ ~ ~

I (1 — (IT5 ) ") (Y = 7).
We conclude:

Proposition 1. If V} and {g; : g; € V1} C R" have the same dimen-
sion and if I — (ILIIE )" Vi — Vy is invertible, then we have

fr= (I = (LI ML (I = (T2)7)(Y = 1),

4.2. The main decomposition. We continue the discussion of the
previous section and present a decomposition of f; — £l which gives

rise the terms Ay, Ay, Az appearing in the main result in Theorem 1.
Let

floracle _ ﬂl(fl + 6),

which has coefficient vector

~ oracle

B = (XIXy) T XT(f + e).
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For any g € V, we may write the difference between the coefficient
vectors of the presmoothing and undersmoothed oracle estimators as

~ ~oracle 1 T -1 1 T 1 T -t 1 T
B1— B4 = EZ1X1 ﬁz1 - EXl X1 gXI €
1ooo\ 1., .
+ Ezl X1 Ezl (g_1 — f_l)
1 !
+ <nZTX1> ﬁzf(f - 8)
loro \ 1oy
+6;— | =X Xy =X fi,
n n
where g = g1+ 9-1, g1 € V4, g-1 € V_; and 3, is the coeflicient vector

of g;. Using Proposition 1, we can also formulate this decomposition
in terms of functions

fr = freete = (1= (T2 ) 7L (1 — (TT5,)")e — Thie

+ (1 = (LI )) I (1 = (TT5)) (g1 — fo0)
+ (1 = (LI ) I (T — (TT5)*)(f — )
+g1— L fy

Theorems 5-7 presented in Section 4.4 establish bounds for the terms
in this decomposition.

4.3. Events. We now define several events upon which the inequalities
presented in the following sections will hold. We show in Appendix
E in the supplementary material that these events occur with high
probability. First, we define

50 — ./40 ﬂ (‘:¢7J0,
where

Ay =<2 max sup MS)\
i=Ledozgev, |95l

and &, j, is the compatibility condition event defined as the event on
which

2
NG

q
S llgslz <3 Y0
j=1

j€Jdo
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for all (¢1,...,94) € (V4,...,V,) satisfying

q
D llgilln <8 llgiln. (4.1)
j=1

j€Jdo

Note that & is needed in the analysis of the Lasso estimator of f. We

also define
dy

& =) (AN&u),

k=1
where for k =1,...,dy,

b — 1110 I
Ak:{Q_maX sup (b 11k’gj>|§n}

J=2540 0£ g, €V; 191l

and &, s, is the compatibility condition event defined as the event on

which
q
> llgsliz <3| >0
j=2

j€Jk

2
NG

for all (ga,...,94) € (Va,...,V,) satisfying

q
> llgilln <8 llgslla.
j=2

JE€Jk

Note that &; is needed in the analysis of the Lasso estimators of the
I1_1b1. Finally, for 0 < § < 1/2, we define the empirical norm approx-
imation event

dy

E = E1N ﬂ {10, b1g, T, 010) — (XL b1k, T, b10) | < S|\, e[| || T, 014 }
=1

where

q
Ea = ({1 =gl < llg 13 < (1 +3)llg;l|* for all g; € V;} .

J=1

The event &, specifies the closeness of the empirical norm ||g;||,, to
the L?*(P*/) norm ||g;|| of g; € V; for j = 1,...,q, thus specifying
the cost at which we may switch between the empirical and the true
norm of a function in our analysis. Moreover, the event &s; implies
an equivalence between the spaces and V; and {g; : g; € Vi} C R" to
which we alluded in the beginning of Section 4.1.
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4.4. The main result revisited. In this section, we state upper
bounds for different terms appearing in the decomposition presented
in Section 4.2. Moreover, we show how these bounds lead to a proof of
Theorem 1.

