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1 Introduction

Politis and Romano (1994) established the methodology of subsampling to approx-
imate the sampling distributions of converging statistics when the underlying se-
quence is strongly mixing. Bertail et al. (2004) extended this technique to a subsam-
pling estimator for distributions of diverging statistics. In particular, they constructed
an approximation of the distribution of the sample maximum without any informa-
tion on the tail of the stationary distribution. However, the assumption on the strong
mixing properties of the time series is sometimes too strong as for the first-order
autoregressive (AR(1)) process introduced and studied by Chernick (1981):

Xt = 1
r
(Xt−1 + εt ), t ≥ 1, (1)

where r ≥ 2 is an integer, (εt )t∈N are i.i.d. and uniformly distributed on the set
{0,1, . . . , r −1}, and X0 is uniformly distributed on [0,1]. Andrews (1984) and Ango
Nze and Doukhan (2004) (see p. 1009 and Note 5 on p. 1028) provide tools to prove
that such a class of processes is not strongly mixing. The results of Bertail et al.
(2004) cannot be used, although the normalized sample maximum has a nondegener-
ate limiting distribution: let Mn = max(X1, . . . ,Xn); then

lim
n→∞ P

(
n(1 − Mn) ≤ x

)
= 1 − exp

(
−r−1(r − 1)x

)
for all x ≥ 0

(see Theorem 4.1 in Chernick 1981).
This paper is aimed at weakening the strong mixing condition assumed in Bertail

et al. (2004) and at studying a new smooth subsampling estimator adapted to the
weak dependence conditions considered in Doukhan and Louhichi (1999). Indeed in
this paper a wide dependence framework is introduced that turns out in particular
to apply to the previous process and that widely improves the amount of potentially
usable models (see Dedecker et al. 2007).

The content of the paper is organized as follows. Section 2 is devoted to a defi-
nition of the dependence structure and provides examples of weakly dependent se-
quences. In this paper we assume that the underlying process is either η- or λ-weakly
dependent. The smooth and rough subsampling estimators for the sampling distribu-
tions of converging statistics are then introduced, and uniform almost sure conver-
gence results are given. Section 3 gives sufficient conditions for convergence in dis-
tribution of suitably normalized sample maxima for weakly dependent time series.
Then, we discuss how to estimate the normalizing factors and derive the asymptotic
properties of the smooth subsampler. Section 4 presents and discusses a comparative
simulation study of the finite sample behavior of the smooth and rough subsampling
estimators on simulated data. Proofs are reported in the last section.

In the sequel, we use the following notation. For two sequences a ≡ (an) and b ≡
(bn), a ≺ b says that there exists a positive constant c such that, for all n, an ≤ cbn.
The maximum of the numbers a, b is denoted by a ∨ b, the integer-valued part of the
real number x by *x+, and the almost sure convergence by a.s. We denote by N,Z,
and R the sets of nonnegative integers, integers, and the real line.
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2 Subsampling the distribution of converging statistics for weakly dependent
time series

2.1 Weak dependence

Doukhan and Louhichi (1999) proposed a new concept of weak dependence that
makes explicit the asymptotic independence between past and future. Let us consider
a strictly stationary time series X = (Xt )t∈Z which (for simplicity) will be assumed
to be real-valued. Let us denote by F its stationary distribution function. If X is a
sequence of iid random variables, then for all t1 ,= t2, independence between Xt1 and
Xt2 writes Cov(f (Xt1), g(Xt2)) = 0 for all f,g with ‖f ‖∞,‖g‖∞ ≤ 1, where ‖f ‖∞
denotes the supremum norm of f . For a sequence of dependent random variables, we
would like that Cov(f (‘past’), g(‘future’)) is small when the distance between the
past and the future is sufficiently large.

More precisely, for a real function h : Ru → R (u ∈ N∗), define the Lipschitz
modulus as

Liph = sup
(y1,...,yu),=(x1,...,xu)∈Ru

|h(y1, . . . , yu) − h(x1, . . . , xu)|
‖y1 − x1‖ + · · · + ‖yu − xu‖

.

Definition 1 (Doukhan and Louhichi 1999) The process X is said to be (ε,Ψ )-
weakly dependent if

ε(k) = sup
|Cov(f (Xs1, . . . ,Xsu), g(Xt1, . . . ,Xtv ))|

Ψ (f, g)
−−−→
k→∞

0,

where the sup bound is relative to u,v ≥ 1, s1 ≤ · · · ≤ su ≤ t1 ≤ · · · ≤ tv with
k = t1 − su, and f : Ru → R, g : Rv → R satisfy Lipf,Lipg < ∞ and ‖f ‖∞ ≤ 1,
‖g‖∞ ≤ 1.

The following distinct functions Ψ yield η- and λ-weak dependence coefficients:

if Ψ (f, g) = uLipf + vLipg, then ε(k) = η(k),

= uLipf + vLipg + uvLipf · Lipg, then ε(k) = λ(k).

Note that λ-weak dependence includes η-weak dependence. The main feature of Def-
inition 1 is that it incorporates a much wider range of classes of models than those
that might be described through a mixing condition (i.e., α-mixing, β-mixing, ρ-
mixing, φ-mixing, etc., see Doukhan 1994) or association condition (see Chaps. 1–3
in Dedecker et al. 2007). Limit theorems and very sharp results have been proved for
this class of processes (see Chaps. 6–12 in Dedecker et al. 2007 for more informa-
tion).

We now provide a nonexhaustive list of weakly dependent sequences with their
weak-dependence properties. This will prove how wide the range of potential appli-
cations is.
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Example 1

1. The Bernoulli shift with independent inputs (ξt )t∈Z is defined as Xt =
H((ξt−j )j∈Z), H : RZ → R, (ξi )i∈Z i.i.d. The process (Xt )t∈Z is η-weakly de-
pendent with η(k) = 2δm∧1

*k/2+ if E|Xt |m < ∞ and

E
∣∣H(ξj , j ∈ Z) − H(ξj 1 |j |<k, j ∈ Z)

∣∣ ≤ δk ↓ 0 (k ↑ ∞).

Two following (causal) examples are given by:

– The first-order autoregressive sequences with discrete innovations in {0,1, . . . ,

r − 1} given by (1). This process is not strongly mixing, but it is a η-weakly
dependent process such that η(k) = O(r−k).

– The LARCH model with Rademacher i.i.d. inputs:

Xt = ξt (1 + aXt−1), P(ξt = ±1) = 1
2
. (2)

If a < 1, there exists a unique stationary solution (see Dedecker et al. 2007).
Doukhan et al. (2009) proved that if a ∈ ((3 −

√
5)/2,1/2], the stationary solu-

tion Xt = ξt + ∑
j≥1 aj ξt · · · ξt−j is not strongly mixing, but X is a η-weakly

dependent process such that η(k) = O(ak).

2. If X is a GARCH(p, q) process or, more generally, a ARCH(∞) process such that
Xt = ρtξt with ρ2

t = b0 + ∑∞
j=1 bjX

2
t−j for t ∈ Z and β ≡ ∑

j>0 bj < 1, then if

– there exists q > 0 such that bj = 0 for j > q , then (Xt )t∈Z is a η-weakly de-
pendent process with η(k) = O(e−ck) for some explicit c ≡ c(q,β) > 0 (this is
the case of ARCH(q) processes);

– there exist C > 0 and µ ∈ ]0,1[ such that ∀j ∈ N, 0 ≤ bj ≤ Cµj , then (Xt )t∈Z
is a η-weakly dependent process with η(k) = O(e−c

√
k) for some explicit c ≡

c(µ,β) > 0;
– there exist C > 0 and ν > 1 such that ∀j ∈ N, 0 ≤ bj ≤ Cj−ν , then (Xt )t∈Z

is a η-weakly dependent process with η(k) = O(k−c) for some explicit c ≡
c(ν,β) > 0.

See Doukhan et al. (2006) for details.
3. If (Xt )t∈Z is either a Gaussian or an associated process, then it is λ-weakly de-

pendent, and

λ(k) = O
(

sup
i≥k

∣∣Cov(X0,Xi)
∣∣
)

(see Doukhan and Louhichi 1999).

Other λ-weakly dependent processes are described in Doukhan and Wintenberger
(2007) where it is proved that this dependence is essentially stable through Bernoulli
shifts (consider, e.g., the LARCH(∞) models with bounded and dependent inno-
vations). Other examples of weakly dependent processes may also be found in the
monograph Dedecker et al. (2007) and in Doukhan et al. (2006).
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2.2 Subsampling the distribution of converging statistics

To describe the present approach, let (Xn)n∈Z be a strictly stationary real-valued
sequence of random variables. Suppose that Sn = sn(X1, . . . ,Xn) is a statistic of
interest that converges in distribution as n tends to infinity. Subsampling is used to
approximate the sampling distribution of Sn, Kn(x) = P(Sn ≤ x).

To obtain subsampling counterpart of Sn, we can use either the overlapping
scheme of blocks of size b

Yb,i = (Xi+1, . . . ,Xi+b) (3)

for i = 1, . . . ,N with N = n − b (see Künsch 1989 and Politis and Romano 1994) or
the nonoverlapping scheme

Yb,i = (X(i−1)b+1, . . . ,Xib) (4)

for i = 1, . . . ,N with N = *n/b+ (see Carlstein 1986). In each collection of subsam-
ples, computation of subsampling analogue of statistics is made for each subseries
and used to construct subsampling estimators. We will see that the nonoverlapping
scheme is more interesting when working with weakly dependent time series as it
allows one to impose less restrictive dependence assumptions on the estimator.

In the remainder of the paper we consider a bandwidth b ≡ (bn)n∈N such that
b → ∞ and limn→∞ n/b = ∞.

To prove the asymptotic properties of subsampling estimators under the weak de-
pendence condition, we assume that one of the two following conditions holds. The
first condition assumes that Kn is a converging statistic in the sense that it has a non-
degenerate limit denoted by K and that the density probability function of K exists.

C. 1 Convergent statistics: suppose that there exists a positive sequence (rb)b∈N such
that

rb = sup
x∈R

∣∣Kb(x) − K(x)
∣∣ −−−→

b→∞
0, ‖K′‖∞ < ∞, (5)

where K′ denotes the density of the limit probability distribution function.

The second one is a technical condition needed to derive uniform a.s. convergence
results for the rough subsampling estimator. It controls the limiting variance and the
higher order moments of the estimator.

C. 2 Concentration condition: suppose that there exist suitable constants c, D(b) > 0,
b = 1, 2, . . . , such that

sup
x∈R

P
(
Sb ∈ [x, x + z]

)
≤ D(b)zc (∀z > 0). (6)

Unless the simple stationary Markov case for which the existence of a bounded tran-
sition probability density is enough to assert that c = 1, this condition is intricate to
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be established for more general setting (see Doukhan and Wintenberger 2007, 2008
for examples for which the concentration condition is satisfied).

Let us now define the subsampling estimators. We begin with a smooth subsam-
pling estimator suitable for weakly dependent time series

K̃b,n(x) = 1
N

N−1∑

i=0

ϕ

(
Sb,i − x

εn

)
, (7)

where Sb,i = sb(Yb,i), εn ↓ 0, and ϕ is the nonincreasing continuous function such
that ϕ = 1 or 0 according to x ≤ 0 or x ≥ 1 and which is affine between 0 and 1. The
monotonicity of the function ϕ is essential to derive the uniform convergence of the
estimator.

For completeness, we will also report asymptotic results for the rough subsampling
estimator introduced and studied in Politis and Romano (1994)

K̂b,n(x) = 1
N

N−1∑

i=0

1{Sb,i≤x}, (8)

where 1 denotes the indicator function. It is worth noting that the rough subsampler
is based on the indicator function, which is not a Lipschitz function.

Remark 1 Under the assumption of the convergent statistics (5), one can easily check
that the bias of the smooth subsampling estimator is bounded in the following way:

sup
x∈R

∣∣E
[
K̃b,n(x)

]
− K(x)

∣∣ ≤ rb + εn‖K′‖∞. (9)

In order to prove either the uniform strong or weak laws of large numbers, we
compute bounds for the absolute values of the p-centered moments of the subsam-
pling estimators (p ∈ N and p ≥ 2) defined by

∆̃
(p)
b,n(x) =

∣∣E
[
K̃b,n(x) − E

[
K̃b,n(x)

]]p
∣∣∣∣,

∆̂
(p)
b,n (x) =

∣∣E
[
K̂b,n(x) − E

[
K̂b,n(x)

]]p∣∣.

Indeed, for sufficiently large p such that
∑

n ∆̃
(p)
b,n(x) < ∞ and

∑
n ∆̂

(p)
b,n(x) < ∞,

Markov’s inequality, together with the Borel–Cantelli lemma, allows us to conclude
the a.s. convergence of the estimators. The uniformity with respect to x follows with
the arguments of Dini’s second theorem.

To characterize asymptotic properties of the subsampling estimators, we start by
giving results for the smooth subsampler under convergence condition (5).

