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Presentation

Let (Xt)t∈Z be a time series, a natural question is to quantify the asymptotic
independence of this process at increasing times:

This problem is considered through elementary ideas and applications adapted to
large sample data

Outline:

From independence to dependence

Models

Technique

Applications

Application to extremes
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Independence

Independence

We wish to answer the question
How to weaken the independence relation

P(A ∩ B) = P(A)P(B) ?

relating the events A ∈ σ(P) of the past history with those B ∈ σ(F )
in a (not so close) future.
This relation is also restated as:

Cov(f (P), g(F )) = 0, ∀f , g , ‖f ‖∞, ‖g‖∞ ≤ 1

(Variables P , F denote here Past and Future)
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Mixing

Mixing (Rosenblatt, 1956)

α(σ(P), σ(F )) = sup
A,B
|P(A ∩ B)− P(A)P(B)|

=
1

2
sup

‖f ‖∞,‖g‖∞≤1
|Cov(f (P), g(F ))|

X = (Xt)t∈Z, P = (Xi1 , . . . ,Xiu ),F = (Xj1 , . . . ,Xjv ),

i1 ≤ · · · ≤ iu, j1 ≤ · · · ≤ jv and r = j1 − iu is large:

α(r) = sup
P,F

α(σ(P), σ(F ))→r→∞ 0

See Rio 2000 for sharp technical results, see also Doukhan 1994 and Bradley 2007

Some nonmixing models

Xt = 1
2 (Xt−1 + ξt) , ξt ∼ b

(
1
2

)
iid, Andrews-Rosenblatt (1984) (Xt−1 = frac(2Xt))

Xt = ξt(1 + aXt−1), P(ξ0 = ±1) = 1/2, a ∈
(
3−
√
5

2 , 12
]

, (Xt =
∑

j≥0 a
jξt · · · ξt−j)
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Covariance

Covariances versus independence

Independence sometimes coincides with orthogonality
Cov(P,F ) = 0 =⇒ independence of a random vector (P,F ) if

P,F ∈ {0, 1} admit Bernoulli distributions
(P,F) is a Gaussian vector
Z=(P,F) is an associated vector (see below)

Z ∈ Rp associated ⇔ Cov(f (Z ), g(Z )) ≥ 0 for f , g : Rp → R (coordinatewise ↑)

Then |Cov(f (P), g(F ))| ≤
∑
i,j

aibj |Cov(Pi ,Fj)|,

for (P,F ) ∈ Rp+q associated or Gaussian

|f (x1, . . . , xp)− f (y1, . . . , yp)| ≤ a1|x1 − y1|+ · · ·+ ap|xp − yp|
|g(x1, . . . , xq)− g(y1, . . . , yq)| ≤ b1|x1 − y1|+ · · ·+ bq|xq − yq|

Counterexamples: independent vectors, stability through ↑ images
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Linear processs

A linear process

Xt =
∞∑

j=−∞

ajξt−j ,
∞∑

j=−∞

|aj | <∞, ‖ξ0‖m <∞, (ξt)t∈Z iid

X p
t =

∑
|j|<p

ajξt−j ⇒ ‖Xt − X p
t ‖m ≤ ‖ξ0‖m

∑
|j|≥p

|aj |,

t − s > 2p ⇒ (X p
s ,X

p
t ) independent.

|Cov(f (Xs), g(Xt))| ≤ |Cov(f (Xs)− f (X p
s ), g(Xt))|

+ |Cov(f (X p
s ), g(X p

t ))| + |Cov(f (X p
s ), g(Xt)− g(X p

t ))|
≤ 2Lip g‖f ‖∞‖Xs − X p

s ‖1 + 2Lip f ‖g‖∞‖Xt − X p
t ‖1

A definition of weak dependence should be flexible enough to include both this
example (which includes ARMA models) and that of associated processes.
It should also yield reasonable limit theory in order to work out the consistency of
statistical procedures.
Bickel & Bühlmann (1999) also define weak dependence to bootstrap such models:
in this case innovations do not admit a density.
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General formulation