Theorem 5. Suppose that Assumptions 1-5 hold. Moreover, suppose
that (3.2) is satisfied. If & N E N Ey holds, then we have

H H HL *)711211(] - (ﬂel)*)@: - f—l)

o0

C . . 2
< (= <(77/x\)\/ﬁ(d1 +s0d; ™) + sov/s1v/di A /¢ )

The proof of this theorem invokes a bound on ||(I—(I1,IT%,)*) " g1 | oo
for g; € V1 (Corollary 3) and makes use of a nonparametric version of
the KKT equations.

Theorem 6. Suppose that Assumptions 1-5 hold. Moreover, suppose
that (3.2) is satisfied. If & N &y holds, then we have

| = (s, )i - @) - 9|

C
< —— (s9d;™ 4 s150d5 7).

Moreover, if & holds, then
gt = T filloo < Cdl™

The proof of this theorem invokes the same bound on || (71— (I IT*,)*) g1l
for g1 € Vi and uses the approximation properties of g, formulated in
Assumption 3.

Theorem 7. Suppose that Assumptions 1-5 hold. Moreover, suppose
that (3.2) is satisfied. If & N Ey holds, then we have for all y > 0,

P (1107 = (L)) (7 = (17))e — el

C si(logdy +y)
> T )0 " ) < exp(—y),
1

where P, denotes the probability with respect to e,
fized values of X1,..., X",

,€" for given,

A proof of Theorems 5-7 is given in the next section. Let us see how
Theorem 1 can be deduced from these theorems combined with a lower
bound for the probabilities of events. Using the main decomposition of
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Section 4.2 and recalling the definitions of the error terms in Section
3.2, we obtain under the assumption made in Theorems 5-7 that

P (||f1 — foracke| > O(AL + Ay + Ag)) <P ((E N E NE)S)exp(—y).

In order to obtain Theorem 1 from this inequality, the last step is the
following concentration result proven in Appendix E in the supplemen-
tary material.

Theorem 8. Forx > 1, let A\, n, and ¢ be as defined in Section 3.2.
Moreover, suppose that (3.3) is satisfied. Then we have

P((EoN&NE)) < dexp(—).

5. PROOFS

5.1. Preliminary results on the Lasso estimators.

5.1.1. The nonparametric Lasso estimator. In this section, we state a
risk bound for the Lasso estimator f L which is suitable to our purposes.
In order to bound the approximation error terms we need a risk bound
for the Lasso estimator in the undersmoothed case. From now on we
will denote the nonparametric Lasso penalty by

q
peny(g) =2X Y _||gjlln, for any g € V.
j=1

Applying the work by Bickel, Ritov, and Tsybakov [5], we obtain:

Proposition 2. Suppose that Assumption 3 holds. If & holds, then
we have for each g € Vy,,

IF5 = FI2 + peny (F* — g) < Al — gl2 + 240507° /2.

In particular, if we choose g* from Assumption 3, then we have on
Eo N &y,

7 = I+ peny (7% — g°) < ACR(T™ + sod;"™)? + 240500 /7.

5.1.2. The Lasso projection of relaxed orthogonality. In this section,
we state risk bounds for the Lasso estimators Hflbu of II_;by;. The

analysis is analogous to that of the Lasso estimator fX of f. We only
have to replace Y by by;, f by II_1by;, and € by by, — I1_1by;. Note that
for all g € V_1, we have

(byy — H_1by;, g) = 0.
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Let
q
pen, (g) =20 ||gjlla, for any g € V..
j=2
The following result is similar to the result above. Note that a proof

of Propositions 2 and 3 is given in Appendix B in the supplementary
material.

Proposition 3. Suppose that Assumption 4 holds. Letl € {1,...,d,}.
If Ayn &gy, holds, then for each g € Vy,,

|[TIE by — TT1by |2 +pen,, (ﬁﬂbu - 9) < A1y —glI5 +240s1° /6%
In particular, choosing g = I1;,by gives on AN Ey 5, N Esq
ITIE by — TTgby |12 + pen, (ﬂflbu - HJ,bu> < (4CT + (240/¢2)) sin”.