Theorem 1 (Smooth subsampler) Assume that Condition (C.1) holds. Let δ > 0,
p ∈ N∗, and L ≡ L(b) = Lip sb . Suppose moreover that respectively the overlapping



Subsampling weakly dependent time series and application to extremes 453

setting is used and one of the following relations holds:

η-dependence:
∞∑

t=0

(t + 1)p−2η(t) < ∞,
b

n

[
1 ∨ L

εn

]
≺ n−δ, or

λ-dependence:
∞∑

t=0

(t + 1)p−2λ(t) < ∞,
b

n

[
1 ∨ L

εn
∨ bL2

ε2
n

]
≺ n−δ,

or the nonoverlapping setting is used and

η-dependence:
n−1∑

t=0

(t + 1)p−2η(t) ≺ bp−2,
b

n

[
1 ∨ bL

εn

]
≺ n−δ, or

λ-dependence:
n−1∑

t=0

(t + 1)p−2λ(t) ≺ bp−2,
b

n

[
1 ∨ bL

εn
∨ bL2

ε2
n

]
≺ n−δ.

Then

∆̃
(p)
b,n(x) ≺ n−* p

2 +δ.

Hence, if p/2 ∈ N is such that pδ > 2, then

sup
x∈R

∣∣K̃b,n(x) − K(x)
∣∣ −−−→

n→∞ 0 a.s.

Note that if one of the above relations holds with p = 2, it yields the same results
but only with respect to the convergence in probability. The proof of Theorem 1 and
all the other proofs of the results in this paper are given in Sect. 5.

Monitoring the smoothing parameter εn. The smoothing parameter εn needs to be
chosen suitably. A natural way to choose εn is to find equilibrium between the square
of bias of statistics and the limiting variance. The order of square of bias in (9) is
given by O(ε2

n + r2
b ). The order of variance is listed for each case as follows.

Overlapping setting:

η-dependence:
b

n

[
1 ∨ L

εn

]
,

λ-dependence:
b

n

[
1 ∨ L

εn
∨ bL2

ε2
n

]
.

Nonoverlapping setting:

η-dependence:
b

n

[
1 ∨ bL

εn

]
,

λ-dependence:
b

n

[
1 ∨ bL

εn
∨ bL2

ε2
n

]
.



454 P. Doukhan et al.

Let us consider, as an example, the η-weak dependence case. A reasonable choice of
the parameter εn is then (bL/n)1/3 for the overlapping subsampling scheme, and it
is (b2L/n)1/3 in the nonoverlapping case, respectively.

Choice of subsampling size b. Generally, there is no unique rule to optimally select
bandwidth factor (see Nordman and Lahiri 2004, Bickel et al. 1997). An optimal
choice of subsampling size could be made by finding equilibrium between square of
bias and the limiting variance under each of subsampling schemes. A more detailed
analysis is left for future research.

Choice of procedure. An important issue is also the choice of the subsampling
scheme. It is clear that the overlapping scheme for smooth subsampling is a much
more “expensive” procedure in terms of the assumptions needed to be imposed on
the sample size and on the bandwidth sequence.

For completeness, we give results for the rough subsampling estimator by consid-
ering successively the convergence condition (5) and the concentration condition (6).

Theorem 2 (Rough subsampler) Assume that Condition (C.1) holds. Let L ≡ L(b) =
Lip sb . Suppose moreover that respectively the overlapping setting is used and one of
the following relations holds:

η-dependence:
∞∑

t=0

η(t)
1
2 < ∞, lim

n→∞
b

n

[
1 ∨ L√

b

]
= 0, or

λ-dependence:
∞∑

t=0

λ(t)
2
3 < ∞, lim

n→∞
b

n

[
1 ∨

(
L4

b

) 1
3

∨
(

L

b

) 2
3
]

= 0,

or the nonoverlapping setting is used and

η-dependence:
∞∑

t=0

η(t)
1
2 < ∞, lim

n→∞
b

n

[
1 ∨

√
bL

]
= 0, or

λ-dependence:
∞∑

t=0

λ(t)
2
3 < ∞, lim

n→∞
b

n

[
1 ∨

(
bL2) 2

3 ∨
(
bL2) 1

3
]
= 0.

Then limn→∞ ∆̂
(2)
b,n(x) = 0, and

lim
n→∞ sup

x∈R

∣∣K̂b,n(x) − K(x)
∣∣ = 0 in probability.

Almost sure convergence results for the rough subsampling estimator are obtained
at the price of more restrictive conditions.

Theorem 3 (Rough subsampler) Assume that Condition (C.2) holds. Let δ > 0,
p ∈ N∗, L ≡ L(b) = Lip sb , and D ≡ D(b). Suppose moreover that respectively the
overlapping setting is used and one among the following relations hold:
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η-dependence:
∞∑

t=0

(t + 1)p−2η(t)
2+c
1+c < ∞,

b

n

[
1 ∨

(
DLc

b
∨ bL2+c

) 1
1+c

]
≺ n−δ, or

λ-dependence:
∞∑

t=0

(t + 1)p−2λ(t)
1+c
2+c < ∞,

b

n

[
1 ∨

(
(DLc)2

b2−c
∨ DLc

b2 ∨ DL2c

b2−c

) 1
2+c

]
≺ n−δ,

or the nonoverlapping setting is used and

η-dependence:
n−1∑

t=0

(t + 1)p−2η(t)
2+c
1+c ≺ bp−2,

b

n

[
1 ∨

(
D(bL)c ∨ (bL)2+c

) 1
1+c

]
≺ n−δ, or

λ-dependence:
n−1∑

t=0

(t + 1)p−2λ(t)
1+c
2+c ≺ bp−2,

b

n

[
1 ∨

((
D(bL)c

)2 ∨ D(bL)c ∨ D(bL)2c
) 1

2+c
]
≺ n−δ.

Then

∆̂
(p)
b,n (x) ≺ n−* p

2 +δ.

Hence, if p/2 ∈ N is such that pδ > 2, then

sup
x∈R

∣∣K̂b,n(x) − K(x)
∣∣ −−−→

n→∞ 0 a.s.

3 Subsampling the distribution of extremes

Bertail et al. (2004) studied subsampling estimators for distributions of diverging
statistics but imposed that the time series is strongly mixing. We aim at adapting their
results for weakly dependent sequences. Instead of considering the general case, we
focus on the sample maximum because we are able to give sufficient conditions such
that the normalized sample maximum converges in distribution under the weak de-
pendence assumption. Note however that the results can easily be generalized, pro-
vided that it is possible to compute the Lipschitz coefficient of the function used to
define the diverging statistics.



456 P. Doukhan et al.

3.1 Convergence of the sample maximum

We first discuss conditions for convergence in distribution of the normalized sample
maximum of a weakly dependent sequence.

Let xF = sup{x : F(x) < 1} be the upper end point of F , and F̄ := 1 − F . We
say that the stationary distribution F is in the maximum domain attraction of the
generalized extreme value distribution with index γ , −∞ < γ < ∞, if there exists a
positive measurable function g such that for 1 + γ x > 0,

lim
u→xF

F̄
(
u + xg(u)

)
/F̄ (u) = (1 + γ x)−1/γ .

Then there exist sequences (un)n≥1 and (vn)n≥1 such that un > 0 and

lim
n→∞Fn

(
wn(x)

)
= Gγ (x) :=

{
exp(−(1 + γ x)

−1/γ
+ ) if γ ,= 0,

exp(− exp(−x)) if γ = 0,
(10)

where wn(x) = x/un + vn. Let q(t) = F←(1 − t−1) where F← is the generalized
inverse of F . Then (un)n≥1 and (vn)n≥1 can be chosen as

vn = q(n),

u−1
n =






(−γ )(xF − q (n)) if γ < 0,

q (ne) − q (n) if γ = 0,

γ q (n) if γ > 0.

Let us introduce the extremal dependence coefficient

βn,l = sup
∣∣P

(
Xi ≤ wn(x), i ∈ A∪B

)
−P

(
Xi ≤ wn(x), i ∈ A

)
P
(
Xi ≤ wn(x), i ∈ B

)∣∣,

where the sup bound is relative to sets A and B such that A ⊂ {1, . . . , k}, B ⊂ {k + l,
. . . , n}, and 1 ≤ k ≤ n − l.

O’Brien (1987) gave sufficient conditions such that the normalized sample maxi-
mum un(Mn − vn) converges in distribution when the stationary distribution is in the
maximum domain attraction of some extreme value distributions.

Theorem 4 O’Brien (1987) assume that F is in the maximum domain attraction of
the extreme value distribution with index γ . Let (an) be a sequence of positive integers
such that an = o (n) as n → ∞ and

lim
n→∞

P(Man > wn(x))

anF̄ (wn(x))
= θ ∈ (0,1]. (11)

Assume that there exists a sequence (ln) of positive integers such that

ln = o (an) and
n

an
βn,ln →n→∞ 0 as n → ∞. (12)

Then

lim
n→∞ P

(
Mn ≤ wn(x)

)
=

{
exp(−θ(1 + γ x)

−1/γ
+ ) if γ ,= 0,

exp(−θ exp(−x)) if γ = 0.
(13)
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The constant θ is referred to as the extremal index of X (see Leadbetter et al.
1983). Note that any ln = o (n) such that βn,ln → 0 as n → ∞ can be used in con-
structing a sequence an such that (12) is satisfied by taking an equal to the integer
part of max(nβ

1/2
n,ln

, (nln)
1/2). The condition βn,ln → 0 as n → ∞ is known as the

D(wn) condition (see Leadbetter 1974).
We provide an equivalent theorem when X is assumed to be either η- or λ-weakly

dependent.

Theorem 5 Assume that F is an absolutely continuous distribution in the maximum
domain of attraction of the extreme value distribution with index γ such that for
1 + γ x > 0,

lim
n→∞

∂

∂x
Fn

(
wn(x)

)
= ∂

∂x
Gγ (x). (14)

Let (an) be a sequence of positive integers such that an = o (n) as n → ∞ and (11)
holds. Assume that there exists a sequence (ln) of positive integers such that ln =
o (an) (n → ∞). If X is η-weakly dependent and

n

an

(
nη(ln)un

)1/2 →n→∞ 0,

or if X is λ-weakly dependent and

n

an

([
nλ(ln)un

]1/2 ∨
[
nanλ(ln)u

2
n

]1/3) →n→∞ 0,

then (13) holds.

The assumption that F is an absolutely continuous distribution is a strong as-
sumption that is needed to take into account the weak dependence properties of the
time series. Of course this assumption can be relaxed when only considering the con-
vergence of the normalized sample maximum: one may consider the example of an
integer-valued moving average sequence given in Hall et al. (2010), where it is shown
that the limiting distribution of the normalized maxima is the same distribution as it
would be obtained in the continuous case. This result has to be linked with the fact
that the stationary distribution is heavy-tailed (see Andersson 1970 for further de-
tails).

3.2 Subsampling the distribution of the normalized sample maximum

Consider the sequence of extreme statistics

Mn = mn(X1, . . . ,Xn) = max
1≤i≤n

Xi.

Set Hn(x) = P(Mn ≤ x). Restate the smooth subsampling estimates for nonnormal-
ized extremes by

H̃b,n(x) = 1
N

N−1∑

i=0

ϕ

(
mb(Yb,i) − x

εn

)
. (15)
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Assume, under the assumption of Theorem 5, that (5) adapted to normalized extremes
holds, i.e.,

rn = sup
x∈R

∣∣Hn

(
wn(x)

)
− H(x)

∣∣ →n→∞ 0,

where H = Gθ
γ .

Following the lines of Bertail et al. (2004), we have to impose conditions on the
median and the distance between two quantiles of the limiting distribution in order to
be able to identify it. The median of the limiting distribution to estimate is assumed
to be equal to 0, and the distance between the quantiles is assumed to be equal to 1.
Fix 0 < t1 < t2 < 1. Then the normalizing sequences can be estimated by

ṽb,n = H̃←
b,n

(
1
2

)
, ũb,n =

∣∣H̃←
b,n(t2) − H̃←

b,n(t1)
∣∣−1

. (16)

Let C = H←(t2) − H←(t1). Using that Lipmb = 1, from Theorem 4 in Bertail et al.
(2004) and Theorem 1 we derive the following theorem.

Theorem 6 Assume that the conditions of Theorem 5 hold. Let δ > 0 and p ∈ N∗.
The relation |E[H̃b,n(wb(x)) − E[H̃b,n(wb(x))]]p| ≺ n−* p

2 +δ holds if we assume that
limn→∞ εnub = 0 and respectively that

• in the overlapping case,

η-weak dependence:
∞∑

t=0

(t + 1)p−2η(t) < ∞,
b

n1−δεn
≺ 1, or

λ-weak dependence:
∞∑

t=0

(t + 1)p−2λ(t) < ∞,
b

n1−δε2
n

≺ 1,

• in the nonoverlapping case,

η-weak dependence:
n−1∑

t=0

(t + 1)p−2η(t) ≺ bp−2,
b2

n1−δεn
≺ 1, or

λ-weak dependence:
n−1∑

t=0

(t + 1)p−2λ(t) ≺ bp−2,
b2

n1−δε2
n

≺ 1.