General formulation (Doukhan & Louhichi, 1999)

(Xt)t∈Z (∈ E ), f : E u → R from F , g : E v → R from G:

|Cov (f (Xi1 , . . . ,Xiu), g(Xj1 , . . . ,Xjv ))| ≤ Ψ(f , g)ε(r), ε(r) ↓ 0

Ψ(f , g) = vLip g , ε(r) = θ(r),
= uLip f + vLip g + uvLip f · Lip g , ε(r) = λ(r)

Lip f = sup
(y1,...,yu) 6=(x1,...,xu)

|f (y1, . . . , yu)− f (x1, . . . , xu)|
‖y1 − x1‖+ · · ·+ ‖yu − xu‖

.

Noncausal coefficients correspond to symmetric Ψ’s.

Random fields or metric index sets are also considered (think of point processes).
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vector LARCH(∞) models

Xt = ξt

(
a +

∞∑
j=1

ajXt−j

)
, Xt(n × 1), ξt(n × p), a(p × 1), aj(p × n)

φ = ‖ξ0‖m
∑

j ‖aj‖ < 1, a Lm-solution for (8) writes

Xt = ξt
(
a +

∞∑
k=1

∑
j1,...,jk≥1

aj1ξt−j1 · · · ajk ξt−j1−···−jk a
)

Then θ(t) ≤ C t−b, C (q ∨ φ)
√
t , C e−bt

if respectively A(s) ≤ C ′s−b, C ′qs , or aj = 0, j > C ′

A(s) = ‖ξ0‖m
∑

j≥s ‖aj‖

GARCH(p, q) (Engle, Granger) rt = σtεt , σ
2
t =

∑p
j=1 βjσ

2
t−j + γ0 +

∑q
j=1 γj r

2
t−j

ARCH(∞) (Surgailis et al. 2001) rt = σtεt , σ2
t = β0 +

∑∞
j=1 βj r

2
t−j

Bilinear (Giraitis, Surgailis, 2003) Xt = ζt
(
a +

∑∞
j=1 ajXt−j

)
+ b +

∑∞
j=1 bjXt−j
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General memory models

Xt = F (Xt−1,Xt−2,Xt−3, . . . ; ξt), (ξt)t∈Z iid, F : (Rd)N × RD → Rd

with ‖F (x1, x2, x3, . . . ; ξt)− F (y1, y2, y3, . . . ; ξt)‖m ≤
∞∑
j=1

aj‖xj − yj‖, then:

‖F (0, 0, 0, . . . ; ξt)‖m <∞, a =
∑∞

j=1 aj < 1 (m ≥ 1) imply existence in Lm,
stationarity and weak dependence:

θ(r) ≤ C inf
N>0

(∑
j≥N

aj + a
r
N

)

Regression models Xt = f (Xt−1, . . . ,Xt−k) + ζtg(Xt−1, . . . ,Xt−k) + ξt

variations on LARCH Xt = ξt
(
a +

∑∞
j=1 aj(Xt−j)

)
, aj Lipschitz

Mean fields type models Xt = f
(
ξt ,
∑

s≥1 asXt−s

)
, f Lipschitz
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Integer valued models

Thining, Steutel & van Harn operator is defined as

a ◦ X = sign(X )
∑|X |

i=1 Yi for a > 0, X ∈ Z,
(Yi )i is iid, context-independent, EY0 = a (e.g. Poisson or Bernoulli).

Galton-Watson process with immigration, INAR Xt = a ◦ Xt−1 + ξt

Integral bilinear models Xt = a ◦ Xt−1 + b ◦ (εt−1Xt−1) + εt
Estimation from moments (Doukhan, Latour, Oraichi, 2006).

INLARCH(∞) Xt = ξt

(
a0 +

∑∞
j=1 aj ◦ Xt−j

)
QMLE (Latour, Truquet 2008).

Random INAR models Xt = at ◦ Xt−1 + ξt , stationary (at) such
E(at |Ft−1) < 1 (working paper with Lang).