5.1.3. Approximate orthogonality. In the case of the empirical Lasso
projection, the KKT conditions have the following form:

Lemma 1 (Nonparametric KKT conditions). Let ! € {1,...,d1}. For
all 3 =2,...,q and all g; € V;, we have

(g5, b1 = T2 bu)ul < ll g 1
Equivalently, for oll g € V_1, we have

2/(g, by — ITX by)| < pen, (g).

A proof of Lemma 1 is given in Appendix C in the supplementary
material. Let us derive a first consequence of Lemma 1. Since I1* bk €
V_1, Lemma 1 implies

|<ﬂ£1b1k7 b1l>n - <ﬂ£1b1k7 12Ililbll>n|
= |<ﬂ£1b1ka bll - 1£I£1b1l>n|
< (1/2) pen, (1% byy). (5.1)

5.2. Evaluating I1_; and II%, at the basis functions. Recall the
convention that C' denotes a constant depending only on the quanti-
ties t, t1, ¢1, Cy, and C and that C' is not necessarily the same at
each occurrence. Explicit constants can be derived from the proofs in
Appendix A in the supplementary material.

Proposition 4. Suppose that Assumptions 1 and 4 hold. Then, for
k=1,...,dy, we have
C S1

[Ty, bl < o\ d
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C S1 Sld
II_4b < —, =+ C/—.
| 11k||_1p”d1+ Vo

A proof of Proposition 4 is given in Appendix A in the supplementary
material. It is based on the definition of the quantity v, Assumption
4, and the following lemma:

and

Lemma 2. Suppose that Assumption 1 holds. Then, for each j =
2,...,qand k=1,...,dy, we have

1
Vdy

Note that Proposition 4 deals only with the basis functions by;. How-
ever, it can also be stated for functions in V; having their support in
one of the intervals I1;: suppose that g; € V; satisfies supp(g1) C Iy
for some k' € {1,...,m;}. Then ¢; is a linear combination of the
t1 + 1 basis functions by gy 41)41, - - > 010/ (11 41) 4641 Applying the tri-
angle inequality, Proposition 4, the Cauchy-Schwarz inequality, and
Assumption 1, we obtain

C S1 51d tl—i—l
I < | =4/ +Cy/—
|| 1gl||_(¢,/dl+ V) Al

where C' is the constant in Proposition 4. Moreover, we have:

My bue]| < €

Proposition 5. Suppose that Assumptions 1 and 4 hold. If E51 holds,
then we have

C sin
pen, (I1;, b1x) < ——.
(N V2 Vd
A proof of Proposition 5 is given in Appendix A in the supplemen-
tary material. Combining Propositions 4 and 5 with Proposition 3, we
obtain:

Corollary 1. Suppose that Assumptions 1, 4, and 5 hold. Suppose
that £, N &y holds. Then we have

N C /s C

and o o
L S17] 2
pen, (ITZ,b13) < WENN + Esm .

Moreover, if g1 € Vi satisfied supp(g1) C Iy for some k' € {1,...,mq},

then we have
~ C S1 C
- n <\ /5 + =V "
|| 7191H — (w d] + ¢ 8117) ||gl||
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5.3. Geometric properties of II_; and f[fl. A main quantity in
the analysis of the estimator is the following empirical counterpart of
Po:

po=sup  |[ITE 0w
g1€Vi:|lg1]|n <1

We have:

Proposition 6. Suppose that Assumptions 1, 2, 4, and 5 hold. If
E1 N Ey holds, then we have

9 2 510 s1v/din 51d1772
Py < py+C ( + + :
0= Y? Vo ¢?
In order that py < 1, we suppose that the second summand on the
right-hand side of Proposition 6 satisfies

510 | s1v/din 81d1772> 2
Cl|—+ + < (1- 4. 5.2
If (5.2) is satisfied, then we have

Po < po+(1—po)/2=(1+po)/2<1

and thus
1 2
— < -
L—po = 1—po
Since the operator norm of an bounded linear operator and its adjoint
operator are equal, Proposition 6 implies:

(5.3)

Corollary 2. Suppose that Assumptions 1, 2, 4, and 5 hold. Moreover,
suppose that (5.2) is satisfied. If £ N Ey holds, then for each g, € V;
we have

LTI ) g1l < Pollglln < (14 po)/2)llgalln-
Proof of Proposition 6. Let

d1
a1 = g agbiy.
k=1

By Assumption 2, we have
g1 < pgllgnll*.