Hence, if p/2 ∈ N is such that pδ > 2, then

sup
x∈R

∣∣∣∣H̃b,n

(
ṽb,n + x

ũb,n

)
− H

(
H←

(
1
2

)
+ Cx

)∣∣∣∣ →n→∞ 0 a.s.

Choice of procedure. In Robert et al. (2009) the question of the choice of the
subsampling scheme for the estimator of the distribution of the sample maximum
is partially addressed. The authors are interested in the estimation of the extremal
index which measures the degree of clustering of extremes and consider ‘disjoint’
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(nonoverlapping) and ‘sliding’ (overlapping) blocks estimators which are based on
the estimation of the distribution of the sample maximum. They compare their asymp-
totic properties and show that the sliding blocks estimator is more efficient than the
disjoint version and has a smaller asymptotic bias.

4 Simulation study

The finite sample properties of our subsampling estimators are now compared in a
simulation study. We consider both rough and smooth subsampling estimators when
they are computed with the overlapping or nonoverlapping schemes.

Sequences of length n = 2000 and n = 5000 have been simulated from the first-
order autoregressive process of Example (1),

Xt = 1
r
(Xt−1 + εt ),

where (εt )t∈Z are iid and uniformly distributed on the set {0,1, . . . , r − 1}, and r is
equal to 3. It is well known that the asymptotic condition (13) holds with γ = −1,
θ = r−1(r − 1), un = n, and vn = 1 − n−1. Following the approach presented in
the previous Sect. 3.2, we have to fix conditions on the median and two quantiles of
the limiting distribution. We choose t1 = 1/4 and t2 = 3/4. The limiting distribution
becomes

K(x) = e−θ(1−(x−d)/c), x ≤ c + d,

where c = θ/ ln 3 and d = (ln 2 − θ)/ ln 3. The normalization coefficients ūn and v̄n

such that

lim
n→∞ P

(
ūn(Mn − v̄n) ≤ x

)
= K(x)

are given by

v̄n = vn − c−1u−1
n d, ūn = cun. (17)

We first simulate a sequence of length n = 2000 and plot the estimators of the
limiting distribution in Fig. 1. As expected, smoothing estimators yield smoother
curves. The differences between the estimators are small, but the smoothed versions
need less strong assumptions for the convergence. Moreover note that, contrary to the
last remark at the end of the previous subsection, nothing in those simulations seems
to make us prefer the overlapping scheme to the nonoverlapping one.

Monte Carlo approximations to the quantiles and the means of the estimators have
been then computed from 1000 simulated sequences.

The properties of our rough and smooth subsampling estimators computed with
the nonoverlapping scheme are shown in the two upper graphs in Fig. 2. There are
very few differences between both estimators according to their quantiles and their
means. Their biases are negligible for all the values of x. The confidence intervals
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Fig. 1 AR(1) process. The
rough (dashed) and smooth
(solid) subsampling estimators
computed with the
nonoverlapping scheme (thin)
and with the overlapping scheme
(thick) for a sequence of length
n = 2000, b = 50, ε = 0.05. The
asymptotic distribution is given
by the gray curve

with level 90% (gray zone) vanish when x goes to 0 because 0 is the median of the
empirical distribution and also the median of the asymptotic distribution. We may
compare the quantiles and the means of our estimators with those obtained when the
normalization coefficients given by (16) are replaced by the theoretical normalization
coefficients given by (17) (see the two lower graphs in Fig. 2). First, note that the bias
become negative when x is smaller than the median. Second, the confidence intervals
are obviously not equal to zero for the median, but they are more narrow than the
confidence intervals of our estimators when x is close to the extremal point of the
asymptotic distribution, c + d .

The properties of our rough and smooth subsampling estimators computed with
the overlapping scheme are shown in Fig. 3. We chose the same value for b as in the
nonoverlapping scheme, and consequently the number of components in the defini-
tion of estimators is quite larger than in the other scheme. It follows that the empirical
distribution functions given by the estimators computed with the overlapping scheme
are smoother than those of the estimators computed with the nonoverlapping scheme.
The confidence intervals are also a little bit more narrow.

Moreover, note that qualitatively similar results were found when the simulations
were repeated with n = 5000, b = 100, ε = 0.05.

Finally, sequences of length n = 2000 have also been simulated from the LARCH
model with Rademacher i.i.d. inputs (see (2)) and with inputs that have a parabolic
density probability function given by x 8→ 0.5(1 + ρ)|x|ρ for x ∈ [−1,1]. Note that
the Rademacher distribution can be seen as the limit of the parabolic distribution as
ρ goes to infinity. We choose a = 0.4. Hence the process is weakly dependent but not
strong mixing when the inputs have a Rademacher distribution, and it is strong mixing
when the distribution of the inputs is absolutely continuous. Neither the stationary
distribution nor the extremal behavior of the processes are known. Note however that
the end points of the stationary distributions are finite.
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Fig. 2 AR(1) process. Monte Carlo approximations to the quantiles (q0.05 and q0.95) (gray zone) and
means (dashed line) of the rough (left) and smooth (right) subsampling estimators computed with the
nonoverlapping scheme when the normalization coefficients are given by (16) (top) or by (17) (bottom).
The asymptotic distribution function, K, is given by the solid line for a sequence of length n = 2000,
b = 50, ε = 0.05

We perform simulations and use our estimators. Results are given in Fig. 4. The
shapes of the empirical distribution functions given by the estimators are different
for the two processes (in particular for the large values of x). As far as we can see,
the generalized extreme value distribution with a negative index could be a good
choice to model the distribution of the maximum of the process with absolutely con-
tinuous inputs but not to model the distribution of the maximum of the process with
Rademacher inputs. The study of the extremal behavior of these processes are intri-
cate and left for future work.
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Fig. 3 AR(1) process. Monte Carlo approximations to the quantiles (q0.05 and q0.95) (gray zone) and
means (dashed line) of the rough (left) and smooth (right) subsampling estimators computed with the
overlapping scheme when the normalization coefficients are given by (16) (top) or by (17) (bottom). The
asymptotic distribution function, K, is given by the solid line for a sequence of length n = 2000, b = 50,
ε = 0.05

5 Proofs

5.1 Proofs for smooth subsampling

A bound of the expression ∆̃
(p)
b,n(x) is closely related to the coefficients defined for

1 ≤ q ≤ p as

Cb,q(r) = sup
∣∣Cov(Zi1 · · ·Zik ,Zik+1 · · ·Ziq )

∣∣,
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where the supremum refers to indices with 1 ≤ k < q , i1 ≤ · · · ≤ iq satisfy
ik+1 − ik = r , and Zi = ϕ(

Sb,i−x
εn

) − Eϕ(
Sb,i−x

εn
) is a centered rv. Then setting

Ab,q(N) = 1
Nq

∑

1≤i1≤···≤iq≤N

|EZi1 · · ·Ziq |, 2 ≤ q ≤ p,

Doukhan and Louhichi (1999) prove that ∆̃
(p)
b,n(x) ≤ p!Ab,p(N). Moreover,

Ab,p(N) ≤ Bb,p(N) +
p−2∑

q=2

Ab,q(N)Ab,p−q(N),

Bb,q(N) = q − 1
Nq−1

N−1∑

r=0

(r + 1)q−2Cb,q(r), 2 ≤ q ≤ p.

Lemma 1 Let p,q, b,N be integers, and β(b,N) ≤ 1. We assume that for all 2 ≤
q ≤ p, there exists a constant cq ≥ 0 such that Bb,q(N) ≤ cqβ

q
2 (b,N). Then there

exists a constant Cp ≥ 0 only depending on p and c1, . . . , cp such that Ab,p(N) ≤
Cpβ* p

2 +(b,N).

Proof of the Lemma 1 The result is the assumption if p = 2 because Ab,2(N) ≤
Bb,2(N). If now the result has been proved for each q < p, the relation *p

2 + ≤ * q
2 + +

*p−q
2 + completes the proof because β(b,N) ≤ 1. !

The covariance Cov(f (Yi1, . . . , Yiu), g(Yj1 , . . . , Yjv )) writes respectively as





Cov
(
fb

(
(Xih+k)

{
1 ≤ h ≤ u
1 ≤ k ≤ b

)
, gb

(
(Xjh′+k′){1 ≤ h′ ≤ u

1 ≤ k′ ≤ b

))

Cov
(
fb

(
(X(ih−1)b+k)

{
1 ≤ h ≤ u
1 ≤ k ≤ b

)
, gb

(
(X(jh′−1)b+k′){1 ≤ h′ ≤ u

1 ≤ k′ ≤ b

))

for suitable functions fb, gb depending if the considered setting is the overlapping one
or not. Moreover, Lipfb ≤ Lipf , which proves that if the dependence coefficients
relative to the sequences X = (Xt )t∈Z are denoted by ηX(r) = η(r) and ηYb (r), then
we get the following elementary lemma.

Lemma 2 (Heredity) Assume that the stationary sequence X = (Xt )t∈Z is weakly
dependent. Then the same occurs for Yb = (Yt )t∈Z, and:

• ηYb (r) ≤ bη(r − b) if r ≥ b in the overlapping case,
• λYb (r) ≤ b2λ(r − b) if r ≥ b in the overlapping case,
• ηYb (r) ≤ bη((r − 1)b) if r ≥ 1 in the nonoverlapping case,
• λYb (r) ≤ b2λ((r − 1)b) if r ≥ 1 in the nonoverlapping case.

In our setting we use the function f (y1, . . . , yb) = ϕ( sb(y1,...,yb)−x
εn

), and the covari-
ance inequalities write here as:
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Lemma 3 Using the overlapping and the nonoverlapping schemes, under the respec-
tive weak dependence assumptions η and λ, we respectively get

• in the overlapping case, Cb,q(r) ≺ 1 for r < b, and else, respectively,

Cb,q(r) ≺ bL

εn
η(r − b), or Cb,q(r) ≺ bL

εn

(
1 ∨ bL

εn

)
λ(r − b);

• in the nonoverlapping case, Cb,q(r) ≺ 1 for r = 0, and else, respectively,

Cb,q(r) ≺ bL

εn
η
(
(r − 1)b

)
, or Cb,q(r) ≺ bL

εn

(
1 ∨ bL

εn

)
λ
(
(r − 1)b

)
.

This lemma entails the following bounds:

• Overlapping and η-dependent case. We obtain

Bb,q(N) ≺ 1
Nq−1

b−1∑

r=0

(r + 1)q−2 + 1
Nq−1

bL

εn

N−1∑

r=b

η(r − b)

(r + 1)2−q

≺
(

b

N

)q−1
[

1 + L

εn

N−b−1∑

t=0

η(t)

]

+ 1
Nq−1

bL

εn

N−b−1∑

t=0

η(t)

(t + 1)2−q
,

where the second inequality follows from the change in variable r = t + b. We use
here N = n. Now if we assume that b ≺ n1−δ , we deduce that (b/n)q−1 ≺ n− q

2 δ , and
if bL ≺ n1−δεn, we analogously derive that (b/N)q−1(L/εn) ≺ n− q

2 δ . Assume now
that

b

n

[
1 ∨ L

εn

]
≺ n−δ;

with
∑∞

t=0 (t + 1)q−2 η(t) < ∞ this implies that Bb,q(N) ≺ n− q
2 δ .

• Overlapping and λ-dependent case. We obtain

Bb,q(N) ≺ 1
Nq−1

b−1∑

r=0

(r + 1)q−2 + 1
Nq−1

bL

εn

N−1∑

r=b

λ(r − b)

(r + 1)2−q

+ 1
Nq−1

(bL)2

ε2
n

N−1∑

r=b

λ(r − b)

(r + 1)2−q

≺
(

b

N

)q−1
[

1 + L

εn

N−b−1∑

t=0

λ(t) + bL2

ε2
n

N−b−1∑

t=0

λ(t)

]

+ 1
Nq−1

[
bL

εn

N−b−1∑

t=0

λ(t)

(t + 1)2−q
+ (bL)2

ε2
n

N−b−1∑

t=0

λ(t)

(t + 1)2−q

]

,
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where the second inequality follows from the change in variable r = t + b. We use
here N = n. Now if we assume that b ≺ n1−δ , we deduce that (b/n)q−1 ≺ n− q

2 δ .
Now if (bL∨ (bL)2) ≺ n1−δ(εn ∨ ε2

n), we analogously derive that (b/N)q−1(L/εn ∨
bL2/ε2

n) ≺ n− q
2 δ . Assume now that

b

n

[
1 ∨ L

εn
∨ bL2

ε2
n

]
≺ n−δ;

with
∑∞

t=0 (t + 1)q−2 λ(t) < ∞ this implies that Bb,q(N) ≺ n− q
2 δ .

• Nonoverlapping and η-dependent case. We obtain

Bb,q(N) ≺ 1
Nq−1 + 1

Nq−1

bL

εn

N−1∑

r=1

η((r − 1)b)

(r + 1)2−q

≺ 1
Nq−1

[

1 + bL

εn

n−1∑

k=1

η(k)

]

+ 1
Nq−1

b3−qL

εn

n−1∑

k=1

η(k)

k2−q
,

where the second inequality follows from replacement of k = b(r − 1). We use here
N = n/b. Now if we assume that b ≺ n1−δ , we deduce that (b/n)q−1 ≺ n− q

2 δ , and if
b2L ≺ n1−δεn, we analogously derive that (1/Nq−1)(bL/εn) ≺ n− q

2 δ . Assume now
that

b

n

[
1 ∨ bL

εn

]
≺ n−δ;

with
∑n−1

t=0 (t + 1)q−2η(t) < bq−2 this implies that Bb,q(N) ≺ n− q
2 δ .