GLM integer models Xt |Ft−1 ∼ P(λt) with λt = g(λt−1,Xt−1, . . .) with
Fokianos and Tjostheim, 2011.

Existence of strictly stationary solutions, weak dependence properties
=⇒ limit theory in estimation procedures.

Allowing Xt ≤ 0 also gives non-associated and perhaps non-mixing processes
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Limit theorems are fundamental to prove consistencies

Moment inequalities

for integer moments, Doukhan & Louhichi use combinatorial methods
for causal coefficients Louhichi, Prieur use Lindeberg method
for (2 + δ)−order Doukhan & Wintenberger extend Ibragimov (1975) argument

Exponential inequalities

For iid rvs, Bernstein inequality writes P(Sn ≥ t
√
n) ≤ C exp

{
− t2

2σ2+K t√
n

}
Doukhan, Louhichi use moment combinatorics to get ≤ Ce−c

√
t ,

Doukhan, Neumann use cumulant techniques ≤ C exp
{
− t2

2σ2 + K(t/
√
n)α

}
,

Rio (2000) and Dedecker (1999) extend Nagaev-Fuk maximal inequalities
Dedecker & Prieur use coupling arguments under causality. See also Rio,
Merlevède and Peligrad (2010).
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Limits in distribution enable goodness of fit tests I

A) Donsker invariance principles,

Xn stationary, with EX0 = 0, with σ2 =
∑∞

k=−∞ Cov(X0,Xk) ≥ 0 (well defined),
then

1√
n

[nt]∑
k=1

Xk
D[0,1]−→ n→∞ σWt

if one of those conditions holds

E|X0|2+δ <∞ and λ(i) = O(i−a) for a > 2 + 2/δ

E|X0|2+δ <∞ and κ(i) = O(i−a) for a > 2

E|X0|2+δ <∞ and
∑

i>0 i
1/δθ(i) <∞,

E|X0|2 log+ |X0| <∞ and θ(i) = O(ai ) for some 0 < a < 1.

Dedecker, Doukhan, Louhichi, Prieur, Wintenberger
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Limits in distribution enable goodness of fit tests II

B) Empirical Central Limit Theorem

Xn stationary, then
1√
n

n∑
k=1

(1(Xk ≤ x)− F (x))
D[R]−→n→∞ Z (x) where (Z (x))x∈R is

the centered Gaussian process with covariance

Γ(x , y) =
∞∑

k=−∞

Cov(1(X0 ≤ x), 1(Xk ≤ y))

if F (x) ≡ x , and a weak dependence condition is assumed

θ(i) = O(i−a) for a > 1 (Dedecker and Prieur)

λ(i) = O(i−a) for a > 15/2 (under association: a > 4 is enough: Louhichi)

η(i) = O(i−a) for a > 2 + 2
√

2 ≈ 4.8 · · · (Prieur)
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Applications

Estimation
- Moment method for integer valued bilinear models (with Latour, Oraichi),
- QMLE for ARCH(∞), INLARCH(∞)(Bardet, Latour, Truquet, Wintenberger)
- Whittle estimator, empirical periodogram contrast (with Bardet, & León)

- Kernel estimation Xn = f (Xn−1, . . . ,Xn−p) + ξng(Xn−1, . . . ,Xn−q) (with Ango Nze,

Dedecker, Louhichi, Prieur, Ragache, & Wintenberger), and prediction...

Random fields, reliability of multicomponent systems (with Lang, Louhichi,

Truquet, Ycart)

Hard resampling is possible under nonparametric autoregression, since
innovations dont need to have a density (with Neumann 2008, Neumann,
Paparoditis, 2006, and with Mtibaa on progress)

Stochastic algorithms, Sparsity, regression and density estimation (with
Brandière 2004, and with Alquier 2011)

Ripley statistics for point processes, uses spatial definitions for the dependence
of such models (with Lang 2016)
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Extreme Value Theory (EVT) I

Under simple dependence assumptions we prove that a distribution function G
named a distribution function (O’Brien, 1987) satisfies

sup
x
|P(Mn ≤ x)− G n(x)| →n→∞ 0

which means a behavior ’as’ in the iid case.
G is unique up to extremal equivalence G ∼ H in case

sup
x
|G n(x)− Hn(x)| → 0, as n→∞.