Thus on &,

IT-1g101* < pollgnlln/ (1 = 0) < (1 +28)p5llgull7.
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where we used that § < 1/2. Hence,
ITTE gl = ITaga|® 4 T2y g7 — [T
< pollgrlly + 20llgall7 + T2y o 17 — ITagl®, (5.4)

and it remains to consider the last two terms. Now,

4
T g2 =0 o (T big, T by,
k=1 =1
4
IT_1gal® = o (Tibye, Tyby),
h=1 1=1

and thus

T2 g1 7 — [T 0a 1
di  dp

=> ) aay (<ﬂ£1b1k7 T by )n — (T b, HJlbll>n> (5.5)
h=1 =1
4

+ Z Z agoy ((ILy, b1k, Iy 011) 0 — (I, b1k, 115, 011)) (5.6)
=1 =1
4 di

+ Z Z QO (<Hkalka HJlb1l> — (T 1byg, T b1)) - (5.7)

k=1 I=1
First, consider the term (5.5). Using the identity
(a' V), —{a,b), = (' —a,b —b), + (a,V/ —b), + (a' — a,b),,
we get
(TT5 by, TTE b1 — (T bug, T bug) s
= (I% big — My by, 12, byy — Ty bug)e
+ (TLy, bk, T2 by — TLbu), + (TIE g — TLy, by, Ty by
Plugging in the formulas

C S1
1107, b1k [l < o\
and

2 C
[TIE b1y — Ty, bl < 5\/577,
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which hold on & N &; by (A.5), (A.6) in the supplementary material,
and Proposition 3, we get

. ~ 1 s S
|12 by, T2 ) — (T by, T )| < C ( ; w\/lﬁ 17 ) .

Hence, if & N &; holds, then the term (5.5) can be bounded by

di dy
5 e (22 59)

k=1 1—1
1 S1vd177 s1din? )
<o— ,
<0 (G T+ ) el

where we applied the Cauchy-Schwarz inequality in the last step. Next,
the last term in (5.7) can be bounded similarly. As above, we have

<H—1blk7 H—lbll> - <HJ1€b1k7 HJlbll>
= (II_1byp, — 1Ly byg, Ty by — T15,0y)
+ (I, b1k, 10y — 11 5,00) + (T1_ybyy, — I, by, 115, 01;)

and thus, using Assumption 4 and Proposition 4,

[(H_1 b1, TT_101;) — <Hka1k7HJlb1l>|<w\/>+023177

Hence, the term (5.7) can be bounded by

C
<¢&van+cﬁﬂmﬂnﬂﬁ

Finally, consider the middle term (5.6). If & holds, then
A[(TLy, bag, T ba)n — (T, b1g, 1Ly b10) | < 40Ty b ||| 1L, b1 |
which, by using Proposition 4, is bounded by
C 63,
V2 dy
Hence, (5.6) can be bounded by
C

—50s1]lall3

(&
Inserting the bounds for (5.5)-(5.7) into (5.4), we obtain
510 + 51\/a7) + 51d1772> Ha”Q
P2 Yo ¢? ?