• Nonoverlapping and λ-dependent case. We obtain

Bb,q(N) ≺ 1
Nq−1 + 1

Nq−1

bL

εn

N−1∑

r=b

λ((r − 1)b)

(r + 1)2−q
+ 1

Nq−1

(bL)2

ε2
n

N−1∑

r=b

λ((r − 1)b)

(r + 1)2−q

≺
(

1
N

)q−1
[

1 + bL

εn

n−1∑

k=b

λ(k) + bL2

ε2
n

n−1∑

k=b

λ(k)

]

+ 1
Nq−1

[
b3−qL

εn

n−1∑

k=b

λ(k)

k2−q
+ b5−qL2

ε2
n

n−1∑

k=b

λ(k)

k2−q

]

,

where the second inequality follows from replacement of k = b(r − 1). We use here
N = n/b. Now if we assume that b ≺ n1−δ , we deduce that (b/n)q−1 ≺ n− q

2 δ . Now
if (b2L ∨ (bL)2) ≺ n1−δ(εn ∨ ε2

n), we analogously derive that (1/Nq−1)(bL/εn ∨
bL2/ε2

n) ≺ n− q
2 δ . Assume now that

b

n

[
1 ∨ bL

εn
∨ bL2

ε2
n

]
≺ n−δ;
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with
∑n−1

t=0 (t + 1)q−2λ(t) < (bq−2 ∨ bq−4) this implies that Bb,q(N) ≺ n− q
2 δ .

Lemma 4 The relation Bb,q(N) ≺ n− q
2 δ holds in the following cases:

• In the overlapping case, if we have respectively

∞∑

t=0

(t + 1)q−2η(t) < ∞, and
b

n

[
1 ∨ L

εn

]
≺ n−δ,

∞∑

t=0

(t + 1)q−2λ(t) < ∞, and
b

n

[
1 ∨ L

εn
∨ bL2

ε2
n

]
≺ n−δ.

• In the nonoverlapping case, if we have respectively

n−1∑

t=0

(t + 1)q−2η(t) < bq−2, and
b

n

[
1 ∨ bL

εn

]
≺ n−δ,

n−1∑

t=0

(t + 1)q−2λ(t) <
[
bq−2 ∨ bq−4), and

b

n

[
1 ∨ bL

εn
∨ bL2

ε2
n

]
≺ n−δ.

This lemma, together with Lemma 1, yields the main theorem.

5.2 Proofs for rough subsampling

In this section we shall replace εn by some z > 0 to be settled later, and we set ϕz(t) =
ϕ( t−x

z ). We now set Zi = 1{Sb,i≤x} − P(Sb,i ≤ x) and Wi = ϕz(Sb,i) − Eϕz(Sb,i).
A usual trick yields:

∣∣Cov(Zi1 · · ·Zik ,Zik+1 · · ·Ziq )
∣∣ ≤

∣∣Cov(Wi1 · · ·Wik ,Wik+1 · · ·Wiq )
∣∣

+ 2
p∑

h=1

E|Wih − Zih | = U + V

with U = |Cov (Wi1 · · ·Wik ,Wik+1 · · ·Wiq )| and V = 2p P(Sb,i ∈ [x, x + z]).
A bound for V does not depend on the overlapping or not overlapping case, and

we get
{

V ≤ 2p(GLipSbz + rb) ≺ Lz + rb, under assumption (5),

V ≤ 2pDzc ≺ Dzc, under assumption (6).

Set here Ap,b,ε = bpLipSb/z ≺ bL/z. The bound of U needs four cases (considered
in Lemma 3) with

• in the overlapping case,

U ≺
{

bL
z η(r − b) for r ≥ b,

1 for r < b;
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• in the overlapping case,

U ≺
{

bL
z (1 ∨ bL

z )λ(r − b) for r ≥ b,

1 for r < b;

• in the nonoverlapping case,

U ≺
{

bL
z η((r − 1)b) for r ≥ 1,

1 for r = 0;

• in the nonoverlapping case,

U ≺
{

bL
z (1 ∨ bL

z )λ((r − 1)b) for r ≥ 1,

1 for r = 0.

We first derive the inequality (t +1+b)q−2 ≤ 2(q−3) ∨1{(t +1)q−2 +bq−2} from
convexity if q > 3 and sublinearity else, and thus,

(t + 1 + b)q−2 ≺ (t + 1)q−2 + bq−2.

The coefficients Cb,q(r) ≺ sup{U + V } may thus be bounded in all the considered
cases.

For simplicity, we classify the cases with couples of numbers indicating the fact
overlapping (3) or not (4) setting is used and from the fact the convergence (5) or
concentration (6) is assumed, which makes four different cases to consider). Consider
the cases under assumption (5).

– η (3), (5) case. Note that

Cb,q(r) ≺ L
(
bη(r − b)/z + z

)
+ rb ≺ L

√
bη(r − b) + rb

with the choice z = √
bη(r − b). This yields

Bb,q(N) ≺ 1
Nq−1

b−1∑

r=0

(r + 1)q−2 + L
√

b

Nq−1

N−1∑

r=b

√
η(r − b)

(r + 1)2−q
+ rb

≺
(

b

N

)q−1
[

1 + L√
b

N−b−1∑

t=0

√
η(t)

]

+ L
√

b

Nq−1

N−b−1∑

t=0

√
η(t)

(t + 1)2−q
+ rb,

where the second inequality follows from the change in variable r = t + b. We use
here N = n. Now if we assume that b ≺ n1−δ , we deduce that (b/n)q−1 ≺ n−qδ/2, and
if bL ≺ n1−δ , we analogously derive that (b/N)q−1(L/

√
b) ≺ n− q

2 δ . If η(t) ≺ n−η

and σ ≤ η/2, we assume that

b

n

[
1 ∨ L√

b

]
+ rb ≺ n−δ,

∞∑

t=0

(t + 1)q−2η(t)1/2 < ∞.



Subsampling weakly dependent time series and application to extremes 469

– η (4), (5) case. Note that

Cb,q(r) ≺ bLη
(
(r − 1)b

)
/z + Lz + rb ≺ L

√
bη

(
(r − 1)b

)
+ rb,

where we use z = √
bη((r − 1)b). Then

Bb,q(N) ≺ 1
Nq−1 + L

√
b

Nq−1

N−1∑

r=1

√
η((r − 1)b)

(r + 1)2−q
+ rb

≺ 1
Nq−1

[

1 + L
√

b

n−1∑

k=b

√
η(k)

]

+ Lb
5
2 −q

Nq−1

n−1∑

k=b

√
η(k)

k2−q
+ rb,

where the second inequality follows from replacement of k = b(r − 1). We use here
N = n/b. Let us assume that b ≺ n1−δ ; then we deduce that (b/n)q−1 ≺ n− q

2 δ , and
if b3/2L ≺ n1−δ , we analogously derive that (1/N)q−1(L

√
b) ≺ n− q

2 δ . If η(t) ≺ n−η

and σ ≤ η/2, we assume that

b

n

[
1 ∨

√
bL

]
+ rb ≺ n−δ,

∞∑

t=0

η(t)1/2 < ∞.

– λ (3), (5) case. Note that

Cb,q(r) ≺ Lz +
(
bL/z + (bL/z)2)λ(r − b) + rb

≺ 2
(
bL2) 2

3 λ(r − b)
1
3 +

(
bL2) 1

3 λ(r − b)
2
3 + rb,

with the choice z = (b2Lλ(r − b))
1
3 . Then

Bb,q(N) ≺ 1
Nq−1

b−1∑

r=0

(r + 1)q−2 + 2
(
bL2) 2

3

Nq−1

N−1∑

r=b

λ(r − b)
1
3

(r + 1)2−q

+
(
bL2) 1

3

Nq−1

N−1∑

r=b

λ(r − b)
2
3

(r + 1)2−q
+ rb

≺
(

b

N

)q−1
[

1 +
(

L4

b

) 1
3

N−b−1∑

t=0

λ(t)
1
3 +

(
L

b

) 2
3

N−b−1∑

t=0

λ(t)
2
3

]

+ 1
Nq−1

[
(
bL2) 2

3

N−b−1∑

t=0

λ(t)
1
3

(t + 1)2−q
+

(
bL2) 1

3

N−b−1∑

t=0

λ(t)
2
3

(t + 1)2−q

]

+ rb,

where the second inequality follows from the change in variable r = t + b. We use
here N = n. Let us assume that b ≺ n1−δ ; then we deduce that (b/n)q−1 ≺ n− q

2 δ , and
if ((bL2)2/3 ∨ (bL2)1/3) ≺ n1−δ , we analogously derive that (b/N)q−1((L4/b)

1
3 ∨
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(L/b)
2
3 ) ≺ n− q

2 δ . If λ(t) ≺ n−λ and σ ≤ λ/2 and σ ≤ 2λ/3, we assume that

b

n

[
1 ∨

(
L4

b

) 1
3

∨
(

L

b

) 2
3
]

+ rb ≺ n−δ

with
∑∞

t=0(t + 1)q−2λ(t)1/3 < ∞ and
∑∞

t=0(t + 1)q−2λ(t)2/3 < ∞.

– λ (4), (5) case. Note that

Cb,q(r) ≺ (Lz + rb) +
(

bL

z
+

(
bL

z

)2)
λ
(
(r − 1)b

)

≺ 2
(
b2L4λ

(
(r − 1)b

)
+ bL2(λ

(
(r − 1)b

))2) 1
3 + rb,

with the choice z = (b2Lλ((r − 1)b))
1
3 . Then we obtain

Bb,q(N) ≺ 1
Nq−1 + (bL2)

2
3

Nq−1

N−1∑

r=1

(r + 1)q−2λ((r − 1)b)
1
3

+ (bL2)
1
3

Nq−1

N−1∑

r=1

(r + 1)q−2λ
(
(r − 1)b

) 2
3 + rb

≺ 1
Nq−1

[

1 +
(
bL2) 2

3

n−1∑

k=1

λ(k)
1
3 +

(
bL2) 1

3

n−1∑

k=1

λ(k)
2
3

]

+ 1
Nq−1

[

L
4
3 b

8
3 −q

n−1∑

k=1

λ(k)
1
3

k2−q
+ L

2
3 b

7
3 −q

n−1∑

k=1

λ(k)
2
3

k2−q

]

+ rb,

where the second inequality follows from the change in variable k = b(r −1). We use
here N = n/b. Let us assume that b ≺ n1−δ ; then we deduce that (b/n)q−1 ≺ n− q

2 δ ,
and if (b

5
3 L

4
3 ∨ b

4
3 L

2
3 ) ≺ n1−δ , then we analogously derive that (b/n)q−1(b2L4 ∨

bL2)
1
3 ≺ n− q

2 δ . If λ(t) ≺ n−λ and σ ≤ λ/3 and σ ≤ 2λ/3, we assume that

b

n

[(
b2L4) 1

3 ∨
(
bL2) 1

3
]
+ rb ≺ n−δ;

with
∑n−1

t=0 (t + 1)q−2λ(t)1/3 < ∞ and
∑n−1

t=0 (t + 1)q−2λ(t)2/3 < ∞ that bound
holds.

Consider now the cases under assumption (6).

– η (3), (6) case. Note that

Cb,q(r) ≺ Lbη(r − b)/z + Dzc

≺
(
D

(
bLη(r − b)

)c) 1
1+c +

(
bLη(r − b)

) 2+c
1+c



Subsampling weakly dependent time series and application to extremes 471

with the choice z = (bLη(r − b)/D)
1

c+1 . Then

Bb,q(N) ≺ 1
Nq−1

b−1∑

r=0

(r + 1)q−2 + (D(bL)c)
1

1+c

Nq−1

N−1∑

r=b

(r + 1)q−2(η(r − b)
) c

1+c

+ (bL)
2+c
1+c

Nq−1

N−1∑

r=b

(r + 1)q−2(η(r − b)
) 2+c

1+c

≺
(

b

N

)q−1
[

1 +
(

DLc

b

) 1
1+c

N−b−1∑

t=0

η(t)
c

1+c +
(
bL2+c

) 1
1+c

N−b−1∑

t=0

η(t)
2+c
1+c

]

+ 1
Nq−1

[
(
D(bL)c

) 1
1+c

N−b−1∑

t=0

η(t)
c

1+c

(t + 1)2−q
+ (bL)

2+c
1+c

N−b−1∑

t=0

η(t)
2+c
1+c

(t + 1)2−q

]

,

where the second inequality follows from the change in variable r = t + b. We use
here N = n. Now if we assume that b ≺ n1−δ , we deduce that (b/n)q−1 ≺ n− q

2 δ ,
and if b((DLc/b)

1
1+c ∨ (bL2+c)

2+c
1+c ) ≺ n1−δ , we analogously derive (b/N)q−1 ×

((DLc/b)
1

1+c ∨ (bL2+c)
2+c
1+c ) ≺ n− q

2 δ .
If η(t) ≺ n−η and σ ≤ η · c

1+c and σ ≤ η · 2+c
1+c , we assume that

b

n

[
1 ∨

(
DLc

b

) 1
1+c

∨
(
bL2+c

) 1
1+c

]
≺ n−δ,

which implies with
∑∞

t=0(t + 1)q−2η(t)
c

1+c < bq−2 and
∑∞

t=0(t + 1)q−2η(t)
2+c
1+c <

bq−2 that Bb,q(N) ≺ n− q
2 δ .