O’Brien 1974 tail regularity is also assumed, for each γ ∈ (0, 1) there is a sequence

with limn P(Mn ≤ vn(γ)) = γ ⇐⇒ limx→G∗−
1−G(x)
1−G(x−)

= 1 (G (G∗−) = 1).

Paul Doukhan, University Cergy-Pontoise and IUF, FRANCE Applications of weak dependence to extreme value theory and resampling



Presentation Dependences Models Technique Applications Extremes Wild bootstrap

Extremal index

Suppose that {Xj} admits a phantom distribution function G of the form
G (x) = F θX (x), for some θX ∈ (0, 1], i.e.

sup
u
|P(Mn ≤ u)− (F θX (u))n| → 0, as n→∞

Then we say that {Xj} has the extremal index θX (in the sense of Leadbetter
(1983)).
In many cases the extremal index is the reciprocal of the mean size of clusters of
big values occurring in the sequence {Xj}.
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Zero extremal index I

Following Leadbetter (1983) we say that {Xj} has the extremal index θX = 0 if

P(Mn ≤ un(τ))→ 1, if n(1− F (un(τ))→ τ ∈ (0,∞).

Intuitively this means that the partial maxima Mn increase much slower comparing
with the independent case and that information on F alone cannot determine the
limit behavior of laws of maxima Mn
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Zero extremal index II

There exists non recurrent Markov chains with 0−extremal index and which admits
a phantom distribution
Asmussen (1998) considers the stationary Markov chain

Xj+1 = (Xj + ξj)
+, j = 1, 2, . . . ,

with {ξj} i.i.d. independent of X0, with distribution function H and mean −m < 0.
If H is subexponential, and

lim
x→∞

1− P2(ξ0 ≤ x)

1− P(ξ0 ≤ x)
= 2,

then {Xj} has the extremal index zero.
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EVT Main result (Doukhan, Jakubowski, Lang, 2015)

In order to achieve such asymptotic behaviors:

Theorem

Let {Xj} be stationary. Then the sequence {Xj} admits a continuous phantom
distribution function if and only if ∃γ ∈ (0, 1) such that ∀c > 0:

P(Mn ≤ vn)→n→∞ γ,

supp+q≤cn
∣∣P(Mp+q ≤ vn

)
− P

(
Mp ≤ vn

)
P
(
Mq ≤ vn

)∣∣→n→∞ 0.

.

This follows under strong mixing or under weak dependence with convenient rates if
the marginal distribution of X is regular enough.
In order to fit such phantoms, a main project relies on the estimation of quantiles
for the extremes of block.
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Extreme Values Theory II

In some situations there exist sequences ub, vb with:

P
(
ub max

1≤i≤b
Xi − vb ≤ x

)
→ K(x)

A well known case is more demanding and corresponds to the existence of extremal
indices θX .
Here K(x) ≡ GθXα (x) for Gα the law of attraction for extremes parametrized by its
Hill index α ∈ R.
Extremal and Pareto indices are estimated for stationary times series (Xt), they
entail the knowledge of the asymptotic behavior of the extremes in most of the
cases,
but Gumbel limiting distribution necessitates an additional nonparametric
estimation!
For the case of Markov chains such asymptotic behaviors need recurrence.
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Subsampling (Doukhan, Prohl, Robert, 2011)

Besides direct estimates of the asymptotic behaviors for extremes, alternative
techniques may be used.
Subsampling will ensure some estimated confidence intervals for extremes in order
to estimate Values at Risks and others financial quantities.
A first step:
Convergent statistics sequences Tb = tb(x1, . . . , xb) may be subsampled with

1

n − bn + 1

n−bn∑
i=0

11{Tbn,i≤x}, Tbn,i = tbn(Xi+1, . . . ,Xi+bn)

bn
n − bn + 1

n/bn−1∑
i=0

11{Tbn,i≤x}, Tbn,i = tbn(Xibn+1, . . . ,X(i+1)bn)

t 7→ 11t≤x is replaced by a continuous 1/εn−Lipschitz approximation.