HHﬂmMSpﬂmh+ﬂme+C<

Finally, if & holds, then
gl > (1= )llgill* > (¢/2)]|all3, (5.8)
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and the claim follows. O

Proposition 7. Suppose that Assumptions 1, 2, 4, and 5 hold. If
E1 N &y holds, then for each g € Vi we have

N s1d
L (LT ) gluoosc(f v ;“7) 91l

In particular, if additionally (5.2) is satisfied, then

NP C
1L (LT ) g1 [l < E\/illgllln-

Remark 2. The proof adapts the following argument valid in the popu-
lation setting: if ¢11, ..., 114, is an orthonormal basis of V; with respect
to || - ||, then

LI 11 lee < CV/dy max |1k, H_191)]

-----

= C\/d; max, [T 11k, TT 1 g1))

7777

< C\/QHH—MMH-

Proof. Suppose that &1 holds. Then let ¢11, ..., ¢14, be the empirical
orthonormal basis of V; constructed in Section 4.1. Between the supre-
mum norm of the coefficient vector and the supremum norm of the
corresponding function, we have the following relation (see Appendix
C.2 in the supplementary material for the proof): let g; = Zzlzl pd1k-
If the event &5, occurs, then

l91llee < CV/di[Je|cc, (5.9)

where C'is a constant depending on ¢; and ¢;. A proof of (5.9) is given
in Appendix C in the supplementary material. If & ; holds, then (5.9)
implies

||ﬁ1(ﬁ1ﬂ£ ) 91l < C\/> max, ¢>1k7(H I 1) 91)nl

77777

<C dlkj?ax (LIS f1k, g1)

Ly

=C\/dy k_rrl1axd1|< ,1¢1k;91>n|

=1,...,

<C\F max, ||H£1¢1kH llg11[5-

-----
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By Corollary 1, we have on & N &,,

. C s C
ITIE gl < E\/ d% + E\/Eﬁ)

and the claim follows. O

Corollary 3. Suppose that Assumptions 1, 2, 4, and 5 hold. If (5.2)
1s satisfied and if £ N &y holds, then for each g1 € Vi, we have

C

S [e%e] + S n:

Proof. First note that (5.2) is satisfied and if & N&, holds, then Propo-
sition 6 implies that py < (1 + po)/2 < 1. Hence, by Corollary 2,

|7 = (s g,

(I = (ILIIE)) ™ = Y ((LIE))™ = 1+ ) - L ((ILITE) )™

m>0 m>1
and
| = @)y || < gl + 7 IA(LIE) ) g1
m>1

Applying Proposition 7 and then Corollary 2, this can be bounded by

C .
191100 + @\/EZ (LI ) )™ g |l

m>1

c »
< |lg1lloo + E\/QZ po'llg1ln

m>1

C

= [lg1llc + m@Hngn

2C

< |91l + 7———=V511191]ln;
g1l (1_p0)w\ﬁH |

and the claim follows. O

5.4. Proof of Theorem 5. Recall that
(I — (ILITE ) ) M (= (TT5) ") (g7, — f5) = (T = (ILIT5) ) " ga,,

where
di

ap = <<<l51k — 115 by g7y — f£1>n)

k=1
and

di
Gay = E Oé1k¢1k-
k=1
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Suppose that & N & N & holds. Applying Corollary 3 and Equation
(5.9), we obtain that

C

LS m@”gm\\m

C
< —— vV sudy||at|so-
< g Vol

Applying the fact that ¢y is a linear combination of at most ¢; 41 basis
functions (by;), the Cauchy-Schwarz inequality, and Equation (5.8), we
get

(7 = (T )y,

lorlloe < € max. |(bye — 15, bui g% = )

Hence, by Lemma 1, we conclude that

N C .
|7 = ALY e, | < s Ve, (75 - g2)

Moreover, by Proposition 2,
pen, (f — g%1) < (n/A) peny(f* — g°)
< C (/2 (™ + s0ds ™) + s/ 6?)