– η (4), (6) case. Note that

Cb,q(r) ≺ Lbη
(
(r − 1)b

)
/z + Dzc

≺
(
D

(
bLη

(
(r − 1)b

))c) 1
1+c +

(
bLη

(
(r − 1)b

)) 2+c
1+c

with the choice z = (bLη((r − 1)b)/D)
1

c+1 . Then

Bb,q(N) ≺ 1
Nq−1 + (D(bL)c)

1
1+c

Nq−1

N−1∑

r=1

(r + 1)q−2η
(
(r − 1)b

) c
1+c

+ (bL)
2+c
1+c

Nq−1

N−1∑

r=1

(r + 1)q−2η
(
(r − 1)b

) 2+c
1+c

≺ 1
Nq−1

[

1 +
(
D(bL)c

) 1
1+c

n−1∑

k=b

η(k)
c

1+c + (bL)
2+c
1+c

n−1∑

k=b

η(k)
2+c
1+c

]
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+ 1
Nq−1

[
(
DLc

) 1
1+c b

2+3c
1+c −q

n−1∑

k=b

η(k)
c

1+c

k2−q
+ L

2+c
1+c b

4+3c
1+c −q

n−1∑

k=b

η(k)
2+c
1+c

k2−q

]

,

where the second inequality follows from the change in variables k = b(r − 1). We
use here N = n/b. Now if we assume b ≺ n1−δ , we deduce that (b/n)q−1 ≺ n− q

2 δ .
Now if (1 ∨ (D(bL)c)

1
1+c ∨ (bL)

2+c
1+c ) ≺ n−δ , we analogously derive (1/N)q−1(1 ∨

(D(bL)c)
1

1+c ∨ (bL)
2+c
1+c ) ≺ n− q

2 δ . If η(t) ≺ n−η and σ ≤ η · c
1+c and σ ≤ η · 2+c

1+c , we
assume that

b

n

[
1 ∨

(
D(bL)c

) 1
1+c ∨ (bL)

2+c
1+c

]
≺ n−δ,

which implies with
∑n−1

t=0 (t + 1)q−2η(t)
c

1+c ≺ bq−2 and
∑n−1

t=0 (t + 1)q−2η(t)
2+c
1+c ≺

bq−2 that Bb,q(N) ≺ n− q
2 δ .

– λ (3), (6) case. Note that

Cb,q(r) ≺ Dzc +
(
bL/z + (bL/z)2)λ(r − b),

≺
(
DbLc

) 2
2+c

(
λ(r − b)

) c
2+c +

(
D

(
bLc

) 1
2+c

)(
λ(r − b)

) 1+c
2+c

+ D
(
bL2c

) 1
2+c

(
λ(r − b)

) 1+c
2+c

with the choice z = ((bL)2D−1λ(r − b))
1

2+c . Then

Bb,q(N) ≺ 1
Nq−1

b−1∑

r=0

(r + 1)q−2 + (D(bL)c)
2

2+c

Nq−1

N−1∑

r=b

λ(r − b)
c

2+c

(r + 1)2−q

+ (D(bL)c)
1

2+c

Nq−1

N−1∑

r=b

λ(r − b)
1+c
2+c

(r + 1)2−q
+ (D(bL)2c)

1
2+c

Nq−1

N−1∑

r=b

λ(r − b)
1+c
2+c

(r + 1)2−q

≺
(

b

N

)q−1
[

1 +
(

(DLc)2

b2−c

) 1
2+c

N−b−1∑

t=0

λ(t)
c

2+c

+
(

DLc

b2

) 1
2+c

N−b−1∑

t=0

λ(t)
1+c
2+c

]

+
(

b

N

)q−1
[(

DL2c

b2−c

) 1
2+c

N−b−1∑

t=0

λ(t)
1+c
2+c

]

+ 1
Nq−1

[
(
D(bL)c

) 2
2+c

N−b−1∑

t=0

λ(t)
c

2+c

(t + 1)2−q

+
(
D(bL)c

) 1
2+c

N−b−1∑

t=0

λ(t)
1+c
2+c

(t + 1)2−q

]
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+ 1
Nq−1

[
(
D(bL)2c

) 1
2+c

N−b−1∑

t=0

λ(t)
1+c
2+c

(t + 1)2−q

]

,

where the second inequality follows from the change in variable r = t + b. We use
here N = n. Now if we assume that b ≺ n1−δ , we deduce that (b/n)q−1 ≺ n− q

2 δ .
If b((D2L2c/b2−c)

1
2+c ∨ (DLc/b2)

1
2+c ∨ (DL2c/b2−c)

1
2+c ) ≺ n1−δ , we analo-

gously derive

(
b

N

)q−1(D2L2c

b2−c
∨ DLc

b2 ∨ DL2c

b2−c

) 1
2+c

≺ n− q
2 δ.

If λ(t) ≺ n−λ and σ ≤ λ · c
1+c and σ ≤ λ · 2+c

1+c , we assume that

b

n

[
1 ∨

(
D2L2c

b2−c
∨ DLc

b2 ∨ DL2c

b2−c

) 1
2+c

]
≺ n−δ,

which implies with
∑∞

t=0(t + 1)q−2λ(t)
c

1+c < bq−2 and
∑∞

t=0(t + 1)q−2λ(t)
2+c
1+c <

bq−2 that Bb,q(N) ≺ n− q
2 δ .

– λ (4), (6) case. Note that

Cb,q(r) ≺ Dzc +
(

bL

z
+

(
bL

z

)2)
λ
(
(r − 1)b

)

≺
(
D(bL)c

) 2
2+c λ

(
(r − 1)b

) c
2+c +

((
D(bL)c

) 1
2+c

)
λ
(
(r − 1)b

) 1+c
2+c

+
(
D(bL)2c

) 1
2+c λ

(
(r − 1)b

) 1+c
2+c

with the choice z = ((bL)2D−1λ((r − 1)b))
1

2+c . We obtain

Bb,q(N) ≺ 1
Nq−1 + (D(bL)c)

2
2+c

Nq−1

N−1∑

r=1

(r + 1)q−2λ
(
(r − 1)b

) c
2+c

+ (D(bL)c)
1

2+c

Nq−1

N−1∑

r=1

(r + 1)q−2λ
(
(r − 1)b

) 1+c
2+c

+ (D(bL)2c)
1

2+c

Nq−1

N−1∑

r=1

(r + 1)q−2λ
(
(r − 1)b

) 1+c
2+c

≺ 1
Nq−1

[

1 +
(
D(bL)c

) 2
2+c

n−1∑

k=1

λ(k)
c

2+c +
(
D(bL)c

) 1
2+c

n−1∑

k=1

λ(k)
1+c
2+c

]

+ 1
Nq−1

[
(
D(bL)2c

) 1
2+c

n−1∑

k=1

λ(k)
1+c
2+c

]
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+ 1
Nq−1

[
(
DLc

) 2
2+c b

4(1+c)
2+c −q

n−1∑

k=1

λ(k)
c

2+c

k2−q

+
(
DLc

) 1
2+c b

4+3c
2+c −q

n−1∑

k=1

λ(k)
1+c
2+c

k2−q

]

+ 1
Nq−1

[
(
DL2c

) 1
2+c b

4(1+c)
2+c −q

n−1∑

k=1

λ(k)
1+c
2+c

k2−q

]

,

where the second inequality follows from the change in variable k = b(r −1). We use
here N = n/b. Now if we assume that b ≺ n1−δ , we deduce that (b/n)q−1 ≺ n− q

2 δ .
If

b
((

D(bL)c
) 2

2+c ∨
(
D(bL)c

) 1
2+c ∨

(
D(bL)2c

) 1
2+c

)
≺ n1−δ,

we analogously derive that

(b/N)q−1((D(bL)c
) 2

2+c ∨
(
D(bL)c

) 1
2+c ∨

(
D(bL)2c

) 1
2+c

)
≺ n− q

2 δ.

If λ(t) ≺ n−λ and σ ≤ λ · c
1+c and σ ≤ λ · 2+c

1+c , we assume that

b

n

[
1 ∨

(
D(bL)c

)2 ∨ D(bL)c ∨
(
D(bL)2c

) 1
2+c

]
≺ n−δ,

which implies with
∑n−1

t=0 (t + 1)q−2λ(t)
c

1+c ≺ bq−2 and
∑n−1

t=0 (t + 1)q−2λ(t)
2+c
1+c ≺

bq−2 that Bb,q(N) ≺ n− q
2 δ .

Lemma 5 The relation ∆̂
(2)
b,n (x) →n→∞ 0 holds in the following cases under the

convergence assumption (5):

• In the overlapping case, if we have respectively

∞∑

t=0

η(t)1/2 < ∞, and rb + b

n

[
1 ∨ L√

b

]
→ 0,

∞∑

t=0

λ(t)2/3 < ∞, and rb + b

n

[
1 ∨

(
L4

b

)1/3

∨
(

L

b

)2/3]
→ 0.

• In the nonoverlapping case, if we have respectively

∞∑

t=0

η(t)1/2 < ∞, and rb + b

n

[
1 ∨

√
bL

]
→ 0,

∞∑

t=0

λ(t)2/3 < ∞, and rb + b

n

[
1 ∨

(
bL2)2/3 ∨

(
bL2)1/3] → 0.
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This lemma, together with Lemma 1, yields Theorem 2.

Lemma 6 The relation Bb,q(N) ≺ n−qδ/2 holds under concentration assumption (6)
if respectively the overlapping setting and one of the following relations holds as
n → ∞:

η-dependence:
∞∑

t=0

(t + 1)p−2η(t)
2+c
1+c < ∞,

b

n

[
1 ∨

(
DLc

b
∨ bL2+c

) 1
1+c

]
≺ n−δ, or

λ-dependence:
∞∑

t=0

(t + 1)p−2λ(t)
1+c
2+c < ∞,

b

n

[
1 ∨

(
(DLc)2

b2−c
∨ DLc

b2 ∨ DL2c

b2−c

) 1
2+c

]
≺ n−δ,

or the nonoverlapping setting is used and

η-dependence:
n−1∑

t=0

(t + 1)p−2η(t)
2+c
1+c ≺ bp−2,

b

n

[
1 ∨

(
D(bL)c ∨ (bL)2+c

) 1
1+c

]
≺ n−δ, or

λ-dependence:
n−1∑

t=0

(t + 1)p−2λ(t)
1+c
2+c ≺ bp−2,

b

n

[
1 ∨

((
D(bL)c

)2 ∨ D(bL)c ∨ D(bL)2c
) 1

2+c
]
≺ n−δ.

This lemma, together with Lemma 1, yields Theorem 3.

5.3 Proof of Theorem 5

Put kn = *n/an+. Partition {1, . . . , n} into kn blocks of size an,

Jj = Jj,n =
{
(j − 1) an + 1, . . . , jan

}
, j = 1, . . . , kn,

and, in case knan < n, a remainder block, Jkn+1 = {knan + 1, . . . , n}. Observe that

P
(
Mn ≤ wn(x)

)
= P

(
kn+1⋂

j=1

{
M(Jj ) ≤ wn(x)

}
)

,
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where M(Jj ) = maxi∈Jj Xi . Since P(M(Jj ) > wn(x)) ≤ anF̄ (wn(x)) → 0 as n →
∞, the remainder block can be omitted, and

P
(
Mn ≤ wn(x)

)
= P

(
kn⋂

j=1

{
M(Jj ) ≤ wn(x)

}
)

+ o(1).

Let

J ∗
j = J ∗

j,n =
{
(j − 1)an + 1, . . . , jan − ln

}
, j = 1, . . . , kn,

J ′
j = J ′

j,n = {jan − ln, . . . , jan} , j = 1, . . . , kn.

Since P(
⋃kn

j=1 M(J ′
j ) > wn(x)) ≤ knlnF̄ (wn(x)) → 0 as n → ∞, we deduce that

P
(
Mn ≤ wn(x)

)
= P

(
kn⋂

j=1

{
M(J ∗

j ) ≤ wn(x)
}
)

+ o(1).

Let Bj = Bj,n = {M(J ∗
j ) ≤ wn(x)}. We write

P
(

kn⋂

j=1

Bj

)

−
kn∏

j=1

P(Bj )

=
kn−1∑

i=1

(

P
(

kn−i+1⋂

j=1

Bj

)
kn∏

j=kn−i+2

P(Bj ) − P
(

kn−i⋂

j=1

Bj

)
kn∏

j=kn−i+1

P(Bj )

)

=
kn−1∑

i=1

(

P
(

kn−i+1⋂

j=1

Bj

)

− P
(

kn−i⋂

j=1

Bj

)

P(Bkn−i+1)

)
kn∏

j=kn−i+2

P(Bj ).