Centered higher moments yield uniform almost sure convergence
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Renormalization (Doukhan, Prohl, Robert, 2011)

The divergent case Tb = tb(x1, . . . , xb) = max{x1, . . . , xb} needs more attention

If P (ub max1≤i≤b Xi − vb ≤ x)→ K(x) ≡ GθX (x),

Set H̃b,n(x) =
1

N

N−1∑
i=0

ϕ

(
mb(Yb,i )− x

εn

)
,

v̂b,n = H̃−1b,n

(
1
2

)
, ûb,n =

(
H̃−1b,n(t2)− H̃−1b,n(t1)

)−1
estimate vb, ub

up to the normalization K−1
(
1
2

)
= 0 median equals 0 and

up to a multiplicative constant C = K−1(t2)−K−1(t1) fix interquartiles.

Now

H̃b,n

(
v̂b,n +

x

ûb,n

)
→n→∞ K

( x
C

)
, (b = b(n)→∞ conveniently)

convergence is uniform, either in probability or a.s.

Paul Doukhan, University Cergy-Pontoise and IUF, FRANCE Applications of weak dependence to extreme value theory and resampling



Presentation Dependences Models Technique Applications Extremes Wild bootstrap

Further projects with extremes

In many cases EVT for nonmixing sequences are an important question.
For this we plan further works on:

From the construction of phantoms in 2015’s paper with Jakubowski and
Lang, a sequence of 2−k−quantiles is enough to fit one of them. This is easy
to provide consistent blockwise estimations of those quantiles. A smoothing
procedure should allow this estimation..

Multidimensional extremes may not be directly obtained but a copula vision
should allow to fit EVT (with Chautru and Segers)

Self driven subsampling procedures (with Bertail)

Clusters determined through Drees and Rootzen 2011’s blockwise general
procedure (FCLT for clusters) are extended with Gomez under weak
dependence for specific applications including the estimation of Hill index
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Wild bootstrap

Wild Bootstrap (D., Lang, Neumann, Leucht, 2014) I

Suppose that we observe a stretch X1, . . . ,Xn from a (strictly) stationary and
real-valued process (Xt)t∈Z. We denote by F the common cumulative distribution
function of the Xt and by Fn the empirical distribution function, i.e.

Fn(x) =
1√
n

n∑
t=1

11(Xt ≤ x).

The empirical process Gn(x) =
√
n (Fn(x)− F (x))

d−→ G (x) under some
assumptions for some Gaussian process with EG (x) = 0 and
Cov(G (x),G (y)) =

∑∞
t=−∞ Cov(11(X0 ≤ x), 11(Xt ≤ y)). For tails analysis,

consider a weighted version of the empirical process, e.g.

Hn(x) =

√
n√

F (x)(1− F (x))
(Fn(x)− F (x)) .

(strong mixing, absolute regularity, φ−mixing, weak dependence, and others may
be considered)
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Wild bootstrap

Wild Bootstrap (D., Lang, Neumann, Leucht, 2014) II

The so-called dependent wild bootstrap was introduced by Shao (2010) for smooth
functions of the mean. Originally, the idea of the dependent wild bootstrap is to
construct the pseudo-observations as follows:

X ∗t = X̄n +
(
Xt − X̄n

)
ε∗t,n, t = 1, . . . , n.

Here X̄n = 1
n

∑n
t=1 Xt and (ε∗t,n)1≤t≤n is a triangular scheme of weakly dependent

random variables:

the ε∗t,n are independent of X1, . . . ,Xn,

E∗ε∗n,t = 0,

Cov∗(ε∗s,n, ε
∗
t,n) = ρ(|s − t|/ln), where ρ(u)→u→0 1∑n

r=1 ρ(r/ln) = O(ln), ln →n→∞ ∞ and ln = o(n).