and the claim follows. O

5.5. Proof of Theorem 6. Recall that
(I — (ILITE ) M I (= (TT5) ) (f — ¢7) = (I = (TLTT5)*) ™ gy,
where

dy

Qg = <<¢1k - ﬁ£1¢1k, f - g*>n>

k=1
and

dy
Jas = Z P
k=1

Suppose that £ N &, holds. Applying Corollary 3 and (5.9), we obtain
as above

|7 = () .,

[e e}

C
< ——Vs1dy||aal -
< g Vol

Now,

laslloe <, max [(Gu, f = g*)al + max [(IE161, f =gl

=4..,a1

<ONf = gl o [/ Vs + mas [T Guilallf = 9o

1,....d1 1,...d1
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and the first claim follows from Assumption 3, Corollary 1, and the
bound

1Bakll?, < (1 + ) 1urll® < 2/cn.
The second bound can be proven by using the first part of Assumption
3 and the fact that piecewise polynomial smoothing preserves the sup

norm. The details of the latter argument can be found in the proof of
Theorem 2. (]

5.6. Proof of Theorem 7. For the variance term, we will return to
the representation of the estimator through the coefficient vector. The
function

(I — (ILIT5 )"~ MI (1 — (TT5))*)e — TTye (5.10)
has coefficient vector

n

1 1 1
(I - nAlTX1> (X;— A" e— ﬁXlTe,

where
(L i
A= ((H’ld)lk)(X ))1§i§n71§k§d1 '

Recall that ¢11, ..., ¢14, is the empirical orthonormal basis of V; con-
structed in Section 4.1. Setting

1 -1 1
U = ||o1klloo - € ((I - AlTX1> —(X;—A)Te— X&) ,
n n n

where ey, is the kth standard basis vector, we see that the supremum
of the function in (5.10) can bounded as follows:

I(7 = (ILIEE)) L (T = (TT5))")e — Thellw < (1 + 1) max U,

The following result implies Theorem 7:

Proposition 8. Suppose that Assumptions 1, 2, 4, and 5 hold. Suppose
that (5.2) is satisfied. Moreover, suppose that & N Ey holds. Then

C S1

E€U2 S To/4 N9

g P21 — po)* n
where B, denotes the expectation with respect to €',... " for given,
fized values of X, ..., X™. In particular, since each Uy is Gaussian

(conditional on X, ..., X™), we obtain that for all y >0,
1 Csq(2logd; 4 2y)
> < _
P (k—mL%_},(dl Ur 2 (1— Po)i/f\/ n < exp(—y),

where P, denotes the probability with respect to €*,... €" for given,

fized values of X1, ..., X",




OPTIMAL ESTIMATION OF SPARSE ADDITIVE MODELS 39

We have
g 0wl
n
T 1 T - 1 T 1 T -
| €x I—ﬁAlxl E(Xl_Al) (Xl—Al) I—EXl Al ek—l .

(5.11)
If €1 holds, then (5.9) gives
[¢1xll3 < Cdy.

Hence, it remains to show that the term in the brackets is bounded by
Csy/dy. The proof of this result is a bit technical (since the term in
the brackets is quite long). However, the main idea in the proof can be
seen by analyzing the following similar but more simple term:

1 -1
er <I - AlTA1> er — €} e (5.12)
n

Let us restrict ourselves to the event that the operator norm of (1/n)ATA,
is bounded by p (see Lemma 4). Then, using that (1/n)ATA; is sym-
metric and positive semi-definite, one can show that (5.12) is bounded
by

chpAT A (I 6l

1—0p T 1—p

and Corollary 1 implies that (5.12) is bounded by C'sy/d;, as claimed.
In order to generalize this analysis to the term in the brackets of (5.11),
we first derive some lemmas:

Y

Lemma 3. For each o € R%, we have

1 .
| oxian) <ol
n 2
Proof. We have
1 2
’XfAloz
n 2
di [ di 2 g
= (Z<¢u, HL1¢1k>nak> =Y (61,112 ga)n = [TLITE gl
I=1 \k=1 =1

Hence, by the definition of py,
2

= [ILIE gal? < M2 galln < Aollgalln = Aollel3,
2

1
‘HX{AlOC
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and the claim follows. O

Lemma 4. Suppose that Assumptions 1, 4, and 5 hold. If £, NEy holds,
then we have for each a € R™,