We want to bound the following quantity:

∣∣∣∣∣P
(

kn−i+1⋂

j=1

Bj

)

− P
(

kn−i⋂

j=1

Bj

)

P(Bkn−i+1)

∣∣∣∣∣.

Let us define f
(x)
n (y) = I{y≤wn(x)}. Let (αn) be a positive sequence such that αn → 0

as n → ∞ and put x−
n = x − αn and x+

n = x + αn. We simply approximate the
function f

(x)
n by Lipschitz and bounded real functions gn,hn with

f
(x−

n )
n ≤ gn ≤ f (x)

n ≤ hn ≤ f
(x+

n )
n ,

and we quote that it is easy to choose functions gn and hn with Lipschitz coefficient
unα

−1
n . For I ⊂ {1, . . . , n}, let HI (f

(x)
n ) = E[∏i∈I f

(x)
n (Xi)]. Note that

HI

(
f

(x−
n )

n

)
≤ HI (gn) ≤ HI

(
f (x)

n

)
≤ HI (hn) ≤ HI

(
f

(x+
n )

n

)
.
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Let CI,J (f
(x)
n ) = HI∪J (f

(x)
n ) − HI (f

(x)
n )HJ (f

(x)
n ). We have

CI,J (gn) − δI,J (gn,hn) ≤ CI,J

(
f (x)

n

)
≤ CI,J (hn) + δI,J (gn,hn)

with

δI,J (gn,hn) = HI (hn)HJ (hn) − HI (gn)HJ (gn).

Let Ii = {l : {Xl ≤ wn(x)} ∈ ⋂kn−i
j=1 Bj } and Ji = {l : {Xl ≤ wn(x)} ∈ Bkn−i+1}.

We have
∣∣HIi (hn) − HIi (gn)

∣∣ ≤ (kn − i + 1) an

(
F̄

(
wn(x

−
n )

)
− F̄

(
wn(x

+
n )

))
,

∣∣HJi (hn) − HJi (gn)
∣∣ ≤ an

(
F̄

(
wn(x

−
n )

)
− F̄

(
wn(x

+
n )

))
.

Then we have

∣∣CIi,Ji

(
f (x)

n

)∣∣ ≤
∣∣CIi,Ji (hn)

∣∣ ∨
∣∣CIi,Ji (gn)

∣∣ +
∣∣δIi ,Ji (gn,hn)

∣∣

and
∣∣δIi ,Ji (gn,hn)

∣∣ ≤
∣∣HIi (hn) − HIi (gn)

∣∣ +
∣∣HJi (hn) − HJi (gn)

∣∣.

Note that, as n → ∞,

n
(
F̄

(
wn(x

−
n )

)
− F̄

(
wn(x

+
n )

))
∼ 2αn(1 + γ x)

−1/γ−1
+ .

If X is η-weakly dependent, it follows that

∣∣CIi,Ji

(
f (x)

n

)∣∣ ≤ (kn − i + 2) anunα
−1
n η(ln) + 2αn(1 + γ x)

−1/γ−1
+

(kn − i + 2) an

n
.

An optimal choice of αn is then given by

αn ∼
[
nη(ln)un

]1/2
,

and we deduce that
∣∣CIi,Ji

(
f (x)

n

)∣∣ ≺
(
nη(ln)un

)1/2
.

It follows that
∣∣∣∣∣P

(
kn⋂

j=1

Bj

)

−
kn∏

j=1

P(Bj )

∣∣∣∣∣ ≺ kn

(
nη(ln)un

)1/2
.

If X is λ-weakly dependent, it follows that
∣∣CIi,Ji

(
f (x)

n

)∣∣ ≤
[
(kn − i + 2) anunα

−1
n + (kn − i + 1)2 anu

2
nα

−2
n

]
λ(ln)

+ 2αn(1 + γ x)
−1/γ−1
+

(kn − i + 2) an

n
.
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An optimal choice of αn is then given by

αn ∼
[
nλ(ln)un

]1/2 ∨
[
nanλ(ln)u

2
n

]1/3
,

and then
∣∣CIi,Ji

(
f (x)

n

)∣∣ ≺
([

nλ(ln)un

]1/2 ∨
[
nanλ(ln)u

2
n

]1/3)
.

It follows that
∣∣∣∣∣P

(
kn⋂

j=1

Bj

)

−
kn∏

j=1

P(Bj )

∣∣∣∣∣ ≺ kn

([
nλ(ln)un

]1/2 ∨
[
nanλ(ln)u

2
n

]1/3)
.

Finally, we deduce that

P
(
Mn ≤ wn (x)

)
=

[
P
(
Mn ≤ wan (x)

)]kn + o(1),

and the result follows.
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It has been a pleasure to read this paper that further extends the idea that subsampling
methods are able to deal with a wide class of problems concerning statistical infer-
ence for time series data under minimal assumptions. In this context, subsampling
has a series of advantages compared to resampling methods as it avoids the artificial
construction of new time series either joining blocks of the original series or fitting
approximate models that may alter the original dependence structure. Then, one of
the main concerns in subsampling analysis is to allow serial dependence as general
and weak as possible. This is key in the paper since, basically, only a restriction on the
weak dependence is required for consistency, together with the existence of a nonde-
generated limiting distribution and smoothness conditions on the statistic of interest
in relation to block size. Thanks to the results obtained in this paper, the justification
of subsampling is now even easier and more general than for any resampling method,
covering a huge class of processes and statistics of relevance in many fields of ap-
plication. Moreover, the paper considers for both converging and diverging statistics
a new smooth subsampling estimator of the limiting distribution. This is compared
to the rough estimator for the second class of statistics in a simulation study, even
though the latter is not analyzed for the sample maxima.

Two important issues in practice are the efficiency of subsampling distribution es-
timators and their sensitivity to the user chosen tuning parameters, namely the block
size b, the degree of overlapping and the smoothing parameter εn. Alternative meth-
ods, such as the bootstrap, when valid may possess higher order asymptotic properties
improving over subsampling methods.

This comment refers to the invited paper available at doi:10.1007/s11749-011-0269-8.

C. Velasco (!)
Department of Economics, Universidad Carlos III de Madrid, Madrid, Spain
e-mail: carlos.velasco@uc3m.es
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In principle, the overlapping method that seems to be favored in block-bootstrap
methods may have some efficiency advantages from increasing the number of sub-
samples. This paper illustrates that to cope with the stronger dependence of overlap-
ping samples it is necessary to restrict the dependence strength of the original data
to justify consistency, both for smooth and rough estimators. These additional re-
strictions on the weak dependent coefficients due to overlapping are only relevant
for the a.s. bounds (since p > 2 in this case), though, on the other hand, overlap-
ping apparently allows for more flexible choices of the subsample length b and/or
the smoothing parameter εn. Even if these asymptotic results cannot be directly used
to propose closed form optimal choices of b, it would be very interesting to investi-
gate if such an extension is feasible and if the weaker asymptotic restrictions on the
block size when overlapping are also relevant in terms of practical robustness to such
choices.

A related question for the authors is whether they expect that a higher order asymp-
totic analysis as in Hall and Jing (1996) could be justified to some extent under their
general weak dependence conditions and if this would shed further light on the effi-
ciency of subsampling and block size choices, perhaps using extrapolation or other
methods. This would require an extension of techniques that up to now rely mainly
on strong mixing conditions, e.g., Götze and Künsch (1996).

For many applications, the full overlapping considered might be computationally
very demanding, so that partial-overlapping, e.g., as in Politis and Romano (2010),
could be an alternative. This would amount to the definition of partial overlapping
subsamples

Yb,h,i = (X(i−1)h+1, . . . ,X(i−1)h+b),

where h is any integer in [1, b]. Politis and Romano showed that the same strong mix-
ing assumption is sufficient for the consistency of both the no overlapping method,
h = b, and the full one, h = 1. However, similar strong consistency results to those
of the present paper might require different regularity conditions when overlapping
is a proportion of the subsample length b (similar to the full overlapping case), than
when overlapping is fixed (so closer to the less demanding case of nonoverlapping).
Also, an asymptotically negligible degree of overlapping should be close to this last
situation, while allowing simultaneously for potential efficiency improvements and
perhaps for some further practical robustness on the choice of b.

When approximating the distribution of the normalized sample maximum, there
can be further concerns on the choice of b in applications. This relates to the de-
gree of clustering in the time series, especially relevant in a financial context with
conditional heteroskedastic series. For example, a too small value of b will result in
severely biased estimates of the maximum distribution since many subsamples would
not contain any cluster of local maximum values when θ is also small. This aspect,
however, is not reflected in the asymptotic analysis.

A final question is whether the results of Theorem 5 could be extended under
similar weak dependence assumptions to related point processes defined on the se-
quence Xt , avoiding less primitive conditions on the extremal dependence coeffi-
cients. Also, the subsampling estimation of tail parameters of the distribution of Xt
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could be considered to produce semiparametric estimates of the limiting distribu-
tion of the maximum valid under very general dependence conditions but with some
knowledge on the marginal distribution.

Acknowledgements Financial support from the Spanish Plan Nacional de I+D+I (SEJ2007-62908) is
gratefully acknowledged.
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Professors Doukhan, Prohol and Robert should be congratulated for writing an inter-
esting and mathematically elegant paper that extends the applicability of the subsam-
pling method to η- and λ-weakly dependent time series models. This is an important
generalisation that widens considerably the range of applications of subsampling, as
clearly illustrated with the three examples used by the authors. The use of smoothing
is also a nice addition to the literature, as it allows weaker block rate assumptions,
albeit it does add an extra “tuning parameter” to be chosen, the bandwidth εn. I also
note that because of the subsampling, the bandwidth rate of the smoother is going to
be slower than the optimal n−1/3 rate for probability distributions.

In this comment I would merely like to expand briefly on two points: (I) empirical
applications and (II) choice of the subsample block size.

(I) There has been an increasing interest in a particular class of models for which
the results of this paper are potentially relevant: integer-valued autoregressions. Brän-
näs and Hellström (2001) consider a generalisation of the integer-valued AR(1)
model that encompasses some empirical features of economic time series of count
data, Rudholm (2001) studies the entry dynamics of firms in an industry, Böckenholt
(2003) uses an autoregressive negative binomial model for longitudinal count data to
model emotional dependencies, Freeland and McCabe (2004) consider Poisson au-
toregression, Gouriéroux and Jasiak (2004) suggest a heterogeneous integer-valued
AR(1) to model the number of claims an insurance company receives, and McCabe
and Martin (2005) consider Bayesian forecasting for count data.

(II) It is well known that in general the block size b can affect the finite sam-
ple performance of subsampling for small to moderate sample sizes (see e.g. Politis

This comment refers to the invited paper available at doi:10.1007/s11749-011-0269-8.

F. Bravo (!)
Department of Economics and Related Studies, University of York, York YO10 5DD, UK
e-mail: francesco.bravo@york.ac.uk
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Fig. 1 AR(1) process. Rough subsampling estimator with overlapping blocks and n = 2000. The dashed
lines represent 0.95 nonparametric likelihood based confidence bands calculated using Owen’s (1995)
method. The grey line represents the true asymptotic distribution

et al. 1997). I show here that the same happens (to a certain extent) in the context
of one of the applications considered in the paper, namely subsampling the distri-
bution of the normalised sample maximum of an AR(1) process with discrete in-
novations. Figure 1 shows the subsample rough estimator with overlapping blocks
for the self-normalised sample maximum computed using the same Monte Carlo de-
sign as that used in the paper with four different block sizes, namely b = 25, 50,
100 and 150. In each plot a 95% confidence band for the subsampled distribution
is computed using Owen’s (1995) nonparametric likelihood method. Figure 1 shows
that the block length has some bearings on the performances of the subsampling; in
particular it seems to indicate that the block sizes b = 25 or b = 50 are more accu-
rate.

It seems therefore of interest to consider the issue of choosing the block size.
Politis et al. (1997) propose a general calibration technique that is however limited
to applications where the standard bootstrap works, and thus it is not applicable to
the results of this paper. The approach I suggest here borrows directly from the one
suggested by Bickel and Sakov (2008) in the context of the so-called m out of n boot-
strap for i.i.d. observations, and thus strictly speaking is not valid for the results of
this paper. However it does seem to work (at least for the example considered here),
and thus it should be interpreted as a heuristic block selection method. Its asymptotic
validity is not proven, albeit we note that in general data-dependent block selection
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Fig. 2 AR(1) process. Left: Kolmogorov sup distance (K–S distance) for different block lengths b. Right:
Rough subsampling estimator with overlapping blocks, n = 2000 and b = 35 chosen as minimum of K–S
distance

methods are valid under weak conditions (see for example Theorem 2.7.1 of Poli-
tis et al. 1999). The block selection method I propose consists of the following steps:
(1) choose a range of possible block sizes, say bj = "nqj# (j = 1,2, . . . , 0 < q < 1),
where "·# is the floor function, (2) consider a distance measure D(·, ·) between suc-
cessive subsampling distributions K̂bj ,n(x) and K̂bj+1,n(x) (using the paper’s nota-
tion), (3) choose bj as bj := arg minbj D(K̂bj ,n(x), K̂bj+1,n(x)). In this comment I
use as in Bickel and Sakov (2008) the Kolmogorov sup-distance (K–S) but other
distances (e.g. Cramer von Mises) could be used. Figure 2 (left panel) reports the
K–S distance for b = 15, 25, 30, 35, 50, 75, 100, 125, 150 and 200. The minimum
K–S distance was between b = 30 and b = 35 with D(K̂30,2000(x), K̂35,2000(x)) =
0.0579. Figure 2 (right panel) shows the resulting subsampled distribution with
Owen’s (1995) 95% nonparametric likelihood confidence bands. Compared with the
two top panels of Fig. 1, it appears that the accuracy of this distribution is slightly
superior.