Shao (2010) verified that under certain regularity conditions

supx

∣∣P (√n [H(X̄n)− H(EX1)
]
≤ x

)
− P∗

(√
n
[
H(X̄ ∗n )− H(X̄n)

]
≤ x

)∣∣ P→ 0

where H is a smooth function and X̄ ∗n = 1
n

∑n
t=1 X

∗
t .
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Wild bootstrap

Wild Bootstrap (D., Lang, Neumann, Leucht, 2014) III

In our case of the empirical process, the role of the Xt above is taken by
Zt = 11(Xt ≤ x).
Following ‘Shao’s idea’ we define bootstrap counterparts of the Zt as

Z∗t = Z̄n + (Zt − Z̄n) ε∗t,n = Fn(x) + (11(Xt ≤ x)− Fn(x)) ε∗t,n.

This leads to the following bootstrap version of the empirical process:

G∗n (x) =
1√
n

n∑
t=1

(
Z∗t − Z̄n

)
=

1√
n

n∑
t=1

(Zt − Fn(x)) ε∗t,n= G∗,0n (x)− R∗n (x),

G∗,0n (x) =
∑n

t=1(Zt − F (x)) ε∗t,n/
√
n, R∗n (x) = (Fn(x)− F (x))

∑n
t=1 ε

∗
t,n/
√
n.

Since supx∈R |Fn(x)− F (x)| = OP(1) we obtain supx∈R |R∗n (x)| = OP∗(
√

ln/n).

{Y ∗n = OP∗(rn)} if {∀ε > 0,∃K (ε) with P(P∗(|Y ∗n /rn| > K (ε)) > ε) −→
n→∞

0}.

Hence, we can analyze G∗,0n instead of G∗n in the sequel.
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Wild bootstrap

Wild Bootstrap (D., Lang, Neumann, Leucht, 2014) IV

Applications are important for statistics

Confidence sets for quantiles; besides the inversion of the cumulative
distribution function, a statistical validation is needed and obtained through
bootstraping techniques.

Kolmogorov Smirnov type tests of hypothesis for time series: in this case
indeed the supremum of the limit process G do depend on the marginal
distribution of the sample, contrary to the independent case.

Order statistics: asymptotics are still reachable here through the weighted
empirical process.

Paul Doukhan, University Cergy-Pontoise and IUF, FRANCE Applications of weak dependence to extreme value theory and resampling



Presentation Dependences Models Technique Applications Extremes Wild bootstrap

Variance estimation

Estimating a variance: D., Jakubowicz, León (2009) I

If
1√
n

n∑
k=1

Xk →n→∞ Nd(0,Σ), with Σ =
∞∑

k=−∞

EX0X
′
k

Self-normalized results yield asymptotic confidence sets, Σ is estimated by:

Spectrum: Σ̂ = f̂ (0) if the matrix-spectral density is estimated

Donsker: 1√
n

∑
ns<i<nt Xi → Z (t)− Z (s) Brownian, Z (1) ∼ Nd(0,Σ)

∆j,n =
1√
n

∑
i∈Bj

Xi → Z (tj)− Z (sj) (Bj = [nsj , ntj ] ∩ N)

Then for suitable choices of F , and 0 = s1 < t1 ≤ s2 < · · · ≤ sm < tm = 1

F̃n =
1

m

m∑
j=1

F (∆j,n)→ EF
(
Nd(0,Σ)

)
Carlstein (1986) mixing, Peligrad-Shao (1995) ρ-mixing use both ti = si+1
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Estimating a variance: D., Jakubowicz, León (2009) II

In order to derive a self-normalized CLT, D., Jakubowicz, León (2009) set ti < si+1

and, under weak dependence:

√
Nn√

(Ĝn − F̂ 2
n )+

(
F̃n − EF (Nd(0,Σ)

)
→ N (0, 1), (G ≡ F 2)

Applications to
- Linear models with dependent inputs
- Sea waves modeling, Xt = F (Yt) for F approximately linear
- Crossing numbers of oscillatory systems

For such explicit examples for which such procedures is proved to be useful through
simulation studies.
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