2

1
H EA,{Ala

P2 ¢?

where € > 0 is arbitrary. In particular, if (5.2) is satisfied and if we
choose € = 1, then we have

2

d din?\ >
s@ﬁﬂ%+aruk(&/”+“l”)>m%

2
< Clalf3
2

1

Proof. We have

1 2

2

dy dq 2
- Z <Z<ﬂ£1¢117 ﬂ£1¢1k>nak>

=1 k=1

<(1+e) 21: <2<¢1l7ﬁL1¢1k>nak)

=1 k=1

di di 2
+(1+1/e) Z <Z<¢1z — 115 6, HL1¢1k>nOék> :
=1 \k=1
Now, the first term is equal to

2

< (1+o)ppllallz,
2

(1+¢)

1
‘nX{AlO[

by Lemma 3. Applying (5.1) and Corollary 1, we have on & N &, (see
Appendix C.3 in the supplementary material for the details),

. . 2
[{(d1 — I:, 6y, H£1¢)1k>n’ <C (122\5/1% + %) (5.13)

Hence, applying the Cauchy-Schwarz inequality, the second term can
be bounded by

sin | sivdm?\
ca+1/9a (22 + 20 al,

and the claim follows. O
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Lemma 5. Suppose that Assumptions 1, 4, and 5 hold. If £,NE; holds,
then we have

2< Cs C

1
~X7TA — =+ — s
Hn 1 A1k S B +¢251777

and

1 2 s sy 22 s2dy?
—ATA <cC - + L+ :
D <w2d1 o Tt T g

In particular, if (5.2) is satisfied, then the two upper bounds become

(C/?)s1/dr.
Proof. We have

2
= |[TLIIE el < ITTE 17

2

1
ﬁX?Alek

and thus Corollary 1 gives the first claim. Next, we have
2 di

= (11560, T 6

2 =1

1
HnA{Alek

d1 dl
<2 Z<¢117 L 61k + 2 Z<¢1l — 115 60, 112 011)2
=1 =1

dy
= 2 ILII" |5, + 2 Z<¢1l — 11" 60, 112 9112,
=1

and thus (5.13) and Corollary 1 imply the second claim. O

Proof of Proposition 8. As argued above, it remains to show that the
term in the brackets of (5.11) is bounded by C's;/d;. First, this term
is equal to
-1

1 - 1 1 1 1
el <I — AlTX1> <I - —XTA, - —ATX, + AlTA1> (I - XlTA1> ep — 1,
n n n n n
which, by using the identity
T Lo - L o7 l o l o7 -
1=e¢ I—EAle I—HAle I—gXlAl I—;XlAl ek,
can be rewritten as
T NS 1 T l o7 -
€L I- *Al Xl *Al Al I- *Xl Al €L
n n n

-1

1 ! 1 1
el (1_ AlTX1> Larx, txra, (1_ XlTA1> e, (5.14)
n n n n
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By Lemma 3, the operator norm of (1/n)XTA; is bounded by p.
From now on suppose that & N & holds and that (5.2) is satisfied.
Then Proposition 6 implies that py < 1. Combining this with Lemma

3, we get
Lo\ Lo\
I--X{A,) => (=XfA;) .
n o \n
First, consider the second term of (5.14). It is equal to

1 T 1 S
> er <A1X1> <X1TA1> er-
r,s>1 n n

Plugging-in Lemma 3 and Lemma 5, this is bounded by

C 81 Arts—2 C S1
1S < _—
v dy (,,M”O ) S (1= pPdy

where we also applied (5.3). Similarly, the first term is equal to

1 "1 1 ’
fekA Agep+ Y e <nx{’A1> EAfAl (nAlTX1> er,
r+s>1

which, by Corollary 1 and Lemmas 3-5, is bounded by

C s ris2 ¢ s
7/)2 dl ( Z ) 11)2(1 - ,00)2 d1

r+s>2

and the claim follows. O
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