In sum I think that this paper makes an important extension to the theory of sub-
sampling with time series, which will be valuable not only to theorists but also to
applied researchers in different fields. The issue of the choice of the block length is
important and should be investigated in depth; in this comment I suggest a heuristic
method that might give some practical guidance.
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The authors are to be congratulated for their paper, which pushes the potentiality of
subsampling methods a step forward. Most of the results obtained for subsampling
methods have been done either for i.i.d. data or for strong mixing time series or ran-
dom fields. Many interesting results are summarized in the Springer book by Politis
et al. (1999). Some people have also been interested in extending some results on sub-
sampling in the framework of long-range dependent data, for which the usual boot-
strap blocking techniques fail, whereas subsampling remains asymptotically valid.
See Hall et al. (1998). These latter results actually escape the framework presented
here but are complementary. It is well known that the strong mixing assumption also
fails for a large class of times series.The potentiality of week dependence introduced
by Doukhan and Louhichi (1999) is now well recognized and covers a large class of
interesting processes.

In this paper the authors generalize the results of Bertail et al. (2004) especially
suited for diverging statistics to times series satisfying some weak dependence con-
ditions. They apply their results to the case of the maximum when no information
on the domain of attraction is available. Even if the conditions are sometimes quite
intriguing and complicated to understand, I would like to stress a few facts about their
results.

First of all, the authors show that in this framework it is more interesting to smooth
the subsampling distribution a little bit. This may be understood from a technical
point of view by noticing that the indicator functions used in the building of the sub-
sampling distribution are not Lipschitz. Recall that Lipschitz functions are at the heart

This comment refers to the invited paper available at doi:10.1007/s11749-011-0269-8.
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e-mail: pbertail@u-paris10.fr



488 P. Bertail

of the weak mixing concept; it is easy to prove that Lipschitz functions of weak-
mixing times series will also satisfy weak mixing conditions. However, they also
show that if one does not want to smooth and use what they call a rough subsampling
distribution (the nonsmoothed one), a concentration hypothesis on the limiting dis-
tribution of the statistics of interest is needed. This somehow means that at the limit
the concentration behavior implies some smoothing of the subsampling distribution:
this is a very interesting phenomenon. I would be interested to have some examples
for which such concentration condition fails. Then how does the rough subsampler
behave in this case? From my experience a little of smoothing for the subsampling
distribution may make a huge difference even if the smoothing is really small: I am
glad that the authors point out this fact and give some theoretical arguments to under-
stand this phenomenon.

The authors do not consider the problem of calibrating the subsampling size of
the distribution. This is indeed a challenging task. Some works have been done in the
framework of i.i.d. data using the particular U-statistics structure of the subsampling
distribution. See Götze and Račkauskas (1999), Bickel and Sakov (2008), and a re-
cent review in Bickel et al. (2010). The main idea underlying their proposition is to
construct several subsampling distributions by using two different subsampling sizes,
say bn and bn,2 = qbn for q ∈ ]0,1[, typically q = 1/2. It is easy to see that when
the subsampling distribution is a convergent estimator of the true distribution, then
the distance d between the subsampling distribution and the true one is stochastically
equivalent to

d(Kbn,Kqbn).

The idea is then to find the largest bn which minimizes this quantity. Several dis-
tance (Kolmogorov distance, Wasserstein metrics, etc.) may be used. Of course, such
a procedure may be difficult to analyze in the framework of dependent data because
of the intricate dependence between both distributions. However, as a toy example,
one may use either a double splitting trick in the spirit of Schick (2001) to estimate
Kqb or consider nonoverlapping blocks to simplify the dependence structure. Prov-
ing that the procedure proposed by Götze and Račkauskas (1999) still works in this
framework would be of interest.

Another approach to choose the subsampling size has been followed by Bertail et
al. (2004) and Bertail et al. (1999) by considering log of quantile range. Indeed, some
of the results of this paper may also be used to obtain convergent estimators of the
rate of convergence of the statistics of interest. Most of the time the rate of conver-
gence of the statistics say τn is unknown (this is precisely the reason for choosing a
quantile range in the standardization of the maximum). If we denote by Kb,n(x) ei-
ther the nonnormalized smooth subsampling distribution or the rough one, based on
a windows of size bn, then it is easy to prove following the same lines as Bertail et al.
(2004) and using the nice results of the authors (under their conditions) that, for any
αi "= αj ∈ ]0,1[ such that K−1(αi ) and K−1(αj ) are continuity points of the limiting
distribution, we have in probability

∣∣K−1
b,n(αi ) − K−1

b,n(αj )
∣∣ = Ci,j τ

−1
b

(
1 + oP (1)

)
,
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Fig. 1 Estimation of the rate of
convergence, stability of the
subsampling distribution

where Ci,j is a constant depending on αi ,αj , K , and on the underlying generating
process. In particular, when τn = nγ L(n) where L() is a slowly varying function,
then one gets a regression-type representation

− log
∣∣K−1

b,n(αi ) − K−1
b,n(αj )

∣∣ = γ log(b) + log
(
L(b)

)
+ Log(Ci,j ) + oP (1).

It may be used to estimate the exponent γ and the slowly varying function by
using different αi ,αj and several subsampling size bn. This boils down to a true
simple regression when there is no slowly varying function. What is interesting to
notice is that the rate γ generally depends on the tail index of the marginal distribu-
tion. Moreover, the dependence index θ of the time series is also directly related to
the subsampling distribution of the unstandardized maximum to exceed a level ubn ,
which may be chosen of order F−1

n (1 − ηb−1
n ) (see Bertail et al. 2009), Fn being the

empirical distribution of the observations. The subsampling methodology thus may
provide some new methods for estimating the extremal index and/or the tail index in
the very general framework considered by the authors.

Figure 1 illustrates why it may be interesting to draw minus the log of some quan-
tile range of the subsampling distribution to infer both on the value of the rate of con-
vergence and on the choice of the subsampling size. It represents minus the log range
of the subsampling distribution of the unstandardized maximum for α1 = 0.25 and
α2 = 0.75 as log(bn) grows for a very simple AR times series model and n = 5000.

Note that the graph is quite unstable for small bn (around 20), then stabilizes and
becomes quite hieratic for moderate value of bn (greater than 250). We thus have a
very simple empirical tool for choosing the subsampling size. A natural choice for
the subsampling distribution is to find the largest bn before the break in the regres-
sion function (here leading to the choice b $ 244). The slope of the graphic in the
stable part tells us the rate of convergence. It would be challenging to prove that this
method is indeed valid in the framework of weak mixing time series data. An au-
tomatic choice of the subsampling size for cases where the bootstrap fails is still a
challenge in any case.
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1 Introduction

Professors Doukhan, Prohl, and Robert are to be congratulated for their work on ex-
tending the validity of the subsampling method to a much wider class of processes
compared to the existing literature that typically requires the processes to be strongly
mixing (cf. Politis et al. 1999). As described in Sects. 1 and 2, many common time se-
ries models, including the ARMA models, often fail to satisfy the strong mixing con-
dition but they typically satisfy the η- and λ-weak dependence conditions of Doukhan
and Louhichi (1999) considered in this paper. As a result, extending the validity of the
subsampling method under suitable η- and λ-weak dependence conditions is an im-
portant contribution. Expectedly, the smooth version of the subsampling estimator is
especially suited to the form of the η- and λ-weak dependence conditions which give
covariance bounds for smooth functions of the observations. This is one reason why
the validity of the smooth subsampling estimator in Theorem 1 holds under weaker
conditions than those for the rough subsampling estimator in Theorem 3. However,
from the applications point of view, it is worth noting that while smoothing is known
to play an important role in the resampling methodology in certain inference prob-
lems (e.g., inference on quantiles), caution must be exercised in cases where the limit
distribution of the (unbootstrapped) statistic has points of discontinuity.

The authors also prove validity of the (smooth) subsampling estimator for the
sample maximum under different sets of η- and λ-weak dependence conditions, for
both the overlapping and the non-overlapping cases. This is an important problem
where its natural competitor, namely, the block bootstrap method (cf. Künsch 1989

This comment refers to the invited paper available at doi:10.1007/s11749-011-0269-8.

S.N. Lahiri (!) · S. Mukhopadhyay
Texas A & M University, College Station, USA
e-mail: snlahiri@stat.tamu.edu
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and Liu and Singh 1992) does not always provide the correct answer. More precisely,
it is well known (cf. Athreya et al. 1999; Lahiri 2003) that even under stronger strong
mixing conditions, the block bootstrap methods do not provide a valid approximation
to the distribution of the sample maximum when the resample size equals the sample
size. Like in many other similar problems (cf. Bickel et al. 1997), a consistent block
bootstrap approximation can be generated by choosing a resample size m that grows
at a slower rate than the sample size n, i.e., when

m = o(n),

which is referred to as the ‘m out of n’ block bootstrap. In the rest of this note,
we compare performance of the subsampling and the ‘m out of n’ block bootstrap
methods for the sample maximum under the η-mixing condition.

2 Theoretical properties

For completeness, we briefly describe the ‘m out of n’ (overlapping or moving) block
bootstrap (MBB) method using the notation of the main paper. Given observations
X1, . . . ,Xn from a stationary time series, let {Yb,i : i = 0, . . . ,N} denote the overlap-
ping blocks of size b, as defined in (3), where N = n − b. The ‘m out of n’ MBB
resamples k ≥ 1 blocks with replacement from this collection to generate a bootstrap
sample of size m = bk, which we shall denote as X∗

1, . . . ,X∗
m. Then, the ‘m out of n’

MBB estimator of the distribution of a statistic Rn = rn(X1, . . . ,Xn) is given by the
conditional distribution of R∗

m,n ≡ rm(X∗
1, . . . ,X∗

m), given the Xi ’s. In particular, the
‘m out of n’ MBB estimator of Hn(x) ≡ P([Mn − vn]/un ≤ x) is given by

Ĥm,n(x) ≡ P∗
(
[M∗

m,n − ṽm]/ũm ≤ x
)
,

where M∗
m,n = max{X∗

1, . . . ,X∗
m} is the bootstrap version of Mn = max{X1, . . . ,Xn},

P∗ denotes the conditional probability given the Xi ’s, and where ṽm and ũm are
analogs of the centering and scaling constants vn and un, respectively. A possible
choice of ṽm and ũm that leads to a valid approximation is given by ṽm = vm and
ũm = um, which normalizes M∗

m,n at the level of the subsamples (that are of size m).
A more standard choice, especially when these constants are unknown, are given by
replacing F and n in the definitions of vn and un (given right after (10)) with the em-
pirical distribution function Fn (say) of X1, . . . ,Xn and with m, respectively. Finally,
when k = 1, the ‘m out of n’ MBB reduces to the rough subsampling estimator of
Hn(·). In this case, the standard choice of ṽm is given by ṽm = F←

n (1 − n−1) while
ũm is chosen as in the last case. For all these variants, the key requirement for the ‘m
out of n’ MBB to work is that

u−1
m

[
|ṽm − vm| + |ũm − um|

]
→p 0 as n → ∞, (1)

which we shall assume for the rest of this discussion. We, however, point out that for
the data-based choices of ṽm and ũm mentioned above, (1) can be proved using the
arguments developed in Fukuchi (1994). Then, we have the following result:

Theorem Suppose that (1) holds and that the conditions of Theorem 5 hold for the
η-weakly dependent case. Also suppose that b = bn, k = kn, and m = mn ≡ bnkn are
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such that (i) b−1
n + n−1mn = o(1); (ii) limp→∞ lim supn→∞ k[mumη(pb)]1/2 = 0;

(iii) kP (Mb > wm(x)) = O(1) for each x ∈ R. Then,

sup
x∈R

∣∣Ĥm,n(x) − Hn(x)
∣∣ →p 0 as n → ∞.

A sketch of the proof of the theorem is given in the Appendix. To briefly comment
on the conditions, (i) is a very standard condition on the block size b in the block
bootstrap literature, (ii) is similar to the η-weak dependence condition in Theorem 5,
and (iii) is implied by P(Mb > wm(x)) ≤ bF̄ (wm(x)) for each x ∈ R, which is akin
to (11). Note that the theorem requires the block size b to grow to infinity with n and
the resample size m to grow at a rate slower than n, but it does not otherwise impose
any conditions on the number of resamples k. In particular, the consistency holds
for the case k = 1, i.e., for the rough subsampling estimator and, more generally, for
the ‘m out of n’ MBB under the conditions of the Theorem. This extends the results
of Athreya et al. (1999) to the η-dependence case. Similar result also holds for the
nonoverlapping version of the ‘m out of n’ block bootstrap, which we omit to save
space.

3 Numerical results

We now report the results from a simulation study comparing the performance of
the ‘m out of n’ MBB and the (rough) subsampling methods for the sample maxi-
mum. As in the main paper, we considered the model given by (1) and drew 1000
Monte Carlo samples with sample sizes n = 40, 200, and 2000. For each sample
(X1,X2, . . . ,Xn), we resampled the data randomly 1000 times for constructing the
block bootstrap estimator. The block lengths we have considered here are (closest
integers to) b1 = 2n1/3 and b2 = √

(1.25)n; The second block length b2 equals 50 for
n = 2000, matching the choice of b in the main paper. The following table reports the
(scaled) global error (using a version of the Cramer–von Mises distance) of approx-
imating the true distribution Hn(·) by the ‘m out of n’ MBB and the subsampling
methods.

Results in Table 1 show that the block bootstrap produces more accurate global
approximation to the true distribution than the subsampling method for all combi-
nations of n and b. Further, for both methods, the overlapping versions have slightly

Table 1 Global errors (in %) for approximating the true distribution Hn by the ‘m out of n’ MBB and the
subsampling methods (denoted as MBB and SS, respectively, in the table)

Overlapping Non-overlapping

n = 50 n = 200 n = 2000 n = 50 n = 200 n = 2000

MBB b1 1.03 0.84 0.37 0.9 0.78 0.36

MBB b2 0.3 0.2 0.15 0.22 0.18 0.14

SS b1 4.66 2.89 0.9 4.86 2.7 0.88

SS b2 3.4 1.55 0.4 3.42 1.48 0.42
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Fig. 1 Block bootstrap and subsampling estimators of the true distribution Hn for n = 50

Fig. 2 Box-plots of the block bootstrap (even numbered) and subsampling estimators (odd numbered) of
Hn(x) at x = −3,−1,0 for n = 50

better performance than the non-overlapping versions. This is also evident from Fig. 1
which gives the mean CDF curves for the two methods for n = 50, based on 1000
simulation runs. We also considered local performance of the two methods, com-
paring the estimators of the CDF Hn(x) at different values of x. Figure 2 gives the
box-plots of the estimators based on 1000 simulation runs for n = 50.

From Fig. 2, it follows that the estimators based on the non-overlapping versions of
each method have higher variability than the corresponding overlapping versions, like
in the case of smooth functions of means (cf. Lahiri 1999). Further, the variabilities of
the subsampling estimators are much smaller than their block bootstrap counterparts
at the tails (x = −3,0), but the pattern reverses in the middle (x = −1). We observed
a similar behavior also for n = 200 and n = 2000 (not shown here).



Comments on: Subsampling weakly dependent time series 495

Acknowledgement Research partially supported by NSF grant number DMS 1007703 and NSA grant
number H98230-11-1-0130.

Appendix

Here we provide an outline of the proof of the Theorem. First, note that by the conti-
nuity of the limit law H(·) and by a subsequence argument, it is enough to show that
for each fixed x,

Ĥm,n(x) − H(x) →p 0.

Fix x ∈ R. Write Mi,b = maxYi,b and M∗
b = max{X∗

1, . . . ,X∗
b}, the maximum over a

single resampled block. Also, let H†
b(x) = P∗([M∗

b − vm]/um ≤ x). Then, by (1) and
the independence of the resampled blocks, it is easy to check that

Ĥm,n(x) =
[
H†

b(x)
]k + op(1) =

(
1 + [k(1 − H†

b(x)]
k

)k

+ op(1),

which, by Theorem 5 and Condition (i), converges to H(x) in probability provided
k2 Var(H†

b(x)) → 0. Note that, by stationarity, with wm(x) = u−1
m x + vm,

k2 Var
(
H†

b(x)
)

≤ C1N
−1k2

N∑

j=0

∣∣Cov
(
I
(
M0,b > wm(x)

)
, I

(
Mj,b > wm(x)

))∣∣

≤ C2N
−1k2

[

pbP
(
M0,b > wm(x)

)

+
N∑

j=(p+1)b

∣∣Cov
(
I
(
M0,b > wm(x)

)
, I

(
Mj,b > wm(x)

))∣∣
]

≡ I1n(p) + I2n(p) (say),

where C1,C2, . . . ∈ (0,∞) are constants. By Conditions (i) and (iii), it follows that
I1n(p) = O(m/n) = o(1) for every fixed p ≥ 1. And, by retracing the arguments in
the proof of Theorem 5, one can show that for any j ≥ pb, p > 1, and αjn > 0,

∣∣Cov
(
I
(
M0 > wm(x)

)
, I

(
Mj > wm(x)

))∣∣

≤ 2b
(
umα−1

jn η(j − b) + 2αjn

[
(1 + γ x)

− 1
γ −1

+ /m
])

.

Setting αjn = [mumη(j − b)]1/2 and noting that m = kb, we have

I2n(p) ≤ C3N
−1k2

N∑

j=[p+1]b

[
bm−1/2u

1/2
m η(j − b)1/2] ≤ C3km1/2u

1/2
m η(pb)1/2,

which, by Condition (iii), goes to zero by first letting n → ∞ and then p → ∞. This
completes the proof of the theorem.
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Doukhan, Prohl and Robert should be congratulated for a nice piece of work. They
succeeded in extending the validity of subsampling procedures with overlapping or
non-overlapping blocks to a wider class of processes than the one commonly consid-
ered in the literature, following the invention of this resampling procedure by Politis
and Romano (1994). In fact, they weakened the basic strong mixing assumption to a
weak dependence condition introduced by Doukhan and Louhichi (1999). It is known
that the class of processes obeying this kind of dependence structure is much broader
than the strong mixing class and includes, for instance, Bernoulli shifts with discrete
distribution of the innovations, which turns out to be quite important for many statis-
tical applications.

One concern that I have refers to the technical Assumption C2 which is called
a concentration condition. How easy is it to verify that this condition is satisfied
in a particular application of the subsampling procedure, taking into account that it
refers to the behavior of the (finite sample) distribution of the statistic of interest?
The authors refer to some examples given in the literature, but I think it is worth
elaborating more on this important point. Another issue refers to the subsampling
estimator (7) which the author introduce as more suitable for the weakly depended
case considered. It should be made more clear why this smoothed estimator is more
suitable, taking into account that it requires the choice of additional (smoothing) pa-
rameters.

This comment refers to the invited paper available at doi:10.1007/s11749-011-0269-8.

E. Paparoditis (!)
University of Cyprus, Department of Mathematics and Statistics, 1678 Nicosia, Cyprus
e-mail: stathisp@ucy.ac.cy
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We are very grateful to all discussants for their valuable and insightful comments. We
sincerely appreciate that they were willing to take the time to provide such valuable
feedback. We also want to thank the co-editors Ricardo Cao and Dominigo Morales
for initiation of this discussion.

As Prof. Velasco points out, among the main important issues in practice using the
smooth and/or the rough subsampling estimators are the choices of the block size b,
the smoothing parameter ε and the degree of overlapping.

– Two ideas have emerged from all the comments to find an appropriate choice for
the block size.

Firstly Prof. Bertail and Bravo propose to extend the method introduced by
Bickel and Sakov (2008) in the context of the so-called ‘m out of n’ bootstrap for

This rejoinder refers to the comments available at doi:10.1007/s11749-011-0270-2,
doi:10.1007/s11749-011-0271-1, doi:10.1007/s11749-011-0272-0, doi:10.1007/s11749-011-0273-z,
doi:10.1007/s11749-011-0274-y.
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e-mail: sprohl@princeton.edu

C.Y. Robert
Institut de Science Financière et d’Assurances, Université de Lyon, Université Lyon 1, 50 Avenue
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i.i.d. observations to dependent data and subsampling estimators. Prof. Bravo pro-
vides moreover a very interesting simulation study that suggests that the method
seems to work very well. It is clearly an essential approach which will be consid-
ered. It still needs cumbersome calculations to justify it theoretically so that we
prefer to report it to a careful separate study. Certainly coupling arguments will be
needed to go back with arguments used under independence: such arguments are
already developed for β-mixing, see Doukhan (1994), and for τ -dependence, see
Dedecker and Prieur (2004).

We should underline that this approach aims at minimizing a distance between
the subsampling distribution and the distribution of the statistics for the overall
sample but not between the subsampling distribution and the asymptotic distri-
bution. It raises the question about considering or not the asymptotic distribution
when choosing the subsampling size. Prof. Velasco sheds light on this question for
the particular example of the distribution of the maximum for which clusters of
extreme values may have strong impact on bias for a too small value of the block
size. We agree with this remark. However, one has to be able to have an accurate
idea of the bias between the distribution of the statistics for the overall sample and
the asymptotic distribution, which is rarely the case in general without imposing
additional assumptions.

Secondly, Prof. Bertail proposes to consider the rate of convergence of the log-
arithm of some quantile ranges of the statistics of interest and to perform a regres-
sion analysis as is done in Bertail et al. (2004). A break in the regression slope
gives then an idea for the choice of the block size. It is a quite promising approach
when the rate of convergence of the statistics is given by a regularly varying func-
tion. As for the previous approach, it still needs a detailed theoretical analysis in
the framework of weak mixing time series data.

Prof. Velasco raises the question whether it is possible to have a higher order
asymptotic analysis of the estimator because this could be helpful for the choice
of the block size. This is a really hard issue that has been considered e.g. in Götze
and Hipp (1994), but we think that deep-going work remains to be handled in our
setting.

– The choice of the smoothing parameter is intricate and should be done at the same
time as the block size. As underlined by Prof. Bertail, the sensitivity of the sub-
sampling distribution to smoothing can be very important in practice. We certainly
agree that this is a problem that should be carefully addressed.

– The question of the degree of overlapping is a difficult theoretical one. However, as
can be seen from the numerical results presented by Prof. Lahiri and Mukhopad-
hyay and our simulation study, the overlapping estimators have slightly better per-
formance than the non-overlapping version. This confirms what we explained in
our remark on the choice of procedure before Sect. 4 of our paper. Prof. Velasco
makes mention of a partial overlapping scheme as suggested in Politis and Romano
(2010). It is an interesting suggestion, which, however, leads to one introduce a new
parameter h that is used to balance between the two schemes (overlapping/non-
overlapping). It is also not clear that it will lead to a larger efficiency in practice
for small to moderate sample size.

Prof. Bravo brings an important point regarding the integer-valued time series
models and proposes to carry on the analysis of our estimators in the case of such time

Author's personal copy
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series models. This is a good suggestion since such integer-valued models have an
important development nowadays, for application’s sake. Conferences now develop
such preoccupations: for example, the Second international workshop on integer-
valued time series was organized in Protaras, Cyprus, 19–21 June 2011. Many papers
also appeared, and we only cite some few of them: Ferland et al. (2006), Doukhan et
al. (2006), Fokianos and Tjostheim (2011), Fokianos (2011), Doukhan et al. (2011).

Prof. Lahiri and Mukhopadhyay compare the rough subsampling estimator with a
natural competitor, the ‘m out of n’ moving block bootstrap estimator, which is based
on a resampling method. As underlined by Prof. Velasco, subsampling has the advan-
tage to avoid the construction of new time series joining blocks of the original series
that may alter the original dependence structure and that need to specify the choice of
the length of the new time series. However, a simulation study seems to show that the
moving block bootstrap estimator has interesting properties for estimating the sam-
ple maximum distribution when the theoretical normalization coefficients are used.
We are particularly intrigued by such results and we will conduct our own simulation
study, applying to other statistics and time series models to understand the differences
between the two methods.

Prof. Paparoditis and Bertail both stressed the fact that a concentration assumption
is needed to derive a.s. sure convergence of the subsampling procedures. This condi-
tion is used (see e.g. (4.1.1), in Lemma 4.1, p. 84, Dedecker et al. 2007) to provide
weak dependence from dependence bounds on indicators. Such a condition seems in-
deed necessary in order to get higher order moments and corresponding faster decay
rates necessary to use the Borel–Cantelli argument. The condition C.2 holds if a con-
centration condition holds for the finite repartitions (X1, . . . ,Xb) and if the function
sb : Rb → R is regular enough. As mentioned in the paper after (6), sufficient condi-
tions for this result are already given in Doukhan and Wintenberger (2008) for infinite
memory models; some arguments are also given in Lemma 3.7, p. 67, Dedecker et al.
(2007) for the case of LARCH(∞) models. The case of infinite moving averages is
also of interest; Doukhan et al. (2002) prove the regularity of marginal distributions
if the independent innovations satisfy |E(eiλζ0)| ≤ C(1 + |λ|)−ε for arbitrarily small
ε > 0. Finally the simplest situation for which such a condition holds is the case of
noisy data Xt = Yt + ζt for strong white noise (ζt )t≥0 already satisfying C.2 and
independent of (Yt )t≥0.
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